1
|
Sarria-S FA, Montealegre-Z F, Gonzalez-Rodriguez J. The chemistry of an insect ear: ionic composition of a liquid-filled ear and haemolymphs of Neotropical katydids. J R Soc Interface 2023; 20:20230154. [PMID: 37464801 PMCID: PMC10354488 DOI: 10.1098/rsif.2023.0154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 06/28/2023] [Indexed: 07/20/2023] Open
Abstract
The purpose of this study is to examine and to compare the ionic composition of the haemolymph and the ear fluid of seven species of katydids (Orthoptera: Tettigoniidae) with the aim of providing from a biochemical perspective a preliminary assessment for an insect liquid contained in the auditory organ of katydids with a hearing mechanism reminiscent of that found in vertebrates. A multi-element trace analysis by inductively coupled plasma optical-emission spectrometry was run for 16 elements for the ear liquid of seven species and the haemolymph of six of them. Based on the obtained results, it can be recognized that the ionic composition is variable among the studied insects, but sodium (Na+), potassium (K+), calcium (Ca2+) and magnesium (Mg2+) are the most prominent of the dissolved inorganic cations. However, the ion concentrations between the two fluids are considerably different and the absence or low concentration of Ca2+ is a noticeable feature in the inner ear liquid. A potential relationship between the male courtship song peak frequency and the total ion (Na+, K+, Mg2+ and Ca2+) concentration of the inner ear liquid is also reported.
Collapse
Affiliation(s)
- Fabio A. Sarria-S
- School of Life Sciences, Joseph Banks Laboratories, University of Lincoln, Lincoln LN6 7DL, UK
| | - Fernando Montealegre-Z
- School of Life Sciences, Joseph Banks Laboratories, University of Lincoln, Lincoln LN6 7DL, UK
| | | |
Collapse
|
2
|
Carlton AJ, Jeng J, Grandi FC, De Faveri F, Ceriani F, De Tomasi L, Underhill A, Johnson SL, Legan KP, Kros CJ, Richardson GP, Mustapha M, Marcotti W. A critical period of prehearing spontaneous Ca 2+ spiking is required for hair-bundle maintenance in inner hair cells. EMBO J 2023; 42:e112118. [PMID: 36594367 PMCID: PMC9929643 DOI: 10.15252/embj.2022112118] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 11/22/2022] [Accepted: 11/28/2022] [Indexed: 01/04/2023] Open
Abstract
Sensory-independent Ca2+ spiking regulates the development of mammalian sensory systems. In the immature cochlea, inner hair cells (IHCs) fire spontaneous Ca2+ action potentials (APs) that are generated either intrinsically or by intercellular Ca2+ waves in the nonsensory cells. The extent to which either or both of these Ca2+ signalling mechansims are required for IHC maturation is unknown. We find that intrinsic Ca2+ APs in IHCs, but not those elicited by Ca2+ waves, regulate the maturation and maintenance of the stereociliary hair bundles. Using a mouse model in which the potassium channel Kir2.1 is reversibly overexpressed in IHCs (Kir2.1-OE), we find that IHC membrane hyperpolarization prevents IHCs from generating intrinsic Ca2+ APs but not APs induced by Ca2+ waves. Absence of intrinsic Ca2+ APs leads to the loss of mechanoelectrical transduction in IHCs prior to hearing onset due to progressive loss or fusion of stereocilia. RNA-sequencing data show that pathways involved in morphogenesis, actin filament-based processes, and Rho-GTPase signaling are upregulated in Kir2.1-OE mice. By manipulating in vivo expression of Kir2.1 channels, we identify a "critical time period" during which intrinsic Ca2+ APs in IHCs regulate hair-bundle function.
Collapse
Affiliation(s)
| | - Jing‐Yi Jeng
- School of BiosciencesUniversity of SheffieldSheffieldUK
| | | | | | | | | | | | - Stuart L Johnson
- School of BiosciencesUniversity of SheffieldSheffieldUK
- Neuroscience InstituteUniversity of SheffieldSheffieldUK
| | - Kevin P Legan
- School of Life SciencesUniversity of Sussex, FalmerBrightonUK
| | - Corné J Kros
- School of Life SciencesUniversity of Sussex, FalmerBrightonUK
| | | | - Mirna Mustapha
- School of BiosciencesUniversity of SheffieldSheffieldUK
- Neuroscience InstituteUniversity of SheffieldSheffieldUK
| | - Walter Marcotti
- School of BiosciencesUniversity of SheffieldSheffieldUK
- Neuroscience InstituteUniversity of SheffieldSheffieldUK
| |
Collapse
|
3
|
Oncomodulin (OCM) uniquely regulates calcium signaling in neonatal cochlear outer hair cells. Cell Calcium 2022; 105:102613. [PMID: 35797824 PMCID: PMC9297295 DOI: 10.1016/j.ceca.2022.102613] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/06/2022] [Accepted: 06/09/2022] [Indexed: 11/23/2022]
|
4
|
Zhang J, Wang X, Hou Z, Neng L, Cai J, Zhang Y, Shi X. Suppression of Connexin 43 Leads to Strial Vascular Hyper-Permeability, Decrease in Endocochlear Potential, and Mild Hearing Loss. Front Physiol 2020; 11:974. [PMID: 32922309 PMCID: PMC7457066 DOI: 10.3389/fphys.2020.00974] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 07/16/2020] [Indexed: 12/20/2022] Open
Abstract
Objective: Connexin 43 (Cx43) is a protein constituent of gap junctions (GJs) in various barrier cells, especially astrocytes and microglia of the blood-brain-barrier (BBB), where it plays an important role in intercellular communication and regulation of the barrier. Despite the importance of Cx43 in other blood barriers, not much attention has been paid to expression and function of Cx43 in the blood-labyrinth-barrier (BLB) of the stria vascularis in the cochlea. Methods: We used multiple research approaches, including immunocytochemical staining, patch-clamp dye loading technique, real-time quantitative reverse transcription (RT)-PCR, western blot, measurement of endocochlear potential (EP) with an electrode through the scala media, and auditory brainstem response to test hearing function. Results: We found Cx43 expressed in vascular endothelial cells (ECs) and perivascular resident macrophages (PVMs) in the stria vascularis of adult C57BL/6 mouse cochleae. In particular, we found Cx43 expressed in foot processes of PVMs at points of contact with the endothelium. Consistent with Cx43 expression in vivo, we also found Cx43 expressed in EC-EC and EC-PVM interfaces in a co-cultured cell line model. Using a patch-clamp dye loading technique, we demonstrated that Alexa Fluor® 568 dye injected into PVMs diffuses to connected neighboring ECs. The functional coupling between the ECs and PVMs is blocked by 18α-Glycyrrhetinic acid (18α-GA), a GJ blocker. Suppression of Cx43 with small interfering RNA (siRNA) in vivo significantly elevated hearing threshold and caused the EP to drop and the blood barrier to become more permeable. In further study, using in vitro primary EC cell line models, we demonstrated that suppression of Cx43 disrupts intercellular tight junctions (TJs) in the EC monolayer and increases endothelial monolayer permeability. Conculsion: Taken together, these findings underscore the importance of Cx43 expression in the normal ear for maintaining BLB integrity, normal EP, and hearing function.
Collapse
Affiliation(s)
- Jinhui Zhang
- Oregon Hearing Research Center, Oregon Health & Science University, Portland, OR, United States
| | - Xiaohan Wang
- Oregon Hearing Research Center, Oregon Health & Science University, Portland, OR, United States
- Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Zhiqiang Hou
- Oregon Hearing Research Center, Oregon Health & Science University, Portland, OR, United States
| | - Lingling Neng
- Oregon Hearing Research Center, Oregon Health & Science University, Portland, OR, United States
| | - Jing Cai
- Oregon Hearing Research Center, Oregon Health & Science University, Portland, OR, United States
| | - Yunpei Zhang
- Oregon Hearing Research Center, Oregon Health & Science University, Portland, OR, United States
| | - Xiaorui Shi
- Oregon Hearing Research Center, Oregon Health & Science University, Portland, OR, United States
| |
Collapse
|
5
|
Gausterer JC, Saidov N, Ahmadi N, Zhu C, Wirth M, Reznicek G, Arnoldner C, Gabor F, Honeder C. Intratympanic application of poloxamer 407 hydrogels results in sustained N-acetylcysteine delivery to the inner ear. Eur J Pharm Biopharm 2020; 150:143-155. [DOI: 10.1016/j.ejpb.2020.03.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 01/20/2020] [Accepted: 03/04/2020] [Indexed: 01/06/2023]
|
6
|
Nyberg S, Abbott NJ, Shi X, Steyger PS, Dabdoub A. Delivery of therapeutics to the inner ear: The challenge of the blood-labyrinth barrier. Sci Transl Med 2020; 11:11/482/eaao0935. [PMID: 30842313 DOI: 10.1126/scitranslmed.aao0935] [Citation(s) in RCA: 171] [Impact Index Per Article: 42.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 12/01/2017] [Accepted: 03/22/2018] [Indexed: 12/20/2022]
Abstract
Permanent hearing loss affects more than 5% of the world's population, yet there are no nondevice therapies that can protect or restore hearing. Delivery of therapeutics to the cochlea and vestibular system of the inner ear is complicated by their inaccessible location. Drug delivery to the inner ear via the vasculature is an attractive noninvasive strategy, yet the blood-labyrinth barrier at the luminal surface of inner ear capillaries restricts entry of most blood-borne compounds into inner ear tissues. Here, we compare the blood-labyrinth barrier to the blood-brain barrier, discuss invasive intratympanic and intracochlear drug delivery methods, and evaluate noninvasive strategies for drug delivery to the inner ear.
Collapse
Affiliation(s)
- Sophie Nyberg
- Biological Sciences, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
| | - N Joan Abbott
- Institute of Pharmaceutical Science, King's College London, London SE1 9NH, UK
| | - Xiaorui Shi
- Oregon Hearing Research Center, Department of Otolaryngology, Head & Neck Surgery, Oregon Health & Science University, Portland, OR 97239, USA
| | - Peter S Steyger
- Oregon Hearing Research Center, Department of Otolaryngology, Head & Neck Surgery, Oregon Health & Science University, Portland, OR 97239, USA
| | - Alain Dabdoub
- Biological Sciences, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada. .,Department of Otolaryngology-Head & Neck Surgery, University of Toronto, Toronto, ON M5G 2C4, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5G 2C4, Canada
| |
Collapse
|
7
|
Kros CJ, Steyger PS. Aminoglycoside- and Cisplatin-Induced Ototoxicity: Mechanisms and Otoprotective Strategies. Cold Spring Harb Perspect Med 2019; 9:cshperspect.a033548. [PMID: 30559254 DOI: 10.1101/cshperspect.a033548] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Ototoxicity refers to damage of inner ear structures (i.e., the cochlea and vestibule) and their function (hearing and balance) following exposure to specific in-hospital medications (i.e., aminoglycoside antibiotics, platinum-based drugs), as well as a variety of environmental or occupational exposures (e.g., metals and solvents). This review provides a narrative derived from relevant papers describing factors contributing to (or increasing the risk of) aminoglycoside and cisplatin-induced ototoxicity. We also review current strategies to protect against ototoxicity induced by these indispensable pharmacotherapeutic treatments for life-threatening infections and solid tumors. We end by highlighting several interventional strategies that are currently in development, as well as the diverse challenges that still need to be overcome to prevent drug-induced hearing loss.
Collapse
Affiliation(s)
- Corné J Kros
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, United Kingdom
| | - Peter S Steyger
- Oregon Hearing Research Center, Oregon Health & Science University, Portland, Oregon 97239.,National Center for Rehabilitative Auditory Research, VA Portland Health Care System, Portland, Oregon 97239
| |
Collapse
|
8
|
Talaei S, Schnee ME, Aaron KA, Ricci AJ. Dye Tracking Following Posterior Semicircular Canal or Round Window Membrane Injections Suggests a Role for the Cochlea Aqueduct in Modulating Distribution. Front Cell Neurosci 2019; 13:471. [PMID: 31736710 PMCID: PMC6833940 DOI: 10.3389/fncel.2019.00471] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 10/02/2019] [Indexed: 01/09/2023] Open
Abstract
The inner ear houses the sensory epithelium responsible for vestibular and auditory function. The sensory epithelia are driven by pressure and vibration of the fluid filled structures in which they are embedded so that understanding the homeostatic mechanisms regulating fluid dynamics within these structures is critical to understanding function at the systems level. Additionally, there is a growing need for drug delivery to the inner ear for preventive and restorative treatments to the pathologies associated with hearing and balance dysfunction. We compare drug delivery to neonatal and adult inner ear by injection into the posterior semicircular canal (PSCC) or through the round window membrane (RWM). PSCC injections produced higher levels of dye delivery within the cochlea than did RWM injections. Neonatal PSCC injections produced a gradient in dye distribution; however, adult distributions were relatively uniform. RWM injections resulted in an early base to apex gradient that became more uniform over time, post injection. RWM injections lead to higher levels of dye distributions in the brain, likely demonstrating that injections can traverse the cochlea aqueduct. We hypothesize the relative position of the cochlear aqueduct between injection site and cochlea is instrumental in dictating dye distribution within the cochlea. Dye distribution is further compounded by the ability of some chemicals to cross inner ear membranes accessing the blood supply as demonstrated by the rapid distribution of gentamicin-conjugated Texas red (GTTR) throughout the body. These data allow for a direct evaluation of injection mode and age to compare strengths and weaknesses of the two approaches.
Collapse
Affiliation(s)
- Sara Talaei
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Michael E Schnee
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Ksenia A Aaron
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Anthony J Ricci
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, United States.,Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
9
|
Ceriani F, Hendry A, Jeng JY, Johnson SL, Stephani F, Olt J, Holley MC, Mammano F, Engel J, Kros CJ, Simmons DD, Marcotti W. Coordinated calcium signalling in cochlear sensory and non-sensory cells refines afferent innervation of outer hair cells. EMBO J 2019; 38:embj.201899839. [PMID: 30804003 PMCID: PMC6484507 DOI: 10.15252/embj.201899839] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 12/11/2018] [Accepted: 01/18/2019] [Indexed: 12/12/2022] Open
Abstract
Outer hair cells (OHCs) are highly specialized sensory cells conferring the fine‐tuning and high sensitivity of the mammalian cochlea to acoustic stimuli. Here, by genetically manipulating spontaneous Ca2+ signalling in mice in vivo, through a period of early postnatal development, we find that the refinement of OHC afferent innervation is regulated by complementary spontaneous Ca2+ signals originating in OHCs and non‐sensory cells. OHCs fire spontaneous Ca2+ action potentials during a narrow period of neonatal development. Simultaneously, waves of Ca2+ activity in the non‐sensory cells of the greater epithelial ridge cause, via ATP‐induced activation of P2X3 receptors, the increase and synchronization of the Ca2+ activity in nearby OHCs. This synchronization is required for the refinement of their immature afferent innervation. In the absence of connexin channels, Ca2+ waves are impaired, leading to a reduction in the number of ribbon synapses and afferent fibres on OHCs. We propose that the correct maturation of the afferent connectivity of OHCs requires experience‐independent Ca2+ signals from sensory and non‐sensory cells.
Collapse
Affiliation(s)
- Federico Ceriani
- Department of Biomedical Science, University of Sheffield, Sheffield, UK
| | - Aenea Hendry
- Department of Biomedical Science, University of Sheffield, Sheffield, UK
| | - Jing-Yi Jeng
- Department of Biomedical Science, University of Sheffield, Sheffield, UK
| | - Stuart L Johnson
- Department of Biomedical Science, University of Sheffield, Sheffield, UK
| | - Friederike Stephani
- Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University, Homburg, Germany
| | - Jennifer Olt
- Department of Biomedical Science, University of Sheffield, Sheffield, UK
| | - Matthew C Holley
- Department of Biomedical Science, University of Sheffield, Sheffield, UK
| | - Fabio Mammano
- Department of Physics and Astronomy "G. Galilei", University of Padua, Padova, Italy.,Department of Biomedical Sciences, Institute of Cell Biology and Neurobiology, Italian National Research Council, Monterotondo, Italy
| | - Jutta Engel
- Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University, Homburg, Germany
| | - Corné J Kros
- School of Life Sciences, University of Sussex, Brighton, UK
| | | | - Walter Marcotti
- Department of Biomedical Science, University of Sheffield, Sheffield, UK
| |
Collapse
|
10
|
Nonomura Y, Sawamura S, Hanzawa K, Nishikaze T, Sekiya S, Higuchi T, Nin F, Uetsuka S, Inohara H, Okuda S, Miyoshi E, Horii A, Takahashi S, Natsuka S, Hibino H. Characterisation of N-glycans in the epithelial-like tissue of the rat cochlea. Sci Rep 2019; 9:1551. [PMID: 30733536 PMCID: PMC6367448 DOI: 10.1038/s41598-018-38079-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 12/17/2018] [Indexed: 01/08/2023] Open
Abstract
Membrane proteins (such as ion channels, transporters, and receptors) and secreted proteins are essential for cellular activities. N-linked glycosylation is involved in stability and function of these proteins and occurs at Asn residues. In several organs, profiles of N-glycans have been determined by comprehensive analyses. Nevertheless, the cochlea of the mammalian inner ear, a tiny organ mediating hearing, has yet to be examined. Here, we focused on the stria vascularis, an epithelial-like tissue in the cochlea, and characterised N-glycans by liquid chromatography with mass spectrometry. This hypervascular tissue not only expresses several ion transporters and channels to control the electrochemical balance in the cochlea but also harbours different transporters and receptors that maintain structure and activity of the organ. Seventy-nine N-linked glycans were identified in the rat stria vascularis. Among these, in 55 glycans, the complete structures were determined; in the other 24 species, partial glycosidic linkage patterns and full profiles of the monosaccharide composition were identified. In the process of characterisation, several sialylated glycans were subjected sequentially to two different alkylamidation reactions; this derivatisation helped to distinguish α2,3-linkage and α2,6-linkage sialyl isomers with mass spectrometry. These data should accelerate elucidation of the molecular architecture of the cochlea.
Collapse
Affiliation(s)
- Yoriko Nonomura
- Department of Molecular Physiology, Niigata University School of Medicine, Niigata, Japan
- Department of Otorhinolaryngology-Head and Neck Surgery, Niigata University School of Medicine, Niigata, Japan
| | - Seishiro Sawamura
- Department of Molecular Physiology, Niigata University School of Medicine, Niigata, Japan
| | - Ken Hanzawa
- Department of Biology, Faculty of Science, Niigata University, Niigata, Japan
| | - Takashi Nishikaze
- Koichi Tanaka Mass Spectrometry Research Laboratory, Shimadzu Corporation, Kyoto, Japan
| | - Sadanori Sekiya
- Koichi Tanaka Mass Spectrometry Research Laboratory, Shimadzu Corporation, Kyoto, Japan
| | - Taiga Higuchi
- Department of Molecular Physiology, Niigata University School of Medicine, Niigata, Japan
| | - Fumiaki Nin
- Department of Molecular Physiology, Niigata University School of Medicine, Niigata, Japan
- Center for Transdisciplinary Research, Niigata University, Niigata, Japan
| | - Satoru Uetsuka
- Department of Otorhinolaryngology-Head and Neck Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Hidenori Inohara
- Department of Otorhinolaryngology-Head and Neck Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Shujiro Okuda
- Bioinformatics Laboratory, Niigata University School of Medicine, Niigata, Japan
| | - Eiji Miyoshi
- Division of Health Sciences, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Arata Horii
- Department of Otorhinolaryngology-Head and Neck Surgery, Niigata University School of Medicine, Niigata, Japan
| | - Sugata Takahashi
- Department of Otorhinolaryngology-Head and Neck Surgery, Niigata University School of Medicine, Niigata, Japan
| | - Shunji Natsuka
- Department of Biology, Faculty of Science, Niigata University, Niigata, Japan
| | - Hiroshi Hibino
- Department of Molecular Physiology, Niigata University School of Medicine, Niigata, Japan.
- Center for Transdisciplinary Research, Niigata University, Niigata, Japan.
- AMED-CREST, AMED, Niigata, Japan.
| |
Collapse
|
11
|
Superficial Siderosis of the Central Nervous System: Neurotological Findings Related to Magnetic Resonance Imaging. Otol Neurotol 2018; 40:31-37. [PMID: 30516591 DOI: 10.1097/mao.0000000000002071] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE To compare the neurotological results of five patients suffering from progressive hearing loss and ataxia due to superficial siderosis (SS) with the magnetic resonance imaging (MRI) findings. STUDY DESIGN Retrospective case review. SETTING Primary and hospital care center. PARTICIPANTS Five adult patients with neurotological symptoms of SS underwent MRI with acquisition of our temporal bone protocol including 3D-constructive interference in steady state (3D-CISS) and susceptibility-weighted imaging (SWI). All patients underwent a complete neurotological examination, the results of which were compared with the imaging findings. MAIN OUTCOME MEASURES Cochleovestibular deficits were present in all five patients as determined by uni- or bilateral bithermal caloric testing and/or video head impulse tests. Sacculocollic reflex was present with increased P1 and N1 latencies on both sides in all patients. MRI revealed an extensive hypointense SWI signal outlining the surface of the brain and the VIIIth cranial nerve in all five patients. Desynchronization of the brainstem auditory evoked potentials (BAEP) and partial or complete absence of the visual suppression of vestibulo-ocular reflex during the pendular rotatory test was particularly consistent with the lesions of the cochleovestibular nerves as well as the cerebellar atrophy seen on MRI. CONCLUSION The MRI results with SWI were related to neurotological findings in patients suffering from sensorineural deafness with ataxia due to SS. Our findings support the integration of the SWI and 3D-CISS sequences into the MRI protocol for all patients referred for evaluation of the extent of SS.
Collapse
|
12
|
Gao J, Wang S, Tang Q, Li X, Zhang Y, Liu W, Gao Z, Yang H, Zhao RC. In Vitro Survival of Human Mesenchymal Stem Cells is Enhanced in Artificial Endolymph with Moderately High Concentrations of Potassium. Stem Cells Dev 2018; 27:658-670. [PMID: 29631482 DOI: 10.1089/scd.2018.0016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
While mesenchymal stem cells (MSCs) are promising candidates for inner ear hair cell regeneration, to date, there have been no convincing reports indicating whether MSCs can survive in the cochlea for more than a few weeks, as the high levels of potassium (K+) in the endolymph (EL) are thought to be toxic to transplanted stem cells. For conditioning the EL for MSC transplantation, we conducted this in vitro study to examine the effects of artificial EL with altered K+ concentration levels, in the range of 5-153.8 mM, on proliferation, apoptosis, and morphological changes in MSCs derived from various human tissues. Our findings demonstrate that altering the K+ concentration in artificial EL could significantly influence the survival of MSCs in vitro. We discovered that K+ concentrations of 55-130 mM in artificial EL could enhance the survival of MSCs in vitro. However, MSCs exhibited reduced proliferation regardless of K+ concentration.
Collapse
Affiliation(s)
- Juanjuan Gao
- 1 Department of Otolaryngology, Peking Union Medical College Hospital , Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China .,2 Department of Otolaryngology Research, Translational Medicine Center , Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Shihua Wang
- 3 Department of Cell Biology, Center of Excellence in Tissue Engineering, Key Laboratory of Beijing, Institute of Basic Medical Sciences and School of Basic Medicine , Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Qi Tang
- 1 Department of Otolaryngology, Peking Union Medical College Hospital , Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China .,2 Department of Otolaryngology Research, Translational Medicine Center , Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Xiaoxia Li
- 3 Department of Cell Biology, Center of Excellence in Tissue Engineering, Key Laboratory of Beijing, Institute of Basic Medical Sciences and School of Basic Medicine , Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Yongli Zhang
- 1 Department of Otolaryngology, Peking Union Medical College Hospital , Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China .,2 Department of Otolaryngology Research, Translational Medicine Center , Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Wenbin Liu
- 1 Department of Otolaryngology, Peking Union Medical College Hospital , Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China .,2 Department of Otolaryngology Research, Translational Medicine Center , Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Zhiqiang Gao
- 1 Department of Otolaryngology, Peking Union Medical College Hospital , Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China .,2 Department of Otolaryngology Research, Translational Medicine Center , Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Hua Yang
- 1 Department of Otolaryngology, Peking Union Medical College Hospital , Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China .,2 Department of Otolaryngology Research, Translational Medicine Center , Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Robert Chunhua Zhao
- 3 Department of Cell Biology, Center of Excellence in Tissue Engineering, Key Laboratory of Beijing, Institute of Basic Medical Sciences and School of Basic Medicine , Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| |
Collapse
|
13
|
Palma S, Boldrini P, Nucci R, Fano RA, Cenacchi G, Martini A. Melanin in human vestibular organs: what do we know now? An ultrastructural study and review of the literature. HEARING, BALANCE AND COMMUNICATION 2018. [DOI: 10.1080/21695717.2018.1461488] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Silvia Palma
- ENT, Primary Care Department, ASL, Modena, Italy
| | | | - Raul Nucci
- ENT Department, Ospedale Civile di Legnano, Legnano, Italy
| | - Rita Adriana Fano
- Dipartimento di Economia Marco Biagi, Universita degli Studi di Modena e Reggio Emilia, Modena, Italy
| | - Giovanna Cenacchi
- Dipartimento di Scienze Statistiche, Universita degli Studi di Padova, Padova, Italy
| | - Alessandro Martini
- Biomedical and Neuromotor Sciences Department, Universita degli Studi di Bologna, Bologna, Italy
| |
Collapse
|
14
|
Corns LF, Jeng JY, Richardson GP, Kros CJ, Marcotti W. TMC2 Modifies Permeation Properties of the Mechanoelectrical Transducer Channel in Early Postnatal Mouse Cochlear Outer Hair Cells. Front Mol Neurosci 2017; 10:326. [PMID: 29093662 PMCID: PMC5651230 DOI: 10.3389/fnmol.2017.00326] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 09/27/2017] [Indexed: 01/11/2023] Open
Abstract
The ability of cochlear hair cells to convert sound into receptor potentials relies on the mechanoelectrical transducer (MET) channels present in their stereociliary bundles. There is strong evidence implying that transmembrane channel-like protein (TMC) 1 contributes to the pore-forming subunit of the mature MET channel, yet its expression is delayed (~>P5 in apical outer hair cells, OHCs) compared to the onset of mechanotransduction (~P1). Instead, the temporal expression of TMC2 coincides with this onset, indicating that it could be part of the immature MET channel. We investigated MET channel properties from OHCs of homo- and heterozygous Tmc2 knockout mice. In the presence of TMC2, the MET channel blocker dihydrostreptomycin (DHS) had a lower affinity for the channel, when the aminoglycoside was applied extracellularly or intracellularly, with the latter effect being more pronounced. In Tmc2 knockout mice OHCs were protected from aminoglycoside ototoxicity during the first postnatal week, most likely due to their small MET current and the lower saturation level for aminoglycoside entry into the individual MET channels. DHS entry through the MET channels of Tmc2 knockout OHCs was lower during the first than in the second postnatal week, suggestive of a developmental change in the channel pore properties independent of TMC2. However, the ability of TMC2 to modify the MET channel properties strongly suggests it contributes to the pore-forming subunit of the neonatal channel. Nevertheless, we found that TMC2, different from TMC1, is not necessary for OHC development. While TMC2 is required for mechanotransduction in mature vestibular hair cells, its expression in the immature cochlea may be an evolutionary remnant.
Collapse
Affiliation(s)
- Laura F. Corns
- Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| | - Jing-Yi Jeng
- Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| | - Guy P. Richardson
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Corné J. Kros
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Walter Marcotti
- Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
15
|
Jiang M, Karasawa T, Steyger PS. Aminoglycoside-Induced Cochleotoxicity: A Review. Front Cell Neurosci 2017; 11:308. [PMID: 29062271 PMCID: PMC5640705 DOI: 10.3389/fncel.2017.00308] [Citation(s) in RCA: 171] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 09/15/2017] [Indexed: 12/20/2022] Open
Abstract
Aminoglycoside antibiotics are used as prophylaxis, or urgent treatment, for many life-threatening bacterial infections, including tuberculosis, sepsis, respiratory infections in cystic fibrosis, complex urinary tract infections and endocarditis. Although aminoglycosides are clinically-essential antibiotics, the mechanisms underlying their selective toxicity to the kidney and inner ear continue to be unraveled despite more than 70 years of investigation. The following mechanisms each contribute to aminoglycoside-induced toxicity after systemic administration: (1) drug trafficking across endothelial and epithelial barrier layers; (2) sensory cell uptake of these drugs; and (3) disruption of intracellular physiological pathways. Specific factors can increase the risk of drug-induced toxicity, including sustained exposure to higher levels of ambient sound, and selected therapeutic agents such as loop diuretics and glycopeptides. Serious bacterial infections (requiring life-saving aminoglycoside treatment) induce systemic inflammatory responses that also potentiate the degree of ototoxicity and permanent hearing loss. We discuss prospective clinical strategies to protect auditory and vestibular function from aminoglycoside ototoxicity, including reduced cochlear or sensory cell uptake of aminoglycosides, and otoprotection by ameliorating intracellular cytotoxicity.
Collapse
Affiliation(s)
- Meiyan Jiang
- Oregon Hearing Research Center, Oregon Health & Science University, Portland, OR, United States
| | - Takatoshi Karasawa
- Oregon Hearing Research Center, Oregon Health & Science University, Portland, OR, United States
| | - Peter S Steyger
- Oregon Hearing Research Center, Oregon Health & Science University, Portland, OR, United States.,National Center for Rehabilitative Auditory Research, Portland VA Medical Center (VHA), Portland, OR, United States
| |
Collapse
|
16
|
Ahmed H, Shubina-Oleinik O, Holt JR. Emerging Gene Therapies for Genetic Hearing Loss. J Assoc Res Otolaryngol 2017; 18:649-670. [PMID: 28815315 PMCID: PMC5612923 DOI: 10.1007/s10162-017-0634-8] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 07/04/2017] [Indexed: 12/31/2022] Open
Abstract
Gene therapy, or the treatment of human disease using genetic material, for inner ear dysfunction is coming of age. Recent progress in developing gene therapy treatments for genetic hearing loss has demonstrated tantalizing proof-of-principle in animal models. While successful translation of this progress into treatments for humans awaits, there is growing interest from patients, scientists, clinicians, and industry. Nonetheless, it is clear that a number of hurdles remain, and expectations for total restoration of auditory function should remain tempered until these challenges have been overcome. Here, we review progress, prospects, and challenges for gene therapy in the inner ear. We focus on technical aspects, including routes of gene delivery to the inner ear, choice of vectors, promoters, inner ear targets, therapeutic strategies, preliminary success stories, and points to consider for translating of these successes to the clinic.
Collapse
Affiliation(s)
- Hena Ahmed
- Departments of Otolaryngology and Neurology, F.M. Kirby Neurobiology Center Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Olga Shubina-Oleinik
- Departments of Otolaryngology and Neurology, F.M. Kirby Neurobiology Center Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Jeffrey R Holt
- Departments of Otolaryngology and Neurology, F.M. Kirby Neurobiology Center Boston Children's Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
17
|
Nin F, Yoshida T, Murakami S, Ogata G, Uetsuka S, Choi S, Doi K, Sawamura S, Inohara H, Komune S, Kurachi Y, Hibino H. Computer modeling defines the system driving a constant current crucial for homeostasis in the mammalian cochlea by integrating unique ion transports. NPJ Syst Biol Appl 2017; 3:24. [PMID: 28861279 PMCID: PMC5572463 DOI: 10.1038/s41540-017-0025-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 07/10/2017] [Accepted: 07/28/2017] [Indexed: 11/09/2022] Open
Abstract
The cochlear lateral wall-an epithelial-like tissue comprising inner and outer layers-maintains +80 mV in endolymph. This endocochlear potential supports hearing and represents the sum of all membrane potentials across apical and basolateral surfaces of both layers. The apical surfaces are governed by K+ equilibrium potentials. Underlying extracellular and intracellular [K+] is likely controlled by the "circulation current," which crosses the two layers and unidirectionally flows throughout the cochlea. This idea was conceptually reinforced by our computational model integrating ion channels and transporters; however, contribution of the outer layer's basolateral surface remains unclear. Recent experiments showed that this basolateral surface transports K+ using Na+, K+-ATPases and an unusual characteristic of greater permeability to Na+ than to other ions. To determine whether and how these machineries are involved in the circulation current, we used an in silico approach. In our updated model, the outer layer's basolateral surface was provided with only Na+, K+-ATPases, Na+ conductance, and leak conductance. Under normal conditions, the circulation current was assumed to consist of K+ and be driven predominantly by Na+, K+-ATPases. The model replicated the experimentally measured electrochemical properties in all compartments of the lateral wall, and endocochlear potential, under normal conditions and during blocking of Na+, K+-ATPases. Therefore, the circulation current across the outer layer's basolateral surface depends primarily on the three ion transport mechanisms. During the blockage, the reduced circulation current partially consisted of transiently evoked Na+ flow via the two conductances. This work defines the comprehensive system driving the circulation current.
Collapse
Affiliation(s)
- Fumiaki Nin
- Department of Molecular Physiology, Niigata University School of Medicine, Niigata, Japan
- Center for Transdisciplinary Research, Niigata University, Niigata, Japan
- AMED-CREST, AMED, Niigata, Japan
| | - Takamasa Yoshida
- Department of Otorhinolaryngology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shingo Murakami
- Department of Physiology, School of Medicine, Toho University, Tokyo, Japan
| | - Genki Ogata
- Department of Molecular Physiology, Niigata University School of Medicine, Niigata, Japan
- Center for Transdisciplinary Research, Niigata University, Niigata, Japan
| | - Satoru Uetsuka
- Department of Otorhinolaryngology–Head and Neck Surgery, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Samuel Choi
- Department of Electrical and Electronics Engineering, Niigata University, Niigata, Japan
| | - Katsumi Doi
- Department of Otolaryngology, Faculty of Medicine, Kindai University, Osakasayama, Japan
| | - Seishiro Sawamura
- Department of Molecular Physiology, Niigata University School of Medicine, Niigata, Japan
| | - Hidenori Inohara
- Department of Otorhinolaryngology–Head and Neck Surgery, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Shizuo Komune
- Department of Otorhinolaryngology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Division of Otolaryngology–Head and Neck Surgery, Yuaikai Oda Hospital, Kashima, Japan
| | - Yoshihisa Kurachi
- Division of Molecular and Cellular Pharmacology, Department of Pharmacology, Graduate School of Medicine, Osaka University, Suita, Japan
- The Global Center for Medical Engineering and Informatics, Osaka University, Suita, Japan
| | - Hiroshi Hibino
- Department of Molecular Physiology, Niigata University School of Medicine, Niigata, Japan
- Center for Transdisciplinary Research, Niigata University, Niigata, Japan
- AMED-CREST, AMED, Niigata, Japan
| |
Collapse
|
18
|
Amplification mode differs along the length of the mouse cochlea as revealed by connexin 26 deletion from specific gap junctions. Sci Rep 2017; 7:5185. [PMID: 28701711 PMCID: PMC5507891 DOI: 10.1038/s41598-017-04279-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 05/17/2017] [Indexed: 01/26/2023] Open
Abstract
The sharp frequency tuning and exquisite sensitivity of the mammalian cochlea is due to active forces delivered by outer hair cells (OHCs) to the cochlear partition. Force transmission is mediated and modulated by specialized cells, including Deiters’ cells (DCs) and pillar cells (PCs), coupled by gap-junctions composed of connexin 26 (Cx26) and Cx30. We created a mouse with conditional Cx26 knock-out (Cx26 cKO) in DCs and PCs that did not influence sensory transduction, receptor-current-driving-voltage, low-mid-frequency distortion-product-otoacoustic-emissions (DPOAEs), and passive basilar membrane (BM) responses. However, the Cx26 cKO desensitizes mid-high-frequency DPOAEs and active BM responses and sensitizes low-mid-frequency neural excitation. This functional segregation may indicate that the flexible, apical turn cochlear partition facilitates transfer of OHC displacements (isotonic forces) for cochlear amplification and neural excitation. DC and PC Cx26 expression is essential for cochlear amplification in the stiff basal turn, possibly through maintaining cochlear partition mechanical impedance, thereby ensuring effective transfer of OHC isometric forces.
Collapse
|
19
|
A connexin30 mutation rescues hearing and reveals roles for gap junctions in cochlear amplification and micromechanics. Nat Commun 2017; 8:14530. [PMID: 28220769 PMCID: PMC5321796 DOI: 10.1038/ncomms14530] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 01/08/2017] [Indexed: 12/30/2022] Open
Abstract
Accelerated age-related hearing loss disrupts high-frequency hearing in inbred CD-1 mice. The p.Ala88Val (A88V) mutation in the gene coding for the gap-junction protein connexin30 (Cx30) protects the cochlear basal turn of adult CD-1Cx30A88V/A88V mice from degeneration and rescues hearing. Here we report that the passive compliance of the cochlear partition and active frequency tuning of the basilar membrane are enhanced in the cochleae of CD-1Cx30A88V/A88V compared to CBA/J mice with sensitive high-frequency hearing, suggesting that gap junctions contribute to passive cochlear mechanics and energy distribution in the active cochlea. Surprisingly, the endocochlear potential that drives mechanoelectrical transduction currents in outer hair cells and hence cochlear amplification is greatly reduced in CD-1Cx30A88V/A88V mice. Yet, the saturating amplitudes of cochlear microphonic potentials in CD-1Cx30A88V/A88V and CBA/J mice are comparable. Although not conclusive, these results are compatible with the proposal that transmembrane potentials, determined mainly by extracellular potentials, drive somatic electromotility of outer hair cells. A point mutation in the gap-junction protein connexin 30 stops early onset age-related hearing loss. Here, the authors show that gap junctions contribute to cochlear micromechanics and that cochlear amplification is likely controlled by extracellular potentials in vicinity of the cochlear sensory cells.
Collapse
|
20
|
Walther LE, Hülse R, Lauer K, Wenzel A. [Current aspects of ototoxicity. Ototoxic substances and their effects]. HNO 2015; 63:315-24; quiz 325-6. [PMID: 25616875 DOI: 10.1007/s00106-014-2966-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Ototoxicity describes reversible or irreversible disorders of inner ear functions due to the influence of chemical, biological, or physical substances. Ototoxicity should be kept in mind during differential diagnosis of hearing loss, tinnitus, dizziness, and vertigo. In clinical practice, drug-induced ototoxic effects play a major role. The otorhinolaryngologist should also be involved in interdisciplinary cooperation, e.g., during treatment with antineoplastic chemotherapeutic agents with potential ototoxic side effects. In clinical practice, multimedication and interactions between different agents can complicate precise correlation in individual cases. Recent studies also show that noncellular components, such as otoconia, are extremely sensitive to chemical attacks.
Collapse
Affiliation(s)
- L E Walther
- HNO-Gemeinschaftspraxis, Main-Taunus-Zentrum, 65843, Sulzbach (Taunus), Deutschland,
| | | | | | | |
Collapse
|
21
|
Uetsuka S, Ogata G, Nagamori S, Isozumi N, Nin F, Yoshida T, Komune S, Kitahara T, Kikkawa Y, Inohara H, Kanai Y, Hibino H. Molecular architecture of the stria vascularis membrane transport system, which is essential for physiological functions of the mammalian cochlea. Eur J Neurosci 2015; 42:1984-2002. [PMID: 26060893 DOI: 10.1111/ejn.12973] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 06/02/2015] [Accepted: 06/02/2015] [Indexed: 11/29/2022]
Abstract
Stria vascularis of the mammalian cochlea transports K(+) to establish the electrochemical property in the endolymph crucial for hearing. This epithelial tissue also transports various small molecules. To clarify the profile of proteins participating in the transport system in the stria vascularis, membrane components purified from the stria of adult rats were analysed by liquid chromatography tandem mass spectrometry. Of the 3236 proteins detected in the analysis, 1807 were membrane proteins. Ingenuity Knowledge Base and literature data identified 513 proteins as being expressed on the 'plasma membrane', these included 25 ion channels and 79 transporters. Sixteen of the former and 62 of the latter had not yet been identified in the stria. Unexpectedly, many Cl(-) and Ca(2+) transport systems were found, suggesting that the dynamics of these ions play multiple roles. Several transporters for organic substances were also detected. Network analysis demonstrated that a few kinases, including protein kinase A, and Ca(2+) were key regulators for the strial transports. In the library of channels and transporters, 19 new candidates for uncloned deafness-related genes were identified. These resources provide a platform for understanding the molecular mechanisms underlying the epithelial transport essential for cochlear function and the pathophysiological processes involved in hearing disorders.
Collapse
Affiliation(s)
- Satoru Uetsuka
- Department of Molecular Physiology, Niigata University School of Medicine, 1-757 Asahimachi-dori, Niigata, 951-8510, Japan.,Center for Transdisciplinary Research, Niigata University, Niigata, Japan.,Department of Otorhinolaryngology - Head and Neck Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Genki Ogata
- Department of Molecular Physiology, Niigata University School of Medicine, 1-757 Asahimachi-dori, Niigata, 951-8510, Japan.,Center for Transdisciplinary Research, Niigata University, Niigata, Japan
| | - Shushi Nagamori
- Division of Bio-system Pharmacology, Department of Pharmacology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Noriyoshi Isozumi
- Division of Bio-system Pharmacology, Department of Pharmacology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Fumiaki Nin
- Department of Molecular Physiology, Niigata University School of Medicine, 1-757 Asahimachi-dori, Niigata, 951-8510, Japan.,Center for Transdisciplinary Research, Niigata University, Niigata, Japan
| | - Takamasa Yoshida
- Department of Molecular Physiology, Niigata University School of Medicine, 1-757 Asahimachi-dori, Niigata, 951-8510, Japan.,Center for Transdisciplinary Research, Niigata University, Niigata, Japan.,Department of Otorhinolaryngology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shizuo Komune
- Department of Otorhinolaryngology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tadashi Kitahara
- Department of Otorhinolaryngology - Head and Neck Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan.,Department of Otorhinolaryngology - Head and Neck Surgery, Nara Medical University, Nara, Japan
| | - Yoshiaki Kikkawa
- Mammalian Genetics Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Hidenori Inohara
- Department of Otorhinolaryngology - Head and Neck Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Yoshikatsu Kanai
- Division of Bio-system Pharmacology, Department of Pharmacology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Hiroshi Hibino
- Department of Molecular Physiology, Niigata University School of Medicine, 1-757 Asahimachi-dori, Niigata, 951-8510, Japan.,Center for Transdisciplinary Research, Niigata University, Niigata, Japan
| |
Collapse
|
22
|
Wang HC, Bergles DE. Spontaneous activity in the developing auditory system. Cell Tissue Res 2015; 361:65-75. [PMID: 25296716 PMCID: PMC7046314 DOI: 10.1007/s00441-014-2007-5] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 09/09/2014] [Indexed: 12/13/2022]
Abstract
Spontaneous electrical activity is a common feature of sensory systems during early development. This sensory-independent neuronal activity has been implicated in promoting their survival and maturation, as well as growth and refinement of their projections to yield circuits that can rapidly extract information about the external world. Periodic bursts of action potentials occur in auditory neurons of mammals before hearing onset. This activity is induced by inner hair cells (IHCs) within the developing cochlea, which establish functional connections with spiral ganglion neurons (SGNs) several weeks before they are capable of detecting external sounds. During this pre-hearing period, IHCs fire periodic bursts of Ca(2+) action potentials that excite SGNs, triggering brief but intense periods of activity that pass through auditory centers of the brain. Although spontaneous activity requires input from IHCs, there is ongoing debate about whether IHCs are intrinsically active and their firing periodically interrupted by external inhibitory input (IHC-inhibition model), or are intrinsically silent and their firing periodically promoted by an external excitatory stimulus (IHC-excitation model). There is accumulating evidence that inner supporting cells in Kölliker's organ spontaneously release ATP during this time, which can induce bursts of Ca(2+) spikes in IHCs that recapitulate many features of auditory neuron activity observed in vivo. Nevertheless, the role of supporting cells in this process remains to be established in vivo. A greater understanding of the molecular mechanisms responsible for generating IHC activity in the developing cochlea will help reveal how these events contribute to the maturation of nascent auditory circuits.
Collapse
Affiliation(s)
- Han Chin Wang
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | |
Collapse
|
23
|
Pannexin1 channels dominate ATP release in the cochlea ensuring endocochlear potential and auditory receptor potential generation and hearing. Sci Rep 2015; 5:10762. [PMID: 26035172 PMCID: PMC4451810 DOI: 10.1038/srep10762] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 04/28/2015] [Indexed: 01/04/2023] Open
Abstract
Pannexin1 (Panx1) is a gap junction gene in vertebrates whose proteins mainly function as non-junctional channels on the cell surface. Panx1 channels can release ATP under physiological conditions and play critical roles in many physiological and pathological processes. Here, we report that Panx1 deficiency can reduce ATP release and endocochlear potential (EP) generation in the cochlea inducing hearing loss. Panx1 extensively expresses in the cochlea, including the cochlear lateral wall. We found that deletion of Panx1 in the cochlear lateral wall almost abolished ATP release under physiological conditions. Positive EP is a driving force for current through hair cells to produce auditory receptor potential. EP generation requires ATP. In the Panx1 deficient mice, EP and auditory receptor potential as measured by cochlear microphonics (CM) were significantly reduced. However, no apparent hair cell loss was detected. Moreover, defect of connexin hemichannels by deletion of connexin26 (Cx26) and Cx30, which are predominant connexin isoforms in the cochlea, did not reduce ATP release under physiological conditions. These data demonstrate that Panx1 channels dominate ATP release in the cochlea ensuring EP and auditory receptor potential generation and hearing. Panx1 deficiency can reduce ATP release and EP generation causing hearing loss.
Collapse
|
24
|
Watanabe H, Velmurugan J, Mirkin MV, Svirsky MA, Lalwani AK, Llinas RR. Scanning electrochemical microscopy as a novel proximity sensor for atraumatic cochlear implant insertion. IEEE Trans Biomed Eng 2015; 61:1822-32. [PMID: 24845292 DOI: 10.1109/tbme.2014.2308058] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
A growing number of minimally invasive surgical and diagnostic procedures require the insertion of an optical, mechanical, or electronic device in narrow spaces inside a human body. In such procedures, precise motion control is essential to avoid damage to the patient's tissues and/or the device itself. A typical example is the insertion of a cochlear implant which should ideally be done with minimum physical contact between the moving device and the cochlear canal walls or the basilar membrane. Because optical monitoring is not possible, alternative techniques for sub millimeter-scale distance control can be very useful for such procedures. The first requirement for distance control is distance sensing. We developed a novel approach to distance sensing based on the principles of scanning electrochemical microscopy (SECM). The SECM signal, i.e., the diffusion current to a microelectrode, is very sensitive to the distance between the probe surface and any electrically insulating object present in its proximity. With several amperometric microprobes fabricated on the surface of an insertable device, one can monitor the distances between different parts of the moving implant and the surrounding tissues. Unlike typical SECM experiments, in which a disk-shaped tip approaches a relatively smooth sample, complex geometries of the mobile device and its surroundings make distance sensing challenging. Additional issues include the possibility of electrode surface contamination in biological fluids and the requirement for a biologically compatible redox mediator.
Collapse
|
25
|
Teudt IU, Richter CP. Basilar membrane and tectorial membrane stiffness in the CBA/CaJ mouse. J Assoc Res Otolaryngol 2014; 15:675-94. [PMID: 24865766 PMCID: PMC4164692 DOI: 10.1007/s10162-014-0463-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Accepted: 05/07/2014] [Indexed: 10/25/2022] Open
Abstract
The mouse has become an important animal model in understanding cochlear function. Structures, such as the tectorial membrane or hair cells, have been changed by gene manipulation, and the resulting effect on cochlear function has been studied. To contrast those findings, physical properties of the basilar membrane (BM) and tectorial membrane (TM) in mice without gene mutation are of great importance. Using the hemicochlea of CBA/CaJ mice, we have demonstrated that tectorial membrane (TM) and basilar membrane (BM) revealed a stiffness gradient along the cochlea. While a simple spring mass resonator predicts the change in the characteristic frequency of the BM, the spring mass model does not predict the frequency change along the TM. Plateau stiffness values of the TM were 0.6 ± 0.5, 0.2 ± 0.1, and 0.09 ± 0.09 N/m for the basal, middle, and upper turns, respectively. The BM plateau stiffness values were 3.7 ± 2.2, 1.2 ± 1.2, and 0.5 ± 0.5 N/m for the basal, middle, and upper turns, respectively. Estimations of the TM Young's modulus (in kPa) revealed 24.3 ± 25.2 for the basal turns, 5.1 ± 4.5 for the middle turns, and 1.9 ± 1.6 for the apical turns. Young's modulus determined at the BM pectinate zone was 76.8 ± 72, 23.9 ± 30.6, and 9.4 ± 6.2 kPa for the basal, middle, and apical turns, respectively. The reported stiffness values of the CBA/CaJ mouse TM and BM provide basic data for the physical properties of its organ of Corti.
Collapse
Affiliation(s)
- I. U. Teudt
- />Department of Otolaryngology—Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Searle Building 12-561; 303 East Chicago Avenue, 60611-3008 Chicago, IL USA
- />Department of Otolaryngology—Head and Neck Surgery, University Clinic Hamburg-Eppendorf, Hamburg, Germany
- />Department of Otolaryngology—Head and Neck Surgery, Asklepios Clinic Altona, Hamburg, Germany
| | - C. P. Richter
- />Department of Otolaryngology—Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Searle Building 12-561; 303 East Chicago Avenue, 60611-3008 Chicago, IL USA
- />Department of Biomedical Engineering, Northwestern University, Evanston, IL USA
- />Hugh Knowles Center, Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL USA
| |
Collapse
|
26
|
Presynaptic maturation in auditory hair cells requires a critical period of sensory-independent spiking activity. Proc Natl Acad Sci U S A 2013; 110:8720-5. [PMID: 23650376 DOI: 10.1073/pnas.1219578110] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The development of neural circuits relies on spontaneous electrical activity that occurs during immature stages of development. In the developing mammalian auditory system, spontaneous calcium action potentials are generated by inner hair cells (IHCs), which form the primary sensory synapse. It remains unknown whether this electrical activity is required for the functional maturation of the auditory system. We found that sensory-independent electrical activity controls synaptic maturation in IHCs. We used a mouse model in which the potassium channel SK2 is normally overexpressed, but can be modulated in vivo using doxycycline. SK2 overexpression affected the frequency and duration of spontaneous action potentials, which prevented the development of the Ca(2+)-sensitivity of vesicle fusion at IHC ribbon synapses, without affecting their morphology or general cell development. By manipulating the in vivo expression of SK2 channels, we identified the "critical period" during which spiking activity influences IHC synaptic maturation. Here we provide direct evidence that IHC development depends upon a specific temporal pattern of calcium spikes before sound-driven neuronal activity.
Collapse
|
27
|
|
28
|
Li H, Steyger PS. Systemic aminoglycosides are trafficked via endolymph into cochlear hair cells. Sci Rep 2011; 1:159. [PMID: 22355674 PMCID: PMC3240991 DOI: 10.1038/srep00159] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Accepted: 10/31/2011] [Indexed: 11/24/2022] Open
Abstract
Aminoglycoside antibiotics rapidly enter and kill cochlear hair cells via apical mechanoelectrical transduction (MET) channels in vitro. In vivo, it remains unknown whether systemically-administered aminoglycosides cross the blood-labyrinth barrier into endolymph and enter hair cells. Here we show, for the first time, that systemic aminoglycosides are trafficked across the blood-endolymph barrier and preferentially enter hair cells across their apical membranes. This trafficking route is predominant compared to uptake via hair cell basolateral membranes during perilymph infusion.
Collapse
Affiliation(s)
- Hongzhe Li
- Oregon Hearing Research Center, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, Oregon 97239
| | - Peter S. Steyger
- Oregon Hearing Research Center, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, Oregon 97239
| |
Collapse
|
29
|
Position-dependent patterning of spontaneous action potentials in immature cochlear inner hair cells. Nat Neurosci 2011; 14:711-7. [PMID: 21572434 PMCID: PMC3103712 DOI: 10.1038/nn.2803] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Accepted: 03/11/2011] [Indexed: 01/13/2023]
Abstract
Spontaneous action potential activity is crucial for mammalian sensory system development. In the auditory system, patterned firing activity has been observed in immature spiral ganglion cells and brain-stem neurons and is likely to depend on cochlear inner hair cell (IHC) action potentials. It remains uncertain whether spiking activity is intrinsic to developing IHCs and whether it shows patterning. We found that action potentials are intrinsically generated by immature IHCs of altricial rodents and that apical IHCs exhibit bursting activity as opposed to more sustained firing in basal cells. We show that the efferent neurotransmitter ACh, by fine-tuning the IHC’s resting membrane potential (Vm), is crucial for the bursting pattern in apical cells. Endogenous extracellular ATP also contributes to the Vm of apical and basal IHCs by activating SK2 channels. We hypothesize that the difference in firing pattern along the cochlea instructs the tonotopic differentiation of IHCs and auditory pathway.
Collapse
|
30
|
Dror AA, Avraham KB. Hearing Impairment: A Panoply of Genes and Functions. Neuron 2010; 68:293-308. [DOI: 10.1016/j.neuron.2010.10.011] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/06/2010] [Indexed: 12/13/2022]
|
31
|
O Maoiléidigh D, Jülicher F. The interplay between active hair bundle motility and electromotility in the cochlea. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2010; 128:1175-1190. [PMID: 20815454 DOI: 10.1121/1.3463804] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The cochlear amplifier is a nonlinear active process providing the mammalian ear with its extraordinary sensitivity, large dynamic range and sharp frequency tuning. While there is much evidence that amplification results from active force generation by mechanosensory hair cells, there is debate about the cellular processes behind nonlinear amplification. Outer hair cell electromotility has been suggested to underlie the cochlear amplifier. However, it has been shown in frog and turtle that spontaneous movements of hair bundles endow them with a nonlinear response with increased sensitivity that could be the basis of amplification. The present work shows that the properties of the cochlear amplifier could be understood as resulting from the combination of both hair bundle motility and electromotility in an integrated system that couples these processes through the geometric arrangement of hair cells embedded in the cochlear partition. In this scenario, the cochlear partition can become a dynamic oscillator which in the vicinity of a Hopf bifurcation exhibits all the key properties of the cochlear amplifier. The oscillatory behavior and the nonlinearity are provided by active hair bundles. Electromotility is largely linear but produces an additional feedback that allows hair bundle movements to couple to basilar membrane vibrations.
Collapse
Affiliation(s)
- Dáibhid O Maoiléidigh
- Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Strasse 38, 01187 Dresden, Germany
| | | |
Collapse
|
32
|
Harada N. Role of nitric oxide on purinergic signalling in the cochlea. Purinergic Signal 2010; 6:211-20. [PMID: 20806013 DOI: 10.1007/s11302-010-9186-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2009] [Accepted: 05/17/2010] [Indexed: 11/30/2022] Open
Abstract
In the inner ear, there is considerable evidence that extracellular adenosine 5'-triphosphate (ATP) plays an important role in auditory neurotransmission as a neurotransmitter or a neuromodulator, although the potential role of adenosine signalling in the modulation of auditory neurotransmission has also been reported. The activation of ligand-gated ionotropic P2X receptors and G protein-coupled metabotropic P2Y receptors has been reported to induce an increase of intracellular Ca(2+) concentration ([Ca(2+)](i)) in inner hair cells (IHCs), outer hair cells (OHCs), spiral ganglion neurons (SGNs), and supporting cells in the cochlea. ATP may participate in auditory neurotransmission by modulating [Ca(2+)](i) in the cochlear cells. Recent studies showed that extracellular ATP induced nitric oxide (NO) production in IHCs, OHCs, and SGNs, which affects the ATP-induced Ca(2+) response via the NO-cGMP-PKG pathway in those cells by a feedback mechanism. A cross-talk between NO and ATP may therefore exist in the auditory signal transduction. In the present article, I review the role of NO on the ATP-induced Ca(2+) signalling in IHCs and OHCs. I also consider the possible role of NO in the ATP-induced Ca(2+) signalling in SGNs and supporting cells.
Collapse
Affiliation(s)
- Narinobu Harada
- Harada Ear Institute, Tomoi 2-34-27, Higashiosaka, Osaka, 577-0816 Japan
| |
Collapse
|
33
|
|
34
|
Wang XH, Streeter M, Liu YP, Zhao HB. Identification and characterization of pannexin expression in the mammalian cochlea. J Comp Neurol 2009; 512:336-46. [PMID: 19009624 DOI: 10.1002/cne.21898] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The gap junction in vertebrates is encoded by the connexin gene family. Recently, a new gene family termed pannexin (Panx) has been identified in vertebrates and found to encode gap junctional proteins as well. To date, three pannexin isoforms (Panx1, 2, and 3) have been cloned from mouse and human genomes. In this study, expression of pannexins in the mouse and rat cochlea was investigated. Polymerase chain reaction and Western blot analysis showed that all three pannexin isoforms were expressed in the cochlea. Immunofluorescent staining showed that Panx1 expression was extensive. In the organ of Corti, Panx1 labeling was found in supporting cells, including pillar cells, Hensen cells, Claudius cells, and Boettcher cells. Both surface plaque-like punctate labeling and diffuse-cytoplasmic labeling were visible. However, the labeling was weak and rare in Deiters cells. No labeling was found in the hair cells. Intense labeling for Panx1 was also observed in the interdental cells in the spiral limbus, the inner and outer sulcus cells, and the type II fibrocytes in the spiral prominence and central region in the cochlear lateral wall. In addition, Panx1 labeling was detectable in Reissner's membrane and strial blood vessel cells. Panx2 labeling was restricted to the basal cells in the stria vascularis and was also detectable in the spiral ganglion neurons. However, no overlapping labeling for Panx1 and Panx2 was observed. Finally, Panx3 labeling was exclusively observed in the cochlear bone. Thus, Panx1, 2, and 3 are abundantly expressed in the mammalian cochlea and demonstrate distinct cellular distributions. Like connexins, they may play an important role in hearing.
Collapse
Affiliation(s)
- Xiao-Hui Wang
- Department of Surgery-Otolaryngology, University of Kentucky Medical Center, Lexington, Kentucky 40536, USA
| | | | | | | |
Collapse
|
35
|
Roles of gap junctions in glucose transport from glucose transporter 1-positive to -negative cells in the lateral wall of the rat cochlea. Histochem Cell Biol 2008; 131:89-102. [PMID: 18787834 DOI: 10.1007/s00418-008-0502-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/26/2008] [Indexed: 01/23/2023]
Abstract
Despite the importance of glucose metabolism for auditory function, the mechanisms of glucose transport in the cochlea are not completely understood. We hypothesized that gap junctions mediate intercellular glucose transport in the cochlea in cooperation with facilitative glucose transporter 1 (GLUT1). Immunohistochemistry showed that GLUT1 and the tight junction protein occludin were expressed in blood vessels, and GLUT1, the gap junction proteins connexin26 and connexin30, and occludin were also present in strial basal cells in the lateral wall of the rat cochlea. Gap junctions were found among not only these GLUT1-positive strial basal cells but also GLUT1-negative fibrocytes in the spiral ligaments and strial intermediate cells. Glucose imaging using 6-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino]-6-deoxyglucose (6-NBDG, MW 342) together with Evans Blue Albumin (EBA, MW 68,000) showed that 6-NBDG was rapidly distributed throughout the stria vascularis and spiral ligament, whereas EBA was localized only in the vessels. The gap junctional uncouplers heptanol and carbenoxolone inhibited the distribution of 6-NBDG in the spiral ligament without decreasing the fluorescence of EBA in the blood vessels. These findings suggest that gap junctions mediate glucose transport from GLUT1-positive cells (strial basal cells) to GLUT1-negative cells (fibrocytes in the spiral ligament and strial intermediate cells) in the cochlea.
Collapse
|
36
|
Protein expression of pigment-epithelium-derived factor in rat cochlea. Cell Tissue Res 2008; 332:565-71. [PMID: 18418629 DOI: 10.1007/s00441-008-0608-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2007] [Accepted: 02/22/2008] [Indexed: 12/26/2022]
Abstract
Pigment-epithelium-derived factor (PEDF) is a 50-kDa glycoprotein with well-recognised expression in various mammalian organs showing diverse (e.g. anti-angiogenic and neuroprotective) activities. However, at present, no information is available regarding the potential function of this cytokine in the inner ear. As a first approach to investigating whether PEDF is involved in cochlear function, we have explored its protein expression in the rat cochlea by immunocytochemistry. Our results show that PEDF expression in the cochlea is most prominent in the basilar membrane below the organ of Corti, in the lateral wall (especially in the stria vascularis), in ganglion neurons, and in the endothelia of blood vessels. Our findings on its distribution in the cochlea suggest that PEDF in the basilar membrane prevents blood vessel formation that would disturb cochlear micromechanics and would interfere with the mechano-electrical transduction in the organ of Corti. In cochlear ganglion neurons, PEDF might serve a neuroprotective function possibly protecting these neurons from excessive glutamate released by the inner hair cells. Our data constitute the first report on the morphological protein distribution of this multifunctional molecule in the rat cochlea and suggest its role in important functions of the internal ear.
Collapse
|
37
|
Mizutari K, Matsunaga T, Kamiya K, Fujinami Y, Fujii M, Ogawa K. Caspase inhibitor facilitates recovery of hearing by protecting the cochlear lateral wall from acute cochlear mitochondrial dysfunction. J Neurosci Res 2008; 86:215-22. [PMID: 17722114 DOI: 10.1002/jnr.21470] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
We recently showed that acute energy failure in the rat cochlea induced by local administration of the mitochondrial toxin 3-nitropropionic acid (3-NP) causes hearing loss mainly due to degeneration of cochlear lateral-wall fibrocytes. In the present study, we analyzed the effect of the pan-caspase inhibitor z-Val-Ala-Asp(Ome)-fluoromethylketone (Z-VAD-FMK) on 3-NP-induced hearing loss in a model showing temporary threshold shifts at low frequencies and permanent threshold shifts at high frequencies. The model rats received an intraperitoneal injection of either Z-VAD-FMK or vehicle for 3 days starting 1 day prior to 3-NP treatment. One day after the administration of 3-NP, the auditory brain-stem response (ABR) threshold at 20 kHz was elevated to 70 dB in the Z-VAD-FMK group and to 85 dB in controls. The Z-VAD-FMK group completely recovered to the preoperative level within 14 days, whereas in the controls, the ABR threshold remained elevated at 50 dB even 28 days after the administration of 3-NP. Treatment with Z-VAD-FMK also improved recovery of hearing at 8 kHz but did not change recovery at 40 kHz. Histological examination demonstrated that treatment with Z-VAD-FMK inhibited progressive degeneration of the lateral-wall fibrocytes in the cochlear basal turn, as well as apoptosis of these fibrocytes. These results clearly indicate that caspase-dependent apoptosis of fibrocytes in the cochlear lateral wall plays an important role in hearing loss in the present animal model. Moreover, the results of the present study suggest that systemic administration of a caspase inhibitor may be an effective therapy for sensorineural hearing loss caused by acute energy failure such as that observed in cochlear ischemia.
Collapse
Affiliation(s)
- Kunio Mizutari
- Laboratory of Auditory Disorders, National Institute of Sensory Organs, National Tokyo Medical Center, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
38
|
Cellular localization of facilitated glucose transporter 1 (GLUT-1) in the cochlear stria vascularis: its possible contribution to the transcellular glucose pathway. Cell Tissue Res 2008; 331:763-9. [PMID: 18196278 DOI: 10.1007/s00441-007-0495-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2007] [Accepted: 08/02/2007] [Indexed: 10/22/2022]
Abstract
Immunoreactivity for the facilitated glucose transporter 1 (GLUT-1) has been found in the cochlear stria vascularis, but whether the strial marginal cells are immunopositive for GLUT-1 remains uncertain. To determine the cellular localization of GLUT-1 and to clarify the glucose pathway in the stria vascularis of rats and guinea pigs, immunohistochemistry was performed on sections, dissociated cells, and whole-tissue preparations. Immunoreactivity for GLUT-1 in sections was observed in the basal side of the strial tissue and in capillaries in both rats and guinea pigs. However, the distribution of the positive signals within the guinea pig strial tissue was more diffuse than that in rats. Immunostaining of dissociated guinea pig strial cells revealed GLUT-1 in the basal cells and capillary endothelial cells, but not in the marginal cells. These results indicated that GLUT-1 was not expressed in the marginal cells, and that another isoform of GLUT was probably expressed in these cells. Three-dimensional observation of whole-tissue preparations demonstrated that cytoplasmic prolongations from basal cells extended upward to the apical surface of the stria vascularis from rats and guinea pigs, and that the marginal cells were surrounded by these protrusions. We speculate that these upward extensions of basal cells have been interpreted as basal infoldings of marginal cells in previous reports from other groups. The three-dimensional relationship between marginal cells and basal cells might contribute to the transcellular glucose pathway from perilymph to intrastrial space.
Collapse
|
39
|
The varitint-waddler (Va) deafness mutation in TRPML3 generates constitutive, inward rectifying currents and causes cell degeneration. Proc Natl Acad Sci U S A 2007; 105:353-8. [PMID: 18162548 DOI: 10.1073/pnas.0707963105] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Varitint-waddler (Va and Va(J)) mice are deaf and have vestibular impairment, with inner ear defects that include the degeneration and loss of sensory hair cells. The semidominant Va mutation results in an alanine-to-proline substitution at residue 419 (A419P) of the presumed ion channel TRPML3. Another allele, Va(J), has the A419P mutation in addition to an I362T mutation. We found that hair cells, marginal cells of stria vascularis, and other cells lining the cochlear and vestibular endolymphatic compartments express TRPML3. When heterologously expressed in LLC-PK1-CL4 epithelial cells, a culture model for hair cells, TRPML3 accumulated in lysosomes and in espin-enlarged microvilli that resemble stereocilia. We also demonstrated that wild-type TRPML3 forms channels that are blocked by Gd(3+), have a conductance of 50-70 pS and, like many other TRP channels, open at very positive potentials and thus rectify outwardly. In addition to this outward current, TRPML3(419P) and (I362T+A419P) generated a constitutive inwardly rectifying current that suggests a sensitivity to hyperpolarizing negative potentials and that depolarized the cells. Cells expressing TRPML3(A419P) or (I362T+A419P), but not wild-type TRPML3, died and were extruded from the epithelium in a manner reminiscent of degenerating hair cells in Va mice. The increased open probability of TRPML3(A419P) and (I362T+A419P) at physiological potentials likely underlies hair cell degeneration and deafness in Va and Va(J) mice.
Collapse
|
40
|
Sekiya T, Kojima K, Matsumoto M, Holley MC, Ito J. Rebuilding lost hearing using cell transplantation. Neurosurgery 2007; 60:417-33; discussion 433. [PMID: 17327786 DOI: 10.1227/01.neu.0000249189.46033.42] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE The peripheral auditory nervous system (cochlea and auditory nerve) has a complex anatomy, and it has traditionally been thought that once the sensorineural structures are damaged, restoration of hearing is impossible. In the past decade, however, the potential to restore lost hearing has been intensively investigated using molecular and cell biological techniques, and we can now part with such a pessimistic view. In this review, we examine an important field in hearing restoration research: cell transplantation. METHODS Most efforts in this field have been directed to the replacement of hair cells by transplantation to the cochlea. Here, we focus on transplantation to the auditory nerve, from the side of the cerebellopontine angle rather than the cochlea. RESULTS Delivery of cells to the cochlea is potentially damaging, and nerve cells transplanted distally to the Schwann-glial transitional zone (cochlear side) may become inhibited when they reach the transitional zone. The auditory nerve is probably the most suitable route for cell transplantation. CONCLUSION The auditory nerve occupies an important position not only in neurosurgery but also in various diseases in other disciplines, and several lines of recent evidence indicate that it is a key target for hearing restoration. It is familiar to most neurosurgeons, and the recent advances in the molecular and cell biology of inner-ear development are of direct importance to neurorestorative medicine. In this article, we review the anatomy, development, and molecular biology of the auditory nerve and cochlea, with emphasis on the advances in cell transplantation.
Collapse
Affiliation(s)
- Tetsuji Sekiya
- Department of Otolaryngology, Kyoto University Graduate School of Medicine, Kyoto, Japan.
| | | | | | | | | |
Collapse
|
41
|
Lopez IA, Ishiyama G, Lee M, Baloh RW, Ishiyama A. Immunohistochemical localization of aquaporins in the human inner ear. Cell Tissue Res 2007; 328:453-60. [PMID: 17318586 DOI: 10.1007/s00441-007-0380-z] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2006] [Accepted: 01/10/2007] [Indexed: 10/23/2022]
Abstract
We report the immunolocalization of aquaporins (AQPs) 1, 4, and 6 in the human auditory and vestibular endorgans. A rapid protocol was applied to audiovestibular endorgans microdissected from postmortem human temporal bones from six subjects (ages ranging from 75 to 97 years) with no history of audiovestibular disease. Temporal bones were fixed in formalin, and the endorgans were immediately microdissected. Cryostat sections were obtained from audiovestibular endorgans and were subjected to double-immunohistochemical staining with antibodies against AQPs and several cellular markers. In the human cochlea, AQP1 immunoreactivity was localized to the fibrocytes of the spiral ligament and the sub-basilar tympanic cells; AQP4 immunoreactivity was localized to the outer sulcus cells, Hensen's cells, and Claudius' cells; AQP6 immunoreactivity was localized to the apical portion of interdental cells in the spiral limbus. In the vestibular endorgans (macula utriculi and cristae), AQP1 was localized to fibrocytes and blood vessels of the underlying stroma and trabecular perilymphatic tissue; AQP4 immunoreactivity was localized to the basal pole of vestibular supporting cells; AQP6 was localized to the apical portion of vestibular supporting cells. Cochlear and vestibular hair cells and nerve fibers were not immunoreactive for any AQP. Supporting cells were identified with antibodies against glial fibrilar acidic protein. Nerve fibers and terminals were identified with antibodies against neurofilaments and Na(+)K(+)ATPase. The high degree of conservation of AQP expression in the human inner ear suggests that AQPs play a critical role in inner ear water homeostasis.
Collapse
Affiliation(s)
- Ivan A Lopez
- Division of Head and Neck Surgery CHS 62-132, UCLA School of Medicine, Los Angeles, CA 90095, USA
| | | | | | | | | |
Collapse
|
42
|
Parazzini M, Tognola G, Franzoni C, Grandori F, Ravazzani P. Modeling of the Internal Fields Distribution in Human Inner Hearing System Exposed to 900 and 1800 MHz. IEEE Trans Biomed Eng 2007; 54:39-48. [PMID: 17260854 DOI: 10.1109/tbme.2006.886613] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
This paper investigates the internal electric and magnetic field distribution and the specific absorption rate (SAR) values in a magnetic resonance imaging-based model of the inner hearing system exposed to 900 and 1800 MHz. The internal fields distributions were calculated using the Finite Integration Technique. The estimation of the field values was evaluated along lines passing through that target organ, specifically from the vestibular to the cochlear region and from the apex to the base of the cochlea. The specific findings are: 1) higher internal fields strength and SAR value in the vestibular region rather than in the auditory region, especially for the inner ear closer to the external source; 2) higher internal fields strength in the basal and apical region of the cochlea than in the middle one; 3) local differences in the internal fields distribution and SAR value, comparing the head models including or not the inner auditory system model; 4) results' variability evaluated by changing the head-source mutual position and the dielectric properties of the inner hearing system.
Collapse
Affiliation(s)
- Marta Parazzini
- Istituto di Ingegneria Biomedica, ISIB-CNR, Consiglio Nazionale delle Ricerche, Piazza Leonardo da Vinci 32, 20133 Milan, Italy.
| | | | | | | | | |
Collapse
|
43
|
Liang G, Moore EJ, Ulfendahl M, Rydqvist B, Järlebark L. An M-like potassium current in the guinea pig cochlea. ORL J Otorhinolaryngol Relat Spec 2005; 67:75-82. [PMID: 15855814 DOI: 10.1159/000085439] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2004] [Accepted: 09/30/2004] [Indexed: 11/19/2022]
Abstract
Potassium M currents play a role in stabilizing the resting membrane potential. These currents have previously been identified in several cell types, including sensory receptors. Given that maintaining membrane excitability is important for mechano-electrical transduction in the inner ear, the presence of M currents was investigated in outer hair cells isolated from the guinea pig hearing organ. Using a pulse protocol designed to emphasize M currents with the whole-cell patch-clamp technique, voltage- and time-dependent, non-inactivating, low-threshold currents (the hallmarks of M currents) were recorded. These currents were significantly reduced by cadmium chloride. Results from RT-PCR analysis indicated that genes encoding M channel subunits KCNQ2 and KCNQ3 are expressed in the guinea pig cochlea. Our data suggest that guinea pig outer hair cells express an M-like potassium current that, following sound stimulation, may play an important role in returning the membrane potential to resting level and thus regulating outer hair cell synaptic mechanisms.
Collapse
Affiliation(s)
- Guihua Liang
- Center for Hearing and Communication Research and Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | |
Collapse
|
44
|
Okamoto Y, Hoya N, Kamiya K, Fujii M, Ogawa K, Matsunaga T. Permanent threshold shift caused by acute cochlear mitochondrial dysfunction is primarily mediated by degeneration of the lateral wall of the cochlea. Audiol Neurootol 2005; 10:220-33. [PMID: 15809501 DOI: 10.1159/000084843] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2004] [Accepted: 12/03/2004] [Indexed: 01/23/2023] Open
Abstract
Mitochondrial dysfunction in the cochlea is thought to be an important cause of sensorineural hearing loss. Recently, we have established a novel rat model with acute hearing impairment caused by exposure to the mitochondrial toxin 3-nitropropionic acid (3-NP) to analyze the mechanism of cochlear mitochondrial dysfunction. Both permanent and temporary threshold shifts were observed in this model depending on the amount of 3-NP used to induce hearing impairment. In this study, we demonstrate cochlear morphological changes in the permanent threshold shift model. Marked degeneration was detected in type 2 fibrocytes in the spiral prominence, type 4 fibrocytes in the spiral ligament, marginal cells and intermediate cells in the stria vascularis 3 h after 3-NP administration; these changes were progressive for at least 14 days. Less prominent degeneration was detected in type 1 and type 3 fibrocytes in the spiral ligament. These results indicate that permanent threshold shift caused by acute cochlear mitochondrial dysfunction is primarily mediated by cellular degeneration in the lateral wall of the cochlea, and suggest that therapy of cochlear hearing loss due to acute energy failure may be achieved through protection and regeneration of the cochlear lateral wall.
Collapse
Affiliation(s)
- Yasuhide Okamoto
- Laboratory of Auditory Disorders, National Institute of Sensory Organs, National Tokyo Medical Center, Tokyo 152-8902, Japan
| | | | | | | | | | | |
Collapse
|
45
|
Kakigi A, Okada T, Takeda T, Taguchi D, Zinchuk V. Endocytosis of Cationized Ferritin in the Marginal Cells of Stria Vascularis. Acta Histochem Cytochem 2005. [DOI: 10.1267/ahc.38.373] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
| | - Teruhiko Okada
- Department of Anatomy and Cell Biology, Kochi Medical School
| | - Taizo Takeda
- Department of Otolaryngology, Kochi Medical School
| | | | - Vadim Zinchuk
- Department of Anatomy and Cell Biology, Kochi Medical School
| |
Collapse
|
46
|
Johnson SL, Marcotti W, Kros CJ. Increase in efficiency and reduction in Ca2+ dependence of exocytosis during development of mouse inner hair cells. J Physiol 2004; 563:177-91. [PMID: 15613377 PMCID: PMC1665557 DOI: 10.1113/jphysiol.2004.074740] [Citation(s) in RCA: 151] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Developmental changes in the coupling between Ca2+ entry and exocytosis were studied in mouse inner hair cells (IHCs) which, together with the afferent endings, form the primary synapse of the mammalian auditory system. Ca2+ currents (ICa) and changes in membrane capacitance (DeltaCm) were recorded using whole-cell voltage clamp from cells maintained at body temperature, using physiological (1.3 mM) extracellular Ca2+. The magnitudes of both ICa and DeltaCm increased with maturation from embryonic stages until postnatal day 6 (P6). Subsequently, ICa gradually declined to a steady level of about -100 pA from P13 while the Ca2+-induced DeltaCm remained relatively constant, indicating a developmental increase in the Ca2+ efficiency of exocytosis. Although the size of ICa changed during development, its activation properties did not, suggesting the presence of a homogeneous population of Ca2+ channels in IHCs throughout development. The Ca2+ dependence of exocytosis changed with maturation from a fourth power relation in immature cells to an approximately linear relation in mature cells. This change applies to the release of both a readily releasable pool (RRP) and a slower secondary pool of vesicles, implying a common release mechanism for these two kinetically distinct pools that becomes modified during development. The increased Ca2+ efficiency and linear Ca2+ dependence of mature IHC exocytosis, especially over the physiological range of intracellular Ca2+, could improve the high-fidelity transmission of both brief and long-lasting stimulation. These properties make the mature cell ideally suited for fine intensity discrimination over a wide dynamic range.
Collapse
Affiliation(s)
- Stuart L Johnson
- School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK
| | | | | |
Collapse
|
47
|
Kitajiri SI, Miyamoto T, Mineharu A, Sonoda N, Furuse K, Hata M, Sasaki H, Mori Y, Kubota T, Ito J, Furuse M, Tsukita S. Compartmentalization established by claudin-11-based tight junctions in stria vascularis is required for hearing through generation of endocochlear potential. J Cell Sci 2004; 117:5087-96. [PMID: 15456848 DOI: 10.1242/jcs.01393] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Claudins are cell adhesion molecules working at tight junctions (TJs) that are directly involved in compartmentalization in multicellular organisms. The cochlea includes a rather peculiar compartment filled with endolymph. This compartment is characterized by high K+ concentration (approximately 150 mM) and a positive endocochlear potential (approximately 90 mV; EP), both indispensable conditions for cochlear hair cells to transduce acoustic stimuli to electrical signals. These conditions are thought to be generated by the stria vascularis, which is adjacent to the endolymph compartment. The stria vascularis itself constitutes an isolated compartment delineated by two epithelial barriers, marginal and basal cell layers. Because TJs of basal cells are primarily composed of claudin-11, claudin-11-deficient (Cld11-/-) mice were generated with an expectation that the compartmentalization in stria vascularis in these mice would be affected. Auditory brainstem response measurements revealed that Cld11-/- mice suffered from deafness; although no obvious gross morphological malformations were detected in Cld11-/- cochlea, freeze-fracture replica electron microscopy showed that TJs disappeared from basal cells of the stria vascularis. In good agreement with this, tracer experiments showed that the basal cell barrier was destroyed without affecting the marginal cell barrier. Importantly, in the endolymph compartment of Cld11-/- cochlea, the K+ concentration was maintained around the normal level (approximately 150 mM), whereas the EP was suppressed down to approximately 30 mV. These findings indicated that the establishment of the stria vascularis compartment, especially the basal cell barrier, is indispensable for hearing ability through the generation/maintenance of EP but not of a high K+ concentration in the endolymph.
Collapse
Affiliation(s)
- Shin-ichiro Kitajiri
- Department of Cell Biology, Faculty of Medicine, Kyoto University, Sakyo-ku, 606-8501, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Higashiyama K, Takeuchi S, Azuma H, Sawada S, Yamakawa K, Kakigi A, Takeda T. Bumetanide-induced enlargement of the intercellular space in the stria vascularis critically depends on Na+ transport. Hear Res 2004; 186:1-9. [PMID: 14644454 DOI: 10.1016/s0378-5955(03)00226-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The intercellular space in the stria vascularis (intrastrial space) is a closed space and isolated from both the endolymph and the perilymph in normal tissue. Loop diuretics such as bumetanide and furosemide cause an acute enlargement of the intrastrial space in association with a decline in the endocochlear potential. It is known that bumetanide inhibits the Na+-K+-2Cl- cotransporter, which is expressed abundantly in the basolateral membrane of marginal cells. We studied ionic mechanisms underlying the bumetanide-induced enlargement of the intrastrial space using perilymphatic perfusion in guinea pigs. Perilymphatic perfusion with artificial perilymph containing 100 microM bumetanide caused marked enlargement of the intrastrial space, as reported previously. Removal of K+ from the perilymph did not affect the bumetanide-induced enlargement, whereas removal of Na+ from the perilymph inhibited it almost completely. Perilymph containing 1 mM amiloride also inhibited the enlargement of the intrastrial space almost completely. These results indicate that perilymphatic Na+, but not K+, and amiloride-sensitive pathways are essential to the bumetanide-induced enlargement of the intrastrial space. Two possible pathways could yield these results. Na+ in the perilymph could enter the endolymph via Reissner's membrane or the basilar membrane; Na+ in the endolymph would then be taken up by marginal cells via the apical membrane and secreted into the intrastrial space by Na+-K+-ATPase in the basolateral membrane of them. Another, less likely possibility is that Na+ in the perilymph is transported into basal cells or fibrocytes in the spiral ligament, then into intermediate cells via gap junctions, and finally secreted into the intrastrial space via Na+-K+-ATPase of intermediate cells.
Collapse
Affiliation(s)
- Kasumi Higashiyama
- Department of Otolaryngology, Kochi Medical School, Nankoku 783-8505, Japan
| | | | | | | | | | | | | |
Collapse
|
49
|
Sluyter S, Klis SFL, de Groot JCMJ, Smoorenburg GF. Alterations in the stria vascularis in relation to cisplatin ototoxicity and recovery. Hear Res 2004; 185:49-56. [PMID: 14599692 DOI: 10.1016/s0378-5955(03)00260-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We have investigated whether or not cisplatin-induced depression of the endocochlear potential (EP), and its subsequent recovery, possesses a morphological correlate in the stria vascularis. Guinea pigs implanted with round window electrodes were treated daily with cisplatin (1.5 mg/kg/day) until the compound action potential showed a profound hearing loss (> or =40 dB at 8 kHz after 5-18 days). Animals were either sacrificed immediately after the shift in hearing threshold ('SHORT' group) or allowed to recover for > or =4 weeks and subsequently sacrificed ('LONG' group). Control animals ('CONTROL' group) were not treated with cisplatin. Using stereological methods we measured the total strial cross-sectional area together with the areas occupied by the different strial components: the marginal, intermediate and basal cells. The total strial cross-sectional area in the basal turn of the LONG group was found to be significantly smaller than that of the SHORT and the CONTROL groups, whereas the EP was normal in the LONG group (in comparison to the CONTROL group) and markedly decreased in the SHORT group. The smaller area in the LONG group was mainly due to a decrease in the area occupied by the intermediate cells and to a lesser extent to a decrease in the marginal cell area. The area occupied by the basal cells did not change. Thus, the marked decrease in EP after 5-18 days of cisplatin administration was not related to shrinkage of the stria vascularis. Moreover, 4 weeks later the EP showed full recovery, whereas the stria vascularis had shrunk markedly.
Collapse
Affiliation(s)
- Steven Sluyter
- Hearing Research Laboratories, Department of Otorhinolaryngology, University Medical Center Utrecht, Room G.02.531, P.O. Box 85.500, 3508 GA Utrecht, The Netherlands
| | | | | | | |
Collapse
|
50
|
Zhong SX, Liu ZH. Immunohistochemical localization of the epithelial sodium channel in the rat inner ear. Hear Res 2004; 193:1-8. [PMID: 15219314 DOI: 10.1016/j.heares.2004.03.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2003] [Accepted: 03/01/2004] [Indexed: 11/18/2022]
Abstract
Endolymph in membranous labyrinth is a K+-rich and Na+-poor fluid, and perilymph is conversely Na+-rich and K+-poor. Electrolyte transport between endolymph and perilymph is important for regulation of volume and osmotic pressure of the labyrinth. The epithelial sodium channel (ENaC) is a good candidate protein for Na+ transport in the tight epithelia, which has been well demonstrated in other tissues such as kidney, colon and lung. The purpose of the present study was to investigate the cellular localization of ENaC subunits in the rat inner ear immunohistochemically with the specific polyclonal rabbit antibodies against the rat alpha-, beta- and gamma-ENaC. All three subunits of ENaC were extensively labeled in the cochlea including the stria vascularis, spiral ligament, organ of Corti, spiral limbus, Reissner's membrane and spiral ganglion, and in the vestibule including the sensory epithelia and stroma cells of the macula utriculi, macula sacculi and ampullary crest. In conclusion, our results suggest that functional ENaC in the labyrinth may work in concert with other Na+ and K+ transport molecules to regulate endolymph and to maintain homeostasis in the inner ear.
Collapse
Affiliation(s)
- Shi-Xun Zhong
- Department of Otolaryngology and Head-Neck Surgery, Daping Hospital, Third Military Medical University, 10 Daping Branch Road, Chongqing 400042, PR China.
| | | |
Collapse
|