1
|
Braczko A, Stawarska K, Kawecka A, Walczak I, Slomińska EM, Kutryb-Zając B, Smoleński RT. Pharmacological interventions that activate mitochondrial biogenesis stimulate nucleotide generation in isoproterenol-stressed rat cardiomyocytes. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2025:1-12. [PMID: 39895099 DOI: 10.1080/15257770.2025.2453105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 12/23/2024] [Accepted: 01/08/2025] [Indexed: 02/04/2025]
Abstract
Mitochondrial dysfunction in failing hearts has been described as a driving force for energy deprivation and cardiomyocyte energy supply-demand imbalance. Isoproterenol (ISO), the β1/β2-adrenergic receptor agonist that leads to myocardial stress and mitochondrial damage, is extensively used for in vitro and in vivo studies to test the efficacy of therapeutic strategies in heart failure (HF). This study evaluated the cell morphology, nucleotide concentrations, and mitochondrial function of ISO-treated cardiomyocytes stimulated with the activators of mitochondrial biogenesis and nucleotide precursors. H9c2 rat cardiomyocyte line cells were treated with ISO in the presence of mitochondrial biogenesis stimuli quercetin (Que), rosiglitazone (Ros), S-Nitroso-N-acetyl-DL-penicillamin (SNAP), and NAD+ precursor, nicotinamide riboside (NR). The intracellular concentrations of nucleotides were analyzed using high-performance liquid chromato-graphy, and the Seahorse metabolic flux analyzer determined the mitochondrial function. ISO decreased intracellular ATP concentration in H9c2 cells as compared to control. The treatment with SNAP increased ATP concentration compared to ISO-only treated cells, while Que, Ros, and NR had no effect. NR treatment led to the elevation of intracellular NAD+ concentration, while the treatment with SNAP, Ros, and NR stimulated the mitochondrial respiration in ISO-pretreated H9c2 cells. In conclusion, mitochondrial biogenesis activators consistently improved cardiomyocyte mitochondrial function, but only selected molecules helped to improve ATP or NAD+ concentrations. This information may help to optimize treatment to ameliorate energy imbalance in failing cardiomyocytes.
Collapse
Affiliation(s)
- Alicja Braczko
- Department of Biochemistry, Medical University of Gdansk, Gdańsk, Poland
| | - Klaudia Stawarska
- Department of Biochemistry, Medical University of Gdansk, Gdańsk, Poland
| | - Ada Kawecka
- Department of Biochemistry, Medical University of Gdansk, Gdańsk, Poland
| | - Iga Walczak
- Department of Biochemistry, Medical University of Gdansk, Gdańsk, Poland
| | - Ewa M Slomińska
- Department of Biochemistry, Medical University of Gdansk, Gdańsk, Poland
| | | | | |
Collapse
|
2
|
Stoicovy RA, Cora N, Perez A, Nagliya D, Del Calvo G, Lopez TB, Weinstein EC, Borges JI, Maning J, Lymperopoulos A. Cyclic adenosine monophosphate critically modulates cardiac GLP-1 receptor's anti-inflammatory effects. Inflamm Res 2024; 73:2043-2056. [PMID: 39305297 DOI: 10.1007/s00011-024-01950-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/09/2024] [Accepted: 09/12/2024] [Indexed: 11/07/2024] Open
Abstract
BACKGROUND Glucagon-like peptide (GLP)-1 receptor (GLP1R) agonists exert a multitude of beneficial cardiovascular effects beyond control of blood glucose levels and obesity reduction. They also have anti-inflammatory actions through both central and peripheral mechanisms. GLP1R is a G protein-coupled receptor (GPCR), coupling to adenylyl cyclase (AC)-stimulatory Gs proteins to raise cyclic 3`-5`-adenosine monophosphate (cAMP) levels in cells. cAMP exerts various anti-apoptotic and anti-inflammatory effects via its effectors protein kinase A (PKA) and Exchange protein directly activated by cAMP (Epac). However, the precise role and importance of cAMP in mediating GLP1R`s anti-inflammatory actions, at least in the heart, remains to be determined. To this end, we tested the effects of the GLP1R agonist liraglutide on lipopolysaccharide (LPS)-induced acute inflammatory injury in H9c2 cardiac cells, either in the absence of cAMP production (AC inhibition) or upon enhancement of cAMP levels via phosphodiesterase (PDE)-4 inhibition with roflumilast. METHODS & RESULTS Liraglutide dose-dependently inhibited LPS-induced apoptosis and increased cAMP levels in H9c2 cells, with roflumilast but also PDE8 inhibition further enhancing cAMP production by liraglutide. GLP1R-stimulated cAMP markedly suppressed the LPS-dependent induction of pro-inflammatory tumor necrosis factor (TNF)-a, interleukin (IL)-1b, and IL-6 cytokine expression, of inducible nitric oxide synthase (iNOS) expression and nuclear factor (NF)-kB activity, of matrix metalloproteinases (MMP)-2 and MMP-9 levels and activities, and of myocardial injury markers in H9c2 cardiac cells. The effects of liraglutide were mediated by the GLP1R since they were abolished by the GLP1R antagonist exendin(9-39). Importantly, AC inhibition completely abrogated liraglutide`s suppression of LPS-dependent inflammatory injury, whereas roflumilast significantly enhanced the protective effects of liraglutide against LPS-induced inflammation. Finally, PKA inhibition or Epac1/2 inhibition alone only partially blocked liraglutide`s suppression of LPS-induced inflammation in H9c2 cardiac cells, but, together, PKA and Epac1/2 inhibition fully prevented liraglutide from reducing LPS-dependent inflammation. CONCLUSIONS cAMP, via activation of both PKA and Epac, is essential for GLP1R`s anti-inflammatory signaling in cardiac cells and that cAMP levels crucially regulate the anti-inflammatory efficacy of GLP1R agonists in the heart. Strategies that elevate cardiac cAMP levels, such as PDE4 inhibition, may potentiate the cardiovascular, including anti-inflammatory, benefits of GLP1R agonist drugs.
Collapse
Affiliation(s)
- Renee A Stoicovy
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences (Pharmacology), Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, 33328-2018, USA
| | - Natalie Cora
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences (Pharmacology), Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, 33328-2018, USA
| | - Arianna Perez
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences (Pharmacology), Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, 33328-2018, USA
| | - Deepika Nagliya
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences (Pharmacology), Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, 33328-2018, USA
| | - Giselle Del Calvo
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences (Pharmacology), Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, 33328-2018, USA
| | - Teresa Baggio Lopez
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences (Pharmacology), Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, 33328-2018, USA
| | - Emma C Weinstein
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences (Pharmacology), Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, 33328-2018, USA
| | - Jordana I Borges
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences (Pharmacology), Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, 33328-2018, USA
| | - Jennifer Maning
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences (Pharmacology), Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, 33328-2018, USA
- Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Anastasios Lymperopoulos
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences (Pharmacology), Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, 33328-2018, USA.
- , University Dr., HPD (Terry) Bldg./Room 1350, Fort Lauderdale, FL, 33328-2018, USA.
| |
Collapse
|
3
|
Song P, Wang S, Han R, Wang H, Hu B, Luan J, Zhang H, Wang Z, Ma C, Wang J. Insights into the selective mechanism of PDE2/9a inhibitors from silico aspects. J Biomol Struct Dyn 2024:1-18. [PMID: 38525932 DOI: 10.1080/07391102.2024.2331098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 03/10/2024] [Indexed: 03/26/2024]
Abstract
The selective design of competitive enzyme inhibitors is an extremely difficult task but necessary work for certain types of systems, such as the phosphodiesterase (PDE) system addressed in this article. In the PDE family, PDE2A and PDE9 respectively target the central nervous system and heart failure, and share many conserved amino acids at their binding sites. Therefore, gaining a deep understanding of the selective mechanisms of PDE2A/9A is crucial for designing highly selective drugs. In this study, various computer-aided drug design (CADD) methods, including molecular docking, molecular dynamics simulations (MD), and binding free energy calculations, are employed to explore the selective mechanisms of PDE2A/9A. Overall, our research results indicate a selective design strategy for PDE2A, which involves incorporating hydrophobic or aromatic moieties into the molecular structure to better accommodate the hydrophobic pocket of PDE2A. Additionally, it is recommended to introduce functional groups capable of forming connections with selective residues, such as Phe830 and Gln812 for PDE2A, or Ala452 and Tyr424 for PDE9A, to enhance the selectivity of inhibitors targeting PDE2A/9A. This achievement is anticipated to pave the way for the development of innovative and selective small molecules targeting PDE2A/9A.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Pengfei Song
- Key Laboratory of Structure-Based Drug Design &Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, People's Republic of China
- Key Laboratory of Intelligent Drug Design and New Drug Discovery of Liaoning Province, Shenyang Pharmaceutical University, Shenyang, China
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, People's Republic of China
| | - Shizhun Wang
- Key Laboratory of Structure-Based Drug Design &Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, People's Republic of China
- Key Laboratory of Intelligent Drug Design and New Drug Discovery of Liaoning Province, Shenyang Pharmaceutical University, Shenyang, China
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, People's Republic of China
| | - Ruiheng Han
- Pharmaceutical department, Avanc Pharmaceutical Co., Ltd., China
| | - Hanxun Wang
- Key Laboratory of Structure-Based Drug Design &Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, People's Republic of China
- Key Laboratory of Intelligent Drug Design and New Drug Discovery of Liaoning Province, Shenyang Pharmaceutical University, Shenyang, China
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, People's Republic of China
| | - Baichun Hu
- Key Laboratory of Structure-Based Drug Design &Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, People's Republic of China
- Key Laboratory of Intelligent Drug Design and New Drug Discovery of Liaoning Province, Shenyang Pharmaceutical University, Shenyang, China
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, People's Republic of China
| | - Jiasi Luan
- Key Laboratory of Structure-Based Drug Design &Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, People's Republic of China
- Key Laboratory of Intelligent Drug Design and New Drug Discovery of Liaoning Province, Shenyang Pharmaceutical University, Shenyang, China
- School of Medical Devices, Shenyang Pharmaceutical University, Shenyang, People's Republic of China
| | - Haoyu Zhang
- Key Laboratory of Structure-Based Drug Design &Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, People's Republic of China
- Key Laboratory of Intelligent Drug Design and New Drug Discovery of Liaoning Province, Shenyang Pharmaceutical University, Shenyang, China
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, People's Republic of China
| | - Zhijian Wang
- Key Laboratory of Structure-Based Drug Design &Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, People's Republic of China
- Key Laboratory of Intelligent Drug Design and New Drug Discovery of Liaoning Province, Shenyang Pharmaceutical University, Shenyang, China
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, People's Republic of China
| | - Chao Ma
- Key Laboratory of Structure-Based Drug Design &Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, People's Republic of China
- Key Laboratory of Intelligent Drug Design and New Drug Discovery of Liaoning Province, Shenyang Pharmaceutical University, Shenyang, China
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, People's Republic of China
| | - Jian Wang
- Key Laboratory of Structure-Based Drug Design &Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, People's Republic of China
- Key Laboratory of Intelligent Drug Design and New Drug Discovery of Liaoning Province, Shenyang Pharmaceutical University, Shenyang, China
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, People's Republic of China
| |
Collapse
|
4
|
Zhu Z, Tang W, Qiu X, Xin X, Zhang J. Advances in targeting Phosphodiesterase 1: From mechanisms to potential therapeutics. Eur J Med Chem 2024; 263:115967. [PMID: 38000211 DOI: 10.1016/j.ejmech.2023.115967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/07/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023]
Abstract
Phosphodiesterase 1 (PDE1) is an enzyme entrusted with the hydrolysis of the second messengers cAMP and cGMP, thereby governing a plethora of metabolic processes, encompassing ion channel modulation and cellular apoptosis. Recent advancements in the realm of small molecule structural variations have greatly facilitated the exploration of innovative applications for PDE1. Remarkably, a recent series of PDE1 inhibitors (PDE1i) have been meticulously formulated and devised, showcasing enhanced selectivity and potency. Among them, ITI-214 has entered Phase II clinical trials, holding promise for the treatment of Parkinson's disease and heart failure. Nevertheless, the majority of current PDE1 inhibitors have encountered substantial side effects in clinical trials attributable to their limited selectivity, this predicament presents a formidable obstacle in the development of specific small molecule inhibitors targeting PDE1. This Perspective endeavors to illuminate the potential design approaches, structure-activity relationships, and biological activities of current PDE1i, aiming to offer support and insights for clinical practice and the development of novel PDE1i.
Collapse
Affiliation(s)
- Ziyu Zhu
- Department of Neurology, Joint Research Institution of Altitude Health and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Wentao Tang
- Department of Neurology, Joint Research Institution of Altitude Health and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Xuemei Qiu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, Department of Oral Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Xin Xin
- State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Jifa Zhang
- Department of Neurology, Joint Research Institution of Altitude Health and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| |
Collapse
|
5
|
Fairuz S, Ang CW, Mraiche F, Goh JK. Current Targets and Future Directions of Positive Inotropes for Heart Failure. Curr Med Chem 2024; 31:6971-6991. [PMID: 37909442 DOI: 10.2174/0109298673262360231018193823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/23/2023] [Accepted: 09/11/2023] [Indexed: 11/03/2023]
Abstract
While a congestive heart failure patient will ultimately need an assist device or even a replacement heart as the disease progresses, not every patient is qualified for such advanced therapy. Such patients awaiting better circulatory support benefit from positive inotropes in the meantime as palliative care. These agents are often prescribed in patients with acute decompensated heart failure, with reduced left ventricular ejection fraction and symptoms of organ dysfunction. Although positive inotropes, for example, digoxin, dobutamine, milrinone, levosimendan, etc., are successfully marketed and in use, a lot of their adverse effects, like arrhythmias, hypotension, and even sudden cardiac death, are rather encouraging further research on the development of novel positive inotropes. This review has investigated the molecular mechanisms of some of these adverse effects in terms of the proteins they target, followed by research on newer targets. Studies from 2013-2023 that have reported new small molecules with positive inotropic effects have been revisited in order to determine the progress made so far in drug discovery.
Collapse
Affiliation(s)
- Shadreen Fairuz
- School of Science, Monash University, Jalan Lagoon Selatan, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia
| | - Chee Wei Ang
- School of Science, Monash University, Jalan Lagoon Selatan, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia
| | - Fatima Mraiche
- Department of Pharmacology, University of Alberta, 116 St & 85 Ave, Edmonton, ABT6G 2R3, Canada
| | - Joo Kheng Goh
- School of Science, Monash University, Jalan Lagoon Selatan, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia
| |
Collapse
|
6
|
Kubohara Y, Fukunaga Y, Kikuchi H, Kuwayama H. Pharmacological Evidence That Dictyostelium Differentiation-Inducing Factor 1 Promotes Glucose Uptake Partly via an Increase in Intracellular cAMP Content in Mouse 3T3-L1 Cells. Molecules 2023; 28:7926. [PMID: 38067655 PMCID: PMC10708055 DOI: 10.3390/molecules28237926] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/22/2023] [Accepted: 12/02/2023] [Indexed: 12/18/2023] Open
Abstract
Differentiation-inducing factor 1 (DIF-1) isolated from the cellular slime mold Dictyostelium discoideum can inhibit mammalian calmodulin-dependent cAMP/cGMP phosphodiesterase (PDE1) in vitro. DIF-1 also promotes glucose uptake, at least in part, via a mitochondria- and AMPK-dependent pathway in mouse 3T3-L1 fibroblast cells, but the mechanism underlying this effect has not been fully elucidated. In this study, we investigated the effects of DIF-1 on intracellular cAMP and cGMP levels, as well as the effects that DIF-1 and several compounds that increase cAMP and cGMP levels have on glucose uptake in confluent 3T3-L1 cells. DIF-1 at 20 μM (a concentration that promotes glucose uptake) increased the level of intracellular cAMP by about 20% but did not affect the level of intracellular cGMP. Neither the PDE1 inhibitor 8-methoxymethyl-3-isobutyl-1-methylxanthine at 10-200 μM nor the broad-range PDE inhibitor 3-isobutyl-1-methylxanthine at 40-400 μM had any marked effects on glucose uptake. The membrane-permeable cAMP analog 8-bromo-cAMP at 200-1000 μM significantly promoted glucose uptake (by 20-25%), whereas the membrane-permeable cGMP analog 8-bromo-cGMP at 3-100 μM did not affect glucose uptake. The adenylate cyclase activator forskolin at 1-10 μM promoted glucose uptake by 20-30%. Thus, DIF-1 may promote glucose uptake by 3T3-L1 cells, at least in part, via an increase in intracellular cAMP level.
Collapse
Affiliation(s)
- Yuzuru Kubohara
- Laboratory of Health and Life Science, Graduate School of Health and Sports Science, Juntendo University, Inzai 270-1695, Japan
| | - Yuko Fukunaga
- Department of Animal Risk Management, Faculty of Risk and Crisis Management, Chiba Institute of Science, Choshi 288-0025, Japan;
| | - Haruhisa Kikuchi
- Division of Natural Medicines, Faculty of Pharmacy, Keio University, Tokyo 105-8512, Japan;
| | - Hidekazu Kuwayama
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan;
| |
Collapse
|
7
|
Zheng L, Zhou ZZ. An overview of phosphodiesterase 9 inhibitors: Insights from skeletal structure, pharmacophores, and therapeutic potential. Eur J Med Chem 2023; 259:115682. [PMID: 37536210 DOI: 10.1016/j.ejmech.2023.115682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/22/2023] [Accepted: 07/23/2023] [Indexed: 08/05/2023]
Abstract
Cyclic nucleotide phosphodiesterase 9 (PDE9), a specifically hydrolytic enzyme with the highest affinity for cyclic guanosine monophosphate (cGMP) among the phosphodiesterases family, plays a critical role in many biological processes. Consequently, the development of PDE9 inhibitors has received increasing attention in recent years, with several compounds undergoing clinical trials for the treatment of central nervous system (CNS) diseases such as Alzheimer's disease, schizophrenia, and psychotic disorders, as well as heart failure and sickle cell disease. This review analyzes the recent primary literatures and patents published from 2004 to 2023, focusing on the structure, pharmacophores, selectivity, and therapeutic potential of PDE9 inhibitors. It hoped to provide a comprehensive overview of the field's current state to inform the development of novel PDE9 inhibitors.
Collapse
Affiliation(s)
- Lei Zheng
- Innovation Program of Drug Research on Neurological and Metabolic Diseases, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Zhong-Zhen Zhou
- Innovation Program of Drug Research on Neurological and Metabolic Diseases, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
8
|
Lymperopoulos A. Clinical pharmacology of cardiac cyclic AMP in human heart failure: too much or too little? Expert Rev Clin Pharmacol 2023; 16:623-630. [PMID: 37403791 PMCID: PMC10529896 DOI: 10.1080/17512433.2023.2233891] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 07/04/2023] [Indexed: 07/06/2023]
Abstract
INTRODUCTION Cyclic 3', 5'-adenosine monophosphate (cAMP) is a major signaling hub in cardiac physiology. Although cAMP signaling has been extensively studied in cardiac cells and animal models of heart failure (HF), not much is known about its actual amount present inside human failing or non-failing cardiomyocytes. Since many drugs used in HF work via cAMP, it is crucial to determine the status of its intracellular levels in failing vs. normal human hearts. AREAS COVERED Only studies performed on explanted/excised cardiac tissues from patients were examined. Studies that contained no data from human hearts or no data on cAMP levels per se were excluded from this perspective's analysis. EXPERT OPINION Currently, there is no consensus on the status of cAMP levels in human failing vs. non-failing hearts. Several studies on animal models may suggest maladaptive (e.g. pro-apoptotic) effects of cAMP on HF, advocating for cAMP lowering for therapy, but human studies almost universally indicate that myocardial cAMP levels are deficient in human failing hearts. It is the expert opinion of this perspective that intracellular cAMP levels are too low in human failing hearts, contributing to the disease. Strategies to increase (restore), not decrease, these levels should be pursued in human HF.
Collapse
Affiliation(s)
- Anastasios Lymperopoulos
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Nova Southeastern University Barry and Judy Silverman College of Pharmacy, Fort Lauderdale, FL, USA
| |
Collapse
|
9
|
Dogra A, Kour D, Gour A, Bhardwaj M, Bag S, Dhiman SK, Kumar A, Singh G, Nandi U. Ameliorating effect of rutin against diclofenac-induced cardiac injury in rats with underlying function of FABP3, MYL3, and ANP. Drug Chem Toxicol 2023; 46:597-608. [PMID: 35509154 DOI: 10.1080/01480545.2022.2069804] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Diclofenac is a widely prescribed anti-inflammatory drug having cardiovascular complications as one of the main liabilities that restrict its therapeutic use. We aimed to investigate for any role of rutin against diclofenac-induced cardiac injury with underlying mechanisms as there is no such precedent to date. The effect of rutin (10 and 20 mg/kg) was evaluated upon concomitant oral administration for fifteen days with diclofenac (10 mg/kg). Rutin significantly attenuated diclofenac-induced alterations in the serum cardiac markers (LDH, CK-MB, and SGOT), serum cytokine levels (TNF-α and IL-6), and oxidative stress markers (MDA and GSH) in the cardiac tissue. Histopathological examination and Scanning Electron Microscopy (SEM) findings displayed a marked effect of rutin to prevent diclofenac-mediated cardiac injury. Altered protein expression of myocardial injury markers (cTnT, FABP3, and ANP) and apoptotic markers (Bcl-2 and Caspase-3) in the cardiac tissue upon diclofenac treatment was considerably shielded by rutin treatment. MYL3 was unaffected due to diclofenac or rutin treatment. Rutin also significantly improved diclofenac-induced gastrointestinal and hepatic alterations based on the observed ameliorative effects in key mediators, oxidative stress markers, histopathology examination, and SEM findings. Overall results suggest that rutin can protect the diclofenac-induced cardiac injury by lowering oxidative stress, inhibiting inflammation, and reducing apoptosis. Further research work directs toward the development of phytotherapeutics for cardioprotection.
Collapse
Affiliation(s)
- Ashish Dogra
- PK-PD Toxicology (PPT) Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Dilpreet Kour
- PK-PD Toxicology (PPT) Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Abhishek Gour
- PK-PD Toxicology (PPT) Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Mahir Bhardwaj
- PK-PD Toxicology (PPT) Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Swarnendu Bag
- Instrumentation Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India
- Proteomics Unit, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
| | - Shakti Kumar Dhiman
- Instrumentation Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India
| | - Ajay Kumar
- PK-PD Toxicology (PPT) Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Gurdarshan Singh
- PK-PD Toxicology (PPT) Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Utpal Nandi
- PK-PD Toxicology (PPT) Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
10
|
Faleeva M, Diakonov I, Srivastava P, Ramuz M, Calamera G, Andressen KW, Bork N, Tsansizi L, Cosson MV, Bernardo AS, Nikolaev V, Gorelik J. Compartmentation of cGMP Signaling in Induced Pluripotent Stem Cell Derived Cardiomyocytes during Prolonged Culture. Cells 2022; 11:3257. [PMID: 36291124 PMCID: PMC9600086 DOI: 10.3390/cells11203257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/05/2022] [Accepted: 10/10/2022] [Indexed: 11/30/2022] Open
Abstract
The therapeutic benefit of stimulating the cGMP pathway as a form of treatment to combat heart failure, as well as other fibrotic pathologies, has become well established. However, the development and signal compartmentation of this crucial pathway has so far been overlooked. We studied how the three main cGMP pathways, namely, nitric oxide (NO)-cGMP, natriuretic peptide (NP)-cGMP, and β3-adrenoreceptor (AR)-cGMP, mature over time in culture during cardiomyocyte differentiation from human pluripotent stem cells (hPSC-CMs). After introducing a cGMP sensor for Förster Resonance Energy Transfer (FRET) microscopy, we used selective phosphodiesterase (PDE) inhibition to reveal cGMP signal compartmentation in hPSC-CMs at various times of culture. Methyl-β-cyclodextrin was employed to remove cholesterol and thus to destroy caveolae in these cells, where physical cGMP signaling compartmentalization is known to occur in adult cardiomyocytes. We identified PDE3 as regulator of both the NO-cGMP and NP-cGMP pathway in the early stages of culture. At the late stage, the role of the NO-cGMP pathway diminished, and it was predominantly regulated by PDE1, PDE2, and PDE5. The NP-cGMP pathway shows unrestricted locally and unregulated cGMP signaling. Lastly, we observed that maturation of the β3-AR-cGMP pathway in prolonged cultures of hPSC-CMs depends on the accumulation of caveolae. Overall, this study highlighted the importance of structural development for the necessary compartmentation of the cGMP pathway in maturing hPSC-CMs.
Collapse
Affiliation(s)
- Maria Faleeva
- Cardiac Section, National Heart and Lung Institute (NHLI), Faculty of Medicine, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UK
| | - Ivan Diakonov
- Cardiac Section, National Heart and Lung Institute (NHLI), Faculty of Medicine, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UK
| | - Prashant Srivastava
- Cardiac Section, National Heart and Lung Institute (NHLI), Faculty of Medicine, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UK
| | - Masoud Ramuz
- Cardiac Section, National Heart and Lung Institute (NHLI), Faculty of Medicine, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UK
| | - Gaia Calamera
- Department of Pharmacology, Institute of Clinical Medicine, University of Oslo and Oslo University Hospital, P.O. Box 1057 Blindern, 0316 Oslo, Norway
| | - Kjetil Wessel Andressen
- Department of Pharmacology, Institute of Clinical Medicine, University of Oslo and Oslo University Hospital, P.O. Box 1057 Blindern, 0316 Oslo, Norway
| | - Nadja Bork
- German Center for Cardiovascular Research, University Medical Center Hamburg-Eppendorf and Institute of Experimental Cardiovascular Research, Martinistrasse 52, 20251 Hamburg, Germany
| | | | | | - Andreia Sofia Bernardo
- Cardiac Section, National Heart and Lung Institute (NHLI), Faculty of Medicine, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UK
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Viacheslav Nikolaev
- German Center for Cardiovascular Research, University Medical Center Hamburg-Eppendorf and Institute of Experimental Cardiovascular Research, Martinistrasse 52, 20251 Hamburg, Germany
| | - Julia Gorelik
- Cardiac Section, National Heart and Lung Institute (NHLI), Faculty of Medicine, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UK
| |
Collapse
|
11
|
Ovchinnikov A, Potekhina A, Belyavskiy E, Ageev F. Heart Failure with Preserved Ejection Fraction and Pulmonary Hypertension: Focus on Phosphodiesterase Inhibitors. Pharmaceuticals (Basel) 2022; 15:ph15081024. [PMID: 36015172 PMCID: PMC9414416 DOI: 10.3390/ph15081024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/17/2022] [Accepted: 08/17/2022] [Indexed: 11/16/2022] Open
Abstract
Pulmonary hypertension (PH) is common in patients with heart failure with preserved ejection fraction (HFpEF). A chronic increase in mean left atrial pressure leads to passive remodeling in pulmonary veins and capillaries and modest PH (isolated postcapillary PH, Ipc-PH) and is not associated with significant right ventricular dysfunction. In approximately 20% of patients with HFpEF, "precapillary" alterations of pulmonary vasculature occur with the development of the combined pre- and post-capillary PH (Cpc-PH), pertaining to a poor prognosis. Current data indicate that pulmonary vasculopathy may be at least partially reversible and thus serves as a therapeutic target in HFpEF. Pulmonary vascular targeted therapies, including phosphodiesterase (PDE) inhibitors, may have a valuable role in the management of patients with PH-HFpEF. In studies of Cpc-PH and HFpEF, PDE type 5 inhibitors were effective in long-term follow-up, decreasing pulmonary artery pressure and improving RV contractility, whereas studies of Ipc-PH did not show any benefit. Randomized trials are essential to elucidate the actual value of PDE inhibition in selected patients with PH-HFpEF, especially in those with invasively confirmed Cpc-PH who are most likely to benefit from such treatment.
Collapse
Affiliation(s)
- Artem Ovchinnikov
- Out-Patient Department, Institute of Clinical Cardiology, National Medical Research Center of Cardiology Named after Academician E.I. Chazov, 3-d Cherepkovskaya St., 15a, 121552 Moscow, Russia
- Department of Clinical Functional Diagnostics, A.I. Yevdokimov Moscow State University of Medicine and Dentistry, Delegatskaya St., 20, p. 1, 127473 Moscow, Russia
- Correspondence: ; Tel.: +7-(495)-414-66-12 or +7-(916)-505-79-58; Fax: +7-(495)-414-66-12
| | - Alexandra Potekhina
- Out-Patient Department, Institute of Clinical Cardiology, National Medical Research Center of Cardiology Named after Academician E.I. Chazov, 3-d Cherepkovskaya St., 15a, 121552 Moscow, Russia
| | - Evgeny Belyavskiy
- Department of Internal Medicine and Cardiology, Campus Virchow Klinikum, Charité Universitätsmedizin Berlin, Augustenburger Platz, 13353 Berlin, Germany
| | - Fail Ageev
- Out-Patient Department, Institute of Clinical Cardiology, National Medical Research Center of Cardiology Named after Academician E.I. Chazov, 3-d Cherepkovskaya St., 15a, 121552 Moscow, Russia
| |
Collapse
|
12
|
Tawa P, Zhang L, Metwally E, Hou Y, McCoy MA, Seganish WM, Zhang R, Frank E, Sheth P, Hanisak J, Sondey C, Bauman D, Soriano A. Mechanistic insights on novel small molecule allosteric activators of cGMP-dependent protein kinase PKG1α. J Biol Chem 2022; 298:102284. [PMID: 35868561 PMCID: PMC9425037 DOI: 10.1016/j.jbc.2022.102284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 07/14/2022] [Accepted: 07/16/2022] [Indexed: 11/30/2022] Open
Abstract
cGMP-dependent protein kinase (PKG) represents a compelling drug target for treatment of cardiovascular diseases. PKG1 is the major effector of beneficial cGMP signaling which is involved in smooth muscle relaxation and vascular tone, inhibition of platelet aggregation and signaling that leads to cardioprotection. In this study, a novel piperidine series of activators previously identified from an ultrahigh-throughput screen were validated to directly bind partially activated PKG1α and subsequently enhance its kinase activity in a concentration-dependent manner. Compounds from initial optimization efforts showed an ability to activate PKG1α independent of the endogenous activator, cGMP. We demonstrate these small molecule activators mimic the effect of cGMP on the kinetic parameters of PKG1α by positively modulating the KM of the peptide substrate and negatively modulating the apparent KM for ATP with increase in catalytic efficiency, kcat. In addition, these compounds also allosterically modulate the binding affinity of cGMP for PKG1α by increasing the affinity of cGMP for the high-affinity binding site (CNB-A) and decreasing the affinity of cGMP for the low-affinity binding site (CNB-B). We show the mode of action of these activators involves binding to an allosteric site within the regulatory domain, near the CNB-B binding site. To the best of our knowledge, these are the first reported non-cGMP mimetic small molecules shown to directly activate PKG1α. Insights into the mechanism of action of these compounds will enable future development of cardioprotective compounds that function through novel modes of action for the treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Paul Tawa
- Mass Spectrometry & Biophysics, Computational & Structural Chemistry, Merck & Co., Inc., Kenilworth, NJ, USA
| | - Lei Zhang
- Biologics AR&D Immunoassay Group, Merck & Co., Inc., Kenilworth, NJ, USA
| | - Essam Metwally
- Computational & Structural Chemistry, Merck & Co., Inc., South San Francisco, CA, USA
| | - Yan Hou
- Mass Spectrometry & Biophysics, Computational & Structural Chemistry, Merck & Co., Inc., Kenilworth, NJ, USA
| | - Mark A McCoy
- Mass Spectrometry & Biophysics, Computational & Structural Chemistry, Merck & Co., Inc., Kenilworth, NJ, USA
| | | | - Rumin Zhang
- Mass Spectrometry & Biophysics, Computational & Structural Chemistry, Merck & Co., Inc., Kenilworth, NJ, USA
| | - Emily Frank
- Quantitative Biosciences, Merck & Co., Inc., Kenilworth, NJ, USA
| | - Payal Sheth
- Mass Spectrometry & Biophysics, Computational & Structural Chemistry, Merck & Co., Inc., Kenilworth, NJ, USA
| | | | | | - David Bauman
- Discovery Biology, Merck & Co., Inc., Kenilworth, NJ, USA
| | - Aileen Soriano
- Mass Spectrometry & Biophysics, Computational & Structural Chemistry, Merck & Co., Inc., Kenilworth, NJ, USA.
| |
Collapse
|
13
|
Numata G, Takimoto E. Cyclic GMP and PKG Signaling in Heart Failure. Front Pharmacol 2022; 13:792798. [PMID: 35479330 PMCID: PMC9036358 DOI: 10.3389/fphar.2022.792798] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 02/09/2022] [Indexed: 11/13/2022] Open
Abstract
Cyclic guanosine monophosphate (cGMP), produced by guanylate cyclase (GC), activates protein kinase G (PKG) and regulates cardiac remodeling. cGMP/PKG signal is activated by two intrinsic pathways: nitric oxide (NO)-soluble GC and natriuretic peptide (NP)-particulate GC (pGC) pathways. Activation of these pathways has emerged as a potent therapeutic strategy to treat patients with heart failure, given cGMP-PKG signaling is impaired in heart failure with reduced ejection fraction (HFrEF) and preserved ejection fraction (HFpEF). Large scale clinical trials in patients with HFrEF have shown positive results with agents that activate cGMP-PKG pathways. In patients with HFpEF, however, benefits were observed only in a subgroup of patients. Further investigation for cGMP-PKG pathway is needed to develop better targeting strategies for HFpEF. This review outlines cGMP-PKG pathway and its modulation in heart failure.
Collapse
Affiliation(s)
- Genri Numata
- Department of Cardiovascular Medicine, The University of Tokyo Hospital, Tokyo, Japan
- Department of Advanced Translational Research and Medicine in Management of Pulmonary Hypertension, The University of Tokyo Hospital, Tokyo, Japan
| | - Eiki Takimoto
- Department of Cardiovascular Medicine, The University of Tokyo Hospital, Tokyo, Japan
- Division of Cardiology, Department of Medicine, The Johns Hopkins Medical Institutions, Baltimore, MD, United States
| |
Collapse
|
14
|
Gu M, Zhou X, Zhu L, Gao Y, Gao L, Bai C, Yang L, Li G. Myostatin Mutation Promotes Glycolysis by Increasing Phosphorylation of Phosphofructokinase via Activation of PDE5A-cGMP-PKG in Cattle Heart. Front Cell Dev Biol 2022; 9:774185. [PMID: 35155444 PMCID: PMC8831326 DOI: 10.3389/fcell.2021.774185] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 12/22/2021] [Indexed: 12/28/2022] Open
Abstract
Myostatin (MSTN) is a primary negative regulator of skeletal muscle mass and causes multiple metabolic changes. However, whether MSTN mutation affects heart morphology and physiology remains unclear. Myostatin mutation (MT) had no effect on cattle cardiac muscle in histological examination, but in biochemical assays, glycolysis increased in cattle hearts with MT. Compared with wild-type cattle, there were no differences in mRNA and protein levels of rate-limiting enzymes, but phosphofructokinase (PFK) phosphorylation increased in cattle hearts with MT. Transcriptome analysis showed that phosphodiesterase-5A (PDE5A), a target for inhibiting cGMP-PKG signaling, was downregulated. For the mechanism, chromatin immunoprecipitation qPCR showed that the SMAD2/SMAD3 complex in the canonical downstream pathway for MSTN combined with the promoter of PDE5A. The cGMP-PKG pathway was activated, and PKG increased phosphorylation of PFK in cattle hearts with MT. In addition, activation of PKG and the increase in PFK phosphorylation promoted glycolysis. Knockdown of PKG resulted in the opposite phenomena. The results indicated that MT potentiated PFK phosphorylation via the PDE5A-cGMP-PKG pathway and thereby promoted glycolysis in the heart.
Collapse
Affiliation(s)
- Mingjuan Gu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, China
- School of Life Science, Inner Mongolia University, Hohhot, China
| | - Xinyu Zhou
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, China
- School of Life Science, Inner Mongolia University, Hohhot, China
| | - Lin Zhu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, China
- School of Life Science, Inner Mongolia University, Hohhot, China
| | - Yajie Gao
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, China
- School of Life Science, Inner Mongolia University, Hohhot, China
| | - Li Gao
- Baotou Teachers’ College, Baotou, China
| | - Chunling Bai
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, China
- School of Life Science, Inner Mongolia University, Hohhot, China
| | - Lei Yang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, China
- School of Life Science, Inner Mongolia University, Hohhot, China
- *Correspondence: Lei Yang, ; Guangpeng Li,
| | - Guangpeng Li
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, China
- School of Life Science, Inner Mongolia University, Hohhot, China
- *Correspondence: Lei Yang, ; Guangpeng Li,
| |
Collapse
|
15
|
Yang HW, Lin CY, Lin FZ, Yu PL, Huang SM, Chen YC, Tsai CS, Yang HY. Phosphodiesterase-1 inhibitor modulates Ca 2+ regulation in sirtuin 1-deficient mouse cardiomyocytes. Eur J Pharmacol 2021; 910:174498. [PMID: 34506778 DOI: 10.1016/j.ejphar.2021.174498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/17/2021] [Accepted: 09/06/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Phosphodiesterase inhibitors can be used to enhance second messenger signaling to regulate intracellular Ca2+ cycling. This study investigated whether ITI-214, a selective phosphodiesterase-1 inhibitor, modulates intracellular Ca2+ regulation, resulting in a positive inotropic effect in sirtuin 1 (Sirt1)-deficient cardiomyocytes. METHODS Mice with cardiac-specific Sirt1 knockout (Sirt1-/-) were used, with Sirt1flox/flox mice serving as controls. Electromechanical analyses of ventricular tissues were conducted, and we monitored intracellular Ca2+ using Fluo-3 as well as reactive oxygen species production in isolated cardiomyocytes. RESULTS Sirt1-/- ventricles showed prolonged action potential duration at 90% repolarization and increased contractile force after treatment with ITI-214. The rates and sustained durations of burst firing in ventricles were higher and longer, respectively, in Sirt1-/- ventricles than in controls. ITI-214 treatment decreased the rates and shortened the durations of burst firing in Sirt1-/- mice. Sirt1-/- cardiomyocytes showed reduced Ca2+ transient amplitudes and sarcoplasmic reticulum (SR) Ca2+ stores compared to those in control cardiac myocytes, which was reversed after ITI-214 treatment. SR Ca2+ leakage was larger in Sirt1-/- cardiac myocytes than in control myocytes. ITI-214 reduced SR Ca2+ leakage in Sirt1-/- cardiac myocytes. Increased levels of reactive oxygen species in Sirt1-/- cardiomyocytes compared to those in controls were reduced after ITI-214 treatment. Levels of Ca2+ regulatory proteins, including ryanodine receptor 2, phospholamban, and sarcoplasmic/endoplasmic reticulum Ca2+ ATPase 2a were not affected by ITI-214 administration. CONCLUSIONS Our results suggest that ITI-214 improves intracellular Ca2+ regulation, which in turn exerts inotropic effects and suppresses arrhythmic events in Sirt1-deficient ventricular myocytes.
Collapse
Affiliation(s)
- Hui-Wen Yang
- Grade Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan; Department of Biochemistry, National Defense Medical Center, Taipei, Taiwan
| | - Chih-Yuan Lin
- Department of Biochemistry, National Defense Medical Center, Taipei, Taiwan; Division of Cardiovascular Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Feng-Zhi Lin
- Grade Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Pei-Ling Yu
- Department of Biochemistry, National Defense Medical Center, Taipei, Taiwan
| | - Shih-Ming Huang
- Department of Biochemistry, National Defense Medical Center, Taipei, Taiwan
| | - Yao-Chang Chen
- Department of Biomedical Engineering, National Defense Medical Center, Taipei, Taiwan
| | - Chien-Sung Tsai
- Division of Cardiovascular Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan; Department and Graduate Institute of Pharmacology, National Defense Medical Center, Taipei, Taiwan
| | - Hsiang-Yu Yang
- Grade Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan; Department of Biochemistry, National Defense Medical Center, Taipei, Taiwan; Division of Cardiovascular Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.
| |
Collapse
|
16
|
Selli AL, Kuzmiszyn AK, Smaglyukova N, Kondratiev TV, Fuskevåg OM, Lyså RA, Ravna AW, Tveita T, Sager G, Dietrichs ES. Treatment of Cardiovascular Dysfunction With PDE5-Inhibitors - Temperature Dependent Effects on Transport and Metabolism of cAMP and cGMP. Front Physiol 2021; 12:695779. [PMID: 34393818 PMCID: PMC8361756 DOI: 10.3389/fphys.2021.695779] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 07/09/2021] [Indexed: 01/24/2023] Open
Abstract
Introduction Cardiovascular dysfunction is a potentially lethal complication of hypothermia. Due to a knowledge gap, pharmacological interventions are not recommended at core temperatures below 30°C. Yet, further cooling is induced in surgical procedures and survival of accidental hypothermia is reported after rewarming from below 15°C, advocating a need for evidence-based treatment guidelines. In vivo studies have proposed vasodilation and afterload reduction through arteriole smooth muscle cGMP-elevation as a favorable strategy to prevent cardiovascular dysfunction in hypothermia. Further development of treatment guidelines demand information about temperature-dependent changes in pharmacological effects of clinically relevant vasodilators. Materials and Methods Human phosphodiesterase-enzymes and inverted erythrocytes were utilized to evaluate how vasodilators sildenafil and vardenafil affected cellular efflux and enzymatic breakdown of cAMP and cGMP, at 37°C, 34°C, 32°C, 28°C, 24°C, and 20°C. The ability of both drugs to reach their cytosolic site of action was assessed at the same temperatures. IC50- and Ki-values were calculated from dose–response curves at all temperatures, to evaluate temperature-dependent effects of both drugs. Results Both drugs were able to reach the intracellular space at all hypothermic temperatures, with no reduction compared to normothermia. Sildenafil IC50 and Ki-values increased during hypothermia for enzymatic breakdown of both cAMP (IC50: 122 ± 18.9 μM at 37°C vs. 269 ± 14.7 μM at 20°C, p < 0.05) and cGMP (IC50: 0.009 ± 0.000 μM at 37°C vs. 0.024 ± 0.004 μM at 32°C, p < 0.05), while no significant changes were detected for vardenafil. Neither of the drugs showed significant hypothermia-induced changes in IC50 and Ki–values for inhibition of cellular cAMP and cGMP efflux. Conclusion Sildenafil and particularly vardenafil were ableto inhibit elimination of cGMP down to 20°C. As the cellular effects of these drugs can cause afterload reduction, they show potential in treating cardiovascular dysfunction during hypothermia. As in normothermia, both drugs showed higher selectivity for inhibition of cGMP-elimination than cAMP-elimination at low core temperatures, indicating that risk for cardiotoxic side effects is not increased by hypothermia.
Collapse
Affiliation(s)
- Anders L Selli
- Experimental and Clinical Pharmacology, Department of Medical Biology, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Adrina K Kuzmiszyn
- Experimental and Clinical Pharmacology, Department of Medical Biology, UiT - The Arctic University of Norway, Tromsø, Norway.,Division of Surgical Medicine and Intensive Care, University Hospital of North Norway, Tromsø, Norway
| | - Natalia Smaglyukova
- Experimental and Clinical Pharmacology, Department of Medical Biology, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Timofei V Kondratiev
- Anesthesia and Critical Care Research Group, Department of Clinical Medicine, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Ole-Martin Fuskevåg
- Department of Laboratory Medicine, Division of Diagnostic Services, University Hospital of North Norway, Tromsø, Norway
| | - Roy A Lyså
- Experimental and Clinical Pharmacology, Department of Medical Biology, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Aina W Ravna
- Experimental and Clinical Pharmacology, Department of Medical Biology, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Torkjel Tveita
- Division of Surgical Medicine and Intensive Care, University Hospital of North Norway, Tromsø, Norway.,Anesthesia and Critical Care Research Group, Department of Clinical Medicine, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Georg Sager
- Experimental and Clinical Pharmacology, Department of Medical Biology, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Erik S Dietrichs
- Experimental and Clinical Pharmacology, Department of Medical Biology, UiT - The Arctic University of Norway, Tromsø, Norway.,Center for Psychopharmacology, Diakonhjemmet Hospital, Oslo, Norway
| |
Collapse
|
17
|
Aimo A, Castiglione V, Vergaro G, Panichella G, Senni M, Lombardi CM, Emdin M. The place of vericiguat in the landscape of treatment for heart failure with reduced ejection fraction. Heart Fail Rev 2021; 27:1165-1171. [PMID: 34291399 PMCID: PMC9197896 DOI: 10.1007/s10741-021-10146-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/08/2021] [Indexed: 11/24/2022]
Abstract
The significant morbidity and mortality associated with heart failure with reduced (HFrEF) or preserved ejection fraction (HFpEF) justify the search for novel therapeutic agents. The nitric oxide (NO)–soluble guanylate cyclase (sGC)-cyclic guanosine monophosphate (cGMP) pathway plays an important role in the regulation of cardiovascular function. This pathway is disrupted in HF resulting in decreased protection against myocardial injury. The sGC activator cinaciguat increases cGMP levels by direct, NO-independent activation of sGC, and may be particularly effective in conditions of increased oxidative stress and endothelial dysfunction, and then reduced NO levels, but this comes at the expense of a greater risk of hypotension. Conversely, sGC stimulators (riociguat and vericiguat) enhance sGC sensitivity to endogenous NO, and then exert a more physiological action. The phase 3 VICTORIA trial found that vericiguat is safe and effective in patients with HFrEF and recent HF decompensation. Therefore, adding vericiguat may be considered in individual patients with HFrEF, particularly those at higher risk of HF hospitalization; the efficacy of the sacubitril/valsartan-vericiguat combination in HFrEF is currently unknown.
Collapse
Affiliation(s)
- Alberto Aimo
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, Pisa, Italy. .,Cardiology Division, Fondazione Toscana Gabriele Monasterio, Piazza Martiri della Libertà 33, Pisa, Italy.
| | - Vincenzo Castiglione
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, Pisa, Italy
| | - Giuseppe Vergaro
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, Pisa, Italy.,Cardiology Division, Fondazione Toscana Gabriele Monasterio, Piazza Martiri della Libertà 33, Pisa, Italy
| | - Giorgia Panichella
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, Pisa, Italy
| | - Michele Senni
- Cardiovascular Department & Cardiology Unit, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Carlo Mario Lombardi
- Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health University and Civil Hospital, Brescia, Italy
| | - Michele Emdin
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, Pisa, Italy.,Cardiology Division, Fondazione Toscana Gabriele Monasterio, Piazza Martiri della Libertà 33, Pisa, Italy
| |
Collapse
|
18
|
Lukowski R, Cruz Santos M, Kuret A, Ruth P. cGMP and mitochondrial K + channels-Compartmentalized but closely connected in cardioprotection. Br J Pharmacol 2021; 179:2344-2360. [PMID: 33991427 DOI: 10.1111/bph.15536] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 05/05/2021] [Accepted: 05/07/2021] [Indexed: 01/01/2023] Open
Abstract
The 3',5'-cGMP pathway triggers cytoprotective responses and improves cardiomyocyte survival during myocardial ischaemia and reperfusion (I/R) injury. These beneficial effects were attributed to NO-sensitive GC induced cGMP production leading to activation of cGMP-dependent protein kinase I (cGKI). cGKI in turn phosphorylates many substrates, which eventually facilitate opening of mitochondrial ATP-sensitive potassium channels (mitoKATP ) and Ca2+ -activated potassium channels of the BK type (mitoBK). Accordingly, agents activating mitoKATP or mitoBK provide protection against I/R-induced damages. Here, we provide an up-to-date summary of the infarct-limiting actions exhibited by the GC/cGMP axis and discuss how mitoKATP and mitoBK, which are present at the inner mitochondrial membrane, confer mito- and cytoprotective effects on cardiomyocytes exposed to I/R injury. In view of this, we believe that the functional connection between the cGMP cascade and mitoK+ channels should be exploited further as adjunct to reperfusion therapy in myocardial infarction.
Collapse
Affiliation(s)
- Robert Lukowski
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tuebingen, Tuebingen, Germany
| | - Melanie Cruz Santos
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tuebingen, Tuebingen, Germany
| | - Anna Kuret
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tuebingen, Tuebingen, Germany
| | - Peter Ruth
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tuebingen, Tuebingen, Germany
| |
Collapse
|
19
|
Kuwahara K. The natriuretic peptide system in heart failure: Diagnostic and therapeutic implications. Pharmacol Ther 2021; 227:107863. [PMID: 33894277 DOI: 10.1016/j.pharmthera.2021.107863] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 04/05/2021] [Indexed: 12/12/2022]
Abstract
Natriuretic peptides, which are activated in heart failure, play an important cardioprotective role. The most notable of the cardioprotective natriuretic peptides are atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP), which are abundantly expressed and secreted in the atrium and ventricles, respectively, and C-type natriuretic peptide (CNP), which is expressed mainly in the vasculature, central nervous system, and bone. ANP and BNP exhibit antagonistic effects against angiotensin II via diuretic/natriuretic actions, vasodilatory actions, and inhibition of aldosterone secretion, whereas CNP is involved in the regulation of vascular tone and blood pressure, among other roles. ANP and BNP are of particular interest with respect to heart failure, as their levels, most notably BNP and N-terminal proBNP-a cleavage product produced when proBNP is processed to mature BNP-are increased in patients with heart failure. Furthermore, the identification of natriuretic peptides as sensitive markers of cardiac load has driven significant research into their physiological roles in cardiovascular homeostasis and disease, as well as their potential use as both biomarkers and therapeutics. In this review, I discuss the physiological functions of the natriuretic peptide family, with a particular focus on the basic research that has led to our current understanding of its roles in maintaining cardiovascular homeostasis, and the pathophysiological implications for the onset and progression of heart failure. The clinical significance and potential of natriuretic peptides as diagnostic and/or therapeutic agents are also discussed.
Collapse
Affiliation(s)
- Koichiro Kuwahara
- Department of Cardiovascular Medicine, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan.
| |
Collapse
|
20
|
Colombe AS, Pidoux G. Cardiac cAMP-PKA Signaling Compartmentalization in Myocardial Infarction. Cells 2021; 10:cells10040922. [PMID: 33923648 PMCID: PMC8073060 DOI: 10.3390/cells10040922] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/02/2021] [Accepted: 04/13/2021] [Indexed: 02/07/2023] Open
Abstract
Under physiological conditions, cAMP signaling plays a key role in the regulation of cardiac function. Activation of this intracellular signaling pathway mirrors cardiomyocyte adaptation to various extracellular stimuli. Extracellular ligand binding to seven-transmembrane receptors (also known as GPCRs) with G proteins and adenylyl cyclases (ACs) modulate the intracellular cAMP content. Subsequently, this second messenger triggers activation of specific intracellular downstream effectors that ensure a proper cellular response. Therefore, it is essential for the cell to keep the cAMP signaling highly regulated in space and time. The temporal regulation depends on the activity of ACs and phosphodiesterases. By scaffolding key components of the cAMP signaling machinery, A-kinase anchoring proteins (AKAPs) coordinate both the spatial and temporal regulation. Myocardial infarction is one of the major causes of death in industrialized countries and is characterized by a prolonged cardiac ischemia. This leads to irreversible cardiomyocyte death and impairs cardiac function. Regardless of its causes, a chronic activation of cardiac cAMP signaling is established to compensate this loss. While this adaptation is primarily beneficial for contractile function, it turns out, in the long run, to be deleterious. This review compiles current knowledge about cardiac cAMP compartmentalization under physiological conditions and post-myocardial infarction when it appears to be profoundly impaired.
Collapse
|
21
|
Besler C, Rommel KP, Kresoja KP, Mörbitz J, Kirsten H, Scholz M, Klingel K, Thiery J, Burkhardt R, Büttner P, Adams V, Thiele H, Lurz P. Evaluation of phosphodiesterase 9A as a novel biomarker in heart failure with preserved ejection fraction. ESC Heart Fail 2021; 8:1861-1872. [PMID: 33787083 PMCID: PMC8120363 DOI: 10.1002/ehf2.13327] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 03/07/2021] [Accepted: 03/12/2021] [Indexed: 01/14/2023] Open
Abstract
Aims Murine models implicate phosphodiesterase 9A (PDE9A) as a nitric oxide‐independent regulator of cyclic guanosine monophosphate and promising novel therapeutic target in heart failure (HF) with preserved ejection fraction (HFpEF). This study describes PDE9A expression in endomyocardial biopsies (EMBs) and peripheral blood mononuclear cells (PBMNCs) from patients with different HF phenotypes. Methods and results Endomyocardial biopsies and PBMNCs were obtained from patients with HFpEF (n = 24), HF with reduced ejection fraction (n = 22), and inflammatory cardiomyopathy (n = 24) and patients without HF (n = 7). PDE9A expression was increased in EMBs and PBMNCs from patients with HFpEF as compared with other HF phenotypes or subjects without HF. Endomyocardial PDE9A expression in HFpEF correlated with the inflammatory cell count in EMBs, but not with cardiac fibrosis or left ventricular diastolic wall stress. PDE9A expression in PBMNCs was increased in HFpEF patients with higher high‐sensitivity C‐reactive protein levels and in response to pro‐inflammatory stimulation. As a validation cohort, 719 patients with HFpEF and 1106 subjects without HF were identified from the LIFE‐Heart study. PDE9A expression in PBMNCs was obtained from array data and displayed an age‐dependent distribution. PDE9A levels were elevated and conferred increased risk for HFpEF in middle‐aged subjects, but not in elderly HFpEF patients. Following age adjustment, lower PDE9A expression in PBMNCs was associated with worse survival in patients with HFpEF (log‐rank test P‐value <0.001). Conclusion Expression profiling indicates an up‐regulation of endomyocardial PDE9A in different HF phenotypes with the most robust increase in EMBs and PBMNCs from patients with HFpEF. An exclusive risk effect of PDE9A expression on HFpEF in middle‐aged patients and an unexpected association with survival calls for further studies to better characterize the role of PDE9A as a treatment target.
Collapse
Affiliation(s)
- Christian Besler
- Department of Internal Medicine/Cardiology, Heart Center Leipzig at University of Leipzig, Strümpellstraße 39, Leipzig, 04289, Germany
| | - Karl-Philipp Rommel
- Department of Internal Medicine/Cardiology, Heart Center Leipzig at University of Leipzig, Strümpellstraße 39, Leipzig, 04289, Germany
| | - Karl-Patrik Kresoja
- Department of Internal Medicine/Cardiology, Heart Center Leipzig at University of Leipzig, Strümpellstraße 39, Leipzig, 04289, Germany
| | - Justus Mörbitz
- Department of Internal Medicine/Cardiology, Heart Center Leipzig at University of Leipzig, Strümpellstraße 39, Leipzig, 04289, Germany
| | - Holger Kirsten
- Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Leipzig, Germany.,LIFE Research Center for Civilization Diseases, University of Leipzig, Leipzig, Germany
| | - Markus Scholz
- Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Leipzig, Germany.,LIFE Research Center for Civilization Diseases, University of Leipzig, Leipzig, Germany
| | - Karin Klingel
- Cardiopathology, Institute for Pathology and Neuropathology, University Hospital Tübingen, Tübingen, Germany
| | - Joachim Thiery
- LIFE Research Center for Civilization Diseases, University of Leipzig, Leipzig, Germany.,Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany
| | - Ralph Burkhardt
- LIFE Research Center for Civilization Diseases, University of Leipzig, Leipzig, Germany.,Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Regensburg, Germany
| | - Petra Büttner
- Department of Internal Medicine/Cardiology, Heart Center Leipzig at University of Leipzig, Strümpellstraße 39, Leipzig, 04289, Germany
| | - Volker Adams
- Department of Internal Medicine and Cardiology, Technische Universität Dresden, Dresden, Germany
| | - Holger Thiele
- Department of Internal Medicine/Cardiology, Heart Center Leipzig at University of Leipzig, Strümpellstraße 39, Leipzig, 04289, Germany
| | - Philipp Lurz
- Department of Internal Medicine/Cardiology, Heart Center Leipzig at University of Leipzig, Strümpellstraße 39, Leipzig, 04289, Germany
| |
Collapse
|
22
|
Yadav M, Kumari P, Yadav V, Kumar S. Pharmacological preconditioning with phosphodiestrase inhibitor: an answer to stem cell survival against ischemic injury through JAK/STAT signaling. Heart Fail Rev 2021; 25:355-366. [PMID: 31309353 DOI: 10.1007/s10741-019-09822-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Stem cell transplantation in regenerative medicine has been widely used in various disorders including cardiovascular diseases (CVD) and emerging next-generation therapy. However, transplanted stem cell encountered ischemia/reperfusion (IR) injury which is a major challenge for stem cell survival. During the acute phase after myocardial infarction (MI) cytokine-rich hostile microenvironment, extensive immune cell infiltration and lack of oxygen have been a bottleneck in cell-based therapy. During prolonged ischemia, intracellular pH and ATP level decrease results in anaerobic metabolism and lactate accumulation. Consequentially, ATPase-dependent ion transport becomes dysfunctional, contributing to calcium overload and cell death by apoptosis and necrosis. Although O2 level revitalizes upon reperfusion, a surge in the generation of reactive oxygen species (ROS) occurs with neutrophil infiltration in ischemic tissues further aggravating the injury. Ischemic preconditioning (IPC) of stem cells with a repeated short cycle of IR results in the release of chemical signals such as NO, ROS, and adenosine which triggers a cascade of signaling events that activates protein kinase C (PKC), Src protein tyrosine kinases, and nuclear factor κB (NF-κB) and subsequently increased synthesis of inducible NO synthase (iNOS), cyclooxygenase-2 (COX-2), Heme oxygenase-1 [HO-1], aldose reductase, Mn superoxide dismutase, and anti-apoptotic genes (Mcl-1, BCl-xL, c-FLIPL, c-FLIPS). Pharmacological preconditioning uses a phosphodiestrase inhibitor, another mode of protecting stem cell or heart per se from impending ischemic injury in two phases. During the early phase of cardioprotection (2 h), PC leads to increased expression of survival factors like BCl2/Bax ratio while late phase (24 h) showed activation of the JAK/STAT survival pathway. Phosphorylation of STAT3 at two crucial residues, Tyr-705 and Ser-727, allows its entry inside the nucleus and upregulates the expression of protein kinase G-1 (PKG1) which evokes cardioprotective signaling. To confirm, heart-specific conditional STAT3 knockout mice undergone IR surgery, abolishing late-phase cardioprotective effects.
Collapse
Affiliation(s)
- Manju Yadav
- Department of Biochemistry, Central University of Haryana, Mahendergarh, Haryana, India
| | - Pooja Kumari
- Department of Biochemistry, Central University of Haryana, Mahendergarh, Haryana, India
| | - Varsha Yadav
- Department of Biochemistry, Central University of Haryana, Mahendergarh, Haryana, India
| | - Sanjay Kumar
- Department of Biochemistry, Central University of Haryana, Mahendergarh, Haryana, India.
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, 4110 Libra Drive, Bld 20, Orlando, FL, 32816, USA.
| |
Collapse
|
23
|
Jiang X, Shao M, Liu X, Liu X, Zhang X, Wang Y, Yin K, Wang S, Hu Y, Jose PA, Zhou Z, Xu F, Yang Z. Reversible Treatment of Pressure Overload-Induced Left Ventricular Hypertrophy through Drd5 Nucleic Acid Delivery Mediated by Functional Polyaminoglycoside. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2003706. [PMID: 33717857 PMCID: PMC7927605 DOI: 10.1002/advs.202003706] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/23/2020] [Indexed: 05/12/2023]
Abstract
Left ventricular hypertrophy and fibrosis are major risk factors for heart failure, which require timely and effective treatment. Genetic therapy has been shown to ameliorate hypertrophic cardiac damage. In this study, it is found that in mice, the dopamine D5 receptor (D5R) expression in the left ventricle (LV) progressively decreases with worsening of transverse aortic constriction-induced left ventricular hypertrophy. Then, a reversible treatment of left ventricular hypertrophy with Drd5 nucleic acids delivered by tobramycin-based hyperbranched polyaminoglycoside (SS-HPT) is studied. The heart-specific increase in D5R expression by SS-HPT/Drd5 plasmid in the early stage of left ventricular hypertrophy attenuates cardiac hypertrophy and fibrosis by preventing oxidative and endoplasmic reticulum (ER) stress and ameliorating autophagic dysregulation. By contrast, SS-HPT/Drd5 siRNA promotes the progression of left ventricular hypertrophy and accelerates the deterioration of myocardial function into heart failure. The reduction in cardiac D5R expression and dysregulated autophagy are observed in patients with hypertrophic cardiomyopathy and heart failure. The data show a cardiac-specific beneficial effect of SS-HPT/Drd5 plasmid on myocardial remodeling and dysfunction, which may provide an effective therapy of patients with left ventricular hypertrophy and heart failure.
Collapse
Affiliation(s)
- Xiaoliang Jiang
- NHC Key Laboratory of Human Disease Comparative Medicine (The Institute of Laboratory Animal Sciences, CAMS & PUMC), and Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases5 Pan Jia Yuan Nan Li, Chaoyang DistrictBeijing100021P. R. China
| | - Meiyu Shao
- Key Lab of Biomedical Materials of Natural MacromoleculesMinistry of EducationBeijing Laboratory of Biomedical MaterialsBeijing Advanced Innovation Center for Soft Matter Science and EngineeringBeijing University of Chemical TechnologyBeijing100029P. R. China
| | - Xue Liu
- NHC Key Laboratory of Human Disease Comparative Medicine (The Institute of Laboratory Animal Sciences, CAMS & PUMC), and Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases5 Pan Jia Yuan Nan Li, Chaoyang DistrictBeijing100021P. R. China
| | - Xing Liu
- NHC Key Laboratory of Human Disease Comparative Medicine (The Institute of Laboratory Animal Sciences, CAMS & PUMC), and Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases5 Pan Jia Yuan Nan Li, Chaoyang DistrictBeijing100021P. R. China
| | - Xu Zhang
- Department of Hepato‐Biliary‐Pancreatic SurgeryHenan Provincial People's HospitalPeople's Hospital of Zhengzhou UniversityZhengzhouHenan450003P. R. China
| | - Yuming Wang
- Department of Hepato‐Biliary‐Pancreatic SurgeryHenan Provincial People's HospitalPeople's Hospital of Zhengzhou UniversityZhengzhouHenan450003P. R. China
| | - Kunlun Yin
- State Key Laboratory of Cardiovascular DiseaseBeijing Key Laboratory for Molecular Diagnostics of Cardiovascular DiseasesDiagnostic Laboratory ServiceFuwai HospitalNational Center for Cardiovascular DiseasesChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100037P. R. China
| | - Shuiyun Wang
- Department of Cardiovascular SurgeryState Key Laboratory of Cardiovascular DiseaseFuwai HospitalNational Center for Cardiovascular DiseasesChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100037P. R. China
| | - Yang Hu
- Key Lab of Biomedical Materials of Natural MacromoleculesMinistry of EducationBeijing Laboratory of Biomedical MaterialsBeijing Advanced Innovation Center for Soft Matter Science and EngineeringBeijing University of Chemical TechnologyBeijing100029P. R. China
| | - Pedro A Jose
- Department of Pharmacology and PhysiologyThe George Washington University School of Medicine & Health SciencesWashingtonDC20052USA
- Department of MedicineDivision of Kidney Diseases & HypertensionThe George Washington University School of Medicine & Health SciencesWashingtonDC20052USA
| | - Zhou Zhou
- State Key Laboratory of Cardiovascular DiseaseBeijing Key Laboratory for Molecular Diagnostics of Cardiovascular DiseasesDiagnostic Laboratory ServiceFuwai HospitalNational Center for Cardiovascular DiseasesChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100037P. R. China
| | - Fu‐Jian Xu
- Key Lab of Biomedical Materials of Natural MacromoleculesMinistry of EducationBeijing Laboratory of Biomedical MaterialsBeijing Advanced Innovation Center for Soft Matter Science and EngineeringBeijing University of Chemical TechnologyBeijing100029P. R. China
| | - Zhiwei Yang
- NHC Key Laboratory of Human Disease Comparative Medicine (The Institute of Laboratory Animal Sciences, CAMS & PUMC), and Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases5 Pan Jia Yuan Nan Li, Chaoyang DistrictBeijing100021P. R. China
| |
Collapse
|
24
|
Targeting Cyclic Guanosine Monophosphate to Treat Heart Failure: JACC Review Topic of the Week. J Am Coll Cardiol 2021; 76:1795-1807. [PMID: 33032741 DOI: 10.1016/j.jacc.2020.08.031] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 08/13/2020] [Accepted: 08/14/2020] [Indexed: 12/25/2022]
Abstract
The significant morbidity and mortality associated with heart failure with reduced ejection fraction (HFrEF) or heart failure with preserved ejection fraction (HFpEF) justify the search for novel therapeutic agents. Reduced cyclic guanosine monophosphate levels contribute to HF progression. Among molecules modulating the nitric oxide (NO)-GMP-phosphodiesterase (PDE) pathway, the evaluation of nitrates, synthetic natriuretic peptides (NP), and NP analogs has yielded mixed results. Conversely, sacubitril/valsartan, combining NP degradation inhibition through neprilysin and angiotensin receptor blockade, has led to groundbreaking findings in HFrEF. Other strategies to increase tissue cyclic guanosine monophosphate have been attempted, such as PDE-3 or PDE-5 inhibition (with negative or neutral results), NO-independent soluble guanylate cyclase (sGC) activation, or enhancement of sGC sensitivity to endogenous NO. Following the positive results of the phase 3 VICTORIA (A Study of Vericiguat in Participants With Heart Failure With Reduced Ejection Fraction) trial on the sGC stimulator vericiguat in HFrEF, the main open questions are the efficacy of the sacubitril/valsartan-vericiguat combination in HFrEF and of vericiguat in HFpEF.
Collapse
|
25
|
Mollace V, Rosano GMC, Anker SD, Coats AJS, Seferovic P, Mollace R, Tavernese A, Gliozzi M, Musolino V, Carresi C, Maiuolo J, Macrì R, Bosco F, Chiocchi M, Romeo F, Metra M, Volterrani M. Pathophysiological Basis for Nutraceutical Supplementation in Heart Failure: A Comprehensive Review. Nutrients 2021; 13:257. [PMID: 33477388 PMCID: PMC7829856 DOI: 10.3390/nu13010257] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/25/2020] [Accepted: 01/13/2021] [Indexed: 02/06/2023] Open
Abstract
There is evidence demonstrating that heart failure (HF) occurs in 1-2% of the global population and is often accompanied by comorbidities which contribute to increasing the prevalence of the disease, the rate of hospitalization and the mortality. Although recent advances in both pharmacological and non-pharmacological approaches have led to a significant improvement in clinical outcomes in patients affected by HF, residual unmet needs remain, mostly related to the occurrence of poorly defined strategies in the early stages of myocardial dysfunction. Nutritional support in patients developing HF and nutraceutical supplementation have recently been shown to possibly contribute to protection of the failing myocardium, although their place in the treatment of HF requires further assessment, in order to find better therapeutic solutions. In this context, the Optimal Nutraceutical Supplementation in Heart Failure (ONUS-HF) working group aimed to assess the optimal nutraceutical approach to HF in the early phases of the disease, in order to counteract selected pathways that are imbalanced in the failing myocardium. In particular, we reviewed several of the most relevant pathophysiological and molecular changes occurring during the early stages of myocardial dysfunction. These include mitochondrial and sarcoplasmic reticulum stress, insufficient nitric oxide (NO) release, impaired cardiac stem cell mobilization and an imbalanced regulation of metalloproteinases. Moreover, we reviewed the potential of the nutraceutical supplementation of several natural products, such as coenzyme Q10 (CoQ10), a grape seed extract, Olea Europea L.-related antioxidants, a sodium-glucose cotransporter (SGLT2) inhibitor-rich apple extract and a bergamot polyphenolic fraction, in addition to their support in cardiomyocyte protection, in HF. Such an approach should contribute to optimising the use of nutraceuticals in HF, and the effect needs to be confirmed by means of more targeted clinical trials exploring the efficacy and safety of these compounds.
Collapse
Affiliation(s)
- Vincenzo Mollace
- Department of Health Sciences, Institute of Research for Food Safety & Health, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (R.M.); (A.T.); (M.G.); (V.M.); (C.C.); (J.M.); (R.M.); (F.B.)
| | - Giuseppe M. C. Rosano
- Cardiology Clinical Academic Group, St George’s Hospitals NHS Trust University of London, London SW17 0QT, UK;
- Department of Cardiology, IRCCS San Raffaele Pisana, 00166 Rome, Italy; (A.J.S.C.); (M.V.)
| | - Stefan D. Anker
- Department of Cardiology, Charité–Universitätsmedizin Berlin, 10117 Berlin, Germany;
| | - Andrew J. S. Coats
- Department of Cardiology, IRCCS San Raffaele Pisana, 00166 Rome, Italy; (A.J.S.C.); (M.V.)
| | - Petar Seferovic
- Faculty of Medicine, Belgrade University, 11000 Belgrade, Serbia;
| | - Rocco Mollace
- Department of Health Sciences, Institute of Research for Food Safety & Health, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (R.M.); (A.T.); (M.G.); (V.M.); (C.C.); (J.M.); (R.M.); (F.B.)
- Department of Experimental and Applied Medicine, Institute of Cardiology, University of Brescia, 25121 Brescia, Italy;
| | - Annamaria Tavernese
- Department of Health Sciences, Institute of Research for Food Safety & Health, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (R.M.); (A.T.); (M.G.); (V.M.); (C.C.); (J.M.); (R.M.); (F.B.)
- Department of Experimental and Applied Medicine, Institute of Cardiology, University of Brescia, 25121 Brescia, Italy;
| | - Micaela Gliozzi
- Department of Health Sciences, Institute of Research for Food Safety & Health, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (R.M.); (A.T.); (M.G.); (V.M.); (C.C.); (J.M.); (R.M.); (F.B.)
| | - Vincenzo Musolino
- Department of Health Sciences, Institute of Research for Food Safety & Health, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (R.M.); (A.T.); (M.G.); (V.M.); (C.C.); (J.M.); (R.M.); (F.B.)
| | - Cristina Carresi
- Department of Health Sciences, Institute of Research for Food Safety & Health, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (R.M.); (A.T.); (M.G.); (V.M.); (C.C.); (J.M.); (R.M.); (F.B.)
| | - Jessica Maiuolo
- Department of Health Sciences, Institute of Research for Food Safety & Health, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (R.M.); (A.T.); (M.G.); (V.M.); (C.C.); (J.M.); (R.M.); (F.B.)
| | - Roberta Macrì
- Department of Health Sciences, Institute of Research for Food Safety & Health, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (R.M.); (A.T.); (M.G.); (V.M.); (C.C.); (J.M.); (R.M.); (F.B.)
| | - Francesca Bosco
- Department of Health Sciences, Institute of Research for Food Safety & Health, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (R.M.); (A.T.); (M.G.); (V.M.); (C.C.); (J.M.); (R.M.); (F.B.)
| | - Marcello Chiocchi
- Department of Diagnostic Imaging and Interventional Radiology, Policlinico Tor Vergata, 00199 Rome, Italy;
| | - Francesco Romeo
- Department of Experimental Medicine, University of Rome “Tor Vergata”, 00199 Rome, Italy;
| | - Marco Metra
- Department of Experimental and Applied Medicine, Institute of Cardiology, University of Brescia, 25121 Brescia, Italy;
| | - Maurizio Volterrani
- Department of Cardiology, IRCCS San Raffaele Pisana, 00166 Rome, Italy; (A.J.S.C.); (M.V.)
| |
Collapse
|
26
|
Abstract
The 3',5'-cyclic guanosine monophosphate (cGMP)-dependent protein kinase type I (cGKI aka PKGI) is a major cardiac effector acting downstream of nitric oxide (NO)-sensitive soluble guanylyl cyclase and natriuretic peptides (NPs), which signal through transmembrane guanylyl cyclases. Consistent with the wide distribution of the cGMP-generating guanylyl cyclases, cGKI, which usually elicits its cellular effects by direct phosphorylation of its targets, is present in multiple cardiac cell types including cardiomyocytes (CMs). Although numerous targets of cGMP/cGKI in heart were identified in the past, neither their exact patho-/physiological functions nor cell-type specific roles are clear. Herein, we inform about the current knowledge on the signal transduction downstream of CM cGKI. We believe that better insights into the specific actions of cGMP and cGKI in these cells will help to guide future studies in the search for predictive biomarkers for the response to pharmacological cGMP pathway modulation. In addition, targets downstream of cGMP/cGKI may be exploited for refined and optimized diagnostic and therapeutic strategies in different types of heart disease and their causes. Importantly, key functions of these proteins and particularly sites of regulatory phosphorylation by cGKI should, at least in principle, remain intact, although upstream signaling through the second messenger cGMP is impaired or dysregulated in a stressed or diseased heart state.
Collapse
|
27
|
Phosphodiesterase 5 (PDE5): Structure-function regulation and therapeutic applications of inhibitors. Biomed Pharmacother 2020; 134:111128. [PMID: 33348311 DOI: 10.1016/j.biopha.2020.111128] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/06/2020] [Accepted: 12/08/2020] [Indexed: 12/21/2022] Open
Abstract
Phosphodiesterase 5 (PDE5) is one of the most well-studied phosphodiesterases (PDEs) that specifically targets cGMP typically generated by nitric oxide (NO)-mediated activation of the soluble guanylyl cyclase. Given the crucial role of cGMP generated through the activation of this cellular signaling pathway in a variety of physiologically processes, pharmacological inhibition of PDE5 has been demonstrated to have several therapeutic applications including erectile dysfunction and pulmonary arterial hypertension. While they are designed to inhibit PDE5, the inhibitors show different affinities and specificities against all PDE subtypes. Additionally, they have been shown to induce allosteric structural changes in the protein. These are mostly attributed to their chemical structure and, therefore, binding interactions with PDE catalytic domains. Therefore, understanding how these inhibitors interact with PDE5 and the structural basis of their selectivity is critically important for the design of novel, highly selective PDE5 inhibitors. Here, we review the structure of PDE5, how its function is regulated, and discuss the clinically available inhibitors that target phosphodiesterase 5, aiming to better understand the structural bases of their affinity and specificity. We also discuss the therapeutic indications of these inhibitors and the potential of repurposing for a wider range of clinical applications.
Collapse
|
28
|
Abstract
Cyclic GMP (cGMP) represents a classic intracellular second messenger molecule. Over the past 2 decades, important discoveries have identified that cGMP signaling becomes deranged in heart failure (HF) and that cGMP and its main kinase effector, protein kinase G, generally oppose the biological abnormalities contributing to HF, in experimental studies. These findings have influenced the design of clinical trials of cGMP-augmenting drugs in HF patients. At present, the trial results of cGMP-augmenting therapies in HF remain mixed. As detailed in this review, strong evidence now exists that protein kinase G opposes pathologic cardiac remodeling through regulation of diverse biological processes and myocardial substrates. Potential reasons for the failures of cGMP-augmenting drugs in HF may be related to biological mechanisms opposing cGMP or because of certain features of clinical trials, all of which are discussed.
Collapse
|
29
|
Sadek MS, Cachorro E, El-Armouche A, Kämmerer S. Therapeutic Implications for PDE2 and cGMP/cAMP Mediated Crosstalk in Cardiovascular Diseases. Int J Mol Sci 2020; 21:E7462. [PMID: 33050419 PMCID: PMC7590001 DOI: 10.3390/ijms21207462] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/07/2020] [Accepted: 10/08/2020] [Indexed: 12/11/2022] Open
Abstract
Phosphodiesterases (PDEs) are the principal superfamily of enzymes responsible for degrading the secondary messengers 3',5'-cyclic nucleotides cAMP and cGMP. Their refined subcellular localization and substrate specificity contribute to finely regulate cAMP/cGMP gradients in various cellular microdomains. Redistribution of multiple signal compartmentalization components is often perceived under pathological conditions. Thereby PDEs have long been pursued as therapeutic targets in diverse disease conditions including neurological, metabolic, cancer and autoimmune disorders in addition to numerous cardiovascular diseases (CVDs). PDE2 is a unique member of the broad family of PDEs. In addition to its capability to hydrolyze both cAMP and cGMP, PDE2 is the sole isoform that may be allosterically activated by cGMP increasing its cAMP hydrolyzing activity. Within the cardiovascular system, PDE2 serves as an integral regulator for the crosstalk between cAMP/cGMP pathways and thereby may couple chronically adverse augmented cAMP signaling with cardioprotective cGMP signaling. This review provides a comprehensive overview of PDE2 regulatory functions in multiple cellular components within the cardiovascular system and also within various subcellular microdomains. Implications for PDE2- mediated crosstalk mechanisms in diverse cardiovascular pathologies are discussed highlighting the prospective use of PDE2 as a potential therapeutic target in cardiovascular disorders.
Collapse
Affiliation(s)
| | | | - Ali El-Armouche
- Department of Pharmacology and Toxicology, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany; (M.S.S.); (E.C.)
| | - Susanne Kämmerer
- Department of Pharmacology and Toxicology, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany; (M.S.S.); (E.C.)
| |
Collapse
|
30
|
Wang X, Wang H. Priming the Proteasome to Protect against Proteotoxicity. Trends Mol Med 2020; 26:639-648. [PMID: 32589934 PMCID: PMC7321925 DOI: 10.1016/j.molmed.2020.02.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 02/23/2020] [Accepted: 02/27/2020] [Indexed: 02/07/2023]
Abstract
Increased proteotoxic stress (IPTS) resulting from the increased production or decreased removal of abnormally folded proteins is recognized as an important pathogenic factor for a large group of highly disabling and life-threatening human diseases, such as neurodegenerative disorders and many heart diseases. The proteasome is pivotal to the timely removal of abnormal proteins but its functional capacity often becomes inadequate in the disease conditions; consequently, proteasome functional insufficiency in return exacerbates IPTS. Recent research in proteasome biology reveals that the proteasome can be activated by endogenous protein kinases, making it possible to pharmacologically prime the proteasome for treating diseases with IPTS.
Collapse
Affiliation(s)
- Xuejun Wang
- University of South Dakota Sanford School of Medicine, Vermillion, SD 57069, USA.
| | - Hongmin Wang
- University of South Dakota Sanford School of Medicine, Vermillion, SD 57069, USA
| |
Collapse
|
31
|
Wen JJ, Cummins C, Radhakrishnan RS. Sildenafil Recovers Burn-Induced Cardiomyopathy. Cells 2020. [DOI: https:/doi.org/10.3390/cells9061393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Background: Severe burn injury initiates a feedback cycle of inflammation, fibrosis, oxidative stress and cardiac mitochondrial damage via the PDE5A-cGMP-PKG pathway. Aim: To test if the PDE5A-cGMP-PKG pathway may contribute to burn-induced heart dysfunction. Methods: Sprague–Dawley rats were divided four groups: sham; sham/sildenafil; 24 h post burn (60% total body surface area scald burn, harvested at 24 h post burn); and 24 h post burn/sildenafil. We monitored heart function and oxidative adducts, as well as cardiac inflammatory, cardiac fibrosis and cardiac remodeling responses in vivo. Results: Sildenafil inhibited the burn-induced PDE5A mRNA level and increased the cGMP level and PKG activity, leading to the normalization of PKG down-regulated genes (IRAG, PLB, RGS2, RhoA and MYTP), a decreased ROS level (H2O2), decreased oxidatively modified adducts (malonyldialdehyde [MDA], carbonyls), attenuated fibrogenesis as well as fibrosis gene expression (ANP, BNP, COL1A2, COL3A2, αSMA and αsk-Actin), and reduced inflammation and related gene expression (RELA, IL-18 and TGF-β) after the burn. Additionally, sildenafil treatment preserved left ventricular heart function (CO, EF, SV, LVvol at systolic, LVPW at diastolic and FS) and recovered the oxidant/antioxidant balance (total antioxidant, total SOD activity and Cu,ZnSOD activity). Conclusions: The PDE5A-cGMP-PKG pathway mediates burn-induced heart dysfunction. Sildenafil treatment recovers burn-induced cardiac dysfunction.
Collapse
|
32
|
Sildenafil Recovers Burn-Induced Cardiomyopathy. Cells 2020; 9:cells9061393. [PMID: 32503314 PMCID: PMC7349507 DOI: 10.3390/cells9061393] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/29/2020] [Accepted: 06/01/2020] [Indexed: 12/12/2022] Open
Abstract
Background: Severe burn injury initiates a feedback cycle of inflammation, fibrosis, oxidative stress and cardiac mitochondrial damage via the PDE5A-cGMP-PKG pathway. Aim: To test if the PDE5A-cGMP-PKG pathway may contribute to burn-induced heart dysfunction. Methods: Sprague–Dawley rats were divided four groups: sham; sham/sildenafil; 24 h post burn (60% total body surface area scald burn, harvested at 24 h post burn); and 24 h post burn/sildenafil. We monitored heart function and oxidative adducts, as well as cardiac inflammatory, cardiac fibrosis and cardiac remodeling responses in vivo. Results: Sildenafil inhibited the burn-induced PDE5A mRNA level and increased the cGMP level and PKG activity, leading to the normalization of PKG down-regulated genes (IRAG, PLB, RGS2, RhoA and MYTP), a decreased ROS level (H2O2), decreased oxidatively modified adducts (malonyldialdehyde [MDA], carbonyls), attenuated fibrogenesis as well as fibrosis gene expression (ANP, BNP, COL1A2, COL3A2, αSMA and αsk-Actin), and reduced inflammation and related gene expression (RELA, IL-18 and TGF-β) after the burn. Additionally, sildenafil treatment preserved left ventricular heart function (CO, EF, SV, LVvol at systolic, LVPW at diastolic and FS) and recovered the oxidant/antioxidant balance (total antioxidant, total SOD activity and Cu,ZnSOD activity). Conclusions: The PDE5A-cGMP-PKG pathway mediates burn-induced heart dysfunction. Sildenafil treatment recovers burn-induced cardiac dysfunction.
Collapse
|
33
|
Methawasin M, Strom J, Borkowski T, Hourani Z, Runyan R, Smith JE, Granzier H. Phosphodiesterase 9a Inhibition in Mouse Models of Diastolic Dysfunction. Circ Heart Fail 2020; 13:e006609. [PMID: 32418479 DOI: 10.1161/circheartfailure.119.006609] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND Low myocardial cGMP-PKG (cyclic guanosine monophosphate-protein kinase G) activity has been associated with increased cardiomyocyte diastolic stiffness in heart failure with preserved ejection fraction. Cyclic guanosine monophosphate is mainly hydrolyzed by PDE (phosphodiesterases) 5a and 9a. Importantly, PDE9a expression has been reported to be upregulated in human heart failure with preserved ejection fraction myocardium and chronic administration of a PDE9a inhibitor reverses preestablished cardiac hypertrophy and systolic dysfunction in mice subjected to transverse aortic constriction (TAC). We hypothesized that inhibiting PDE9a activity ameliorates diastolic dysfunction. METHODS To examine the effect of chronic PDE9a inhibition, 2 diastolic dysfunction mouse models were studied: (1) TAC-deoxycorticosterone acetate and (2) Leprdb/db. PDE9a inhibitor (5 and 8 mg/kg per day) was administered to the mice via subcutaneously implanted osmotic minipumps for 28 days. The effect of acute PDE9a inhibition was investigated in intact cardiomyocytes isolated from TAC-deoxycorticosterone acetate mice. Atrial natriuretic peptide together with PDE9a inhibitor were administered to the isolated intact cardiomyocytes through the cell perfusate. RESULTS For acute inhibition, no cellular stiffness reduction was found, whereas chronic PDE9a inhibition resulted in reduced left ventricular chamber stiffness in TAC-deoxycorticosterone acetate, but not in Leprdb/db mice. Passive cardiomyocyte stiffness was reduced by chronic PDE9a inhibition, with no differences in myocardial fibrosis or cardiac morphometry. PDE9a inhibition increased the ventricular-arterial coupling ratio, reflecting impaired systolic function. CONCLUSIONS Chronic PDE9a inhibition lowers left ventricular chamber stiffness in TAC-deoxycorticosterone acetate mice. However, the usefulness of PDE9a inhibition to treat high-diastolic stiffness may be limited as the required PDE9a inhibitor dose also impairs systolic function, observed as a decline in ventricular-arterial coordination, in this model.
Collapse
Affiliation(s)
- Mei Methawasin
- Department of Cellular and Molecular Medicine and Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, AZ
| | - Joshua Strom
- Department of Cellular and Molecular Medicine and Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, AZ
| | - Tomasz Borkowski
- Department of Cellular and Molecular Medicine and Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, AZ
| | - Zaynab Hourani
- Department of Cellular and Molecular Medicine and Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, AZ
| | - Ray Runyan
- Department of Cellular and Molecular Medicine and Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, AZ
| | - John E Smith
- Department of Cellular and Molecular Medicine and Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, AZ
| | - Henk Granzier
- Department of Cellular and Molecular Medicine and Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, AZ
| |
Collapse
|
34
|
Castán A, Badorrey R, Díez JA, Christoffersen CT, Rasmussen LK, Kehler J, Köhler R, Gálvez JA, Díaz-de-Villegas MD. Debenzylative Cycloetherification as a Synthetic Tool in the Diastereoselective Synthesis of 3,6-Disubstituted Hexahydro-2 H-furo[3,2- b]pyrroles, PDE1 Enzyme Inhibitors with an Antiproliferative Effect on Melanoma Cells. J Org Chem 2020; 85:5941-5951. [PMID: 32248689 DOI: 10.1021/acs.joc.0c00276] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Two series of novel chiral hexahydro-2H-furo[3,2-b]pyrroles, 4-(7,8-dimethoxyquinazolin-4-yl) series A and 4-(6,7- dimethoxyquinazolin-4-yl) series B, were synthesized in enantiomerically pure form and evaluated for their inhibitory effects on phosphodiesterase 1 (PDE1) and phosphodiesterase 4 (PDE4) as well as for their inhibitory activity on cell proliferation in A375 melanoma and 3T3 fibroblast cells in vitro. Key steps of synthesis were (i) diastereoselective nucleophilic addition of vinylmagnesium bromide to N-allylimine derived from conveniently protected d-glyceraldehyde, (ii) ring-closing metathesis, (iii) debenzylative cycloetherification, and (iv) aromatic nucleophilic substitution. Some of the obtained compounds were proven to be active as inhibitors of PDE1 isoforms, with IC50 values in the high nanomolar/low micromolar concentration range, and showed antiproliferative activity on A375 melanoma cells.
Collapse
Affiliation(s)
- Alejandro Castán
- Departamento de Quı́mica Orgánica, Instituto de Sı́ntesis Quı́mica y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - Ramón Badorrey
- Departamento de Quı́mica Orgánica, Instituto de Sı́ntesis Quı́mica y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - José A Díez
- Departamento de Quı́mica Orgánica, Instituto de Sı́ntesis Quı́mica y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | | | | | - Jan Kehler
- H. Lundbeck A/S, Ottiliavej 9, 2500 Valby, Denmark
| | - Ralf Köhler
- Aragon Institute of Health Sciences & IIS, 50009 Zaragoza, Spain.,Aragon Agency for Research and Development (ARAID), 50018 Zaragoza, Spain
| | - José A Gálvez
- Departamento de Quı́mica Orgánica, Instituto de Sı́ntesis Quı́mica y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - María D Díaz-de-Villegas
- Departamento de Quı́mica Orgánica, Instituto de Sı́ntesis Quı́mica y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain
| |
Collapse
|
35
|
cGMP signalling in cardiomyocyte microdomains. Biochem Soc Trans 2020; 47:1327-1339. [PMID: 31652306 DOI: 10.1042/bst20190225] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 09/20/2019] [Accepted: 09/24/2019] [Indexed: 02/07/2023]
Abstract
3',5'-Cyclic guanosine monophosphate (cGMP) is one of the major second messengers critically involved in the regulation of cardiac electrophysiology, hypertrophy, and contractility. Recent molecular and cellular studies have significantly advanced our understanding of the cGMP signalling cascade, its local microdomain-specific regulation and its role in protecting the heart from pathological stress. Here, we summarise recent findings on cardiac cGMP microdomain regulation and discuss their potential clinical significance.
Collapse
|
36
|
Lugnier C, Meyer A, Charloux A, Andrès E, Gény B, Talha S. The Endocrine Function of the Heart: Physiology and Involvements of Natriuretic Peptides and Cyclic Nucleotide Phosphodiesterases in Heart Failure. J Clin Med 2019; 8:jcm8101746. [PMID: 31640161 PMCID: PMC6832599 DOI: 10.3390/jcm8101746] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 10/09/2019] [Accepted: 10/17/2019] [Indexed: 12/12/2022] Open
Abstract
Besides pumping, the heart participates in hydro-sodium homeostasis and systemic blood pressure regulation through its endocrine function mainly represented by the large family of natriuretic peptides (NPs), including essentially atrial natriuretic (ANP) and brain natriuretic peptides (BNP). Under normal conditions, these peptides are synthesized in response to atrial cardiomyocyte stretch, increase natriuresis, diuresis, and vascular permeability through binding of the second intracellular messenger’s guanosine 3′,5′-cyclic monophosphate (cGMP) to specific receptors. During heart failure (HF), the beneficial effects of the enhanced cardiac hormones secretion are reduced, in connection with renal resistance to NP. In addition, there is a BNP paradox characterized by a physiological inefficiency of the BNP forms assayed by current methods. In this context, it appears interesting to improve the efficiency of the cardiac natriuretic system by inhibiting cyclic nucleotide phosphodiesterases, responsible for the degradation of cGMP. Recent data support such a therapeutic approach which can improve the quality of life and the prognosis of patients with HF.
Collapse
Affiliation(s)
- Claire Lugnier
- Institute of Physiology, FMTS-EA 3072, Faculty of Medicine, University of Strasbourg, 11 Humann Street, 67000 Strasbourg, France.
| | - Alain Meyer
- Institute of Physiology, FMTS-EA 3072, Faculty of Medicine, University of Strasbourg, 11 Humann Street, 67000 Strasbourg, France.
- Department of Physiology and Functional Explorations, New Civil Hospital, University Hospitals of Strasbourg, 1 Place de l'Hôpital, CEDEX 67091 Strasbourg, France.
| | - Anne Charloux
- Institute of Physiology, FMTS-EA 3072, Faculty of Medicine, University of Strasbourg, 11 Humann Street, 67000 Strasbourg, France.
- Department of Physiology and Functional Explorations, New Civil Hospital, University Hospitals of Strasbourg, 1 Place de l'Hôpital, CEDEX 67091 Strasbourg, France.
| | - Emmanuel Andrès
- Institute of Physiology, FMTS-EA 3072, Faculty of Medicine, University of Strasbourg, 11 Humann Street, 67000 Strasbourg, France.
- Department of Internal Medicine and Metabolic Diseases, Medical Clinic B, Civil Hospital, University Hospitals of Strasbourg, 1 Place de l'Hôpital, CEDEX 67091 Strasbourg, France.
| | - Bernard Gény
- Institute of Physiology, FMTS-EA 3072, Faculty of Medicine, University of Strasbourg, 11 Humann Street, 67000 Strasbourg, France.
- Department of Physiology and Functional Explorations, New Civil Hospital, University Hospitals of Strasbourg, 1 Place de l'Hôpital, CEDEX 67091 Strasbourg, France.
| | - Samy Talha
- Institute of Physiology, FMTS-EA 3072, Faculty of Medicine, University of Strasbourg, 11 Humann Street, 67000 Strasbourg, France.
- Department of Physiology and Functional Explorations, New Civil Hospital, University Hospitals of Strasbourg, 1 Place de l'Hôpital, CEDEX 67091 Strasbourg, France.
| |
Collapse
|
37
|
Fomicheva A, Zhou C, Sun QQ, Gomelsky M. Engineering Adenylate Cyclase Activated by Near-Infrared Window Light for Mammalian Optogenetic Applications. ACS Synth Biol 2019; 8:1314-1324. [PMID: 31145854 DOI: 10.1021/acssynbio.8b00528] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Light in the near-infrared optical window (NIRW) penetrates deep through mammalian tissues, including the skull and brain tissue. Here we engineered an adenylate cyclase (AC) activated by NIRW light (NIRW-AC) and suitable for mammalian applications. To accomplish this goal, we constructed fusions of several bacteriophytochrome photosensory and bacterial AC modules using guidelines for designing chimeric homodimeric bacteriophytochromes. One engineered NIRW-AC, designated IlaM5, has significantly higher activity at 37 °C, is better expressed in mammalian cells, and can mediate cAMP-dependent photoactivation of gene expression in mammalian cells, in favorable contrast to the NIRW-ACs engineered earlier. The ilaM5 gene expressed from an AAV vector was delivered into the ventral basal thalamus region of the mouse brain, resulting in the light-controlled suppression of the cAMP-dependent wave pattern of the sleeping brain known as spindle oscillations. Reversible spindle oscillation suppression was observed in sleeping mice exposed to light from an external light source. This study confirms the robustness of principles of homodimeric bacteriophytochrome engineering, describes a NIRW-AC suitable for mammalian optogenetic applications, and demonstrates the feasibility of controlling brain activity via NIRW-ACs using transcranial irradiation.
Collapse
Affiliation(s)
- Anastasia Fomicheva
- Department of Molecular Biology, University of Wyoming, Laramie, Wyoming 82071, United States
| | - Chen Zhou
- Department of Zoology and Physiology, University of Wyoming, Laramie, Wyoming 82071, United States
| | - Qian-Quan Sun
- Department of Zoology and Physiology, University of Wyoming, Laramie, Wyoming 82071, United States
| | - Mark Gomelsky
- Department of Molecular Biology, University of Wyoming, Laramie, Wyoming 82071, United States
| |
Collapse
|
38
|
Reddy YNV, Borlaug BA, O’Connor CM, Gersh BJ. Novel approaches to the management of chronic systolic heart failure: future directions and unanswered questions. Eur Heart J 2019; 41:1764-1774. [DOI: 10.1093/eurheartj/ehz364] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 03/25/2019] [Accepted: 05/10/2019] [Indexed: 02/06/2023] Open
Abstract
Abstract
Despite improvements in outcomes in the last few decades for heart failure (HF) with reduced ejection fraction (HFrEF), there still remains a need for novel therapies as many patients incompletely recover with existing therapies and progress to advanced HF. In this review, we will discuss recent advances in the management of HFrEF with a focus on upcoming therapies that hold the greatest promise for clinical use. We will discuss novel pharmacological therapies and areas of uncertainty with existing therapies. We will also discuss the potential utility and controversy surrounding novel interventions for HF such as percutaneous mitral valve repair, atrial fibrillation ablation, and other emerging interventions with positive signals for benefit in HFrEF. Finally, we will summarize the current state of stem cell and gene therapy for HFrEF and future directions.
Collapse
Affiliation(s)
- Yogesh N V Reddy
- The Department of Cardiovascular Medicine, Mayo Clinic Rochester, 200 First Street SW, MN 55906, USA
| | - Barry A Borlaug
- The Department of Cardiovascular Medicine, Mayo Clinic Rochester, 200 First Street SW, MN 55906, USA
| | | | - Bernard J Gersh
- The Department of Cardiovascular Medicine, Mayo Clinic Rochester, 200 First Street SW, MN 55906, USA
| |
Collapse
|
39
|
Abstract
Advances in the treatment of heart failure with reduced ejection fraction due to systolic dysfunction are engaging an ever-expanding compendium of molecular signaling targets. Well established approaches modifying hemodynamics and cell biology by neurohumoral receptor blockade are evolving, exploring the role and impact of modulating intracellular signaling pathways with more direct myocardial effects. Even well-tread avenues are being reconsidered with new insights into the signaling engaged and thus opportunity to treat underlying myocardial disease. This review explores therapies that have proven successful, those that have not, those that are moving into the clinic but whose utility remains to be confirmed, and those that remain in the experimental realm. The emphasis is on signaling pathways that are tractable for therapeutic manipulation. Of the approaches yet to be tested in humans, we chose those with a well-established experimental history, where clinical translation may be around the corner. The breadth of opportunities bodes well for the next generation of heart failure therapeutics.
Collapse
Affiliation(s)
| | | | - David A. Kass
- Division of Cardiology, Department of Medicine
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University, Baltimore Maryland, 21205
| |
Collapse
|
40
|
Which phosphodiesterase can decrease cardiac effects of 5-HT4 receptor activation in transgenic mice? Naunyn Schmiedebergs Arch Pharmacol 2019; 392:991-1004. [DOI: 10.1007/s00210-019-01653-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 04/09/2019] [Indexed: 12/13/2022]
|
41
|
Huang H, Xie M, Gao L, Zhang W, Zhu X, Wang Y, Li W, Wang R, Chen K, Boutjdir M, Chen L. Rolipram, a PDE4 Inhibitor, Enhances the Inotropic Effect of Rat Heart by Activating SERCA2a. Front Pharmacol 2019; 10:221. [PMID: 30967774 PMCID: PMC6439224 DOI: 10.3389/fphar.2019.00221] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 02/22/2019] [Indexed: 12/25/2022] Open
Abstract
This study was designed to investigate the hemodynamic effect of rolipram, a phosphodiesterase type 4 (PDE4) inhibitor, in normal rat hearts both in vivo and in vitro and its underlying mechanism. The pressure-volume loop, isolated heart, and Ca2+ transients triggered by field stimulation or caffeine were used to analyze the hemodynamic mechanism of rolipram. The results demonstrated that rolipram (3 mg/kg, ip) significantly increased the in vivo rat heart contractility by enhancing stroke work, cardiac output, stroke volume, end-systolic volume, end-diastolic volume, end-systolic pressure, heart rate, ejection fraction, peak rate of rise of left pressure (+dp/dtmax), the slopes of end-systolic pressure-volume relationship (slope of ESPVR) named as left ventricular end-systolic elastance, and reduced the slopes of end-diastolic pressure-volume relationship (slope of EDPVR). Meanwhile, the systolic blood pressure, diastolic blood pressure, and pulse pressure were significantly enhanced by rolipram. Also, rolipram deviated normal ventricular-arterial coupling without changing the arterial elastance. Furthermore, rolipram (0.1, 1, 10 μM) also exerted positive inotropic effect in isolated rat hearts by increasing the left ventricular development pressure, and +dp/dtmax in non-paced and paced modes. Rolipram (10 μM) increased the SERCA2a activity, Ca2+ content, and Ca2+ leak rate without changing diastolic Ca2+ level. Rolipram had significant positive inotropic effect with less effect on peripheral vascular elastance and its underlying mechanism was mediated by increasing SERCA2a activity. PDE4 inhibition by rolipram resulted in a positive inotropic effect and might serve as a target for developing agents for the treatment of heart failure in clinical settings.
Collapse
Affiliation(s)
- Huili Huang
- National Standard Laboratory of Pharmacology for Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ming Xie
- National Standard Laboratory of Pharmacology for Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Li Gao
- National Standard Laboratory of Pharmacology for Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wenhui Zhang
- National Standard Laboratory of Pharmacology for Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiaojia Zhu
- National Standard Laboratory of Pharmacology for Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yuwei Wang
- National Standard Laboratory of Pharmacology for Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wei Li
- National Standard Laboratory of Pharmacology for Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Rongrong Wang
- Dalian Institute of Chemical Physics, Dalian, China.,Chinese Academy of Sciences Biomedical Innovation Institute of China Medical City, Taizhou, China
| | - Kesu Chen
- Department of Respiratory, Inpatient Wards for Senior Cadres, Nanjing General Hospital of Nanjing Military Command Region, Nanjing, China
| | - Mohamed Boutjdir
- VA New York Harbor Healthcare System, New York, NY, United States.,State University of New York Downstate Medical Center, New York, NY, United States.,NYU School of Medicine, New York, NY, United States
| | - Long Chen
- National Standard Laboratory of Pharmacology for Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.,Institute of Chinese Medicine of Taizhou China Medical City, Taizhou, China
| |
Collapse
|
42
|
Manning BD. Signalling protein protects the heart muscle from pressure-related stress. Nature 2019; 566:187-188. [DOI: 10.1038/d41586-019-00245-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
43
|
Ranek MJ, Kokkonen-Simon KM, Chen A, Dunkerly-Eyring BL, Vera MP, Oeing CU, Patel CH, Nakamura T, Zhu G, Bedja D, Sasaki M, Holewinski RJ, Van Eyk JE, Powell JD, Lee DI, Kass DA. PKG1-modified TSC2 regulates mTORC1 activity to counter adverse cardiac stress. Nature 2019; 566:264-269. [PMID: 30700906 PMCID: PMC6426636 DOI: 10.1038/s41586-019-0895-y] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Accepted: 12/13/2018] [Indexed: 12/16/2022]
Abstract
The mechanistic target of rapamycin complex-1 (mTORC1) coordinates regulation of growth, metabolism, protein synthesis, and autophagy1. Its hyper-activation contributes to disease in many organs including the heart1,2, though broad mTORC1 inhibition risks interference with its homeostatic roles. Tuberin (TSC2) is a GTPase-activating protein and prominent intrinsic regulator of mTORC1 by modulating Rheb (Ras homolog enriched in brain). TSC2 constitutively inhibits mTORC1, but this activity is modified by phosphorylation from multiple signaling kinases to in turn inhibit (AMPK, GSK3β) or stimulate (Akt, ERK, RSK-1) mTORC1 activity3–9. Each kinase requires engagement of multiple serines, impeding analysis of their role in vivo. Here, we reveal phosphorylation or gain-or-loss of function mutations at either of two adjacent serines in TSC2 (S1365/1366 mouse; 1364/1365 human), with no prior known function, is sufficient to bi-directionally potently control growth-factor and hemodynamic-stress stimulated mTORC1 activity and consequent cell growth and autophagy. Basal mTORC1 activity, however, is unchanged. In heart, myocytes, and fibroblasts, phosphorylation occurs by protein kinase G (PKG), a primary effector of nitric oxide and natriuretic peptide signaling whose activation is protective against heart disease10–13. PKG suppression of hypertrophy and stimulation of autophagy in myocytes requires TSC2 phosphorylation. Homozygous knock-in (KI) mice expressing a phospho-silenced TSC2 (S1365A) mutation develop far worse heart disease and mortality from sustained pressure-overload (PO) due to hyperactive mTORC1 that cannot be rescued by PKG stimulation. Heterozygote SA-KI are rescued, and KI-mice expressing a phospho-mimetic (S1365E) mutation are protected. Neither KI model alters resting mTORC1 activity. Thus, TSC2 phosphorylation is both required and sufficient for PKG-mediated cardiac protection against pressure-overload. These newly identified serines provide a genetic tool to bi-directionally regulate the amplitude of stress-stimulated mTORC1 activity.
Collapse
Affiliation(s)
- Mark J Ranek
- Division of Cardiology, Department of Medicine, The Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Kristen M Kokkonen-Simon
- Division of Cardiology, Department of Medicine, The Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Anna Chen
- Division of Cardiology, Department of Medicine, The Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | | | - Miguel Pinilla Vera
- Division of Cardiology, Department of Medicine, The Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Christian U Oeing
- Division of Cardiology, Department of Medicine, The Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Chirag H Patel
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Sidney-Kimmel Comprehensive Cancer Research Center, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Taishi Nakamura
- Division of Cardiology, Department of Medicine, The Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Guangshuo Zhu
- Division of Cardiology, Department of Medicine, The Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Djahida Bedja
- Division of Cardiology, Department of Medicine, The Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Masayuki Sasaki
- Division of Cardiology, Department of Medicine, The Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Ronald J Holewinski
- The Smidt Heart Institute and Advanced Clinical Biosystems Research Institute, Cedars Sinai Medical Center, Los Angeles, CA, USA
| | - Jennifer E Van Eyk
- The Smidt Heart Institute and Advanced Clinical Biosystems Research Institute, Cedars Sinai Medical Center, Los Angeles, CA, USA
| | - Jonathan D Powell
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Sidney-Kimmel Comprehensive Cancer Research Center, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Dong Ik Lee
- Division of Cardiology, Department of Medicine, The Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - David A Kass
- Division of Cardiology, Department of Medicine, The Johns Hopkins Medical Institutions, Baltimore, MD, USA. .,Department of Pharmacology and Molecular Sciences, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
44
|
Li EA, Xi W, Han YS, Brozovich FV. Phosphodiesterase expression in the normal and failing heart. Arch Biochem Biophys 2018; 662:160-168. [PMID: 30550727 DOI: 10.1016/j.abb.2018.12.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 12/07/2018] [Accepted: 12/10/2018] [Indexed: 01/09/2023]
Abstract
The number of patients with heart failure with reduced ejection fraction (HFrEF) and preserved ejection fraction (HFpEF) is increasing, and for HFpEF, no therapies have clinical benefit. It has been hypothesized that PKG attenuates pathological remodelling, and increasing cGMP would be beneficial for patients with HF. However, neither the RELAX nor NEAT-HFpEF trial showed benefit. But there is still enthusiasm for increasing cGMP in patients with HF, which highlight the need to determine the expression of PDEs in cardiac muscle. This study used immunoblotting to examine the expression of the PDEs that have been suggested to be targets for therapy of HF in both canines (normal and HFpEF) and humans (normal and HFrEF). Our results demonstrate PDE1C and PDE3A are expressed in cardiac muscle, but we could not detect the expression of PDE2A, PDE5A, PDE7A and PDE9A in cardiac tissue lysates from either normal or failing hearts. Thus, one should not expect a clinical benefit for a therapy targeting these PDEs in heart failure, which highlights the importance of rigorous demonstration of the target of therapy prior to undertaking a clinical trial.
Collapse
Affiliation(s)
- Edwin A Li
- Department of Cardiovascular Disease, Mayo Medical School, Rochester, MN, 55905, USA
| | - Wang Xi
- Biomedical Engineering and Physiology, Mayo Medical School, Rochester, MN, 55905, USA
| | - Young Soo Han
- Biomedical Engineering and Physiology, Mayo Medical School, Rochester, MN, 55905, USA
| | - Frank V Brozovich
- Department of Cardiovascular Disease, Mayo Medical School, Rochester, MN, 55905, USA.
| |
Collapse
|
45
|
Zhang QJ, Tran TAT, Wang M, Ranek MJ, Kokkonen-Simon KM, Gao J, Luo X, Tan W, Kyrychenko V, Liao L, Xu J, Hill JA, Olson EN, Kass DA, Martinez ED, Liu ZP. Histone lysine dimethyl-demethylase KDM3A controls pathological cardiac hypertrophy and fibrosis. Nat Commun 2018; 9:5230. [PMID: 30531796 PMCID: PMC6286331 DOI: 10.1038/s41467-018-07173-2] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 10/22/2018] [Indexed: 12/12/2022] Open
Abstract
Left ventricular hypertrophy (LVH) is a major risk factor for cardiovascular morbidity and mortality. Pathological LVH engages transcriptional programs including reactivation of canonical fetal genes and those inducing fibrosis. Histone lysine demethylases (KDMs) are emerging regulators of transcriptional reprogramming in cancer, though their potential role in abnormal heart growth and fibrosis remains little understood. Here, we investigate gain and loss of function of an H3K9me2 specific demethylase, Kdm3a, and show it promotes LVH and fibrosis in response to pressure-overload. Cardiomyocyte KDM3A activates Timp1 transcription with pro-fibrotic activity. By contrast, a pan-KDM inhibitor, JIB-04, suppresses pressure overload-induced LVH and fibrosis. JIB-04 inhibits KDM3A and suppresses the transcription of fibrotic genes that overlap with genes downregulated in Kdm3a-KO mice versus WT controls. Our study provides genetic and biochemical evidence for a pro-hypertrophic function of KDM3A and proof-of principle for pharmacological targeting of KDMs as an effective strategy to counter LVH and pathological fibrosis.
Collapse
Affiliation(s)
- Qing-Jun Zhang
- Department of Internal Medicine-Cardiology, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Tram Anh T Tran
- Hamon Center for Therapeutic Oncology Research, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Ming Wang
- Department of Internal Medicine-Cardiology, UT Southwestern Medical Center, Dallas, TX, 75390, USA
- Nephrology Center of Integrated Traditional Chinese and Western Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510280, P.R. China
| | - Mark J Ranek
- Division of Cardiology, Department of Medicine, The Johns Hopkins Medical Institutions, Baltimore, MD, 21205, USA
| | - Kristen M Kokkonen-Simon
- Division of Cardiology, Department of Medicine, The Johns Hopkins Medical Institutions, Baltimore, MD, 21205, USA
| | - Jason Gao
- Department of Internal Medicine-Cardiology, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Xiang Luo
- Department of Internal Medicine-Cardiology, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Wei Tan
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Viktoriia Kyrychenko
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Lan Liao
- Department of Molecular and Cellular Biology and Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Jianming Xu
- Department of Molecular and Cellular Biology and Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Joseph A Hill
- Department of Internal Medicine-Cardiology, UT Southwestern Medical Center, Dallas, TX, 75390, USA
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Eric N Olson
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - David A Kass
- Division of Cardiology, Department of Medicine, The Johns Hopkins Medical Institutions, Baltimore, MD, 21205, USA
| | - Elisabeth D Martinez
- Hamon Center for Therapeutic Oncology Research, UT Southwestern Medical Center, Dallas, TX, 75390, USA.
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX, 77030, USA.
| | - Zhi-Ping Liu
- Department of Internal Medicine-Cardiology, UT Southwestern Medical Center, Dallas, TX, 75390, USA.
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
46
|
Derici MK, Sadi G, Cenik B, Güray T, Demirel-Yilmaz E. Differential expressions and functions of phosphodiesterase enzymes in different regions of the rat heart. Eur J Pharmacol 2018; 844:118-129. [PMID: 30529467 DOI: 10.1016/j.ejphar.2018.12.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 11/29/2018] [Accepted: 12/05/2018] [Indexed: 10/27/2022]
Abstract
Phosphodiesterase enzymes (PDEs) are responsible for the adjustment of cyclic nucleotide levels. Alterations in PDE expressions in different tissues cause conflicts between functional and clinical effects of PDE inhibitors. Therefore, the aim of this study was to investigate the gene and protein expressions and the functional role of PDEs in atrium and ventricle of rat heart. The expressions of PDEs were examined in cardiac intact tissues and enzymatically isolated cells. The effects of PDE1-5 inhibitors (vinpocetine, EHNA, milrinone, rolipram, sildenafil, and IBMX) on basal and isoprenaline-stimulated contractions and sinus rate were recorded in the isolated spontaneously beating right atrium and electrically stimulated left papillary muscles. The mRNA and protein levels of PDEs were significantly different in atrial and ventricular intact tissues and isolated myocytes. Atrial contractions were increased with vinpocetine while suppressed by EHNA, milrinone, rolipram, sildenafil and IBMX. Milrinone, sildenafil and IBMX increased the heart rate whereas vinpocetine caused negative chronotropy. Papillary muscle contractions have been increased only with the vinpocetine and IBMX. Both the expression and the action of PDE-1-5 show atrial and ventricular differences. Therefore, these differences should be taken into account in the experimental or therapeutic approaches of the heart.
Collapse
Affiliation(s)
- Mehmet Kürşat Derici
- Faculty of Medicine, Department of Medical Pharmacology, Kirikkale University, Yahsihan, Kirikkale, Turkey.
| | - Gökhan Sadi
- Faculty of Arts and Sciences, Department of Biological Sciences, Karamanoglu Mehmetbey University, Karaman, Turkey
| | - Başar Cenik
- Faculty of Medicine, Department of Medical Pharmacology, Ankara University, Ankara, Turkey
| | - Tülin Güray
- Faculty of Arts and Sciences, Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| | - Emine Demirel-Yilmaz
- Faculty of Medicine, Department of Medical Pharmacology, Ankara University, Ankara, Turkey
| |
Collapse
|
47
|
Shete V, Liu N, Jia Y, Viswakarma N, Reddy JK, Thimmapaya B. Mouse Cardiac Pde1C Is a Direct Transcriptional Target of Pparα. Int J Mol Sci 2018; 19:ijms19123704. [PMID: 30469494 PMCID: PMC6321386 DOI: 10.3390/ijms19123704] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 11/16/2018] [Accepted: 11/16/2018] [Indexed: 12/29/2022] Open
Abstract
Phosphodiesterase 1C (PDE1C) is expressed in mammalian heart and regulates cardiac functions by controlling levels of second messenger cyclic AMP and cyclic GMP (cAMP and cGMP, respectively). However, molecular mechanisms of cardiac Pde1c regulation are currently unknown. In this study, we demonstrate that treatment of wild type mice and H9c2 myoblasts with Wy-14,643, a potent ligand of nuclear receptor peroxisome-proliferator activated receptor alpha (PPARα), leads to elevated cardiac Pde1C mRNA and cardiac PDE1C protein, which correlate with reduced levels of cAMP. Furthermore, using mice lacking either Pparα or cardiomyocyte-specific Med1, the major subunit of Mediator complex, we show that Wy-14,643-mediated Pde1C induction fails to occur in the absence of Pparα and Med1 in the heart. Finally, using chromatin immunoprecipitation assays we demonstrate that PPARα binds to the upstream Pde1C promoter sequence on two sites, one of which is a palindrome sequence (agcTAGGttatcttaacctagc) that shows a robust binding. Based on these observations, we conclude that cardiac Pde1C is a direct transcriptional target of PPARα and that Med1 may be required for the PPARα mediated transcriptional activation of cardiac Pde1C.
Collapse
Affiliation(s)
- Varsha Shete
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| | - Ning Liu
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| | - Yuzhi Jia
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| | - Navin Viswakarma
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL 60612, USA.
| | - Janardan K Reddy
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| | - Bayar Thimmapaya
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
48
|
Lyle MA, Brozovich FV. HFpEF, a Disease of the Vasculature: A Closer Look at the Other Half. Mayo Clin Proc 2018; 93:1305-1314. [PMID: 30064827 DOI: 10.1016/j.mayocp.2018.05.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 04/12/2018] [Accepted: 05/04/2018] [Indexed: 12/31/2022]
Abstract
Patients with heart failure are commonly divided into those with reduced ejection fraction (EF<40%) and those with preserved ejection fraction (HFpEF; EF>50%). For heart failure with reduced EF, a number of therapies have been found to improve patient morbidity and mortality, and treatment is guideline based. However for patients with HFpEF, no treatment has been found to have clinical benefit. To objectively assess treatments for HFpEF, a comprehensive PubMed literature search was performed using the terms HFpEF, heart failure, smooth muscle, myosin, myosin phosphatase, and PKG (up to December 31, 2017), with an unbiased focus on pathophysiology, cell signaling, and therapy. This review provides evidence that could explain the lack of clinical benefit in treating patients with HFpEF with sildenafil and long-acting nitrates. Furthermore, the review highlights the vascular abnormalities present in patients with HFpEF, and these abnormalities of the vasculature could potentially contribute to the pathophysiology of HFpEF. Thus, focusing on HFpEF as a vascular disease could result in the development of novel and effective treatment paradigms.
Collapse
Affiliation(s)
- Melissa A Lyle
- Department of Cadiovascular Diseases, Mayo Clinic College of Medicine and Science, Rochester, MN
| | - Frank V Brozovich
- Department of Cadiovascular Diseases, Mayo Clinic College of Medicine and Science, Rochester, MN.
| |
Collapse
|
49
|
Phosphodiesterase 2 inhibition preferentially promotes NO/guanylyl cyclase/cGMP signaling to reverse the development of heart failure. Proc Natl Acad Sci U S A 2018; 115:E7428-E7437. [PMID: 30012589 PMCID: PMC6077693 DOI: 10.1073/pnas.1800996115] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Heart failure (HF) is a shared manifestation of several cardiovascular pathologies, including hypertension and myocardial infarction, and a limited repertoire of treatment modalities entails that the associated morbidity and mortality remain high. Impaired nitric oxide (NO)/guanylyl cyclase (GC)/cyclic guanosine-3',5'-monophosphate (cGMP) signaling, underpinned, in part, by up-regulation of cyclic nucleotide-hydrolyzing phosphodiesterase (PDE) isozymes, contributes to the pathogenesis of HF, and interventions targeted to enhancing cGMP have proven effective in preclinical models and patients. Numerous PDE isozymes coordinate the regulation of cardiac cGMP in the context of HF; PDE2 expression and activity are up-regulated in experimental and human HF, but a well-defined role for this isoform in pathogenesis has yet to be established, certainly in terms of cGMP signaling. Herein, using a selective pharmacological inhibitor of PDE2, BAY 60-7550, and transgenic mice lacking either NO-sensitive GC-1α (GC-1α-/-) or natriuretic peptide-responsive GC-A (GC-A-/-), we demonstrate that the blockade of PDE2 promotes cGMP signaling to offset the pathogenesis of experimental HF (induced by pressure overload or sympathetic hyperactivation), reversing the development of left ventricular hypertrophy, compromised contractility, and cardiac fibrosis. Moreover, we show that this beneficial pharmacodynamic profile is maintained in GC-A-/- mice but is absent in animals null for GC-1α or treated with a NO synthase inhibitor, revealing that PDE2 inhibition preferentially enhances NO/GC/cGMP signaling in the setting of HF to exert wide-ranging protection to preserve cardiac structure and function. These data substantiate the targeting of PDE2 in HF as a tangible approach to maximize myocardial cGMP signaling and enhancing therapy.
Collapse
|
50
|
cGMP at the centre of attention: emerging strategies for activating the cardioprotective PKG pathway. Basic Res Cardiol 2018; 113:24. [PMID: 29766323 PMCID: PMC5954070 DOI: 10.1007/s00395-018-0679-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 04/04/2018] [Indexed: 12/22/2022]
Abstract
The nitric oxide (NO)-protein kinase G (PKG) pathway has been known for some time to be an important target for cardioprotection against ischaemia/reperfusion injury and heart failure. While many approaches for reducing infarct size in patients have failed in the past, the advent of novel drugs that modulate cGMP and its downstream targets shows very promising results in recent preclinical and clinical studies. Here, we review main aspects of the NO-PKG pathway in light of recent drug development and summarise potential cardioprotective strategies in which cGMP is the main player.
Collapse
|