1
|
Bezemer GFG, Diks MAP, Mortaz E, van Ark I, van Bergenhenegouwen J, Kraneveld AD, Folkerts G, Garssen J. A synbiotic mixture of Bifidobacterium breve M16-V, oligosaccharides and pectin, enhances Short Chain Fatty Acid production and improves lung health in a preclinical model for pulmonary neutrophilia. Front Nutr 2024; 11:1371064. [PMID: 39006103 PMCID: PMC11239554 DOI: 10.3389/fnut.2024.1371064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 05/15/2024] [Indexed: 07/16/2024] Open
Abstract
Introduction Pulmonary neutrophilia is a hallmark of numerous airway diseases including Chronic Obstructive Pulmonary Disease (COPD), Neutrophilic asthma, Acute Lung Injury (ALI), Acute Respiratory Distress Syndrome (ARDS) and COVID-19. The aim of the current study was to investigate the effect of dietary interventions on lung health in context of pulmonary neutrophilia. Methods Male BALB/cByJ mice received 7 intra-nasal doses of either a vehicle or lipopolysaccharides (LPS). To study the effect of nutritional interventions they received 16 intra-gastric doses of either a vehicle (PBS) or the following supplements (1) probiotic Bifidobacterium breve (B. breve) M16-V; (2) a prebiotic fiber mixture of short-chain galacto-oligosaccharides, long-chain fructo-oligosaccharides, and low-viscosity pectin in a 9:1:2 ratio (scGOS/lcFOS/lvPectin); and (3) A synbiotic combination B. breve M16-V and scGOS/lcFOS/lvPectin. Parameters for lung health included lung function, lung morphology and lung inflammation. Parameters for systemic immunomodulation included levels of fecal short chain fatty acids and regulatory T cells. Results The synbiotic supplement protected against the LPS induced decline in lung function (35% improved lung resistance at baseline p = 0.0002 and 25% at peak challenge, p = 0.0002), provided a significant relief from pulmonary neutrophilia (40.7% less neutrophils, p < 0.01) and improved the pulmonary neutrophil-to-lymphocyte ratio (NLR) by 55.3% (p = 0.0033). Supplements did not impact lung morphology in this specific experiment. LPS applied to the upper airways induced less fecal SCFAs production compared to mice that received PBS. The production of acetic acid between day -5 and day 16 was increased in all unchallenged mice (PBS-PBS p = 0.0003; PBS-Pro p < 0.0001; PBS-Pre, p = 0.0045; PBS-Syn, p = 0.0005) which upon LPS challenge was only observed in mice that received the synbiotic mixture of B. breve M16-V and GOS:FOS:lvPectin (p = 0.0003). A moderate correlation was found for butyric acid and lung function parameters and a weak correlation was found between acetic acid, butyric acid and propionic acid concentrations and NLR. Conclusion This study suggests bidirectional gut lung cross-talk in a mouse model for pulmonary neutrophilia. Neutrophilic lung inflammation coexisted with attenuated levels of fecal SCFA. The beneficial effects of the synbiotic mixture of B. breve M16-V and GOS:FOS:lvPectin on lung health associated with enhanced levels of SCFAs.
Collapse
Affiliation(s)
- Gillina F G Bezemer
- Division of Pharmacology, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
- Impact Station, Hilversum, Netherlands
| | - Mara A P Diks
- Division of Pharmacology, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Esmaeil Mortaz
- Department of Microbiology & Immunology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Respiratory Immunology Research Center, NRITLD, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ingrid van Ark
- Division of Pharmacology, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Jeroen van Bergenhenegouwen
- Division of Pharmacology, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
- Danone, Nutricia Research BV, Immunology, Utrecht, Netherlands
| | - Aletta D Kraneveld
- Division of Pharmacology, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Gert Folkerts
- Division of Pharmacology, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Johan Garssen
- Division of Pharmacology, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
- Danone, Nutricia Research BV, Immunology, Utrecht, Netherlands
| |
Collapse
|
2
|
Li J, Wang Z, Li J, Zhao H, Ma Q. HMGB1: A New Target for Ischemic Stroke and Hemorrhagic Transformation. Transl Stroke Res 2024:10.1007/s12975-024-01258-5. [PMID: 38740617 DOI: 10.1007/s12975-024-01258-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/27/2024] [Accepted: 05/01/2024] [Indexed: 05/16/2024]
Abstract
Stroke in China is distinguished by its high rates of morbidity, recurrence, disability, and mortality. The ultra-early administration of rtPA is essential for restoring perfusion in acute ischemic stroke, though it concurrently elevates the risk of hemorrhagic transformation. High-mobility group box 1 (HMGB1) emerges as a pivotal player in neuroinflammation after brain ischemia and ischemia-reperfusion. Released passively by necrotic cells and actively secreted, including direct secretion of HMGB1 into the extracellular space and packaging of HMGB1 into intracellular vesicles by immune cells, glial cells, platelets, and endothelial cells, HMGB1 represents a prototypical damage-associated molecular pattern (DAMP). It is intricately involved in the pathogenesis of atherosclerosis, thromboembolism, and detrimental inflammation during the early phases of ischemic stroke. Moreover, HMGB1 significantly contributes to neurovascular remodeling and functional recovery in later stages. Significantly, HMGB1 mediates hemorrhagic transformation by facilitating neuroinflammation, directly compromising the integrity of the blood-brain barrier, and enhancing MMP9 secretion through its interaction with rtPA. As a systemic inflammatory factor, HMGB1 is also implicated in post-stroke depression and an elevated risk of stroke-associated pneumonia. The role of HMGB1 extends to influencing the pathogenesis of ischemia by polarizing various subtypes of immune and glial cells. This includes mediating excitotoxicity due to excitatory amino acids, autophagy, MMP9 release, NET formation, and autocrine trophic pathways. Given its multifaceted role, HMGB1 is recognized as a crucial therapeutic target and prognostic marker for ischemic stroke and hemorrhagic transformation. In this review, we summarize the structure and redox properties, secretion and pathways, regulation of immune cell activity, the role of pathophysiological mechanisms in stroke, and hemorrhage transformation for HMGB1, which will pave the way for developing new neuroprotective drugs, reduction of post-stroke neuroinflammation, and expansion of thrombolysis time window.
Collapse
Affiliation(s)
- Jiamin Li
- Department of Neurology and Cerebrovascular Diseases Research Institute, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Beijing, China
| | - Zixin Wang
- Department of Neurology and Cerebrovascular Diseases Research Institute, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Beijing, China
| | - Jiameng Li
- Department of Neurology and Cerebrovascular Diseases Research Institute, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Beijing, China
| | - Haiping Zhao
- Department of Neurology and Cerebrovascular Diseases Research Institute, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Beijing, China.
| | - Qingfeng Ma
- Department of Neurology and Cerebrovascular Diseases Research Institute, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Beijing, China.
| |
Collapse
|
3
|
Newcomb G, Farkas L. Endothelial cell clonality, heterogeneity and dysfunction in pulmonary arterial hypertension. Front Med (Lausanne) 2023; 10:1304766. [PMID: 38126077 PMCID: PMC10731016 DOI: 10.3389/fmed.2023.1304766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 11/23/2023] [Indexed: 12/23/2023] Open
Abstract
Our understanding of the pathophysiology of pulmonary arterial hypertension (PAH) has evolved over recent years, with the recognition that endothelial cell (EC) dysfunction and inflammation play an integral role in the development of this disease. ECs within the pulmonary vasculature play a unique role in maintaining vascular integrity and barrier function, regulating gas exchange, and contributing to vascular tone. Using single-cell transcriptomics, research has shown that there are multiple, unique EC subpopulations with different phenotypes. In response to injury or certain stressors such as hypoxia, there can be a dysregulated response with aberrant endothelial injury repair involving other pulmonary vascular cells and even immune cells. This aberrant signaling cascade is potentially a primary driver of pulmonary arterial remodeling in PAH. Recent studies have examined the role of EC clonal expansion, immune dysregulation, and genetic mutations in the pathogenesis of PAH. This review summarizes the existing literature on EC subpopulations and the intricate mechanisms through which ECs develop aberrant physiologic phenotypes and contribute to PAH. Our goal is to provide a framework for understanding the unique pulmonary EC biology and pathophysiology that is involved in the development of PAH.
Collapse
Affiliation(s)
- Geoffrey Newcomb
- Department of Internal Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, United States
| | - Laszlo Farkas
- Department of Internal Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
4
|
Hossain MMM, Farjana N, Afroz R, Hasan-Uj-Jaman, Saha PK, Roy HS, Rahman MA, Farid MA. Genes expression in Penaeus monodon of Bangladesh; challenged with AHPND-causing Vibrio parahaemolyticus. FISH AND SHELLFISH IMMUNOLOGY REPORTS 2023; 4:100092. [PMID: 37091065 PMCID: PMC10114510 DOI: 10.1016/j.fsirep.2023.100092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 02/09/2023] [Accepted: 04/01/2023] [Indexed: 04/05/2023] Open
Abstract
Vibrio parahaemolyticus, the causative agent of Acute hepatopancreatic necrosis disease (AHPND), was discovered in 2013 as a unique isolate that produces toxins and kills penaeid shrimps in devasting nature in Bangladesh and causes severe economic losses. This research aimed to understand the expressions of immune genes in different stages of the host species, Penaeus monodon, against virulence and toxin genes upon being challenged with V. parahaemolyticus. Healthy post-larvae (PL) samples were collected from southwestern of Bangladesh from July 2021 to August 2022. The tryptic soy agar with 1.5% sodium chloride (NaCl) was used to inoculate the cells of V. parahaemolyticus, and the tryptic soy broth (TSB) with 1.5% NaCl was used to transfer the colonies. The spectrophotometry measured bacteria density. PCR, qPCR, SDS-PAGE, and Western blot measured gene expression and survivability after the immersion challenge. The 1 × 105CFU/mL of V. parahaemolyticus was used for 144 h.p.i (hours post-infection) challenge to six stages of post-larvae (PL) of P. monodon (PL20, PL25, PL30, PL35, PL40, and PL45), PL30 and PL35 showed 100% mortality by day 72 (h.p.i.) after exposure that indicated most vulnerable to V. parahaemolyticus. The expression of immune and toxic genes was confirmed by qPCR. The immune genes toll-like receptors (TLR), prophenoloxidase (ProPO), lysozyme (lyso), and penaeidin (PEN) of PL20 and PL25 of P. monodon were expressed robustly up-trends. PL30 and PL35 showed the lowest gene expression at the end of 72 (h.p.i.). At the end of the 144 (h.p.i.) exposure, the immune genes TLR, ProPO, lyso, and PEN expressed highest in PL45 than other post-larvae stages of P. monodon. The toxic genes (pirA, ToxR, ToxA, ToxB, tlh, tdh, and trh) in PL30 and PL35 of P. monodon after exposure of V. parahaemolyticus were expressed highest at the end of the 72 (h.p.i.). The lowest toxic genes expressions were revealed in PL20 and PL45 at the end of the 144 (h.p.i.). The SDS-PAGE analysis of proteins from the bacterium revealed identical protein profiles with toxic genes, and those toxins were further confirmed by Western blot. The 20 kDa, 78 kDa (ToxR), 20 kDa, 25 kDa (ToxA), 25 kDa (ToxB), 20 kDa, 27 kDa, 75 kDa (tdh), and 20 kDa, 27 kDa, 75 kDa, and 78 kDa (trh) proteins were strong responses in Western blot, indicating the crucial involvement of these immune-related genes in the defense and recovery of the first-line defense mechanisms during V. parahaemolyticus infection to shrimp. The all-toxic genes showed a unique homology and those derived from the common ancestor compared with V. parahaemolyticus (NCBI accession no. AP014859.1). All clades were derived with different traits with very low genetic distance, where the overall mean distance was 3.18 and showed a very uniform and homogenous pattern among the lineages. The V. parahaemolyticus infection process in different PL stages in P. monodon revealed novel insights into the immune responses. The responses may lead to the subsequent production of a DNA vaccine, enhancing shrimp health management to minimize the economic losses due to AHPND experiencing an outbreak of early mortality syndrome (EMS) toward sustainable production P. monodon (shrimp).
Collapse
Affiliation(s)
- Md. Mer Mosharraf Hossain
- Department of Fisheries and Marine Bioscience, Jashore University of Science and Technology (JUST), Bangladesh
| | - Nawshin Farjana
- Department of Fisheries and Marine Bioscience, Jashore University of Science and Technology (JUST), Bangladesh
| | - Rukaiya Afroz
- Department of Fisheries and Marine Bioscience, Jashore University of Science and Technology (JUST), Bangladesh
| | | | | | | | - Md. Anisur Rahman
- Department of Fisheries and Marine Bioscience, Jashore University of Science and Technology (JUST), Bangladesh
| | - Md. Almamun Farid
- Department of Fisheries and Marine Bioscience, Jashore University of Science and Technology (JUST), Bangladesh
| |
Collapse
|
5
|
Kim BS. Critical role of TLR activation in viral replication, persistence, and pathogenicity of Theiler's virus. Front Immunol 2023; 14:1167972. [PMID: 37153539 PMCID: PMC10157096 DOI: 10.3389/fimmu.2023.1167972] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/11/2023] [Indexed: 05/09/2023] Open
Abstract
Theiler's murine encephalomyelitis virus (TMEV) establishes persistent viral infections in the central nervous system and induces chronic inflammatory demyelinating disease in susceptible mice. TMEV infects dendritic cells, macrophages, B cells, and glial cells. The state of TLR activation in the host plays a critical role in initial viral replication and persistence. The further activation of TLRs enhances viral replication and persistence, leading to the pathogenicity of TMEV-induced demyelinating disease. Various cytokines are produced via TLRs, and MDA-5 signals linked with NF-κB activation following TMEV infection. In turn, these signals further amplify TMEV replication and the persistence of virus-infected cells. The signals further elevate cytokine production, promoting the development of Th17 responses and preventing cellular apoptosis, which enables viral persistence. Excessive levels of cytokines, particularly IL-6 and IL-1β, facilitate the generation of pathogenic Th17 immune responses to viral antigens and autoantigens, leading to TMEV-induced demyelinating disease. These cytokines, together with TLR2 may prematurely generate functionally deficient CD25-FoxP3+ CD4+ T cells, which are subsequently converted to Th17 cells. Furthermore, IL-6 and IL-17 synergistically inhibit the apoptosis of virus-infected cells and the cytolytic function of CD8+ T lymphocytes, prolonging the survival of virus-infected cells. The inhibition of apoptosis leads to the persistent activation of NF-κB and TLRs, which continuously provides an environment of excessive cytokines and consequently promotes autoimmune responses. Persistent or repeated infections of other viruses such as COVID-19 may result in similar continuous TLR activation and cytokine production, leading to autoimmune diseases.
Collapse
|
6
|
Scheid S, Lejarre A, Wollborn J, Buerkle H, Goebel U, Ulbrich F. Argon preconditioning protects neuronal cells with a Toll-like receptor-mediated effect. Neural Regen Res 2022; 18:1371-1377. [PMID: 36453425 PMCID: PMC9838174 DOI: 10.4103/1673-5374.355978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
The noble gas argon has the potential to protect neuronal cells from cell death. So far, this effect has been studied in treatment after acute damage. Preconditioning using argon has not yet been investigated. In this study, human neuroblastoma SH-SY5Y cells were treated with different concentrations of argon (25%, 50%, and 74%; 21% O2, 5% CO2, balance nitrogen) at different time intervals before inflicting damage with rotenone (20 µM, 4 hours). Apoptosis was determined by flow cytometry after annexin V and propidium iodide staining. Surface expressions of Toll-like receptors 2 and 4 were also examined. Cells were also processed for analysis by western blot and qPCR to determine the expression of apoptotic and inflammatory proteins, such as extracellular-signal regulated kinase (ERK1/2), nuclear transcription factor-κB (NF-κB), protein kinase B (Akt), caspase-3, Bax, Bcl-2, interleukin-8, and heat shock proteins. Immunohistochemical staining was performed for TLR2 and 4 and interleukin-8. Cells were also pretreated with OxPAPC, an antagonist of TLR2 and 4 to elucidate the molecular mechanism. Results showed that argon preconditioning before rotenone application caused a dose-dependent but not a time-dependent reduction in the number of apoptotic cells. Preconditioning with 74% argon for 2 hours was used for further experiments showing the most promising results. Argon decreased the surface expression of TLR2 and 4, whereas OxPAPC treatment partially abolished the protective effect of argon. Argon increased phosphorylation of ERK1/2 but decreased NF-κB and Akt. Preconditioning inhibited mitochondrial apoptosis and the heat shock response. Argon also suppressed the expression of the pro-inflammatory cytokine interleukin-8. Immunohistochemistry confirmed the alteration of TLRs and interleukin-8. OxPAPC reversed the argon effect on ERK1/2, Bax, Bcl-2, caspase-3, and interleukin-8 expression, but not on NF-κB and the heat shock proteins. Taken together, argon preconditioning protects against apoptosis of neuronal cells and mediates its action via Toll-like receptors. Argon may represent a promising therapeutic alternative in various clinical settings, such as the treatment of stroke.
Collapse
Affiliation(s)
- Stefanie Scheid
- Department of Anesthesiology and Critical Care, Medical Center - University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Adrien Lejarre
- Department of Anesthesiology and Critical Care, Medical Center - University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Jakob Wollborn
- Department of Anesthesiology and Critical Care, Medical Center - University of Freiburg, Faculty of Medicine, Freiburg, Germany,Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Hartmut Buerkle
- Department of Anesthesiology and Critical Care, Medical Center - University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Ulrich Goebel
- Department of Anesthesiology and Critical Care Medicine, St. Franziskus-Hospital, Muenster, Germany
| | - Felix Ulbrich
- Department of Anesthesiology and Critical Care, Medical Center - University of Freiburg, Faculty of Medicine, Freiburg, Germany,Correspondence to: Felix Ulbrich, .
| |
Collapse
|
7
|
Heidari A, Yazdanpanah N, Rezaei N. The role of Toll-like receptors and neuroinflammation in Parkinson's disease. J Neuroinflammation 2022; 19:135. [PMID: 35668422 PMCID: PMC9172200 DOI: 10.1186/s12974-022-02496-w] [Citation(s) in RCA: 89] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 05/26/2022] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Parkinson's disease (PD) is the second most prevalent neurodegenerative disorder, characterized by motor and non-motor symptoms, significantly affecting patients' life. Pathologically, PD is associated with the extensive degeneration of dopaminergic neurons in various regions of the central nervous system (CNS), specifically the substantia nigra. This neuronal loss is accompanied by the aggregation of misfolded protein, named α-synuclein. MAIN TEXT Recent studies detected several clues of neuroinflammation in PD samples using postmortem human PD brains and various PD animal models. Some evidence of neuroinflammation in PD patients included higher levels of proinflammatory cytokines in serum and cerebrospinal fluid (CSF), presence of activated microglia in various brain regions such as substantia nigra, infiltration of peripheral inflammatory cells in affected brain regions, and altered function of cellular immunity like monocytes phagocytosis defects. On the other side, Toll-like receptors (TLRs) are innate immune receptors primarily located on microglia, as well as other immune and non-immune cells, expressing pivotal roles in recognizing exogenous and endogenous stimuli and triggering inflammatory responses. Most studies indicated an increased expression of TLRs in the brain and peripheral blood cells of PD samples. Besides, this upregulation was associated with excessive neuroinflammation followed by neurodegeneration in affected regions. Therefore, evidence proposed that TLR-mediated neuroinflammation might lead to a dopaminergic neural loss in PD patients. In this regard, TLR2, TLR4, and TLR9 have the most prominent roles. CONCLUSION Although the presence of inflammation in acute phases of PD might have protective effects concerning the clearance of α-synuclein and delaying the disease advancement, the chronic activation of TLRs and neuroinflammation might lead to neurodegeneration, resulting in the disease progression. Therefore, this study aimed to review additional evidence of the contribution of TLRs and neuroinflammation to PD pathogenesis, with the hope that TLRs could serve as novel disease-modifying therapeutic targets in PD patients in the future.
Collapse
Affiliation(s)
- Arash Heidari
- Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Research Center for Immunodeficiencies, Children's Medical Center Hospital, Tehran University of Medical Sciences, Dr. Qarib St, Keshavarz Blvd, Tehran, 14194, Iran.,Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Niloufar Yazdanpanah
- Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Research Center for Immunodeficiencies, Children's Medical Center Hospital, Tehran University of Medical Sciences, Dr. Qarib St, Keshavarz Blvd, Tehran, 14194, Iran.,Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center Hospital, Tehran University of Medical Sciences, Dr. Qarib St, Keshavarz Blvd, Tehran, 14194, Iran. .,Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran. .,Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
8
|
TIRAP-mediated activation of p38 MAPK in inflammatory signaling. Sci Rep 2022; 12:5601. [PMID: 35379857 PMCID: PMC8979995 DOI: 10.1038/s41598-022-09528-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 03/16/2022] [Indexed: 02/06/2023] Open
Abstract
AbstractThe role of TIRAP (toll/interleukin-1 receptor (TIR) domain-containing adapter protein) in macrophage inflammatory signalling has been significantly evolved since its discovery in 2001 due to its dynamic nature and subcellular localization to regulate multiple signaling through several protein–protein interactions (PPIs). Structural analysis of these interactions can reveal a better understanding of their conformational dynamics and the nature of their binding. Tyrosine phosphorylation in the TIR domain of TIRAP is very critical for its function. In toll-like receptor (TLR) 4/2 signalling, Bruton's tyrosine kinase (BTK) and Protein kinase C delta (PKCδ) are known to phosphorylate the Y86, Y106, Y159, and Y187 of TIRAP which is crucial for the downstream function of MAPKs (mitogen-activated protein kinases) activation. The objective of this study is to understand the interaction of TIRAP with p38 MAPK through molecular docking and identify the importance of TIRAP tyrosine phosphorylation in p38 MAPK interaction. In this structural study, we performed an in-silico molecular docking using HADDOCK 2.4, pyDockWEB, ClusPro 2.0, and ZDOCK 3.0.2 tools to unravel the interaction between TIRAP and p38 MAPK. Further, manual in-silico phosphorylations of TIRAP tyrosines; Y86, Y106, Y159, and Y187 was created in the Discovery Studio tool to study the conformational changes in protein docking and their binding affinities with p38 MAPK in comparison to non-phosphorylated state. Our molecular docking and 500 ns of molecular dynamic (MD) simulation study demonstrates that the Y86 phosphorylation (pY86) in TIRAP is crucial in promoting the higher binding affinity (∆Gbind) with p38 MAPK. The conformational changes due to the tyrosine phosphorylation mainly at the Y86 site pull the TIRAP closer to the active site in the kinase domain of p38 MAPK and plays a significant role at the interface site which is reversed in its dephosphorylated state. The heatmap of interactions between the TIRAP and p38 MAPK after the MD simulation shows that the TIRAP pY86 structure makes the highest number of stable hydrogen bonds with p38 MAPK residues. Our findings may further be validated in an in-vitro system and would be crucial for targeting the TIRAP and p38 MAPK interaction for therapeutic purposes against the chronic inflammatory response and associated diseases.
Collapse
|
9
|
Shi Y, Su J, Chen R, Wei W, Yuan Z, Chen X, Wang X, Liang H, Ye L, Jiang J. The Role of Innate Immunity in Natural Elite Controllers of HIV-1 Infection. Front Immunol 2022; 13:780922. [PMID: 35211115 PMCID: PMC8861487 DOI: 10.3389/fimmu.2022.780922] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 01/19/2022] [Indexed: 12/26/2022] Open
Abstract
The natural process of human immunodeficiency virus type 1(HIV-1) infection is characterized by high viral load, immune cell exhaustion, and immunodeficiency, which eventually leads to the stage of acquired immunodeficiency syndrome (AIDS) and opportunistic infections. Rapidly progressing HIV-1 individuals often die of AIDS several years after infection without treatment. The promotion of ART greatly prolongs the survival time of HIV-infected persons. However, some patients have incomplete immune function reconstruction after ART due to latent storage of HIV-infected cells. Therefore, how to achieve a functional cure has always been the focus and hot spot of global AIDS research. Fortunately, the emergence of ECs/LTNPs who can control virus replication naturally has ignited new hope for realizing a functional cure for AIDS. Recently, a special category of infected individuals has attracted attention that can delay the progression of the disease more rigorously than the natural progression of HIV-1 infection described above. These patients are characterized by years of HIV-1 infection, long-term asymptomatic status, and normal CD4+T cell count without ART, classified as HIV-infected long-term nonprogressors (LTNPs) and elite controllers (ECs). Numerous studies have shown that the host and virus jointly determine the progression of HIV-1 infection, in which the level of innate immunity activation plays an important role. As the first line of defense against pathogen invasion, innate immunity is also a bridge to induce adaptive immunity. Compared with natural progressors, innate immunity plays an antiviral role in HIV-1 infection by inducing or activating many innate immune-related factors in the natural ECs. Learning the regulation of ECs immunity, especially the innate immunity in different characteristics, and thus studying the mechanism of the control of disease progression naturally, will contribute to the realization of the functional cure of AIDS. Therefore, this review will explore the relationship between innate immunity and disease progression in ECs of HIV-1 infection from the aspects of innate immune cells, signaling pathways, cytokines, which is helpful to provide new targets and theoretical references for the functional cure, prevention and control of AIDS, and development of a vaccine.
Collapse
Affiliation(s)
- Yuting Shi
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, China
| | - Jinming Su
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, China.,Joint Laboratory for Emerging Infectious Diseases in China (Guangxi)-ASEAN, Life Sciences Institute, Guangxi Medical University, Nanning, China
| | - Rongfeng Chen
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, China.,Joint Laboratory for Emerging Infectious Diseases in China (Guangxi)-ASEAN, Life Sciences Institute, Guangxi Medical University, Nanning, China
| | - Wudi Wei
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, China.,Joint Laboratory for Emerging Infectious Diseases in China (Guangxi)-ASEAN, Life Sciences Institute, Guangxi Medical University, Nanning, China
| | - Zongxiang Yuan
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, China
| | - Xiu Chen
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, China
| | - Xinwei Wang
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, China
| | - Hao Liang
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, China.,Joint Laboratory for Emerging Infectious Diseases in China (Guangxi)-ASEAN, Life Sciences Institute, Guangxi Medical University, Nanning, China
| | - Li Ye
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, China.,Joint Laboratory for Emerging Infectious Diseases in China (Guangxi)-ASEAN, Life Sciences Institute, Guangxi Medical University, Nanning, China
| | - Junjun Jiang
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, China.,Joint Laboratory for Emerging Infectious Diseases in China (Guangxi)-ASEAN, Life Sciences Institute, Guangxi Medical University, Nanning, China
| |
Collapse
|
10
|
Pons V, Rivest S. Targeting Systemic Innate Immune Cells as a Therapeutic Avenue for Alzheimer Disease. Pharmacol Rev 2022; 74:1-17. [PMID: 34987086 DOI: 10.1124/pharmrev.121.000400] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 08/13/2021] [Indexed: 12/12/2022] Open
Abstract
Alzheimer disease (AD) is the first progressive neurodegenerative disease worldwide, and the disease is characterized by an accumulation of amyloid in the brain and neurovasculature that triggers cognitive decline and neuroinflammation. The innate immune system has a preponderant role in AD. The last decade, scientists focused their efforts on therapies aiming to modulate innate immunity. The latter is of great interest, since they participate to the inflammation and phagocytose the amyloid in the brain and blood vessels. We and others have developed pharmacological approaches to stimulate these cells using various ligands. These include toll-like receptor 4, macrophage colony stimulating factor, and more recently nucleotide-binding oligomerization domain-containing 2 receptors. This review will discuss the great potential to take advantage of the innate immune system to fight naturally against amyloid β accumulation and prevent its detrimental consequence on brain functions and its vascular system. SIGNIFICANCE STATEMENT: The focus on amyloid β removal from the perivascular space rather than targeting CNS plaque formation and clearance represents a new direction with a great potential. Small molecules able to act at the level of peripheral immunity would constitute a novel approach for tackling aberrant central nervous system biology, one of which we believe would have the potential of generating a lot of interest.
Collapse
Affiliation(s)
- Vincent Pons
- Neuroscience Laboratory, CHU de Québec Research Center and Department of Molecular Medicine, Faculty of Medicine, Laval University, 2705 Laurier Boul., Québec City, QC G1V 4G2, Canada
| | - Serge Rivest
- Neuroscience Laboratory, CHU de Québec Research Center and Department of Molecular Medicine, Faculty of Medicine, Laval University, 2705 Laurier Boul., Québec City, QC G1V 4G2, Canada
| |
Collapse
|
11
|
Jeeva S, Kim KH, Shin CH, Wang BZ, Kang SM. An Update on mRNA-Based Viral Vaccines. Vaccines (Basel) 2021; 9:965. [PMID: 34579202 PMCID: PMC8473183 DOI: 10.3390/vaccines9090965] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 12/23/2022] Open
Abstract
With the success of COVID-19 vaccines, newly created mRNA vaccines against other infectious diseases are beginning to emerge. Here, we review the structural elements required for designing mRNA vaccine constructs for effective in vitro synthetic transcription reactions. The unprecedently speedy development of mRNA vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was enabled with previous innovations in nucleoside modifications during in vitro transcription and lipid nanoparticle delivery materials of mRNA. Recent updates are briefly described in the status of mRNA vaccines against SARS-CoV-2, influenza virus, and other viral pathogens. Unique features of mRNA vaccine platforms and future perspectives are discussed.
Collapse
Affiliation(s)
| | | | | | | | - Sang-Moo Kang
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA; (S.J.); (K.-H.K.); (C.H.S.); (B.-Z.W.)
| |
Collapse
|
12
|
Lushpa VA, Goncharuk MV, Lin C, Zalevsky AO, Talyzina IA, Luginina AP, Vakhrameev DD, Shevtsov MB, Goncharuk SA, Arseniev AS, Borshchevskiy VI, Wang X, Mineev KS. Modulation of Toll-like receptor 1 intracellular domain structure and activity by Zn 2+ ions. Commun Biol 2021; 4:1003. [PMID: 34429510 PMCID: PMC8385042 DOI: 10.1038/s42003-021-02532-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 08/06/2021] [Indexed: 12/27/2022] Open
Abstract
Toll-like receptors (TLRs) play an important role in the innate immune response. While a lot is known about the structures of their extracellular parts, many questions are still left unanswered, when the structural basis of TLR activation is analyzed for the TLR intracellular domains. Here we report the structure and dynamics of TLR1 toll-interleukin like (TIR) cytoplasmic domain in crystal and in solution. We found that the TLR1-TIR domain is capable of specific binding of Zn with nanomolar affinity. Interactions with Zn are mediated by cysteine residues 667 and 686 and C667 is essential for the Zn binding. Potential structures of the TLR1-TIR/Zn complex were predicted in silico. Using the functional assays for the heterodimeric TLR1/2 receptor, we found that both Zn addition and Zn depletion affect the activity of TLR1, and C667A mutation disrupts the receptor activity. Analysis of C667 position in the TLR1 structure and possible effects of C667A mutation, suggests that zinc-binding ability of TLR1-TIR domain is critical for the receptor activation. Lushpa et al report the structure and dynamics of the TLR1 toll-interleukin like (TIR) cytoplasmic domain in both crystal and solution. They demonstrate that the TLR1 TIR domain is capable of specific binding of Zn with nanomolar affinity, which appears to be critical for receptor activation, and provide potential structures TLR1-TIR/Zn complex based on in silico data.
Collapse
Affiliation(s)
- Vladislav A Lushpa
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russia.,Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Marina V Goncharuk
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russia
| | - Cong Lin
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, China
| | - Arthur O Zalevsky
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russia
| | - Irina A Talyzina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russia.,Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia
| | | | | | | | - Sergey A Goncharuk
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russia.,Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | | | - Valentin I Borshchevskiy
- Moscow Institute of Physics and Technology, Dolgoprudny, Russia.,Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich GmbH, Jülich, Germany.,JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Xiaohui Wang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, China.,Department of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, China
| | - Konstantin S Mineev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russia. .,Moscow Institute of Physics and Technology, Dolgoprudny, Russia.
| |
Collapse
|
13
|
Duerr R, Crosse KM, Valero-Jimenez AM, Dittmann M. SARS-CoV-2 Portrayed against HIV: Contrary Viral Strategies in Similar Disguise. Microorganisms 2021; 9:1389. [PMID: 34198973 PMCID: PMC8307803 DOI: 10.3390/microorganisms9071389] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/06/2021] [Accepted: 06/07/2021] [Indexed: 11/16/2022] Open
Abstract
SARS-CoV-2 and HIV are zoonotic viruses that rapidly reached pandemic scale, causing global losses and fear. The COVID-19 and AIDS pandemics ignited massive efforts worldwide to develop antiviral strategies and characterize viral architectures, biological and immunological properties, and clinical outcomes. Although both viruses have a comparable appearance as enveloped viruses with positive-stranded RNA and envelope spikes mediating cellular entry, the entry process, downstream biological and immunological pathways, clinical outcomes, and disease courses are strikingly different. This review provides a systemic comparison of both viruses' structural and functional characteristics, delineating their distinct strategies for efficient spread.
Collapse
Affiliation(s)
- Ralf Duerr
- Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA; (K.M.C.); (A.M.V.-J.); (M.D.)
| | | | | | | |
Collapse
|
14
|
Zuo Q, Cheng Z, Zhang G, Xia Y, Xu G, Cao W, Yang X, Fu Y, He R, Fang P, Guo Y, Nie L, Huang Y, Liu L, Zhan J, Liu S, Zhu Y. Role of IL-6-IL-27 Complex in Host Antiviral Immune Response. THE JOURNAL OF IMMUNOLOGY 2021; 207:577-589. [PMID: 34145061 DOI: 10.4049/jimmunol.2100179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 05/10/2021] [Indexed: 11/19/2022]
Abstract
The IL family of cytokines participates in immune response and regulation. We previously found that soluble IL-6 receptor plays an important role in the host antiviral response. In this study, we detected the IL-6-IL-27 complex in serum and throat swab samples from patients infected with influenza A virus. A plasmid expressing the IL-6-IL-27 complex was constructed to explore its biological function. The results indicated that the IL-6-IL-27 complex has a stronger antiviral effect than the individual subunits of IL-6, IL-27A, and EBV-induced gene 3. Furthermore, the activity of the IL-6-IL-27 complex is mainly mediated by the IL-27A subunit and the IL-27 receptor α. The IL-6-IL-27 complex can positively regulate virus-triggered expression of IFN and IFN-stimulated genes by interacting with adaptor protein mitochondrial antiviral signaling protein, potentiating the ubiquitination of TNF receptor-associated factors 3 and 6 and NF-κB nuclear translocation. The secreted IL-6-IL-27 complex can induce the phosphorylation of STAT1 and STAT3 and shows antiviral activity. Our results demonstrate a previously unrecognized mechanism by which IL-6, IL-27A, and EBV-induced gene 3 form a large complex both intracellularly and extracellularly, and this complex acts in the host antiviral response.
Collapse
Affiliation(s)
- Qi Zuo
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China; and
| | - Zhikui Cheng
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China; and
| | - Guoqing Zhang
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China; and
| | - Yongfang Xia
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China; and
| | - Gang Xu
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China; and
| | - Wei Cao
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China; and
| | - Xiaodan Yang
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China; and
| | - Yundong Fu
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China; and
| | - Rui He
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China; and
| | - Peining Fang
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China; and
| | - Yifei Guo
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China; and
| | - Longyu Nie
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China; and
| | - Yu Huang
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China; and
| | - Lin Liu
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China; and
| | - Jianbo Zhan
- Institute of Health Inspection and Testing, Hubei Provincial Center for Disease Control and Prevention, Wuhan, China
| | - Shi Liu
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China; and
| | - Ying Zhu
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China; and
| |
Collapse
|
15
|
Barrado-Gil L, del Puerto A, Galindo I, Cuesta-Geijo MÁ, García-Dorival I, de Motes CM, Alonso C. African Swine Fever Virus Ubiquitin-Conjugating Enzyme Is an Immunomodulator Targeting NF-κB Activation. Viruses 2021; 13:v13061160. [PMID: 34204411 PMCID: PMC8233900 DOI: 10.3390/v13061160] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/11/2021] [Accepted: 06/14/2021] [Indexed: 12/17/2022] Open
Abstract
African swine fever virus (ASFV) is an acute and persistent swine virus with a high economic burden that encodes multiple genes to evade host immune response. In this work, we have revealed that early viral protein UBCv1, the only known conjugating enzyme encoded by a virus, modulates innate immune and inflammatory signaling. Transient overexpression of UBCv1 impaired activation of NF-κB and AP-1 transcription factors induced by several agonists of these pathways. In contrast, activation of IRF3 and ISRE signaling upon stimulation with TRIFΔRIP, cGAS/STING or RIG-I-CARD remained unaltered. Experiments aimed at mapping UBCv1 inhibitory activity indicated that this viral protein acts upstream or at the level step of IKKβ. In agreement with this, UBCv1 was able to block p65 nuclear translocation upon cytokine stimulation, a key event in NF-ĸB signaling. Additionally, A549 stably transduced for UBCv1 showed a significant decrease in the levels of NF-ĸB dependent genes. Interestingly, despite the well-defined capacity of UBCv1 to conjugate ubiquitin chains, a mutant disabled for ubiquitylation activity retained similar immunomodulatory activity as the wild-type enzyme, suggesting that the two functions are segregated. Altogether these data suggest that ASFV UBCv1 manipulates the innate immune response targeting the NF-κB and AP-1 pathways and opens new questions about the multifunctionality of this enzyme.
Collapse
Affiliation(s)
- Lucía Barrado-Gil
- Department of Biotechnology, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Ctra. de la Coruña km 7.5, 28040 Madrid, Spain; (L.B.-G.); (A.d.P.); (I.G.); (M.Á.C.-G.); (I.G.-D.)
| | - Ana del Puerto
- Department of Biotechnology, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Ctra. de la Coruña km 7.5, 28040 Madrid, Spain; (L.B.-G.); (A.d.P.); (I.G.); (M.Á.C.-G.); (I.G.-D.)
| | - Inmaculada Galindo
- Department of Biotechnology, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Ctra. de la Coruña km 7.5, 28040 Madrid, Spain; (L.B.-G.); (A.d.P.); (I.G.); (M.Á.C.-G.); (I.G.-D.)
| | - Miguel Ángel Cuesta-Geijo
- Department of Biotechnology, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Ctra. de la Coruña km 7.5, 28040 Madrid, Spain; (L.B.-G.); (A.d.P.); (I.G.); (M.Á.C.-G.); (I.G.-D.)
| | - Isabel García-Dorival
- Department of Biotechnology, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Ctra. de la Coruña km 7.5, 28040 Madrid, Spain; (L.B.-G.); (A.d.P.); (I.G.); (M.Á.C.-G.); (I.G.-D.)
| | - Carlos Maluquer de Motes
- Department of Microbial Sciences, School of Biosciences and Medicine, University of Surrey, Stag Hill, Guildford GU2 7XH, UK
- Correspondence: (C.M.d.M.); (C.A.)
| | - Covadonga Alonso
- Department of Biotechnology, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Ctra. de la Coruña km 7.5, 28040 Madrid, Spain; (L.B.-G.); (A.d.P.); (I.G.); (M.Á.C.-G.); (I.G.-D.)
- Correspondence: (C.M.d.M.); (C.A.)
| |
Collapse
|
16
|
Bugueno IM, Benkirane-Jessel N, Huck O. Implication of Toll/IL-1 receptor domain containing adapters in Porphyromonas gingivalis-induced inflammation. Innate Immun 2021; 27:324-342. [PMID: 34018827 PMCID: PMC8186158 DOI: 10.1177/17534259211013087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Periodontitis is induced by periodontal dysbiosis characterized by the predominance of anaerobic species. TLRs constitute the classical pathway for cell activation by infection. Interestingly, the Toll/IL-1 receptor homology domain adapters initiate signaling events, leading to the activation of the expression of the genes involved in the host immune response. The aim of this study was to evaluate the effects of Porphyromonas gingivalis on the expression and protein-protein interactions among five TIR adapters (MAL, MyD88, TRIF, TRAM and SARM) in gingival epithelial cells and endothelial cells. It was observed that P. gingivalis is able to modulate the signaling cascades activated through its recognition by TLR4/2 in gingival epithelial cells and endothelial cells. Indeed, MAL-MyD88 protein-protein interactions associated with TLR4 was the main pathway activated by P. gingivalis infection. When transient siRNA inhibition was performed, cell viability, inflammation, and cell death induced by infection decreased and such deleterious effects were almost absent when MAL or TRAM were targeted. This study emphasizes the role of such TIR adapter proteins in P. gingivalis elicited inflammation and the precise evaluation of TIR adapter protein interactions may pave the way for future therapeutics in both periodontitis and systemic disease with a P. gingivalis involvement, such as atherothrombosis.
Collapse
Affiliation(s)
- Isaac M Bugueno
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Nadia Benkirane-Jessel
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Olivier Huck
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France.,Faculté de Chirurgie Dentaire, Université de Strasbourg, France.,Pôle de Médecine et de Chirurgie Bucco-Dentaires, Hôpitaux Universitaires de Strasbourg, France
| |
Collapse
|
17
|
Laura G, Liu Y, Fernandes K, Willis-Owen SAG, Ito K, Cookson WO, Moffatt MF, Zhang Y. ORMDL3 regulates poly I:C induced inflammatory responses in airway epithelial cells. BMC Pulm Med 2021; 21:167. [PMID: 34001091 PMCID: PMC8127224 DOI: 10.1186/s12890-021-01496-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 04/06/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Oroscomucoid 3 (ORMDL3) has been linked to susceptibility of childhood asthma and respiratory viral infection. Polyinosinic-polycytidylic acid (poly I:C) is a synthetic analog of viral double-stranded RNA, a toll-like receptor 3 (TLR3) ligand and mimic of viral infection. METHODS To investigate the functional role of ORMDL3 in the poly I:C-induced inflammatory response in airway epithelial cells, ORMDL3 knockdown and over-expression models were established in human A549 epithelial cells and primary normal human bronchial epithelial (NHBE) cells. The cells were stimulated with poly I:C or the Th17 cytokine IL-17A. IL-6 and IL-8 levels in supernatants, mRNA levels of genes in the TLR3 pathway and inflammatory response from cell pellets were measured. ORMDL3 knockdown models in A549 and BEAS-2B epithelial cells were then infected with live human rhinovirus (HRV16) followed by IL-6 and IL-8 measurement. RESULTS ORMDL3 knockdown and over-expression had little influence on the transcript levels of TLR3 in airway epithelial cells. Time course studies showed that ORMDL3-deficient A549 and NHBE cells had an attenuated IL-6 and IL-8 response to poly I:C stimulation. A549 and NHBE cells over-expressing ORMDL3 released relatively more IL-6 and IL-8 following poly I:C stimulation. IL-17A exhibited a similar inflammatory response in ORMDL3 knockdown and over-expressing cells, but co-stimulation of poly I:C and IL-17A did not significantly enhance the IL-6 and IL-8 response. Transcript abundance of IFNB following poly I:C stimulation was not significantly altered by ORMDL3 knockdown or over-expression. Dampening of the IL-6 response by ORMDL3 knockdown was confirmed in HRV16 infected BEAS-2B and A549 cells. CONCLUSIONS ORMDL3 regulates the viral inflammatory response in airway epithelial cells via mechanisms independent of the TLR3 pathway.
Collapse
Affiliation(s)
- Gemma Laura
- National Heart and Lung Institute, Imperial College London, London, SW3 6LY, UK
| | - Yi Liu
- National Heart and Lung Institute, Imperial College London, London, SW3 6LY, UK
| | - Kieran Fernandes
- National Heart and Lung Institute, Imperial College London, London, SW3 6LY, UK
| | | | - Kazuhiro Ito
- National Heart and Lung Institute, Imperial College London, London, SW3 6LY, UK.,Pulmocide Ltd., London, WC2A 1AP, UK
| | - William O Cookson
- National Heart and Lung Institute, Imperial College London, London, SW3 6LY, UK
| | - Miriam F Moffatt
- National Heart and Lung Institute, Imperial College London, London, SW3 6LY, UK
| | - Youming Zhang
- National Heart and Lung Institute, Imperial College London, London, SW3 6LY, UK.
| |
Collapse
|
18
|
Lisk C, Yuen R, Kuniholm J, Antos D, Reiser ML, Wetzler LM. CD169+ Subcapsular Macrophage Role in Antigen Adjuvant Activity. Front Immunol 2021; 12:624197. [PMID: 33815376 PMCID: PMC8012505 DOI: 10.3389/fimmu.2021.624197] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/14/2021] [Indexed: 11/13/2022] Open
Abstract
Vaccines have played a pivotal role in improving public health, however, many infectious diseases lack an effective vaccine. Controlling the spread of infectious diseases requires continuing studies to develop new and improved vaccines. Our laboratory has been investigating the immune enhancing mechanisms of Toll-like receptor (TLR) ligand-based adjuvants, including the TLR2 ligand Neisseria meningitidis outer membrane protein, PorB. Adjuvant use of PorB increases costimulatory factors on antigen presenting cells (APC), increases antigen specific antibody production, and cytokine producing T cells. We have demonstrated that macrophage expression of MyD88 (required for TLR2 signaling) is an absolute requirement for the improved antibody response induced by PorB. Here-in, we specifically investigated the role of subcapsular CD169+ marginal zone macrophages in antibody production induced by the use of TLR-ligand based adjuvants (PorB and CpG) and non-TLR-ligand adjuvants (aluminum salts). CD169 knockout mice and mice treated with low dose clodronate treated animals (which only remove marginal zone macrophages), were used to investigate the role of these macrophages in adjuvant-dependent antibody production. In both sets of mice, total antigen specific immunoglobulins (IgGs) were diminished regardless of adjuvant used. However, the greatest reduction was seen with the use of TLR ligands as adjuvants. In addition, the effect of the absence of CD169+ macrophages on adjuvant induced antigen and antigen presenting cell trafficking to the lymph nodes was examined using immunofluorescence by determining the relative extent of antigen loading on dendritic cells (DCs) and antigen deposition on follicular dendritic cells (FDC). Interestingly, only vaccine preparations containing PorB had significant decreases in antigen deposition in lymphoid follicles and germinal centers in CD169 knockout mice or mice treated with low dose clodronate as compared to wildtype controls. Mice immunized with CpG containing preparations demonstrated decreased FDC networks in the mice treated with low dose clodronate. Conversely, alum containing preparations only demonstrated significant decreases in IgG in CD169 knockout mice. These studies stress that importance of subcapsular macrophages and their unique role in adjuvant-mediated antibody production, potentially due to an effect of these adjuvants on antigen trafficking to the lymph node and deposition on follicular dendritic cells.
Collapse
Affiliation(s)
- Christina Lisk
- Section of Infectious Diseases, Department of Medicine, Boston Medical Center, Boston, MA, United States
| | - Rachel Yuen
- Department of Microbiology, Boston University School of Medicine, Boston, MA, United States
| | - Jeff Kuniholm
- Department of Microbiology, Boston University School of Medicine, Boston, MA, United States
| | - Danielle Antos
- Department of Microbiology and Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | | | - Lee M. Wetzler
- Section of Infectious Diseases, Department of Medicine, Boston Medical Center, Boston, MA, United States
- Department of Microbiology, Boston University School of Medicine, Boston, MA, United States
| |
Collapse
|
19
|
Lai HC, James A, Luff J, De Souza P, Quek H, Ho U, Lavin MF, Roberts TL. Regulation of RNA degradation pathways during the lipopolysaccharide response in Macrophages. J Leukoc Biol 2021; 109:593-603. [PMID: 32829531 DOI: 10.1002/jlb.2ab0420-151rr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 04/01/2020] [Accepted: 05/26/2020] [Indexed: 11/09/2022] Open
Abstract
The innate immune response to LPS is highly dynamic yet tightly regulated. The majority of studies of gene expression have focussed on transcription. However, it is also important to understand how post-transcriptional pathways are regulated in response to inflammatory stimuli as the rate of RNA degradation relative to new transcription is important for overall expression. RNA decay pathways include nonsense-mediated decay, the RNA decay exosome, P-body localized deadenylation, decapping and degradation, and AU-rich element targeted decay mediated by tristetraprolin. Here, bone marrow-derived Mϕs were treated with LPS over a time course of 0, 2, 6, and 24 h and the transcriptional profiles were analyzed by RNA sequencing. The data show that components of RNA degradation pathways are regulated during an LPS response. Processing body associated decapping enzyme DCP2 and regulatory subunit DCP1A, and 5' exonuclease XRN1 and sequence specific RNA decay pathways were upregulated. Nonsense mediated decay was also increased in response to LPS induced signaling, initially by increased activation and at later timepoints at the mRNA and protein levels. This leads to increased nonsense mediated decay efficiency across the 24 h following LPS treatment. These findings suggest that LPS activation of Mϕs results in targeted regulation of RNA degradation pathways in order to change how subsets of mRNAs are degraded during an inflammatory response.
Collapse
Affiliation(s)
- Hui-Chi Lai
- Ingham Institute for Applied Medical Research, Liverpool, New South Wales, Australia
- South West Sydney Clinical School, UNSW Australia, Liverpool, New South Wales, Australia
| | - Alexander James
- Ingham Institute for Applied Medical Research, Liverpool, New South Wales, Australia
| | - John Luff
- The University of Queensland Centre for Clinical Research, Herston, Queensland, Australia
| | - Paul De Souza
- Ingham Institute for Applied Medical Research, Liverpool, New South Wales, Australia
- Medical Oncology Department, Liverpool Hospital, Liverpool, New South Wales, Australia
- School of Medicine, Western Sydney University, Macarthur, New South Wales, Australia
| | - Hazel Quek
- QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Uda Ho
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia
| | - Martin F Lavin
- The University of Queensland Centre for Clinical Research, Herston, Queensland, Australia
| | - Tara L Roberts
- Ingham Institute for Applied Medical Research, Liverpool, New South Wales, Australia
- South West Sydney Clinical School, UNSW Australia, Liverpool, New South Wales, Australia
- The University of Queensland Centre for Clinical Research, Herston, Queensland, Australia
- School of Medicine, Western Sydney University, Macarthur, New South Wales, Australia
| |
Collapse
|
20
|
Dubey A, Gaur R, Arela N, Singh V, Arora M, Sagar H, Kamal R, Natarajan M, Bhagyawant SS, Patil SA, Mohanty KK. Soluble mediators of immune significance in sera of leprosy patients. LEPROSY REV 2020. [DOI: 10.47276/lr.91.4.403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
21
|
Lokugamage KG, Hage A, de Vries M, Valero-Jimenez AM, Schindewolf C, Dittmann M, Rajsbaum R, Menachery VD. Type I Interferon Susceptibility Distinguishes SARS-CoV-2 from SARS-CoV. J Virol 2020; 94:e01410-20. [PMID: 32938761 PMCID: PMC7654262 DOI: 10.1128/jvi.01410-20] [Citation(s) in RCA: 237] [Impact Index Per Article: 59.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 09/07/2020] [Indexed: 12/11/2022] Open
Abstract
SARS-CoV-2, a novel coronavirus (CoV) that causes COVID-19, has recently emerged causing an ongoing outbreak of viral pneumonia around the world. While distinct from SARS-CoV, both group 2B CoVs share similar genome organization, origins to bat CoVs, and an arsenal of immune antagonists. In this report, we evaluate type I interferon (IFN-I) sensitivity of SARS-CoV-2 relative to the original SARS-CoV. Our results indicate that while SARS-CoV-2 maintains similar viral replication to SARS-CoV, the novel CoV is much more sensitive to IFN-I. In Vero E6 and in Calu3 cells, SARS-CoV-2 is substantially attenuated in the context of IFN-I pretreatment, whereas SARS-CoV is not. In line with these findings, SARS-CoV-2 fails to counteract phosphorylation of STAT1 and expression of ISG proteins, while SARS-CoV is able to suppress both. Comparing SARS-CoV-2 and influenza A virus in human airway epithelial cultures, we observe the absence of IFN-I stimulation by SARS-CoV-2 alone but detect the failure to counteract STAT1 phosphorylation upon IFN-I pretreatment, resulting in near ablation of SARS-CoV-2 infection. Next, we evaluated IFN-I treatment postinfection and found that SARS-CoV-2 was sensitive even after establishing infection. Finally, we examined homology between SARS-CoV and SARS-CoV-2 in viral proteins shown to be interferon antagonists. The absence of an equivalent open reading frame 3b (ORF3b) and genetic differences versus ORF6 suggest that the two key IFN-I antagonists may not maintain equivalent function in SARS-CoV-2. Together, the results identify key differences in susceptibility to IFN-I responses between SARS-CoV and SARS-CoV-2 that may help inform disease progression, treatment options, and animal model development.IMPORTANCE With the ongoing outbreak of COVID-19, differences between SARS-CoV-2 and the original SARS-CoV could be leveraged to inform disease progression and eventual treatment options. In addition, these findings could have key implications for animal model development as well as further research into how SARS-CoV-2 modulates the type I IFN response early during infection.
Collapse
Affiliation(s)
- Kumari G Lokugamage
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Adam Hage
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Maren de Vries
- Department of Microbiology, New York University School of Medicine, New York, New York, USA
| | - Ana M Valero-Jimenez
- Department of Microbiology, New York University School of Medicine, New York, New York, USA
| | - Craig Schindewolf
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Meike Dittmann
- Department of Microbiology, New York University School of Medicine, New York, New York, USA
| | - Ricardo Rajsbaum
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
- Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, Texas, USA
| | - Vineet D Menachery
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
- Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, Texas, USA
| |
Collapse
|
22
|
Medina-Rodriguez EM, Cheng Y, Michalek SM, Beurel E, Jope RS. Toll-like receptor 2 (TLR2)-deficiency impairs male mouse recovery from a depression-like state. Brain Behav Immun 2020; 89:51-58. [PMID: 32479995 PMCID: PMC7572513 DOI: 10.1016/j.bbi.2020.05.068] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 05/25/2020] [Accepted: 05/26/2020] [Indexed: 02/07/2023] Open
Abstract
Major depression is a prevalent, debilitating disease, yet therapeutic interventions for depression are frequently inadequate. Many clinical and pre-clinical studies have demonstrated that depression is associated with aberrant activation of the inflammatory system, raising the possibility that reducing inflammation may provide antidepressant effects. Using the learned helplessness mouse model, we tested if susceptibility or recovery were affected by deficiency in either of two receptors that initiate inflammatory signaling, Toll-like receptor-4 (TLR4) and TLR2, using knockout male mice. TLR4-/- mice displayed a strong resistance to learned helplessness, confirming that blocking inflammatory signaling through TLR4 provides robust protection against this depression-like behavior. Surprisingly, TLR2-/- mice displayed increased susceptibility to learned helplessness, indicating that TLR2-mediated signaling counteracts susceptibility. TLR2-mediated signaling also promotes recovery, as TLR2-/- mice demonstrated a severe impairment in recovery from learned helplessness. That TLR2 actually protects from learned helplessness was further verified by the finding that administration of the TLR2 agonist Pam3CSK4 reduced susceptibility to learned helplessness. Treatment with Pam3CSK4 also reversed chronic restraint stress-induced impaired sociability and impaired learning in the novel object recognition paradigm, demonstrating that TLR2 stimulation can protect from multiple impairments caused by stress. In summary, these results demonstrate that TLR2-mediated signaling provides a counter-signal to oppose deleterious effects of stress that may be related to depression, and indicate that TLR2 and TLR4 act oppositely to balance mood-relevant responses to stress.
Collapse
Affiliation(s)
- Eva M Medina-Rodriguez
- Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, FL 33136, United States; Bruce W. Carter Department of Veterans Affairs Medical Center, Miami, FL 33125, United States
| | - Yuyan Cheng
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, United States
| | - Suzanne M Michalek
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294-0017, United States
| | - Eléonore Beurel
- Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, FL 33136, United States; Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, United States.
| | - Richard S Jope
- Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, FL 33136, United States; Bruce W. Carter Department of Veterans Affairs Medical Center, Miami, FL 33125, United States; Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, United States
| |
Collapse
|
23
|
Ouattara DA, Remolue L, Becker J, Perret M, Bunescu A, Hennig K, Biliaut E, Badin A, Giacomini C, Reynier F, Andreoni C, Béquet F, Lecine P, De Luca K. An integrated transcriptomics and metabolomics study of the immune response of newly hatched chicks to the cytosine-phosphate-guanine oligonucleotide stimulation. Poult Sci 2020; 99:4360-4372. [PMID: 32867980 PMCID: PMC7598132 DOI: 10.1016/j.psj.2020.06.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 05/26/2020] [Accepted: 06/19/2020] [Indexed: 11/13/2022] Open
Abstract
The immunological immaturity of the innate immune system during the first-week post-hatch enables pathogens to infect chickens, leading to the death of the animals. Current preventive solutions to improve the resistance of chicks to infections include vaccination, breeding, and sanitation. Other prophylactic solutions have been investigated, such as the stimulation of animal health with immunostimulants. Recent studies showed that administration of immune-modulators to one-day-old chicks, or in ovo, significantly reduces mortality in experimental bacterial or viral infection challenge models. Owing to a lack of molecular biomarkers required to evaluate chicken immune responses and assess the efficacy of vaccines or immune-modulators, challenge models are still used. One way to reduce challenge experiments is to define molecular signatures through omics approaches, resulting in new methodologies to rapidly screen candidate molecules or vaccines. This study aims at identifying a dual transcriptomics and metabolomics blood signature after administration of CpG-ODN (cytosine-phosphate-guanine oligodeoxynucleotides), a reference immune-stimulatory molecule. A clinical study was conducted with chicks and transcriptomics and metabolomics analyses were performed on whole-blood and plasma samples, respectively. Differentially expressed genes and metabolites with different abundance were identified in chicks treated with CpG-ODN. The results showed that CpG-ODN activated the innate immune system, within hours after administration, and its effect lasted over time, as metabolomics and transcriptomics profiles still varied 6 D after administration. In conclusion, through an integrated clinical omics approach, we deciphered in part the mode of action of CpG-ODN in post-hatch chicks.
Collapse
Affiliation(s)
| | - Lydie Remolue
- Boehringer Ingelheim Animal Health, R&D, Lyon, France
| | - Jérémie Becker
- BIOASTER Microbiology Technology Institute, Lyon 69007, France
| | - Magali Perret
- BIOASTER Microbiology Technology Institute, Lyon 69007, France
| | - Andrei Bunescu
- BIOASTER Microbiology Technology Institute, Lyon 69007, France
| | - Kristin Hennig
- BIOASTER Microbiology Technology Institute, Lyon 69007, France
| | - Emeline Biliaut
- BIOASTER Microbiology Technology Institute, Lyon 69007, France
| | | | | | | | | | - Frédéric Béquet
- BIOASTER Microbiology Technology Institute, Lyon 69007, France.
| | - Patrick Lecine
- BIOASTER Microbiology Technology Institute, Lyon 69007, France
| | | |
Collapse
|
24
|
Maeyama JI, Kurata-Iesato Y, Isaka M, Komiya T, Sakurai S. Induction of antibody responses in mice immunized intranasally with Type I interferon as adjuvant and synergistic effect of chitosan. Microbiol Immunol 2020; 64:610-619. [PMID: 32662896 DOI: 10.1111/1348-0421.12832] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 06/24/2020] [Accepted: 07/09/2020] [Indexed: 02/05/2023]
Abstract
Type I IFNs are a range of host-derived molecules with adjuvant potential; they have been used for many years in the treatment of cancer and viral hepatitis. Therefore, the safety of IFNs for human use has been established. In this study, we evaluated the mucosal adjuvanticity of IFN-β administered intranasally to mice with diphtheria toxoid, and suggested a method to improve its adjuvanticity. When IFN-β alone was used as a mucosal adjuvant, no clear results were obtained. However, simultaneous administration of IFN-β and chitosan resulted in an enhancement of the specific serum immunoglobulin G (IgG) and IgA antibody responses, the mucosal IgA antibody response, and antitoxin titers. Furthermore, the intranasal administration of IFN-α alone resulted in a greater increase in antibody titer than IFN-β, and a synergistic effect with chitosan was also observed. These findings suggest that intranasal administration of chitosan and Type I IFNs may display an effective synergistic mucosal adjuvant activity.
Collapse
Affiliation(s)
- Jun-Ichi Maeyama
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yuko Kurata-Iesato
- Department of Pharmaceutical Quality Assurance, Toray Industries Inc., Mishima, Japan
| | - Masanori Isaka
- Department of Microbiology, Nagoya City University Medical School, Nagoya, Japan
| | - Takako Komiya
- Department of Bacterial Pathogenesis and Infection, National Institute of Infectious Diseases, Tokyo, Japan
| | - Shingou Sakurai
- Faculty of Pharmacy, Tokyo University of Science, Tokyo, Japan
| |
Collapse
|
25
|
Lokugamage KG, Hage A, de Vries M, Valero-Jimenez AM, Schindewolf C, Dittmann M, Rajsbaum R, Menachery VD. Type I interferon susceptibility distinguishes SARS-CoV-2 from SARS-CoV. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020. [PMID: 32511335 PMCID: PMC7239075 DOI: 10.1101/2020.03.07.982264] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
SARS-CoV-2, a novel coronavirus (CoV) that causes COVID-19, has recently emerged causing an ongoing outbreak of viral pneumonia around the world. While distinct from SARS-CoV, both group 2B CoVs share similar genome organization, origins to bat CoVs, and an arsenal of immune antagonists. In this report, we evaluate type-I interferon (IFN-I) sensitivity of SARS-CoV-2 relative to the original SARS-CoV. Our results indicate that while SARS-CoV-2 maintains similar viral replication to SARS-CoV, the novel CoV is much more sensitive to IFN-I. In Vero and in Calu3 cells, SARS-CoV-2 is substantially attenuated in the context of IFN-I pretreatment, while SARS-CoV is not. In line with these findings, SARS-CoV-2 fails to counteract phosphorylation of STAT1 and expression of ISG proteins, while SARS-CoV is able to suppress both. Comparing SARS-CoV-2 and influenza A virus in human airway epithelial cultures (HAEC), we observe the absence of IFN-I stimulation by SARS-CoV-2 alone, but detect failure to counteract STAT1 phosphorylation upon IFN-I pretreatment resulting in near ablation of SARS-CoV-2 infection. Next, we evaluated IFN-I treatment post infection and found SARS-CoV-2 was sensitive even after establishing infection. Finally, we examined homology between SARS-CoV and SARS-CoV-2 in viral proteins shown to be interferon antagonists. The absence of an equivalent open reading frame (ORF) 3b and changes to ORF6 suggest the two key IFN-I antagonists may not maintain equivalent function in SARS-CoV-2. Together, the results identify key differences in susceptibility to IFN-I responses between SARS-CoV and SARS-CoV-2 that may help inform disease progression, treatment options, and animal model development.
Collapse
Affiliation(s)
- Kumari G Lokugamage
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston TX, USA
| | - Adam Hage
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston TX, USA
| | - Maren de Vries
- Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA
| | - Ana M Valero-Jimenez
- Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA
| | - Craig Schindewolf
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston TX, USA
| | - Meike Dittmann
- Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA
| | - Ricardo Rajsbaum
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston TX, USA.,Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston TX, USA
| | - Vineet D Menachery
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston TX, USA.,Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston TX, USA
| |
Collapse
|
26
|
Liu Y, Luo L, Luo Y, Zhang J, Wang X, Sun K, Zeng L. Prebiotic Properties of Green and Dark Tea Contribute to Protective Effects in Chemical-Induced Colitis in Mice: A Fecal Microbiota Transplantation Study. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:6368-6380. [PMID: 32419454 DOI: 10.1021/acs.jafc.0c02336] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Green and dark tea extract (GTE/DTE) ameliorate chemical-induced colitis in mice; however, the role of gut microbiota in the anticolitis effects of green and dark tea in mice remains unclear. This study aims to explore the role of modulations in gut microbes mediated by green and dark tea in colitis mice by fecal microbiota transplantation (FMT). Our results indicated that GTE and DTE (5 mg/kg bodyweight/day for 4 weeks) exhibited prebiotic effects on the donor mice. Moreover, the FMT treatments (transferring the microbiota daily from the 1 g/kg bodyweight fecal sample to each recipient) indicated that, compared with the fecal microbiota from the normal diet-treated donor mice, the fecal microbiota from the GTE- and DTE-treated donor mice significantly ameliorate colitis-related symptoms (e.g., loss of bodyweight, colonic inflammation, loss of barrier integrity, and gut microbiota dysbiosis) and downregulated the TLR4/MyD88/NF-κB pathway. Collectively, GTE and DTE ameliorate chemical-induced colitis by modulating gut microbiota.
Collapse
Affiliation(s)
- Yan Liu
- College of Food Science, Southwest University, Beibei, Chongqing 400715, People's Republic of China
| | - Liyong Luo
- College of Food Science, Southwest University, Beibei, Chongqing 400715, People's Republic of China
- Tea Research Institute, Southwest University, Beibei, Chongqing 400715, People's Republic of China
| | - Yakun Luo
- Tea Research Institute of Puer, Puer, Yunnan 665000, People's Republic of China
| | - Jun Zhang
- Tea Research Institute of Puer, Puer, Yunnan 665000, People's Republic of China
| | - Xinghua Wang
- Tea Research Institute of Puer, Puer, Yunnan 665000, People's Republic of China
| | - Kang Sun
- College of Food Science, Southwest University, Beibei, Chongqing 400715, People's Republic of China
- Tea Research Institute, Southwest University, Beibei, Chongqing 400715, People's Republic of China
| | - Liang Zeng
- College of Food Science, Southwest University, Beibei, Chongqing 400715, People's Republic of China
- Tea Research Institute, Southwest University, Beibei, Chongqing 400715, People's Republic of China
| |
Collapse
|
27
|
Chlamydia trachomatis Oligopeptide Transporter Performs Dual Functions of Oligopeptide Transport and Peptidoglycan Recycling. Infect Immun 2020; 88:IAI.00086-20. [PMID: 32094256 DOI: 10.1128/iai.00086-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 02/18/2020] [Indexed: 12/20/2022] Open
Abstract
Peptidoglycan, the sugar-amino acid polymer that composes the bacterial cell wall, requires a significant expenditure of energy to synthesize and is highly immunogenic. To minimize the loss of an energetically expensive metabolite and avoid host detection, bacteria often recycle their peptidoglycan, transporting its components back into the cytoplasm, where they can be used for subsequent rounds of new synthesis. The peptidoglycan-recycling substrate binding protein (SBP) MppA, which is responsible for recycling peptidoglycan fragments in Escherichia coli, has not been annotated for most intracellular pathogens. One such pathogen, Chlamydia trachomatis, has a limited capacity to synthesize amino acids de novo and therefore must obtain oligopeptides from its host cell for growth. Bioinformatics analysis suggests that the putative C. trachomatis oligopeptide transporter OppABCDF (OppABCDF Ct ) encodes multiple SBPs (OppA1 Ct , OppA2 Ct , and OppA3 Ct ). Intracellular pathogens often encode multiple SBPs, while only one, OppA, is encoded in the E. coli opp operon. We hypothesized that the putative OppABCDF transporter of C. trachomatis functions in both oligopeptide transport and peptidoglycan recycling. We coexpressed the putative SBP genes (oppA1Ct , oppA2Ct , oppA3Ct ) along with oppBCDFCt in an E. coli mutant lacking the Opp transporter and determined that all three chlamydial OppA subunits supported oligopeptide transport. We also demonstrated the in vivo functionality of the chlamydial Opp transporter in C. trachomatis Importantly, we found that one chlamydial SBP, OppA3 Ct , possessed dual substrate recognition properties and is capable of transporting peptidoglycan fragments (tri-diaminopimelic acid) in E. coli and in C. trachomatis These findings suggest that Chlamydia evolved an oligopeptide transporter to facilitate the acquisition of oligopeptides for growth while simultaneously reducing the accumulation of immunostimulatory peptidoglycan fragments in the host cell cytosol. The latter property reflects bacterial pathoadaptation that dampens the host innate immune response to Chlamydia infection.
Collapse
|
28
|
Speciale I, Di Lorenzo F, Gargiulo V, Erbs G, Newman M, Molinaro A, De Castro C. Biopolymer Skeleton Produced by
Rhizobium radiobacter
: Stoichiometric Alternation of Glycosidic and Amidic Bonds in the Lipopolysaccharide O‐Antigen. Angew Chem Int Ed Engl 2020; 59:6368-6374. [DOI: 10.1002/anie.201914053] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 01/12/2020] [Indexed: 11/06/2022]
Affiliation(s)
- Immacolata Speciale
- Department of Chemical SciencesUniversity of Napoli Via Cintia 4 80126 Napoli Italy
| | - Flaviana Di Lorenzo
- Department of Chemical SciencesUniversity of Napoli Via Cintia 4 80126 Napoli Italy
| | - Valentina Gargiulo
- Department of Chemical SciencesUniversity of Napoli Via Cintia 4 80126 Napoli Italy
- Institute for Research on Combustion (IRC)CNR, Naples (Italy) Piazzale Vincenzo Tecchio 80 80126 Napoli Italy
| | - Gitte Erbs
- Department of Health TechnologyTechnical University of Denmark, Kemitorvet 2800 Kgs. Lyngby Denmark
| | - Mari‐Anne Newman
- Department of Plant and Environmental SciencesFaculty of ScienceUniversity of Copenhagen Thorvaldsensvej 40 1871 Frederiksberg Denmark
| | - Antonio Molinaro
- Department of Chemical SciencesUniversity of Napoli Via Cintia 4 80126 Napoli Italy
| | - Cristina De Castro
- Department of Agricultural SciencesUniversity of Napoli Via Università 100 80055 Portici (NA) Italy
| |
Collapse
|
29
|
Speciale I, Di Lorenzo F, Gargiulo V, Erbs G, Newman M, Molinaro A, De Castro C. Biopolymer Skeleton Produced by
Rhizobium radiobacter
: Stoichiometric Alternation of Glycosidic and Amidic Bonds in the Lipopolysaccharide O‐Antigen. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201914053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Immacolata Speciale
- Department of Chemical SciencesUniversity of Napoli Via Cintia 4 80126 Napoli Italy
| | - Flaviana Di Lorenzo
- Department of Chemical SciencesUniversity of Napoli Via Cintia 4 80126 Napoli Italy
| | - Valentina Gargiulo
- Department of Chemical SciencesUniversity of Napoli Via Cintia 4 80126 Napoli Italy
- Institute for Research on Combustion (IRC)CNR, Naples (Italy) Piazzale Vincenzo Tecchio 80 80126 Napoli Italy
| | - Gitte Erbs
- Department of Health TechnologyTechnical University of Denmark, Kemitorvet 2800 Kgs. Lyngby Denmark
| | - Mari‐Anne Newman
- Department of Plant and Environmental SciencesFaculty of ScienceUniversity of Copenhagen Thorvaldsensvej 40 1871 Frederiksberg Denmark
| | - Antonio Molinaro
- Department of Chemical SciencesUniversity of Napoli Via Cintia 4 80126 Napoli Italy
| | - Cristina De Castro
- Department of Agricultural SciencesUniversity of Napoli Via Università 100 80055 Portici (NA) Italy
| |
Collapse
|
30
|
Yang W, Ru Y, Ren J, Bai J, Wei J, Fu S, Liu X, Li D, Zheng H. G3BP1 inhibits RNA virus replication by positively regulating RIG-I-mediated cellular antiviral response. Cell Death Dis 2019; 10:946. [PMID: 31827077 PMCID: PMC6906297 DOI: 10.1038/s41419-019-2178-9] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 11/20/2019] [Accepted: 11/21/2019] [Indexed: 12/18/2022]
Abstract
Retinoic acid-inducible gene I (RIG-I) is a pattern recognition receptor and is involved in the innate immune response against RNA viruses infection. Here, we demonstrate that the Ras-GTPase-activating protein SH3-domain-binding protein 1 (G3BP1) serves as a positive regulator of the RIG-I-mediated signaling pathway. G3BP1-deficient cells inhibited RNA virus-triggered induction of downstream antiviral genes. Furthermore, we found that G3BP1 inhibited the replication of Sendai virus and vesicular stomatitis virus, indicating a positive regulation of G3BP1 to cellular antiviral responses. Mechanistically, G3BP1 formed a complex with RNF125 and RIG-I, leading to decreased RNF125 via its auto-ubiquitination; thus, promoting expression of RIG-I. Overall, the results suggest a novel mechanism for G3BP1 in the positive regulation of antiviral signaling mediated by RIG-I.
Collapse
Affiliation(s)
- Wenping Yang
- State Key Laboratory of Veterinary Etiological Biology and OIE/National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, Gansu, China
| | - Yi Ru
- State Key Laboratory of Veterinary Etiological Biology and OIE/National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, Gansu, China
| | - Jingjing Ren
- State Key Laboratory of Veterinary Etiological Biology and OIE/National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, Gansu, China
| | - Juncui Bai
- State Key Laboratory of Veterinary Etiological Biology and OIE/National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, Gansu, China
| | - Junshu Wei
- State Key Laboratory of Veterinary Etiological Biology and OIE/National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, Gansu, China
| | - Shaozu Fu
- State Key Laboratory of Veterinary Etiological Biology and OIE/National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, Gansu, China
| | - Xiangtao Liu
- State Key Laboratory of Veterinary Etiological Biology and OIE/National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, Gansu, China
| | - Dan Li
- State Key Laboratory of Veterinary Etiological Biology and OIE/National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, Gansu, China.
| | - Haixue Zheng
- State Key Laboratory of Veterinary Etiological Biology and OIE/National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, Gansu, China.
| |
Collapse
|
31
|
Martínez-Moreno J, Hernandez JC, Urcuqui-Inchima S. Effect of high doses of vitamin D supplementation on dengue virus replication, Toll-like receptor expression, and cytokine profiles on dendritic cells. Mol Cell Biochem 2019; 464:169-180. [PMID: 31758375 DOI: 10.1007/s11010-019-03658-w] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 11/16/2019] [Indexed: 01/18/2023]
Abstract
Dengue, caused by dengue virus (DENV) infection, is a public health problem worldwide. Although DENV pathogenesis has not yet been fully elucidated, the inflammatory response is a hallmark feature in severe DENV infection. Although vitamin D (vitD) can promote the innate immune response against virus infection, no studies have evaluated the effects of vitD on DENV infection, dendritic cells (DCs), and inflammatory response regulation. This study aimed to assess the impact of oral vitD supplementation on DENV-2 infection, Toll-like receptor (TLR) expression, and both pro- and anti-inflammatory cytokine production in monocyte-derived DCs (MDDCs). To accomplish this, 20 healthy donors were randomly divided into two groups and received either 1000 or 4000 international units (IU)/day of vitD for 10 days. During pre- and post-vitD supplementation, peripheral blood samples were taken to obtain MDDCs, which were challenged with DENV-2. We found that MDDCs from donors who received 4000 IU/day of vitD were less susceptible to DENV-2 infection than MDDCs from donors who received 1000 IU/day of vitD. Moreover, these cells showed decreased mRNA expression of TLR3, 7, and 9; downregulation of IL-12/IL-8 production; and increased IL-10 secretion in response to DENV-2 infection. In conclusion, the administration of 4000 IU/day of vitD decreased DENV-2 infection. Our findings support a possible role of vitD in improving the innate immune response against DENV. However, further studies are necessary to determine the role of vitD on DENV replication and its innate immune response modulation in MDDCs.
Collapse
Affiliation(s)
- Jahnnyer Martínez-Moreno
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Calle 70 No. 52-21, 050010, Medellín, Colombia
| | - Juan C Hernandez
- Infettare, Facultad de Medicina, Universidad Cooperativa de Colombia, 050012, Medellín, Colombia
| | - Silvio Urcuqui-Inchima
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Calle 70 No. 52-21, 050010, Medellín, Colombia.
| |
Collapse
|
32
|
Kinesin family member KIF18A is a critical cellular factor that regulates the differentiation and activation of dendritic cells. Genes Genomics 2019; 42:41-46. [PMID: 31677127 DOI: 10.1007/s13258-019-00875-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 10/04/2019] [Indexed: 12/23/2022]
Abstract
BACKGROUND KIF18A is a kinesin family member that is involved in various cellular processes including cell division, cell transformation, and carcinogenesis. However, its possible role in the regulation of host immunity has not been examined. OBJECTIVE The aim of this study is to investigate the functional role of KIF18A in the differentiation and activation of dendritic cells (DCs) that are the most efficient antigen-presenting cells. METHODS A bioinformatic analysis of the KIF18A gene family was performed to understand its sequence variability and evolutionary history. To inhibit KIF18A activity, a highly specific small molecule inhibitor for KIF18A, BTB-1 was used. DCs were differentiated from mouse bone marrow (BM) cells from 6 to 7 week old C57BL/6 mice with recombinant granulocyte-macrophage colony-stimulating factor (GM-CSF). Expression of KIF18A was measured by Western blotting. The surface expression of differentiation and activation markers on DCs were analyzed by flow cytometry. RESULTS The phylogenetic analysis revealed that the KIF18A gene family is remarkably conserved across vertebrates. Interestingly, the expression of KIF18A was increased as BM precursor cells differentiated into DCs. BTB-1 treatment strongly inhibited the differentiation of BM cells into DCs in a dose-dependent manner. Furthermore, treatment of immature DCs with BTB-1 significantly impaired the expression of activation markers on DCs including MHC class I, CD80, and CD86 upon TLR4 or TLR7 treatment. CONCLUSION Our results reveal that KIF18A is a critical DC differentiation and activation regulator. Therefore, KIF18A could be a potential therapeutic target for immune-mediated disorders.
Collapse
|
33
|
CD14 dictates differential activation of mesenchymal stromal cells through AKT, NF-κB and P38 signals. Biosci Rep 2019; 39:BSR20190807. [PMID: 31142629 PMCID: PMC6609595 DOI: 10.1042/bsr20190807] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/19/2019] [Accepted: 05/24/2019] [Indexed: 12/17/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) widely exist in many tissues and have multiple differentiation potential and immunomodulatory capacities. Recently, MSCs have become promising tools for the treatment of various degenerative disorders and autoimmune diseases. The properties of MSCs could be modified in different microenvironments. Thus, it is important to explore the factors controlling MSC function. The presence of Toll-like receptors (TLRs) in MSCs was demonstrated according to previous studies. Consistently, we also illustrated the expression of TLRs in both murine and human MSCs, and displayed that the expression patterns of TLRs in MSCs from different sources. Furthermore, we explored the role of TLR and TLR signaling pathway in MSCs. Interestingly, activation of TLR4-induced expression of cytokines and some specific genes in MSCs. However, MSCs retained much lower mRNA level compared with macrophages. We explored the expression of CD14 in MSCs from different sources, which played a vital role in TLR4 signaling pathway, and found that MSCs are almost negative for CD14. Moreover, only partial activation of TLR4 signaling pathway was observed in MSCs, with no activation of AKT, NF-κB and P38. Here, in the study we defined TLR expression, function and activation in MSCs, which is critical for designing MSC-based therapies.
Collapse
|
34
|
Sauter IP, Madrid KG, de Assis JB, Sá-Nunes A, Torrecilhas AC, Staquicini DI, Pasqualini R, Arap W, Cortez M. TLR9/MyD88/TRIF signaling activates host immune inhibitory CD200 in Leishmania infection. JCI Insight 2019; 4:126207. [PMID: 31092731 DOI: 10.1172/jci.insight.126207] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 04/11/2019] [Indexed: 02/06/2023] Open
Abstract
Virulent protozoans named Leishmania in tropical and subtropical areas produce devastating diseases by exploiting host immune responses. Amastigotes of Leishmania amazonensis stimulate macrophages to express CD200, an immunomodulatory ligand, which binds to its cognate receptor (CD200R) and inhibits the inducible nitric oxide synthase and nitric oxide (iNOS/NO) signaling pathways, thereby promoting intracellular survival. However, the mechanisms underlying CD200 induction in macrophages remain largely unknown. Here, we show that phagocytosis-mediated internalization of L. amazonensis amastigotes following activation of endosomal TLR9/MyD88/TRIF signaling is critical for inducing CD200 in infected macrophages. We also demonstrate that Leishmania microvesicles containing DNA fragments activate TLR9-dependent CD200 expression, which inhibits the iNOS/NO pathway and modulates the course of L. amazonensis infection in vivo. These findings demonstrate that Leishmania exploits TLR-signaling pathways not only to inhibit macrophage microbicidal function, but also to evade host systemic immune responses, which has many implications in the severity of the disease.
Collapse
Affiliation(s)
| | | | - Josiane B de Assis
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Anderson Sá-Nunes
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Ana C Torrecilhas
- Department of Pharmaceutical Sciences, Federal University of São Paulo, São Paulo, Brazil
| | - Daniela I Staquicini
- Rutgers Cancer Institute of New Jersey and Division of Cancer Biology, Department of Radiation Oncology, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Renata Pasqualini
- Rutgers Cancer Institute of New Jersey and Division of Cancer Biology, Department of Radiation Oncology, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Wadih Arap
- Rutgers Cancer Institute of New Jersey and Division of Hematology/Oncology, Department of Medicine, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | | |
Collapse
|
35
|
N-acetylcysteine modulates lipopolysaccharide-induced intestinal dysfunction. Sci Rep 2019; 9:1004. [PMID: 30700808 PMCID: PMC6353963 DOI: 10.1038/s41598-018-37296-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 11/24/2018] [Indexed: 12/21/2022] Open
Abstract
The gastrointestinal epithelium functions in nutrient absorption and pathogens barrier and its dysfunction directly affects livestock performance. N-Acetylcysteine (NAC) improves mucosal function, but its effects on intestinal functions at the molecular level remain unclear. Here, we performed gene expression profiling of the pig small intestine after dietary NAC treatment under LPS challenge and investigated the effects of NAC on intestinal epithelial cells in vitro. Dietary NAC supplementation under LPS challenge altered the small intestine expression of 959 genes related to immune response, inflammatory response, oxidation-reduction process, cytokine-cytokine receptor interaction, and the cytokine-mediated signalling, Toll-like receptor signalling pathway, Jak-STAT signalling pathway, and TNF signalling pathway. We then analysed the expression patterns of the top 10 altered genes, and found that NAC markedly stimulated HMGCS3 and LDHC expression in IPEC-J2 cells. In vitro, NAC pre-treatment significantly reduced TNF-α and NF-κB, TNF-α, IFN-γ, and IL-6 expression in LPS-induced IPEC-J2 cells. NAC treatment also significantly reduced oxidative stress in LPS-induced IPEC-J2 cells and alleviated intestinal barrier function and wound healing. Thus, NAC as a feed additive can enhance livestock intestinal health by modulating intestinal inflammation, permeability, and wound healing under LPS-induced dysfunction, improving our molecular understanding of the effects of NAC on the intestine.
Collapse
|
36
|
Adegoke EO, Adeniran SO, Zeng Y, Wang X, Wang H, Wang C, Zhang H, Zheng P, Zhang G. Pharmacological inhibition of TLR4/NF-κB with TLR4-IN-C34 attenuated microcystin-leucine arginine toxicity in bovine Sertoli cells. J Appl Toxicol 2019; 39:832-843. [PMID: 30671980 DOI: 10.1002/jat.3771] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 12/08/2018] [Accepted: 12/11/2018] [Indexed: 01/17/2023]
Abstract
This study investigated the pharmacological inhibition of the toll-like receptor 4 (TLR4) genes as a measure to attenuate microcystin-LR (MC-LR) reproductive toxicity. Bovine Sertoli cells were pretreated with TLR4-IN-C34 (C34) for 1 hour. Thereafter the pretreated and non-pretreated Sertoli cells were cultured in medium containing 10% heat-activated fetal bovine serum + 80 μg/L MC-LR for 24 hours to assess the ability of TLR4-IN-C34 to attenuate the toxic effects of MC-LR. The results showed that TLR4-IN-C34 inhibited MC-LR-induced mitochondria membrane damage, mitophagy and downregulation of blood-testis barrier constituent proteins via TLR4/nuclear factor-kappaB and mitochondria-mediated apoptosis signaling pathway blockage. The downregulation of the mitochondria electron transport chain, energy production and DNA replication related genes (mt-ND2, COX-1, COX-2, ACAT, mtTFA) and upregulation of inflammatory cytokines (interleukin [IL]-6, tumor necrosis factor-α, IL-1β, interferon-γ, IL-4, IL-10, IL-13 and transforming growth factor β1) were modulated by TLR4-IN-C34. Taken together, we conclude that TLR4-IN-C34 inhibits MC-LR-related disruption of mitochondria membrane, mitophagy and downregulation of blood-testis barrier proteins of the bovine Sertoli cell via cytochrome c release and TLR4 signaling blockage.
Collapse
Affiliation(s)
- Elikanah Olusayo Adegoke
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Northeast Agricultural University Harbin, People's Republic of China
| | - Samson Olugbenga Adeniran
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Northeast Agricultural University Harbin, People's Republic of China
| | - Yue Zeng
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Northeast Agricultural University Harbin, People's Republic of China
| | - Xue Wang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Northeast Agricultural University Harbin, People's Republic of China
| | - Hao Wang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Northeast Agricultural University Harbin, People's Republic of China
| | - Chen Wang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Northeast Agricultural University Harbin, People's Republic of China
| | - Han Zhang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Northeast Agricultural University Harbin, People's Republic of China
| | - Peng Zheng
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Northeast Agricultural University Harbin, People's Republic of China
| | - Guixue Zhang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Northeast Agricultural University Harbin, People's Republic of China
| |
Collapse
|
37
|
Inflammasomes, Autophagy, and Cell Death: The Trinity of Innate Host Defense against Intracellular Bacteria. Mediators Inflamm 2019; 2019:2471215. [PMID: 30728749 PMCID: PMC6341260 DOI: 10.1155/2019/2471215] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 12/19/2018] [Indexed: 01/17/2023] Open
Abstract
Inflammasome activation is an innate host defense mechanism initiated upon sensing pathogens or danger in the cytosol. Both autophagy and cell death are cell autonomous processes important in development, as well as in host defense against intracellular bacteria. Inflammasome, autophagy, and cell death pathways can be activated by pathogens, pathogen-associated molecular patterns (PAMPs), cell stress, and host-derived damage-associated molecular patterns (DAMPs). Phagocytosis and toll-like receptor (TLR) signaling induce reactive oxygen species (ROS), type I IFN, NFκB activation of proinflammatory cytokines, and the mitogen-activated protein kinase cascade. ROS and IFNγ are also prominent inducers of autophagy. Pathogens, PAMPs, and DAMPs activate TLRs and intracellular inflammasomes, inducing apoptotic and inflammatory caspases in a context-dependent manner to promote various forms of cell death to eliminate pathogens. Common downstream signaling molecules of inflammasomes, autophagy, and cell death pathways interact to initiate appropriate measures against pathogens and determine host survival as well as pathological consequences of infection. The integration of inflammasome activation, autophagy, and cell death is central to pathogen clearance. Various pathogens produce virulence factors to control inflammasomes, subvert autophagy, and modulate host cell death in order to evade host defense. This review highlights the interaction of inflammasomes, autophagy, and host cell death pathways in counteracting Burkholderia pseudomallei, the causative agent of melioidosis. Contrasting evasion strategies used by B. pseudomallei, Mycobacterium tuberculosis, and Legionella pneumophila to avoid and dampen these innate immune responses will be discussed.
Collapse
|
38
|
AlQallaf H, Hamada Y, Blanchard S, Shin D, Gregory R, Srinivasan M. Differential profiles of soluble and cellular toll like receptor (TLR)-2 and 4 in chronic periodontitis. PLoS One 2018; 13:e0200231. [PMID: 30571680 PMCID: PMC6301611 DOI: 10.1371/journal.pone.0200231] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 11/05/2018] [Indexed: 01/19/2023] Open
Abstract
Chronic periodontitis is a common inflammatory disease initiated by a complex microbial biofilm and mediated by the host response causing destruction of the supporting tissues of the teeth. Host recognition of pathogens is mediated by toll-like receptors (TLRs) that bind conserved molecular patterns shared by large groups of microorganisms. The oral epithelial cells respond to most periodontopathic bacteria via TLR-2 and TLR-4. In addition to the membrane-associated receptors, soluble forms of TLR-2 (sTLR-2) and TLR-4 (sTLR-4) have been identified and are thought to play a regulatory role by binding microbial ligands. sTLR-2 has been shown to arise from ectodomain shedding of the extracellular domain of the membrane receptor and sTLR-4 is thought to be an alternate spliced form. Many studies have previously reported the presence of elevated numbers of viable exfoliated epithelial cells in the saliva of patients with chronic periodontitis. The objective of this study was to investigate the potential value of salivary sTLR-2 and sTLR-4 together with the paired epithelial cell-associated TLR-2/4 mRNA as diagnostic markers for chronic periodontitis. Unstimulated whole saliva was collected after obtaining informed consent from 40 individuals with either periodontitis or gingivitis. The sTLR-2 and sTLR4 in saliva was measured by enzyme-linked immunosorbent assay. The TLR-2 and TLR-4 transcript in the epithelial cells in saliva was measured by real time polymerase chain reaction. While levels of sTLR-2 exhibited an inverse correlation, sTLR-4 positively correlated with clinical parameters in the gingivitis cohort. Interestingly, both correlations were lost in the periodontitis cohort indicating a dysregulated host response. On the other hand, while the sTLR-2 and the paired epithelial cell associated TLR-2 mRNA exhibited a direct correlation (r2 = 0.62), that of sTLR4 and TLR-4 mRNA exhibited an inverse correlation (r2 = 0.53) in the periodontitis cohort. Collectively, assessments of salivary sTLR2 and sTLR4 together with the respective transcripts in the epithelial cells could provide clinically relevant markers of disease progression from gingivitis to periodontitis.
Collapse
Affiliation(s)
- Hawra AlQallaf
- Department of Periodontics and Allied Dental Programs, School of Dentistry, Indiana University–Purdue University Indianapolis, Indianapolis, Indiana, United States of America
| | - Yusuke Hamada
- Department of Periodontics and Allied Dental Programs, School of Dentistry, Indiana University–Purdue University Indianapolis, Indianapolis, Indiana, United States of America
| | - Steven Blanchard
- Department of Periodontics and Allied Dental Programs, School of Dentistry, Indiana University–Purdue University Indianapolis, Indianapolis, Indiana, United States of America
| | - Daniel Shin
- Department of Periodontics and Allied Dental Programs, School of Dentistry, Indiana University–Purdue University Indianapolis, Indianapolis, Indiana, United States of America
| | - Richard Gregory
- Department of Biomedical and Applied Sciences, School of Dentistry, Indiana University–Purdue University Indianapolis, Indianapolis, Indiana, United States of America
| | - Mythily Srinivasan
- Department of Oral Pathology, Medicine and Radiology, School of Dentistry, Indiana University–Purdue University Indianapolis, Indianapolis, Indiana, United States of America
| |
Collapse
|
39
|
Tatematsu M, Funami K, Seya T, Matsumoto M. Extracellular RNA Sensing by Pattern Recognition Receptors. J Innate Immun 2018; 10:398-406. [PMID: 30404092 PMCID: PMC6784046 DOI: 10.1159/000494034] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 09/25/2018] [Accepted: 09/25/2018] [Indexed: 12/11/2022] Open
Abstract
RNA works as a genome and messenger in RNA viruses, and it sends messages in most of the creatures of the Earth, including viruses, bacteria, fungi, plants, and animals. The human innate immune system has evolved to detect single- and double-stranded RNA molecules from microbes by pattern recognition receptors and induce defense reactions against infections such as the production of type I interferons and inflammatory cytokines. To avoid cytokine toxicity causing chronic inflammation or autoimmunity by sensing self-RNA, the activation of RNA sensors is strictly regulated. All of the Toll-like receptors that recognize RNA are localized to endosomes/lysosomes, which require internalization of RNA for sensing through an endocytic pathway. RIG-I-like receptors sense RNA in cytosol. These receptors are expressed in a cell type-specific fashion, enabling sensing of RNA for a wide range of microbial invasions. At the same time, both endosomal and cytoplasmic receptors have strategies to respond only to RNA of pathogenic microorganisms or dying cells. RNA are potential vaccine adjuvants for immune enhancement against cancer and provide a benefit for vaccinations. Understanding the detailed molecular mechanisms of the RNA-sensing system will help us to broaden the clinical utility of RNA adjuvants for patients with incurable diseases.
Collapse
Affiliation(s)
- Megumi Tatematsu
- Department of Vaccine Immunology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
- Dr. von Hauner Children's Hospital, Department of Pediatrics, University Hospital, LMU Munich, Munich, Germany
| | - Kenji Funami
- Department of Vaccine Immunology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Tsukasa Seya
- Department of Vaccine Immunology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Misako Matsumoto
- Department of Vaccine Immunology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| |
Collapse
|
40
|
Garcia M, Alout H, Diop F, Damour A, Bengue M, Weill M, Missé D, Lévêque N, Bodet C. Innate Immune Response of Primary Human Keratinocytes to West Nile Virus Infection and Its Modulation by Mosquito Saliva. Front Cell Infect Microbiol 2018; 8:387. [PMID: 30450338 PMCID: PMC6224356 DOI: 10.3389/fcimb.2018.00387] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 10/12/2018] [Indexed: 12/13/2022] Open
Abstract
West Nile Virus (WNV) is a flavivirus involved in many human infections worldwide. This arthropod-borne virus is directly co-inoculated with mosquito saliva through the epidermis and the dermis during blood meal. WNV starts replicating in the skin before migrating to the draining lymph node, leading to widespread viremia and in some cases to neurological symptoms. Skin is a complex organ composed of different cell types that together perform essential functions such as pathogen sensing, barrier maintenance and immunity. Keratinocytes, which represent 90% of the cells of the epidermis, are the organism's first line of defense, initiating innate immune response by recognizing pathogens through their pattern recognition receptors. Although WNV was previously known to replicate in human primary keratinocytes, the induced inflammatory response remains unknown. The aim of this study was first to characterize the inflammatory response of human primary keratinocytes to WNV infection and then, to assess the potential role of co-inoculated mosquito saliva on the keratinocyte immune response and viral replication. A type I and III interferon inflammatory response associated with an increase of IRF7 but not IRF3 mRNA expression, and dependent on infectious dose, was observed during keratinocyte infection with WNV. Expression of several interferon-stimulated gene mRNA was also increased at 24 h post-infection (p.i.); they included CXCL10 and interferon-induced proteins with tetratricopeptide repeats (IFIT)-2 sustained up until 48 h p.i. Moreover, WNV infection of keratinocyte resulted in a significant increase of pro-inflammatory cytokines (TNFα, IL-6) and various chemokines (CXCL1, CXCL2, CXCL8 and CCL20) expression. The addition of Aedes aegypti or Culex quinquefasciatus mosquito saliva, two vectors of WNV infection, to infected keratinocytes led to a decrease of inflammatory response at 24 h p.i. However, only Ae. Aegypti saliva adjunction induced modulation of viral replication. In conclusion, this work describes for the first time the inflammatory response of human primary keratinocytes to WNV infection and its modulation in presence of vector mosquito saliva. The effects of mosquito saliva assessed in this work could be involved in the early steps of WNV replication in skin promoting viral spread through the body.
Collapse
Affiliation(s)
- Magali Garcia
- Laboratoire de Virologie et Mycobactériologie, CHU de Poitiers, Poitiers, France.,Laboratoire Inflammation, Tissus Epithéliaux et Cytokines, EA 4331, Université de Poitiers, Poitiers, France
| | - Haoues Alout
- Institut des Sciences de l'Evolution, Université de Montpellier, Montpellier, France
| | - Fodé Diop
- MIVEGEC UMR 224, Université de Montpellier, IRD, CNRS, Montpellier, France
| | - Alexia Damour
- Laboratoire Inflammation, Tissus Epithéliaux et Cytokines, EA 4331, Université de Poitiers, Poitiers, France
| | - Michèle Bengue
- MIVEGEC UMR 224, Université de Montpellier, IRD, CNRS, Montpellier, France
| | - Mylène Weill
- Institut des Sciences de l'Evolution, Université de Montpellier, Montpellier, France
| | - Dorothée Missé
- MIVEGEC UMR 224, Université de Montpellier, IRD, CNRS, Montpellier, France
| | - Nicolas Lévêque
- Laboratoire de Virologie et Mycobactériologie, CHU de Poitiers, Poitiers, France.,Laboratoire Inflammation, Tissus Epithéliaux et Cytokines, EA 4331, Université de Poitiers, Poitiers, France
| | - Charles Bodet
- Laboratoire Inflammation, Tissus Epithéliaux et Cytokines, EA 4331, Université de Poitiers, Poitiers, France
| |
Collapse
|
41
|
Malfeito M, Regueiro U, Pérez-Mato M, Campos F, Sobrino T, Lema I. Innate Immunity Biomarkers for Early Detection of Keratoconus. Ocul Immunol Inflamm 2018; 27:942-948. [DOI: 10.1080/09273948.2018.1511813] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Mercedes Malfeito
- Clinical Neurosciences Research Laboratory, Hospital Clínico Universitario, Universidade de Santiago de Compostela, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
- Facultade de Óptica E Optometría, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Uxía Regueiro
- Clinical Neurosciences Research Laboratory, Hospital Clínico Universitario, Universidade de Santiago de Compostela, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
- Facultade de Óptica E Optometría, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - María Pérez-Mato
- Clinical Neurosciences Research Laboratory, Hospital Clínico Universitario, Universidade de Santiago de Compostela, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Francisco Campos
- Clinical Neurosciences Research Laboratory, Hospital Clínico Universitario, Universidade de Santiago de Compostela, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Tomás Sobrino
- Clinical Neurosciences Research Laboratory, Hospital Clínico Universitario, Universidade de Santiago de Compostela, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Isabel Lema
- Clinical Neurosciences Research Laboratory, Hospital Clínico Universitario, Universidade de Santiago de Compostela, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
- Facultade de Óptica E Optometría, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Hospital Provincial de Conxo, Instituto Galego de Oftalmoloxía (INGO), Santiago de Compostela, Spain
| |
Collapse
|
42
|
Effect of Various Agents on the Direction of THP-1 Cell Differentiation. SERBIAN JOURNAL OF EXPERIMENTAL AND CLINICAL RESEARCH 2018. [DOI: 10.2478/sjecr-2018-0029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
The ability of physiological (1α,25-dihydroxyvitamin D3, retinoic acid) and non-physiological (various LPS) agents and their combinations to influence the direction of promonocytic THP-1 cell differentiation was studied.
The differentiating activity of the agents was evaluated by the expression and the ratio of surface receptors (TLR4, CD11b, and CD14) as well as by the change in THP-1 cell phagocytic activity of different degree of differentiation by Flow cytometry.
The THP-1 cell differentiation by VD3 was shown to lead probably to the formation of classical monocytes.
Summarizing we can conclude that VD3 induces the THP-1 cells differentiation with the formation of classical monocytes and the sequence of 1α, 25-dihydroxyvitamin D3 and non-toxic LPS R. capsulatus PG causes the THP-1 cells differentiation with the formation of inflammatory or intermediate monocytes.
Collapse
|
43
|
Liu Y, Yin W, Xu L, Zhang H, Liu Q, Yin W. Identification of a Constitutively Active Mutant Mouse IRAK2 by Retroviral Expression Screening. Mol Biotechnol 2018; 60:245-250. [PMID: 29468521 DOI: 10.1007/s12033-018-0064-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
To identify the importance of IRAK2 kinase activity in TLR-mediated signaling pathways, we constructed a retroviral vector harboring either a mouse IRAK2 gene (IRAK2-WT) or with its mutant with loss of function of its ATP-binding site (IRAK2-KD). Further, we comparatively analyzed for the gain of function and modulations in TLR-mediated signaling pathways in IRAK2 knockout (IRAK2-KO) macrophages upon introduction of the IRAK2-WT retroviral constructs. The pBS/IRAK2-KD with the ATP-binding site mutation in IRAK2 was obtained by using site-specific mutagenesis. The recombinants were identified with appropriate double digestion and sequence analysis. The recombinant vector constructs were transfected by lipofection into phoenix packaging cells. The viral vectors (107 cfu/mL) with the construct were allowed to infect IRAK2-KO macrophages. The results showed that IRAK2-WT gene overexpressed in the IRAK2-KO macrophages exhibited a modified IRAK2 expression upon LPS induction. However, the modification was absent with IRAK2-KD construct on LPS stimulation; instead, the IRAK2 protein stability was reduced considerably. The results further show that the LPS-induced effect on the stability of IRAK2 is dependent of IRAK4 stimulation.
Collapse
Affiliation(s)
- Yanmei Liu
- Department of Clinical Laboratory, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, Guangdong, China
| | - Weilan Yin
- Department of Physiology and Institute of Neuroscience, University of South China, Hengyang, 421001, Hunan, China
| | - Lingqing Xu
- Department of Clinical Laboratory, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, Guangdong, China
| | - Helin Zhang
- Department of Clinical Laboratory, Yuebei People's Hospital Affiliated to Medical College of Shantou University, Shaoguan, 512026, Guangdong, China
| | - Qian Liu
- Department of Clinical Laboratory, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, Guangdong, China
| | - Weiguo Yin
- Department of Clinical Laboratory, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, Guangdong, China.
| |
Collapse
|
44
|
Rubio JM, Astudillo AM, Casas J, Balboa MA, Balsinde J. Regulation of Phagocytosis in Macrophages by Membrane Ethanolamine Plasmalogens. Front Immunol 2018; 9:1723. [PMID: 30087680 PMCID: PMC6066501 DOI: 10.3389/fimmu.2018.01723] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 07/12/2018] [Indexed: 12/15/2022] Open
Abstract
Macrophages, as professional phagocytes of the immune system, possess the ability to detect and clear invading pathogens and apoptotic cells through phagocytosis. Phagocytosis involves membrane reorganization and remodeling events on the cell surface, which play an essential role in innate immunity and tissue homeostasis and the control of inflammation. In this work, we report that cells deficient in membrane ethanolamine plasmalogen demonstrate a reduced capacity to phagocytize opsonized zymosan particles. Amelioration of plasmalogen deficiency in these cells by incubation with lysoplasmalogen results in a significant augmentation of the phagocytic capacity of the cells. In parallel with these increases, restoration of plasmalogen levels in the cells also increases the number and size of lipid rafts in the membrane, reduces membrane fluidity down to levels found in cells containing normal plasmalogen levels, and improves receptor-mediated signaling. Collectively, these results suggest that membrane plasmalogen level determines characteristics of the plasma membrane such as fluidity and the formation of microdomains that are necessary for efficient signal transduction leading to optimal phagocytosis by macrophages.
Collapse
Affiliation(s)
- Julio M Rubio
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Valladolid, Valladolid, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Alma M Astudillo
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Valladolid, Valladolid, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Javier Casas
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Valladolid, Valladolid, Spain.,Departamento de Bioquímica y Fisiología, Universidad de Valladolid, Valladolid, Spain
| | - María A Balboa
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Valladolid, Valladolid, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Jesús Balsinde
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Valladolid, Valladolid, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| |
Collapse
|
45
|
Theodoraki MN, Yerneni S, Sarkar SN, Orr B, Muthuswamy R, Voyten J, Modugno F, Jiang W, Grimm M, Basse PH, Bartlett DL, Edwards RP, Kalinski P. Helicase-Driven Activation of NFκB-COX2 Pathway Mediates the Immunosuppressive Component of dsRNA-Driven Inflammation in the Human Tumor Microenvironment. Cancer Res 2018; 78:4292-4302. [PMID: 29853604 DOI: 10.1158/0008-5472.can-17-3985] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 03/01/2018] [Accepted: 05/24/2018] [Indexed: 01/01/2023]
Abstract
Presence of cytotoxic CD8+ T cells (CTL) in tumor microenvironments (TME) is critical for the effectiveness of immune therapies and patients' outcome, whereas regulatory T(reg) cells promote cancer progression. Immune adjuvants, including double-stranded (ds)RNAs, which signal via Toll-like receptor-3 (TLR3) and helicase (RIG-I/MDA5) pathways, all induce intratumoral production of CTL-attractants, but also Treg attractants and suppressive factors, raising the question of whether induction of these opposing groups of immune mediators can be separated. Here, we use human tumor explant cultures and cell culture models to show that the (ds) RNA Sendai Virus (SeV), poly-I:C, and rintatolimod (poly-I:C12U) all activate the TLR3 pathway involving TRAF3 and IRF3, and induce IFNα, ISG-60, and CXCL10 to promote CTL chemotaxis to ex vivo-treated tumors. However, in contrast with SeV and poly I:C, rintatolimod did not activate the MAVS/helicase pathway, thus avoiding NFκB- and TNFα-dependent induction of COX2, COX2/PGE2-dependent induction of IDO, IL10, CCL22, and CXCL12, and eliminating Treg attraction. Induction of CTL-attractants by either poly I:C or rintatolimod was further enhanced by exogenous IFNα (enhancer of TLR3 expression), whereas COX2 inhibition enhanced the response to poly-I:C only. Our data identify the helicase/NFκB/TNFα/COX2 axis as the key suppressive pathway of dsRNA signaling in human TME and suggest that selective targeting of TLR3 or elimination of NFκB/TNFα/COX2-driven suppression may allow for selective enhancement of type-1 immunity.Significance: This study characterizes two different poly-I:C-induced signaling pathways in their induction of immunostimulatory and suppressive factors and suggests improved ways to reprogram the TME to enhance the antitumor efficacy of immunotherapies. Cancer Res; 78(15); 4292-302. ©2018 AACR.
Collapse
Affiliation(s)
- Marie-Nicole Theodoraki
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania.,Department of Oto-Rhino-Laryngology, Head and Neck Surgery, University Medical Center, Ulm, Germany
| | - Saigopalakrishna Yerneni
- Department of Biomedical Engineering, College of Engineering, Carnegie Mellon University, Pittsburgh, PA
| | - Saumendra N Sarkar
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania.,University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Brian Orr
- Magee-Women's Research Institute, Ovarian Cancer Center of Excellence, Peritoneal/Ovarian Cancer Specialty Care Center, UPMC Hillman Cancer Center, and Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania
| | | | - Jamie Voyten
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Francesmary Modugno
- University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, Pennsylvania.,Magee-Women's Research Institute, Ovarian Cancer Center of Excellence, Peritoneal/Ovarian Cancer Specialty Care Center, UPMC Hillman Cancer Center, and Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Weijian Jiang
- Department of Medicine and Center for Immunotherapy, Roswell Park Cancer Institute, Buffalo, New York
| | - Melissa Grimm
- Department of Medicine and Center for Immunotherapy, Roswell Park Cancer Institute, Buffalo, New York
| | - Per H Basse
- Department of Medicine and Center for Immunotherapy, Roswell Park Cancer Institute, Buffalo, New York
| | - David L Bartlett
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania.,University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Robert P Edwards
- University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, Pennsylvania.,Magee-Women's Research Institute, Ovarian Cancer Center of Excellence, Peritoneal/Ovarian Cancer Specialty Care Center, UPMC Hillman Cancer Center, and Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Pawel Kalinski
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania. .,University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, Pennsylvania.,Department of Medicine and Center for Immunotherapy, Roswell Park Cancer Institute, Buffalo, New York.,Department of Medicine and Center for Immunotherapy, Roswell Park Cancer Institute, Buffalo, New York.,Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania.,Department of Infectious Diseases and Microbiology, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
46
|
Alturki NA, McComb S, Ariana A, Rijal D, Korneluk RG, Sun SC, Alnemri E, Sad S. Triad3a induces the degradation of early necrosome to limit RipK1-dependent cytokine production and necroptosis. Cell Death Dis 2018; 9:592. [PMID: 29789521 PMCID: PMC5964080 DOI: 10.1038/s41419-018-0672-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 04/24/2018] [Accepted: 04/27/2018] [Indexed: 12/31/2022]
Abstract
Understanding the molecular signaling in programmed cell death is vital to a practical understanding of inflammation and immune cell function. Here we identify a previously unrecognized mechanism that functions to downregulate the necrosome, a central signaling complex involved in inflammation and necroptosis. We show that RipK1 associates with RipK3 in an early necrosome, independent of RipK3 phosphorylation and MLKL-induced necroptotic death. We find that formation of the early necrosome activates K48-ubiquitin-dependent proteasomal degradation of RipK1, Caspase-8, and other necrosomal proteins. Our results reveal that the E3-ubiquitin ligase Triad3a promotes this negative feedback loop independently of typical RipK1 ubiquitin editing enzymes, cIAPs, A20, or CYLD. Finally, we show that Triad3a-dependent necrosomal degradation limits necroptosis and production of inflammatory cytokines. These results reveal a new mechanism of shutting off necrosome signaling and may pave the way to new strategies for therapeutic manipulation of inflammatory responses.
Collapse
Affiliation(s)
- Norah A Alturki
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada.,Applied Medical science, King Saud University, Riyadh, Saudi Arabia
| | - Scott McComb
- Human Health and Therapeutics, National Research Council of Canada, Ottawa, Canada
| | - Ardeshir Ariana
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Dikchha Rijal
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Robert G Korneluk
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada.,Children's Hospital of Eastern Ontario Research Institute, Ontario, Canada
| | - Shao-Cong Sun
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Emad Alnemri
- Thomas Jefferson University, Philadelphia, PA, USA
| | - Subash Sad
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada. .,Centre for Infection, Immunity and Inflammation, University of Ottawa, Ontario, Canada.
| |
Collapse
|
47
|
Xia S, Menden HL, Korfhagen TR, Kume T, Sampath V. Endothelial immune activation programmes cell-fate decisions and angiogenesis by inducing angiogenesis regulator DLL4 through TLR4-ERK-FOXC2 signalling. J Physiol 2018; 596:1397-1417. [PMID: 29380370 DOI: 10.1113/jp275453] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 01/24/2018] [Indexed: 12/28/2022] Open
Abstract
KEY POINTS The mechanisms by which bacteria alter endothelial cell phenotypes and programme inflammatory angiogenesis remain unclear. In lung endothelial cells, we demonstrate that toll-like receptor 4 (TLR4) signalling induces activation of forkhead box protein C2 (FOXC2), a transcriptional factor implicated in lymphangiogenesis and endothelial specification, in an extracellular signal-regulated kinase (ERK)-dependent manner. TLR4-ERK-FOXC2 signalling regulates expression of the Notch ligand DLL4 and signals inflammatory angiogenesis in vivo and in vitro. Our work reveals a novel link between endothelial immune signalling (TLR pathway) and a vascular transcription factor, FOXC2, that regulates embryonic vascular development. This mechanism is likely to be relevant to pathological angiogenesis complicating inflammatory diseases in humans. ABSTRACT Endothelial cells (ECs) mediate a specific and robust immune response to bacteria in sepsis through the activation of toll-like receptor (TLR) signalling. The mechanisms by which bacterial ligands released during sepsis programme EC specification and altered angiogenesis remain unclear. We postulated that the forkhead box protein C2 (FOXC2) transcriptional factor directs EC cell-fate decisions and angiogenesis during TLR signalling. In human lung ECs, lipopolysaccharide (LPS) induced ERK phosphorylation, FOXC2, and delta-like 4 (DLL4, the master regulator of sprouting angiogenesis expression) in a TLR4-dependent manner. LPS-mediated ERK phosphorylation resulted in FOXC2-ERK protein ligation, ERK-dependent FOXC2 serine and threonine phosphorylation, and subsequent activation of DLL4 gene expression. Chemical inhibition of ERK or ERK-2 dominant negative transfection disrupted LPS-mediated FOXC2 phosphorylation and transcriptional activation of FOXC2. FOXC2-siRNA or ERK-inhibition attenuated LPS-induced DLL4 expression and angiogenic sprouting in vitro. In vivo, intraperitoneal LPS induced ERK and FOXC2 phosphorylation, FOXC2 binding to DLL4 promoter, and FOXC2/DLL4 expression in the lung. ERK-inhibition suppressed LPS-induced FOXC2 phosphorylation, FOXC2-DLL4 promoter binding, and induction of FOXC2 and DLL4 in mouse lung ECs. LPS induced aberrant retinal angiogenesis and DLL4 expression in neonatal mice, which was attenuated with ERK inhibition. FOXC2+/- mice treated with LPS showed a mitigated increase in FOXC2 and DLL4 compared to FOXC2+/+ mice. These data reveal a new mechanism (TLR4-ERK-FOXC2-DLL4) by which sepsis-induced EC TLR signalling programmes EC specification and altered angiogenesis.
Collapse
Affiliation(s)
- Sheng Xia
- Department of Pediatrics, Division of Neonatology, Children's Mercy, Kansas City, MO, USA
| | - Heather L Menden
- Department of Pediatrics, Division of Neonatology, Children's Mercy, Kansas City, MO, USA
| | - Thomas R Korfhagen
- Department of Pediatrics, Division of Neonatology and Pulmonary Biology, Cincinnati Children's Hospital, Cincinnati, OH, USA
| | - Tsutomu Kume
- Feinberg Cardiovascular Research Institute, Department of Medicine, Northwestern University School of Medicine, Chicago, IL, USA
| | - Venkatesh Sampath
- Department of Pediatrics, Division of Neonatology, Children's Mercy, Kansas City, MO, USA
| |
Collapse
|
48
|
Trivedi NH, Yu JJ, Hung CY, Doelger RP, Navara CS, Armitige LY, Seshu J, Sinai AP, Chambers JP, Guentzel MN, Arulanandam BP. Microbial co-infection alters macrophage polarization, phagosomal escape, and microbial killing. Innate Immun 2018; 24:152-162. [PMID: 29482417 PMCID: PMC6852389 DOI: 10.1177/1753425918760180] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Macrophages are important innate immune cells that respond to microbial insults.
In response to multi-bacterial infection, the macrophage activation state may
change upon exposure to nascent mediators, which results in different bacterial
killing mechanism(s). In this study, we utilized two respiratory bacterial
pathogens, Mycobacterium bovis (Bacillus Calmette
Guẻrin, BCG) and Francisella tularensis live
vaccine strain (LVS) with different phagocyte evasion mechanisms, as model
microbes to assess the influence of initial bacterial infection on the
macrophage response to secondary infection. Non-activated (M0) macrophages or
activated M2-polarized cells (J774 cells transfected with the mouse IL-4 gene)
were first infected with BCG for 24–48 h, subsequently challenged with LVS, and
the results of inhibition of LVS replication in the macrophages was assessed.
BCG infection in M0 macrophages activated TLR2-MyD88 and Mincle-CARD9 signaling
pathways, stimulating nitric oxide (NO) production and enhanced killing of LVS.
BCG infection had little effect on LVS escape from phagosomes into the cytosol
in M0 macrophages. In contrast, M2-polarized macrophages exhibited enhanced
endosomal acidification, as well as inhibiting LVS replication. Pre-infection
with BCG did not induce NO production and thus did not further reduce LVS
replication. This study provides a model for studies of the complexity of
macrophage activation in response to multi-bacterial infection.
Collapse
Affiliation(s)
- Nikita H Trivedi
- 1 Department of Biology, the South Texas Center for Emerging Infectious Diseases, and the Center for Excellence in Infection Genomics, University of Texas at San Antonio, USA
| | - Jieh-Juen Yu
- 1 Department of Biology, the South Texas Center for Emerging Infectious Diseases, and the Center for Excellence in Infection Genomics, University of Texas at San Antonio, USA
| | - Chiung-Yu Hung
- 1 Department of Biology, the South Texas Center for Emerging Infectious Diseases, and the Center for Excellence in Infection Genomics, University of Texas at San Antonio, USA
| | - Richard P Doelger
- 1 Department of Biology, the South Texas Center for Emerging Infectious Diseases, and the Center for Excellence in Infection Genomics, University of Texas at San Antonio, USA
| | - Christopher S Navara
- 1 Department of Biology, the South Texas Center for Emerging Infectious Diseases, and the Center for Excellence in Infection Genomics, University of Texas at San Antonio, USA
| | | | - Janakiram Seshu
- 1 Department of Biology, the South Texas Center for Emerging Infectious Diseases, and the Center for Excellence in Infection Genomics, University of Texas at San Antonio, USA
| | - Anthony P Sinai
- 3 The Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, USA
| | - James P Chambers
- 1 Department of Biology, the South Texas Center for Emerging Infectious Diseases, and the Center for Excellence in Infection Genomics, University of Texas at San Antonio, USA
| | - M Neal Guentzel
- 1 Department of Biology, the South Texas Center for Emerging Infectious Diseases, and the Center for Excellence in Infection Genomics, University of Texas at San Antonio, USA
| | - Bernard P Arulanandam
- 1 Department of Biology, the South Texas Center for Emerging Infectious Diseases, and the Center for Excellence in Infection Genomics, University of Texas at San Antonio, USA
| |
Collapse
|
49
|
Liu Y, Zhou Q, Zhong L, Lin H, Hu MM, Zhou Y, Shu HB, Li S. ZDHHC11 modulates innate immune response to DNA virus by mediating MITA-IRF3 association. Cell Mol Immunol 2018; 15:907-916. [PMID: 29429998 DOI: 10.1038/cmi.2017.146] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 11/10/2017] [Accepted: 11/11/2017] [Indexed: 01/13/2023] Open
Abstract
MITA is a central adaptor in innate immune responses to DNA viruses. The mechanisms responsible for recruitment of downstream kinase TBK1 and the transcription factor IRF3 to MITA remains enigmatic. Here we identified ZDHHC11, a member of DHHC palmitoyl transferase family, as a positive regulator of DNA virus-triggered signaling. Overexpression of ZDHHC11 activated the IFN-β promoter, while ZDHHC11-deficiency specifically impaired DNA virus HSV-1-induced transcription of downstream antiviral genes. Zdhhc11-/- mice exhibited lower serum cytokine levels and higher lethality after HSV-1 infection. Mechanistically, ZDHHC11 facilitated the optimal recruitment of IRF3 to MITA. Our findings support an important role for ZDHHC11 in mediating MITA-dependent innate immune responses against DNA viruses.
Collapse
Affiliation(s)
- Ying Liu
- College of Life Sciences, Medical Research Institute, Wuhan University, Wuhan, 430072, China, Hubei
| | - Qian Zhou
- College of Life Sciences, Medical Research Institute, Wuhan University, Wuhan, 430072, China, Hubei
| | - Li Zhong
- College of Life Sciences, Medical Research Institute, Wuhan University, Wuhan, 430072, China, Hubei
| | - Heng Lin
- College of Life Sciences, Medical Research Institute, Wuhan University, Wuhan, 430072, China, Hubei
| | - Ming-Ming Hu
- College of Life Sciences, Medical Research Institute, Wuhan University, Wuhan, 430072, China, Hubei
| | - Yan Zhou
- College of Life Sciences, Medical Research Institute, Wuhan University, Wuhan, 430072, China, Hubei.
| | - Hong-Bing Shu
- College of Life Sciences, Medical Research Institute, Wuhan University, Wuhan, 430072, China, Hubei.
| | - Shu Li
- College of Life Sciences, Medical Research Institute, Wuhan University, Wuhan, 430072, China, Hubei.
| |
Collapse
|
50
|
Miorin L, Maestre AM, Fernandez-Sesma A, García-Sastre A. Antagonism of type I interferon by flaviviruses. Biochem Biophys Res Commun 2017; 492:587-596. [PMID: 28576494 PMCID: PMC5626595 DOI: 10.1016/j.bbrc.2017.05.146] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 05/20/2017] [Accepted: 05/24/2017] [Indexed: 12/24/2022]
Abstract
The prompt and tightly controlled induction of type I interferon is a central event of the immune defense against viral infection. Flaviviruses comprise a large family of arthropod-borne positive-stranded RNA viruses, many of which represent a serious threat to global human health due to their high rates of morbidity and mortality. All flaviviruses studied so far have been shown to counteract the host's immune response to establish a productive infection and facilitate viral spread. Here, we review the current knowledge on the main strategies that human pathogenic flaviviruses utilize to escape both type I IFN induction and effector pathways. A better understanding of the specific mechanisms by which flaviviruses activate and evade innate immune responses is critical for the development of better therapeutics and vaccines.
Collapse
Affiliation(s)
- Lisa Miorin
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Ana M Maestre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Ana Fernandez-Sesma
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States.
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States.
| |
Collapse
|