1
|
Lin L, Luo J, Cai Y, Wu X, Zhou L, Li T, Wang X, Xu H. Mass cytometry identifies imbalance of multiple immune-cell subsets associated with biologics treatment in ankylosing spondylitis. Int J Rheum Dis 2024; 27:e15378. [PMID: 39420773 DOI: 10.1111/1756-185x.15378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/03/2024] [Accepted: 10/06/2024] [Indexed: 10/19/2024]
Abstract
OBJECTIVE This study aims to comprehensively investigate immune-cell landscapes in ankylosing spondylitis (AS) patients and explore longitudinal immunophenotyping changes induced by biological agents. METHODS We employed mass cytometry with 35 cellular markers to analyze blood samples from 34 AS patients and 13 healthy controls (HC). Eleven AS patients were re-evaluated 1 month (4 patients) and 3 months (7 patients) after treatment with biological agents. Flow Self-Organizing Maps (FlowSOM) clustering was performed to identify specific cellular metaclusters. We compared cellular abundances across distinct subgroups and validated subset differences using gating strategies in flow cytometry scatter plots, visualized with FlowJo software. The proportions of differential subsets were then used for intercellular and clinical correlation analysis, as well as for constructing diagnostic models based on the random forest algorithm. RESULTS In AS patients, we identified and validated nine different immune-cell subsets compared to HC. Three subsets increased: helper T-cell 17 (Th17), mucosa-associated invariant T-cell (MAIT), and classical monocytes (CM). Six subsets decreased: effector memory T-cell (TEM), naïve B cells, transitional B cells, IL10+ memory B cells, non-classical monocytes (NCM), and neutrophils. Treatments with biological agents could rectify cellular abnormalities, particularly the imbalance of CM/NCM. Furthermore, these subsets may serve as biomarkers for assessing disease activity and constructing effective diagnostic models for AS. CONCLUSION These findings provide novel insights into the specific patterns of immune cell in AS, facilitating the further development of novel biomarkers and potential therapeutic targets for AS patients.
Collapse
Affiliation(s)
- Li Lin
- Department of Rheumatology and Immunology, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
- National Key Laboratory for Immunity and Inflammation, Shanghai, China
| | - Jing Luo
- School of Medicine, Tsinghua University, Beijing, China
| | - Yue Cai
- Department of Rheumatology and Immunology, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Xin Wu
- Department of Rheumatology and Immunology, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
- National Key Laboratory for Immunity and Inflammation, Shanghai, China
| | - Ling Zhou
- Department of Rheumatology and Immunology, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
- National Key Laboratory for Immunity and Inflammation, Shanghai, China
| | - Ting Li
- Department of Rheumatology and Immunology, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
- National Key Laboratory for Immunity and Inflammation, Shanghai, China
| | - Xiaobing Wang
- Department of Rheumatology and Immunology, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
- National Key Laboratory for Immunity and Inflammation, Shanghai, China
| | - Huji Xu
- Department of Rheumatology and Immunology, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
- National Key Laboratory for Immunity and Inflammation, Shanghai, China
- School of Medicine, Tsinghua University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Tsinghua University, Beijing, China
| |
Collapse
|
2
|
Coppard V, Szep G, Georgieva Z, Howlett SK, Jarvis LB, Rainbow DB, Suchanek O, Needham EJ, Mousa HS, Menon DK, Feyertag F, Mahbubani KT, Saeb-Parsy K, Jones JL. FlowAtlas: an interactive tool for high-dimensional immunophenotyping analysis bridging FlowJo with computational tools in Julia. Front Immunol 2024; 15:1425488. [PMID: 39086484 PMCID: PMC11288863 DOI: 10.3389/fimmu.2024.1425488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/02/2024] [Indexed: 08/02/2024] Open
Abstract
As the dimensionality, throughput and complexity of cytometry data increases, so does the demand for user-friendly, interactive analysis tools that leverage high-performance machine learning frameworks. Here we introduce FlowAtlas: an interactive web application that enables dimensionality reduction of cytometry data without down-sampling and that is compatible with datasets stained with non-identical panels. FlowAtlas bridges the user-friendly environment of FlowJo and computational tools in Julia developed by the scientific machine learning community, eliminating the need for coding and bioinformatics expertise. New population discovery and detection of rare populations in FlowAtlas is intuitive and rapid. We demonstrate the capabilities of FlowAtlas using a human multi-tissue, multi-donor immune cell dataset, highlighting key immunological findings. FlowAtlas is available at https://github.com/gszep/FlowAtlas.jl.git.
Collapse
Affiliation(s)
- Valerie Coppard
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Grisha Szep
- Randall Centre for Cell & Molecular Biophysics, King’s College London, London, United Kingdom
| | - Zoya Georgieva
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Sarah K. Howlett
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Lorna B. Jarvis
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Daniel B. Rainbow
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Ondrej Suchanek
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Edward J. Needham
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Hani S. Mousa
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - David K. Menon
- Department of Anaesthesia, University of Cambridge, Cambridge, United Kingdom
| | | | - Krishnaa T. Mahbubani
- Department of Surgery, University of Cambridge, Cambridge, United Kingdom
- Collaborative Biorepository for Translational Medicine (CBTM), Cambridge NIHR Biomedical Research Centre, Cambridge, United Kingdom
| | - Kourosh Saeb-Parsy
- Department of Surgery, University of Cambridge, Cambridge, United Kingdom
- Collaborative Biorepository for Translational Medicine (CBTM), Cambridge NIHR Biomedical Research Centre, Cambridge, United Kingdom
| | - Joanne L. Jones
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
3
|
Saul D, Doolittle ML, Rowsey JL, Froemming MN, Kosinsky RL, Vos SJ, Ruan M, LeBrasseur N, Chandra A, Pignolo R, Passos JF, Farr JN, Monroe DG, Khosla S. Osteochondroprogenitor cells and neutrophils expressing p21 and senescence markers modulate fracture repair. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.01.578420. [PMID: 38370844 PMCID: PMC10871229 DOI: 10.1101/2024.02.01.578420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Cells expressing features of senescence, including upregulation of p21 and p16, appear transiently following tissue injury, yet the properties of these cells or how they contrast with age-induced senescent cells remains unclear. Here, we used skeletal injury as a model and identified the rapid appearance following fracture of p21+ cells expressing senescence markers, mainly as osteochondroprogenitors (OCHs) and neutrophils. Targeted genetic clearance of p21+ cells suppressed senescence-associated signatures within the fracture callus and accelerated fracture healing. By contrast, p21+ cell clearance did not alter bone loss due to aging; conversely, p16+ cell clearance, known to alleviate skeletal aging, did not affect fracture healing. Following fracture, p21+ neutrophils were enriched in signaling pathways known to induce paracrine stromal senescence, while p21+ OCHs were highly enriched in senescence-associated secretory phenotype factors known to impair bone formation. Further analysis revealed an injury-specific stem cell-like OCH subset that was p21+ and highly inflammatory, with a similar inflammatory mesenchymal population (fibro-adipogenic progenitors) evident following muscle injury. Thus, intercommunicating senescent-like neutrophils and mesenchymal progenitor cells are key regulators of tissue repair in bone and potentially across tissues. Moreover, our findings establish contextual roles of p21+ vs p16+ senescent/senescent-like cells that may be leveraged for therapeutic opportunities.
Collapse
|
4
|
Martín Almazán N, Sala BM, Sandalova T, Sun Y, Resink T, Cichocki F, Söderberg-Nauclér C, Miller JS, Achour A, Sarhan D. Non-classical HLA-E restricted CMV 15-mer peptides are recognized by adaptive NK cells and induce memory responses. Front Immunol 2023; 14:1230718. [PMID: 37809084 PMCID: PMC10552778 DOI: 10.3389/fimmu.2023.1230718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 09/01/2023] [Indexed: 10/10/2023] Open
Abstract
Introduction Human cytomegalovirus (HCMV) reactivation causes complications in immunocompromised patients after hematopoietic stem cell transplantation (HSCT), significantly increasing morbidity and mortality. Adaptive Natural Killer (aNK) cells undergo a persistent reconfiguration in response to HCMV reactivation; however, the exact role of aNK cell memory in HCMV surveillance remains elusive. Methods We employed mass spectrometry and computational prediction approaches to identify HLA-E-restricted HCMV peptides that can elucidate aNK cell responses. We also used the K562 cell line transfected with HLA-E0*0103 for specific peptide binding and blocking assays. Subsequently, NK cells were cocultured with dendritic cells (DCs) loaded with each of the identified peptides to examine aNK and conventional (c)NK cell responses. Results Here, we discovered three unconventional HLA-E-restricted 15-mer peptides (SEVENVSVNVHNPTG, TSGSDSDEELVTTER, and DSDEELVTTERKTPR) derived from the HCMV pp65-protein that elicit aNK cell memory responses restricted to HCMV. aNK cells displayed memory responses towards HMCV-infected cells and HCMV-seropositive individuals when primed by DCs loaded with each of these peptides and predicted 9-mer versions. Blocking the interaction between HLA-E and the activation NKG2C receptor but not the inhibitory NKG2A receptor abolished these specific recall responses. Interestingly, compared to the HLA-E complex with the leader peptide VMAPRTLIL, HLA-E complexes formed with each of the three identified peptides significantly changed the surface electrostatic potential to highly negative. Furthermore, these peptides do not comprise the classical HLA-E-restriction motifs. Discussion These findings suggest a differential binding to NKG2C compared to HLA-E complexes with classical leader peptides that may result in the specific activation of aNK cells. We then designed six nonameric peptides based on the three discovered peptides that could elicit aNK cell memory responses to HCMV necessary for therapeutic inventions. The results provide novel insights into HLA-E-mediated signaling networks that mediate aNK cell recall responses and maximize their reactivity.
Collapse
Affiliation(s)
- Nerea Martín Almazán
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institute, Stockholm, Sweden
| | - Benedetta Maria Sala
- Science for Life Laboratory, Department of Medicine, Karolinska Institute, Stockholm, Sweden
- Division of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Tatyana Sandalova
- Science for Life Laboratory, Department of Medicine, Karolinska Institute, Stockholm, Sweden
- Division of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Yizhe Sun
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institute, Stockholm, Sweden
| | - Tom Resink
- Science for Life Laboratory, Department of Medicine, Karolinska Institute, Stockholm, Sweden
- Division of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Frank Cichocki
- Division of Hematology, Oncology and Transplantation, University of Minnesota Masonic Cancer Center, Minneapolis, MN, United States
| | - Cecilia Söderberg-Nauclér
- Department of Medicine, Microbial Pathogenesis Unit, Karolinska Institute, Stockholm, Sweden
- Division of Neurology, Karolinska University Hospital, Stockholm, Sweden
- Institute of Biomedicine, Unit for Infection and immunology, MediCity Research Laboratory, InFLAMES Flagship, University of Turku, Turku, Finland
| | - Jeffrey S Miller
- Division of Hematology, Oncology and Transplantation, University of Minnesota Masonic Cancer Center, Minneapolis, MN, United States
| | - Adnane Achour
- Science for Life Laboratory, Department of Medicine, Karolinska Institute, Stockholm, Sweden
- Division of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Dhifaf Sarhan
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
5
|
Doolittle ML, Saul D, Kaur J, Rowsey JL, Vos SJ, Pavelko KD, Farr JN, Monroe DG, Khosla S. Multiparametric senescent cell phenotyping reveals CD24 osteolineage cells as targets of senolytic therapy in the aged murine skeleton. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.12.523760. [PMID: 36711531 PMCID: PMC9882155 DOI: 10.1101/2023.01.12.523760] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Senescence drives organismal aging, yet the deep characterization of senescent cells in vivo remains incomplete. Here, we applied mass cytometry by time-of-flight (CyTOF) using carefully validated antibodies to analyze senescent cells at single-cell resolution. We used multiple criteria to identify senescent mesenchymal cells that were growth arrested and resistant to apoptosis (p16+/Ki67-/BCL-2+; "p16KB" cells). These cells were highly enriched for senescence-associated secretory phenotype (SASP) and DNA damage markers and were strongly associated with age. p16KB cell percentages were also increased in CD24+ osteolineage cells, which exhibited an inflammatory SASP in aged mice and were robustly cleared by both genetic and pharmacologic senolytic therapies. Following isolation, CD24+ skeletal cells exhibited growth arrest, SA-βgal positivity, and impaired osteogenesis in vitro . These studies thus provide a new approach using multiplexed protein profiling by CyTOF to define senescent mesenchymal cells in vivo and identify a highly inflammatory, senescent CD24+ osteolineage population cleared by senolytics.
Collapse
Affiliation(s)
- Madison L. Doolittle
- Division of Endocrinology, Diabetes and Metabolism, Mayo Clinic, Rochester, MN, 55905, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, USA
| | - Dominik Saul
- Division of Endocrinology, Diabetes and Metabolism, Mayo Clinic, Rochester, MN, 55905, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, USA
- Department for Trauma and Reconstructive Surgery, BG Clinic, University of Tübingen, Germany
| | - Japneet Kaur
- Division of Endocrinology, Diabetes and Metabolism, Mayo Clinic, Rochester, MN, 55905, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, USA
| | - Jennifer L. Rowsey
- Division of Endocrinology, Diabetes and Metabolism, Mayo Clinic, Rochester, MN, 55905, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, USA
| | - Stephanie J. Vos
- Division of Endocrinology, Diabetes and Metabolism, Mayo Clinic, Rochester, MN, 55905, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, USA
| | - Kevin D. Pavelko
- Department of Immunology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Joshua N. Farr
- Division of Endocrinology, Diabetes and Metabolism, Mayo Clinic, Rochester, MN, 55905, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, USA
| | - David G. Monroe
- Division of Endocrinology, Diabetes and Metabolism, Mayo Clinic, Rochester, MN, 55905, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, USA
| | - Sundeep Khosla
- Division of Endocrinology, Diabetes and Metabolism, Mayo Clinic, Rochester, MN, 55905, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
6
|
Luo Y, Liu S, Li H, Hou J, Lin W, Xu Z, Lu T, Li Y, Peng B, Zhang S, Han X, Kuang Z, Wen Y, Cai J, Liu F, Chen XL. Mass Cytometry and Single-Cell Transcriptome Analyses Reveal the Immune Cell Characteristics of Ulcerative Colitis. Front Mol Biosci 2022; 9:859645. [PMID: 35813827 PMCID: PMC9260076 DOI: 10.3389/fmolb.2022.859645] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 06/02/2022] [Indexed: 12/31/2022] Open
Abstract
Background: The pathogenesis of ulcerative colitis (UC) is closely related to immunity. The immune characteristic differences between active UC (UCa) and inactive UC (UCin) have not been completely explained. Mass cytometry (CyTOF) and single-cell RNA sequencing (scRNA-seq) were used to analyze the immune cells of UCa, UCin and healthy control (HC) subjects to determine the specific immune characteristics. Methods: The immune cell subsets among UCa, UCin, HC were distinguished using CyTOF analysis. scRNA-seq analysis was used to validate the results of CyTOF. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were performed to understand the roles of differential immune cell subsets. Results: After CyTOF analysis and validation of scRNA-seq analysis, differential immune cell subsets mainly contained TNF+IL-17A++ effector memory (EM) Tregs, CXCR3+CTLA4+ EM Tregs, CXCR3++CCR7+ B cells, HLA-DR+CCR7+ dendritic cells (DCs) and CTLA-4+ natural killer (NK) cells. In comparison to HC, CCR6+TNF+CD161+ EM T cells were highly enriched in UCa and UCin. Besides, UCa was characterized by an increase in CD38+TNF+ EM Tregs, CXCR3+CCR4+ naïve B cells, HLA-DR+CD14+IL21+ macrophages/monocytes, HLA-DR+CCR7+ DCs, AHR+CD14+ cytotoxic NK (cNK) cells and CD8A+IFNG+ cNK cells. Decreases in CD38+CD27+ plasmablasts, CXCR3+CD38+ regulatory NK cells, and CXCR3+CCR7+ tolerant NK cells in UCa were discovered. Conclusions: Novel immune cell subsets which was used to distinguish UCa, UCin and HC were identified. This information might be utilized to distinguish the patients with UCa and UCin.
Collapse
Affiliation(s)
- Yongxin Luo
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shiying Liu
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Huibiao Li
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiangtao Hou
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wenjia Lin
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zewen Xu
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Tianyu Lu
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yanwu Li
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- Pi-Wei Institute, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Bin Peng
- The First Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shijing Zhang
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xue Han
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zuoliang Kuang
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yi Wen
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiazhong Cai
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- Pi-Wei Institute, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Fengbin Liu
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
- *Correspondence: Fengbin Liu, ; Xin-Lin Chen,
| | - Xin-Lin Chen
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
- *Correspondence: Fengbin Liu, ; Xin-Lin Chen,
| |
Collapse
|
7
|
Abstract
Mass cytometry has revolutionized immunophenotyping, particularly in exploratory settings where simultaneous breadth and depth of characterization of immune populations is needed with limited samples such as in preclinical and clinical tumor immunotherapy. Mass cytometry is also a powerful tool for single-cell immunological assays, especially for complex and simultaneous characterization of diverse intratumoral immune subsets or immunotherapeutic cell populations. Through the elimination of spectral overlap seen in optical flow cytometry by replacement of fluorescent labels with metal isotopes, mass cytometry allows, on average, robust analysis of 60 individual parameters simultaneously. This is, however, associated with significantly increased complexity in the design, execution, and interpretation of mass cytometry experiments. To address the key pitfalls associated with the fragmentation, complexity, and analysis of data in mass cytometry for immunologists who are novices to these techniques, we have developed a comprehensive resource guide. Included in this review are experiment and panel design, antibody conjugations, sample staining, sample acquisition, and data pre-processing and analysis. Where feasible multiple resources for the same process are compared, allowing researchers experienced in flow cytometry but with minimal mass cytometry expertise to develop a data-driven and streamlined project workflow. It is our hope that this manuscript will prove a useful resource for both beginning and advanced users of mass cytometry.
Collapse
Affiliation(s)
- Akshay Iyer
- Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL, United States
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Anouk A. J. Hamers
- Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL, United States
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, United States
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Asha B. Pillai
- Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL, United States
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, United States
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, United States
- Sheila and David Fuente Program in Cancer Biology, University of Miami Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
8
|
The Interleukin-1 (IL-1) Superfamily Cytokines and Their Single Nucleotide Polymorphisms (SNPs). J Immunol Res 2022; 2022:2054431. [PMID: 35378905 PMCID: PMC8976653 DOI: 10.1155/2022/2054431] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/24/2022] [Accepted: 03/08/2022] [Indexed: 12/19/2022] Open
Abstract
Interleukins (ILs)—which are important members of cytokines—consist of a vast group of molecules, including a wide range of immune mediators that contribute to the immunological responses of many cells and tissues. ILs are immune-glycoproteins, which directly contribute to the growth, activation, adhesion, differentiation, migration, proliferation, and maturation of immune cells; and subsequently, they are involved in the pro and anti-inflammatory responses of the body, by their interaction with a wide range of receptors. Due to the importance of immune system in different organisms, the genes belonging to immune elements, such as ILs, have been studied vigorously. The results of recent investigations showed that the genes pertaining to the immune system undergo progressive evolution with a constant rate. The occurrence of any mutation or polymorphism in IL genes may result in substantial changes in their biology and function and may be associated with a wide range of diseases and disorders. Among these abnormalities, single nucleotide polymorphisms (SNPs) can represent as important disruptive factors. The present review aims at concisely summarizing the current knowledge available on the occurrence, properties, role, and biological consequences of SNPs within the IL-1 family members.
Collapse
|
9
|
Lo YC, Keyes TJ, Jager A, Sarno J, Domizi P, Majeti R, Sakamoto KM, Lacayo N, Mullighan CG, Waters J, Sahaf B, Bendall SC, Davis KL. CytofIn enables integrated analysis of public mass cytometry datasets using generalized anchors. Nat Commun 2022; 13:934. [PMID: 35177627 PMCID: PMC8854441 DOI: 10.1038/s41467-022-28484-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 01/27/2022] [Indexed: 11/09/2022] Open
Abstract
The increasing use of mass cytometry for analyzing clinical samples offers the possibility to perform comparative analyses across public datasets. However, challenges in batch normalization and data integration limit the comparison of datasets not intended to be analyzed together. Here, we present a data integration strategy, CytofIn, using generalized anchors to integrate mass cytometry datasets from the public domain. We show that low-variance controls, such as healthy samples and stable channels, are inherently homogeneous, robust against stimulation, and can serve as generalized anchors for batch correction. Single-cell quantification comparing mass cytometry data from 989 leukemia files pre- and post normalization with CytofIn demonstrates effective batch correction while recapitulating the gold-standard bead normalization. CytofIn integration of public cancer datasets enabled the comparison of immune features across histologies and treatments. We demonstrate the ability to integrate public datasets without necessitating identical control samples or bead standards for fast and robust analysis using CytofIn.
Collapse
Affiliation(s)
- Yu-Chen Lo
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Timothy J Keyes
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
- Medical Scientist Training Program, Stanford University School of Medicine, Stanford, CA, USA
| | - Astraea Jager
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Jolanda Sarno
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Pablo Domizi
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Ravindra Majeti
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Kathleen M Sakamoto
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Norman Lacayo
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Charles G Mullighan
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jeffrey Waters
- Center for Cancer Cellular Therapy, Cancer Correlative Sciences Unit, Stanford University School of Medicine, Stanford, CA, USA
| | - Bita Sahaf
- Center for Cancer Cellular Therapy, Cancer Correlative Sciences Unit, Stanford University School of Medicine, Stanford, CA, USA
| | - Sean C Bendall
- Center for Cancer Cellular Therapy, Cancer Correlative Sciences Unit, Stanford University School of Medicine, Stanford, CA, USA
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Kara L Davis
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA.
- Center for Cancer Cellular Therapy, Cancer Correlative Sciences Unit, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
10
|
Geller AE, Shrestha R, Woeste MR, Guo H, Hu X, Ding C, Andreeva K, Chariker JH, Zhou M, Tieri D, Watson CT, Mitchell RA, Zhang HG, Li Y, Martin Ii RCG, Rouchka EC, Yan J. The induction of peripheral trained immunity in the pancreas incites anti-tumor activity to control pancreatic cancer progression. Nat Commun 2022; 13:759. [PMID: 35140221 PMCID: PMC8828725 DOI: 10.1038/s41467-022-28407-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 01/17/2022] [Indexed: 02/08/2023] Open
Abstract
Despite the remarkable success of immunotherapy in many types of cancer, pancreatic ductal adenocarcinoma has yet to benefit. Innate immune cells are critical to anti-tumor immunosurveillance and recent studies have revealed that these populations possess a form of memory, termed trained innate immunity, which occurs through transcriptomic, epigenetic, and metabolic reprograming. Here we demonstrate that yeast-derived particulate β-glucan, an inducer of trained immunity, traffics to the pancreas, which causes a CCR2-dependent influx of monocytes/macrophages to the pancreas that display features of trained immunity. These cells can be activated upon exposure to tumor cells and tumor-derived factors, and show enhanced cytotoxicity against pancreatic tumor cells. In orthotopic models of pancreatic ductal adenocarcinoma, β-glucan treated mice show significantly reduced tumor burden and prolonged survival, which is further enhanced when combined with immunotherapy. These findings characterize the dynamic mechanisms and localization of peripheral trained immunity and identify an application of trained immunity to cancer.
Collapse
Affiliation(s)
- Anne E Geller
- Department of Microbiology and Immunology, University of Louisville, Louisville, KY, USA
- Division of Immunotherapy, The Hiram C. Polk, Jr., MD Department of Surgery, Immuno-Oncology Program, Brown Cancer Center, University of Louisville, Louisville, KY, USA
| | - Rejeena Shrestha
- Department of Microbiology and Immunology, University of Louisville, Louisville, KY, USA
- Division of Immunotherapy, The Hiram C. Polk, Jr., MD Department of Surgery, Immuno-Oncology Program, Brown Cancer Center, University of Louisville, Louisville, KY, USA
| | - Matthew R Woeste
- Department of Microbiology and Immunology, University of Louisville, Louisville, KY, USA
- Division of Immunotherapy, The Hiram C. Polk, Jr., MD Department of Surgery, Immuno-Oncology Program, Brown Cancer Center, University of Louisville, Louisville, KY, USA
- Division of Surgical Oncology, The Hiram C. Polk, Jr., MD Department of Surgery, University of Louisville, Louisville, KY, USA
| | - Haixun Guo
- Department of Radiology, University of Louisville, Louisville, KY, USA
| | - Xiaoling Hu
- Division of Immunotherapy, The Hiram C. Polk, Jr., MD Department of Surgery, Immuno-Oncology Program, Brown Cancer Center, University of Louisville, Louisville, KY, USA
| | - Chuanlin Ding
- Division of Immunotherapy, The Hiram C. Polk, Jr., MD Department of Surgery, Immuno-Oncology Program, Brown Cancer Center, University of Louisville, Louisville, KY, USA
| | - Kalina Andreeva
- Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, KY, USA
- Kentucky Biomedical Research Infrastructure Network Bioinformatics Core, University of Louisville, Louisville, Kentucky, USA
| | - Julia H Chariker
- Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, KY, USA
- Kentucky Biomedical Research Infrastructure Network Bioinformatics Core, University of Louisville, Louisville, Kentucky, USA
| | - Mingqian Zhou
- Division of Immunotherapy, The Hiram C. Polk, Jr., MD Department of Surgery, Immuno-Oncology Program, Brown Cancer Center, University of Louisville, Louisville, KY, USA
| | - David Tieri
- Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, KY, USA
| | - Corey T Watson
- Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, KY, USA
| | - Robert A Mitchell
- Division of Immunotherapy, The Hiram C. Polk, Jr., MD Department of Surgery, Immuno-Oncology Program, Brown Cancer Center, University of Louisville, Louisville, KY, USA
| | - Huang-Ge Zhang
- Department of Microbiology and Immunology, University of Louisville, Louisville, KY, USA
| | - Yan Li
- Division of Surgical Oncology, The Hiram C. Polk, Jr., MD Department of Surgery, University of Louisville, Louisville, KY, USA
| | - Robert C G Martin Ii
- Division of Surgical Oncology, The Hiram C. Polk, Jr., MD Department of Surgery, University of Louisville, Louisville, KY, USA
| | - Eric C Rouchka
- Kentucky Biomedical Research Infrastructure Network Bioinformatics Core, University of Louisville, Louisville, Kentucky, USA
- Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, KY, USA
| | - Jun Yan
- Department of Microbiology and Immunology, University of Louisville, Louisville, KY, USA.
- Division of Immunotherapy, The Hiram C. Polk, Jr., MD Department of Surgery, Immuno-Oncology Program, Brown Cancer Center, University of Louisville, Louisville, KY, USA.
| |
Collapse
|
11
|
Vincent MP, Stack T, Vahabikashi A, Li G, Perkumas KM, Ren R, Gong H, Stamer WD, Johnson M, Scott EA. Surface Engineering of FLT4-Targeted Nanocarriers Enhances Cell-Softening Glaucoma Therapy. ACS APPLIED MATERIALS & INTERFACES 2021; 13:32823-32836. [PMID: 34232612 PMCID: PMC9131393 DOI: 10.1021/acsami.1c09294] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Primary open-angle glaucoma is associated with elevated intraocular pressure (IOP) that damages the optic nerve and leads to gradual vision loss. Several agents that reduce the stiffness of pressure-regulating Schlemm's canal (SC) endothelial cells, in the conventional outflow pathway of the eye, lower IOP in glaucoma patients and are approved for clinical use. However, poor drug penetration and uncontrolled biodistribution limit their efficacy and produce local adverse effects. Compared to other ocular endothelia, FLT4/VEGFR3 is expressed at elevated levels by SC endothelial cells and can be exploited for targeted drug delivery. Here, we validate FLT4 receptors as clinically relevant targets on SC cells from glaucomatous human donors and engineer polymeric self-assembled nanocarriers displaying lipid-anchored targeting ligands that optimally engage this receptor. Targeting constructs were synthesized as lipid-PEGx-peptide, differing in the number of PEG spacer units (x), and were embedded in micelles. We present a novel proteolysis assay for quantifying ligand accessibility that we employ to design and optimize our FLT4-targeting strategy for glaucoma nanotherapy. Peptide accessibility to proteases correlated with receptor-mediated targeting enhancements. Increasing the accessibility of FLT4-binding peptides enhanced nanocarrier uptake by SC cells while simultaneously decreasing the uptake by off-target vascular endothelial cells. Using a paired longitudinal IOP study in vivo, we show that this enhanced targeting of SC cells translates to IOP reductions that are sustained for a significantly longer time as compared to controls. Confocal microscopy of murine anterior segment tissue confirmed nanocarrier localization to SC within 1 h after intracameral administration. This work demonstrates that steric effects between surface-displayed ligands and PEG coronas significantly impact the targeting performance of synthetic nanocarriers across multiple biological scales. Minimizing the obstruction of modular targeting ligands by PEG measurably improved the efficacy of glaucoma nanotherapy and is an important consideration for engineering PEGylated nanocarriers for targeted drug delivery.
Collapse
Affiliation(s)
- Michael P Vincent
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Trevor Stack
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Amir Vahabikashi
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Department of Cell and Developmental Biology, Northwestern University, Chicago, Illinois 60611, United States
| | - Guorong Li
- Department of Ophthalmology, Duke University, Durham, North Carolina 27710, United States
| | - Kristin M Perkumas
- Department of Ophthalmology, Duke University, Durham, North Carolina 27710, United States
| | - Ruiyi Ren
- Department of Ophthalmology, Boston University School of Medicine, Boston, Massachusetts 02118, United States
| | - Haiyan Gong
- Department of Ophthalmology, Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, Massachusetts 02118, United States
| | - W Daniel Stamer
- Department of Ophthalmology, Duke University, Durham, North Carolina 27710, United States
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Mark Johnson
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Department of Ophthalmology, Northwestern University, Chicago, Illinois 60611, United States
- Department of Mechanical Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Evan A Scott
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Simpson Querrey Institute, Northwestern University, Chicago, Illinois 60611, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois 60611, United States
| |
Collapse
|
12
|
Manfredi F, Abbati D, Cianciotti BC, Stasi L, Potenza A, Ruggiero E, Magnani Z, Carnevale E, Doglio M, Noviello M, Tassi E, Balestrieri C, Buonanno S, Clemente F, De Lalla C, Protti MP, Mondino A, Casorati G, Dellabona P, Bonini C. Flow cytometry data mining by cytoChain identifies determinants of exhaustion and stemness in TCR-engineered T cells. Eur J Immunol 2021; 51:1992-2005. [PMID: 34081326 DOI: 10.1002/eji.202049103] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 04/09/2021] [Accepted: 05/31/2021] [Indexed: 12/17/2022]
Abstract
The phenotype of infused cells is a major determinant of Adoptive T-cell therapy (ACT) efficacy. Yet, the difficulty in deciphering multiparametric cytometry data limited the fine characterization of cellular products. To allow the analysis of dynamic and complex flow cytometry samples, we developed cytoChain, a novel dataset mining tool and a new analytical workflow. CytoChain was challenged to compare state-of-the-art and innovative culture conditions to generate stem-like memory cells (TSCM ) suitable for ACT. Noticeably, the combination of IL-7/15 and superoxides scavenging sustained the emergence of a previously unidentified nonexhausted Fit-TSCM signature, overlooked by manual gating and endowed with superior expansion potential. CytoChain proficiently traced back this population in independent datasets, and in T-cell receptor engineered lymphocytes. CytoChain flexibility and function were then further validated on a published dataset from circulating T cells in COVID-19 patients. Collectively, our results support the use of cytoChain to identify novel, functionally critical immunophenotypes for ACT and patients immunomonitoring.
Collapse
Affiliation(s)
- Francesco Manfredi
- Experimental Hematology Unit, San Raffaele Scientific Institute, Milan, Italy.,Vita Salute San Raffaele University, Milan, Italy
| | - Danilo Abbati
- Experimental Hematology Unit, San Raffaele Scientific Institute, Milan, Italy
| | | | - Lorena Stasi
- Vita Salute San Raffaele University, Milan, Italy
| | - Alessia Potenza
- Experimental Hematology Unit, San Raffaele Scientific Institute, Milan, Italy.,School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | - Eliana Ruggiero
- Experimental Hematology Unit, San Raffaele Scientific Institute, Milan, Italy
| | - Zulma Magnani
- Experimental Hematology Unit, San Raffaele Scientific Institute, Milan, Italy
| | - Erica Carnevale
- Experimental Hematology Unit, San Raffaele Scientific Institute, Milan, Italy
| | - Matteo Doglio
- Experimental Hematology Unit, San Raffaele Scientific Institute, Milan, Italy.,Vita Salute San Raffaele University, Milan, Italy
| | - Maddalena Noviello
- Experimental Hematology Unit, San Raffaele Scientific Institute, Milan, Italy
| | - Elena Tassi
- Experimental Hematology Unit, San Raffaele Scientific Institute, Milan, Italy
| | - Chiara Balestrieri
- Experimental Hematology Unit, San Raffaele Scientific Institute, Milan, Italy
| | - Silvia Buonanno
- Experimental Hematology Unit, San Raffaele Scientific Institute, Milan, Italy
| | | | - Claudia De Lalla
- Experimental Immunology Unit, San Raffaele Scientific Institute, Milan, Italy
| | - Maria Pia Protti
- Tumor Immunology Unit, San Raffaele Scientific Institute, Milan, Italy
| | - Anna Mondino
- Lymphocyte Activation Unit, San Raffaele Scientific Institute, Milan, Italy
| | - Giulia Casorati
- Experimental Immunology Unit, San Raffaele Scientific Institute, Milan, Italy
| | - Paolo Dellabona
- Experimental Immunology Unit, San Raffaele Scientific Institute, Milan, Italy
| | - Chiara Bonini
- Experimental Hematology Unit, San Raffaele Scientific Institute, Milan, Italy.,Vita Salute San Raffaele University, Milan, Italy
| |
Collapse
|
13
|
Trained Immunity-Promoting Nanobiologic Therapy Suppresses Tumor Growth and Potentiates Checkpoint Inhibition. Cell 2021; 183:786-801.e19. [PMID: 33125893 DOI: 10.1016/j.cell.2020.09.059] [Citation(s) in RCA: 97] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 03/25/2020] [Accepted: 09/23/2020] [Indexed: 12/17/2022]
Abstract
Trained immunity, a functional state of myeloid cells, has been proposed as a compelling immune-oncological target. Its efficient induction requires direct engagement of myeloid progenitors in the bone marrow. For this purpose, we developed a bone marrow-avid nanobiologic platform designed specifically to induce trained immunity. We established the potent anti-tumor capabilities of our lead candidate MTP10-HDL in a B16F10 mouse melanoma model. These anti-tumor effects result from trained immunity-induced myelopoiesis caused by epigenetic rewiring of multipotent progenitors in the bone marrow, which overcomes the immunosuppressive tumor microenvironment. Furthermore, MTP10-HDL nanotherapy potentiates checkpoint inhibition in this melanoma model refractory to anti-PD-1 and anti-CTLA-4 therapy. Finally, we determined MTP10-HDL's favorable biodistribution and safety profile in non-human primates. In conclusion, we show that rationally designed nanobiologics can promote trained immunity and elicit a durable anti-tumor response either as a monotherapy or in combination with checkpoint inhibitor drugs.
Collapse
|
14
|
Lymphotoxin β Receptor: a Crucial Role in Innate and Adaptive Immune Responses against Toxoplasma gondii. Infect Immun 2021; 89:IAI.00026-21. [PMID: 33753412 PMCID: PMC8316152 DOI: 10.1128/iai.00026-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/12/2021] [Indexed: 11/21/2022] Open
Abstract
The lymphotoxin β receptor (LTβR) plays an essential role in the initiation of immune responses to intracellular pathogens. In mice, the LTβR is crucial for surviving acute toxoplasmosis; however, until now, a functional analysis was largely incomplete. Here, we demonstrate that the LTβR is a key regulator required for the intricate balance of adaptive immune responses. Toxoplasma gondii-infected LTβR-deficient (LTβR−/−) mice show globally altered interferon-γ (IFN-γ) regulation, reduced IFN-γ-controlled host effector molecule expression, impaired T cell functionality, and an absent anti-parasite-specific IgG response, resulting in a severe loss of immune control of the parasites. Reconstitution of LTβR−/− mice with toxoplasma immune serum significantly prolongs survival following T. gondii infection. Notably, analysis of RNA-seq data clearly indicates a specific effect of T. gondii infection on the B cell response and isotype switching. This study uncovers the decisive role of the LTβR in cytokine regulation and adaptive immune responses to control T. gondii.
Collapse
|
15
|
Morrissey SM, Geller AE, Hu X, Tieri D, Ding C, Klaes CK, Cooke EA, Woeste MR, Martin ZC, Chen O, Bush SE, Zhang HG, Cavallazzi R, Clifford SP, Chen J, Ghare S, Barve SS, Cai L, Kong M, Rouchka EC, McLeish KR, Uriarte SM, Watson CT, Huang J, Yan J. A specific low-density neutrophil population correlates with hypercoagulation and disease severity in hospitalized COVID-19 patients. JCI Insight 2021; 6:148435. [PMID: 33986193 PMCID: PMC8262329 DOI: 10.1172/jci.insight.148435] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 03/31/2021] [Indexed: 01/08/2023] Open
Abstract
SARS coronavirus 2 (SARS-CoV-2) is a novel viral pathogen that causes a clinical disease called coronavirus disease 2019 (COVID-19). Although most COVID-19 cases are asymptomatic or involve mild upper respiratory tract symptoms, a significant number of patients develop severe or critical disease. Patients with severe COVID-19 commonly present with viral pneumonia that may progress to life-threatening acute respiratory distress syndrome (ARDS). Patients with COVID-19 are also predisposed to venous and arterial thromboses that are associated with a poorer prognosis. The present study identified the emergence of a low-density inflammatory neutrophil (LDN) population expressing intermediate levels of CD16 (CD16Int) in patients with COVID-19. These cells demonstrated proinflammatory gene signatures, activated platelets, spontaneously formed neutrophil extracellular traps, and enhanced phagocytic capacity and cytokine production. Strikingly, CD16Int neutrophils were also the major immune cells within the bronchoalveolar lavage fluid, exhibiting increased CXCR3 but loss of CD44 and CD38 expression. The percentage of circulating CD16Int LDNs was associated with D-dimer, ferritin, and systemic IL-6 and TNF-α levels and changed over time with altered disease status. Our data suggest that the CD16Int LDN subset contributes to COVID-19-associated coagulopathy, systemic inflammation, and ARDS. The frequency of that LDN subset in the circulation could serve as an adjunct clinical marker to monitor disease status and progression.
Collapse
Affiliation(s)
- Samantha M Morrissey
- Department of Microbiology and Immunology.,Division of Immunotherapy, the Hiram C. Polk, Jr., MD, Department of Surgery, Immuno-Oncology Program, James Graham Brown Cancer Center
| | - Anne E Geller
- Department of Microbiology and Immunology.,Division of Immunotherapy, the Hiram C. Polk, Jr., MD, Department of Surgery, Immuno-Oncology Program, James Graham Brown Cancer Center
| | - Xiaoling Hu
- Division of Immunotherapy, the Hiram C. Polk, Jr., MD, Department of Surgery, Immuno-Oncology Program, James Graham Brown Cancer Center
| | - David Tieri
- Department of Biochemistry and Molecular Genetics
| | - Chuanlin Ding
- Division of Immunotherapy, the Hiram C. Polk, Jr., MD, Department of Surgery, Immuno-Oncology Program, James Graham Brown Cancer Center
| | | | | | - Matthew R Woeste
- Department of Microbiology and Immunology.,Division of Immunotherapy, the Hiram C. Polk, Jr., MD, Department of Surgery, Immuno-Oncology Program, James Graham Brown Cancer Center
| | | | - Oscar Chen
- Department of Anesthesiology and Perioperative Medicine
| | - Sarah E Bush
- Department of Anesthesiology and Perioperative Medicine
| | | | - Rodrigo Cavallazzi
- Division of Pulmonary, Critical Care and Sleep Disorders, Department of Medicine
| | | | - James Chen
- Department of Anesthesiology and Perioperative Medicine
| | - Smita Ghare
- University of Louisville Hepatobiology and Toxicology Center, Departments of Medicine and Pharmacology & Toxicology
| | - Shirish S Barve
- University of Louisville Hepatobiology and Toxicology Center, Departments of Medicine and Pharmacology & Toxicology
| | - Lu Cai
- Pediatric Research Institute, Department of Pediatrics
| | | | | | - Kenneth R McLeish
- Division of Nephrology and Hypertension, Department of Medicine, University of Louisville, Louisville, Kentucky, USA
| | - Silvia M Uriarte
- Department of Oral Immunology and Infectious Diseases, School of Dentistry
| | | | - Jiapeng Huang
- Department of Anesthesiology and Perioperative Medicine
| | - Jun Yan
- Department of Microbiology and Immunology.,Division of Immunotherapy, the Hiram C. Polk, Jr., MD, Department of Surgery, Immuno-Oncology Program, James Graham Brown Cancer Center
| |
Collapse
|
16
|
Opzoomer JW, Timms JA, Blighe K, Mourikis TP, Chapuis N, Bekoe R, Kareemaghay S, Nocerino P, Apollonio B, Ramsay AG, Tavassoli M, Harrison C, Ciccarelli F, Parker P, Fontenay M, Barber PR, Arnold JN, Kordasti S. ImmunoCluster provides a computational framework for the nonspecialist to profile high-dimensional cytometry data. eLife 2021; 10:e62915. [PMID: 33929322 PMCID: PMC8112868 DOI: 10.7554/elife.62915] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 04/22/2021] [Indexed: 01/04/2023] Open
Abstract
High-dimensional cytometry is an innovative tool for immune monitoring in health and disease, and it has provided novel insight into the underlying biology as well as biomarkers for a variety of diseases. However, the analysis of large multiparametric datasets usually requires specialist computational knowledge. Here, we describe ImmunoCluster (https://github.com/kordastilab/ImmunoCluster), an R package for immune profiling cellular heterogeneity in high-dimensional liquid and imaging mass cytometry, and flow cytometry data, designed to facilitate computational analysis by a nonspecialist. The analysis framework implemented within ImmunoCluster is readily scalable to millions of cells and provides a variety of visualization and analytical approaches, as well as a rich array of plotting tools that can be tailored to users' needs. The protocol consists of three core computational stages: (1) data import and quality control; (2) dimensionality reduction and unsupervised clustering; and (3) annotation and differential testing, all contained within an R-based open-source framework.
Collapse
Affiliation(s)
- James W Opzoomer
- School of Cancer and Pharmaceutical Sciences, King’s College London, Faculty of Life Sciences and Medicine, Guy’s HospitalLondonUnited Kingdom
| | - Jessica A Timms
- School of Cancer and Pharmaceutical Sciences, King’s College London, Faculty of Life Sciences and Medicine, Guy’s HospitalLondonUnited Kingdom
| | - Kevin Blighe
- School of Cancer and Pharmaceutical Sciences, King’s College London, Faculty of Life Sciences and Medicine, Guy’s HospitalLondonUnited Kingdom
| | - Thanos P Mourikis
- School of Cancer and Pharmaceutical Sciences, King’s College London, Faculty of Life Sciences and Medicine, Guy’s HospitalLondonUnited Kingdom
| | - Nicolas Chapuis
- Institut Cochin, Institut National de la Santé et de la Recherche Médicale U1016, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8104, Université Paris DescartesParisFrance
| | - Richard Bekoe
- UCL Cancer Institute, Paul O'Gorman Building, University College LondonLondonUnited Kingdom
| | - Sedigeh Kareemaghay
- Centre for Host Microbiome Interaction, FoDOCS, King’s College, Guy’s HospitalLondonUnited Kingdom
| | - Paola Nocerino
- School of Cancer and Pharmaceutical Sciences, King’s College London, Faculty of Life Sciences and Medicine, Guy’s HospitalLondonUnited Kingdom
| | - Benedetta Apollonio
- School of Cancer and Pharmaceutical Sciences, King’s College London, Faculty of Life Sciences and Medicine, Guy’s HospitalLondonUnited Kingdom
| | - Alan G Ramsay
- School of Cancer and Pharmaceutical Sciences, King’s College London, Faculty of Life Sciences and Medicine, Guy’s HospitalLondonUnited Kingdom
| | - Mahvash Tavassoli
- Centre for Host Microbiome Interaction, FoDOCS, King’s College, Guy’s HospitalLondonUnited Kingdom
| | - Claire Harrison
- School of Cancer and Pharmaceutical Sciences, King’s College London, Faculty of Life Sciences and Medicine, Guy’s HospitalLondonUnited Kingdom
- Haematology Department, Guy’s HospitalLondonUnited Kingdom
| | - Francesca Ciccarelli
- School of Cancer and Pharmaceutical Sciences, King’s College London, Faculty of Life Sciences and Medicine, Guy’s HospitalLondonUnited Kingdom
- Cancer Systems Biology Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| | - Peter Parker
- School of Cancer and Pharmaceutical Sciences, King’s College London, Faculty of Life Sciences and Medicine, Guy’s HospitalLondonUnited Kingdom
- Francis Crick InstituteLondonUnited Kingdom
| | - Michaela Fontenay
- Institut Cochin, Institut National de la Santé et de la Recherche Médicale U1016, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8104, Université Paris DescartesParisFrance
| | - Paul R Barber
- School of Cancer and Pharmaceutical Sciences, King’s College London, Faculty of Life Sciences and Medicine, Guy’s HospitalLondonUnited Kingdom
- UCL Cancer Institute, Paul O'Gorman Building, University College LondonLondonUnited Kingdom
| | - James N Arnold
- School of Cancer and Pharmaceutical Sciences, King’s College London, Faculty of Life Sciences and Medicine, Guy’s HospitalLondonUnited Kingdom
| | - Shahram Kordasti
- School of Cancer and Pharmaceutical Sciences, King’s College London, Faculty of Life Sciences and Medicine, Guy’s HospitalLondonUnited Kingdom
- Haematology Department, Guy’s HospitalLondonUnited Kingdom
| |
Collapse
|
17
|
Liu Y, Liu X, Zhou S, Xu R, Hu J, Liao G, Liao J, Guo Z, Li Y, Yang S, Li S, Chen H, Guo Y, Li M, Fan L, Li L, Zhao M, Liu D. Single-Cell Profiling of Kidney Transplant Recipients With Immunosuppressive Treatment Reveals the Dynamic Immune Characteristics. Front Immunol 2021; 12:639942. [PMID: 33959124 PMCID: PMC8093626 DOI: 10.3389/fimmu.2021.639942] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 03/31/2021] [Indexed: 11/17/2022] Open
Abstract
Kidney transplantation is currently the first choice of treatment for various types of end-stage renal failure, but there are major limitations in the application of immunosuppressive protocols after kidney transplantation. When the dose of immunosuppressant is too low, graft rejection occurs easily, while a dose that is too high can lead to graft loss. Therefore, it is very important to explore the immune status of patients receiving immunosuppressive agents after kidney transplantation. To compare the immune status of the recipient’s whole peripheral blood before and after receipt of immunosuppressive agents, we used single-cell cytometry by time-of-flight (CyTOF) to detect the peripheral blood immune cells in five kidney transplant recipients (KTRs) from the Department of Organ Transplantation of Zhujiang Hospital of Southern Medical University before and after receiving immunosuppressive agents. Based on CyTOF analysis, we detected 363,342 live single immune cells. We found that the immune cell types of the KTRs before and after receipt of immunosuppressive agents were mainly divided into CD4+ T cells, CD8+ T cells, B cells, NK cells/γδ T cells, monocytes/macrophages, granulocytes, and dendritic cells (DCs). After further reclustering of the above cell types, it was found that the immune cell subclusters in the peripheral blood of patients underwent major changes after receipt of immunosuppressants. After receiving immunosuppressive therapy, the peripheral blood of KTRs had significantly increased levels of CD57+NK cells and significantly decreased levels of central memory CD4+ T cells, follicular helper CD4+ T cells, effector CD8+ T cells, effector memory CD8+ T cells and naive CD8+ T cells. This study used CyTOF to classify immune cells in the peripheral blood of KTRs before and after immunosuppressive treatment, further compared differences in the proportions of the main immune cell types and immune cell subgroups before and after receipt of immunosuppressants, and provided relatively accurate information for assessment and treatment strategies for KTRs.
Collapse
Affiliation(s)
- Yongguang Liu
- Department of Organ Transplantation, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaoyou Liu
- Department of Organ Transplantation, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Song Zhou
- Department of Organ Transplantation, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Ruiquan Xu
- Department of Organ Transplantation, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,Department of Urology, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Jianmin Hu
- Department of Organ Transplantation, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Guorong Liao
- Department of Organ Transplantation, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jun Liao
- Department of Organ Transplantation, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Zefeng Guo
- Department of Organ Transplantation, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yuzhu Li
- Department of Organ Transplantation, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Siqiang Yang
- Department of Organ Transplantation, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Shichao Li
- Department of Organ Transplantation, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Hua Chen
- Department of Organ Transplantation, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Ying Guo
- Department of Organ Transplantation, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Min Li
- Department of Organ Transplantation, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Lipei Fan
- Department of Organ Transplantation, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Liuyang Li
- Department of Organ Transplantation, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Ming Zhao
- Department of Organ Transplantation, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Ding Liu
- Department of Organ Transplantation, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
18
|
Chang JW, Reyes SD, Faure-Kumar E, Lam SK, Lawlor MW, Leventer RJ, Lew SM, Lockhart PJ, Pope K, Weiner HL, Salamon N, Vinters HV, Mathern GW, Fallah A, Owens GC. Clonally Focused Public and Private T Cells in Resected Brain Tissue From Surgeries to Treat Children With Intractable Seizures. Front Immunol 2021; 12:664344. [PMID: 33889159 PMCID: PMC8056262 DOI: 10.3389/fimmu.2021.664344] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 03/16/2021] [Indexed: 12/23/2022] Open
Abstract
Using a targeted transcriptomics approach, we have analyzed resected brain tissue from a cohort of 53 pediatric epilepsy surgery cases, and have found that there is a spectrum of involvement of both the innate and adaptive immune systems as evidenced by the differential expression of immune-specific genes in the affected brain tissue. The specimens with the highest expression of immune-specific genes were from two Rasmussen encephalitis cases, which is known to be a neuro-immunological disease, but also from tuberous sclerosis complex (TSC), focal cortical dysplasia, and hemimegalencephaly surgery cases. We obtained T cell receptor (TCR) Vβ chain sequence data from brain tissue and blood from patients with the highest levels of T cell transcripts. The clonality indices and the frequency of the top 50 Vβ clonotypes indicated that T cells in the brain were clonally restricted. The top 50 Vβ clonotypes comprised both public and private (patient specific) clonotypes, and the TCR Vβ chain third complementarity region (CDR3) of the most abundant public Vβ clonotype in each brain sample was strikingly similar to a CDR3 that recognizes an immunodominant epitope in either human cytomegalovirus or Epstein Barr virus, or influenza virus A. We found that the frequency of 14 of the top 50 brain Vβ clonotypes from a TSC surgery case had significantly increased in brain tissue removed to control recurrent seizures 11 months after the first surgery. Conversely, we found that the frequency in the blood of 18 of the top 50 brain clonotypes from a second TSC patient, who was seizure free, had significantly decreased 5 months after surgery indicating that T cell clones found in the brain had contracted in the periphery after removal of the brain area associated with seizure activity and inflammation. However, the frequency of a public and a private clonotype significantly increased in the brain after seizures recurred and the patient underwent a second surgery. Combined single cell gene expression and TCR sequencing of brain-infiltrating leukocytes from the second surgery showed that the two clones were CD8 effector T cells, indicating that they are likely to be pathologically relevant.
Collapse
Affiliation(s)
- Julia W Chang
- Department of Neurosurgery, David Geffen School of Medicine at the University of California, Los Angeles, CA, United States
| | - Samuel D Reyes
- Department of Neurosurgery, David Geffen School of Medicine at the University of California, Los Angeles, CA, United States
| | - Emmanuelle Faure-Kumar
- Department of Medicine: Division of Digestive Diseases, David Geffen School of Medicine at the University of California, Los Angeles, CA, United States
| | - Sandi K Lam
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Ann & Robert H. Lurie Children's Hospital, Chicago, IL, United States
| | - Michael W Lawlor
- Department of Pathology, Medical College of Wisconsin, Children's Hospital of Wisconsin, Milwaukee, WI, United States
| | - Richard J Leventer
- Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, VIC, Australia
| | - Sean M Lew
- Department of Neurosurgery, Medical College of Wisconsin, Children's Hospital of Wisconsin, Milwaukee, WI, United States
| | - Paul J Lockhart
- Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, VIC, Australia
| | - Kathryn Pope
- Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, VIC, Australia
| | - Howard L Weiner
- Department of Pediatric Neurosurgery, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, United States
| | - Noriko Salamon
- Department of Radiological Sciences, David Geffen School of Medicine at the University of California, Los Angeles, CA, United States
| | - Harry V Vinters
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at the University of California, Los Angeles, CA, United States
| | - Gary W Mathern
- Department of Neurosurgery, David Geffen School of Medicine at the University of California, Los Angeles, CA, United States
| | - Aria Fallah
- Department of Neurosurgery, David Geffen School of Medicine at the University of California, Los Angeles, CA, United States.,Mattel Children's Hospital, David Geffen School of Medicine at the University of California, Los Angeles, CA, United States
| | - Geoffrey C Owens
- Department of Neurosurgery, David Geffen School of Medicine at the University of California, Los Angeles, CA, United States
| |
Collapse
|
19
|
Vincent MP, Bobbala S, Karabin NB, Frey M, Liu Y, Navidzadeh JO, Stack T, Scott EA. Surface chemistry-mediated modulation of adsorbed albumin folding state specifies nanocarrier clearance by distinct macrophage subsets. Nat Commun 2021; 12:648. [PMID: 33510170 PMCID: PMC7844416 DOI: 10.1038/s41467-020-20886-7] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 12/21/2020] [Indexed: 01/30/2023] Open
Abstract
Controlling nanocarrier interactions with the immune system requires a thorough understanding of the surface properties that modulate protein adsorption in biological fluids, since the resulting protein corona redefines cellular interactions with nanocarrier surfaces. Albumin is initially one of the dominant proteins to adsorb to nanocarrier surfaces, a process that is considered benign or beneficial by minimizing opsonization or inflammation. Here, we demonstrate the surface chemistry of a model nanocarrier can be engineered to stabilize or denature the three-dimensional conformation of adsorbed albumin, which respectively promotes evasion or non-specific clearance in vivo. Interestingly, certain common chemistries that have long been considered to convey stealth properties denature albumin to promote nanocarrier recognition by macrophage class A1 scavenger receptors, providing a means for their eventual removal from systemic circulation. We establish that the surface chemistry of nanocarriers can be specified to modulate adsorbed albumin structure and thereby tune clearance by macrophage scavenger receptors.
Collapse
Affiliation(s)
- Michael P Vincent
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Sharan Bobbala
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Nicholas B Karabin
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Molly Frey
- Interdisciplinary Biological Sciences, Northwestern University, Evanston, IL, 60208, USA
| | - Yugang Liu
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Justin O Navidzadeh
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Trevor Stack
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Evan A Scott
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA.
- Interdisciplinary Biological Sciences, Northwestern University, Evanston, IL, 60208, USA.
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, 60208, USA.
- Simpson Querrey Institute, Northwestern University, Chicago, IL, 60611, USA.
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, 60611, USA.
| |
Collapse
|
20
|
Shi W, Liu X, Cao Q, Ma P, Le W, Xie L, Ye J, Wen W, Tang H, Su W, Zheng Y, Liu Y. High-dimensional single-cell analysis reveals the immune characteristics of COVID-19. Am J Physiol Lung Cell Mol Physiol 2021; 320:L84-L98. [PMID: 33146564 PMCID: PMC7869955 DOI: 10.1152/ajplung.00355.2020] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/29/2020] [Accepted: 10/21/2020] [Indexed: 12/20/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19), driven by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), was declared a global pandemic in March 2020. Pathogenic T cells and inflammatory monocytes are regarded as the central drivers of the cytokine storm associated with the severity of COVID-19. In this study, we explored the characteristic peripheral cellular profiles of patients with COVID-19 in both acute and convalescent phases by single-cell mass cytometry (CyTOF). Using a combination of algorithm-guided data analyses, we identified peripheral immune cell subsets in COVID-19 and revealed CD4+ T-cell depletion, T-cell differentiation, plasma cell expansion, and the reduced antigen presentation capacity of innate immunity. Notably, COVID-19 induces a dysregulation in the balance of monocyte populations by the expansion of the monocyte subsets. Collectively, our results represent a high-dimensional, single-cell profile of the peripheral immune response to SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Wen Shi
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, People's Republic of China
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
- Research Units of Ocular Development and Regeneration, Chinese Academy of Medical Sciences, Guangzhou, China
| | - Xiuxing Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Qiqi Cao
- National Center for Liver Cancer Second Military Medical University, Shanghai, China
- Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
- Ministry of Education (MOE) Key Laboratory on Signaling Regulation and Targeting Therapy of Liver Cancer, Second Military Medical University, Shanghai, China
| | - Pengjuan Ma
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Wenqing Le
- Department of Critical Care, Wuhan Huoshenshan Hospital, Hubei, China
| | - Lihui Xie
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Jinguo Ye
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Wen Wen
- National Center for Liver Cancer Second Military Medical University, Shanghai, China
- Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
- Ministry of Education (MOE) Key Laboratory on Signaling Regulation and Targeting Therapy of Liver Cancer, Second Military Medical University, Shanghai, China
| | - Hao Tang
- Department of Critical Care, Wuhan Huoshenshan Hospital, Hubei, China
- Department of Respiratory and Critical Care Medicine, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Wenru Su
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Yingfeng Zheng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, People's Republic of China
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
- Research Units of Ocular Development and Regeneration, Chinese Academy of Medical Sciences, Guangzhou, China
| | - Yizhi Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, People's Republic of China
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
- Research Units of Ocular Development and Regeneration, Chinese Academy of Medical Sciences, Guangzhou, China
| |
Collapse
|
21
|
Allen SD, Liu X, Jiang J, Liao YP, Chang CH, Nel AE, Meng H. Immune checkpoint inhibition in syngeneic mouse cancer models by a silicasome nanocarrier delivering a GSK3 inhibitor. Biomaterials 2020; 269:120635. [PMID: 33422940 DOI: 10.1016/j.biomaterials.2020.120635] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 12/21/2020] [Accepted: 12/27/2020] [Indexed: 12/18/2022]
Abstract
Checkpoint blocking antibodies that interfere in the PD-1/PD-L1 axis provide effective cancer immunotherapy for tumors that are immune inflamed or induced to become "hot". It has also been demonstrated that a small molecule inhibitor of the signaling hub kinase GSK3 can interfere in the PD-1/PD-L1 axis in T-cells by suppressing PD-1 expression. This provides an alternative approach to intervening in the PD-1/PD-L1 axis to provide cancer immunotherapy. In this communication, we demonstrate the remote loading of GSK3 inhibitor AZD1080 into the porous interior of mesoporous silica nanoparticles coated with a lipid bilayer (a.k.a. silicasomes). In a MC38 colon cancer model, intravenous injection (IV) of silicasome-encapsulated AZD1080 significantly improved biodistribution and drug delivery to the tumor site. The improved drug delivery was accompanied by cytotoxic MC38 tumor cell killing by perforin-releasing CD8+ T-cells, exhibiting reduced PD-1 expression. IV injection of encapsulated AZD1080 also resulted in significant tumor shrinkage in other syngeneic mouse tumor models, including another colorectal tumor (CT26), as well as pancreas (KPC) and lung (LLC) cancer models. Not only was the therapeutic efficacy of encapsulated AZD1080 similar or better than anti-PD-1 antibody, but the treatment was devoid of treatment toxicity. These results provide proof-of-principal demonstration of the feasibility of using encapsulated delivery of a GSK3 inhibitor to provide cancer immunotherapy, with the possibility to be used as a monotherapy or in combination with chemotherapy or other immunomodulatory agents.
Collapse
Affiliation(s)
- Sean D Allen
- Department of Medicine, Division of NanoMedicine, University of California, Los Angeles, CA, USA
| | - Xiangsheng Liu
- Department of Medicine, Division of NanoMedicine, University of California, Los Angeles, CA, USA; California NanoSystems Institute, University of California, Los Angeles, CA, USA
| | - Jinhong Jiang
- Department of Medicine, Division of NanoMedicine, University of California, Los Angeles, CA, USA
| | - Yu-Pei Liao
- Department of Medicine, Division of NanoMedicine, University of California, Los Angeles, CA, USA
| | - Chong Hyun Chang
- Department of Medicine, Division of NanoMedicine, University of California, Los Angeles, CA, USA
| | - Andre E Nel
- Department of Medicine, Division of NanoMedicine, University of California, Los Angeles, CA, USA; California NanoSystems Institute, University of California, Los Angeles, CA, USA.
| | - Huan Meng
- Department of Medicine, Division of NanoMedicine, University of California, Los Angeles, CA, USA; California NanoSystems Institute, University of California, Los Angeles, CA, USA.
| |
Collapse
|
22
|
Huang X, Tao Y, Gao J, Zhou X, Tang S, Deng C, Lai Z, Lin X, Wang Q, Li T. UBC9 coordinates inflammation affecting development of bladder cancer. Sci Rep 2020; 10:20670. [PMID: 33244139 PMCID: PMC7691338 DOI: 10.1038/s41598-020-77623-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 11/13/2020] [Indexed: 01/18/2023] Open
Abstract
Dysregulation of SUMO modification is linked to carcinogenesis. UBC9 is the sole conjugating enzyme in sumoylation and plays a pivotal role in maintaining homeostasis and restraining stress reactions. However, the clinical significance and function of UBC9 in bladder cancer remain unclear. In this study, immunohistochemistry was used to determine the expression of UBC9. UBC9 knock-down and SUMO inhibition were conducted followed by proliferation, migration, and cell cycle assays. RNA sequencing and bioinformatic analysis were used to identify potential mechanisms of UBC9. Cytokine membrane antibody array was used to detect the expression of cytokine. The mass cytometry TOF (CyTOF) was used to explore the association between bladder cancer stem cell-like population and UBC9 expression. Our results showed that UBC9 played a dual role in bladder cancer. UBC9 was up-regulated in bladder cancer, but was negatively correlated with TNM stage and grade. Knocking-down of UBC9 resulted in dramatic activation of inflammatory gene expression, which might cause inhibition of cell proliferation and inducing cell apoptosis. IL6 was the hub gene in UBC9 regulatory network. Markedly up-regulated IL6 after knocking-down of UBC9 activated the expression of CD44, which was a prominent marker of cancer stem cells. Thus, our results revealed an important and previously undescribed role for UBC9 in modulation of inflammatory signaling of bladder cancer. UBC9 in bladder cancer cells is required to maintain high sumoylation levels and alleviate stress-related inflammation threats to cell survival. Lacking UBC9 contributes to inflammation activation, epithelial-mesenchymal transition and stem cell-like population formation, leading to cancer progression.
Collapse
Affiliation(s)
- Xiaoliang Huang
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China.,Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi, Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, Guangxi Zhuang Autonomous Region, China.,Key Laboratory of Longevity and Ageing-Related Disease of Chinese Ministry of Education, Center for Translational Medicine and School of Preclinical Medicine, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Yuting Tao
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China.,Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi, Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, Guangxi Zhuang Autonomous Region, China.,Key Laboratory of Longevity and Ageing-Related Disease of Chinese Ministry of Education, Center for Translational Medicine and School of Preclinical Medicine, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Jiamin Gao
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China.,Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi, Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, Guangxi Zhuang Autonomous Region, China.,Key Laboratory of Longevity and Ageing-Related Disease of Chinese Ministry of Education, Center for Translational Medicine and School of Preclinical Medicine, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Xianguo Zhou
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China.,Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi, Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, Guangxi Zhuang Autonomous Region, China.,Key Laboratory of Longevity and Ageing-Related Disease of Chinese Ministry of Education, Center for Translational Medicine and School of Preclinical Medicine, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Shaomei Tang
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China.,Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi, Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, Guangxi Zhuang Autonomous Region, China.,Key Laboratory of Longevity and Ageing-Related Disease of Chinese Ministry of Education, Center for Translational Medicine and School of Preclinical Medicine, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Caiwang Deng
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China.,Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi, Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, Guangxi Zhuang Autonomous Region, China.,Key Laboratory of Longevity and Ageing-Related Disease of Chinese Ministry of Education, Center for Translational Medicine and School of Preclinical Medicine, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Zhiyong Lai
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China.,Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi, Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, Guangxi Zhuang Autonomous Region, China.,Key Laboratory of Longevity and Ageing-Related Disease of Chinese Ministry of Education, Center for Translational Medicine and School of Preclinical Medicine, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Xinggu Lin
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China.,Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi, Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Qiuyan Wang
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China. .,Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi, Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, Guangxi Zhuang Autonomous Region, China. .,Key Laboratory of Longevity and Ageing-Related Disease of Chinese Ministry of Education, Center for Translational Medicine and School of Preclinical Medicine, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China.
| | - Tianyu Li
- Department of Urology and Nephrology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China. .,Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China. .,Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi, Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, Guangxi Zhuang Autonomous Region, China.
| |
Collapse
|
23
|
Kratochvíl M, Hunewald O, Heirendt L, Verissimo V, Vondrášek J, Satagopam VP, Schneider R, Trefois C, Ollert M. GigaSOM.jl: High-performance clustering and visualization of huge cytometry datasets. Gigascience 2020; 9:giaa127. [PMID: 33205814 PMCID: PMC7672468 DOI: 10.1093/gigascience/giaa127] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/28/2020] [Accepted: 10/20/2020] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND The amount of data generated in large clinical and phenotyping studies that use single-cell cytometry is constantly growing. Recent technological advances allow the easy generation of data with hundreds of millions of single-cell data points with >40 parameters, originating from thousands of individual samples. The analysis of that amount of high-dimensional data becomes demanding in both hardware and software of high-performance computational resources. Current software tools often do not scale to the datasets of such size; users are thus forced to downsample the data to bearable sizes, in turn losing accuracy and ability to detect many underlying complex phenomena. RESULTS We present GigaSOM.jl, a fast and scalable implementation of clustering and dimensionality reduction for flow and mass cytometry data. The implementation of GigaSOM.jl in the high-level and high-performance programming language Julia makes it accessible to the scientific community and allows for efficient handling and processing of datasets with billions of data points using distributed computing infrastructures. We describe the design of GigaSOM.jl, measure its performance and horizontal scaling capability, and showcase the functionality on a large dataset from a recent study. CONCLUSIONS GigaSOM.jl facilitates the use of commonly available high-performance computing resources to process the largest available datasets within minutes, while producing results of the same quality as the current state-of-art software. Measurements indicate that the performance scales to much larger datasets. The example use on the data from a massive mouse phenotyping effort confirms the applicability of GigaSOM.jl to huge-scale studies.
Collapse
Affiliation(s)
- Miroslav Kratochvíl
- Institute of Organic Chemistry and Biochemistry, Flemingovo náměstí 542/2, 160 00 Prague, Czech Republic
- Charles University, Department of Software Engineering, Malostranské náměstí 25, 118 00 Prague, Czech Republic
| | - Oliver Hunewald
- Luxembourg Institute of Health, Department of Infection and Immunity, 29 rue Henri Koch, L-4354 Esch-sur-Alzette, Luxembourg
| | - Laurent Heirendt
- University of Luxembourg, Luxembourg Centre for Systems Biomedicine, 6 avenue du Swing, Campus Belval, L-4367 Belvaux, Luxembourg
| | - Vasco Verissimo
- University of Luxembourg, Luxembourg Centre for Systems Biomedicine, 6 avenue du Swing, Campus Belval, L-4367 Belvaux, Luxembourg
| | - Jiří Vondrášek
- Institute of Organic Chemistry and Biochemistry, Flemingovo náměstí 542/2, 160 00 Prague, Czech Republic
| | - Venkata P Satagopam
- University of Luxembourg, Luxembourg Centre for Systems Biomedicine, 6 avenue du Swing, Campus Belval, L-4367 Belvaux, Luxembourg
- ELIXIR Luxembourg, University of Luxembourg, 6, avenue du Swing, Campus Belval, L-4367 Belvaux, Luxembourg
| | - Reinhard Schneider
- University of Luxembourg, Luxembourg Centre for Systems Biomedicine, 6 avenue du Swing, Campus Belval, L-4367 Belvaux, Luxembourg
- ELIXIR Luxembourg, University of Luxembourg, 6, avenue du Swing, Campus Belval, L-4367 Belvaux, Luxembourg
| | - Christophe Trefois
- University of Luxembourg, Luxembourg Centre for Systems Biomedicine, 6 avenue du Swing, Campus Belval, L-4367 Belvaux, Luxembourg
- ELIXIR Luxembourg, University of Luxembourg, 6, avenue du Swing, Campus Belval, L-4367 Belvaux, Luxembourg
| | - Markus Ollert
- Luxembourg Institute of Health, Department of Infection and Immunity, 29 rue Henri Koch, L-4354 Esch-sur-Alzette, Luxembourg
- Odense Research Center for Anaphylaxis,
Department of Dermatology and Allergy Center, OdenseUniversity Hospital, University of Southern Denmark, Kløvervænget 15, DK-5000 Odense C,
Denmark
| |
Collapse
|
24
|
PAI-1-Dependent Inactivation of SMAD4-Modulated Junction and Adhesion Complex in Obese Endometrial Cancer. Cell Rep 2020; 33:108253. [PMID: 33053339 PMCID: PMC7641039 DOI: 10.1016/j.celrep.2020.108253] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 07/01/2020] [Accepted: 09/17/2020] [Indexed: 12/03/2022] Open
Abstract
While plasminogen activator inhibitor-1 (PAI-1) is known to potentiate cellular migration via proteolytic regulation, this adipokine is implicated as an oncogenic ligand in the tumor microenvironment. To understand the underlying paracrine mechanism, here, we conduct transcriptomic analysis of 1,898 endometrial epithelial cells (EECs) exposed and unexposed to PAI-1-secreting adipose stromal cells. The PAI-1-dependent action deregulates crosstalk among tumor-promoting and tumor-repressing pathways, including transforming growth factor β (TGF-β). When PAI-1 is tethered to lipoprotein receptor-related protein 1 (LRP1), the internalized signaling causes downregulation of SMAD4 at the transcriptional and post-translational levels that attenuates TGF-β-related transcription programs. Repression of genes encoding the junction and adhesion complex preferentially occurs in SMAD4-underexpressed EECs of persons with obesity. The findings highlight a role of PAI-1 signaling that renders ineffective intercellular communication for the development of adiposity-associated endometrial cancer. Lin et al. demonstrate that PAI-1 secreted by adipose stromal cells interacts with LRP1 to repress TGF-β/SMAD4-regulated genes linked to cellular junction and adhesion complexes. This action disrupts cell-cell communication and facilitates the development of obesity-driven endometrial cancer.
Collapse
|
25
|
Neural transcription factor Pou4f1 promotes renal fibrosis via macrophage-myofibroblast transition. Proc Natl Acad Sci U S A 2020; 117:20741-20752. [PMID: 32788346 DOI: 10.1073/pnas.1917663117] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Unresolved inflammation can lead to tissue fibrosis and impaired organ function. Macrophage-myofibroblast transition (MMT) is one newly identified mechanism by which ongoing chronic inflammation causes progressive fibrosis in different forms of kidney disease. However, the mechanisms underlying MMT are still largely unknown. Here, we discovered a brain-specific homeobox/POU domain protein Pou4f1 (Brn3a) as a specific regulator of MMT. Interestingly, we found that Pou4f1 is highly expressed by macrophages undergoing MMT in sites of fibrosis in human and experimental kidney disease, identified by coexpression of the myofibroblast marker, α-SMA. Unexpectedly, Pou4f1 expression peaked in the early stage in renal fibrogenesis in vivo and during MMT of bone marrow-derived macrophages (BMDMs) in vitro. Mechanistically, chromatin immunoprecipitation (ChIP) assay identified that Pou4f1 is a Smad3 target and the key downstream regulator of MMT, while microarray analysis defined a Pou4f1-dependent fibrogenic gene network for promoting TGF-β1/Smad3-driven MMT in BMDMs at the transcriptional level. More importantly, using two mouse models of progressive renal interstitial fibrosis featuring the MMT process, we demonstrated that adoptive transfer of TGF-β1-stimulated BMDMs restored both MMT and renal fibrosis in macrophage-depleted mice, which was prevented by silencing Pou4f1 in transferred BMDMs. These findings establish a role for Pou4f1 in MMT and renal fibrosis and suggest that Pou4f1 may be a therapeutic target for chronic kidney disease with progressive renal fibrosis.
Collapse
|
26
|
Bras AE, van der Velden VHJ. Robust FCS Parsing: Exploring 211,359 Public Files. Cytometry A 2020; 97:1180-1186. [PMID: 32633075 PMCID: PMC7754493 DOI: 10.1002/cyto.a.24187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 06/24/2020] [Accepted: 06/29/2020] [Indexed: 01/02/2023]
Abstract
When it comes to data storage, the field of flow cytometry is fairly standardized, thanks to the flow cytometry standard (FCS) file format. The structure of FCS files is described in the FCS specification. Software that strictly complies with the FCS specification is guaranteed to be interoperable (in terms of exchange via FCS files). Nowadays, software interoperability is crucial for eco system, as FCS files are frequently shared, and workflows rely on more than one piece of software (e.g., acquisition and analysis software). Ideally, software developers strictly follow the FCS specification. Unfortunately, this is not always the case, which resulted in various nonconformant FCS files being generated over time. Therefore, robust FCS parsers must be developed, which can handle a wide variety of nonconformant FCS files, from different resources. Development of robust FCS parsers would greatly benefit from a fully fledged set of testing files. In this study, readability of 211,359 public FCS files was evaluated. Each FCS file was checked for conformance with the FCS specification. For each data set, within each FCS file, validated parse results were obtained for the TEXT segment. Highly space efficient testing files were generated. FlowCore was benchmarked in depth, by using the validated parse results, the generated testing files, and the original FCS files. Robustness of FlowCore (as measured by testing against 211,359 files) was improved by re‐implementing the TEXT segment parser. Altogether, this study provides a comprehensive resource for FCS parser development, an in‐depth benchmark of FlowCore, and a concrete proposal for improving FlowCore. © 2020 The Authors. Cytometry Part A published by Wiley Periodicals LLC on behalf of International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
- Anne E Bras
- Laboratory Medical immunology, Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Vincent H J van der Velden
- Laboratory Medical immunology, Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| |
Collapse
|
27
|
Bharath LP, Agrawal M, McCambridge G, Nicholas DA, Hasturk H, Liu J, Jiang K, Liu R, Guo Z, Deeney J, Apovian CM, Snyder-Cappione J, Hawk GS, Fleeman RM, Pihl RMF, Thompson K, Belkina AC, Cui L, Proctor EA, Kern PA, Nikolajczyk BS. Metformin Enhances Autophagy and Normalizes Mitochondrial Function to Alleviate Aging-Associated Inflammation. Cell Metab 2020; 32:44-55.e6. [PMID: 32402267 PMCID: PMC7217133 DOI: 10.1016/j.cmet.2020.04.015] [Citation(s) in RCA: 335] [Impact Index Per Article: 83.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 01/28/2020] [Accepted: 04/20/2020] [Indexed: 12/20/2022]
Abstract
Age is a non-modifiable risk factor for the inflammation that underlies age-associated diseases; thus, anti-inflammaging drugs hold promise for increasing health span. Cytokine profiling and bioinformatic analyses showed that Th17 cytokine production differentiates CD4+ T cells from lean, normoglycemic older and younger subjects, and mimics a diabetes-associated Th17 profile. T cells from older compared to younger subjects also had defects in autophagy and mitochondrial bioenergetics that associate with redox imbalance. Metformin ameliorated the Th17 inflammaging profile by increasing autophagy and improving mitochondrial bioenergetics. By contrast, autophagy-targeting siRNA disrupted redox balance in T cells from young subjects and activated the Th17 profile by activating the Th17 master regulator, STAT3, which in turn bound IL-17A and F promoters. Mitophagy-targeting siRNA failed to activate the Th17 profile. We conclude that metformin improves autophagy and mitochondrial function largely in parallel to ameliorate a newly defined inflammaging profile that echoes inflammation in diabetes.
Collapse
Affiliation(s)
- Leena P Bharath
- Department of Nutrition and Public Health, Merrimack College, North Andover, MA, USA
| | - Madhur Agrawal
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA; Barnstable Brown Diabetes and Obesity Center, University of Kentucky, Lexington, KY, USA
| | - Grace McCambridge
- Department of Nutrition and Public Health, Merrimack College, North Andover, MA, USA
| | - Dequina A Nicholas
- Department of Obstetrics, Gynecology, and Reproductive Sciences, School of Medicine, University of California, San Diego, San Diego, CA, USA
| | | | - Jing Liu
- Department of Computer Science, University of Kentucky, Lexington, KY, USA
| | - Kai Jiang
- Department of Physiology, University of Kentucky, Lexington, KY, USA
| | - Rui Liu
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY, USA
| | - Zhenheng Guo
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA
| | - Jude Deeney
- Department of Medicine, Endocrinology, Diabetes & Nutrition, Boston University School of Medicine, Boston, MA, USA
| | - Caroline M Apovian
- Department of Medicine, Endocrinology, Diabetes & Nutrition, Boston University School of Medicine, Boston, MA, USA
| | - Jennifer Snyder-Cappione
- Department of Microbiology, Boston University School of Medicine, Boston, MA, USA; Flow Cytometry Core Facility, Boston University School of Medicine, Boston, MA, USA
| | - Gregory S Hawk
- Department of Statistics, University of Kentucky, Lexington, KY, USA
| | - Rebecca M Fleeman
- Departments of Neurosurgery and Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Riley M F Pihl
- Flow Cytometry Core Facility, Boston University School of Medicine, Boston, MA, USA
| | | | - Anna C Belkina
- Flow Cytometry Core Facility, Boston University School of Medicine, Boston, MA, USA; Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Licong Cui
- Department of Computer Science, University of Kentucky, Lexington, KY, USA; School of Biomedical Informatics, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Elizabeth A Proctor
- Departments of Neurosurgery and Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA, USA; Departments of Biomedical Engineering, and Engineering Science & Mechanics and Center for Neural Engineering, Pennsylvania State University, University Park, PA, USA
| | - Philip A Kern
- Barnstable Brown Diabetes and Obesity Center, University of Kentucky, Lexington, KY, USA; Department of Medicine, University of Kentucky, Lexington, KY, USA
| | - Barbara S Nikolajczyk
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA; Barnstable Brown Diabetes and Obesity Center, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
28
|
Wang M, Huang YK, Kong JC, Sun Y, Tantalo DG, Yeang HXA, Ying L, Yan F, Xu D, Halse H, Di Costanzo N, Gordon IR, Mitchell C, Mackay LK, Busuttil RA, Neeson PJ, Boussioutas A. High-dimensional analyses reveal a distinct role of T-cell subsets in the immune microenvironment of gastric cancer. Clin Transl Immunology 2020; 9:e1127. [PMID: 32377339 PMCID: PMC7200219 DOI: 10.1002/cti2.1127] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/26/2020] [Accepted: 03/27/2020] [Indexed: 12/18/2022] Open
Abstract
Objectives To facilitate disease prognosis and improve precise immunotherapy of gastric cancer (GC) patients, a comprehensive study integrating immune cellular and molecular analyses on tumor tissues and peripheral blood was performed. Methods The association of GC patients' outcomes and the immune context of their tumors was explored using multiplex immunohistochemistry (mIHC) and transcriptome profiling. Potential immune dysfunction mechanism/s in the tumors on the systemic level was further examined using mass cytometry (CyTOF) in complementary peripheral blood from selected patients. GC cohorts with mIHC and gene expression profiling data were also used as validation cohorts. Results Increased CD4+FOXP3+ T-cell density in the GC tumor correlated with prolonged survival. Interestingly, CD4+FOXP3+ T cells had a close interaction with CD8+ T cells rather than tumor cells. High densities of CD4+FOXP3+ T cells and CD8+ T cells (High-High) independently predicted prolonged patient survival. Furthermore, the interferon-gamma (IFN-γ) gene signature and PDL1 expression were up-regulated in this group. Importantly, a subgroup of genomically stable (GS) tumors and tumors with chromosomal instability (CIN) within this High-High group also had excellent survival. The High-High GS/CIN tumors were coupled with increased frequencies of Tbet+CD4+ T cells and central memory CD4+ T cells in the peripheral blood. Conclusion These novel findings identify the combination of CD8+ T cells and FOXP3+CD4+ T cells as a significant prognostic marker for GC patients, which also could potentially be targeted and applied in the combination therapy with immune checkpoint blockades in precision medicine.
Collapse
Affiliation(s)
- Minyu Wang
- Upper Gastrointestinal Translational Research Laboratory Peter MacCallum Cancer Centre Melbourne VIC Australia.,Sir Peter MacCallum Department of Oncology The University of Melbourne Melbourne VIC Australia.,Department of Medicine, Royal Melbourne Hospital The University of Melbourne Melbourne VIC Australia.,Cancer Immunology Research Peter MacCallum Cancer Centre Melbourne VIC Australia
| | - Yu-Kuan Huang
- Upper Gastrointestinal Translational Research Laboratory Peter MacCallum Cancer Centre Melbourne VIC Australia.,Sir Peter MacCallum Department of Oncology The University of Melbourne Melbourne VIC Australia.,Department of Medicine, Royal Melbourne Hospital The University of Melbourne Melbourne VIC Australia
| | - Joseph Ch Kong
- Sir Peter MacCallum Department of Oncology The University of Melbourne Melbourne VIC Australia.,Department of Medicine, Royal Melbourne Hospital The University of Melbourne Melbourne VIC Australia
| | - Yu Sun
- Sir Peter MacCallum Department of Oncology The University of Melbourne Melbourne VIC Australia
| | - Daniela G Tantalo
- Cancer Immunology Research Peter MacCallum Cancer Centre Melbourne VIC Australia
| | - Han Xian Aw Yeang
- Cancer Immunology Research Peter MacCallum Cancer Centre Melbourne VIC Australia
| | - Le Ying
- Centre for Innate Immunity and Infectious Diseases Hudson Institute of Medical Research Clayton VIC Australia
| | - Feng Yan
- Australian Centre for Blood Diseases Central Clinical School Monash University Melbourne VIC Australia
| | - Dakang Xu
- Faculty of Medical Laboratory Science Ruijin Hospital School of Medicine Shanghai Jiao Tong University Shanghai China
| | - Heloise Halse
- Cancer Immunology Research Peter MacCallum Cancer Centre Melbourne VIC Australia
| | - Natasha Di Costanzo
- Upper Gastrointestinal Translational Research Laboratory Peter MacCallum Cancer Centre Melbourne VIC Australia
| | - Ian R Gordon
- Statistical Consulting Centre School of Mathematics and Statistics The University of Melbourne Melbourne VIC Australia
| | - Catherine Mitchell
- Department of Pathology Peter MacCallum Cancer Centre Melbourne VIC Australia
| | - Laura K Mackay
- Department of Microbiology and Immunology Peter Doherty Institute for Infection and Immunity University of Melbourne Melbourne VIC Australia
| | - Rita A Busuttil
- Upper Gastrointestinal Translational Research Laboratory Peter MacCallum Cancer Centre Melbourne VIC Australia.,Sir Peter MacCallum Department of Oncology The University of Melbourne Melbourne VIC Australia.,Department of Medicine, Royal Melbourne Hospital The University of Melbourne Melbourne VIC Australia
| | - Paul J Neeson
- Sir Peter MacCallum Department of Oncology The University of Melbourne Melbourne VIC Australia.,Cancer Immunology Research Peter MacCallum Cancer Centre Melbourne VIC Australia.,Department of Pathology The University of Melbourne Melbourne VIC Australia
| | - Alex Boussioutas
- Upper Gastrointestinal Translational Research Laboratory Peter MacCallum Cancer Centre Melbourne VIC Australia.,Sir Peter MacCallum Department of Oncology The University of Melbourne Melbourne VIC Australia.,Department of Medicine, Royal Melbourne Hospital The University of Melbourne Melbourne VIC Australia
| |
Collapse
|
29
|
Pont F, Tosolini M, Gao Q, Perrier M, Madrid-Mencía M, Huang T, Neuvial P, Ayyoub M, Nazor K, Fournié JJ. Single-Cell Virtual Cytometer allows user-friendly and versatile analysis and visualization of multimodal single cell RNAseq datasets. NAR Genom Bioinform 2020; 2:lqaa025. [PMID: 33575582 PMCID: PMC7671361 DOI: 10.1093/nargab/lqaa025] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 03/23/2020] [Accepted: 04/03/2020] [Indexed: 12/26/2022] Open
Abstract
The development of single-cell transcriptomic technologies yields large datasets comprising multimodal informations, such as transcriptomes and immunophenotypes. Despite the current explosion of methods for pre-processing and integrating multimodal single-cell data, there is currently no user-friendly software to display easily and simultaneously both immunophenotype and transcriptome-based UMAP/t-SNE plots from the pre-processed data. Here, we introduce Single-Cell Virtual Cytometer, an open-source software for flow cytometry-like visualization and exploration of pre-processed multi-omics single cell datasets. Using an original CITE-seq dataset of PBMC from an healthy donor, we illustrate its use for the integrated analysis of transcriptomes and epitopes of functional maturation in human peripheral T lymphocytes. So this free and open-source algorithm constitutes a unique resource for biologists seeking for a user-friendly analytic tool for multimodal single cell datasets.
Collapse
Affiliation(s)
- Frédéric Pont
- Centre de Recherches en Cancérologie de Toulouse, INSERM UMR1037, Toulouse, France; Université Toulouse III Paul-Sabatier, Toulouse, France; ERL 5294 CNRS, Toulouse, France, Institut Universitaire du Cancer-Oncopole de Toulouse, Toulouse, France, laboratoire d’Excellence Toulouse Cancer, TOUCAN,To whom correspondence should be addressed. Tel: +33 5 82 74 15 97;
| | - Marie Tosolini
- Centre de Recherches en Cancérologie de Toulouse, INSERM UMR1037, Toulouse, France; Université Toulouse III Paul-Sabatier, Toulouse, France; ERL 5294 CNRS, Toulouse, France, Institut Universitaire du Cancer-Oncopole de Toulouse, Toulouse, France, laboratoire d’Excellence Toulouse Cancer, TOUCAN
| | - Qing Gao
- Biolegend, San Diego, CA 92121, USA
| | - Marion Perrier
- Centre de Recherches en Cancérologie de Toulouse, INSERM UMR1037, Toulouse, France; Université Toulouse III Paul-Sabatier, Toulouse, France; ERL 5294 CNRS, Toulouse, France, Institut Universitaire du Cancer-Oncopole de Toulouse, Toulouse, France, laboratoire d’Excellence Toulouse Cancer, TOUCAN
| | - Miguel Madrid-Mencía
- Centre de Recherches en Cancérologie de Toulouse, INSERM UMR1037, Toulouse, France; Université Toulouse III Paul-Sabatier, Toulouse, France; ERL 5294 CNRS, Toulouse, France, Institut Universitaire du Cancer-Oncopole de Toulouse, Toulouse, France, laboratoire d’Excellence Toulouse Cancer, TOUCAN
| | | | - Pierre Neuvial
- Institut de Mathématiques de Toulouse, UMR 5219, Université de Toulouse, CNRS, UPS, F-31062 Toulouse, France
| | - Maha Ayyoub
- Centre de Recherches en Cancérologie de Toulouse, INSERM UMR1037, Toulouse, France; Université Toulouse III Paul-Sabatier, Toulouse, France; ERL 5294 CNRS, Toulouse, France, Institut Universitaire du Cancer-Oncopole de Toulouse, Toulouse, France, laboratoire d’Excellence Toulouse Cancer, TOUCAN
| | | | - Jean-Jacques Fournié
- Centre de Recherches en Cancérologie de Toulouse, INSERM UMR1037, Toulouse, France; Université Toulouse III Paul-Sabatier, Toulouse, France; ERL 5294 CNRS, Toulouse, France, Institut Universitaire du Cancer-Oncopole de Toulouse, Toulouse, France, laboratoire d’Excellence Toulouse Cancer, TOUCAN,Correspondence may also be addressed to Jean Jacques Fournié. Tel: +33 5 82 74 15 90;
| |
Collapse
|
30
|
Spurgeon BE, Naseem KM. Phosphoflow cytometry and barcoding in blood platelets: Technical and analytical considerations. CYTOMETRY PART B-CLINICAL CYTOMETRY 2020; 98:123-130. [DOI: 10.1002/cyto.b.21851] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 09/18/2019] [Accepted: 10/08/2019] [Indexed: 12/21/2022]
Affiliation(s)
- Benjamin E.J. Spurgeon
- Center for Platelet Research Studies, Dana‐Farber/Boston Children's Cancer and Blood Disorders CenterHarvard Medical School Boston Massachusetts
| | - Khalid M. Naseem
- Leeds Institute of Cardiovascular and Metabolic MedicineUniversity of Leeds Leeds UK
| |
Collapse
|
31
|
Ko ME, Williams CM, Fread KI, Goggin SM, Rustagi RS, Fragiadakis GK, Nolan GP, Zunder ER. FLOW-MAP: a graph-based, force-directed layout algorithm for trajectory mapping in single-cell time course datasets. Nat Protoc 2020; 15:398-420. [PMID: 31932774 PMCID: PMC7897424 DOI: 10.1038/s41596-019-0246-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 08/29/2019] [Indexed: 12/12/2022]
Abstract
High-dimensional single-cell technologies present new opportunities for biological discovery, but the complex nature of the resulting datasets makes it challenging to perform comprehensive analysis. One particular challenge is the analysis of single-cell time course datasets: how to identify unique cell populations and track how they change across time points. To facilitate this analysis, we developed FLOW-MAP, a graphical user interface (GUI)-based software tool that uses graph layout analysis with sequential time ordering to visualize cellular trajectories in high-dimensional single-cell datasets obtained from flow cytometry, mass cytometry or single-cell RNA sequencing (scRNAseq) experiments. Here we provide a detailed description of the FLOW-MAP algorithm and how to use the open-source R package FLOWMAPR via its GUI or with text-based commands. This approach can be applied to many dynamic processes, including in vitro stem cell differentiation, in vivo development, oncogenesis, the emergence of drug resistance and cell signaling dynamics. To demonstrate our approach, we perform a step-by-step analysis of a single-cell mass cytometry time course dataset from mouse embryonic stem cells differentiating into the three germ layers: endoderm, mesoderm and ectoderm. In addition, we demonstrate FLOW-MAP analysis of a previously published scRNAseq dataset. Using both synthetic and experimental datasets for comparison, we perform FLOW-MAP analysis side by side with other single-cell analysis methods, to illustrate when it is advantageous to use the FLOW-MAP approach. The protocol takes between 30 min and 1.5 h to complete.
Collapse
Affiliation(s)
- Melissa E Ko
- Cancer Biology Program, Stanford School of Medicine, Stanford, CA, USA
| | - Corey M Williams
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA, USA
| | - Kristen I Fread
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - Sarah M Goggin
- Neuroscience Graduate Program, University of Virginia, Charlottesville, VA, USA
| | - Rohit S Rustagi
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | | | - Garry P Nolan
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA
| | - Eli R Zunder
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
32
|
Baskar R, Fienberg HG, Khair Z, Favaro P, Kimmey S, Green DR, Nolan GP, Plevritis S, Bendall SC. TRAIL-induced variation of cell signaling states provides nonheritable resistance to apoptosis. Life Sci Alliance 2019; 2:e201900554. [PMID: 31704709 PMCID: PMC6848270 DOI: 10.26508/lsa.201900554] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/24/2019] [Accepted: 10/25/2019] [Indexed: 02/06/2023] Open
Abstract
TNFα-related apoptosis-inducing ligand (TRAIL), specifically initiates programmed cell death, but often fails to eradicate all cells, making it an ineffective therapy for cancer. This fractional killing is linked to cellular variation that bulk assays cannot capture. Here, we quantify the diversity in cellular signaling responses to TRAIL, linking it to apoptotic frequency across numerous cell systems with single-cell mass cytometry (CyTOF). Although all cells respond to TRAIL, a variable fraction persists without apoptotic progression. This cell-specific behavior is nonheritable where both the TRAIL-induced signaling responses and frequency of apoptotic resistance remain unaffected by prior exposure. The diversity of signaling states upon exposure is correlated to TRAIL resistance. Concomitantly, constricting the variation in signaling response with kinase inhibitors proportionally decreases TRAIL resistance. Simultaneously, TRAIL-induced de novo translation in resistant cells, when blocked by cycloheximide, abrogated all TRAIL resistance. This work highlights how cell signaling diversity, and subsequent translation response, relates to nonheritable fractional escape from TRAIL-induced apoptosis. This refined view of TRAIL resistance provides new avenues to study death ligands in general.
Collapse
Affiliation(s)
- Reema Baskar
- Cancer Biology Program, Stanford University School of Medicine, Stanford, CA, USA
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Harris G Fienberg
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Immunology Program, Stanford University School of Medicine, Stanford, CA, USA
| | - Zumana Khair
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Patricia Favaro
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Sam Kimmey
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Developmental Biology Program, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Garry P Nolan
- Baxter Laboratory, Stanford University School of Medicine, Stanford, CA, USA
| | - Sylvia Plevritis
- Cancer Biology Program, Stanford University School of Medicine, Stanford, CA, USA
| | - Sean C Bendall
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Immunology Program, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
33
|
Belkina AC, Ciccolella CO, Anno R, Halpert R, Spidlen J, Snyder-Cappione JE. Automated optimized parameters for T-distributed stochastic neighbor embedding improve visualization and analysis of large datasets. Nat Commun 2019; 10:5415. [PMID: 31780669 PMCID: PMC6882880 DOI: 10.1038/s41467-019-13055-y] [Citation(s) in RCA: 213] [Impact Index Per Article: 42.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 10/07/2019] [Indexed: 02/07/2023] Open
Abstract
Accurate and comprehensive extraction of information from high-dimensional single cell datasets necessitates faithful visualizations to assess biological populations. A state-of-the-art algorithm for non-linear dimension reduction, t-SNE, requires multiple heuristics and fails to produce clear representations of datasets when millions of cells are projected. We develop opt-SNE, an automated toolkit for t-SNE parameter selection that utilizes Kullback-Leibler divergence evaluation in real time to tailor the early exaggeration and overall number of gradient descent iterations in a dataset-specific manner. The precise calibration of early exaggeration together with opt-SNE adjustment of gradient descent learning rate dramatically improves computation time and enables high-quality visualization of large cytometry and transcriptomics datasets, overcoming limitations of analysis tools with hard-coded parameters that often produce poorly resolved or misleading maps of fluorescent and mass cytometry data. In summary, opt-SNE enables superior data resolution in t-SNE space and thereby more accurate data interpretation.
Collapse
Affiliation(s)
- Anna C Belkina
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA, 02118, USA.
- Flow Cytometry Core Facility, Boston University School of Medicine, Boston, MA, 02118, USA.
| | | | - Rina Anno
- Department of Mathematics, Kansas State University, Manhattan, KS, 66506, USA
| | | | | | - Jennifer E Snyder-Cappione
- Flow Cytometry Core Facility, Boston University School of Medicine, Boston, MA, 02118, USA
- Department of Microbiology, Boston University School of Medicine, Boston, MA, 02118, USA
| |
Collapse
|
34
|
Characterization of Postinfusion Phenotypic Differences in Fresh Versus Cryopreserved TCR Engineered Adoptive Cell Therapy Products. J Immunother 2019; 41:248-259. [PMID: 29470191 PMCID: PMC5959255 DOI: 10.1097/cji.0000000000000216] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Adoptive cell therapy (ACT) consisting of genetically engineered T cells expressing tumor antigen-specific T-cell receptors displays robust initial antitumor activity, followed by loss of T-cell activity/persistence and frequent disease relapse. We characterized baseline and longitudinal T-cell phenotype variations resulting from different manufacturing and administration protocols in patients who received ACT. Patients with melanoma who enrolled in the F5-MART-1 clinical trial (NCT00910650) received infusions of MART-1 T-cell receptors transgenic T cells with MART-1 peptide-pulsed dendritic cell vaccination. Patients were divided into cohorts based on several manufacturing changes in the generation and administration of the transgenic T cells: decreasing ex vivo stimulation/expansion time, increased cell dose, and receiving fresh instead of cryopreserved cells. T-cell phenotypes were analyzed by flow cytometry at baseline and longitudinally in peripheral blood. Transgenic T cells with shorter ex vivo culture/expansion periods displayed significantly increased expression of markers associated with less differentiated naive/memory populations, as well as significantly decreased expression of the inhibitory receptor programmed death 1 (PD1). Patients receiving fresh infusions of transgenic cells demonstrated expansion of central memory T cells and delayed acquisition of PD1 expression compared with patients who received cryopreserved products. Freshly infused transgenic T cells showed persistence and expansion of naive and memory T-cell populations and delayed acquisition of PD1 expression, which correlated with this cohort’s superior persistence of transgenic cells and response to dendritic cell vaccines. These results may be useful in designing future ACT protocols.
Collapse
|
35
|
Lee BH, Kelly G, Bradford S, Davila M, Guo XV, Amir EAD, Thrash EM, Solga MD, Lannigan J, Sellers B, Candia J, Tsang J, Montgomery RR, Tamaki SJ, Sigdel TK, Sarwal MM, Lanier LL, Tian Y, Kim C, Hinz D, Peters B, Sette A, Rahman AH. A Modified Injector and Sample Acquisition Protocol Can Improve Data Quality and Reduce Inter-Instrument Variability of the Helios Mass Cytometer. Cytometry A 2019; 95:1019-1030. [PMID: 31364278 PMCID: PMC6750971 DOI: 10.1002/cyto.a.23866] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 05/22/2019] [Accepted: 07/02/2019] [Indexed: 01/04/2023]
Abstract
Mass cytometry is a powerful tool for high-dimensional single cell characterization. Since the introduction of the first commercial CyTOF mass cytometer by DVS Sciences in 2009, mass cytometry technology has matured and become more widely utilized, with sequential platform upgrades designed to address specific limitations and to expand the capabilities of the platform. Fluidigm's third-generation Helios mass cytometer introduced a number of upgrades over the previous CyTOF2. One of these new features is a modified narrow bore sample injector that generates smaller ion clouds, which is expected to improve sensitivity and throughput. However, following rigorous testing, we find that the narrow-bore sample injector may have unintended negative consequences on data quality and result in lower median and higher coefficients of variation in many antibody-associated signal intensities. We describe an alternative Helios acquisition protocol using a wider bore injector, which largely mitigates these data quality issues. We directly compare these two protocols in a multisite study of 10 Helios instruments across 7 institutions and show that the modified protocol improves data quality and reduces interinstrument variability. These findings highlight and address an important source of technical variability in mass cytometry experiments that is of particular relevance in the setting of multicenter studies. © 2019 International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
- Brian H. Lee
- Human Immune Monitoring Center, Icahn School of Medicine at Mt. Sinai, New York, New York
| | - Geoffrey Kelly
- Human Immune Monitoring Center, Icahn School of Medicine at Mt. Sinai, New York, New York
| | - Shermineh Bradford
- Human Immune Monitoring Center, Icahn School of Medicine at Mt. Sinai, New York, New York
| | - Melanie Davila
- Human Immune Monitoring Center, Icahn School of Medicine at Mt. Sinai, New York, New York
| | - Xinzheng V. Guo
- Human Immune Monitoring Center, Icahn School of Medicine at Mt. Sinai, New York, New York
| | | | - Emily M. Thrash
- Center for Immuno-Oncology, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Michael D. Solga
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia
| | - Joanne Lannigan
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia
| | - Brian Sellers
- Trans-NIH Center for Human Immunology, Autoimmunity, and Inflammation, National Institutes of Health, Bethesda, Maryland
| | - Julian Candia
- Trans-NIH Center for Human Immunology, Autoimmunity, and Inflammation, National Institutes of Health, Bethesda, Maryland
| | - John Tsang
- Trans-NIH Center for Human Immunology, Autoimmunity, and Inflammation, National Institutes of Health, Bethesda, Maryland
| | - Ruth R. Montgomery
- Department of Internal Medicine, School of Medicine, Yale University, New Haven, Connecticut
| | - Stanley J. Tamaki
- Department of Surgery, University of California San Francisco, San Francisco, California
| | - Tara K. Sigdel
- Department of Surgery, University of California San Francisco, San Francisco, California
| | - Minnie M. Sarwal
- Department of Surgery, University of California San Francisco, San Francisco, California
| | - Lewis L. Lanier
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, California
| | - Yuan Tian
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, California
| | - Cheryl Kim
- Flow Cytometry Core Facility, La Jolla Institute for Immunology, La Jolla
| | - Denise Hinz
- Flow Cytometry Core Facility, La Jolla Institute for Immunology, La Jolla
| | - Bjoern Peters
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, California
- Department of Medicine, University of California San Diego, La Jolla, California
| | - Alessandro Sette
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, California
- Department of Medicine, University of California San Diego, La Jolla, California
| | - Adeeb H. Rahman
- Human Immune Monitoring Center, Icahn School of Medicine at Mt. Sinai, New York, New York
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mt. Sinai, New York, New York
| |
Collapse
|
36
|
Liechti T, Kadelka C, Braun DL, Kuster H, Böni J, Robbiani M, Günthard HF, Trkola A. Widespread B cell perturbations in HIV-1 infection afflict naive and marginal zone B cells. J Exp Med 2019; 216:2071-2090. [PMID: 31221742 PMCID: PMC6719425 DOI: 10.1084/jem.20181124] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 02/07/2019] [Accepted: 05/24/2019] [Indexed: 12/18/2022] Open
Abstract
Liechti et al. demonstrate severe B cell perturbations in HIV-1 infection beyond described effects on memory B cells. Naive and marginal zone B cells down-regulate CD21 and display chemokine receptor and activation marker signatures associated with inflammation and diminished response to stimulation. Perturbations in B cells are a hallmark of HIV-1 infection. This is signified by increased numbers of exhausted CD21neg memory B cells, driven by continuous antigen-specific and bystander activation. Using high-dimensional flow cytometry, we demonstrate that this exhausted phenotype is also prevalent among peripheral antigen-inexperienced naive and marginal zone (MZ) B cells in acute and chronic HIV-1 infection. A substantial fraction of naive and MZ B cells exhibit down-regulated CD21 levels and diminished response to B cell receptor (BCR)–dependent stimulation. Compared with CD21pos subsets, the CD21neg naive and MZ B cells differ in the expression of chemokine receptors and activation markers. Effective antiretroviral treatment normalizes peripheral naive and MZ B cell populations. Our results emphasize a more widely spread impairment of B cells in HIV-1 infection than previously appreciated, including antigen-inexperienced cells. This highlights the importance of monitoring functional capacities of naive B cells in HIV-1 infection, as exhausted CD21neg naive B cells may severely impair induction of novel B cell responses.
Collapse
Affiliation(s)
- Thomas Liechti
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Claus Kadelka
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland.,Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland
| | - Dominique L Braun
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland.,Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland
| | - Herbert Kuster
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland.,Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland
| | - Jürg Böni
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Melissa Robbiani
- Center for Biomedical Research, Population Council, New York, NY
| | - Huldrych F Günthard
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland.,Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland
| | - Alexandra Trkola
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
37
|
Allen SD, Liu YG, Kim T, Bobbala S, Yi S, Zhang X, Choi J, Scott EA. Celastrol-loaded PEG-b-PPS nanocarriers as an anti-inflammatory treatment for atherosclerosis. Biomater Sci 2019; 7:657-668. [PMID: 30601470 DOI: 10.1039/c8bm01224e] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
In this work, the hydrophobic small molecule NF-κB inhibitor celastrol was loaded into poly(ethylene glycol)-b-poly(propylene sulfide) (PEG-b-PPS) micelles. PEG-b-PPS micelles demonstrated high loading efficiency, low polydispersity, and no morphological changes upon loading with celastrol. Encapsulation of celastrol within these nanocarriers significantly reduced cytotoxicity compared to free celastrol, while simultaneously expanding the lower concentration range for effective inhibition of NF-κB signaling by nearly 50 000-fold. Furthermore, celastrol-loaded micelles successfully reduced TNF-α secretion after LPS stimulation of RAW 264.7 cells and reduced the number of neutrophils and inflammatory monocytes within atherosclerotic plaques of ldlr-/- mice. This reduction in inflammatory cells was matched by a reduction in plaque area, suggesting that celastrol-loaded nanocarriers may serve as an anti-inflammatory treatment for atherosclerosis.
Collapse
Affiliation(s)
- Sean D Allen
- Interdepartmental Biological Sciences Program, Northwestern University, Evanston, IL 60628, USA
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Liao W, Overman MJ, Boutin AT, Shang X, Zhao D, Dey P, Li J, Wang G, Lan Z, Li J, Tang M, Jiang S, Ma X, Chen P, Katkhuda R, Korphaisarn K, Chakravarti D, Chang A, Spring DJ, Chang Q, Zhang J, Maru DM, Maeda DY, Zebala JA, Kopetz S, Wang YA, DePinho RA. KRAS-IRF2 Axis Drives Immune Suppression and Immune Therapy Resistance in Colorectal Cancer. Cancer Cell 2019; 35:559-572.e7. [PMID: 30905761 PMCID: PMC6467776 DOI: 10.1016/j.ccell.2019.02.008] [Citation(s) in RCA: 379] [Impact Index Per Article: 75.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 11/20/2018] [Accepted: 02/22/2019] [Indexed: 02/07/2023]
Abstract
The biological functions and mechanisms of oncogenic KRASG12D (KRAS∗) in resistance to immune checkpoint blockade (ICB) therapy are not fully understood. We demonstrate that KRAS∗ represses the expression of interferon regulatory factor 2 (IRF2), which in turn directly represses CXCL3 expression. KRAS∗-mediated repression of IRF2 results in high expression of CXCL3, which binds to CXCR2 on myeloid-derived suppressor cells and promotes their migration to the tumor microenvironment. Anti-PD-1 resistance of KRAS∗-expressing tumors can be overcome by enforced IRF2 expression or by inhibition of CXCR2. Colorectal cancer (CRC) showing higher IRF2 expression exhibited increased responsiveness to anti-PD-1 therapy. The KRAS∗-IRF2-CXCL3-CXCR2 axis provides a framework for patient selection and combination therapies to enhance the effectiveness of ICB therapy in CRC.
Collapse
MESH Headings
- Adenomatous Polyposis Coli Protein/genetics
- Adenomatous Polyposis Coli Protein/metabolism
- Adult
- Aged
- Animals
- Antineoplastic Agents, Immunological/pharmacology
- Cell Line, Tumor
- Cell Movement
- Chemokines, CXC/metabolism
- Colorectal Neoplasms/drug therapy
- Colorectal Neoplasms/genetics
- Colorectal Neoplasms/immunology
- Colorectal Neoplasms/metabolism
- Drug Resistance, Neoplasm/genetics
- Female
- Gene Expression Regulation, Neoplastic
- Humans
- Interferon Regulatory Factor-2/genetics
- Interferon Regulatory Factor-2/metabolism
- Male
- Mice, Inbred C57BL
- Mice, Inbred NOD
- Mice, SCID
- Mice, Transgenic
- Middle Aged
- Myeloid-Derived Suppressor Cells/drug effects
- Myeloid-Derived Suppressor Cells/immunology
- Myeloid-Derived Suppressor Cells/metabolism
- Programmed Cell Death 1 Receptor/antagonists & inhibitors
- Programmed Cell Death 1 Receptor/immunology
- Programmed Cell Death 1 Receptor/metabolism
- Proto-Oncogene Proteins p21(ras)/genetics
- Proto-Oncogene Proteins p21(ras)/metabolism
- Receptors, Interleukin-8B/metabolism
- Signal Transduction
- Tumor Escape
- Tumor Microenvironment
- Tumor Suppressor Protein p53/genetics
- Tumor Suppressor Protein p53/metabolism
- Young Adult
Collapse
Affiliation(s)
- Wenting Liao
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China
| | - Michael J Overman
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Adam T Boutin
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xiaoying Shang
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Di Zhao
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Prasenjit Dey
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jiexi Li
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Guocan Wang
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Zhengdao Lan
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jun Li
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ming Tang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Shan Jiang
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xingdi Ma
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Peiwen Chen
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Riham Katkhuda
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Krittiya Korphaisarn
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Deepavali Chakravarti
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Andrew Chang
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Denise J Spring
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Qing Chang
- Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jianhua Zhang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Dipen M Maru
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | - Scott Kopetz
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Y Alan Wang
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Ronald A DePinho
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
39
|
Owens GC, Garcia AJ, Mochizuki AY, Chang JW, Reyes SD, Salamon N, Prins RM, Mathern GW, Fallah A. Evidence for Innate and Adaptive Immune Responses in a Cohort of Intractable Pediatric Epilepsy Surgery Patients. Front Immunol 2019; 10:121. [PMID: 30761153 PMCID: PMC6362260 DOI: 10.3389/fimmu.2019.00121] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Accepted: 01/15/2019] [Indexed: 12/31/2022] Open
Abstract
Brain-infiltrating lymphocytes (BILs) were isolated from resected brain tissue from 10 pediatric epilepsy patients who had undergone surgery for Hemimegalencephaly (HME) (n = 1), Tuberous sclerosis complex (TSC) (n = 2), Focal cortical dysplasia (FCD) (n = 4), and Rasmussen encephalitis (RE) (n = 3). Peripheral blood mononuclear cells (PBMCs) were also isolated from blood collected at the time of the surgery. Cells were immunostained with a panel of 20 antibody markers, and analyzed by mass cytometry. To identify and quantify the immune cell types in the samples, an unbiased clustering method was applied to the entire data set. More than 85 percent of the CD45+ cells isolated from resected RE brain tissue comprised T cells; by contrast NK cells and myeloid cells constituted 80-95 percent of the CD45+ cells isolated from the TSC and the FCD brain specimens. Three populations of myeloid cells made up >50 percent of all of the myeloid cells in all of the samples of which a population of HLA-DR+ CD11b+ CD4- cells comprised the vast majority of myeloid cells in the BIL fractions from the FCD and TSC cases. CD45RA+ HLA-DR- CD11b+ CD16+ NK cells constituted the major population of NK cells in the blood from all of the cases. This subset also comprised the majority of NK cells in BILs from the resected RE and HME brain tissue, whereas NK cells defined as CD45RA- HLA-DR+ CD11b- CD16- cells comprised 86-96 percent of the NK cells isolated from the FCD and TSC brain tissue. Thirteen different subsets of CD4 and CD8 αβ T cells and γδ T cells accounted for over 80% of the CD3+ T cells in all of the BIL and PBMC samples. At least 90 percent of the T cells in the RE BILs, 80 percent of the T cells in the HME BILs and 40-66 percent in the TSC and FCD BILs comprised activated antigen-experienced (CD45RO+ HLA-DR+ CD69+) T cells. We conclude that even in cases where there is no evidence for an infection or an immune disorder, activated peripheral immune cells may be present in epileptogenic areas of the brain, possibly in response to seizure-driven brain inflammation.
Collapse
Affiliation(s)
- Geoffrey C. Owens
- Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Alejandro J. Garcia
- Division of Hematology Oncology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Aaron Y. Mochizuki
- Division of Hematology Oncology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Julia W. Chang
- Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Samuel D. Reyes
- Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Noriko Salamon
- Department of Radiological Sciences, David Geffen School of Medicine at the University of California, Los Angeles, Los Angeles, CA, United States
| | - Robert M. Prins
- Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Brain Research Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Parker Institute for Cancer Immunotherapy, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Gary W. Mathern
- Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Brain Research Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Mattel Children's Hospital, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Aria Fallah
- Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Brain Research Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Mattel Children's Hospital, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
40
|
Allen SD, Bobbala S, Karabin NB, Modak M, Scott EA. Benchmarking Bicontinuous Nanospheres against Polymersomes for in Vivo Biodistribution and Dual Intracellular Delivery of Lipophilic and Water-Soluble Payloads. ACS APPLIED MATERIALS & INTERFACES 2018; 10:33857-33866. [PMID: 30213189 DOI: 10.1021/acsami.8b09906] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Bicontinuous nanospheres (BCNs) are polymeric analogs to lipid cubosomes, possessing cubic liquid crystalline phases with high internal surface area, aqueous channels for loading hydrophilic molecules, and high hydrophobic volume for lipophilic payloads. Primarily due to difficulties in scalable and consistent fabrication, neither controlled delivery of payloads via BCNs nor their organ or cellular biodistributions following in vivo administration have been demonstrated or characterized. We have recently validated flash nanoprecipitation as a rapid method of assembling uniform monodisperse 200-300 nm diameter BCNs from poly(ethylene glycol) -b-poly(propylene sulfide) (PEG -b-PPS) co-polymers. Here, we compare these BCNs both in vitro and in vivo to 100 nm PEG -b-PPS polymersomes (PSs), which have been well characterized as nanocarriers for controlled delivery applications. Using a small molecule fluorophore and a fluorescently tagged protein as respective lipophilic and water-soluble model cargos, we demonstrate that BCNs can achieve significantly higher encapsulation efficiencies for both payloads on a per unit mass basis. At time points of 4 and 24 h after intravenous administration to mice, we found significant differences in organ-level uptake between BCNs and PSs, with BCNs showing reduced accumulation in the liver and increased uptake in the spleen. Despite these organ-level differences, BCNs and PSs displayed strikingly similar uptake profiles by immune cell populations in vitro and in the liver, spleen, and blood, as assayed by flow cytometry. In conclusion, we have found PEG -b-PPS BCNs to be well suited for dual loading and delivery of molecular payloads, with a favorable organ biodistribution and high cell uptake by therapeutically relevant immune cell populations.
Collapse
|
41
|
Loyher PL, Hamon P, Laviron M, Meghraoui-Kheddar A, Goncalves E, Deng Z, Torstensson S, Bercovici N, Baudesson de Chanville C, Combadière B, Geissmann F, Savina A, Combadière C, Boissonnas A. Macrophages of distinct origins contribute to tumor development in the lung. J Exp Med 2018; 215:2536-2553. [PMID: 30201786 PMCID: PMC6170177 DOI: 10.1084/jem.20180534] [Citation(s) in RCA: 191] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 07/02/2018] [Accepted: 08/28/2018] [Indexed: 01/22/2023] Open
Abstract
Tissue-resident macrophages can self-maintain without contribution of adult hematopoiesis. Herein we show that tissue-resident interstitial macrophages (Res-TAMs) in mouse lungs contribute to the pool of tumor-associated macrophages (TAMs) together with CCR2-dependent recruited macrophages (MoD-TAMs). Res-TAMs largely correlated with tumor cell growth in vivo, while MoD-TAMs accumulation was associated with enhanced tumor spreading. Both cell subsets were depleted after chemotherapy, but MoD-TAMs rapidly recovered and performed phagocytosis-mediated tumor clearance. Interestingly, anti-VEGF treatment combined with chemotherapy inhibited both Res and Mod-TAM reconstitution without affecting monocyte infiltration and improved its efficacy. Our results reveal that the developmental origin of TAMs dictates their relative distribution, function, and response to cancer therapies in lung tumors.
Collapse
Affiliation(s)
- Pierre-Louis Loyher
- Sorbonne Universités, Institut National de la Santé et de la Recherche Médicale (Inserm, UMR1135), Centre National de la Recherche Scientifique (CNRS, ERL8255), Centre d'Immunologie et des Maladies Infectieuses CIMI, Paris, France.,Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Pauline Hamon
- Sorbonne Universités, Institut National de la Santé et de la Recherche Médicale (Inserm, UMR1135), Centre National de la Recherche Scientifique (CNRS, ERL8255), Centre d'Immunologie et des Maladies Infectieuses CIMI, Paris, France
| | - Marie Laviron
- Sorbonne Universités, Institut National de la Santé et de la Recherche Médicale (Inserm, UMR1135), Centre National de la Recherche Scientifique (CNRS, ERL8255), Centre d'Immunologie et des Maladies Infectieuses CIMI, Paris, France
| | - Aïda Meghraoui-Kheddar
- Sorbonne Universités, Institut National de la Santé et de la Recherche Médicale (Inserm, UMR1135), Centre National de la Recherche Scientifique (CNRS, ERL8255), Centre d'Immunologie et des Maladies Infectieuses CIMI, Paris, France
| | - Elena Goncalves
- Sorbonne Universités, Institut National de la Santé et de la Recherche Médicale (Inserm, UMR1135), Centre National de la Recherche Scientifique (CNRS, ERL8255), Centre d'Immunologie et des Maladies Infectieuses CIMI, Paris, France
| | - Zihou Deng
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Sara Torstensson
- Sorbonne Universités, Institut National de la Santé et de la Recherche Médicale (Inserm, UMR1135), Centre National de la Recherche Scientifique (CNRS, ERL8255), Centre d'Immunologie et des Maladies Infectieuses CIMI, Paris, France
| | - Nadège Bercovici
- Inserm, U1016, Institut Cochin, CNRS UMR8104, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Camille Baudesson de Chanville
- Sorbonne Universités, Institut National de la Santé et de la Recherche Médicale (Inserm, UMR1135), Centre National de la Recherche Scientifique (CNRS, ERL8255), Centre d'Immunologie et des Maladies Infectieuses CIMI, Paris, France
| | - Béhazine Combadière
- Sorbonne Universités, Institut National de la Santé et de la Recherche Médicale (Inserm, UMR1135), Centre National de la Recherche Scientifique (CNRS, ERL8255), Centre d'Immunologie et des Maladies Infectieuses CIMI, Paris, France
| | - Frederic Geissmann
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Ariel Savina
- Institut Roche, 30, Boulogne-Billancourt Cedex, France
| | - Christophe Combadière
- Sorbonne Universités, Institut National de la Santé et de la Recherche Médicale (Inserm, UMR1135), Centre National de la Recherche Scientifique (CNRS, ERL8255), Centre d'Immunologie et des Maladies Infectieuses CIMI, Paris, France
| | - Alexandre Boissonnas
- Sorbonne Universités, Institut National de la Santé et de la Recherche Médicale (Inserm, UMR1135), Centre National de la Recherche Scientifique (CNRS, ERL8255), Centre d'Immunologie et des Maladies Infectieuses CIMI, Paris, France
| |
Collapse
|
42
|
SOX11 augments BCR signaling to drive MCL-like tumor development. Blood 2018; 131:2247-2255. [PMID: 29615403 DOI: 10.1182/blood-2018-02-832535] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 03/23/2018] [Indexed: 11/20/2022] Open
Abstract
Mantle cell lymphoma (MCL) is characterized by increased B-cell receptor (BCR) signaling, and BTK inhibition is an effective therapeutic intervention in MCL patients. The mechanisms leading to increased BCR signaling in MCL are poorly understood, as mutations in upstream regulators of BCR signaling such as CD79A, commonly observed in other lymphomas, are rare in MCL. The transcription factor SOX11 is overexpressed in the majority (78% to 93%) of MCL patients and is considered an MCL-specific oncogene. So far, attempts to understand SOX11 function in vivo have been hampered by the lack of appropriate animal models, because germline deletion of SOX11 is embryonically lethal. We have developed a transgenic mouse model (Eμ-SOX11-EGFP) in the C57BL/6 background expressing murine SOX11 and EGFP under the control of a B-cell-specific IgH-Eμ enhancer. The overexpression of SOX11 exclusively in B cells exhibits oligoclonal B-cell hyperplasia in the spleen, bone marrow, and peripheral blood, with an immunophenotype (CD5+CD19+CD23-) identical to human MCL. Furthermore, phosphocytometric time-of-flight analysis of the splenocytes from these mice shows hyperactivation of pBTK and other molecules in the BCR signaling pathway, and serial bone marrow transplant from transgenic donors produces lethality with decreasing latency. We report here that overexpression of SOX11 in B cells promotes BCR signaling and a disease phenotype that mimics human MCL.
Collapse
|
43
|
Tang PMK, Tang PCT, Chung JYF, Hung JSC, Wang QM, Lian GY, Sheng J, Huang XR, To KF, Lan HY. A Novel Feeder-free System for Mass Production of Murine Natural Killer Cells In Vitro. J Vis Exp 2018. [PMID: 29364233 DOI: 10.3791/56785] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Natural killer (NK) cells belong to the innate immune system and are a first-line anti-cancer immune defense; however, they are suppressed in the tumor microenvironment and the underlying mechanism is still largely unknown. The lack of a consistent and reliable source of NK cells limits the research progress of NK cell immunity. Here, we report an in vitro system that can provide high quality and quantity of bone marrow-derived murine NK cells under a feeder-free condition. More importantly, we also demonstrate that siRNA-mediated gene silencing successfully inhibits the E4bp4-dependent NK cell maturation by using this system. Thus, this novel in vitro NK cell differentiating system is a biomaterial solution for immunity research.
Collapse
Affiliation(s)
- Patrick Ming-Kuen Tang
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong; Li Ka Shing Institute of Health Sciences and Department of Medicine & Therapeutics, The Chinese University of Hong Kong
| | - Philip Chiu-Tsun Tang
- Li Ka Shing Institute of Health Sciences and Department of Medicine & Therapeutics, The Chinese University of Hong Kong
| | - Jeff Yat-Fai Chung
- Li Ka Shing Institute of Health Sciences and Department of Medicine & Therapeutics, The Chinese University of Hong Kong
| | - Jessica Shuk Chun Hung
- Li Ka Shing Institute of Health Sciences and Department of Medicine & Therapeutics, The Chinese University of Hong Kong
| | - Qing-Ming Wang
- Li Ka Shing Institute of Health Sciences and Department of Medicine & Therapeutics, The Chinese University of Hong Kong
| | - Guang-Yu Lian
- Li Ka Shing Institute of Health Sciences and Department of Medicine & Therapeutics, The Chinese University of Hong Kong
| | - Jingyi Sheng
- Li Ka Shing Institute of Health Sciences and Department of Medicine & Therapeutics, The Chinese University of Hong Kong
| | - Xiao-Ru Huang
- Li Ka Shing Institute of Health Sciences and Department of Medicine & Therapeutics, The Chinese University of Hong Kong
| | - Ka-Fai To
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong
| | - Hui-Yao Lan
- Li Ka Shing Institute of Health Sciences and Department of Medicine & Therapeutics, The Chinese University of Hong Kong;
| |
Collapse
|
44
|
Lavin Y, Kobayashi S, Leader A, Amir EAD, Elefant N, Bigenwald C, Remark R, Sweeney R, Becker CD, Levine JH, Meinhof K, Chow A, Kim-Shulze S, Wolf A, Medaglia C, Li H, Rytlewski JA, Emerson RO, Solovyov A, Greenbaum BD, Sanders C, Vignali M, Beasley MB, Flores R, Gnjatic S, Pe'er D, Rahman A, Amit I, Merad M. Innate Immune Landscape in Early Lung Adenocarcinoma by Paired Single-Cell Analyses. Cell 2017; 169:750-765.e17. [PMID: 28475900 PMCID: PMC5737939 DOI: 10.1016/j.cell.2017.04.014] [Citation(s) in RCA: 847] [Impact Index Per Article: 121.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 02/26/2017] [Accepted: 04/11/2017] [Indexed: 12/15/2022]
Abstract
To guide the design of immunotherapy strategies for patients with early stage lung tumors, we developed a multiscale immune profiling strategy to map the immune landscape of early lung adenocarcinoma lesions to search for tumor-driven immune changes. Utilizing a barcoding method that allows a simultaneous single-cell analysis of the tumor, non-involved lung, and blood cells, we provide a detailed immune cell atlas of early lung tumors. We show that stage I lung adenocarcinoma lesions already harbor significantly altered T cell and NK cell compartments. Moreover, we identified changes in tumor-infiltrating myeloid cell (TIM) subsets that likely compromise anti-tumor T cell immunity. Paired single-cell analyses thus offer valuable knowledge of tumor-driven immune changes, providing a powerful tool for the rational design of immune therapies. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Yonit Lavin
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Soma Kobayashi
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Andrew Leader
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - El-Ad David Amir
- The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Naama Elefant
- Department of Immunology, Weizmann Institute, Rehovot 76100, Israel
| | - Camille Bigenwald
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Romain Remark
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Robert Sweeney
- Department of Thoracic Surgery, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Christian D Becker
- Division of Pulmonology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jacob H Levine
- Computational and Systems Biology Program, Sloan Kettering Institute, New York, NY 10065, USA
| | - Klaus Meinhof
- Division of Pulmonology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Andrew Chow
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Seunghee Kim-Shulze
- The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Andrea Wolf
- Department of Thoracic Surgery, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Chiara Medaglia
- Department of Immunology, Weizmann Institute, Rehovot 76100, Israel
| | - Hanjie Li
- Department of Immunology, Weizmann Institute, Rehovot 76100, Israel
| | | | | | - Alexander Solovyov
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Division of Hematology/Oncology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Benjamin D Greenbaum
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Division of Hematology/Oncology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | | | | | - Mary Beth Beasley
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Raja Flores
- Department of Thoracic Surgery, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sacha Gnjatic
- The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Division of Hematology/Oncology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Dana Pe'er
- Computational and Systems Biology Program, Sloan Kettering Institute, New York, NY 10065, USA
| | - Adeeb Rahman
- The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ido Amit
- Department of Immunology, Weizmann Institute, Rehovot 76100, Israel
| | - Miriam Merad
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
45
|
Muchmore B, Alarcón-Riquelme ME. CymeR: cytometry analysis using KNIME, docker and R. Bioinformatics 2017; 33:776-778. [PMID: 27998935 PMCID: PMC5870801 DOI: 10.1093/bioinformatics/btw707] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 10/03/2016] [Accepted: 11/10/2016] [Indexed: 01/11/2023] Open
Abstract
Summary Here we present open-source software for the analysis of high-dimensional cytometry data using state of the art algorithms. Importantly, use of the software requires no programming ability, and output files can either be interrogated directly in CymeR or they can be used downstream with any other cytometric data analysis platform. Also, because we use Docker to integrate the multitude of components that form the basis of CymeR, we have additionally developed a proof-of-concept of how future open-source bioinformatic programs with graphical user interfaces could be developed. Availability and Implementation CymeR is open-source software that ties several components into a single program that is perhaps best thought of as a self-contained data analysis operating system. Please see https://github.com/bmuchmore/CymeR/wiki for detailed installation instructions. Contact brian.muchmore@genyo.es or marta.alarcon@genyo.es.
Collapse
Affiliation(s)
- B Muchmore
- Centre for Genomics and Oncological Research (GENYO), Area of Genomic Medicine, Genetics of Complex Diseases, Pfizer-University of Granada-Andalusian Regional Government, Health Sciences Technology Park, Granada, Spain
| | - M E Alarcón-Riquelme
- Centre for Genomics and Oncological Research (GENYO), Area of Genomic Medicine, Genetics of Complex Diseases, Pfizer-University of Granada-Andalusian Regional Government, Health Sciences Technology Park, Granada, Spain
- IMM, Unit for Chronic Inflammatory Diseases, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
46
|
Kadić E, Moniz RJ, Huo Y, Chi A, Kariv I. Effect of cryopreservation on delineation of immune cell subpopulations in tumor specimens as determinated by multiparametric single cell mass cytometry analysis. BMC Immunol 2017; 18:6. [PMID: 28148223 PMCID: PMC5288879 DOI: 10.1186/s12865-017-0192-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 01/29/2017] [Indexed: 12/14/2022] Open
Abstract
Background Comprehensive understanding of cellular immune subsets involved in regulation of tumor progression is central to the development of cancer immunotherapies. Single cell immunophenotyping has historically been accomplished by flow cytometry (FC) analysis, enabling the analysis of up to 18 markers. Recent advancements in mass cytometry (MC) have facilitated detection of over 50 markers, utilizing high resolving power of mass spectrometry (MS). This study examined an analytical and operational feasibility of MC for an in-depth immunophenotyping analysis of the tumor microenvironment, using the commercial CyTOF™ instrument, and further interrogated challenges in managing the integrity of tumor specimens. Results Initial longitudinal studies with frozen peripheral blood mononuclear cells (PBMCs) showed minimal MC inter-assay variability over nine independent runs. In addition, detection of common leukocyte lineage markers using MC and FC detection confirmed that these methodologies are comparable in cell subset identification. An advanced multiparametric MC analysis of 39 total markers enabled a comprehensive evaluation of cell surface marker expression in fresh and cryopreserved tumor samples. This comparative analysis revealed significant reduction of expression levels of multiple markers upon cryopreservation. Most notably myeloid derived suppressor cells (MDSC), defined by co-expression of CD66b+ and CD15+, HLA-DRdim and CD14− phenotype, were undetectable in frozen samples. Conclusion These results suggest that optimization and evaluation of cryopreservation protocols is necessary for accurate biomarker discovery in frozen tumor specimens. Electronic supplementary material The online version of this article (doi:10.1186/s12865-017-0192-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Elma Kadić
- Department of Pharmacology, Cellular Pharmacology, Merck and Co. Inc, 33 Avenue Louis Pasteur, Boston, 02115, MA, USA
| | - Raymond J Moniz
- Department of Biology-Discovery, Immunooncology, Merck and Co. Inc, Boston, MA, USA
| | - Ying Huo
- Department of Pharmacology, Cellular Pharmacology, Merck and Co. Inc, 33 Avenue Louis Pasteur, Boston, 02115, MA, USA
| | - An Chi
- Department of Chemistry, Capabilities Enhancement, Merck and Co. Inc, Boston, MA, USA
| | - Ilona Kariv
- Department of Pharmacology, Cellular Pharmacology, Merck and Co. Inc, 33 Avenue Louis Pasteur, Boston, 02115, MA, USA.
| |
Collapse
|
47
|
Abstract
Technology development in biological research often aims to either increase the number of cellular features that can be surveyed simultaneously or enhance the resolution at which such observations are possible. For decades, flow cytometry has balanced these goals to fill a critical need by enabling the measurement of multiple features in single cells, commonly to examine complex or hierarchical cellular systems. Recently, a format for flow cytometry has been developed that leverages the precision of mass spectrometry. This fusion of the two technologies, termed mass cytometry, provides measurement of over 40 simultaneous cellular parameters at single-cell resolution, significantly augmenting the ability of cytometry to evaluate complex cellular systems and processes. In this Primer, we review the current state of mass cytometry, providing an overview of the instrumentation, its present capabilities, and methods of data analysis, as well as thoughts on future developments and applications.
Collapse
|
48
|
DR3 signaling modulates the function of Foxp3+ regulatory T cells and the severity of acute graft-versus-host disease. Blood 2016; 128:2846-2858. [PMID: 27760760 DOI: 10.1182/blood-2016-06-723783] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 09/29/2016] [Indexed: 12/20/2022] Open
Abstract
CD4+Foxp3+ regulatory T cells (Treg) are a subpopulation of T cells, which regulate the immune system and enhance immune tolerance after transplantation. Donor-derived Treg prevent the development of lethal acute graft-versus-host disease (GVHD) in murine models of allogeneic hematopoietic stem cell transplantation. We recently demonstrated that a single treatment of the agonistic antibody to DR3 (death receptor 3, αDR3) to donor mice resulted in the expansion of donor-derived Treg and prevented acute GVHD, although the precise role of DR3 signaling in GVHD has not been elucidated. In this study, we comprehensively analyzed the immunophenotype of Treg after DR3 signal activation, demonstrating that DR3-activated Treg (DR3-Treg) had an activated/mature phenotype. Furthermore, the CD25+Foxp3+ subpopulation in DR3-Treg showed stronger suppressive effects in vivo. Prophylactic treatment of αDR3 to recipient mice expanded recipient-derived Treg and reduced the severity of GVHD, whereas DR3 activation in mice with ongoing GVHD further promoted donor T-cell activation/proliferation. These data suggest that the function of DR3 signaling was highly dependent on the activation status of the T cells. In conclusion, our data demonstrated that DR3 signaling affects the function of Treg and T-cell activation after alloantigen exposure in a time-dependent manner. These observations provide important information for future clinical testing using human DR3 signal modulation and highlight the critical effect of the state of T-cell activation on clinical outcomes after activation of DR3.
Collapse
|
49
|
Karr JR, Guturu H, Chen EY, Blair SL, Irish JM, Kotecha N, Covert MW. NetworkPainter: dynamic intracellular pathway animation in Cytobank. BMC Bioinformatics 2015; 16:172. [PMID: 26003204 PMCID: PMC4491883 DOI: 10.1186/s12859-015-0602-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 04/28/2015] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND High-throughput technologies such as flow and mass cytometry have the potential to illuminate cellular networks. However, analyzing the data produced by these technologies is challenging. Visualization is needed to help researchers explore this data. RESULTS We developed a web-based software program, NetworkPainter, to enable researchers to analyze dynamic cytometry data in the context of pathway diagrams. NetworkPainter provides researchers a graphical interface to draw and "paint" pathway diagrams with experimental data, producing animated diagrams which display the activity of each network node at each time point. CONCLUSION NetworkPainter enables researchers to more fully explore multi-parameter, dynamical cytometry data.
Collapse
Affiliation(s)
- Jonathan R Karr
- Graduate Program in Biophysics, Stanford University, 443 Via Ortega, MC 4245, Stanford, CA, 94305, USA.
- Department of Genetics & Genomic Sciences, Mount Sinai School of Medicine, One Gustave L Levy Place, New York, NY, 10029, USA.
| | - Harendra Guturu
- Department of Electrical Engineering, Stanford University, 279 Campus Drive West, MC 5329, Stanford, CA, 94305, USA.
| | - Edward Y Chen
- Department of Bioengineering, Stanford University, 443 Via Ortega, MC 4245, Stanford, CA, 94305, USA.
| | - Stuart L Blair
- Cytobank Inc, 821 West El Camino Real, Mountain View, CA, 94040, USA.
| | - Jonathan M Irish
- Department of Medicine, Stanford University, 269 Campus Drive West, MC 5175, Stanford, CA, 94305, USA.
- Department of Microbiology & Immunology, Stanford University, 269 Campus Drive West, MC 5175, Stanford, CA, 94305, USA.
- Cytobank Inc, 821 West El Camino Real, Mountain View, CA, 94040, USA.
- Department of Cancer Biology, Vanderbilt University, 740B Preston Building, 2220 Pierce Avenue, Nashville, TN, 37232, USA.
| | - Nikesh Kotecha
- Graduate Program in Biomedical Informatics, Stanford University, 269 Campus Drive West, MC 5175, Stanford, CA, 94305, USA.
- Cytobank Inc, 821 West El Camino Real, Mountain View, CA, 94040, USA.
| | - Markus W Covert
- Department of Bioengineering, Stanford University, 443 Via Ortega, MC 4245, Stanford, CA, 94305, USA.
| |
Collapse
|
50
|
Nair N, Mei HE, Chen SY, Hale M, Nolan GP, Maecker HT, Genovese M, Fathman CG, Whiting CC. Mass cytometry as a platform for the discovery of cellular biomarkers to guide effective rheumatic disease therapy. Arthritis Res Ther 2015; 17:127. [PMID: 25981462 PMCID: PMC4436107 DOI: 10.1186/s13075-015-0644-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The development of biomarkers for autoimmune diseases has been hampered by a lack of understanding of disease etiopathogenesis and of the mechanisms underlying the induction and maintenance of inflammation, which involves complex activation dynamics of diverse cell types. The heterogeneous nature and suboptimal clinical response to treatment observed in many autoimmune syndromes highlight the need to develop improved strategies to predict patient outcome to therapy and personalize patient care. Mass cytometry, using CyTOF®, is an advanced technology that facilitates multiparametric, phenotypic analysis of immune cells at single-cell resolution. In this review, we outline the capabilities of mass cytometry and illustrate the potential of this technology to enhance the discovery of cellular biomarkers for rheumatoid arthritis, a prototypical autoimmune disease.
Collapse
Affiliation(s)
- Nitya Nair
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, 94305, USA. .,Division of Immune Monitoring and Biomarker Development, Aduro BioTech, Inc., Berkeley, CA, 94710, USA. .,Department of Medicine, Stanford University, Stanford, CA, 94305, USA.
| | - Henrik E Mei
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA, 94305, USA.
| | - Shih-Yu Chen
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, 94305, USA.
| | - Matthew Hale
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, 94305, USA.
| | - Garry P Nolan
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, 94305, USA.
| | - Holden T Maecker
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA, 94305, USA.
| | - Mark Genovese
- Department of Medicine, Stanford University, Stanford, CA, 94305, USA.
| | | | - Chan C Whiting
- Division of Immune Monitoring and Biomarker Development, Aduro BioTech, Inc., Berkeley, CA, 94710, USA. .,Department of Medicine, Stanford University, Stanford, CA, 94305, USA.
| |
Collapse
|