1
|
Cao L, Jiang F, Liu D, Zhang J, Yang T, Zhang J, Che D, Fan J. Genome-Wide Characterization of Differentially Expressed Scent Genes in the MEP Control Network of the Flower of Lilium 'Sorbonne'. Mol Biotechnol 2025; 67:510-526. [PMID: 38379074 DOI: 10.1007/s12033-024-01063-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 12/29/2023] [Indexed: 02/22/2024]
Abstract
Fragrance is an important feature of ornamental lilies. Components of volatile substances and important genes for monoterpene synthesis in the 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway were examined in this study. Twenty volatile compounds (2 in the budding stage, 3 in the initial flowering stage, 7 in the semi-flowering stage, 17 in the full-flowering stage, and 5 in withering stage) were detected in the Oriental lily 'Sorbonne' using gas chromatography-mass spectrometry. The semi- and full-flowering stages were key periods for volatile substance production and enzyme function. Sequence assembly from samples collected during all flowering stages resulted in the detection of 274,849 genes and 129,017 transcripts. RNA sequencing and heatmapping led to the detection of genes in the MEP monoterpene metabolism pathway. Through gene ontology and Kyoto Encyclopedia of Genes and Genomes pathway analysis, we extracted key genes (LiDXS2, LiLIS, and LiMYS) and transcription factors (in the bHLH, MYB, HD-ZIP, and NAC families) associated with the MEP pathway. Tissue localization revealed that LiDXS2, LiLIS, and LiMYS were expressed in Lilium 'Sorbonne' petals in the full-flowering stage. Genes regulating the 1-deoxy-D-X-lignone-5-phosphate synthase family of rate-limiting enzymes, involved in the first step of monoterpene synthesis, showed high expression in the semi- and full-flowering stages. LiDXS2 was cloned and localized in chloroplast subcells. The relative expression of terpene-related genes in the MEP and mevalonic acid pathways of wild-type and LiLIS/LiMYS transgenic Arabidopsis thaliana, and changes in chemical composition, confirmed that LiLIS/LiMYS regulates the monoterpene synthesis pathway. The results of this study provide a theoretical basis for the synthesis of lily aromatic substances and the cultivation of new garden flower varieties.
Collapse
Affiliation(s)
- Lei Cao
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - Fan Jiang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - Dongying Liu
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - Jiaohua Zhang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - Tao Yang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - Jinzhu Zhang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - Daidi Che
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - Jinping Fan
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
2
|
Novello MA, Bustamante CA, Svetaz LA, Goldy C, Valentini GH, Drincovich MF, Brotman Y, Fernie AR, Lara MV. Integrated Metabolomic, Lipidomic and Proteomic Analysis Define the Metabolic Changes Occurring in Curled Areas in Leaves With Leaf Peach Curl Disease. PLANT, CELL & ENVIRONMENT 2025; 48:1179-1200. [PMID: 39420723 DOI: 10.1111/pce.15210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 08/27/2024] [Accepted: 09/27/2024] [Indexed: 10/19/2024]
Abstract
Peach Leaf Curl Disease, caused by Taphrina deformans, is characterized by reddish hypertrophic and hyperplasic leaf areas. To comprehend the biochemical imbalances caused by the fungus, dissected symptomatic (C) and asymptomatic areas (N) from leaves with increasing disease extension were analyzed by an integrated approach including metabolomics, lipidomics, proteomics, and complementary biochemical techniques. Drastic metabolic differences were identified in C areas with respect to either N areas or healthy leaves, including altered chloroplastic functioning and composition, which differs from the typical senescence process. In C areas, alteration in redox-homoeostasis proteins and in triacylglycerols content, peroxidation and double bond index were observed. Proteomic data revealed induction of host enzymes involved in auxin and jasmonate biosynthesis and an upregulation of phenylpropanoid and mevalonate pathways and downregulation of the plastidic methylerythritol phosphate route. Amino acid pools were affected, with upregulation of proteins involved in asparagine synthesis. Curled areas exhibited a metabolic shift towards functioning as a sink tissue importing sugars, probably from N areas, and producing energy through fermentation and respiration and reductive power via the pentose phosphate route. Identifying the metabolic disturbances leading to disease symptoms is a key step in designing strategies to prevent or delay the progression of the disease.
Collapse
Affiliation(s)
- María Angelina Novello
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Claudia Anabel Bustamante
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Laura Andrea Svetaz
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Camila Goldy
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Gabriel Hugo Valentini
- Estación Experimental San Pedro, Instituto Nacional de Tecnología Agropecuaria (INTA), San Pedro, Argentina
| | - María Fabiana Drincovich
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Yariv Brotman
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
| | - Alisdair R Fernie
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm, Germany
| | - María Valeria Lara
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| |
Collapse
|
3
|
Jahan T, Huda MN, Zhang K, He Y, Lai D, Dhami N, Quinet M, Ali MA, Kreft I, Woo SH, Georgiev MI, Fernie AR, Zhou M. Plant secondary metabolites against biotic stresses for sustainable crop protection. Biotechnol Adv 2025; 79:108520. [PMID: 39855404 DOI: 10.1016/j.biotechadv.2025.108520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 12/06/2024] [Accepted: 01/11/2025] [Indexed: 01/27/2025]
Abstract
Sustainable agriculture practices are indispensable for achieving a hunger-free world, especially as the global population continues to expand. Biotic stresses, such as pathogens, insects, and pests, severely threaten global food security and crop productivity. Traditional chemical pesticides, while effective, can lead to environmental degradation and increase pest resistance over time. Plant-derived natural products such as secondary metabolites like alkaloids, terpenoids, phenolics, and phytoalexins offer promising alternatives due to their ability to enhance plant immunity and inhibit pest activity. Recent advances in molecular biology and biotechnology have improved our understanding of how these natural compounds function at the cellular level, activating specific plant defense through complex biochemical pathways regulated by various transcription factors (TFs) such as MYB, WRKY, bHLH, bZIP, NAC, and AP2/ERF. Advancements in multi-omics approaches, including genomics, transcriptomics, proteomics, and metabolomics, have significantly improved the understanding of the regulatory networks that govern PSM synthesis. These integrative approaches have led to the discovery of novel insights into plant responses to biotic stresses, identifying key regulatory genes and pathways involved in plant defense. Advanced technologies like CRISPR/Cas9-mediated gene editing allow precise manipulation of PSM pathways, further enhancing plant resistance. Understanding the complex interaction between PSMs, TFs, and biotic stress responses not only advances our knowledge of plant biology but also provides feasible strategies for developing crops with improved resistance to pests and diseases, contributing to sustainable agriculture and food security. This review emphasizes the crucial role of PSMs, their biosynthetic pathways, the regulatory influence of TFs, and their potential applications in enhancing plant defense and sustainability. It also highlights the astounding potential of multi-omics approaches to discover gene functions and the metabolic engineering of genes associated with secondary metabolite biosynthesis. Taken together, this review provides new insights into research opportunities for enhancing biotic stress tolerance in crops through utilizing plant secondary metabolites.
Collapse
Affiliation(s)
- Tanzim Jahan
- State Key Laboratory for Crop Gene Resources and Breeding/Key Laboratory for Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, P.R. China, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Md Nurul Huda
- State Key Laboratory for Crop Gene Resources and Breeding/Key Laboratory for Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, P.R. China, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Kaixuan Zhang
- State Key Laboratory for Crop Gene Resources and Breeding/Key Laboratory for Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, P.R. China, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yuqi He
- State Key Laboratory for Crop Gene Resources and Breeding/Key Laboratory for Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, P.R. China, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Dili Lai
- State Key Laboratory for Crop Gene Resources and Breeding/Key Laboratory for Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, P.R. China, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Namraj Dhami
- School of Health and Allied Sciences, Faculty of Health Sciences, Pokhara University, Dhungepatan, Pokhara-30, Kaski, Nepal
| | - Muriel Quinet
- Groupe de Recherche en Physiologie Végétale (GRPV), Earth and Life Institute-Agronomy (ELI-A), Université catholique de Louvain, Croix du Sud 45, boîte L7.07.13, B-1348 Louvain-la-Neuve, Belgium
| | - Md Arfan Ali
- Department of Horticulture, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh
| | - Ivan Kreft
- Nutrition Institute, Koprska Ulica 98, SI-1000 Ljubljana, Slovenia
| | - Sun-Hee Woo
- Department of Crop Science, Chungbuk National University, Cheong-ju, Republic of Korea
| | - Milen I Georgiev
- Laboratory of Metabolomics, Department of Biotechnology, Institute of Microbiology, Bulgarian Academy of Sciences, 139 Ruski Blvd, 4000 Plovdiv, Bulgaria
| | - Alisdair R Fernie
- Center of Plant Systems Biology and Biotechnology, 139 Ruski Blvd, 4000 Plovdiv, Bulgaria; Department of Molecular Physiology, Max-Planck-Institute of Molecular Plant Physiology, Potsdam 14476, Germany
| | - Meiliang Zhou
- State Key Laboratory for Crop Gene Resources and Breeding/Key Laboratory for Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, P.R. China, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
4
|
Zhou Y, Yao L, Xie Y, Huang B, Li Y, Huang X, Yu L, Pan C. Metabolic and transcriptional analysis of tuber expansion in Curcuma kwangsiensis. Sci Rep 2025; 15:1588. [PMID: 39794375 PMCID: PMC11724066 DOI: 10.1038/s41598-024-84763-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 12/26/2024] [Indexed: 01/13/2025] Open
Abstract
The tubers of Curcuma kwangsiensis are regarded as an important medicinal material in China. In C. kwangsiensis cultivation, tuber expansion is key to yield and quality, but the regulatory mechanisms are not well understood. In this study, metabolomic and transcriptomic analyses were conducted to elucidate the mechanism underlying tuber expansion development. The results showed that auxin (IAA), jasmonic acid (JA), gibberellin (GA3), ethylene (ETH), and brassinolide (BR) levels increased during tuber expansion development. Metabolomic analysis showed that 197 differentially accumulated metabolites (DAMs) accumulated during tuber expansion development and these also play important roles in the accumulation of carbohydrates and secondary metabolites. 6962 differentially expressed genes (DEGs) were enriched in plant hormone signal transduction, starch and sucrose metabolism, linoleic acid metabolism, MAPK signaling pathway as well as sesquiterpenoid and triterpenoid biosynthesis. Comprehensive analysis revealed that DEGs and DAMs of plant hormone signal transduction, ABC transporters and biosynthesis of phenylpropanoids and terpenoids are critical pathways in regulating tuber expansion. In addition, some transcription factors (ARF, C2H2, C3H, NAC, bHLH, GRAS and WRKY) as well as hub genes (HDS, HMGR, ARF7, PP2CA, PAL and CCOMT) are also involved in this process. This study lays a theoretical basis for the molecular mechanism of tuber expansion in C. kwangsiensis.
Collapse
Affiliation(s)
- Yunyi Zhou
- Guangxi TCM Resources General Survey and Data Collection Key Laboratory/ the Center for Phylogeny and Evolution of Medicinal Plants, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- National Center for TCM Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Lixiang Yao
- Guangxi TCM Resources General Survey and Data Collection Key Laboratory/ the Center for Phylogeny and Evolution of Medicinal Plants, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- National Center for TCM Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Yueying Xie
- Guangxi TCM Resources General Survey and Data Collection Key Laboratory/ the Center for Phylogeny and Evolution of Medicinal Plants, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- National Center for TCM Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Baoyou Huang
- Guangxi TCM Resources General Survey and Data Collection Key Laboratory/ the Center for Phylogeny and Evolution of Medicinal Plants, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- National Center for TCM Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Ying Li
- Guangxi TCM Resources General Survey and Data Collection Key Laboratory/ the Center for Phylogeny and Evolution of Medicinal Plants, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- National Center for TCM Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Xueyan Huang
- Guangxi TCM Resources General Survey and Data Collection Key Laboratory/ the Center for Phylogeny and Evolution of Medicinal Plants, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- National Center for TCM Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Liying Yu
- Guangxi TCM Resources General Survey and Data Collection Key Laboratory/ the Center for Phylogeny and Evolution of Medicinal Plants, Guangxi Botanical Garden of Medicinal Plants, Nanning, China.
- National Center for TCM Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China.
| | - Chunliu Pan
- Guangxi TCM Resources General Survey and Data Collection Key Laboratory/ the Center for Phylogeny and Evolution of Medicinal Plants, Guangxi Botanical Garden of Medicinal Plants, Nanning, China.
- National Center for TCM Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China.
| |
Collapse
|
5
|
Wali AF, Pillai JR, Talath S, Shivappa P, Sridhar SB, El-Tanani M, Rangraze IR, Mohamed OI, Al Ani NN. Phytochemicals in Breast Cancer Prevention and Treatment: A Comprehensive Review. Curr Issues Mol Biol 2025; 47:30. [PMID: 39852145 PMCID: PMC11764082 DOI: 10.3390/cimb47010030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/26/2024] [Accepted: 12/29/2024] [Indexed: 01/26/2025] Open
Abstract
Extensive investigation has been conducted on plant-based resources for their pharmacological usefulness, including various cancer types. The scope of this review is wider than several studies with a particular focus on breast cancer, which is an international health concern while studying sources of flavonoids, carotenoids, polyphenols, saponins, phenolic compounds, terpenoids, and glycosides apart from focusing on nursing. Important findings from prior studies are synthesized to explore these compounds' sources, mechanisms of action, complementary and synergistic effects, and associated side effects. It was reviewed that the exposure to certain doses of catechins, piperlongumine, lycopene, isoflavones and cucurbitacinfor a sufficient period can provide profound anticancer benefits through biological events such as cell cycle arrest, cells undergoing apoptosis and disruption of signaling pathways including, but not limited to JAK-STAT3, HER2-integrin, and MAPK. Besides, the study also covers the potential adverse effects of these phytochemicals. Regarding mechanisms, the widest attention is paid to Complementary and synergistic strategies are discussed which indicate that it would be realistic to alter the dosage and delivery systems of liposomes, nanoparticles, nanoemulsions, and films to enhance efficacy. Future research directions include refining these delivery approaches, further elucidating molecular mechanisms, and conducting clinical trials to validate findings. These efforts could significantly advance the role of phytocompounds in breast cancer management.
Collapse
Affiliation(s)
- Adil Farooq Wali
- Department of Pharmaceutical Chemistry, College of Pharmacy, RAK Medical and Health Sciences University, Ras Al Khaimah 11172, United Arab Emirates;
| | - Jayachithra Ramakrishna Pillai
- Department of Pharmaceutical Chemistry, College of Pharmacy, RAK Medical and Health Sciences University, Ras Al Khaimah 11172, United Arab Emirates;
| | - Sirajunisa Talath
- Department of Pharmaceutical Chemistry, College of Pharmacy, RAK Medical and Health Sciences University, Ras Al Khaimah 11172, United Arab Emirates;
| | - Pooja Shivappa
- Translational Medicinal Research Centre, Department of Biochemistry, RAK Medical and Health Sciences University, Ras Al Khaimah 11172, United Arab Emirates;
| | - Sathvik Belagodu Sridhar
- Department of Clinical Pharmacy & Pharmacology, RAK College of Pharmacy, RAK Medical and Health Sciences University, Ras Al Khaimah 11172, United Arab Emirates;
| | - Mohamed El-Tanani
- RAK College of Pharmacy, RAK Medical and Health Science University, Ras Al Khaimah 11172, United Arab Emirates;
| | - Imran Rashid Rangraze
- RAK College of Medical Sciences, RAK Medical and Health Science University, Ras Al Khaimah 11172, United Arab Emirates;
| | - Omnia Ibrahim Mohamed
- Department of General Education, RAK Medical and Health Sciences University, Ras Al Khaimah 11172, United Arab Emirates; (O.I.M.); (N.N.A.A.)
| | - Nowar Nizar Al Ani
- Department of General Education, RAK Medical and Health Sciences University, Ras Al Khaimah 11172, United Arab Emirates; (O.I.M.); (N.N.A.A.)
| |
Collapse
|
6
|
Horn A, Lu Y, Astorga Ríos FJ, Toft Simonsen H, Becker JD. Transcriptional and functional characterization in the terpenoid precursor pathway of the early land plant Physcomitrium patens. PLANT BIOLOGY (STUTTGART, GERMANY) 2025; 27:29-39. [PMID: 39601615 DOI: 10.1111/plb.13741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 10/14/2024] [Indexed: 11/29/2024]
Abstract
Isoprenoids comprise the largest group of plant specialized metabolites. 1-deoxy-D-xylulose-5-phosphate synthase (DXS) is one of the major rate-limiting enzymes in their biosynthesis. The DXS family expanded structurally and functionally during evolution and is believed to have significantly contributed to metabolic complexity and diversity in plants. This family has not yet been studied in Physcomitrium patens or other bryophytes. Here, we assessed the degree of evolutionary expansion in the DXS family in bryophytes and, more specifically, in P. patens using phylogenetic analysis. Transcriptome profiling was applied to investigate tissue-specific, developmental, and environmental responses, such as salt stress, in the DXS family. Moreover, the effect of salt stress on terpenoid biosynthesis was monitored through metabolomics. The phylogenetic analysis of DXS revealed that a structural expansion occurred in bryophytes, but not in P. patens. Functional complementation assay revealed functional activity in all four copies. Comparative transcriptomics showed tissue- and condition-specific divergence in the expression profiles of DXS copies and demonstrated specific stress responses for PpDXS1D, particularly to salt stress. These findings coincide with increased flux in the pathway towards downstream metabolites under salt stress. Additionally, co-expression network analysis revealed significant differences between the co-expressed genes of the DXS copies and illustrated enrichment of stress-responsive genes in the PpDXS1D network. These results suggest that the DXS family in P. patens is conserved but undergoes differential transcriptional regulation, which might allow P. patens to fine-tune DXS levels under different conditions, such as abiotic stress.
Collapse
Affiliation(s)
- A Horn
- ITQB NOVA-Instituto de Tecnologia Química e Biológica António Xavier, Oeiras, Portugal
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Y Lu
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - F J Astorga Ríos
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
- Université Jean Monnet Saint-Etienne, CNRS, LBVpam, Saint-Etienne, France
| | - H Toft Simonsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
- Université Jean Monnet Saint-Etienne, CNRS, LBVpam, Saint-Etienne, France
| | - J D Becker
- ITQB NOVA-Instituto de Tecnologia Química e Biológica António Xavier, Oeiras, Portugal
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| |
Collapse
|
7
|
Reveglia P, Blanco M, Cobos MJ, Labuschagne M, Joy M, Rubiales D. Metabolic profiling of pea (Pisum sativum) cultivars in changing environments: Implications for nutritional quality in animal feed. Food Chem 2025; 462:140972. [PMID: 39208720 DOI: 10.1016/j.foodchem.2024.140972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 08/17/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
Field pea seeds have long been recognized as valuable feed ingredients for animal diets, due to their high-quality protein and starch digestibility. However, the chemical composition of pea cultivars can vary across different growing locations, consequently impacting their nutrient profiles. This study employs untargeted metabolomics in conjunction with the quantification of fatty acids and amino acids to explore the influence of three different growing locations in Spain (namely Andalusia, Aragon and Asturias), on the nutritional characteristics of seeds of various pea cultivars. Significant interactions between cultivar and environment were observed, with 121 metabolites distinguishing pea profiles. Lipids, lipid-like molecules, phenylpropanoids, polyketides, carbohydrates, and amino acids were the most affected metabolites. Fatty acid profiles varied across locations, with higher C16:0, C18:0, and 18:1 n-9 concentration in Aragón, while C18:2 n-6 predominated in Asturias and C18:3 n-3 in Andalusia. Amino acid content was also location-dependent, with higher levels in Asturias. These findings underscore the impact of environmental factors on pea metabolite profiles and emphasize the importance of selecting pea cultivars based on specific locations and animal requirements. Enhanced collaboration between research and industry is crucial for optimizing pea cultivation for animal feed production.
Collapse
Affiliation(s)
| | - Mireia Blanco
- Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Instituto Agroalimentario de Aragón - IA2 (CITA-Universidad de Zaragoza), Zaragoza 50059, Spain
| | - Maria Josè Cobos
- Institute for Sustainable Agriculture, CSIC, Córdoba, 14004, Spain
| | - Maryke Labuschagne
- Department of Plant Sciences (Plant Breeding), University of the Free State, Bloemfontein, South Africa
| | - Margalida Joy
- Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Instituto Agroalimentario de Aragón - IA2 (CITA-Universidad de Zaragoza), Zaragoza 50059, Spain
| | - Diego Rubiales
- Institute for Sustainable Agriculture, CSIC, Córdoba, 14004, Spain.
| |
Collapse
|
8
|
Chen TW, Tsao NW, Wang SY, Chu FH. Cloning and functional characterization of volatile-terpene synthase genes from Chamaecyparis obtusa var. formosana. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 350:112322. [PMID: 39571687 DOI: 10.1016/j.plantsci.2024.112322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 11/01/2024] [Accepted: 11/15/2024] [Indexed: 11/26/2024]
Abstract
Chamaecyparis obtusa var. formosana is significant as a precious and endemic plant in Taiwan. The trunk, renowned for its excellent texture and color, is ideal for construction materials and furniture. Moreover, the entire plant is rich in aroma, which can be made into essential oils, fragrances, and a series of related products. Volatile terpenoids are the major compounds in the composition of essential oils, many of which can only be found in C. obtusa var. formosana. In this study, we successfully identified 12 volatile terpene synthases from C. obtusa var. formosana. Most of the selected TPSs displayed the ability to catalyze precursors into cyclic terpenoids, except for CovfTPS8, which also exhibited the capability to react with FPP and GPP. CovfTPS10 is particularly noteworthy for its multi-product characteristics and the ability to synthesize acoradiene. Moreover, it produces a novel compound, cis-isoduacene. Through the investigation of these volatile-terpenoid synthases, we can gain a better understanding of the cyclization process for terpenoids.
Collapse
Affiliation(s)
- Ting-Wei Chen
- School of Forestry and Resource Conservation, National Taiwan University, Taipei, Taiwan
| | - Nai-Wen Tsao
- Department of Forestry, National Chung-Hsing University, Taichung, Taiwan
| | - Sheng-Yang Wang
- Department of Forestry, National Chung-Hsing University, Taichung, Taiwan
| | - Fang-Hua Chu
- School of Forestry and Resource Conservation, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
9
|
Gutiérrez S, Overmans S, Wellman GB, Lauersen KJ. Compartmentalized Sesquiterpenoid Biosynthesis and Functionalization in the Chlamydomonas reinhardtii Plastid. Chembiochem 2024:e202400902. [PMID: 39589357 DOI: 10.1002/cbic.202400902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/22/2024] [Accepted: 11/26/2024] [Indexed: 11/27/2024]
Abstract
Terpenoids play key roles in cellular metabolism and can have specialized functions. Their heterologous production in microbial hosts offers an alternative to natural extraction. Here, we developed a subcellular engineering approach in the model green alga Chlamydomonas reinhardtii by targeting both sesquiterpenoid synthases and cytochrome P450s (CYPs) to the plastid, exploiting its photosynthetic electron transport chain to drive CYP-mediated oxidation without reductase partners. Nuclear-encoded sesquiterpenoid synthases were expressed with farnesyl pyrophosphate synthase fusions and targeted to the plastid, while CYPs were modified for soluble localization in the plastid stroma by removing transmembrane domains. The plastid environment supported hydroxylation, epoxidation, and oxidation reactions, with functionalization efficiencies reaching 80 % of accumulated products. Carbon source availability influenced product ratios, revealing metabolic flexibility in the engineered pathways. Overall sesquiterpenoid yields ranged between 250-2500 μg L-1 under screening conditions, establishing proof-of-concept for using plastid biochemistry in complex terpenoid biosynthesis. Living two-phase terpenoid extractions with different perfluorinated solvents revealed variable performances based on sesquiterpenoid functionalization and solvent type. This work demonstrates that photosynthetic electron transport can drive CYP-mediated functionalization in engineered subcellular compartments. However, improvements in photobioreactor cultivation concepts will be required to facilitate the use of algal chassis for scaled production.
Collapse
Affiliation(s)
- Sergio Gutiérrez
- Bioengineering Program, Biological, Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Sebastian Overmans
- Bioengineering Program, Biological, Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Gordon B Wellman
- Bioengineering Program, Biological, Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Kyle J Lauersen
- Bioengineering Program, Biological, Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| |
Collapse
|
10
|
Kim H, Lee Y, Yu J, Park JY, Lee J, Kim SG, Hyun Y. Production of the antimalarial drug precursor amorphadiene by microbial terpene synthase-like from the moss Sanionia uncinata. PLANTA 2024; 260:145. [PMID: 39565435 PMCID: PMC11579073 DOI: 10.1007/s00425-024-04558-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 10/16/2024] [Indexed: 11/21/2024]
Abstract
MAIN CONCLUSION The microbial terpene synthase-like of the moss Sanionia uncinata displays the convergent evolution of a rare plant metabolite amorpha-4,11-diene synthesis. Despite increasing demand for the exploration of biological resources, the diversity of natural compounds synthesized by organisms inhabiting various climates remains largely unexplored. This study focuses on the moss Sanionia uncinata, known as a predominant species within the polar climates of the Antarctic Peninsula, to systematically explore its metabolic profile both in-field and in controlled environments. We here report a diverse array of moss-derived terpene volatiles, including the identification of amorpha-4,11-diene, a rare sesquiterpene compound that is a precursor for antimalarial drugs. Phylogenetic reconstruction and functional validation in planta and in vitro identified a moss terpene synthase, S. uncinata microbial terpene synthase-like 2 (SuMTPSL2), which is associated with amorpha-4,11-diene production. We demonstrate that expressing SuMTPSL2 in various heterologous systems is sufficient to produce amorpha-4,11-diene. These results highlight the metabolic diversity in Antarctica, but also provide insights into the convergent evolution leading to the synthesis of a rare plant metabolite.
Collapse
Affiliation(s)
- Hyeonjin Kim
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology, Daejeon, 34141, Republic of Korea
| | - Yelim Lee
- School of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea
- Division of Life Sciences, Korea Polar Research Institute, Incheon, 21990, Republic of Korea
| | - Jihyeon Yu
- Division of Life Sciences, Korea Polar Research Institute, Incheon, 21990, Republic of Korea
| | - Jong-Yoon Park
- School of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jungeun Lee
- Division of Life Sciences, Korea Polar Research Institute, Incheon, 21990, Republic of Korea.
| | - Sang-Gyu Kim
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology, Daejeon, 34141, Republic of Korea.
| | - Youbong Hyun
- School of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
11
|
Agatha O, Mutwil-Anderwald D, Tan JY, Mutwil M. Plant sesquiterpene lactones. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230350. [PMID: 39343024 PMCID: PMC11449222 DOI: 10.1098/rstb.2023.0350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 06/14/2024] [Accepted: 06/25/2024] [Indexed: 10/01/2024] Open
Abstract
Sesquiterpene lactones (STLs) are a prominent group of plant secondary metabolites predominantly found in the Asteraceae family and have multiple ecological roles and medicinal applications. This review describes the evolutionary and ecological significance of STLs, highlighting their roles in plant defence mechanisms against herbivory and as phytotoxins, alongside their function as environmental signalling molecules. We also cover the substantial role of STLs in medicine and their mode of action in health and disease. We discuss the biosynthetic pathways and the various modifications that make STLs one of the most diverse groups of metabolites. Finally, we discuss methods for identifying and predicting STL biosynthesis pathways. This article is part of the theme issue 'The evolution of plant metabolism'.
Collapse
Affiliation(s)
- Olivia Agatha
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive , Singapore 637551, Singapore
| | - Daniela Mutwil-Anderwald
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive , Singapore 637551, Singapore
| | - Jhing Yein Tan
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive , Singapore 637551, Singapore
| | - Marek Mutwil
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive , Singapore 637551, Singapore
| |
Collapse
|
12
|
Wang Y, Cao X, Ma J, Liu S, Jin X, Liu B. Unveiling the Longevity Potential of Natural Phytochemicals: A Comprehensive Review of Active Ingredients in Dietary Plants and Herbs. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:24908-24927. [PMID: 39480905 PMCID: PMC11565747 DOI: 10.1021/acs.jafc.4c07756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/25/2024] [Accepted: 10/25/2024] [Indexed: 11/02/2024]
Abstract
Ancient humans used dietary plants and herbs to treat disease and to pursue eternal life. Today, phytochemicals in dietary plants and herbs have been shown to be the active ingredients, some of which have antiaging and longevity-promoting effects. Here, we summarize 210 antiaging phytochemicals in dietary plants and herbs, systematically classify them into 8 groups. We found that all groups of phytochemicals can be categorized into six areas that regulate organism longevity: ROS levels, nutrient sensing network, mitochondria, autophagy, gut microbiota, and lipid metabolism. We review the role of these processes in aging and the molecular mechanism of the health benefits through phytochemical-mediated regulation. Among these, how phytochemicals promote longevity through the gut microbiota and lipid metabolism is rarely highlighted in the field. Our understanding of the mechanisms of phytochemicals based on the above six aspects may provide a theoretical basis for the further development of antiaging drugs and new insights into the promotion of human longevity.
Collapse
Affiliation(s)
- Yu Wang
- State
Key Laboratory of Subtropical Silviculture, School of Forestry and
Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| | - Xiuling Cao
- State
Key Laboratory of Subtropical Silviculture, School of Forestry and
Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| | - Jin Ma
- State
Key Laboratory of Subtropical Silviculture, School of Forestry and
Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| | - Shenkui Liu
- State
Key Laboratory of Subtropical Silviculture, School of Forestry and
Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| | - Xuejiao Jin
- State
Key Laboratory of Subtropical Silviculture, School of Forestry and
Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| | - Beidong Liu
- State
Key Laboratory of Subtropical Silviculture, School of Forestry and
Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
- Department
of Chemistry and Molecular Biology, University
of Gothenburg, Gothenburg 41390, Sweden
| |
Collapse
|
13
|
Andreas MP, Giessen TW. The biosynthesis of the odorant 2-methylisoborneol is compartmentalized inside a protein shell. Nat Commun 2024; 15:9715. [PMID: 39521781 PMCID: PMC11550324 DOI: 10.1038/s41467-024-54175-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024] Open
Abstract
Terpenoids are the largest class of natural products, found across all domains of life. One of the most abundant bacterial terpenoids is the volatile odorant 2-methylisoborneol (2-MIB), partially responsible for the earthy smell of soil and musty taste of contaminated water. Many bacterial 2-MIB biosynthetic gene clusters were thought to encode a conserved transcription factor, named EshA in the model soil bacterium Streptomyces griseus. Here, we revise the function of EshA, now referred to as Sg Enc, and show that it is a Family 2B encapsulin shell protein. Using cryo-electron microscopy, we find that Sg Enc forms an icosahedral protein shell and encapsulates 2-methylisoborneol synthase (2-MIBS) as a cargo protein. Sg Enc contains a cyclic adenosine monophosphate (cAMP) binding domain (CBD)-fold insertion and a unique metal-binding domain, both displayed on the shell exterior. We show that Sg Enc CBDs do not bind cAMP. We find that 2-MIBS cargo loading is mediated by an N-terminal disordered cargo-loading domain and that 2-MIBS activity and Sg Enc shell structure are not modulated by cAMP. Our work redefines the function of EshA and establishes Family 2B encapsulins as cargo-loaded protein nanocompartments involved in secondary metabolite biosynthesis.
Collapse
Affiliation(s)
- Michael P Andreas
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Tobias W Giessen
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
14
|
Huang J, Lei T, Zhou Q, Fang Z, Ruan H, Wang L, Qian W, Lu Y, Wang Q, Gao L, Wang Z, Wang Y. Comparative Metabolome and Transcriptome Analysis Revealed the Accumulative Mechanism of Rubusoside in Chinese Sweet Tea. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:24539-24551. [PMID: 39442010 DOI: 10.1021/acs.jafc.4c07127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Terpenoids are important secondary metabolites in Rubus. Rubusoside is a relatively specific diterpenoid bioactive component in the leaves of Chinese Sweet Tea (Rubus suavissimus). However, the terpenoid anabolic pathway of Rubus and the molecular mechanism underlying the specific accumulation of rubusoside in R. suavissimus remain unclear. Here, metabolomics and transcriptomics analyses were performed on differences in terpenoid metabolism levels between R. suavissimus (sweet leaves) and Rubus chingii (bitter leaves). Steviol glycosides and goshonosides primarily accumulated in R. suavissimus and R. chingii, respectively. Three pairs of highly homologous glycosyltransferase genes (UGT85A57, UGT75L20, and UGT75T4) associated with rubusoside biosynthesis in the two Rubus species were identified. The three pairs of UGT proteins in both species could glycosylate steviol. Thus, the transcriptional regulation of UGTs in R. suavissimus appears to play a pivotal role in rubusoside accumulation. Our findings provide insights into the differences in terpenoid metabolism between R. suavissimus and R. chingii and reveal the molecular mechanism of rubusoside accumulation in R. suavissimus.
Collapse
Affiliation(s)
- Jun Huang
- School of Life Science, Anhui Agricultural University, Hefei 230036, Anhui, China
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Ting Lei
- School of Life Science, Anhui Agricultural University, Hefei 230036, Anhui, China
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510641, Guangdong, China
| | - Qi Zhou
- School of Life Science, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Zhou Fang
- School of Life Science, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Haixiang Ruan
- School of Life Science, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Lei Wang
- School of Life Science, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Wei Qian
- School of Life Science, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Yeyang Lu
- School of Life Science, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Qi Wang
- School of Life Science, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Liping Gao
- School of Life Science, Anhui Agricultural University, Hefei 230036, Anhui, China
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Zhenhong Wang
- Resources & Environment College, Tibet Agricultural and Animal Husbandry University, Nyingchi 860000, Tibet, China
| | - Yunsheng Wang
- School of Life Science, Anhui Agricultural University, Hefei 230036, Anhui, China
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, Anhui, China
| |
Collapse
|
15
|
Asheri M, Farokhzad A, Naghavi MR, Ghasemzadeh R, Azadi P, Zargar M. Methyl jasmonate improves rubber production and quality in Lactuca Serriola. Sci Rep 2024; 14:26837. [PMID: 39501030 PMCID: PMC11538524 DOI: 10.1038/s41598-024-78065-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 10/28/2024] [Indexed: 11/08/2024] Open
Abstract
The increase in demand for natural rubber has led to the search for alternative sources. Lactuca serriola is emerging as a promising candidate, as the quality of the natural rubber it produces is comparable to that of the Pará Rubber Plant, Hevea brasiliensis. This study examines the effect of methyl jasmonate (MeJA), a known elicitor, on the expression of key rubber biosynthesis pathway genes (HMGR1, HMGS1, CPT2, and SRPP1) in the latex of L. serriola plants. The expression levels of these genes increased significantly after the foliar application of 200 and 400 µM MeJA. The highest relative expression level for HMGR1, HMGS1, CPT2 and SRPP1 was 3.74, 18.56, 11.91and 16.59 fold respectively. Furthermore, the rubber content in L. serriola showed a significant rise post-treatment compared to the control with increasing the level of MeJA (6.19%, 7.24% and 7.85% which correspond to 0, 200 and 400 µM). Gel permeation chromatography revealed an augmentation in the molecular weight of extracted natural rubber from treated plants. Samples treated with 400 µM of MeJA had the highest molecular weight (1570 kg mol-1) compared to control (1186 kg mol-1). This study has demonstrated that MeJA, through the regulation of rubber biosynthesis genes, is capable of enhancing the quality and quantity of natural rubber extracted from alternative sources, such as L. serriola.
Collapse
Affiliation(s)
- Maisa Asheri
- Department of Horticultural Science, Faculty of Agriculture, Urmia University, P.O. Box: 165, Urmia, Iran
| | - Alireza Farokhzad
- Department of Horticultural Science, Faculty of Agriculture, Urmia University, P.O. Box: 165, Urmia, Iran.
| | - Mohammad Reza Naghavi
- Division of Biotechnology, Department of Agronomy and Plant Breeding, College of Agricultural and Natural Resources, University of Tehran, Karaj, Iran
- Department of Agrobiotechnology, Institute of Agriculture, RUDN University, 117198, Moscow, Russia
| | - Raheleh Ghasemzadeh
- Department of Plant Production and Genetics, Faculty of Agriculture, Urmia University, Urmia, Iran
| | - Pejman Azadi
- Department of Genetic Engineering, Agricultural Research, Education and Extension Organization (AREEO), Agricultural Biotechnology Research Institute of Iran (ABRII), Karaj, Iran
| | - Meisam Zargar
- Department of Agrobiotechnology, Institute of Agriculture, RUDN University, 117198, Moscow, Russia
| |
Collapse
|
16
|
Pan L, Huang R, Lu Z, Duan W, Sun S, Yan L, Cui G, Niu L, Wang Z, Zeng W. Combined transcriptome and metabolome analysis identifies triterpenoid-induced defense responses in Myzus persicae Sülzer-infested peach. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:6644-6662. [PMID: 39110720 DOI: 10.1093/jxb/erae339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 08/06/2024] [Indexed: 11/01/2024]
Abstract
Piercing/sucking insects such as green peach aphid (GPA) (Myzus persicae) cause direct damage by obtaining phloem nutrients and indirect damage by spreading plant viruses. To investigate the response of peach trees (Prunus persica) to aphids, the leaf transcriptome and metabolome of two genotypes with different sensitivities to GPA were studied. The gene expression of aphid-susceptible plants infested with aphids was similar to that of control plants, whereas the gene expression of aphid-resistant plants infested with aphids showed strong induced changes in gene expression compared with control plants. Furthermore, gene transcripts in defense-related pathways, including plant-pathogen interaction, MAPK signaling, and several metabolic pathways, were strongly enriched upon aphid infestation. Untargeted secondary metabolite profiling confirmed that aphid infestation induced larger changes in aphid-resistant than in aphid-susceptible peaches. Consistent with transcriptomic alterations, nine triterpenoids showed highly significant GPA-induced accumulation in aphid-resistant peaches, whereas triterpenoid abundance remained predominantly unchanged or undetected in aphid-susceptible peaches. Furthermore, some types of transcription factors (including WRKYs, ERFs, and NACs) were strongly induced upon GPA infestation in aphid-resistant, but not in aphid-susceptible peaches. These results suggested that the accumulation of specialized triterpenoids and the corresponding pathway transcripts may play a key role in peach GPA resistance.
Collapse
Affiliation(s)
- Lei Pan
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
- Zhongyuan Research Center, Chinese Academy of Agricultural Sciences, Xinxiang 453500, China
| | - Rui Huang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
- Zhongyuan Research Center, Chinese Academy of Agricultural Sciences, Xinxiang 453500, China
| | - Zhenhua Lu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
- Zhongyuan Research Center, Chinese Academy of Agricultural Sciences, Xinxiang 453500, China
| | - Wenyi Duan
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
- Zhongyuan Research Center, Chinese Academy of Agricultural Sciences, Xinxiang 453500, China
| | - Shihang Sun
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
- Zhongyuan Research Center, Chinese Academy of Agricultural Sciences, Xinxiang 453500, China
| | - Lele Yan
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
- Zhongyuan Research Center, Chinese Academy of Agricultural Sciences, Xinxiang 453500, China
| | - Guochao Cui
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
- Zhongyuan Research Center, Chinese Academy of Agricultural Sciences, Xinxiang 453500, China
| | - Liang Niu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
- Zhongyuan Research Center, Chinese Academy of Agricultural Sciences, Xinxiang 453500, China
| | - Zhiqiang Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
- Zhongyuan Research Center, Chinese Academy of Agricultural Sciences, Xinxiang 453500, China
| | - Wenfang Zeng
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
- Zhongyuan Research Center, Chinese Academy of Agricultural Sciences, Xinxiang 453500, China
| |
Collapse
|
17
|
Liu H, Feng X, Zhao Y, Lv G, Zhang C, Aruhan, Damba TA, Zhang N, Hao D, Li M. Pharmacophylogenetic relationships of genus Dracocephalum and its related genera based on multifaceted analysis. Front Pharmacol 2024; 15:1449426. [PMID: 39421668 PMCID: PMC11484080 DOI: 10.3389/fphar.2024.1449426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 09/09/2024] [Indexed: 10/19/2024] Open
Abstract
The Lamiaceae genus Dracocephalum, with over 30 species, is believed to have considerable medicinal properties and is widely used in Eurasian ethnomedicine. Numerous studies have researched on the geographical distribution, metabolite identification, and bioactivity of Dracocephalum species, especially amidst debates concerning the taxonomy of its closely related genera Hyssopus and Lallemantia. These discussions present an opportunity for pharmacophylogenetic studies of these medicinal plants. In this review, we collated extensive literature and data to present a multifaceted view of the geographical distribution, phylogenetics, phytometabolites and chemodiversity, ethnopharmacological uses, and pharmacological activities of Dracocephalum, Hyssopus, and Lallemantia. We found that these genera were concentrated in Europe, with species adapted to various climatic zones. These genera shared close phylogenetic relationships, with Dracocephalum and Hyssopus displaying intertwined patterns in the phylogenetic tree. Our review assessed more than 900 metabolites from these three genera, with terpenoids and flavonoids being the most abundant. Researchers have recently identified novel metabolites within Dracocephalum, expanding our understanding of its chemical constituents. Ethnopharmacologically, these genera have been traditionally used for treating respiratory, liver and gall bladder diseases. Extracts and metabolites from these genera exhibit a range of pharmacological activities such as hepatoprotective, anti-inflammation, antimicrobial action, anti-hyperlipidaemia, and anti-tumour properties. By integrating phylogenetic analyses with network pharmacology, we explored the intrinsic links between metabolite profiles, traditional efficacy, and modern pharmacology of Dracocephalum and its related genera. This study contributes to the discovery of potential medicinal value from closely related species of Dracocephalum and aids in the development and sustainable use of medicinal plant resources.
Collapse
Affiliation(s)
- Haolin Liu
- College of Pharmacy, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Xiaowei Feng
- Department of Pharmacy, Baotou Medical College, Baotou, Inner Mongolia, China
| | - Yulian Zhao
- Department of Pharmacy, Baotou Medical College, Baotou, Inner Mongolia, China
| | - Guoshuai Lv
- Central laboratory, Inner Mongolia Autonomous Region Hospital of Traditional Chinese Medicine, Hohhot, Inner Mongolia, China
| | - Chunhong Zhang
- Department of Pharmacy, Baotou Medical College, Baotou, Inner Mongolia, China
| | - Aruhan
- Department of Mongolia Medicine Study, Institute of Traditional Medicine and Technology of Mongolia, Ulaanbaatar, Mongolia
| | - Tsend-Ayush Damba
- Department of Mongolia Medicine Study, Institute of Traditional Medicine and Technology of Mongolia, Ulaanbaatar, Mongolia
| | - Na Zhang
- Department of Pharmacy, Baotou Medical College, Baotou, Inner Mongolia, China
| | - Dacheng Hao
- Liaoning Provincial Universities Key Laboratory of Environmental Science and Technology, School of Environment and Chemical Engineering, Dalian Jiaotong University, Dalian, China
| | - Minhui Li
- College of Pharmacy, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
- Department of Pharmacy, Baotou Medical College, Baotou, Inner Mongolia, China
- Central laboratory, Inner Mongolia Autonomous Region Hospital of Traditional Chinese Medicine, Hohhot, Inner Mongolia, China
| |
Collapse
|
18
|
Wu J, Bu M, Zong Y, Tu Z, Cheng Y, Li H. Overexpression of the Liriodendron tulipifera TPS32 gene in tobacco enhances terpenoid compounds synthesis. FRONTIERS IN PLANT SCIENCE 2024; 15:1445103. [PMID: 39354939 PMCID: PMC11442295 DOI: 10.3389/fpls.2024.1445103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 08/21/2024] [Indexed: 10/03/2024]
Abstract
Liriodendron, a relic genus from the Magnoliaceae family, comprises two species, L. tulipifera and L. chinense. L. tulipifera is distinguished by its extensive natural distribution in Eastern North America. Conversely, L. chinense is nearing endangerment due to its low regeneration rate. A pivotal aspect in the difference of these species involves terpenoids, which play crucial roles in plant growth and attracting pollinators. However, the complex molecular mechanisms underlying terpenoid roles in Liriodendron are not well understood. Terpene Synthases (TPS) genes are widely reported to play a role in terpenoid biosynthesis, hence, this study centers on TPS genes in Liriodendron spp. Employing multiple bioinformatics methods, a differential expression gene in L. tulipifera, LtuTPS32, was discerned for further functional analysis. Subcellular localization results reveal the involvement of LtuTPS32 in chloroplast-associated processes, hence participate in terpenoid biosynthesis within chloroplasts. Heterologous transformation of the LtuTPS32 gene into tobacco significantly elevates the levels of common terpenoid compounds, including chlorophyll, gibberellin, and carotenoids. Collectively, these findings not only underscore the role of the LtuTPS32 gene in the biosynthesis of terpenoids but also lay a foundation for future research on interspecific differences in Liriodendron.
Collapse
Affiliation(s)
- Junpeng Wu
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Manli Bu
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Yaxian Zong
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Zhonghua Tu
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Yanli Cheng
- College of architecture, Anhui Science and Technology University, Bengbu, Anhui, China
| | - Huogen Li
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
19
|
Le S, Wu X, Dou Y, Song T, Fu H, Luo H, Zhang F, Cao Y. Promising strategies in natural products treatments of psoriasis-update. Front Med (Lausanne) 2024; 11:1386783. [PMID: 39296901 PMCID: PMC11408484 DOI: 10.3389/fmed.2024.1386783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 07/31/2024] [Indexed: 09/21/2024] Open
Abstract
Psoriasis is a chronic, relapsing, inflammatory skin disease and has been increasing year by year. It is linked to other serious illnesses, such as psoriatic arthritis, cardiometabolic syndrome, and depression, resulting in a notable decrease in the quality of life for patients. Existing therapies merely alleviate symptoms, rather than providing a cure. An in-depth under-standing of the pathogenesis of psoriasis is helpful to discover new therapeutic targets and develop effective novel therapeutic agents, so it has important clinical significance. This article reviews the new progress in the study of pathogenesis and natural products of psoriasis in recent years. These natural products were summarized, mainly classified as terpenoids, polyphenols and alkaloids. However, the translation of experimental results to the clinic takes a long way to go.
Collapse
Affiliation(s)
- Sihua Le
- Ningbo Medical Center LiHuiLi Hosptial, Ningbo, China
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xuan Wu
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yuan Dou
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Tianhao Song
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Hongyang Fu
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, China
| | - Hongbin Luo
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, China
| | - Fan Zhang
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, China
| | - Yi Cao
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, China
| |
Collapse
|
20
|
Galitz A, Vargas S, Thomas OP, Reddy MM, Wörheide G, Erpenbeck D. Genomics of Terpene Biosynthesis in Dictyoceratid Sponges (Porifera) - What Do We (Not) Know? Chem Biodivers 2024; 21:e202400549. [PMID: 39177427 DOI: 10.1002/cbdv.202400549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 07/04/2024] [Indexed: 08/24/2024]
Abstract
Sponges are recognized as promising sources for novel bioactive metabolites. Among them are terpenoid metabolites that constitute key biochemical defense mechanisms in several sponge taxa. Despite their significance, the genetic basis for terpenoid biosynthesis in sponges remains poorly understood. Dictyoceratida comprise demosponges well-known for their bioactive terpenoids. In this study, we explored the currently available genomic data for insights into the metabolic pathways of dictyoceratid terpenoids. We first identified prenyltransferase (PT) and terpene cyclase (TC) enzymes essential for the terpenoid biosynthetic processes in the terrestrial realm by analyzing available transcriptomic and genomic data of Dictyoceratida sponges and 10 other sponge species. All Dictyoceratida sponges displayed various PTs involved in either sesqui- or diterpene, steroid and carotenoid production. Additionally, it was possible to identify a potential candidate for a dictyoceratid sesterterpene PT. However, analogs of common terrestrial TCs were absent, suggesting the existence of a distinct or convergently evolved sponge-specific TC. Our study aims to contribute to the foundational understanding of terpene biosynthesis in sponges, unveiling the currently evident genetic components for terpenoid production in species not previously studied. Simultaneously, it aims to identify the known and unknown factors, as a starting point for biochemical and genetic investigations in sponge terpenoid production.
Collapse
Affiliation(s)
- Adrian Galitz
- Department of Earth- and Environmental Sciences, Palaeontology & Geobiology, Ludwig-Maximilians-Universität München, 80333, Munich, Germany
| | - Sergio Vargas
- Department of Earth- and Environmental Sciences, Palaeontology & Geobiology, Ludwig-Maximilians-Universität München, 80333, Munich, Germany
| | - Olivier P Thomas
- School of Biological and Chemical Sciences and Ryan Institute, University of Galway, H91TK33, Galway, Ireland
| | - Maggie M Reddy
- School of Biological and Chemical Sciences and Ryan Institute, University of Galway, H91TK33, Galway, Ireland
- Department of Biological Sciences, University of Cape Town, Private Bag X3, 7701, Rondebosch, South Africa
| | - Gert Wörheide
- Department of Earth- and Environmental Sciences, Palaeontology & Geobiology, Ludwig-Maximilians-Universität München, 80333, Munich, Germany
- GeoBio-Center, Ludwig-Maximilians-Universität München, 80333, Munich, Germany
- SNSB-Bavarian State Collection of Palaeontology and Geology, 80333, Munich, Germany
| | - Dirk Erpenbeck
- Department of Earth- and Environmental Sciences, Palaeontology & Geobiology, Ludwig-Maximilians-Universität München, 80333, Munich, Germany
- GeoBio-Center, Ludwig-Maximilians-Universität München, 80333, Munich, Germany
| |
Collapse
|
21
|
Fu L, Chen Q, Li Y, Li Y, Pang X, Zhang Z, Fang F. Identification and characterization of a key LcTPS in the biosynthesis of volatile monoterpenes and sesquiterpenes in Litchi fruit. PHYSIOLOGIA PLANTARUM 2024; 176:e14559. [PMID: 39377160 DOI: 10.1111/ppl.14559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 09/09/2024] [Accepted: 09/16/2024] [Indexed: 10/09/2024]
Abstract
Litchi (Litchi chinensis Sonn.) has a desirable sweet taste and exotic aroma, making it popular in the markets. However, the biosynthesis of aroma volatiles in litchi fruit has rarely been investigated. In this study, the content and composition of volatile compounds were determined during litchi fruit ripening. In the mature green and mature red stages of litchi, 49 and 45 volatile compounds were detected, respectively. Monoterpenes were found to be the most abundant volatile compounds in mature red fruit, and their contents significantly increased compared to green fruit, mainly including citronellol, geraniol, myrcene, and D-limonene, which contributed to the aroma in litchi fruit. By comparing the expression profiles of the genes involved in the terpene synthesis pathway during fruit development, a terpene synthesis gene (LcTPS1-2) was identified and characterized as a major player in the synthesis of monoterpenes and sesquiterpenes. A subcellular localization analysis found LcTPS1-2 to be present in the plastid and cytoplasm. The recombinant LcTPS1-2 enzyme was able to catalyze the formation of three monoterpenes, myrcene, geraniol and citral, from geranyl pyrophosphate (GPP) and to convert farnesyl diphosphate (FPP) to a sesquiterpene, caryophyllene in vitro. Transgenic Arabidopsis thaliana plants overexpressing LcTPS1-2 exclusively released one monoterpene D-limonene, and three sesquiterpenes cis-thujopsene, (E)-β-famesene and trans-β-ionone. These results indicate that LcTPS1-2 plays an important role in the production of major volatile terpenes in litchi fruit and provides a basis for future investigations of terpenoid biosynthesis in litchi and other horticultural crops.
Collapse
Affiliation(s)
- Liyu Fu
- College of Horticulture, South China Agricultural University, Guangzhou, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruit and Vegetables/Engineering Research Center for Postharvest Technology of Horticultural Crops in South China, South China Agricultural University, Guangzhou, China
| | - Qiuzi Chen
- College of Horticulture, South China Agricultural University, Guangzhou, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruit and Vegetables/Engineering Research Center for Postharvest Technology of Horticultural Crops in South China, South China Agricultural University, Guangzhou, China
| | - Yawen Li
- College of Horticulture, South China Agricultural University, Guangzhou, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruit and Vegetables/Engineering Research Center for Postharvest Technology of Horticultural Crops in South China, South China Agricultural University, Guangzhou, China
| | - Yanlan Li
- College of Horticulture, South China Agricultural University, Guangzhou, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruit and Vegetables/Engineering Research Center for Postharvest Technology of Horticultural Crops in South China, South China Agricultural University, Guangzhou, China
| | - Xuequn Pang
- College of Life Sciences, South China Agricultural University, Guangzhou, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruit and Vegetables/Engineering Research Center for Postharvest Technology of Horticultural Crops in South China, South China Agricultural University, Guangzhou, China
| | - Zhaoqi Zhang
- College of Horticulture, South China Agricultural University, Guangzhou, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruit and Vegetables/Engineering Research Center for Postharvest Technology of Horticultural Crops in South China, South China Agricultural University, Guangzhou, China
| | - Fang Fang
- College of Horticulture, South China Agricultural University, Guangzhou, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruit and Vegetables/Engineering Research Center for Postharvest Technology of Horticultural Crops in South China, South China Agricultural University, Guangzhou, China
| |
Collapse
|
22
|
Huang W, Wei S, Zhou T, Fan Z, Cao L, Li Z, Guo S. MCMV-infected maize attracts its insect vector Frankliniella occidentalis by inducing β-myrcene. FRONTIERS IN PLANT SCIENCE 2024; 15:1404271. [PMID: 39233912 PMCID: PMC11371577 DOI: 10.3389/fpls.2024.1404271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 07/05/2024] [Indexed: 09/06/2024]
Abstract
Maize lethal necrosis is attributed to the accumulation of maize chlorotic mottle virus (MCMV), an invasive virus transmitted by insect vectors. The western flower thrips (WFT) can shift host to maize, thus promoting the spread of MCMV. However, our understanding of the characteristics and interactions involved in the transmission of MCMV is still limited. This study finds that non-viruliferous WFTs showed a 57.56% higher preference for MCMV-infected maize plants compared to healthy maize plants, while viruliferous WFTs showed a 53.70% higher preference for healthy maize plants compared to MCMV-infected maize plants. We also show for the first time that both adults and larvae of WFT could successfully acquire MCMV after 1 min of acquisition access period (AAP), and after 48 h of AAP, WFT could transmit MCMV in an inoculation access period of 1 h without a latent period. Both adults and larvae of WFT can transmit MCMV for up to 2 days. Furthermore, the decreasing number of viruliferous WFTs and transmission rates as time progressed, together with the transcriptomic evidence, collectively suggest that WFTs transmit MCMV in a semi-persistent method, a mode of transmission requiring minutes to several hours for acquisition access and having a retention time of several hours to a few days. Additionally, β-myrcene can attract WFTs significantly and is detected in Nicotiana benthamiana plants transiently expressing MCMV CP (coat protein), which is consistent with results in MCMV-infected maize plants through the metabolomic profiling and the preference analyses of WFT. Therefore, this study demonstrates the indirect interaction between MCMV and WFT by inducing maize to synthesize β-myrcene to attract insect vectors. The exploration of specific interactions between MCMV and WFT could help to expand the mechanism studies of virus-vector-host plant interaction and put forward a new insight for the combined control of MCMV and WFT through the manipulation of plant volatiles and key insect genes.
Collapse
Affiliation(s)
- Weiling Huang
- Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing, China
- Key Laboratory of Surveillance and Management for Plant Quarantine Pests of Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Shujun Wei
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Tao Zhou
- Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing, China
- Key Laboratory of Surveillance and Management for Plant Quarantine Pests of Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Zaifeng Fan
- Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing, China
- Key Laboratory of Surveillance and Management for Plant Quarantine Pests of Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Lijun Cao
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Zhihong Li
- Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing, China
- Key Laboratory of Surveillance and Management for Plant Quarantine Pests of Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Shaokun Guo
- Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing, China
- Key Laboratory of Surveillance and Management for Plant Quarantine Pests of Ministry of Agriculture and Rural Affairs, Beijing, China
| |
Collapse
|
23
|
Xu W, Shu M, Yuan C, Dumat C, Zhang J, Zhang H, Xiong T. Lettuce (Lactuca sativa L.) alters its metabolite accumulation to cope with CuO nanoparticles by promoting antioxidant production and carbon metabolism. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:371. [PMID: 39167279 DOI: 10.1007/s10653-024-02160-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 07/31/2024] [Indexed: 08/23/2024]
Abstract
Copper-based nanoparticles (NPs) are gradually being introduced as sustainable agricultural nanopesticides. However, the effects of NPs on plants requires carefully evaluation to ensure their safe utilization. In this study, leaves of 2-week-old lettuce (Lactuca sativa L.) were exposed to copper oxide nanoparticles (CuO-NPs, 0 [CK], 100 [T1], and 1000 [T2] mg/L) for 15 days. A significant Cu accumulation (up to 1966 mg/kg) was detected in lettuce leaves. The metabolomics revealed a total of 474 metabolites in lettuce leaves, and clear differences were observed in the metabolite profiles of control and CuO-NPs treated leaves. Generally, phenolic acids and alkaloids, which are important antioxidants, were significantly increased (1.26-4.53 folds) under foliar exposure to NPs; meanwhile, all the significantly affected flavonoids were down-regulated after CuO-NP exposure, indicating these flavonoids were consumed under oxidative stress. Succinic and citric acids, which are key components of the tricarboxylic acid cycle, were especially increased under T2, suggesting the energy and carbohydrate metabolisms were enhanced under high-concentration CuO-NP treatment. There was also both up- and down-regulation of fatty acids, suggesting cell membrane fluidity and function responded to CuO-NPs. Galactinol, which is related to galactose metabolism, and xanthosine, which is crucial in purine and caffeine metabolism, were down-regulated under T2, indicating decreased stress resistance and disturbed nucleotide metabolism under the high CuO-NP dose. Moreover, the differentially accumulated metabolites were significantly associated with plant growth and its antioxidant ability. Future work should focus on controlling the overuse or excessive release of NPs into agricultural ecosystems to limit their adverse effects.
Collapse
Affiliation(s)
- Wenjing Xu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou, 510631, China
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Science, South China Normal University, Guangzhou, 510631, China
| | - Man Shu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou, 510631, China
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Science, South China Normal University, Guangzhou, 510631, China
| | - Can Yuan
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou, 510631, China
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Science, South China Normal University, Guangzhou, 510631, China
| | - Camille Dumat
- Centre d'Etude et de Recherche Travail Organisation Pouvoir (CERTOP), UMR5044, Université Toulouse-Jean Jaurès, 5 allée Antonio Machado, 31058, Toulouse Cedex 9, France
| | - Jingying Zhang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou, 510631, China
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Science, South China Normal University, Guangzhou, 510631, China
| | - Hanbo Zhang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou, 510631, China
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Science, South China Normal University, Guangzhou, 510631, China
| | - Tiantian Xiong
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou, 510631, China.
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Science, South China Normal University, Guangzhou, 510631, China.
| |
Collapse
|
24
|
Song Y, Liu H, Quax WJ, Zhang Z, Chen Y, Yang P, Cui Y, Shi Q, Xie X. Application of valencene and prospects for its production in engineered microorganisms. Front Microbiol 2024; 15:1444099. [PMID: 39171255 PMCID: PMC11335630 DOI: 10.3389/fmicb.2024.1444099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 07/29/2024] [Indexed: 08/23/2024] Open
Abstract
Valencene, a sesquiterpene with the odor of sweet and fresh citrus, is widely used in the food, beverage, flavor and fragrance industry. Valencene is traditionally obtained from citrus fruits, which possess low concentrations of this compound. In the past decades, the great market demand for valencene has attracted considerable attention from researchers to develop novel microbial cell factories for more efficient and sustainable production modes. This review initially discusses the biosynthesis of valencene in plants, and summarizes the current knowledge of the key enzyme valencene synthase in detail. In particular, we highlight the heterologous production of valencene in different hosts including bacteria, fungi, microalgae and plants, and focus on describing the engineering strategies used to improve valencene production. Finally, we propose potential engineering directions aiming to further increase the production of valencene in microorganisms.
Collapse
Affiliation(s)
- Yafeng Song
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Detection Center of Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Huizhong Liu
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Detection Center of Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Wim J. Quax
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, Netherlands
| | - Zhiqing Zhang
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Detection Center of Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Yiwen Chen
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Detection Center of Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Ping Yang
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Detection Center of Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Yinhua Cui
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Detection Center of Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Qingshan Shi
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Detection Center of Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Xiaobao Xie
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Detection Center of Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| |
Collapse
|
25
|
d’Aquino L, Cozzolino R, Malorni L, Bodhuin T, Gambale E, Sighicelli M, Della Mura B, Matarazzo C, Piacente S, Montoro P. Light Flux Density and Photoperiod Affect Growth and Secondary Metabolism in Fully Expanded Basil Plants. Foods 2024; 13:2273. [PMID: 39063357 PMCID: PMC11275332 DOI: 10.3390/foods13142273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/12/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Indoor production of basil (Ocimum basilicum L.) is influenced by light spectrum, photosynthetic photon flux density (PPFD), and the photoperiod. To investigate the effects of different lighting on growth, chlorophyll content, and secondary metabolism, basil plants were grown from seedlings to fully expanded plants in microcosm devices under different light conditions: (a) white light at 250 and 380 μmol·m-2·s-1 under 16/8 h light/dark and (b) white light at 380 μmol·m-2·s-1 under 16/8 and 24/0 h light/dark. A higher yield was recorded under 380 μmol·m-2·s-1 compared to 250 μmol·m-2·s-1 (fresh and dry biomasses 260.6 ± 11.3 g vs. 144.9 ± 14.6 g and 34.1 ± 2.6 g vs. 13.2 ± 1.4 g, respectively), but not under longer photoperiods. No differences in plant height and chlorophyll content index were recorded, regardless of the PPFD level and photoperiod length. Almost the same volatile organic compounds (VOCs) were detected under the different lighting treatments, belonging to terpenes, aldehydes, alcohols, esters, and ketones. Linalool, eucalyptol, and eugenol were the main VOCs regardless of the lighting conditions. The multivariate data analysis showed a sharp separation of non-volatile metabolites in apical and middle leaves, but this was not related to different PPFD levels. Higher levels of sesquiterpenes and monoterpenes were detected in plants grown under 250 μmol·m-2·s-1 and 380 μmol·m-2·s-1, respectively. A low separation of non-volatile metabolites based on the photoperiod length and VOC overexpression under longer photoperiods were also highlighted.
Collapse
Affiliation(s)
- Luigi d’Aquino
- Italian National Agency for New Technologies Energy and Sustainable Economic Development (ENEA), Portici Research Centre, Piazzale E. Fermi 1, 80055 Portici, Italy;
| | - Rosaria Cozzolino
- Institute of Food Science, National Council of Research (CNR), Via Roma 64, 83100 Avellino, Italy; (L.M.); (C.M.)
| | - Livia Malorni
- Institute of Food Science, National Council of Research (CNR), Via Roma 64, 83100 Avellino, Italy; (L.M.); (C.M.)
| | | | - Emilia Gambale
- Italian National Agency for New Technologies Energy and Sustainable Economic Development (ENEA), Portici Research Centre, Piazzale E. Fermi 1, 80055 Portici, Italy;
| | - Maria Sighicelli
- Italian National Agency for New Technologies Energy and Sustainable Economic Development (ENEA), Casaccia Research Centre, Via Anguillarese 301, Santa Maria di Galeria, 00060 Roma, Italy;
| | - Brigida Della Mura
- Department of Science, University of Basilicata, Viale dell’Ateneo Lucano 10, 85100 Potenza, Italy;
| | - Cristina Matarazzo
- Institute of Food Science, National Council of Research (CNR), Via Roma 64, 83100 Avellino, Italy; (L.M.); (C.M.)
| | - Sonia Piacente
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 84084 Fisciano, Italy; (S.P.); (P.M.)
| | - Paola Montoro
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 84084 Fisciano, Italy; (S.P.); (P.M.)
| |
Collapse
|
26
|
Li Y, Zhao ZA, Hu J, Lei T, Chen Q, Li J, Yang L, Hu D, Gao S. MeJA-induced hairy roots in Plumbago auriculata L. by RNA-seq profiling and key synthase provided new insights into the sustainable production of plumbagin and saponins. FRONTIERS IN PLANT SCIENCE 2024; 15:1411963. [PMID: 39070915 PMCID: PMC11272555 DOI: 10.3389/fpls.2024.1411963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 06/04/2024] [Indexed: 07/30/2024]
Abstract
Naturally synthesized secondary metabolites in plants are considered an important source of drugs, food additives, etc. Among them, research on natural plant medicinal components and their synthesis mechanisms has always been of high concern. We identified a novel medicinal floral crop, Plumbago auriculata L., that can be treated with methyl jasmonate (MeJA) for the rapid or sustainable production of natural bioactives from hairy roots. In the study, we globally analyzed the changes in the accumulation of plumbagin and others in the hairy roots of Plumbago auriculata L. hairy roots (PAHR) 15834 in P. auriculata L. based on 100 μmol/L of MeJA treatment by RNA-seq profiling, and we found that there was a significant increase in the accumulation of plumbagin and saponin before 24 h. To explain the principle of co-accumulation, it showed that MeJA induced JA signaling and the shikimic acid pathway, and the methylvaleric acid (MVA) pathway was activated downstream subsequently by the Mfuzz and weighted gene co-expression analysis. Under the shared metabolic pathway, the high expression of PAL3 and HMGR promoted the activity of the "gateway enzymes" phenylalanine ammonia lyase (PAL) and 3-hydroxy-3-methylglutaryl CoA reductase (HMGR), which respectively induced the high expression of key reaction enzyme genes, including chalcone synthase (CHS), isopentenyl diphosphate (IPP), and farnesyl pyrophosphate synthase (FPS), that led to the synthesis of plumbagin and saponin. We speculated that large amounts of ketones and/or aldehydes were formed under the action of these characteristic enzymes, ultimately achieving their co-accumulation through polyketone and high-level sugar and amino acid metabolism. The study results provided a theoretical basis for carrying out the factory refinement and biosynthesis of plumbagin and saponins and also provided new ideas for fully exploiting multifunctional agricultural crops and plants and developing new agricultural by-products.
Collapse
Affiliation(s)
- Yirui Li
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Zi-an Zhao
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Ju Hu
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
- College of Biology and Pharmacy, Yulin Normal University, Yulin, China
| | - Ting Lei
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Qibing Chen
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Jiani Li
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Lijuan Yang
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Di Hu
- School of Fine Arts and Calligraphy, Sichuan Normal University, Chengdu, China
| | - Suping Gao
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
27
|
Jalmakhanbetova RI, Mukusheva GK, Abdugalimov AS, Zhumagalieva ZZ, Dehaen W, Anthonissen S, Suleimen YM, Seidakhmetova RB. Synthesis and Investigation of Biological Activity of New Betulonic Acid Derivatives Containing 1,2,3-Triazole Fragments. Molecules 2024; 29:3149. [PMID: 38999106 PMCID: PMC11243376 DOI: 10.3390/molecules29133149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/14/2024] Open
Abstract
The results of this study showed that the compounds synthesized by the authors have significant potential due to their antibacterial and cytotoxic properties. The apparent antibacterial activity demonstrated by the compounds suggests that they are active antimicrobial agents against common microbial pathogens that cause various socially significant infectious diseases. Compound 6 showed pronounced antimicrobial activity against the Gram-positive test strain Staphylococcus aureus ATCC 6538, and compound 7 demonstrated pronounced antimicrobial activity against the Gram-negative test strain Escherichia coli ATCC 25922 (MIC = 6.3 µg/mL). This allowed us to consider these compounds to have great potential.
Collapse
Affiliation(s)
- Roza I Jalmakhanbetova
- Department of Chemistry, Faculty of Natural Sciences, L.N. Gumilyov Eurasian National University, Astana 010000, Kazakhstan
| | - Gulim K Mukusheva
- Faculty of Chemistry, Karaganda Buketov University, Karaganda 100024, Kazakhstan
| | - Alisher Sh Abdugalimov
- Department of Chemistry, Faculty of Natural Sciences, L.N. Gumilyov Eurasian National University, Astana 010000, Kazakhstan
| | | | - Wim Dehaen
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Stijn Anthonissen
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Yerlan M Suleimen
- Department of Chemistry, Chemical Technology and Ecology, Faculty of Technology, K. Kulazhanov Kazakh University of Technology and Business, Astana 010000, Kazakhstan
| | - Roza B Seidakhmetova
- Department of Clinical Pharmacology and Evidence-Based Medicine, Karaganda Medical University, Karaganda 100024, Kazakhstan
| |
Collapse
|
28
|
Bergman ME, Kortbeek RWJ, Gutensohn M, Dudareva N. Plant terpenoid biosynthetic network and its multiple layers of regulation. Prog Lipid Res 2024; 95:101287. [PMID: 38906423 DOI: 10.1016/j.plipres.2024.101287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/13/2024] [Accepted: 06/17/2024] [Indexed: 06/23/2024]
Abstract
Terpenoids constitute one of the largest and most chemically diverse classes of primary and secondary metabolites in nature with an exceptional breadth of functional roles in plants. Biosynthesis of all terpenoids begins with the universal five‑carbon building blocks, isopentenyl diphosphate (IPP) and its allylic isomer dimethylallyl diphosphate (DMAPP), which in plants are derived from two compartmentally separated but metabolically crosstalking routes, the mevalonic acid (MVA) and methylerythritol phosphate (MEP) pathways. Here, we review the current knowledge on the terpenoid precursor pathways and highlight the critical hidden constraints as well as multiple regulatory mechanisms that coordinate and homeostatically govern carbon flux through the terpenoid biosynthetic network in plants.
Collapse
Affiliation(s)
- Matthew E Bergman
- Department of Biochemistry, Purdue University, West Lafayette, IN, United States; Purdue Center for Plant Biology, Purdue University, West Lafayette, IN, United States
| | - Ruy W J Kortbeek
- Department of Biochemistry, Purdue University, West Lafayette, IN, United States; Purdue Center for Plant Biology, Purdue University, West Lafayette, IN, United States
| | - Michael Gutensohn
- Division of Plant and Soil Sciences, West Virginia University, Morgantown, WV, United States
| | - Natalia Dudareva
- Department of Biochemistry, Purdue University, West Lafayette, IN, United States; Purdue Center for Plant Biology, Purdue University, West Lafayette, IN, United States; Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, United States.
| |
Collapse
|
29
|
Abbattista R, Feinberg NG, Snodgrass IF, Newman JW, Dandekar AM. Unveiling the "hidden quality" of the walnut pellicle: a precious source of bioactive lipids. FRONTIERS IN PLANT SCIENCE 2024; 15:1395543. [PMID: 38957599 PMCID: PMC11217525 DOI: 10.3389/fpls.2024.1395543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/30/2024] [Indexed: 07/04/2024]
Abstract
Tree nut consumption has been widely associated with various health benefits, with walnuts, in particular, being linked with improved cardiovascular and neurological health. These benefits have been attributed to walnuts' vast array of phenolic antioxidants and abundant polyunsaturated fatty acids. However, recent studies have revealed unexpected clinical outcomes related to walnut consumption, which cannot be explained simply with the aforementioned molecular hallmarks. With the goal of discovering potential molecular sources of these unexplained clinical outcomes, an exploratory untargeted metabolomics analysis of the isolated walnut pellicle was conducted. This analysis revealed a myriad of unusual lipids, including oxylipins and endocannabinoids. These lipid classes, which are likely present in the pellicle to enhance the seeds' defenses due to their antimicrobial properties, also have known potent bioactivities as mammalian signaling molecules and homeostatic regulators. Given the potential value of this tissue for human health, with respect to its "bioactive" lipid fraction, we sought to quantify the amounts of these compounds in pellicle-enriched waste by-products of mechanized walnut processing in California. An impressive repertoire of these compounds was revealed in these matrices, and in notably significant concentrations. This discovery establishes these low-value agriculture wastes promising candidates for valorization and translation into high-value, health-promoting products; as these molecules represent a potential explanation for the unexpected clinical outcomes of walnut consumption. This "hidden quality" of the walnut pellicle may encourage further consumption of walnuts, and walnut industries may benefit from a revaluation of abundant pellicle-enriched waste streams, leading to increased sustainability and profitability through waste upcycling.
Collapse
Affiliation(s)
- Ramona Abbattista
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
| | - Noah G. Feinberg
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
| | - Isabel F. Snodgrass
- West Coast Metabolomics Center, Genome Center, University of California, Davis, Davis, CA, United States
| | - John W. Newman
- Western Human Nutrition Research Center, United States Department of Agriculture, Davis, CA, United States
- West Coast Metabolomics Center, Genome Center, University of California, Davis, Davis, CA, United States
- Department of Nutrition, University of California, Davis, Davis, CA, United States
| | - Abhaya M. Dandekar
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
| |
Collapse
|
30
|
Papanikolaou AS, Papaefthimiou D, Matekalo D, Karakousi CV, Makris AM, Kanellis AK. Chemical and transcriptomic analyses of leaf trichomes from Cistus creticus subsp. creticus reveal the biosynthetic pathways of certain labdane-type diterpenoids and their acetylated forms. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:3431-3451. [PMID: 38520311 PMCID: PMC11156806 DOI: 10.1093/jxb/erae098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 03/04/2024] [Indexed: 03/25/2024]
Abstract
Labdane-related diterpenoids (LRDs), a subgroup of terpenoids, exhibit structural diversity and significant commercial and pharmacological potential. LRDs share the characteristic decalin-labdanic core structure that derives from the cycloisomerization of geranylgeranyl diphosphate (GGPP). Labdanes derive their name from the oleoresin known as 'Labdanum', 'Ladano', or 'Aladano', used since ancient Greek times. Acetylated labdanes, rarely identified in plants, are associated with enhanced biological activities. Chemical analysis of Cistus creticus subsp. creticus revealed labda-7,13(E)-dien-15-yl acetate and labda-7,13(E)-dien-15-ol as major constituents. In addition, novel labdanes such as cis-abienol, neoabienol, ent-copalol, and one as yet unidentified labdane-type diterpenoid were detected for the first time. These compounds exhibit developmental regulation, with higher accumulation observed in young leaves. Using RNA-sequencing (RNA-seq) analysis of young leaf trichomes, it was possible to identify, clone, and eventually functionally characterize labdane-type diterpenoid synthase (diTPS) genes, encoding proteins responsible for the production of labda-7,13(E)-dien-15-yl diphosphate (endo-7,13-CPP), labda-7,13(E)-dien-15-yl acetate, and labda-13(E)-ene-8α-ol-15-yl acetate. Moreover, the reconstitution of labda-7,13(E)-dien-15-yl acetate and labda-13(E)-ene-8α-ol-15-yl acetate production in yeast is presented. Finally, the accumulation of LRDs in different plant tissues showed a correlation with the expression profiles of the corresponding genes.
Collapse
Affiliation(s)
- Antigoni S Papanikolaou
- Group of Biotechnology of Pharmaceutical Plants, Laboratory of Pharmacognosy, Department of Pharmaceutical Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Macedonia, Greece
| | - Dimitra Papaefthimiou
- Group of Biotechnology of Pharmaceutical Plants, Laboratory of Pharmacognosy, Department of Pharmaceutical Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Macedonia, Greece
| | - Dragana Matekalo
- Group of Biotechnology of Pharmaceutical Plants, Laboratory of Pharmacognosy, Department of Pharmaceutical Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Macedonia, Greece
| | - Christina-Vasiliki Karakousi
- Group of Biotechnology of Pharmaceutical Plants, Laboratory of Pharmacognosy, Department of Pharmaceutical Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Macedonia, Greece
| | - Antonios M Makris
- Institute of Applied Biosciences, Centre for Research & Technology, Hellas (CERTH), 57001 Thessaloniki, Macedonia, Greece
| | - Angelos K Kanellis
- Group of Biotechnology of Pharmaceutical Plants, Laboratory of Pharmacognosy, Department of Pharmaceutical Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Macedonia, Greece
| |
Collapse
|
31
|
Ma H, Steede T, Dewey RE, Lewis RS. Engineering Sclareol Production on the Leaf Surface of Nicotiana tabacum. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 38840459 DOI: 10.1021/acs.jafc.4c02442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Sclareol, a diterpene alcohol, is the most common starting material for the synthesis of ambrox, which serves as a sustainable substitute for ambergris, a valuable fragrance secreted by sperm whales. Sclareol has also been proposed to possess antibacterial, antifungal, and anticancer activities. However, in nature, sclareol is only produced by a few plant species, including Cistus creticus, Cleome spinosa, Nicotiana glutinosa, and Salvia sclarea, which limits its commercial application. In this study, we cloned the two genes responsible for sclareol biosynthesis in S. sclarea, labda-13-en-8-ol diphosphate synthase (LPPS) and sclareol synthase (SS), and overexpressed them in tobacco (Nicotiana tabacum L.). The best transgenic tobacco lines accumulated 4.1 μg/cm2 of sclareol, which is comparable to the sclareol production of N. glutinosa, a natural sclareol producer. Thus, sclareol synthesis in tobacco represents a potential alternative means for the production of this high-value compound.
Collapse
Affiliation(s)
- Hong Ma
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Tyler Steede
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Ralph E Dewey
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Ramsey S Lewis
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
32
|
Wang ZX, Li PP, Jia YJ, Wen LX, Tang ZS, Wang YP, Cui F, Hu FD. Integrated metabolomic and transcriptomic analysis of triterpenoid accumulation in the roots of Codonopsis pilosula var. modesta (Nannf.) L.T.Shen at different altitudes. PHYTOCHEMICAL ANALYSIS : PCA 2024. [PMID: 38764207 DOI: 10.1002/pca.3362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/27/2024] [Accepted: 03/25/2024] [Indexed: 05/21/2024]
Abstract
INTRODUCTION Codonopsis Radix is a beneficial traditional Chinese medicine, and triterpenoid are the major bioactive constituents. Codonopsis pilosula var. modesta (Nannf.) L.T.Shen (CPM) is a precious variety of Codonopsis Radix, which is distributed at high mountain areas. The environment plays an important role in the synthesis and metabolism of active ingredients in medicinal plants, but there is no report elaborating on the effect of altitude on terpenoid metabolites accumulation in CPM. OBJECTIVES This study aims to analyse the effects of altitude on triterpenoid biosynthetic pathways and secondary metabolite accumulation in CPM. MATERIAL AND METHODS The untargeted metabolomics based on liquid chromatography-tandem mass spectrometry (LC-MS/MS) and 10 triterpenoids based on ultra-performance liquid chromatography quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS) method were analysed at the low-altitude (1480 m) and high-altitude (2300 m) CPM fresh roots. The transcriptome based on high-throughput sequencing technology were combined to analyse the different altitude CPM triterpenoid biosynthetic pathways. RESULTS A total of 17,351 differentially expressed genes (DEGs) and 55 differentially accumulated metabolites (DAMs) were detected from the different altitude CPM, and there are significant differences in the content of the 10 triterpenoids. The results of transcriptome study showed that CPM could significantly up-regulate the gene expression levels of seven key enzymes in the triterpenoid biosynthetic pathway. CONCLUSIONS The CPM at high altitude is more likely to accumulate triterpenes than those at low altitude, which was related to the up-regulation of the gene expression levels of seven key enzymes. These results expand our understanding of how altitude affects plant metabolite biosynthesis.
Collapse
Affiliation(s)
- Zi-Xia Wang
- School of Pharmacy, Lanzhou University, Lanzhou, China
- Codonopsis Radix Research Institute in Gansu Province, Lanzhou, China
| | - Peng-Peng Li
- School of Pharmacy, Lanzhou University, Lanzhou, China
- Codonopsis Radix Research Institute in Gansu Province, Lanzhou, China
| | - Yan-Jun Jia
- School of Pharmacy, Lanzhou University, Lanzhou, China
- Codonopsis Radix Research Institute in Gansu Province, Lanzhou, China
| | - Long-Xia Wen
- School of Pharmacy, Lanzhou University, Lanzhou, China
- Codonopsis Radix Research Institute in Gansu Province, Lanzhou, China
| | - Zhuo-Shi Tang
- School of Pharmacy, Lanzhou University, Lanzhou, China
- Codonopsis Radix Research Institute in Gansu Province, Lanzhou, China
| | - Yan-Ping Wang
- School of Pharmacy, Lanzhou University, Lanzhou, China
- Codonopsis Radix Research Institute in Gansu Province, Lanzhou, China
| | - Fang Cui
- School of Pharmacy, Lanzhou University, Lanzhou, China
- Codonopsis Radix Research Institute in Gansu Province, Lanzhou, China
| | - Fang-Di Hu
- School of Pharmacy, Lanzhou University, Lanzhou, China
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, China
- Codonopsis Radix Research Institute in Gansu Province, Lanzhou, China
| |
Collapse
|
33
|
Reinecke A, Flaig IC, Lozano YM, Rillig MC, Hilker M. Drought induces moderate, diverse changes in the odour of grassland species. PHYTOCHEMISTRY 2024; 221:114040. [PMID: 38428627 DOI: 10.1016/j.phytochem.2024.114040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/22/2024] [Accepted: 02/25/2024] [Indexed: 03/03/2024]
Abstract
Plants react to drought stress with numerous changes including altered emissions of volatile organic compounds (VOC) from leaves, which provide protection against oxidative tissue damage and mediate numerous biotic interactions. Despite the share of grasslands in the terrestrial biosphere, their importance as carbon sinks and their contribution to global biodiversity, little is known about the influence of drought on VOC profiles of grassland species. Using coupled gas chromatography-mass spectrometry, we analysed the odorants emitted by 22 European grassland species exposed to an eight-week-lasting drought treatment (DT; 30% water holding capacity, WHC). We focused on the odorants emitted during the light phase from whole plant shoots in their vegetative stage. Emission rates were standardised to the dry weight of each shoot. Well-watered (WW) plants (70% WHC) served as control. Drought-induced significant changes included an increase in total emission rates of plant VOC in six and a decrease in three species. Diverging effects on the number of emitted VOC (chemical richness) or on the Shannon diversity of the VOC profiles were detected in 13 species. Biosynthetic pathways-targeted analyses revealed 13 species showing drought-induced higher emission rates of VOC from one, two, three, or four major biosynthetic pathways (lipoxygenase, shikimate, mevalonate and methylerythritol phosphate pathway), while six species exhibited reduced emission rates from one or two of these pathways. Similarity trees of odorant profiles and their drought-induced changes based on a biosynthetically informed distance metric did not match species phylogeny. However, a phylogenetic signal was detected for the amount of terpenoids released by the studied species under WW and DT conditions. A comparative analysis of emission rates of single compounds released by WW and DT plants revealed significant VOC profile dissimilarities in four species only. The moderate drought-induced changes in the odorant emissions of grassland species are discussed with respect to their impact on trophic interactions across the food web. (294 words).
Collapse
Affiliation(s)
- Andreas Reinecke
- Freie Universität Berlin, Inst. of Biology, Applied Zoology/Animal Ecology, Haderslebener Str. 9, 12163, Berlin, Germany; Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Altensteinstr. 6, 14195, Berlin, Germany.
| | - Isabelle C Flaig
- Freie Universität Berlin, Inst. of Biology, Applied Zoology/Animal Ecology, Haderslebener Str. 9, 12163, Berlin, Germany; Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Altensteinstr. 6, 14195, Berlin, Germany
| | - Yudi M Lozano
- Freie Universität Berlin, Inst. of Biology, Plant Ecology, Altensteinstr. 6, 14195, Berlin, Germany; Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Altensteinstr. 6, 14195, Berlin, Germany
| | - Matthias C Rillig
- Freie Universität Berlin, Inst. of Biology, Plant Ecology, Altensteinstr. 6, 14195, Berlin, Germany; Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Altensteinstr. 6, 14195, Berlin, Germany
| | - Monika Hilker
- Freie Universität Berlin, Inst. of Biology, Applied Zoology/Animal Ecology, Haderslebener Str. 9, 12163, Berlin, Germany; Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Altensteinstr. 6, 14195, Berlin, Germany
| |
Collapse
|
34
|
Ahmadi H, Fatahi R, Zamani Z, Shokrpour M, Sheikh-Assadi M, Poczai P. RNA-seq analysis reveals narrow differential gene expression in MEP and MVA pathways responsible for phytochemical divergence in extreme genotypes of Thymus daenensis Celak. BMC Genomics 2024; 25:237. [PMID: 38438980 PMCID: PMC10913619 DOI: 10.1186/s12864-024-10164-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 02/27/2024] [Indexed: 03/06/2024] Open
Abstract
BACKGROUND Here, we investigated the underlying transcriptional-level evidence behind phytochemical differences between two metabolically extreme genotypes of Thymus daenensis. The genotypes 'Zagheh-11' (thymol/carvacrol type, poor in essential oil [EO] [2.9%] but rich in triterpenic acids) and 'Malayer-21' (thymol type and rich in EO [3.8%]) were selected from an ongoing breeding program and then clonally propagated for further experimental use. MATERIALS AND METHODS GC-MS, GC-FID, and HPLC-PDA were utilized to monitor the fluctuation of secondary metabolites at four phenological stages (vegetative, bud burst, early, and full-flowering stages). The highest phytochemical divergence was observed at early flowering stage. Both genotypes were subjected to mRNA sequencing (approximately 100 million paired reads) at the aforementioned stage. The expression patterns of four key genes involved in the biosynthesis of terpenoids were also validated using qRT-PCR. RESULTS Carvacrol content in 'Zagheh-11' (26.13%) was approximately 23 times higher than 'Malayer-21' (1.12%). Reciprocally, about 10% higher thymol was found in 'Malayer-21' (62.15%). Moreover, the concentrations of three major triterpenic acids in 'Zagheh-11' were approximately as twice as those found in 'Malayer-21'. Transcriptome analysis revealed a total of 1840 unigenes that were differentially expressed, including terpene synthases, cytochrome P450, and terpenoid backbone genes. Several differentially expressed transcription factors (such as MYB, bZIP, HB-HD-ZIP, and WRKY families) were also identified. These results suggest that an active cytosolic mevalonate (MVA) pathway may be linked to higher levels of sesquiterpenes, triterpenic acids, and carvacrol in 'Zagheh-11'. The chloroplastic pathway of methyl erythritol phosphate (MEP) may have also contributed to a higher accumulation of thymol in Malayer-21. Indeed, 'Zagheh-11' showed higher expression of certain genes (HMGR, CYP71D180, β-amyrin 28-monooxygenase, and sesquiterpene synthases) in the MVA pathway, while some genes in the MEP pathway (including DXR, ispG, and γ-terpinene synthase) were distinctly expressed in Malayer-21. Future efforts in metabolic engineering of MVA/MEP pathways may benefit from these findings to produce increased levels of desired secondary metabolites at commercial scale.
Collapse
Affiliation(s)
- Hosein Ahmadi
- Biotechnology and Breeding Research Group for Medicinal Plants, Department of Horticultural Science & Landscape Engineering, Faculty of Agricultural Science, University of Tehran, Karaj, Iran
- Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland
| | - Reza Fatahi
- Biotechnology and Breeding Research Group for Medicinal Plants, Department of Horticultural Science & Landscape Engineering, Faculty of Agricultural Science, University of Tehran, Karaj, Iran.
| | - Zabihollah Zamani
- Biotechnology and Breeding Research Group for Medicinal Plants, Department of Horticultural Science & Landscape Engineering, Faculty of Agricultural Science, University of Tehran, Karaj, Iran
| | - Majid Shokrpour
- Biotechnology and Breeding Research Group for Medicinal Plants, Department of Horticultural Science & Landscape Engineering, Faculty of Agricultural Science, University of Tehran, Karaj, Iran
| | - Morteza Sheikh-Assadi
- Biotechnology and Breeding Research Group for Medicinal Plants, Department of Horticultural Science & Landscape Engineering, Faculty of Agricultural Science, University of Tehran, Karaj, Iran
| | - Peter Poczai
- Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
35
|
Liu X, Gao H, Radani Y, Yue S, Zhang Z, Tang J, Zhu J, Zheng R. Integrative transcriptome and metabolome analysis reveals the discrepancy in the accumulation of active ingredients between Lycium barbarum cultivars. PLANTA 2024; 259:74. [PMID: 38407665 DOI: 10.1007/s00425-024-04350-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 01/23/2024] [Indexed: 02/27/2024]
Abstract
MAIN CONCLUSION The combined analysis of transcriptome and metabolome provided molecular insight into the dynamics of multiple active ingredients biosynthesis and accumulation across different cultivars of Lycium barbarum. Lycium barbarum L. has a high concentration of active ingredients and is well known in traditional Chinese herbal medicine for its therapeutic properties. However, there are many Lycium barbarum cultivars, and the content of active components varies, resulting in inconsistent quality between Lycium barbarum cultivars. At present, few research has been conducted to reveal the difference in active ingredient content among different cultivars of Lycium barbarum at the molecular level. Therefore, the transcriptome of 'Ningqi No.1' and 'Qixin No.1' during the three development stages (G, T, and M) was constructed in this study. A total of 797,570,278 clean reads were obtained. Between the two types of wolfberries, a total of 469, 2394, and 1531 differentially expressed genes (DEGs) were obtained in the 'G1 vs. G10,' 'T1 vs. T10,' and 'M1 vs. M10,' respectively, and were annotated with Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) orthology identifiers. Using these transcriptome data, most DEGs related to the metabolism of the active ingredients in 'Ningqi No.1' and 'Qixin No.1' were identified. Moreover, a widely targeted metabolome analysis of the metabolites of 'Ningqi 1' and 'Qixin 1' fruits at the maturity stage revealed 1,135 differentially expressed metabolites (DEMs) in 'M1 vs. M10,' and many DEMs were associated with active ingredients such as flavonoids, alkaloids, terpenoids, and so on. We further quantified the flavonoid, lignin, and carotenoid contents of the two Lycium barbarum cultivars during the three developmental stages. The present outcome provided molecular insight into the dynamics of multiple active ingredients biosynthesis and accumulation across different cultivars of Lycium barbarum, which would provide the basic data for the formation of Lycium barbarum fruit quality and the breeding of outstanding strains.
Collapse
Affiliation(s)
- Xuexia Liu
- College of Life Science, Key Laboratory of Ministry of Education for Protection and Utilization of Special Biological Resources in Western China, Ningxia University, Yinchuan, 750021, China
| | - Han Gao
- College of Life Science, Key Laboratory of Ministry of Education for Protection and Utilization of Special Biological Resources in Western China, Ningxia University, Yinchuan, 750021, China
| | - Yasmina Radani
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Sijun Yue
- College of Life Science, Key Laboratory of Ministry of Education for Protection and Utilization of Special Biological Resources in Western China, Ningxia University, Yinchuan, 750021, China.
| | - Ziping Zhang
- College of Life Science, Key Laboratory of Ministry of Education for Protection and Utilization of Special Biological Resources in Western China, Ningxia University, Yinchuan, 750021, China
| | - Jianning Tang
- Wolfberry Industry Development Center, Yinchuan, 750021, China
| | - Jinzhong Zhu
- Qixin Wolfberry Seedling Professional Cooperatives of Zhongning County, Zhongning, 755100, China
| | - Rui Zheng
- College of Life Science, Key Laboratory of Ministry of Education for Protection and Utilization of Special Biological Resources in Western China, Ningxia University, Yinchuan, 750021, China.
- State Key Laboratory of Efficient Production of Forest Resources, Beijing, 100091, China.
| |
Collapse
|
36
|
Liu X, Yan W, Liu S, Wu J, Leng P, Hu Z. LiNAC100 contributes to linalool biosynthesis by directly regulating LiLiS in Lilium 'Siberia'. PLANTA 2024; 259:73. [PMID: 38393405 DOI: 10.1007/s00425-024-04340-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/09/2024] [Indexed: 02/25/2024]
Abstract
MAIN CONCLUSION The transcription factor LiNAC100 has a novel function of regulating floral fragrance by directly regulating linalool synthase gene LiLiS. Lilium 'Siberia', an Oriental hybrid, is renowned as both a cut flower and garden plant, prized for its color and fragrance. The fragrance comprises volatile organic compounds (VOCs), primarily monoterpenes found in the plant. While the primary terpene synthases in Lilium 'Siberia' were identified, the transcriptional regulation of these terpene synthase (TPS) genes remains unclear. Thus, understanding the regulatory mechanisms of monoterpene biosynthesis is crucial for breeding flower fragrance, thereby improving ornamental and commercial values. In this study, we isolated a nuclear-localized LiNAC100 transcription factor from Lilium 'Siberia'. The virus-induced gene silencing (VIGS) of LiNAC100 was found to down-regulate the expression of linalool synthase gene (LiLiS) and significantly inhibit linalool synthesis. Conversely, transient overexpression of LiNAC100 produced opposite effects. Additionally, yeast one-hybrid and dual-luciferase assays confirmed that LiNAC100 directly activates LiLiS expression. Our findings reveal that LiNAC100 plays a key role in monoterpene biosynthesis in Lilium 'Siberia', promoting linalool synthesis through the activation of LiLiS expression. These results offer insights into the molecular mechanisms of terpene biosynthesis in Lilium 'Siberia' and open avenues for biotechnological enhancement of floral scent.
Collapse
Affiliation(s)
- Xuping Liu
- College of Landscape Architecture, Beijing University of Agriculture, Beijing, 102206, China
- Beijing Engineering Research Center of Rural Landscape Planning and Design, Beijing, 102206, China
| | - Wenxin Yan
- College of Landscape Architecture, Beijing University of Agriculture, Beijing, 102206, China
- Beijing Engineering Research Center of Rural Landscape Planning and Design, Beijing, 102206, China
| | - Sijia Liu
- College of Landscape Architecture, Beijing University of Agriculture, Beijing, 102206, China
- Beijing Engineering Research Center of Rural Landscape Planning and Design, Beijing, 102206, China
| | - Jing Wu
- College of Landscape Architecture, Beijing University of Agriculture, Beijing, 102206, China
- Beijing Engineering Research Center of Rural Landscape Planning and Design, Beijing, 102206, China
| | - Pingsheng Leng
- College of Landscape Architecture, Beijing University of Agriculture, Beijing, 102206, China.
- Beijing Engineering Research Center of Rural Landscape Planning and Design, Beijing, 102206, China.
| | - Zenghui Hu
- College of Landscape Architecture, Beijing University of Agriculture, Beijing, 102206, China.
- Beijing Engineering Research Center of Rural Landscape Planning and Design, Beijing, 102206, China.
| |
Collapse
|
37
|
Zhao Q, Zhang M, Gu L, Yang Z, Li Y, Luo J, Zhang Y. Transcriptome and volatile compounds analyses of floral development provide insight into floral scent formation in Paeonia lactiflora 'Wu Hua Long Yu'. FRONTIERS IN PLANT SCIENCE 2024; 15:1303156. [PMID: 38434428 PMCID: PMC10904628 DOI: 10.3389/fpls.2024.1303156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 01/31/2024] [Indexed: 03/05/2024]
Abstract
Herbaceous peony (Paeonia lactiflora) is a well-known ornamental plant in China, celebrated for its beautiful flowers that can emit fragrances. However, exact molecular mechanisms governing synthesis of floral volatiles within herbaceous peony remain unclear. To address this gap in knowledge, our study focused on analyzing the transcriptome and the levels of floral volatile compounds in P. lactiflora 'Wu Hua Long Yu' at different stages of flower development. Using gas chromatography-mass spectrometry (GC-MS), we obtained eighteen major volatile compounds, with monoterpenes being the dominant components among them. Our transcriptome analysis, based on pooled sequencing data, revealed the most differentially expressed genes (DEGs) existed between stages S1 and S3 of flower development. Among these DEGs, we identified 89 functional genes associated with the synthesis of volatile monoterpenes, with 28 of these genes showing a positive correlation with the release of monoterpenes. Specifically, key regulators of monoterpene synthesis in herbaceous peony appear to be 1-deoxy-D-xylulose 5-phosphate synthase (DXS), geranyl pyrophosphate synthase (GPPS), and terpene synthase (TPS). Additionally, our study identified some transcription factors (TFs) that may be involved in the biosynthesis of monoterpenes. These discoveries offer invaluable illumination into the intricate molecular underpinnings orchestrating the generation of floral fragrances in herbaceous peonies, and they offer a foundation for further research to identify and utilize candidate gene resources for this purpose.
Collapse
Affiliation(s)
- Qian Zhao
- College of Landscape Architecture and Arts, Northwest A&F University, Xianyang, China
- National Engineering Research Center for Oil Peony, Northwest A&F University, Xianyang, China
| | - Min Zhang
- College of Landscape Architecture and Arts, Northwest A&F University, Xianyang, China
- National Engineering Research Center for Oil Peony, Northwest A&F University, Xianyang, China
| | - Lina Gu
- College of Landscape Architecture and Arts, Northwest A&F University, Xianyang, China
- National Engineering Research Center for Oil Peony, Northwest A&F University, Xianyang, China
| | - Zihan Yang
- College of Landscape Architecture and Arts, Northwest A&F University, Xianyang, China
- National Engineering Research Center for Oil Peony, Northwest A&F University, Xianyang, China
| | - Yuqing Li
- College of Landscape Architecture and Arts, Northwest A&F University, Xianyang, China
- National Engineering Research Center for Oil Peony, Northwest A&F University, Xianyang, China
| | - Jianrang Luo
- College of Landscape Architecture and Arts, Northwest A&F University, Xianyang, China
- National Engineering Research Center for Oil Peony, Northwest A&F University, Xianyang, China
| | - Yanlong Zhang
- College of Landscape Architecture and Arts, Northwest A&F University, Xianyang, China
- National Engineering Research Center for Oil Peony, Northwest A&F University, Xianyang, China
| |
Collapse
|
38
|
Zong D, Liu H, Gan P, Ma S, Liang H, Yu J, Li P, Jiang T, Sahu SK, Yang Q, Zhang D, Li L, Qiu X, Shao W, Yang J, Li Y, Guang X, He C. Chromosomal-scale genomes of two Rosa species provide insights into genome evolution and ascorbate accumulation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:1264-1280. [PMID: 37964640 DOI: 10.1111/tpj.16543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 10/07/2023] [Accepted: 10/30/2023] [Indexed: 11/16/2023]
Abstract
Rosa roxburghii and Rosa sterilis, two species belonging to the Rosaceae family, are widespread in the southwest of China. These species have gained recognition for their remarkable abundance of ascorbate in their fresh fruits, making them an ideal vitamin C resource. In this study, we generated two high-quality chromosome-scale genome assemblies for R. roxburghii and R. sterilis, with genome sizes of 504 and 981.2 Mb, respectively. Notably, we present a haplotype-resolved, chromosome-scale assembly for diploid R. sterilis. Our results indicated that R. sterilis originated from the hybridization of R. roxburghii and R. longicuspis. Genome analysis revealed the absence of recent whole-genome duplications in both species and identified a series of duplicated genes that possibly contributing to the accumulation of flavonoids. We identified two genes in the ascorbate synthesis pathway, GGP and GalLDH, that show signs of positive selection, along with high expression levels of GDP-d-mannose 3', 5'-epimerase (GME) and GDP-l-galactose phosphorylase (GGP) during fruit development. Furthermore, through co-expression network analysis, we identified key hub genes (MYB5 and bZIP) that likely regulate genes in the ascorbate synthesis pathway, promoting ascorbate biosynthesis. Additionally, we observed the expansion of terpene synthase genes in these two species and tissue expression patterns, suggesting their involvement in terpenoid biosynthesis. Our research provides valuable insights into genome evolution and the molecular basis of the high concentration of ascorbate in these two Rosa species.
Collapse
Affiliation(s)
- Dan Zong
- Key Laboratory for Forest Genetic and Tree Improvement and Propagation in Universities of Yunnan Province, Southwest Forestry University, Kunming, 650224, China
| | - Huan Liu
- State Key Laboratory of Agricultural Genomics, Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Shenzhen, 518083, China
| | - Peihua Gan
- Key Laboratory for Forest Genetic and Tree Improvement and Propagation in Universities of Yunnan Province, Southwest Forestry University, Kunming, 650224, China
| | - Shaojie Ma
- Key Laboratory for Forest Genetic and Tree Improvement and Propagation in Universities of Yunnan Province, Southwest Forestry University, Kunming, 650224, China
| | - Hongping Liang
- State Key Laboratory of Agricultural Genomics, Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Shenzhen, 518083, China
| | - Jinde Yu
- Key Laboratory for Forest Genetic and Tree Improvement and Propagation in Universities of Yunnan Province, Southwest Forestry University, Kunming, 650224, China
| | - Peilin Li
- Key Laboratory for Forest Genetic and Tree Improvement and Propagation in Universities of Yunnan Province, Southwest Forestry University, Kunming, 650224, China
| | - Tao Jiang
- Key Laboratory for Forest Genetic and Tree Improvement and Propagation in Universities of Yunnan Province, Southwest Forestry University, Kunming, 650224, China
| | - Sunil Kumar Sahu
- State Key Laboratory of Agricultural Genomics, Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Shenzhen, 518083, China
| | - Qingqing Yang
- Key Laboratory for Forest Genetic and Tree Improvement and Propagation in Universities of Yunnan Province, Southwest Forestry University, Kunming, 650224, China
| | - Deguo Zhang
- Key Laboratory for Forest Genetic and Tree Improvement and Propagation in Universities of Yunnan Province, Southwest Forestry University, Kunming, 650224, China
| | - Laigeng Li
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 20032, China
| | - Xu Qiu
- Key Laboratory for Forest Genetic and Tree Improvement and Propagation in Universities of Yunnan Province, Southwest Forestry University, Kunming, 650224, China
| | - Wenwen Shao
- State Key Laboratory of Agricultural Genomics, Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Shenzhen, 518083, China
| | | | - Yonghe Li
- Yunnan Agricultural University, Kunming, 650201, China
| | - Xuanmin Guang
- State Key Laboratory of Agricultural Genomics, Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Shenzhen, 518083, China
| | - Chengzhong He
- Key Laboratory for Forest Genetic and Tree Improvement and Propagation in Universities of Yunnan Province, Southwest Forestry University, Kunming, 650224, China
| |
Collapse
|
39
|
Dong W, Li J, Zhuang Z. Deciphering the prognostic significance of anoikis-related lncRNAs in invasive breast cancer: from comprehensive bioinformatics analysis to functional experimental validation. Aging (Albany NY) 2024; 16:402-430. [PMID: 38189818 PMCID: PMC10817393 DOI: 10.18632/aging.205376] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 11/06/2023] [Indexed: 01/18/2025]
Abstract
The global prevalence of breast cancer necessitates the development of innovative prognostic markers and therapeutic strategies. This study investigated the prognostic implications of anoikis-related long non-coding RNAs (ARLs) in invasive breast cancer (IBC), which is an area that has not been extensively explored. By integrating the RNA sequence transcriptome and clinical data from The Cancer Genome Atlas (TCGA) database and employing advanced regression analyses, we devised a novel prognostic model based on ARL scores. ARL scores correlated with diverse clinicopathological parameters, cellular pathways, distinct mutation patterns, and immune responses, thereby affecting both immune cell infiltration and anticipated responses to chemotherapy and immunotherapy. Additionally, the overexpression of a specific lncRNA, AL133467.1, significantly impeded the proliferation and migration, as well as possibly the anoikis resistance of breast cancer cells. These findings highlight the potential of the ARL signature as a robust prognostic tool and a promising basis for personalized IBC treatment strategies.
Collapse
Affiliation(s)
- Wenge Dong
- Department of Breast Surgery, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Jiejing Li
- Department of Breast Surgery, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Zhigang Zhuang
- Department of Breast Surgery, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| |
Collapse
|
40
|
Pandey V, Rathee S, Sen D, Jain SK, Patil UK. Phytovesicular Nanoconstructs for Advanced Delivery of Medicinal Metabolites: An In-Depth Review. Curr Drug Targets 2024; 25:847-865. [PMID: 39171597 DOI: 10.2174/0113894501310832240815071618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/17/2024] [Accepted: 07/11/2024] [Indexed: 08/23/2024]
Abstract
Phytochemicals, the bioactive compounds in plants, possess therapeutic benefits, such as antimicrobial, antioxidant, and pharmacological activities. However, their clinical use is often hindered by poor bioavailability and stability. Phytosome technology enhances the absorption and efficacy of these compounds by integrating vesicular systems like liposomes, niosomes, transfersomes, and ethosomes. Phytosomes offer diverse biological benefits, including cardiovascular protection through improved endothelial function and oxidative stress reduction. They enhance cognitive function and protect against neurodegenerative diseases in the nervous system, aid digestion and reduce inflammation in the gastrointestinal system, and provide hepatoprotective effects by enhancing liver detoxification and protection against toxins. In the genitourinary system, phytosomes improve renal function and exhibit anti-inflammatory properties. They also modulate the immune system by enhancing immune responses and reducing inflammation and oxidative stress. Additionally, phytosomes promote skin health by protecting against UV radiation and improving hydration and elasticity. Recent patented phytosome technologies have led to innovative formulations that improve the stability, bioavailability, and therapeutic efficacy of phytochemicals, although commercialization challenges like manufacturing scalability and regulatory hurdles remain. Secondary metabolites from natural products are classified into primary and secondary metabolites, with a significant focus on terpenoids, phenolic compounds, and nitrogen-containing compounds. These metabolites have notable biological activities: antimicrobial, antioxidant, antibiotic, antiviral, anti-inflammatory, and anticancer effects. In summary, this review amalgamates the latest advancements in phytosome technology and secondary metabolite research, presenting a holistic view of their potential to advance therapeutic interventions and contribute to the ever-evolving landscape of natural product-based medicine.
Collapse
Affiliation(s)
- Vishal Pandey
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, Madhya Pradesh, 470003, India
| | - Sunny Rathee
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, Madhya Pradesh, 470003, India
| | - Debasis Sen
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, Madhya Pradesh, 470003, India
| | - Sanjay K Jain
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, Madhya Pradesh, 470003, India
| | - Umesh K Patil
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, Madhya Pradesh, 470003, India
| |
Collapse
|
41
|
Consoli V, Fallica AN, Sorrenti V, Pittalà V, Vanella L. Novel Insights on Ferroptosis Modulation as Potential Strategy for Cancer Treatment: When Nature Kills. Antioxid Redox Signal 2024; 40:40-85. [PMID: 37132605 PMCID: PMC10824235 DOI: 10.1089/ars.2022.0179] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 04/19/2023] [Accepted: 04/20/2023] [Indexed: 05/04/2023]
Abstract
Significance: The multifactorial nature of the mechanisms implicated in cancer development still represents a major issue for the success of established antitumor therapies. The discovery of ferroptosis, a novel form of programmed cell death distinct from apoptosis, along with the identification of the molecular pathways activated during its execution, has led to the uncovering of novel molecules characterized by ferroptosis-inducing properties. Recent advances: As of today, the ferroptosis-inducing properties of compounds derived from natural sources have been investigated and interesting findings have been reported both in vitro and in vivo. Critical Issues: Despite the efforts made so far, only a limited number of synthetic compounds have been identified as ferroptosis inducers, and their utilization is still limited to basic research. In this review, we analyzed the most important biochemical pathways involved in ferroptosis execution, with particular attention to the newest literature findings on canonical and non-canonical hallmarks, together with mechanisms of action of natural compounds identified as novel ferroptosis inducers. Compounds have been classified based on their chemical structure, and modulation of ferroptosis-related biochemical pathways has been reported. Future Directions: The outcomes herein collected represent a fascinating starting point from which to take hints for future drug discovery studies aimed at identifying ferroptosis-inducing natural compounds for anticancer therapies. Antioxid. Redox Signal. 40, 40-85.
Collapse
Affiliation(s)
- Valeria Consoli
- Department of Drug and Health Sciences, University of Catania, Catania, Italy
| | | | - Valeria Sorrenti
- Department of Drug and Health Sciences, University of Catania, Catania, Italy
- Department of Drug and Health Sciences, CERNUT—Research Centre on Nutraceuticals and Health Products, University of Catania, Catania, Italy
| | - Valeria Pittalà
- Department of Drug and Health Sciences, University of Catania, Catania, Italy
- Department of Drug and Health Sciences, CERNUT—Research Centre on Nutraceuticals and Health Products, University of Catania, Catania, Italy
| | - Luca Vanella
- Department of Drug and Health Sciences, University of Catania, Catania, Italy
- Department of Drug and Health Sciences, CERNUT—Research Centre on Nutraceuticals and Health Products, University of Catania, Catania, Italy
| |
Collapse
|
42
|
Zou P, Wang L, Liu F, Yan Z, Chen X. Effect of interfering TOR signaling pathway on the biosynthesis of terpenoids in Salvia miltiorrhiza Bge. PLANT SIGNALING & BEHAVIOR 2023; 18:2199644. [PMID: 37039834 PMCID: PMC10101657 DOI: 10.1080/15592324.2023.2199644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The TOR (Target of Rapamycin) signaling pathway, which takes TOR kinase as the core, regulates the absorption, distribution, and recycling of nutrients by integrating metabolic network and other signaling pathways, thus participating in the plant growth-defense trade-off. While terpenoids play an important role in plant growth, development, stress response, and signal transduction. The effect of the TOR signaling pathway on terpenoid biosynthesis in plants has yet to be studied in detail. In this study, the tissue culture seedlings of Salvia miltiorrhiza were treated with the TOR inhibitor AZD8055. The results show that the roots of the control group had begun to grow on the 8th day, while the seedlings treated with AZD8055 had no rooting signs. Combined with the expression changes of genes related to the TOR signaling pathway in the first 8 days, samples on the 3rd, 6th, and 8th days were selected for RNA-Seq analysis. Through RNA-Seq analysis, a total of 50,689 unigenes were obtained from the samples of these three periods, of which 4088 unigenes showed differential expression. The function enrichment and time-series analysis of differentially expressed genes (DEGs) showed that the main influence of the TOR signal pathway on plant growth-related processes was gradually transmitted with treatment time after TOR was inhibited. Pathway enrichment analysis of DEGs showed that the genes in the biosynthesis of terpenoids, such as diterpenoid and carotenoid biosynthetic pathways, could be regulated. Compared with other stages, DEGs related to terpenoid biosynthesis were mainly regulated in the S2 stage. In addition, the genes involved in terpenoid skeleton biosynthesis was also considerably enriched in the S2 stage, according to the results of gene set enrichment analysis (GSEA) of unigenes. Inhibition of the TOR signaling pathway may affect the biosynthesis of terpenoid signaling molecules, inhibit gibberellin's biosynthesis, and promote abscisic acid's biosynthesis. This study has discussed the effect of interfering with the TOR pathway on terpenoid biosynthesis in S. miltiorrhiza from the perspective of omics and provides new insight into the interaction between the terpenoid biosynthesis pathway and the growth-defense trade-off of medicinal plants.
Collapse
Affiliation(s)
- Peijin Zou
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Key Laboratory of Characteristic Chinese Medicinal Resources in Southwest, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Lin Wang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Key Laboratory of Characteristic Chinese Medicinal Resources in Southwest, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Fang Liu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Key Laboratory of Characteristic Chinese Medicinal Resources in Southwest, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Zhuyun Yan
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Key Laboratory of Characteristic Chinese Medicinal Resources in Southwest, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Xin Chen
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Key Laboratory of Characteristic Chinese Medicinal Resources in Southwest, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- CONTACT Xin Chen School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Wenjiang District, Chengdu, Sichuan611171, China
| |
Collapse
|
43
|
Du Z, Bhat WW, Poliner E, Johnson S, Bertucci C, Farre E, Hamberger B. Engineering Nannochloropsis oceanica for the production of diterpenoid compounds. MLIFE 2023; 2:428-437. [PMID: 38818264 PMCID: PMC10989085 DOI: 10.1002/mlf2.12097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 08/24/2023] [Accepted: 10/04/2023] [Indexed: 06/01/2024]
Abstract
Photosynthetic microalgae like Nannochloropsis hold enormous potential as sustainable, light-driven biofactories for the production of high-value natural products such as terpenoids. Nannochloropsis oceanica is distinguished as a particularly robust host with extensive genomic and transgenic resources available. Its capacity to grow in wastewater, brackish, and sea waters, coupled with advances in microalgal metabolic engineering, genome editing, and synthetic biology, provides an excellent opportunity. In the present work, we demonstrate how N. oceanica can be engineered to produce the diterpene casbene-an important intermediate in the biosynthesis of pharmacologically relevant macrocyclic diterpenoids. Casbene accumulated after stably expressing and targeting the casbene synthase from Daphne genkwa (DgTPS1) to the algal chloroplast. The engineered strains yielded production titers of up to 0.12 mg g-1 total dry cell weight (DCW) casbene. Heterologous overexpression and chloroplast targeting of two upstream rate-limiting enzymes in the 2-C-methyl- d-erythritol 4-phosphate pathway, Coleus forskohlii 1-deoxy- d-xylulose-5-phosphate synthase and geranylgeranyl diphosphate synthase genes, further enhanced the yield of casbene to a titer up to 1.80 mg g-1 DCW. The results presented here form a basis for further development and production of complex plant diterpenoids in microalgae.
Collapse
Affiliation(s)
- Zhi‐Yan Du
- Department of Molecular Biosciences and BioengineeringUniversity of Hawaii at ManoaHonoluluHawaiiUSA
| | - Wajid W. Bhat
- Department of Biochemistry and Molecular BiologyMichigan State UniversityEast LansingMichiganUSA
| | - Eric Poliner
- Department of Plant BiologyMichigan State UniversityEast LansingMichiganUSA
| | - Sean Johnson
- Department of Biochemistry and Molecular BiologyMichigan State UniversityEast LansingMichiganUSA
- Present address:
New England Biolabs Inc.240 County RoadIpswich01938MAUSA
| | - Conor Bertucci
- Department of Biochemistry and Molecular BiologyMichigan State UniversityEast LansingMichiganUSA
| | - Eva Farre
- Department of Plant BiologyMichigan State UniversityEast LansingMichiganUSA
| | - Bjoern Hamberger
- Department of Biochemistry and Molecular BiologyMichigan State UniversityEast LansingMichiganUSA
| |
Collapse
|
44
|
Zheng CY, Zhao JX, Yuan CH, Peng X, Geng M, Ai J, Fan YY, Yue JM. Unprecedented sesterterpenoids, orientanoids A-C: discovery, bioinspired total synthesis and antitumor immunity. Chem Sci 2023; 14:13410-13418. [PMID: 38033907 PMCID: PMC10685275 DOI: 10.1039/d3sc04238c] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 11/05/2023] [Indexed: 12/02/2023] Open
Abstract
Sesterterpenoids are a very rare class of important natural products. Three new skeletal spiro sesterterpenoids, named orientanoids A-C (1-3), were isolated from Hedyosmum orientale. Their structures were determined by a combination of spectroscopic data, X-ray crystallography, and total synthesis. To obtain adequate materials for biological research, the bioinspired total syntheses of 1-3 were effectively achieved in 7-8 steps in overall yields of 2.3-6.4% from the commercially available santonin without using any protecting groups. In addition, this work also revised the stereochemistry of hedyosumins B (6) and C (10) as 11R-configuration. Tumor-associated macrophages (TAMs) have emerged as important therapeutic targets in cancer therapy. The in-depth biological evaluation revealed that these sesterterpenoids antagonized the protumoral and immunosuppressive functional phenotype of macrophages in vitro. Among them, the most potent and major compound 1 inhibited protumoral M2-like macrophages and activated cytotoxic CD8+ T cells, and consequently inhibited tumor growth in vivo.
Collapse
Affiliation(s)
- Cheng-Yu Zheng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences Shanghai 201203 China
- University of Chinese Academy of Science No. 19A Yuquan Road Beijing 100049 China
| | - Jin-Xin Zhao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences Shanghai 201203 China
| | - Chang-Hao Yuan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences Shanghai 201203 China
- University of Chinese Academy of Science No. 19A Yuquan Road Beijing 100049 China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences Hangzhou 310024 China
| | - Xia Peng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences Shanghai 201203 China
| | - Meiyu Geng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences Shanghai 201203 China
- University of Chinese Academy of Science No. 19A Yuquan Road Beijing 100049 China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences Hangzhou 310024 China
| | - Jing Ai
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences Shanghai 201203 China
- University of Chinese Academy of Science No. 19A Yuquan Road Beijing 100049 China
| | - Yao-Yue Fan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences Shanghai 201203 China
- University of Chinese Academy of Science No. 19A Yuquan Road Beijing 100049 China
| | - Jian-Min Yue
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences Shanghai 201203 China
- Research Units of Discovery of New Drug Lead Molecules, Chinese Academy of Medical Sciences Shanghai 201203 China
- University of Chinese Academy of Science No. 19A Yuquan Road Beijing 100049 China
| |
Collapse
|
45
|
Singh DP, Maurya S, Yerasu SR, Bisen MS, Farag MA, Prabha R, Shukla R, Chaturvedi KK, Farooqi MS, Srivastava S, Rai A, Sarma BK, Rai N, Behera TK. Metabolomics of early blight (Alternaria solani) susceptible tomato (Solanum lycopersicum) unfolds key biomarker metabolites and involved metabolic pathways. Sci Rep 2023; 13:21023. [PMID: 38030710 PMCID: PMC10687106 DOI: 10.1038/s41598-023-48269-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 11/24/2023] [Indexed: 12/01/2023] Open
Abstract
Tomato (Solanum lycopersicum) is among the most important commercial horticultural crops worldwide. The crop quality and production is largely hampered due to the fungal pathogen Alternaria solani causing necrotrophic foliage early blight disease. Crop plants usually respond to the biotic challenges with altered metabolic composition and physiological perturbations. We have deciphered altered metabolite composition, modulated metabolic pathways and identified metabolite biomarkers in A. solani-challenged susceptible tomato variety Kashi Aman using Liquid Chromatography-Mass Spectrometry (LC-MS) based metabolomics. Alteration in the metabolite feature composition of pathogen-challenged (m/z 9405) and non-challenged (m/z 9667) plant leaves including 8487 infection-exclusive and 8742 non-infection exclusive features was observed. Functional annotation revealed putatively annotated metabolites and pathway mapping indicated their enrichment in metabolic pathways, biosynthesis of secondary metabolites, ubiquinone and terpenoid-quinones, brassinosteroids, steroids, terpenoids, phenylpropanoids, carotenoids, oxy/sphingolipids and metabolism of biotin and porphyrin. PCA, multivariate PLS-DA and OPLS-DA analysis showed sample discrimination. Significantly up regulated 481 and down regulated 548 metabolite features were identified based on the fold change (threshold ≥ 2.0). OPLS-DA model based on variable importance in projection (VIP scores) and FC threshold (> 2.0) revealed 41 up regulated discriminant metabolite features annotated as sphingosine, fecosterol, melatonin, serotonin, glucose 6-phosphate, zeatin, dihydrozeatin and zeatin-β-D-glucoside. Similarly, 23 down regulated discriminant metabolites included histidinol, 4-aminobutyraldehyde, propanoate, tyramine and linalool. Melatonin and serotonin in the leaves were the two indoleamines being reported for the first time in tomato in response to the early blight pathogen. Receiver operating characteristic (ROC)-based biomarker analysis identified apigenin-7-glucoside, uridine, adenosyl-homocysteine, cGMP, tyrosine, pantothenic acid, riboflavin (as up regulated) and adenosine, homocyctine and azmaline (as down regulated) biomarkers. These results could aid in the development of metabolite-quantitative trait loci (mQTL). Furthermore, stress-induced biosynthetic pathways may be the potential targets for modifications through breeding programs or genetic engineering for improving crop performance in the fields.
Collapse
Affiliation(s)
| | - Sudarshan Maurya
- ICAR-Indian Institute of Vegetable Research, Varanasi, 221305, India
| | | | - Mansi Singh Bisen
- ICAR-Indian Institute of Vegetable Research, Varanasi, 221305, India
| | - Mohamed A Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Cairo, Egypt
| | - Ratna Prabha
- ICAR-Indian Agricultural Statistics Research Institute, Library Avenue, New Delhi, India
| | - Renu Shukla
- Indian Council of Agricultural Research, New Delhi, 110012, India
| | | | - Md Samir Farooqi
- ICAR-Indian Agricultural Statistics Research Institute, Library Avenue, New Delhi, India
| | - Sudhir Srivastava
- ICAR-Indian Agricultural Statistics Research Institute, Library Avenue, New Delhi, India
| | - Anil Rai
- ICAR-Indian Agricultural Statistics Research Institute, Library Avenue, New Delhi, India
- Indian Council of Agricultural Research, New Delhi, 110012, India
| | - Birinchi Kumar Sarma
- Department of Mycology and Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Nagendra Rai
- ICAR-Indian Institute of Vegetable Research, Varanasi, 221305, India
| | | |
Collapse
|
46
|
Huang X, Zhang W, Liao Y, Ye J, Xu F. Contemporary understanding of transcription factor regulation of terpenoid biosynthesis in plants. PLANTA 2023; 259:2. [PMID: 37971670 DOI: 10.1007/s00425-023-04268-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 10/18/2023] [Indexed: 11/19/2023]
Abstract
KEY MESSAGE This review summarized how TFs function independently or in response to environmental factors to regulate terpenoid biosynthesis via fine-tuning the expression of rate-limiting enzymes. Terpenoids are derived from various species and sources. They are essential for interacting with the environment and defense mechanisms, such as antimicrobial, antifungal, antiviral, and antiparasitic properties. Almost all terpenoids have high medicinal value and economic performance. Recently, the control of enzyme genes on terpenoid biosynthesis has received a great deal of attention, but transcriptional factors regulatory network on terpenoid biosynthesis and accumulation has yet to get a thorough review. Transcription factors function as activators or suppressors independently or in response to environmental stimuli, fine-tuning terpenoid accumulation through regulating rate-limiting enzyme expression. This study investigates the advancements in transcription factors related to terpenoid biosynthesis and systematically summarizes previous works on the specific mechanisms of transcription factors that regulate terpenoid biosynthesis via hormone signal-transcription regulatory networks in plants. This will help us to better comprehend the regulatory network of terpenoid biosynthesis and build the groundwork for terpenoid development and effective utilization.
Collapse
Affiliation(s)
- Xinru Huang
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Weiwei Zhang
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Yongling Liao
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Jiabao Ye
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China.
| | - Feng Xu
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China.
| |
Collapse
|
47
|
Bhargav P, Chaurasia S, Kumar A, Srivastava G, Pant Y, Chanotiya CS, Ghosh S. Unraveling the terpene synthase family and characterization of BsTPS2 contributing to (S)-( +)-linalool biosynthesis in Boswellia. PLANT MOLECULAR BIOLOGY 2023; 113:219-236. [PMID: 37898975 DOI: 10.1007/s11103-023-01384-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 09/29/2023] [Indexed: 10/31/2023]
Abstract
Boswellia tree bark exudes oleo-gum resin in response to wounding, which is rich in terpene volatiles. But, the molecular and biochemical basis of wound-induced formation of resin volatiles remains poorly understood. Here, we combined RNA-sequencing (RNA-seq) and metabolite analysis to unravel the terpene synthase (TPS) family contributing to wound-induced biosynthesis of resin volatiles in B. serrata, an economically-important Boswellia species. The analysis of large-scale RNA-seq data of bark and leaf samples representing more than 600 million sequencing reads led to the identification of 32 TPSs, which were classified based on phylogenetic relationship into various TPSs families found in angiosperm species such as TPS-a, b, c, e/f, and g. Moreover, RNA-seq analysis of bark samples collected at 0-24 h post-wounding shortlisted 14 BsTPSs that showed wound-induced transcriptional upregulation in bark, suggesting their important role in wound-induced biosynthesis of resin volatiles. Biochemical characterization of a bark preferentially-expressed and wound-inducible TPS (BsTPS2) in vitro and in planta assays revealed its involvement in resin terpene biosynthesis. Bacterially-expressed recombinant BsTPS2 catalyzed the conversion of GPP and FPP into (S)-( +)-linalool and (E)-(-)-nerolidol, respectively, in vitro assays. However, BsTPS2 expression in Nicotiana benthamiana found that BsTPS2 is a plastidial linalool synthase. In contrast, cytosolic expression of BsTPS2 did not form any product. Overall, the present work unraveled a suite of TPSs that potentially contributed to the biosynthesis of resin volatiles in Boswellia and biochemically characterized BsTPS2, which is involved in wound-induced biosynthesis of (S)-( +)-linalool, a monoterpene resin volatile with a known role in plant defense.
Collapse
Affiliation(s)
- Pravesh Bhargav
- Plant Biotechnology Division, Council of Scientific and Industrial Research-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, 226015, India
| | - Seema Chaurasia
- Plant Biotechnology Division, Council of Scientific and Industrial Research-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, 226015, India
| | - Aashish Kumar
- Plant Biotechnology Division, Council of Scientific and Industrial Research-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, 226015, India
| | - Gaurav Srivastava
- Plant Biotechnology Division, Council of Scientific and Industrial Research-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, 226015, India
| | - Yatish Pant
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Phytochemistry Division, Council of Scientific and Industrial Research-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, 226015, India
| | - Chandan Singh Chanotiya
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Phytochemistry Division, Council of Scientific and Industrial Research-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, 226015, India
| | - Sumit Ghosh
- Plant Biotechnology Division, Council of Scientific and Industrial Research-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, 226015, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
48
|
Liu Y, Singh SK, Pattanaik S, Wang H, Yuan L. Light regulation of the biosynthesis of phenolics, terpenoids, and alkaloids in plants. Commun Biol 2023; 6:1055. [PMID: 37853112 PMCID: PMC10584869 DOI: 10.1038/s42003-023-05435-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 10/09/2023] [Indexed: 10/20/2023] Open
Abstract
Biosynthesis of specialized metabolites (SM), including phenolics, terpenoids, and alkaloids, is stimulated by many environmental factors including light. In recent years, significant progress has been made in understanding the regulatory mechanisms involved in light-stimulated SM biosynthesis at the transcriptional, posttranscriptional, and posttranslational levels of regulation. While several excellent recent reviews have primarily focused on the impacts of general environmental factors, including light, on biosynthesis of an individual class of SM, here we highlight the regulation of three major SM biosynthesis pathways by light-responsive gene expression, microRNA regulation, and posttranslational modification of regulatory proteins. In addition, we present our future perspectives on this topic.
Collapse
Affiliation(s)
- Yongliang Liu
- Department of Plant and Soil Sciences and Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY, 40546, USA
| | - Sanjay K Singh
- Department of Plant and Soil Sciences and Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY, 40546, USA
| | - Sitakanta Pattanaik
- Department of Plant and Soil Sciences and Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY, 40546, USA.
| | - Hongxia Wang
- Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences Chenshan Botanical Garden, 3888 Chenhua Road, 201602, Songjiang, Shanghai, China.
| | - Ling Yuan
- Department of Plant and Soil Sciences and Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY, 40546, USA.
| |
Collapse
|
49
|
Yan XM, Zhou SS, Liu H, Zhao SW, Tian XC, Shi TL, Bao YT, Li ZC, Jia KH, Nie S, Guo JF, Kong L, Porth IM, Mao JF. Unraveling the evolutionary dynamics of the TPS gene family in land plants. FRONTIERS IN PLANT SCIENCE 2023; 14:1273648. [PMID: 37900760 PMCID: PMC10600500 DOI: 10.3389/fpls.2023.1273648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 09/15/2023] [Indexed: 10/31/2023]
Abstract
Terpenes and terpenoids are key natural compounds for plant defense, development, and composition of plant oil. The synthesis and accumulation of a myriad of volatile terpenoid compounds in these plants may dramatically alter the quality and flavor of the oils, which provide great commercial utilization value for oil-producing plants. Terpene synthases (TPSs) are important enzymes responsible for terpenic diversity. Investigating the differentiation of the TPS gene family could provide valuable theoretical support for the genetic improvement of oil-producing plants. While the origin and function of TPS genes have been extensively studied, the exact origin of the initial gene fusion event - it occurred in plants or microbes - remains uncertain. Furthermore, a comprehensive exploration of the TPS gene differentiation is still pending. Here, phylogenetic analysis revealed that the fusion of the TPS gene likely occurred in the ancestor of land plants, following the acquisition of individual C- and N- terminal domains. Potential mutual transfer of TPS genes was observed among microbes and plants. Gene synteny analysis disclosed a differential divergence pattern between TPS-c and TPS-e/f subfamilies involved in primary metabolism and those (TPS-a/b/d/g/h subfamilies) crucial for secondary metabolites. Biosynthetic gene clusters (BGCs) analysis suggested a correlation between lineage divergence and potential natural selection in structuring terpene diversities. This study provides fresh perspectives on the origin and evolution of the TPS gene family.
Collapse
Affiliation(s)
- Xue-Mei Yan
- National Engineering Research Center of Tree Breeding and Ecological Restoration, State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Shan-Shan Zhou
- National Engineering Research Center of Tree Breeding and Ecological Restoration, State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Shuangyushu No.1 Primary School, Beijing, China
| | - Hui Liu
- National Engineering Research Center of Tree Breeding and Ecological Restoration, State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Shi-Wei Zhao
- National Engineering Research Center of Tree Breeding and Ecological Restoration, State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Xue-Chan Tian
- National Engineering Research Center of Tree Breeding and Ecological Restoration, State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Tian-Le Shi
- National Engineering Research Center of Tree Breeding and Ecological Restoration, State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Yu-Tao Bao
- National Engineering Research Center of Tree Breeding and Ecological Restoration, State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Zhi-Chao Li
- National Engineering Research Center of Tree Breeding and Ecological Restoration, State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Kai-Hua Jia
- National Engineering Research Center of Tree Breeding and Ecological Restoration, State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Crop Genetic Improvement & Ecology and Physiology, Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Shuai Nie
- National Engineering Research Center of Tree Breeding and Ecological Restoration, State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Rice Research Institute, Guangdong Academy of Agricultural Sciences & Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs & Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, China
| | - Jing-Fang Guo
- National Engineering Research Center of Tree Breeding and Ecological Restoration, State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Department of Horticulture and Food, Guangdong Eco-Engineering Polytechnic, Guangzhou, China
| | - Lei Kong
- National Engineering Research Center of Tree Breeding and Ecological Restoration, State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Personnel Section, Qufu Nishan National Forest Park Management Service Center, Qufu, China
| | - Ilga M. Porth
- Départment des Sciences du Bois et de la Forêt, Faculté de Foresterie, de Géographie et Géomatique, Université Laval Québec, Québec, QC, Canada
| | - Jian-Feng Mao
- National Engineering Research Center of Tree Breeding and Ecological Restoration, State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, Sweden
| |
Collapse
|
50
|
Han D, Zhang D, Han D, Ren H, Wang Z, Zhu Z, Sun H, Wang L, Qu Z, Lu W, Yuan M. Effects of salt stress on soil enzyme activities and rhizosphere microbial structure in salt-tolerant and -sensitive soybean. Sci Rep 2023; 13:17057. [PMID: 37816809 PMCID: PMC10564926 DOI: 10.1038/s41598-023-44266-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 10/05/2023] [Indexed: 10/12/2023] Open
Abstract
Salt is recognized as one of the most major factors that limits soybean yield in acidic soils. Soil enzyme activity and bacterial community have a critical function in improving the tolerance to soybean. Our aim was to assess the activities of soil enzyme, the structure of bacteria and their potential functions for salt resistance between Salt-tolerant (Salt-T) and -sensitive (Salt-S) soybean genotypes when subject to salt stress. Plant biomass, soil physicochemical properties, soil catalase, urease, sucrase, amylase, and acid phosphatase activities, and rhizosphere microbial characteristics were investigated in Salt-T and Salt-S soybean genotypes under salt stress with a pot experiment. Salt stress significantly decreased the soil enzyme activities and changed the rhizosphere microbial structure in a genotype-dependent manner. In addition, 46 ASVs which were enriched in the Salt-T geotype under the salt stress, such as ASV19 (Alicyclobacillus), ASV132 (Tumebacillus), ASV1760 (Mycobacterium) and ASV1357 (Bacillus), which may enhance the tolerance to soybean under salt stress. Moreover, the network structure of Salt-T soybean was simplified by salt stress, which may result in soil bacterial communities being susceptible to external factors. Salt stress altered the strength of soil enzyme activities and the assembly of microbial structure in Salt-T and Salt-S soybean genotypes. Na+, NO3--N, NH4+-N and Olsen-P were the most important driving factors in the structure of bacterial community in both genotypes. Salt-T genotypes enriched several microorganisms that contributed to enhance salt tolerance in soybeans, such as Alicyclobacillus, Tumebacillus, and Bacillus. Nevertheless, the simplified network structure of salt-T genotype due to salt stress may render its bacterial community structure unstable and susceptible.
Collapse
Affiliation(s)
- Dongwei Han
- Qiqihar Branch of Heilongjiang Academy of Agricultural Sciences, Qiqihar, China
| | - Di Zhang
- Qiqihar Branch of Heilongjiang Academy of Agricultural Sciences, Qiqihar, China
| | - Dezhi Han
- Heihe Branch of Heilongjiang Academy of Agricultural Sciences, Heihe, China
| | - Honglei Ren
- Soybean Research Institute, Heilongjiang Academy of Agriculture Sciences, Harbin, China
| | - Zhen Wang
- Qiqihar Branch of Heilongjiang Academy of Agricultural Sciences, Qiqihar, China
| | - Zhijia Zhu
- Qiqihar Branch of Heilongjiang Academy of Agricultural Sciences, Qiqihar, China
| | - Haoyue Sun
- Qiqihar Branch of Heilongjiang Academy of Agricultural Sciences, Qiqihar, China
| | - Lianxia Wang
- Qiqihar Branch of Heilongjiang Academy of Agricultural Sciences, Qiqihar, China
| | - Zhongcheng Qu
- Qiqihar Branch of Heilongjiang Academy of Agricultural Sciences, Qiqihar, China
| | - Wencheng Lu
- Heihe Branch of Heilongjiang Academy of Agricultural Sciences, Heihe, China.
| | - Ming Yuan
- Qiqihar Branch of Heilongjiang Academy of Agricultural Sciences, Qiqihar, China.
| |
Collapse
|