1
|
Javaid A, KA A, PM S, Arora K, Mudavath SL. Innovative Approaches and Future Directions in the Management and Understanding of Varicose Veins: A Systematic Review. ACS Pharmacol Transl Sci 2024; 7:2971-2986. [PMID: 39421653 PMCID: PMC11480891 DOI: 10.1021/acsptsci.4c00430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 10/19/2024]
Abstract
Varicose veins, a prevalent condition that primarily affects the lower limbs, present significant hurdles in diagnosis and treatment due to their diverse causes. This study dives into the complex hormonal, environmental, and molecular elements that influence varicose vein genesis, emphasizing the need for precise diagnostic methods and changing therapy approaches to improve patient outcomes. It investigates the epidemiology and demographic distribution of varicose veins, delves into their pathophysiology, and assesses diagnostic methods such as duplex ultrasonography and the CEAP classification system. In addition, the study discusses novel therapies such as sclerotherapy and endovenous thermal ablation, as well as the effectiveness of existing diagnostic methods in detecting chronic venous illnesses. By investigating venous wall remodeling and inflammatory pathways, it gives a thorough knowledge of varicose vein formation. The study calls for future research that focuses on patient-centered methods, bioengineering advances, digital health applications, and genetic and molecular studies to improve the accuracy and effectiveness of vascular therapy. As a result, a multidisciplinary literature analysis was done, drawing on insights from vascular medicine, epidemiology, genetics, and pharmacology, to consolidate existing knowledge and identify possibilities to enhance varicose vein diagnosis, treatment, and patient care outcomes.
Collapse
Affiliation(s)
- Aaqib Javaid
- Infectious
Disease Biology Laboratory, Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sector-81, Mohali, Punjab 140306, India
| | - Abutwaibe KA
- Infectious
Disease Biology Laboratory, Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sector-81, Mohali, Punjab 140306, India
| | - Sherilraj PM
- Infectious
Disease Biology Laboratory, Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sector-81, Mohali, Punjab 140306, India
| | - Kanika Arora
- Infectious
Disease Biology Laboratory, Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sector-81, Mohali, Punjab 140306, India
| | - Shyam Lal Mudavath
- Department
of Animal Biology, School of Life Sciences, University of Hyderabad, Prof. C.R. Rao Road, Gachibowli Hyderabad, Telangana 500046, India
| |
Collapse
|
2
|
Kumar V, Narisawa M, Cheng XW. Overview of multifunctional Tregs in cardiovascular disease: From insights into cellular functions to clinical implications. FASEB J 2024; 38:e23786. [PMID: 38979903 DOI: 10.1096/fj.202400839r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/01/2024] [Accepted: 06/21/2024] [Indexed: 07/10/2024]
Abstract
Regulatory T cells (Tregs) are crucial in regulating T-cell-mediated immune responses. Numerous studies have shown that dysfunction or decreased numbers of Tregs may be involved in inflammatory cardiovascular diseases (CVDs) such as atherosclerosis, hypertension, myocardial infarction, myocarditis, cardiomyopathy, valvular heart diseases, heart failure, and abdominal aortic aneurysm. Tregs can help to ameliorate CVDs by suppressing excessive inflammation through various mechanisms, including inhibition of T cells and B cells, inhibition of macrophage-induced inflammation, inhibition of dendritic cells and foam cell formation, and induction of anti-inflammatory macrophages. Enhancing or restoring the immunosuppressive activity of Tregs may thus serve as a fundamental immunotherapy to treat hypertension and CVDs. However, the precise molecular mechanisms underlying the Tregs-induced protection against hypertension and CVDs remain to be investigated. This review focuses on recent advances in our understanding of Tregs subsets and function in CVDs. In addition, we discuss promising strategies for using Tregs through various pharmacological approaches to treat hypertension and CVDs.
Collapse
Affiliation(s)
- Vipin Kumar
- Department of Cardiology and Hypertension, Jilin Provincial Key Laboratory of Stress and Cardiovascular Disease, Yanbian University Hospital, Yanji, Jilin, P.R. China
| | - Megumi Narisawa
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Xian Wu Cheng
- Department of Cardiology and Hypertension, Jilin Provincial Key Laboratory of Stress and Cardiovascular Disease, Yanbian University Hospital, Yanji, Jilin, P.R. China
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
3
|
Blask C, Schulze J, Rümpel S, Süße M, Grothe M, Gross S, Dressel A, Müller R, Ruhnau J, Vogelgesang A. Modulation of cytokine release from peripheral blood mononuclear cells from multiple sclerosis patients by coenzyme A and soraphen A. J Neuroimmunol 2023; 381:578135. [PMID: 37364515 DOI: 10.1016/j.jneuroim.2023.578135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/31/2023] [Accepted: 06/18/2023] [Indexed: 06/28/2023]
Abstract
By applying the acetyl-CoA-carboxylase inhibitors soraphen A (SorA) and coenzyme A (CoA) ex vivo, we aimed to reduce proinflammatory cytokine release by PBMCs and increase anti-inflammatory cytokine levels, thereby demonstrating a possible application of those pathways in future multiple sclerosis (MS) therapy. In a prospective exploratory monocentric study, we analysed cytokine production by PBMCs treated with SorA (10 or 50 nM) and CoA (600 μM). Thirty-one MS patients were compared to 18 healthy age-matched controls. We demonstrated the immunomodulatory potential of SorA and CoA in targeting the immune function of MS patients, with an overall reduction of cytokines except of IL-2, IL-6 and IL-10.
Collapse
Affiliation(s)
- Carolin Blask
- Dept. of Neurology, University Medicine Greifswald, Germany
| | | | - Sarah Rümpel
- Dept. of Neurology, University Medicine Greifswald, Germany
| | - Marie Süße
- Dept. of Neurology, University Medicine Greifswald, Germany
| | | | - Stefan Gross
- Dept. of Internal Medicine B, University Medicine Greifswald, Greifswald, Germany
| | | | - Rolf Müller
- Department of Microbial Natural Products, Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI) and Department of Pharmacy, Saarland University, Campus E8 1, 66123 Saarbrücken, Germany
| | - Johanna Ruhnau
- Dept. of Neurology, University Medicine Greifswald, Germany.
| | | |
Collapse
|
4
|
Niu P, Li L, Zhang Y, Su Z, Wang B, Liu H, Zhang S, Qiu S, Li Y. Immune regulation based on sex differences in ischemic stroke pathology. Front Immunol 2023; 14:1087815. [PMID: 36793730 PMCID: PMC9923235 DOI: 10.3389/fimmu.2023.1087815] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/02/2023] [Indexed: 01/31/2023] Open
Abstract
Ischemic stroke is one of the world's leading causes of death and disability. It has been established that gender differences in stroke outcomes prevail, and the immune response after stroke is an important factor affecting patient outcomes. However, gender disparities lead to different immune metabolic tendencies closely related to immune regulation after stroke. The present review provides a comprehensive overview of the role and mechanism of immune regulation based on sex differences in ischemic stroke pathology.
Collapse
Affiliation(s)
- Pingping Niu
- Department of Neurosurgery, The Affiliated Huzhou Hospital, Zhejiang University School of Medicine (Huzhou Central Hospital), Huzhou, China.,Huzhou Key Laboratory of Basic Research and Clinical Translation for Neuro Modulation, Huzhou, China
| | - Liqin Li
- Department of Neurosurgery, The Affiliated Huzhou Hospital, Zhejiang University School of Medicine (Huzhou Central Hospital), Huzhou, China.,Huzhou Key Laboratory of Basic Research and Clinical Translation for Neuro Modulation, Huzhou, China
| | - Yonggang Zhang
- Department of Neurosurgery, The Affiliated Huzhou Hospital, Zhejiang University School of Medicine (Huzhou Central Hospital), Huzhou, China.,Huzhou Key Laboratory of Basic Research and Clinical Translation for Neuro Modulation, Huzhou, China
| | - Zhongzhou Su
- Department of Neurosurgery, The Affiliated Huzhou Hospital, Zhejiang University School of Medicine (Huzhou Central Hospital), Huzhou, China.,Huzhou Key Laboratory of Basic Research and Clinical Translation for Neuro Modulation, Huzhou, China
| | - Binghao Wang
- Department of Neurosurgery, The Affiliated Huzhou Hospital, Zhejiang University School of Medicine (Huzhou Central Hospital), Huzhou, China.,Huzhou Key Laboratory of Basic Research and Clinical Translation for Neuro Modulation, Huzhou, China
| | - He Liu
- Huzhou Key Laboratory of Basic Research and Clinical Translation for Neuro Modulation, Huzhou, China
| | - Shehong Zhang
- Huzhou Key Laboratory of Basic Research and Clinical Translation for Neuro Modulation, Huzhou, China
| | - Sheng Qiu
- Department of Neurosurgery, The Affiliated Huzhou Hospital, Zhejiang University School of Medicine (Huzhou Central Hospital), Huzhou, China.,Huzhou Key Laboratory of Basic Research and Clinical Translation for Neuro Modulation, Huzhou, China
| | - Yuntao Li
- Department of Neurosurgery, The Affiliated Huzhou Hospital, Zhejiang University School of Medicine (Huzhou Central Hospital), Huzhou, China.,Huzhou Key Laboratory of Basic Research and Clinical Translation for Neuro Modulation, Huzhou, China
| |
Collapse
|
5
|
Patwardhan RS, Kundu K, Purohit V, Kumar BK, Singh B, Thoh M, Undavia K, Bhilwade HN, Nayak SK, Sharma D, Sandur SK. Malabaricone C, a constituent of spice Myristica malabarica, exhibits anti-inflammatory effects via modulation of cellular redox. J Biosci 2023. [PMID: 36971326 PMCID: PMC10040911 DOI: 10.1007/s12038-023-00329-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
The present study primarily focuses on the efficacy of Malabaricone C (Mal C) as an anti-inflammatory agent. Mal C inhibited mitogen-induced T-cell proliferation and cytokine secretion. Mal C significantly reduced cellular thiols in lymphocytes. N-acetyl cysteine (NAC) restored cellular thiol levels and abrogated Mal C-mediated inhibition of T-cell proliferation and cytokine secretion. Physical interaction between Mal C and NAC was evinced from HPLC and spectral analysis. Mal C treatment significantly inhibited concanavalin A-induced phosphorylation of ERK/JNK and DNA binding of NF-κB. Administration of Mal C to mice suppressed T-cell proliferation and effector functions ex vivo. Mal C treatment did not alter the homeostatic proliferation of T-cells in vivo but completely abrogated acute graft-versus-host disease (GvHD)-associated morbidity and mortality. Our studies indicate probable use of Mal C for prophylaxis and treatment of immunological disorders caused due to hyper-activation of T-cells.
Collapse
Affiliation(s)
- Raghavendra S Patwardhan
- Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085 India
| | - Kshama Kundu
- Bio-Organic Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085 India
| | - Vaitashi Purohit
- Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085 India
| | - Binita Kislay Kumar
- Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085 India
| | - Beena Singh
- Radiation and Photochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085 India
| | - Maikho Thoh
- Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085 India
| | - Khushboo Undavia
- Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085 India
| | - Hari N Bhilwade
- Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085 India
| | - Sandip K Nayak
- Bio-Organic Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085 India
| | - Deepak Sharma
- Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085 India
- Homi Bhabha National Institute, Mumbai, 400094 India
| | - Santosh K Sandur
- Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085 India
- Homi Bhabha National Institute, Mumbai, 400094 India
| |
Collapse
|
6
|
Nakamoto A, Goto M, Hasegawa H, Anzaki C, Nakamoto M, Shuto E, Sakai T. Essential Oil of Citrus sudachi Suppresses T Cell Activation Both In Vitro and In Vivo. J Nutr Sci Vitaminol (Tokyo) 2022; 68:513-520. [PMID: 36596549 DOI: 10.3177/jnsv.68.513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The essential oil of Citrus sudachi (sudachi oil) is extracted from the peel of sudachi, a citrus plant. We investigated the effect of sudachi oil on immune function in both in vitro antigen (Ag) induced lymphocyte activation and in vivo Ag-specific immune response. In the in vitro study, the proliferative activity of splenocytes upon Ag-specific and non-specific stimulation was suppressed by treatment with sudachi oil in a dose-dependent manner. In addition, the expression level of Ag-presentation-related molecules and their Ag-presenting function on dendritic cells were suppressed by sudachi oil. To examine how sudachi oil regulates an Ag-specific immune response in vivo, mice were immunized with ovalbumin and the immune response of the mice was investigated. Ag-specific proliferation response of splenocytes from mice treated with sudachi essential oil was significantly suppressed. The results indicate that sudachi oil suppresses T cell and dendritic cell functions in vitro and Ag-specific T cell induction in vivo.
Collapse
Affiliation(s)
- Akiko Nakamoto
- Department of Public Health and Applied Nutrition, Institute of Biomedical Sciences, Tokushima University Graduate School
| | - Miho Goto
- Department of Public Health and Applied Nutrition, Institute of Biomedical Sciences, Tokushima University Graduate School
| | - Hina Hasegawa
- Department of Public Health and Applied Nutrition, Institute of Biomedical Sciences, Tokushima University Graduate School
| | - Chieri Anzaki
- Department of Public Health and Applied Nutrition, Institute of Biomedical Sciences, Tokushima University Graduate School
| | - Mariko Nakamoto
- Department of Public Health and Applied Nutrition, Institute of Biomedical Sciences, Tokushima University Graduate School
| | - Emi Shuto
- Department of Nutritional Science, Okayama Prefectural University
| | - Tohru Sakai
- Department of Public Health and Applied Nutrition, Institute of Biomedical Sciences, Tokushima University Graduate School
| |
Collapse
|
7
|
CD4+ T Cell Regulatory Network Underlies the Decrease in Th1 and the Increase in Anergic and Th17 Subsets in Severe COVID-19. Pathogens 2022; 12:pathogens12010018. [PMID: 36678366 PMCID: PMC9865341 DOI: 10.3390/pathogens12010018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/10/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
In this model we use a dynamic and multistable Boolean regulatory network to provide a mechanistic explanation of the lymphopenia and dysregulation of CD4+ T cell subsets in COVID-19 and provide therapeutic targets. Using a previous model, the cytokine micro-environments found in mild, moderate, and severe COVID-19 with and without TGF-β and IL-10 was we simulated. It shows that as the severity of the disease increases, the number of antiviral Th1 cells decreases, while the the number of Th1-like regulatory and exhausted cells and the proportion between Th1 and Th1R cells increases. The addition of the regulatory cytokines TFG-β and IL-10 makes the Th1 attractor unstable and favors the Th17 and regulatory subsets. This is associated with the contradictory signals in the micro-environment that activate SOCS proteins that block the signaling pathways. Furthermore, it determined four possible therapeutic targets that increase the Th1 compartment in severe COVID-19: the activation of the IFN-γ pathway, or the inhibition of TGF-β or IL-10 pathways or SOCS1 protein; from these, inhibiting SOCS1 has the lowest number of predicted collateral effects. Finally, a tool is provided that allows simulations of specific cytokine environments and predictions of CD4 T cell subsets and possible interventions, as well as associated secondary effects.
Collapse
|
8
|
Chi H, Meng X, Dalmo RA. GATA-3 in Atlantic salmon ( Salmo salar): Tissue distribution and its regulation of IL-4/13a promoter. Front Cell Infect Microbiol 2022; 12:1063600. [PMID: 36452294 PMCID: PMC9701829 DOI: 10.3389/fcimb.2022.1063600] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 10/26/2022] [Indexed: 10/01/2023] Open
Abstract
GATA3 is a transcription factor that plays an important role in T cell lineage differentiation and T-helper 2 (Th2) type immune responses. In this study, we developed two rat antibodies against Atlantic salmon GATA-3 (anti-rSsGATA-3a and anti-rSsGATA-3b, respectively). The western blotting and immunofluorescence results showed that anti-rSsGATA-3b antibodies recognized endogenous SsGATA-3 proteins, while the anti-rSsGATA-3a antibodies did not bind SsGATA-3. Immunohistochemical analysis revealed that SsGATA-3 positive cells were detected in all tissues tested, with relatively high number of immune reactive cells in the gills and spleen. Furthermore, the immunohistochemical study revealed that SsGATA-3 was expressed in pillar cells, epithelial cells, chondrocytes, perichondrium cells, and some undifferentiated basal cells. In addition, we determined 577 bp of the upstream promoter sequence of SsIL-4/13a and found four motifs that matched SsGATA-3 binding sites. The promoter regions of SsIL-4/13a were assessed by transfecting four deletion reporter constructs and SsGATA-3 overexpression plasmids. The result showed that SsGATA-3 enhanced the activity of SsIL-4/13a promoters within the region ranging from -317 to -302 bp upstream of the transcriptional start site. Antibodies against Th2 markers such as GATA-3 are valuable in addressing the diversity of T cell responses in fish.
Collapse
Affiliation(s)
- Heng Chi
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, China
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, UiT - the Arctic University of Norway, Tromsø, Norway
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xianghu Meng
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, China
| | - Roy Ambli Dalmo
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, UiT - the Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
9
|
RhoA with Associated TRAb or FT3 in the Diagnosis and Prediction of Graves’ Ophthalmopathy. DISEASE MARKERS 2022; 2022:8323946. [PMID: 35937945 PMCID: PMC9355757 DOI: 10.1155/2022/8323946] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 05/18/2022] [Accepted: 07/01/2022] [Indexed: 12/04/2022]
Abstract
During Graves' disease (GD) treatment, Graves' ophthalmopathy (GO) is often ignored because only mild ocular symptoms are present in early GD. Therefore, we performed isobaric tags for relative and absolute quantification (iTRAQ) analysis and measured relevant endocrine hormones to identify predisposing factors of GO. Serum samples from 3 patients with mild GD and GO and 3 patients with GD but without GO were analyzed by iTRAQ. Based on their clinical data, 60 patients with GD were divided into the GO-free and GO groups. All patients were followed up for 7 months. Their eye conditions and changes in related biochemical indexes were recorded. The iTRAQ results showed that RhoA expression was upregulated and correlated significantly with the tight junction pathway and immunity. The changes in FT3 and RhoA from baseline to 7 months, the FT3 and RhoA baseline levels, and the TRAb titer levels in patients with GD significantly differed between the groups. ELISA and western blotting for RhoA, TRAb, and FT3 in the serum samples from GO patients showed significant upregulation, as well as elevated serum RhoA and TRAb levels in the mild stage of GO. At 7 months, the serum RhoA and FT3 levels were elevated. RhoA is a potential biomarker for mild GO. In GD patients, if an elevated serum RhoA level is accompanied by an elevated TRAb or FT3 level, GO is highly likely to occur, even when obvious ocular symptoms are absent.
Collapse
|
10
|
Dosil SG, Lopez-Cobo S, Rodriguez-Galan A, Fernandez-Delgado I, Ramirez-Huesca M, Milan-Rois P, Castellanos M, Somoza A, Gómez MJ, Reyburn HT, Vales-Gomez M, Sánchez Madrid F, Fernandez-Messina L. Natural killer (NK) cell-derived extracellular-vesicle shuttled microRNAs control T cell responses. eLife 2022; 11:76319. [PMID: 35904241 PMCID: PMC9366747 DOI: 10.7554/elife.76319] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 07/17/2022] [Indexed: 11/13/2022] Open
Abstract
Natural killer (NK) cells recognise and kill target cells undergoing different types of stress. NK cells are also capable of modulating immune responses. In particular, they regulate T cell functions. Small RNA next-generation sequencing of resting and activated human NK cells and their secreted EVs led to the identification of a specific repertoire of NK-EV-associated microRNAs and their post-transcriptional modifications signature. Several microRNAs of NK-EVs, namely miR-10b-5p, miR-92a-3p and miR-155-5p, specifically target molecules involved in Th1 responses. NK-EVs promote the downregulation of GATA3 mRNA in CD4+ T cells and subsequent TBX21 de-repression that leads to Th1 polarization and IFN-γ and IL-2 production. NK-EVs also have an effect on monocyte and moDCs function, driving their activation and increased presentation and co-stimulatory functions. Nanoparticle-delivered NK-EV microRNAs partially recapitulate NK-EV effects in mice. Our results provide new insights on the immunomodulatory roles of NK-EVs that may help to improve their use as immunotherapeutic tools.
Collapse
Affiliation(s)
- Sara G Dosil
- Servicio de Inmunología, Universidad Autónoma de Madrid, Madrid, Spain
| | | | | | | | - Marta Ramirez-Huesca
- Vascular Pathophysiology Area, National Center for Cardiovascular Research, Madrid, Spain
| | - Paula Milan-Rois
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia) & Nanobiotecnología (IMDEA-Nanociencia), Unidad Asociada al Centro Nacional de Biotecnología, Madrid, Spain
| | - Milagros Castellanos
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia) & Nanobiotecnología (IMDEA-Nanociencia), Unidad Asociada al Centro Nacional de Biotecnología, Madrid, Spain
| | - Alvaro Somoza
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia) & Nanobiotecnología (IMDEA-Nanociencia), Unidad Asociada al Centro Nacional de Biotecnología, Madrid, Spain
| | - Manuel J Gómez
- Vascular Pathophysiology Area, National Center for Cardiovascular Research, Madrid, Spain
| | - Hugh T Reyburn
- Department of Immunology and Oncology, Spanish National Research Council, Madrid, Spain
| | - Mar Vales-Gomez
- Department of Immunology and Oncology, Spanish National Research Council, Madrid, Spain
| | | | | |
Collapse
|
11
|
Shamsi M, Ghazavi A, Saeedifar AM, Mosayebi G, Pour SK, Ganji A. The immune system's role in PCOS. Mol Biol Rep 2022; 49:10689-10702. [PMID: 35752698 DOI: 10.1007/s11033-022-07695-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/06/2022] [Accepted: 06/08/2022] [Indexed: 12/23/2022]
Abstract
Polycystic ovary syndrome (PCOS) is a common disorder of the endocrine system. Its main manifestations include oligo-ovulation, hyperandrogenism, and polycystic ovary morphology (PCOM), affecting women of childbearing age. Although the exact pathogenesis of this disease is still unknown, many factors, including genetic, endocrine, and metabolism disorders, play critical roles in its development. The immunopathogenesis of PCOS has not yet been studied in-depth, but it is hypothesized that immune system abnormalities may play a key role in it. Recent research has shown inflammation's effect on ovulation and ovarian follicular dynamics. Thus, it is suggested that there is a close association between PCOS and low-grade chronic systemic inflammation. As a result, chronic low-grade inflammation is identified as a significant factor in the pathogenesis and development of PCOS, which in turn leads to infertility. As a result, this article reviews PCOS immunopathology, evaluates long-standing hypotheses about the immune system's role in PCOS, and assesses the association between inflammatory factors and PCOS.
Collapse
Affiliation(s)
- Maryam Shamsi
- Department of Immunology & Microbiology, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Ali Ghazavi
- Department of Immunology & Microbiology, School of Medicine, Arak University of Medical Sciences, Arak, Iran
- Traditional and Complementary Medicine Research Center (TCMRC), Arak University of Medical Sciences, Arak, Iran
| | - Amir Mohammad Saeedifar
- Department of Immunology & Microbiology, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Ghasem Mosayebi
- Department of Immunology & Microbiology, School of Medicine, Arak University of Medical Sciences, Arak, Iran
- Molecular and Medicine Research Center, Arak University of Medical Sciences, Arak, Iran
| | - Sana Khajeh Pour
- Department of Biomedical and Pharmaceutical Sciences, Idaho State University, Pocatello, ID, USA
| | - Ali Ganji
- Department of Immunology & Microbiology, School of Medicine, Arak University of Medical Sciences, Arak, Iran.
| |
Collapse
|
12
|
Chiang PC, Chen JC, Chen LC, Kuo ML. Adeno-associated virus-mediated IL-12 gene expression alleviates lung inflammation and Th2-responses in OVA-sensitized asthmatic mice. Hum Gene Ther 2022; 33:1052-1061. [PMID: 35686463 DOI: 10.1089/hum.2022.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
High levels of allergen exposure increase the prevalence of asthma in development countries. The asthmatic Th2 response is characterized with high eosinophil infiltration, elevated Th2 cytokines and IgE secretion resulting in local or systemic inflammation. However, the treatment with palliative Th2 inhibitor drugs can't completely control asthma and that is why the development of novel approaches is still important. Based on Th1 and Th2 immune homeostasis, the enhanced Th1 immune response has high potential to alleviate Th2 immune response. Thus, we aimed to overexpress single chain IL-12 (scIL-12) via recombinant adeno-associated virus (rAAV) vector (as rAAV-IL-12) and test the efficacy in an ovalbumin (OVA)-induced asthmatic murine model. We firstly demonstrated the bioactivity of exogenous scIL-12. The expression of exogenous scIL-12 was also detected in the lungs of rAAV-IL-12 transduced mice. The data demonstrated that overexpression of exogenous scIL-12 significantly suppressed total cell numbers and eosinophil infiltration, as well as the mucus secretion in rAAV-IL-12-treated mice. The decreased OVA-specific IgE in bronchoalveolar lavage fluid (BALF) and gene expression of Th2-cytokines or CCL11 in lung were observed. In addition, the production of cytokines in the supernatants of OVA-stimulated splenocytes was suppressed with rAAV-IL-12 treatment. Thus, scIL-12 expression by rAAV vector was able to modulate Th2 activity and has the potential to be developed as a feasible strategy in modulating allergic diseases.
Collapse
Affiliation(s)
- Pei-Chuan Chiang
- Chang Gung University Graduate Institute of Biomedical Sciences, 210836, Microbiology and Immunology, Taoyuan, Taoyuan, Taiwan;
| | - Jeng-Chang Chen
- Chang Gung Children's Hospital, 38015, Surgery, Taoyuan, Taiwan;
| | - Li-Chen Chen
- New Taipei City Municipal Tucheng Hospital, 557812, Pediatrics, New Taipei City, Taiwan;
| | - Ming-Ling Kuo
- Chang Gung University Graduate Institute of Biomedical Sciences, 210836, Microbiology and Immunology, Taoyuan, Taoyuan, Taiwan;
| |
Collapse
|
13
|
Park J, Kang GH, Kim Y, Lee JY, Song JA, Hwang JH. Formaldehyde exposure induces differentiation of regulatory T cells via the NFAT-mediated T cell receptor signalling pathway in Yucatan minipigs. Sci Rep 2022; 12:8149. [PMID: 35581361 PMCID: PMC9114421 DOI: 10.1038/s41598-022-12183-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 05/05/2022] [Indexed: 12/31/2022] Open
Abstract
The use of minipigs (Sus scrofa) as a platform for toxicological and pharmacological research is well established. In the present study, we investigated the effect of formaldehyde (FA) exposure on helper T cell-mediated splenic immune responses in Yucatan minipigs. The minipigs were exposed to different inhaled concentrations of FA (0, 2.16, 4.62, or 10.48 mg/m3) for a period of 2 weeks. Immune responses elicited by exposure to FA were determined by assessing physiological parameters, mRNA expression, and cytokine production. Additionally, the distribution of helper T cells and regulatory T (Treg) cells and expression of NFAT families, which are well-known T cell receptor signalling proteins associated with regulatory T cell development, were evaluated. Exposure to FA suppressed the expression of genes associated with Th1 and Th2 cells in minipigs in a concentration-dependent manner. The subsequent production of cytokines also declined post-FA exposure. Furthermore, exposure to FA induced the differentiation of CD4+ Foxp3+ Treg cells with divergent expression levels of NFAT1 and NFAT2. These results indicated that exposure to FA increased the Treg cell population via the NFAT-mediated T cell receptor signalling pathway, leading to suppression of effector T cell activity with a decline in T cell-related cytokine production.
Collapse
Affiliation(s)
- Jeongsik Park
- Animal Model Research Group, Jeonbuk Department of Inhalation Research, Korea Institute of Toxicology, 30 Baehak 1-gil, Jeonguep, Jeollabuk-do, 56212, Republic of Korea
| | - Goo-Hwa Kang
- Animal Model Research Group, Jeonbuk Department of Inhalation Research, Korea Institute of Toxicology, 30 Baehak 1-gil, Jeonguep, Jeollabuk-do, 56212, Republic of Korea
| | - Youngkyu Kim
- Animal Model Research Group, Jeonbuk Department of Inhalation Research, Korea Institute of Toxicology, 30 Baehak 1-gil, Jeonguep, Jeollabuk-do, 56212, Republic of Korea.,Department of Stem Cell and Regenerative Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul-si, 27447, Republic of Korea
| | - Ju Young Lee
- Animal Model Research Group, Jeonbuk Department of Inhalation Research, Korea Institute of Toxicology, 30 Baehak 1-gil, Jeonguep, Jeollabuk-do, 56212, Republic of Korea.,Department of Human and Environmental Toxicology, University of Science & Technology, Daejeon, 34113, Republic of Korea
| | - Jeong Ah Song
- Animal Model Research Group, Jeonbuk Department of Inhalation Research, Korea Institute of Toxicology, 30 Baehak 1-gil, Jeonguep, Jeollabuk-do, 56212, Republic of Korea
| | - Jeong Ho Hwang
- Animal Model Research Group, Jeonbuk Department of Inhalation Research, Korea Institute of Toxicology, 30 Baehak 1-gil, Jeonguep, Jeollabuk-do, 56212, Republic of Korea.
| |
Collapse
|
14
|
Zheng SY, Dong JZ. Role of Toll-Like Receptors and Th Responses in Viral Myocarditis. Front Immunol 2022; 13:843891. [PMID: 35514979 PMCID: PMC9062100 DOI: 10.3389/fimmu.2022.843891] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 03/24/2022] [Indexed: 11/13/2022] Open
Abstract
Myocarditis is the common cause of sudden cardiac death, dilated cardiomyopathy (DCM) and heart failure (HF) in young adults. The most common type of myocarditis is viral myocarditis (VMC). Toll-like receptors (TLRs) are vital to identify pathogens in vivo. TLRs promote the differentiation of naive CD4+T cells to T helper (Th) cells, activate the immune response, and participate in the pathogenesis of autoimmune and allergic diseases. Although the pathogenesis of VMC is unclear, autoimmune responses have been confirmed to play a significant role; hence, it could be inferred that VMC is closely related to TLRs and Th responses. Some drugs have been found to improve the prognosis of VMC by regulating the immune response through activated TLRs. In this review, we discuss the role of TLRs and Th responses in VMC.
Collapse
Affiliation(s)
- Shi-Yue Zheng
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Jian-Zeng Dong
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China.,Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
15
|
Knapik LO, Paresh S, Nabi D, Brayboy LM. The Role of T Cells in Ovarian Physiology and Infertility. Front Cell Dev Biol 2022; 10:713650. [PMID: 35557956 PMCID: PMC9086286 DOI: 10.3389/fcell.2022.713650] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 03/29/2022] [Indexed: 11/17/2022] Open
Abstract
Infertility affects one in six couples worldwide, with more than 48 million couples affected internationally. The prevalence of infertility is increasing which is thought to be attributed to delayed child-bearing due to socioeconomic factors. Since women are more prone to autoimmune diseases, we sought to describe the correlation between ovarian-mediated infertility and autoimmunity, and more specifically, the role of T cells in infertility. T cells prevent autoimmune diseases and allow maternal immune tolerance of the semi-allogeneic fetus during pregnancy. However, the role of T cells in ovarian physiology has yet to be fully understood.
Collapse
Affiliation(s)
| | | | - Dalileh Nabi
- Department of Neuropediatrics Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Lynae M. Brayboy
- Department of Neuropediatrics Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Department of Reproductive Biology, Bedford Research Foundation, Bedford, MA, United States
| |
Collapse
|
16
|
Opazo-Ríos L, Tejera-Muñoz A, Soto Catalan M, Marchant V, Lavoz C, Mas Fontao S, Moreno JA, Fierro Fernandez M, Ramos R, Suarez-Alvarez B, López-Larrea C, Ruiz-Ortega M, Egido J, Rodrigues-Díez RR. Kidney microRNA Expression Pattern in Type 2 Diabetic Nephropathy in BTBR Ob/Ob Mice. Front Pharmacol 2022; 13:778776. [PMID: 35370692 PMCID: PMC8966705 DOI: 10.3389/fphar.2022.778776] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 02/10/2022] [Indexed: 12/11/2022] Open
Abstract
Diabetic nephropathy (DN) is the main leading cause of chronic kidney disease worldwide. Although remarkable therapeutic advances have been made during the last few years, there still exists a high residual risk of disease progression to end-stage renal failure. To further understand the pathogenesis of tissue injury in this disease, by means of the Next-Generation Sequencing, we have studied the microRNA (miRNA) differential expression pattern in kidneys of Black and Tan Brachyury (BTBR) ob/ob (leptin deficiency mutation) mouse. This experimental model of type 2 diabetes and obesity recapitulates the key histopathological features described in advanced human DN and therefore can provide potential useful translational information. The miRNA-seq analysis, performed in the renal cortex of 22-week-old BTBR ob/ob mice, pointed out a set of 99 miRNAs significantly increased compared to non-diabetic, non-obese control mice of the same age, whereas no miRNAs were significantly decreased. Among them, miR-802, miR-34a, miR-132, miR-101a, and mir-379 were the most upregulated ones in diabetic kidneys. The in silico prediction of potential targets for the 99 miRNAs highlighted inflammatory and immune processes, as the most relevant pathways, emphasizing the importance of inflammation in the pathogenesis of kidney damage associated to diabetes. Other identified top canonical pathways were adipogenesis (related with ectopic fatty accumulation), necroptosis (an inflammatory and regulated form of cell death), and epithelial-to-mesenchymal transition, the latter supporting the importance of tubular cell phenotype changes in the pathogenesis of DN. These findings could facilitate a better understanding of this complex disease and potentially open new avenues for the design of novel therapeutic approaches to DN.
Collapse
Affiliation(s)
- Lucas Opazo-Ríos
- Renal, Vascular and Diabetes Research Laboratory, IIS-Fundación Jiménez Díaz, Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Universidad Autónoma de Madrid, Madrid, Spain
- Facultad de Ciencias de la Salud, Universidad de Las Américas, Concepción, Chile
| | - Antonio Tejera-Muñoz
- Molecular and Cellular Biology in Renal and Vascular Pathology, IIS-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Madrid, Spain
| | - Manuel Soto Catalan
- Renal, Vascular and Diabetes Research Laboratory, IIS-Fundación Jiménez Díaz, Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Universidad Autónoma de Madrid, Madrid, Spain
| | - Vanessa Marchant
- Molecular and Cellular Biology in Renal and Vascular Pathology, IIS-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Madrid, Spain
| | - Carolina Lavoz
- Laboratorio de Nefrología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| | - Sebastián Mas Fontao
- Renal, Vascular and Diabetes Research Laboratory, IIS-Fundación Jiménez Díaz, Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Universidad Autónoma de Madrid, Madrid, Spain
| | - Juan Antonio Moreno
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, Maimónides Biomedical Research Institute of Cordoba (IMIBIC), UGC Nephrology, Hospital Universitario Reina Sofía, Córdoba, Spain
| | - Marta Fierro Fernandez
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Viral Vectors Service, Madrid, Spain
| | - Ricardo Ramos
- Unidad de Genómica Fundación Parque Científico de Madrid, Universidad Autónoma de Madrid, Madrid, Spain
| | - Beatriz Suarez-Alvarez
- Translational Immunology Laboratory, Health Research Institute of Asturias (ISPA), Oviedo, Spain
| | - Carlos López-Larrea
- Translational Immunology Laboratory, Health Research Institute of Asturias (ISPA), Oviedo, Spain
- Department of Immunology, Hospital Universitario Central De Asturias, Oviedo, Spain
| | - Marta Ruiz-Ortega
- Molecular and Cellular Biology in Renal and Vascular Pathology, IIS-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Madrid, Spain
| | - Jesús Egido
- Renal, Vascular and Diabetes Research Laboratory, IIS-Fundación Jiménez Díaz, Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Universidad Autónoma de Madrid, Madrid, Spain
| | - Raúl R. Rodrigues-Díez
- Molecular and Cellular Biology in Renal and Vascular Pathology, IIS-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Madrid, Spain
- Translational Immunology Laboratory, Health Research Institute of Asturias (ISPA), Oviedo, Spain
| |
Collapse
|
17
|
Meng H, Zheng S, Zhou Q, Gao Y, Ni Y, Liang H, Chen S. FoxP3 - Tr1 Cell in Generalized Myasthenia Gravis and Its Relationship With the Anti-AChR Antibody and Immunomodulatory Cytokines. Front Neurol 2022; 12:755356. [PMID: 34975721 PMCID: PMC8718513 DOI: 10.3389/fneur.2021.755356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 11/23/2021] [Indexed: 12/22/2022] Open
Abstract
Introduction: The changes in the number and function of regulatory T cells (Tregs) are thought to play important roles in the pathogenesis of generalized myasthenia gravis (gMG). Previous studies have suggested the decrease of FoxP3+ Treg cells in the MG development. However, there is no study on the pathophysiological mechanism of FoxP3−Treg, especially Tr1 cells, in gMG patients. Therefore, this study was conducted to reveal the effect of Tr1 cells to the pathophysiology of gMG. Methods: Thirteen patients with gMG and twelve healthy volunteers were enrolled in this study. The titer of anti-AChR Ab was measured by ELISA. The separated PBMCs were labeled for CD4, CD25, CD49b, LAG3 and FoxP3. The CD4+ T cell count, FoxP3+ Treg to CD4+ T cell ratio and Tr1 cell to CD4+ T cell ratio were measured by flow cytometry. Based on the FoxP3+ Treg and Tr1 cell to CD4+ T cell ratios, the patients' Tr1 cell to FoxP3+ Treg ratios were calculated. The IL-6, IL-7, IL-10, TGF-β and IFN-γ concentration in the serum of MG patients and normal controls (NCs) were measured via ELISA. Results: We found a significantly positive correlation between the Tr1 cell/CD4+ T cell ratio and the anti-AChR Ab (r = 0.6889 ± 0.4414, p = 0.0401). Although there were no significant differences in the relationship between FoxP3+ Treg cells and anti-AChR Ab, a positive correlation between the Tr1 cell/FoxP3+ Treg cell ratio and the anti-AChR Ab (r = 0.7110 ± 0.4227, p = 0.0318) was observed. In addition, the Tr1 cell/CD4+ T cell ratio but not the proportion of FoxP3+ Tregs was positively correlated with IL-10 (p = 0.048). These results suggested that in the process of the immunomodulatory effect of Tr1 cells in patients with gMG, IL-10 and other cytokines may be involved, but the specific mechanism needs further study. Conclusion: This is the first study of the immunoregulatory mechanism of Tr1 cells in gMG. We conducted this study to elucidate the significance of Tr1 cells in the pathogenesis of MG. We believe that in patients with gMG, Tr1 cells may play an immunomodulatory role in counteracting AChR-related autoimmune responses. In this process, IL-10 and other immunomodulatory cytokines may be involved.
Collapse
Affiliation(s)
- Huanyu Meng
- Department of Neurology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Shuyu Zheng
- Department of Neurology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Brain Injury Center, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Qinming Zhou
- Department of Neurology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yining Gao
- Department of Neurology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - You Ni
- Department of Neurology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Huafeng Liang
- Department of Neurology, Xinrui Hospital, Wuxi, China
| | - Sheng Chen
- Department of Neurology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
18
|
Yeast cell wall upregulated cell-mediated immune responses to Newcastle disease virus vaccine. Poult Sci 2022; 101:101712. [PMID: 35123352 PMCID: PMC9023901 DOI: 10.1016/j.psj.2022.101712] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 12/28/2021] [Accepted: 12/31/2021] [Indexed: 12/12/2022] Open
Abstract
A recent study has suggested that yeast cell wall product (YP) enhanced serum hemagglutination inhibition (HI) titers and intestinal sIgA responses in chickens immunized with Newcastle disease virus (NDV) vaccine. In the present study, the cell-mediated immune responses elicited by NDV and YP were investigated in commercial broilers. Broilers were fed 0 or 0.1% YP and immunized with a live NDV vaccine via an intraocular-and-intranasal route at 14 and 28 days old. After that, blood samples were collected for determination of HI titer, cytokine content, and blood analysis. Eight chickens were randomly selected from each group and sacrificed. Lymphocytes were harvested from the spleens for lymphocyte proliferation and flow cytometry analysis. Total RNA was extracted from spleen and jejunum for RT-qPCR analysis. The results showed that YP significantly increased serum concentration of IL-4, IL-6, IFN-γ, TNF-β, as well as promoted lymphocytes proliferation in broilers immunized with NDV vaccine. The enhanced cell-mediated immunity is correlated with the upregulated mRNA expression of TGF-β, IL-6, TLR5, GATA-3, and T-bet in the spleen and upregulated mRNA expression of CCR-9, J-chain, pIgR, and TLR3 in the jejunum of chickens. It is noteworthy that no significant side effect was observed after the administration of YP. Therefore, YP could be safely used as potential immunopotentiator assisting NDV vaccine for chickens.
Collapse
|
19
|
Bergeron HC, Tripp RA. Immunopathology of RSV: An Updated Review. Viruses 2021; 13:2478. [PMID: 34960746 PMCID: PMC8703574 DOI: 10.3390/v13122478] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/06/2021] [Accepted: 12/08/2021] [Indexed: 12/14/2022] Open
Abstract
RSV is a leading cause of respiratory tract disease in infants and the elderly. RSV has limited therapeutic interventions and no FDA-approved vaccine. Gaps in our understanding of virus-host interactions and immunity contribute to the lack of biological countermeasures. This review updates the current understanding of RSV immunity and immunopathology with a focus on interferon responses, animal modeling, and correlates of protection.
Collapse
Affiliation(s)
| | - Ralph A. Tripp
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA;
| |
Collapse
|
20
|
Manthey CF, Reher D, Huber S. [What is confirmed in the treatment of chronic inflammatory bowel diseases]. Internist (Berl) 2021; 62:1269-1279. [PMID: 34727190 PMCID: PMC8561375 DOI: 10.1007/s00108-021-01207-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/26/2021] [Indexed: 12/07/2022]
Abstract
The prevalence of the chronic inflammatory bowel diseases (CIBD) Crohn's disease (CD) and ulcerative colitis (UC) is on the rise worldwide. In Germany CIBDs are also a significant healthcare problem. The pathogenesis is complex and involves genetic factors, environmental aspects and changes in the immunological constitution. Furthermore, the gut microbiota plays a role in the maintenance of intestinal inflammation. Fortunately, several new drugs, in particular biologicals, have been approved for the treatment of CIBDs. The treatment of UC is mainly based on 5‑aminosalicylic acid formulations, preferably as a topical form for distal colitis and proctitis as well as local budesonide formulations. In the case of extensive spread, high disease activity and refractory disease antibodies (biologicals) are successfully used, similar to CD. In addition to anti-tumor necrosis factor antibodies (infliximab, adalimumab, golimumab), vedolizumab, an anti-integrin antibody and the interleukin 12/23 antibody ustekinumab can be successfully used. The intravenous and also subcutaneous administration of antibodies are increasing in importance and are now available for all forms. Furthermore, the Janus kinase inhibitor tofacitinib is an orally administered option for UC. Clinical scores, endoscopy, ultrasound, laboratory parameters and calprotectin determination in stool are employed to evaluate treatment response (treat to target approach). Ultimately, the long-term goal is mucosal healing. Despite advances in the pharmaceutical treatment, a significant number of patients with CIBD still suffer from treatment refractory courses and need surgery at some time during the disease.
Collapse
Affiliation(s)
- Carolin F Manthey
- I. Medizinische Klinik und Poliklinik, Universitätsklinikum Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Deutschland.
| | - Dominik Reher
- I. Medizinische Klinik und Poliklinik, Universitätsklinikum Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Deutschland
| | - Samuel Huber
- I. Medizinische Klinik und Poliklinik, Universitätsklinikum Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Deutschland.
| |
Collapse
|
21
|
Li YR, Zhou Y, Kim YJ, Zhu Y, Ma F, Yu J, Wang YC, Chen X, Li Z, Zeng S, Wang X, Lee D, Ku J, Tsao T, Hardoy C, Huang J, Cheng D, Montel-Hagen A, Seet CS, Crooks GM, Larson SM, Sasine JP, Wang X, Pellegrini M, Ribas A, Kohn DB, Witte O, Wang P, Yang L. Development of allogeneic HSC-engineered iNKT cells for off-the-shelf cancer immunotherapy. Cell Rep Med 2021; 2:100449. [PMID: 34841295 PMCID: PMC8607011 DOI: 10.1016/j.xcrm.2021.100449] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 08/12/2021] [Accepted: 10/19/2021] [Indexed: 01/19/2023]
Abstract
Cell-based immunotherapy has become the new-generation cancer medicine, and "off-the-shelf" cell products that can be manufactured at large scale and distributed readily to treat patients are necessary. Invariant natural killer T (iNKT) cells are ideal cell carriers for developing allogeneic cell therapy because they are powerful immune cells targeting cancers without graft-versus-host disease (GvHD) risk. However, healthy donor blood contains extremely low numbers of endogenous iNKT cells. Here, by combining hematopoietic stem cell (HSC) gene engineering and in vitro differentiation, we generate human allogeneic HSC-engineered iNKT (AlloHSC-iNKT) cells at high yield and purity; these cells closely resemble endogenous iNKT cells, effectively target tumor cells using multiple mechanisms, and exhibit high safety and low immunogenicity. These cells can be further engineered with chimeric antigen receptor (CAR) to enhance tumor targeting or/and gene edited to ablate surface human leukocyte antigen (HLA) molecules and further reduce immunogenicity. Collectively, these preclinical studies demonstrate the feasibility and cancer therapy potential of AlloHSC-iNKT cell products and lay a foundation for their translational and clinical development.
Collapse
Affiliation(s)
- Yan-Ruide Li
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Yang Zhou
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Yu Jeong Kim
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Yanni Zhu
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Feiyang Ma
- Department of Molecular, Cell and Developmental Biology, College of Letters and Sciences, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jiaji Yu
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Yu-Chen Wang
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Xianhui Chen
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Zhe Li
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Samuel Zeng
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Xi Wang
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Derek Lee
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Josh Ku
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Tasha Tsao
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Christian Hardoy
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jie Huang
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Donghui Cheng
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Amélie Montel-Hagen
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Christopher S. Seet
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Gay M. Crooks
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Pediatrics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Sarah M. Larson
- Department of Internal Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Joshua P. Sasine
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Division of Hematology/Oncology, Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Xiaoyan Wang
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Matteo Pellegrini
- Department of Molecular, Cell and Developmental Biology, College of Letters and Sciences, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Antoni Ribas
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Parker Institute for Cancer Immunotherapy, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Donald B. Kohn
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Division of Hematology/Oncology, Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Owen Witte
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Parker Institute for Cancer Immunotherapy, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Pin Wang
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Lili Yang
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
22
|
Zhang T, Wang G, Zheng J, Li S, Xu J. Profile of serum cytokine concentrations in patients with gouty arthritis. J Int Med Res 2021; 49:3000605211055618. [PMID: 34772308 PMCID: PMC8593300 DOI: 10.1177/03000605211055618] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Objective This study aimed to analyze the changes in serum inflammatory cytokines and anti-inflammatory cytokines in patients with gouty arthritis (GA). Methods The clinical data and serum samples in patients with gouty arthritis and those in healthy volunteers were collected in China-Japan Friendship Hospital from July 2018 to January 2019. Serum cytokine concentrations in patients with GA and volunteers (controls) were determined by a chemiluminescence method. The differences in cytokine concentrations were compared between the two groups. Results Concentrations of serum interleukin-1 beta (IL-1ß), tumor necrosis factor-alpha (TNF-α), IL-6, IL-8, and IL-4 were significantly higher in patients with acute GA than in controls. Serum concentrations of IL-1ß, TNF-α, IL-6, IL-8, and immunoglobulin E in patients with remission of GA were significantly lower, whereas concentrations of IL-10 and interferon-γ were significantly higher, compared with those in patients with acute GA. Conclusion This study shows that serum concentrations of IL-1ß, TNF-α, IL-6, IL-8, and IL-4 are significantly elevated in patients with GA, and may be involved in the pathogenesis of GA.
Collapse
Affiliation(s)
- Tie Zhang
- Laboratory of China-Japan Friendship Hospital, China-Japan Friendship Hospital, Beijing, P. R. China
- Tie Zhang, Laboratory of China-Japan Friendship Hospital, Sakura Garden East Street, Beijing 100029, P.R. China.
| | - Guozhen Wang
- Laboratory of China-Japan Friendship Hospital, China-Japan Friendship Hospital, Beijing, P. R. China
| | - Jing Zheng
- Laboratory of China-Japan Friendship Hospital, China-Japan Friendship Hospital, Beijing, P. R. China
| | - Shirui Li
- Department of Endocrine, China-Japan Friendship Hospital, China-Japan Friendship Hospital, Beijing, P.R. China
| | - Jing Xu
- Department of Echocadiography, The First Hospital of JiLin University, Changchun, P. R. China
| |
Collapse
|
23
|
Nawrocki M, Lory N, Bedke T, Stumme F, Diercks BP, Guse AH, Meier C, Gagliani N, Mittrücker HW, Huber S. Trans-Ned 19-Mediated Antagonism of Nicotinic Acid Adenine Nucleotide-Mediated Calcium Signaling Regulates Th17 Cell Plasticity in Mice. Cells 2021; 10:3039. [PMID: 34831261 PMCID: PMC8616272 DOI: 10.3390/cells10113039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/30/2021] [Accepted: 11/01/2021] [Indexed: 11/17/2022] Open
Abstract
Nicotinic acid adenine dinucleotide phosphate (NAADP) is the most potent Ca2+ mobilizing agent and its inhibition proved to inhibit T-cell activation. However, the impact of the NAADP signaling on CD4+ T-cell differentiation and plasticity and on the inflammation in tissues other than the central nervous system remains unclear. In this study, we used an antagonist of NAADP signaling, trans-Ned 19, to study the role of NAADP in CD4+ T-cell differentiation and effector function. Partial blockade of NAADP signaling in naïve CD4+ T cells in vitro promoted the differentiation of Th17 cells. Interestingly, trans-Ned 19 also promoted the production of IL-10, co-expression of LAG-3 and CD49b and increased the suppressive capacity of Th17 cells. Moreover, using an IL-17A fate mapping mouse model, we showed that NAADP inhibition promotes conversion of Th17 cells into regulatory T cells in vitro and in vivo. In line with the results, we found that inhibiting NAADP ameliorates disease in a mouse model of intestinal inflammation. Thus, these results reveal a novel function of NAADP in controlling the differentiation and plasticity of CD4+ T cells.
Collapse
Affiliation(s)
- Mikołaj Nawrocki
- Section of Molecular Immunology and Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (M.N.); (T.B.); (F.S.); (N.G.)
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (N.L.); (H.-W.M.)
| | - Niels Lory
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (N.L.); (H.-W.M.)
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Tanja Bedke
- Section of Molecular Immunology and Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (M.N.); (T.B.); (F.S.); (N.G.)
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (N.L.); (H.-W.M.)
| | - Friederike Stumme
- Section of Molecular Immunology and Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (M.N.); (T.B.); (F.S.); (N.G.)
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (N.L.); (H.-W.M.)
| | - Björn-Phillip Diercks
- The Calcium Signalling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (B.-P.D.); (A.H.G.)
| | - Andreas H. Guse
- The Calcium Signalling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (B.-P.D.); (A.H.G.)
| | - Chris Meier
- Institute of Organic Chemistry, Department of Chemistry, Faculty of Sciences, University of Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany;
| | - Nicola Gagliani
- Section of Molecular Immunology and Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (M.N.); (T.B.); (F.S.); (N.G.)
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (N.L.); (H.-W.M.)
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
- Immunology and Allergy Unit, Department of Medicine Solna, Karolinska Institute, 17176 Stockholm, Sweden
| | - Hans-Willi Mittrücker
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (N.L.); (H.-W.M.)
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Samuel Huber
- Section of Molecular Immunology and Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (M.N.); (T.B.); (F.S.); (N.G.)
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (N.L.); (H.-W.M.)
| |
Collapse
|
24
|
Constantin C, Pisani A, Bardi G, Neagu M. Nano-carriers of COVID-19 vaccines: the main pillars of efficacy. Nanomedicine (Lond) 2021; 16:2377-2387. [PMID: 34632802 PMCID: PMC8544481 DOI: 10.2217/nnm-2021-0250] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 09/09/2021] [Indexed: 12/30/2022] Open
Abstract
As the current COVID-19 pandemic illustrates, vaccination is the most powerful method of disease prevention and public confidence in vaccines depends on their safety and efficacy. The information gathered in the current pandemic is growing at an accelerated pace. Both the key vital protein DNA/RNA messengers and the delivery carriers are the elements of a puzzle including their interactions with the immune system to suppress SARS-CoV-2 infection. A new nano-era is beginning in the vaccine development field and an array of side applications for diagnostic and antiviral tools will likely emerge. This review focuses on the evolution of vaccine carriers up to COVID-19-aimed nanoparticles and the immune-related adverse effects imposed by these nanocarriers.
Collapse
Affiliation(s)
- Carolina Constantin
- “Victor Babeş” National Institute of Pathology, 99-101 Spl Independentei, Bucharest, 050096, Romania
- Colentina Clinical Hospital, 19-21, Sos. Stefan cel Mare, Bucharest, Romania
| | - Anissa Pisani
- Nanobiointeractions & Nanodiagnostics, Istituto Italiano di Tecnologia, Via Morego 30, Genova, 16163, Italy
- Department of Chemistry & Industrial Chemistry, University of Genova, Via Dodecaneso 31, Genova, 16146, Italy
| | - Giuseppe Bardi
- Nanobiointeractions & Nanodiagnostics, Istituto Italiano di Tecnologia, Via Morego 30, Genova, 16163, Italy
| | - Monica Neagu
- “Victor Babeş” National Institute of Pathology, 99-101 Spl Independentei, Bucharest, 050096, Romania
- Colentina Clinical Hospital, 19-21, Sos. Stefan cel Mare, Bucharest, Romania
- University of Bucharest, 93–95 Spl Independentei, Bucharest, Romania
| |
Collapse
|
25
|
Ortega MA, Fraile-Martínez O, García-Montero C, Álvarez-Mon MA, Chaowen C, Ruiz-Grande F, Pekarek L, Monserrat J, Asúnsolo A, García-Honduvilla N, Álvarez-Mon M, Bujan J. Understanding Chronic Venous Disease: A Critical Overview of Its Pathophysiology and Medical Management. J Clin Med 2021; 10:3239. [PMID: 34362022 PMCID: PMC8348673 DOI: 10.3390/jcm10153239] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 01/19/2023] Open
Abstract
Chronic venous disease (CVD) is a multifactorial condition affecting an important percentage of the global population. It ranges from mild clinical signs, such as telangiectasias or reticular veins, to severe manifestations, such as venous ulcerations. However, varicose veins (VVs) are the most common manifestation of CVD. The explicit mechanisms of the disease are not well-understood. It seems that genetics and a plethora of environmental agents play an important role in the development and progression of CVD. The exposure to these factors leads to altered hemodynamics of the venous system, described as ambulatory venous hypertension, therefore promoting microcirculatory changes, inflammatory responses, hypoxia, venous wall remodeling, and epigenetic variations, even with important systemic implications. Thus, a proper clinical management of patients with CVD is essential to prevent potential harms of the disease, which also entails a significant loss of the quality of life in these individuals. Hence, the aim of the present review is to collect the current knowledge of CVD, including its epidemiology, etiology, and risk factors, but emphasizing the pathophysiology and medical care of these patients, including clinical manifestations, diagnosis, and treatments. Furthermore, future directions will also be covered in this work in order to provide potential fields to explore in the context of CVD.
Collapse
Affiliation(s)
- Miguel A. Ortega
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (M.A.O.); (O.F.-M.); (C.G.-M.); (C.C.); (L.P.); (J.M.); (N.G.-H.); (M.Á.-M.); (J.B.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain;
- Cancer Registry and Pathology Department, Hospital Universitario Principe de Asturias, 28806 Alcalá de Henares, Spain
| | - Oscar Fraile-Martínez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (M.A.O.); (O.F.-M.); (C.G.-M.); (C.C.); (L.P.); (J.M.); (N.G.-H.); (M.Á.-M.); (J.B.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain;
| | - Cielo García-Montero
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (M.A.O.); (O.F.-M.); (C.G.-M.); (C.C.); (L.P.); (J.M.); (N.G.-H.); (M.Á.-M.); (J.B.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain;
| | - Miguel A. Álvarez-Mon
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (M.A.O.); (O.F.-M.); (C.G.-M.); (C.C.); (L.P.); (J.M.); (N.G.-H.); (M.Á.-M.); (J.B.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain;
| | - Chen Chaowen
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (M.A.O.); (O.F.-M.); (C.G.-M.); (C.C.); (L.P.); (J.M.); (N.G.-H.); (M.Á.-M.); (J.B.)
| | - Fernando Ruiz-Grande
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain;
- Department of Vascular Surgery, Príncipe de Asturias Hospital, 28801 Alcalá de Henares, Spain
| | - Leonel Pekarek
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (M.A.O.); (O.F.-M.); (C.G.-M.); (C.C.); (L.P.); (J.M.); (N.G.-H.); (M.Á.-M.); (J.B.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain;
| | - Jorge Monserrat
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (M.A.O.); (O.F.-M.); (C.G.-M.); (C.C.); (L.P.); (J.M.); (N.G.-H.); (M.Á.-M.); (J.B.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain;
| | - Angel Asúnsolo
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain;
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain;
- Department of Epidemiology and Biostatistics, Graduate School of Public Health and Health Policy, The City University of New York, New York, NY 10027, USA
| | - Natalio García-Honduvilla
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (M.A.O.); (O.F.-M.); (C.G.-M.); (C.C.); (L.P.); (J.M.); (N.G.-H.); (M.Á.-M.); (J.B.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain;
| | - Melchor Álvarez-Mon
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (M.A.O.); (O.F.-M.); (C.G.-M.); (C.C.); (L.P.); (J.M.); (N.G.-H.); (M.Á.-M.); (J.B.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain;
- Immune System Diseases—Rheumatology and Internal Medicine Service, University Hospital Príncipe de Asturias, (CIBEREHD), 28806 Alcalá de Henares, Spain
| | - Julia Bujan
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (M.A.O.); (O.F.-M.); (C.G.-M.); (C.C.); (L.P.); (J.M.); (N.G.-H.); (M.Á.-M.); (J.B.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain;
| |
Collapse
|
26
|
Lygeros S, Danielides G, Grafanaki K, Riga M. Matrix metalloproteinases and chronic rhinosinusitis with nasal polyposis. Unravelling a puzzle through a systematic review. Rhinology 2021; 59:245-257. [PMID: 33730750 DOI: 10.4193/rhin20.578] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND The expression of metalloproteinases (MMPs) in chronic rhinosinusitis with nasal polyposis (CRSwNP) was reviewed in order to investigate their possible use as therapeutical targets and/or biomarkers. METHODOLOGY The differences between CRSwNP and normal controls or CRS without NP, as well as the effects of various treatments on MMPs, tissue inhibitors of MMPs (TIMPs) and MMP/TIMP ratios were considered as primary outcomes. Additional factors reported to affect MMP expression levels were noted as secondary outcomes. Data regarding inflammatory subtypes, patients’ clinical characteristics, controls, laboratory method(s) and origin of samples were also pooled. Studies on 10 or fewer patients or on specimens other than nasal and serum were excluded. RESULTS Forty-three studies were included. Tissue sample origin, allergic rhinitis, smoking, infection, medication intake and primary or recurrent disease should be considered as confounding factors for MMP levels. MMP-1 and -7 were consistently found to be significantly higher in CRSwNP patients than controls. CRSwNP endotypes with distinctly different inflammation patterns seem to present similar MMP-related remodelling patterns. CONCLUSIONS The existing literature has revealed several population and methodology related confounding factors and remains inconclusive regarding the roles of MMPs in CRSwNP pathophysiology and their possible clinical usefulness as biomarkers and therapeutical targets.
Collapse
Affiliation(s)
- S Lygeros
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Patras, Medical School, Patras, Greece
| | - G Danielides
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Patras, Medical School, Patras, Greece
| | - K Grafanaki
- Department of Biochemistry and Department of Dermatology School of Medicine, University of Patras, Greece
| | - M Riga
- Department of Otorhinolaryngology-Head and Neck Surgery, Dammam Medical Complex, Dammam, Kingdom of Saudi Arabia
| |
Collapse
|
27
|
Bam M, Chintala S, Fetcko K, Williamsen BC, Siraj S, Liu S, Wan J, Xuei X, Liu Y, Leibold AT, Dey M. Genome wide DNA methylation landscape reveals glioblastoma's influence on epigenetic changes in tumor infiltrating CD4+ T cells. Oncotarget 2021; 12:967-981. [PMID: 34012510 PMCID: PMC8121608 DOI: 10.18632/oncotarget.27955] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 04/19/2021] [Indexed: 12/13/2022] Open
Abstract
CD4+ helper T (Th) cells play a critical role in shaping anti-tumor immunity by virtue of their ability to differentiate into multiple lineages in response to environmental cues. Various CD4+ lineages can orchestrate a broad range of effector activities during the initiation, expansion, and memory phase of endogenous anti-tumor immune response. In this clinical corelative study, we found that Glioblastoma (GBM) induces multi- and mixed-lineage immune response in the tumor microenvironment. Whole-genome bisulfite sequencing of tumor infiltrating and blood CD4+ T-cell from GBM patients showed 13571 differentially methylated regions and a distinct methylation pattern of methylation of tumor infiltrating CD4+ T-cells with significant inter-patient variability. The methylation changes also resulted in transcriptomic changes with 341 differentially expressed genes in CD4+ tumor infiltrating T-cells compared to blood. Analysis of specific genes involved in CD4+ differentiation and function revealed differential methylation status of TBX21, GATA3, RORC, FOXP3, IL10 and IFNG in tumor CD4+ T-cells. Analysis of lineage specific genes revealed differential methylation and gene expression in tumor CD4+ T-cells. Interestingly, we observed dysregulation of several ligands of T cell function genes in GBM tissue corresponding to the T-cell receptors that were dysregulated in tumor infiltrating CD4+ T-cells. Our results suggest that GBM might induce epigenetic alterations in tumor infiltrating CD4+ T-cells there by influencing anti-tumor immune response by manipulating differentiation and function of tumor infiltrating CD4+ T-cells. Thus, further research is warranted to understand the role of tumor induced epigenetic modification of tumor infiltrating T-cells to develop effective anti-GBM immunotherapy.
Collapse
Affiliation(s)
- Marpe Bam
- Department of Neurological Surgery, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
- These authors contributed equally to this work
| | - Sreenivasulu Chintala
- Department of Neurosurgery, Indiana University School of Medicine, Indianapolis, IN, USA
- These authors contributed equally to this work
| | - Kaleigh Fetcko
- Department of Neurosurgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Brooke Carmen Williamsen
- Department of Neurological Surgery, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Seema Siraj
- Department of Neurological Surgery, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Sheng Liu
- Department of Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jun Wan
- Department of Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Xiaoling Xuei
- Department of Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Yunlong Liu
- Department of Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Adam T. Leibold
- Department of Neurosurgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Mahua Dey
- Department of Neurological Surgery, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
- Department of Neurosurgery, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
28
|
das Neves J, Sverdlov Arzi R, Sosnik A. Molecular and cellular cues governing nanomaterial-mucosae interactions: from nanomedicine to nanotoxicology. Chem Soc Rev 2021; 49:5058-5100. [PMID: 32538405 DOI: 10.1039/c8cs00948a] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mucosal tissues constitute the largest interface between the body and the surrounding environment and they regulate the access of molecules, supramolecular structures, particulate matter, and pathogens into it. All mucosae are characterized by an outer mucus layer that protects the underlying cells from physicochemical, biological and mechanical insults, a mono-layered or stratified epithelium that forms tight junctions and controls the selective transport of solutes across it and associated lymphoid tissues that play a sentinel role. Mucus is a gel-like material comprised mainly of the glycoprotein mucin and water and it displays both hydrophilic and hydrophobic domains, a net negative charge, and high porosity and pore interconnectivity, providing an efficient barrier for the absorption of therapeutic agents. To prolong the residence time, absorption and bioavailability of a broad spectrum of active compounds upon mucosal administration, mucus-penetrating and mucoadhesive particles have been designed by tuning the chemical composition, the size, the density, and the surface properties. The benefits of utilizing nanomaterials that interact intimately with mucosae by different mechanisms in the nanomedicine field have been extensively reported. To ensure the safety of these nanosystems, their compatibility is evaluated in vitro and in vivo in preclinical and clinical trials. Conversely, there is a growing concern about the toxicity of nanomaterials dispersed in air and water effluents that unintentionally come into contact with the airways and the gastrointestinal tract. Thus, deep understanding of the key nanomaterial properties that govern the interplay with mucus and tissues is crucial for the rational design of more efficient drug delivery nanosystems (nanomedicine) and to anticipate the fate and side-effects of nanoparticulate matter upon acute or chronic exposure (nanotoxicology). This review initially overviews the complex structural features of mucosal tissues, including the structure of mucus, the epithelial barrier, the mucosal-associated lymphatic tissues and microbiota. Then, the most relevant investigations attempting to identify and validate the key particle features that govern nanomaterial-mucosa interactions and that are relevant in both nanomedicine and nanotoxicology are discussed in a holistic manner. Finally, the most popular experimental techniques and the incipient use of mathematical and computational models to characterize these interactions are described.
Collapse
Affiliation(s)
- José das Neves
- i3S - Instituto de Investigação e Inovação em Saúde & INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
| | - Roni Sverdlov Arzi
- Laboratory of Pharmaceutical Nanomaterials Science, Department of Materials Science and Engineering, Technion-Israel Institute of Technology, De-Jur Building, Office 607, Haifa, 3200003, Israel.
| | - Alejandro Sosnik
- Laboratory of Pharmaceutical Nanomaterials Science, Department of Materials Science and Engineering, Technion-Israel Institute of Technology, De-Jur Building, Office 607, Haifa, 3200003, Israel.
| |
Collapse
|
29
|
Mölzer C, Heissigerova J, Wilson HM, Kuffova L, Forrester JV. Immune Privilege: The Microbiome and Uveitis. Front Immunol 2021; 11:608377. [PMID: 33569055 PMCID: PMC7868421 DOI: 10.3389/fimmu.2020.608377] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 12/04/2020] [Indexed: 02/03/2023] Open
Abstract
Immune privilege (IP), a term introduced to explain the unpredicted acceptance of allogeneic grafts by the eye and the brain, is considered a unique property of these tissues. However, immune responses are modified by the tissue in which they occur, most of which possess IP to some degree. The eye therefore displays a spectrum of IP because it comprises several tissues. IP as originally conceived can only apply to the retina as it contains few tissue-resident bone-marrow derived myeloid cells and is immunologically shielded by a sophisticated barrier – an inner vascular and an outer epithelial barrier at the retinal pigment epithelium. The vascular barrier comprises the vascular endothelium and the glia limitans. Immune cells do not cross the blood-retinal barrier (BRB) despite two-way transport of interstitial fluid, governed by tissue oncotic pressure. The BRB, and the blood-brain barrier (BBB) mature in the neonatal period under signals from the expanding microbiome and by 18 months are fully established. However, the adult eye is susceptible to intraocular inflammation (uveitis; frequency ~200/100,000 population). Uveitis involving the retinal parenchyma (posterior uveitis, PU) breaches IP, while IP is essentially irrelevant in inflammation involving the ocular chambers, uveal tract and ocular coats (anterior/intermediate uveitis/sclerouveitis, AU). Infections cause ~50% cases of AU and PU but infection may also underlie the pathogenesis of immune-mediated “non-infectious” uveitis. Dysbiosis accompanies the commonest form, HLA-B27–associated AU, while latent infections underlie BRB breakdown in PU. This review considers the pathogenesis of uveitis in the context of IP, infection, environment, and the microbiome.
Collapse
Affiliation(s)
- Christine Mölzer
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Jarmila Heissigerova
- Department of Ophthalmology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czechia
| | - Heather M Wilson
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Lucia Kuffova
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom.,Eye Clinic, Aberdeen Royal Infirmary, Aberdeen, United Kingdom
| | - John V Forrester
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| |
Collapse
|
30
|
Chatzileontiadou DSM, Sloane H, Nguyen AT, Gras S, Grant EJ. The Many Faces of CD4 + T Cells: Immunological and Structural Characteristics. Int J Mol Sci 2020; 22:E73. [PMID: 33374787 PMCID: PMC7796221 DOI: 10.3390/ijms22010073] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 12/20/2020] [Accepted: 12/21/2020] [Indexed: 12/14/2022] Open
Abstract
As a major arm of the cellular immune response, CD4+ T cells are important in the control and clearance of infections. Primarily described as helpers, CD4+ T cells play an integral role in the development and activation of B cells and CD8+ T cells. CD4+ T cells are incredibly heterogeneous, and can be divided into six main lineages based on distinct profiles, namely T helper 1, 2, 17 and 22 (Th1, Th2, Th17, Th22), regulatory T cells (Treg) and T follicular helper cells (Tfh). Recent advances in structural biology have allowed for a detailed characterisation of the molecular mechanisms that drive CD4+ T cell recognition. In this review, we discuss the defining features of the main human CD4+ T cell lineages and their role in immunity, as well as their structural characteristics underlying their detection of pathogens.
Collapse
Affiliation(s)
- Demetra S. M. Chatzileontiadou
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; (D.S.M.C.); (H.S.); (A.T.N.); (S.G.)
| | - Hannah Sloane
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; (D.S.M.C.); (H.S.); (A.T.N.); (S.G.)
| | - Andrea T. Nguyen
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; (D.S.M.C.); (H.S.); (A.T.N.); (S.G.)
| | - Stephanie Gras
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; (D.S.M.C.); (H.S.); (A.T.N.); (S.G.)
- Australian Research Council Centre of Excellence for Advanced Molecular Imaging, Monash University, Clayton, VIC 3800, Australia
| | - Emma J. Grant
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; (D.S.M.C.); (H.S.); (A.T.N.); (S.G.)
| |
Collapse
|
31
|
A Systematic Review of the Anti-Inflammatory and Immunomodulatory Properties of 16 Essential Oils of Herbs. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:8878927. [PMID: 33354224 PMCID: PMC7735857 DOI: 10.1155/2020/8878927] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 11/26/2020] [Accepted: 11/28/2020] [Indexed: 12/18/2022]
Abstract
Background Inflammation is a host defense mechanism in the body after it is infected and damaged. If inflammation is not treated in time, then it may cause a variety of diseases, such as cancer and autoimmune diseases. Herbal essential oils are natural extracts that can suppress inflammation effectively and are expected to be used in therapeutic drugs for anti-inflammatory diseases in the future. Aim of the review. We review the anti-inflammatory and immunomodulatory effects of essential oils derived from 16 herbs. Materials and methods. We searched the literature of the fields of anti-inflammatory and immunomodulatory herbal essential oil activity published in English within the past five years via databases (PubMed, EMBASE, Scopus, and The Web of Science). Results A total of 1932 papers were found by searching, and 132 papers were screened after removing duplicates and reading article titles. Fifteen articles met the requirements to be included in this review. Among those selected, 11 articles reported in vivo research results, and 10 articles showed research results. Conclusion Essential oils extracted from herbs can reduce inflammation by regulating the release of inflammatory cytokines involved in multiple signalling pathways. Herbal essential oils are expected to be developed as anti-inflammatory drugs.
Collapse
|
32
|
Samec M, Liskova A, Koklesova L, Samuel SM, Murin R, Zubor P, Bujnak J, Kwon TK, Büsselberg D, Prosecky R, Caprnda M, Rodrigo L, Ciccocioppo R, Kruzliak P, Kubatka P. The role of plant-derived natural substances as immunomodulatory agents in carcinogenesis. J Cancer Res Clin Oncol 2020; 146:3137-3154. [PMID: 33063131 DOI: 10.1007/s00432-020-03424-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 10/08/2020] [Indexed: 02/06/2023]
Abstract
The role of immune system in carcinogenesis represents fundamental events associated with cancer eradication; however, tumor evolution is connected with various mechanisms of tumor evasion and progression of cancer. Based on recent evidence, phytochemicals are directly associated with immunomodulation of the innate and adaptive immunity via different mechanisms of action including stimulation and amplification of immune cells, humoral compartments, and associated molecules. This comprehensive study focuses on immunomodulating potential of phytochemicals (mixture in plants or separately such as individual phytochemical) and their impact on regulation of immune response during cancer development, immune tolerance, and immune escape. Clinical application of phytochemicals as modulators of host immunity against cancer may represent perspective approach in anticancer therapy.
Collapse
Affiliation(s)
- Marek Samec
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Alena Liskova
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Lenka Koklesova
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Samson Mathews Samuel
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha, Qatar
| | - Radovan Murin
- Department of Medical Biochemistry, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Pavol Zubor
- Department of Gynecologic Oncology, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Jan Bujnak
- Department of Obstetrics and Gynaecology, Kukuras Michalovce Hospital, Michalovce, Slovakia
| | - Taeg Kyu Kwon
- Department of Immunology and School of Medicine, Keimyung University, Dalseo-Gu, Daegu, Korea
| | - Dietrich Büsselberg
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha, Qatar
| | - Robert Prosecky
- 2nd Department of Internal Medicine, Faculty of Medicine, Masaryk University and St. Anne's University Hospital, Brno, Czech Republic
| | - Martin Caprnda
- 1st Department of Internal Medicine, Faculty of Medicine, Comenius University and University Hospital, Bratislava, Slovakia
| | - Luis Rodrigo
- Faculty of Medicine, University of Oviedo, Central University Hospital of Asturias (HUCA), Oviedo, Spain
| | - Rachele Ciccocioppo
- Gastroenterology Unit, Department of Medicine, Azienda Ospedaliera Universitaria Integrata Policlinico GB Rossi, University of Verona, Verona, Italy
| | - Peter Kruzliak
- 2nd Department of Surgery, Faculty of Medicine, Masaryk University and St. Anne's University Hospital, Pekarska 53, 656 91, Brno, Czech Republic.
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601, Martin, Slovakia.
| |
Collapse
|
33
|
Paris S, Chapat L, Martin-Cagnon N, Durand PY, Piney L, Cariou C, Bergamo P, Bonnet JM, Poulet H, Freyburger L, De Luca K. β-Glucan as Trained Immunity-Based Adjuvants for Rabies Vaccines in Dogs. Front Immunol 2020; 11:564497. [PMID: 33162977 PMCID: PMC7580252 DOI: 10.3389/fimmu.2020.564497] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 09/14/2020] [Indexed: 12/16/2022] Open
Abstract
The mechanisms of trained immunity have been extensively described in vitro and the beneficial effects are starting to be deciphered in in vivo settings. Prototypical compounds inducing trained immunity, such as β-glucans, act through epigenetic reprogramming and metabolic changes of innate immune cells. The recent advances in this field have opened new areas for the development of Trained immunity-based adjuvants (TIbAs). In this study, we assessed in dogs the potential immune training effects of β-glucans as well as their capacity to enhance the adaptive immune response of an inactivated rabies vaccine (Rabisin®). Injection of β-glucan from Euglena gracilis was performed 1 month before vaccination with Rabisin® supplemented or not with the same β-glucan used as adjuvant. Trained innate immunity parameters were assessed during the first month of the trial. The second phase of the study was focused on the ability of β-glucan to enhance adaptive immune responses measured by multiple immunological parameters. B and T-cell specific responses were monitored to evaluate the immunogenicity of the rabies vaccine adjuvanted with β-glucan or not. Our preliminary results support that adjuvantation of Rabisin® vaccine with β-glucan elicit a higher B-lymphocyte immune response, the prevailing factor of protection against rabies. β-glucan also tend to stimulate the T cell response as shown by the cytokine secretion profile of PBMCs re-stimulated ex vivo. Our data are providing new insights on the impact of trained immunity on the adaptive immune response to vaccines in dogs. The administration of β-glucan, 1 month before or simultaneously to Rabisin® vaccination give promising results for the generation of new TIbA candidates and their potential to provide increased immunogenicity of specific vaccines.
Collapse
Affiliation(s)
- Simon Paris
- Boehringer Ingelheim Animal Health, R&D, Lyon, France
- Université de Lyon, APCSe, Pulmonary and Cardiovascular Agression in Sepsis, VetAgro Sup-Campus Vétérinaire de Lyon, Marcy l’Etoile, France
- Département Biologie, Faculté des Sciences et Techniques, Université Claude Bernard Lyon 1, Villeurbanne, France
| | | | | | | | | | - Carine Cariou
- Boehringer Ingelheim Animal Health, R&D, Lyon, France
| | | | - Jeanne-Marie Bonnet
- Université de Lyon, APCSe, Pulmonary and Cardiovascular Agression in Sepsis, VetAgro Sup-Campus Vétérinaire de Lyon, Marcy l’Etoile, France
| | - Hervé Poulet
- Boehringer Ingelheim Animal Health, R&D, Lyon, France
| | - Ludovic Freyburger
- Université de Lyon, APCSe, Pulmonary and Cardiovascular Agression in Sepsis, VetAgro Sup-Campus Vétérinaire de Lyon, Marcy l’Etoile, France
| | | |
Collapse
|
34
|
Key Players and Biomarkers of the Adaptive Immune System in the Pathogenesis of Sarcoidosis. Int J Mol Sci 2020; 21:ijms21197398. [PMID: 33036432 PMCID: PMC7582702 DOI: 10.3390/ijms21197398] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 10/03/2020] [Accepted: 10/05/2020] [Indexed: 12/16/2022] Open
Abstract
Sarcoidosis is a systemic inflammatory disease characterized by development of granulomas in the affected organs. Sarcoidosis is often a diagnosis of exclusion, and traditionally used tests for sarcoidosis demonstrate low sensitivity and specificity. We propose that accuracy of diagnosis can be improved if biomarkers of altered lymphocyte populations and levels of signaling molecules involved in disease pathogenesis are measured for patterns suggestive of sarcoidosis. These distinctive biomarkers can also be used to determine disease progression, predict prognosis, and make treatment decisions. Many subsets of T lymphocytes, including CD8+ T-cells and regulatory T-cells, have been shown to be dysfunctional in sarcoidosis, and the predominant CD4+ T helper cell subset in granulomas appears to be a strong indicator of disease phenotype and outcome. Studies of altered B cell populations, B cell signaling molecules, and immune complexes in sarcoidosis patients reveal promising biomarkers as well as possible explanations of disease etiology. Furthermore, examined biomarkers raise questions about new treatment methods and sarcoidosis antigens.
Collapse
|
35
|
IL-17A as a Potential Therapeutic Target for Patients on Peritoneal Dialysis. Biomolecules 2020; 10:biom10101361. [PMID: 32987705 PMCID: PMC7598617 DOI: 10.3390/biom10101361] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/16/2020] [Accepted: 09/22/2020] [Indexed: 12/13/2022] Open
Abstract
Chronic kidney disease (CKD) is a health problem reaching epidemic proportions. There is no cure for CKD, and patients may progress to end-stage renal disease (ESRD). Peritoneal dialysis (PD) is a current replacement therapy option for ESRD patients until renal transplantation can be achieved. One important problem in long-term PD patients is peritoneal membrane failure. The mechanisms involved in peritoneal damage include activation of the inflammatory and immune responses, associated with submesothelial immune infiltrates, angiogenesis, loss of the mesothelial layer due to cell death and mesothelial to mesenchymal transition, and collagen accumulation in the submesothelial compact zone. These processes lead to fibrosis and loss of peritoneal membrane function. Peritoneal inflammation and membrane failure are strongly associated with additional problems in PD patients, mainly with a very high risk of cardiovascular disease. Among the inflammatory mediators involved in peritoneal damage, cytokine IL-17A has recently been proposed as a potential therapeutic target for chronic inflammatory diseases, including CKD. Although IL-17A is the hallmark cytokine of Th17 immune cells, many other cells can also produce or secrete IL-17A. In the peritoneum of PD patients, IL-17A-secreting cells comprise Th17 cells, γδ T cells, mast cells, and neutrophils. Experimental studies demonstrated that IL-17A blockade ameliorated peritoneal damage caused by exposure to PD fluids. This article provides a comprehensive review of recent advances on the role of IL-17A in peritoneal membrane injury during PD and other PD-associated complications.
Collapse
|
36
|
Wang W, Wang M, Xu J, Long F, Zhan X. Overexpressed GATA3 enhances the sensitivity of colorectal cancer cells to oxaliplatin through regulating MiR-29b. Cancer Cell Int 2020; 20:339. [PMID: 32760217 PMCID: PMC7379773 DOI: 10.1186/s12935-020-01424-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 07/14/2020] [Indexed: 12/31/2022] Open
Abstract
Background GATA binding protein 3 (GATA3) and miR-29b are related to colorectal cancer (CRC). The current study explored the regulatory relationship between GATA3 and miR-29b, and the mechanism of the two in the drug resistance of CRC cells to oxaliplatin. Method Apoptosis of CRC cells induced by oxaliplatin at various doses was detected by flow cytometry. CRC cells were separately transfected with overexpression and knockdown of GATA3, miR-29b agomir and antagomir, and treated by oxaliplatin to detect the cell viability and apoptosis by performing Cell Couting Kit-8 (CCK-8) and flow cytometry. The expression levels of GATA3, caspase3 and cleaved caspase3 were determined by Western blot, and the expression of miR-29b was detected by quantitative real-time polymerase chain reaction (qRT-PCR). Animal experiments were performed to examine the changes of transplanted tumors in nude mouse xenograft studies and observed by in vivo imaging. TUNEL staining was performed to detect tumor cell apoptosis. Result Both GATA3 and miR-29b agomir inhibited the activity of the CRC cells, promoted apoptosis and Cleaved caspase3 expression, and reduced the resistance of the cells to chemotherapy drug oxaliplatin. Although GATA3 could up-regulate miR-29b expression, the tumor-suppressive effect of GATA3 was partially reversed by miR-29b antagomir. In vivo experiments showed that down-regulating the expression of GATA3 promoted the growth rate and volume of transplanted tumors, while overexpressing GATA3 had no significant effect on tumor growth. TUNEL staining results showed that knocking down or overexpression of GATA3 did not cause significant changes to apoptotic bodies of CRC cells, while oxaliplatin treatment increased the number of apoptotic bodies. Conclusion GATA3 inhibits the cell viability of CRC cells, promotes apoptosis, and reduces oxaliplatin resistance of CRC cells through regulating miR-29b.
Collapse
Affiliation(s)
- Wei Wang
- Department of Oncology, Changhai Hospital of Shanghai, The Second Military Medical University, 168 Changhai Road, Yangpu District, Shanghai, 200433 China
| | - Mei Wang
- Department of Oncology, North Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Xu
- Department of Oncology, Changhai Hospital of Shanghai, The Second Military Medical University, 168 Changhai Road, Yangpu District, Shanghai, 200433 China
| | - Fei Long
- Department of Oncology, Changhai Hospital of Shanghai, The Second Military Medical University, 168 Changhai Road, Yangpu District, Shanghai, 200433 China
| | - Xianbao Zhan
- Department of Oncology, Changhai Hospital of Shanghai, The Second Military Medical University, 168 Changhai Road, Yangpu District, Shanghai, 200433 China
| |
Collapse
|
37
|
Lacerda Mariano L, Ingersoll MA. The immune response to infection in the bladder. Nat Rev Urol 2020; 17:439-458. [PMID: 32661333 DOI: 10.1038/s41585-020-0350-8] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/09/2020] [Indexed: 12/22/2022]
Abstract
The bladder is continuously protected by passive defences such as a mucus layer, antimicrobial peptides and secretory immunoglobulins; however, these defences are occasionally overcome by invading bacteria that can induce a strong host inflammatory response in the bladder. The urothelium and resident immune cells produce additional defence molecules, cytokines and chemokines, which recruit inflammatory cells to the infected tissue. Resident and recruited immune cells act together to eradicate bacteria from the bladder and to develop lasting immune memory against infection. However, urinary tract infection (UTI) is commonly recurrent, suggesting that the induction of a memory response in the bladder is inadequate to prevent reinfection. Additionally, infection seems to induce long-lasting changes in the urothelium, which can render the tissue more susceptible to future infection. The innate immune response is well-studied in the field of UTI, but considerably less is known about how adaptive immunity develops and how repair mechanisms restore bladder homeostasis following infection. Furthermore, data demonstrate that sex-based differences in immunity affect resolution and infection can lead to tissue remodelling in the bladder following resolution of UTI. To combat the rise in antimicrobial resistance, innovative therapeutic approaches to bladder infection are currently in development. Improving our understanding of how the bladder responds to infection will support the development of improved treatments for UTI, particularly for those at risk of recurrent infection.
Collapse
Affiliation(s)
- Livia Lacerda Mariano
- Department of Immunology, Institut Pasteur, Paris, France.,Inserm, U1223, Paris, France
| | - Molly A Ingersoll
- Department of Immunology, Institut Pasteur, Paris, France. .,Inserm, U1223, Paris, France.
| |
Collapse
|
38
|
Niu Y, Wang J, Li Z, Yao K, Wang L, Song J. HIF1α Deficiency in Dendritic Cells Attenuates Symptoms and Inflammatory Indicators of Allergic Rhinitis in a SIRT1-Dependent Manner. Int Arch Allergy Immunol 2020; 181:585-593. [PMID: 32541149 DOI: 10.1159/000506862] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 02/28/2020] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Allergic rhinitis is the most prevalent atopic disorder worldwide. Inflammation is believed to participate in allergic rhinitis. Previous studies indicate that hypoxia-inducible factor (HIF) promotes the development of allergic rhinitis, and dendritic cells are also involved in allergic rhinitis. METHODS We explored the consequences of HIF1α deficiency in dendritic cells on allergic rhinitis. Allergic rhinitis in mice was induced by ovalbumin (OVA). The levels of IgE, leukotriene C4 (LTC4), eosinophil cationic protein (ECP), prostaglandin D2 (PGD2), IFN-γ, IL-2, IL-4, IL-5, IL-10, and IL-13 in serum or nasal lavage fluid (NLF) were detected by ELISA. Inflammatory cells in NLF were counted by hemocytometer. The protein levels of p-ERK1/2, p-p38, p-JNK2, SIRT1, p-IκBα, and p65 were determined by Western blot. RESULTS HIF1α deficiency in dendritic cells (HIF1αCD11c-/-) decreased sneezing and nasal rubbing, the production of OVA-specific IgE, LTC4, and ECP in serum and NLF, and the numbers of leukocytes, eosinophils, lymphocytes, and neutrophils in NLF. Th1 cytokines increased, while Th2 cytokines decreased in HIF1aCD11c-/- mice. SIRT1/NF-κB signaling was inhibited in HIF1αCD11c-/- mice, while SIRT1 inhibitor administration in HIF1αCD11c-/- mice attenuated the symptoms and inflammatory indicators of allergic rhinitis. CONCLUSION HIF1α deficiency in dendritic cells attenuates symptoms and inflammatory indicators of allergic rhinitis in a SIRT1-dependent manner.
Collapse
Affiliation(s)
- Yanliu Niu
- Department of Clinical Laboratory, Liaocheng People's Hospital, Liaocheng, China
| | - Jianquan Wang
- Department of Clinical Laboratory, Liaocheng People's Hospital, Liaocheng, China
| | - Zhen Li
- Department of Clinical Laboratory, Dongchangfu Maternal and Child Health Hospital of Liaocheng, Liaocheng, China
| | - Keqing Yao
- Department of ENT, Liaocheng People's Hospital, Liaocheng, China
| | - Liangliang Wang
- Department of Ultrasonography, Liaocheng People's Hospital, Liaocheng, China
| | - Jingjing Song
- Department of ENT, Brain Hospital Liaocheng People's Hospital, Liaocheng, China,
| |
Collapse
|
39
|
Lundberg R, Toft MF, Metzdorff SB, Hansen CHF, Licht TR, Bahl MI, Hansen AK. Human microbiota-transplanted C57BL/6 mice and offspring display reduced establishment of key bacteria and reduced immune stimulation compared to mouse microbiota-transplantation. Sci Rep 2020; 10:7805. [PMID: 32385373 PMCID: PMC7211022 DOI: 10.1038/s41598-020-64703-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 04/20/2020] [Indexed: 02/07/2023] Open
Abstract
Transplantation of germ-free (GF) mice with microbiota from mice or humans stimulates the intestinal immune system in disparate ways. We transplanted a human microbiota into GF C57BL/6 mice and a murine C57BL/6 microbiota into GF C57BL/6 mice and Swiss-Webster (SW) mice. Mice were bred to produce an offspring generation. 56% of the Operational Taxonomic Units (OTUs) present in the human donor microbiota established in the recipient mice, whereas 81% of the C57BL/6 OTUs established in the recipient C57BL/6 and SW mice. Anti-inflammatory bacteria such as Faecalibacterium and Bifidobacterium from humans were not transferred to mice. Expression of immune-related intestinal genes was lower in human microbiota-mice and not different between parent and offspring generation. Expression of intestinal barrier-related genes was slightly higher in human microbiota-mice. Cytokines and chemokines measured in plasma were differentially present in human and mouse microbiota-mice. Minor differences in microbiota and gene expression were found between transplanted mice of different genetics. It is concluded that important immune-regulating bacteria are lost when transplanting microbiota from humans to C57BL/6 mice, and that the established human microbiota is a weak stimulator of the murine immune system. The results are important for study design considerations in microbiota transplantation studies involving immunological parameters.
Collapse
Affiliation(s)
- Randi Lundberg
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1871, Frederiksberg C, Denmark.
- Internal Research and Development, Taconic Biosciences, 4623, Lille Skensved, Denmark.
- Chr. Hansen, 2970, Hoersholm, Denmark.
| | - Martin F Toft
- Internal Research and Development, Taconic Biosciences, 4623, Lille Skensved, Denmark
- QM Diagnostics, 6534, AT Nijmegen, The Netherlands
| | - Stine B Metzdorff
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1871, Frederiksberg C, Denmark
| | - Camilla H F Hansen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1871, Frederiksberg C, Denmark
| | - Tine R Licht
- National Food Institute, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Martin I Bahl
- National Food Institute, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Axel K Hansen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1871, Frederiksberg C, Denmark
| |
Collapse
|
40
|
Schlaak RA, Frei A, Fish BL, Harmann L, Gasperetti T, Pipke JL, Sun Y, Rui H, Flister MJ, Gantner BN, Bergom C. Acquired Immunity Is Not Essential for Radiation-Induced Heart Dysfunction but Exerts a Complex Impact on Injury. Cancers (Basel) 2020; 12:E983. [PMID: 32316187 PMCID: PMC7226421 DOI: 10.3390/cancers12040983] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/10/2020] [Accepted: 04/14/2020] [Indexed: 12/24/2022] Open
Abstract
While radiation therapy (RT) can improve cancer outcomes, it can lead to radiation-induced heart dysfunction (RIHD) in patients with thoracic tumors. This study examines the role of adaptive immune cells in RIHD. In Salt-Sensitive (SS) rats, image-guided whole-heart RT increased cardiac T-cell infiltration. We analyzed the functional requirement for these cells in RIHD using a genetic model of T- and B-cell deficiency (interleukin-2 receptor gamma chain knockout (IL2RG-/-)) and observed a complex role for these cells. Surprisingly, while IL2RG deficiency conferred protection from cardiac hypertrophy, it worsened heart function via echocardiogram three months after a large single RT dose, including increased end-systolic volume (ESV) and reduced ejection fraction (EF) and fractional shortening (FS) (p < 0.05). Fractionated RT, however, did not yield similarly increased injury. Our results indicate that T cells are not uniformly required for RIHD in this model, nor do they account for our previously reported differences in cardiac RT sensitivity between SS and SS.BN3 rats. The increasing use of immunotherapies in conjunction with traditional cancer treatments demands better models to study the interactions between immunity and RT for effective therapy. We present a model that reveals complex roles for adaptive immune cells in cardiac injury that vary depending on clinically relevant factors, including RT dose/fractionation, sex, and genetic background.
Collapse
Affiliation(s)
- Rachel A. Schlaak
- Department of Pharmacology & Toxicology, Medical College of Wisconsin, Milwaukee, WI 53226, USA;
| | - Anne Frei
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (A.F.); (B.L.F.); (T.G.); (J.L.P.)
| | - Brian L. Fish
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (A.F.); (B.L.F.); (T.G.); (J.L.P.)
| | - Leanne Harmann
- Department of Medicine, Division of Cardiovascular Medicine, Medical College of Wisconsin, Milwaukee WI 53226, USA;
| | - Tracy Gasperetti
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (A.F.); (B.L.F.); (T.G.); (J.L.P.)
| | - Jamie L. Pipke
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (A.F.); (B.L.F.); (T.G.); (J.L.P.)
| | - Yunguang Sun
- Department of Pathology, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (Y.S.); (H.R.)
- Cancer Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (M.J.F.); (B.N.G.)
| | - Hallgeir Rui
- Department of Pathology, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (Y.S.); (H.R.)
- Cancer Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (M.J.F.); (B.N.G.)
| | - Michael J. Flister
- Cancer Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (M.J.F.); (B.N.G.)
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Genomic Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Benjamin N. Gantner
- Cancer Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (M.J.F.); (B.N.G.)
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Medicine, Division of Endocrinology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Carmen Bergom
- Department of Pharmacology & Toxicology, Medical College of Wisconsin, Milwaukee, WI 53226, USA;
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (A.F.); (B.L.F.); (T.G.); (J.L.P.)
- Cancer Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (M.J.F.); (B.N.G.)
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
41
|
Wang J, Han B. Dysregulated CD4+ T Cells and microRNAs in Myocarditis. Front Immunol 2020; 11:539. [PMID: 32269577 PMCID: PMC7109299 DOI: 10.3389/fimmu.2020.00539] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 03/09/2020] [Indexed: 12/14/2022] Open
Abstract
Myocarditis is a polymorphic disease complicated with indeterminate etiology and pathogenesis, and represents one of the most challenging clinical problems lacking specific diagnosis and effective therapy. It is caused by a complex interplay of environmental and genetic factors, and causal links between dysregulated microribonucleic acids (miRNAs) and myocarditis have also been supported by recent epigenetic researches. Both dysregulated CD4+ T cells and miRNAs play critical roles in the pathogenesis of myocarditis, and the classic triphasic model of its pathogenesis consists of the acute infectious, subacute immune, and recovery/chronic myopathic phase. CD4+ T cells are key pathogenic factors underlying the development and progression of myocarditis, and the effector and regulatory subsets, respectively, promote and inhibit autoimmune responses. Furthermore, the reciprocal interplay of these subsets influences the pathogenesis as well. Dysregulated miRNAs along with their mRNA and protein targets have been identified in heart biopsies (intracellular miRNAs) and body fluids (circulating miRNAs) during myocarditis. These miRNAs show phase-dependent changes, and correlate with viral infection, immune status, fibrosis, destruction of cardiomyocytes, arrhythmias, cardiac functions, and outcomes. Thus, miRNAs are promising diagnostic markers and therapeutic targets in myocarditis. In this review, we review myocarditis with an emphasis on its pathogenesis, and present a summary of current knowledge of dysregulated CD4+ T cells and miRNAs in myocarditis.
Collapse
Affiliation(s)
- Jing Wang
- Department of Pediatric Cardiology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Bo Han
- Department of Pediatric Cardiology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| |
Collapse
|
42
|
Yeh TH, Lin JY. Acorus gramineusand and Euodia ruticarpa Steam Distilled Essential Oils Exert Anti-Inflammatory Effects Through Decreasing Th1/Th2 and Pro-/Anti-Inflammatory Cytokine Secretion Ratios In Vitro. Biomolecules 2020; 10:biom10020338. [PMID: 32093087 PMCID: PMC7072347 DOI: 10.3390/biom10020338] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/16/2020] [Accepted: 02/17/2020] [Indexed: 02/04/2023] Open
Abstract
To clarify the effects of steam distilled essential oils (SDEO) from herbs used in traditional Chinese medicine on immune functions, two potential herbs, Acorus gramineusand (AG) and Euodia ruticarpa (ER) cultivated in Taiwan, were selected to assess their immunomodulatory effects using mouse primary splenocytes and peritoneal macrophages. T helper type 1 lymphocytes (Th1) (IL-2), Th2 (IL-5), pro-inflammatory (TNF-α) and anti-inflammatory (IL-10) cytokines secreted by correspondent immune cells treated with SDEO samples were determined using enzyme-linked immunosorbent assay. The total amounts of potential phytochemicals, including total flavonoids, polyphenols and saponins, in these two selected SDEOs were measured and correlated with cytokine levels secreted by immune cells. Our results evidenced that ER SDEO is rich in total flavonoids, polyphenols and saponins. Treatments with AG and ER SDEO significantly (p < 0.05) increased IL-5/IL-2 (Th2/Th1) cytokine secretion ratios by splenocytes, suggesting that both AG and ER SDEO have the Th2-polarization property and anti-inflammatory potential. In addition, AG and ER SDEO, particularly ER SDEO, markedly decreased TNF-α/IL-10 secretion ratios by macrophages in the absence or presence of lipopolysaccharide (LPS), exhibiting substantial effects on spontaneous and LPS-induced inflammation. Significant correlations were found between the total polyphenols, flavonoids or saponins content in the two selected SDEOs and Th1/Th2 immune balance or anti-inflammatory ability in linear, non-linear or biphasic manners, respectively. In conclusion, our results suggest that AG and ER, particularly ER, SDEO have immunomodulatory potential in shifting the Th1/Th2 balance toward Th2 polarization in splenocytes and inhibiting inflammation in macrophages in the absence or presence of LPS.
Collapse
|
43
|
Qiu L, Zhang L, Qi R, Gao X, Chen H, Xiao T. miR-1291 Functions as a Potential Serum Biomarker for Bullous Pemphigoid. DISEASE MARKERS 2020; 2020:9505312. [PMID: 32399091 PMCID: PMC7201713 DOI: 10.1155/2020/9505312] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 12/02/2019] [Accepted: 12/03/2019] [Indexed: 12/28/2022]
Abstract
BACKGROUND Bullous pemphigoid (BP) is a common T helper 2- (Th2-) dominated autoimmune blistering skin disease with significant mortality. MicroRNAs (miRNAs), which are endogenous noncoding RNA molecules, have been reported to be potential biomarkers for some autoimmune diseases; however, to date, there exist no reports on serum expression profiles of miRNAs in BP patients. METHODS A RNA quantitative PCR- (qPCR-) based array was conducted on sera from 20 active BP patients and 20 healthy controls for screening of miRNAs. Significantly dysregulated miRNAs were validated with use of qPCR as performed on sera samples of 45 active BP patients and 60 healthy controls. Serum CCL17, anti-BP180, and anti-BP230 levels were measured with use of ELISA. RESULTS Relative baseline expression levels of serum miR-1291 were significantly upregulated in the 45 BP patients as compared with the 60 healthy controls (P < 0.001) and significantly decreased in the disease control stage (n = 13, P = 0.006). In addition, these baseline miR-1291 levels showed a significant positive correlation with the baseline levels of serum CCL17 (P < 0.001) and anti-BP180 (n = 38, P = 0.024). Like that observed for miR-1291, baseline levels of serum CCL17 were also significantly elevated in the 45 BP patients compared with the 60 healthy controls (P < 0.001) and significantly decreased in the disease control stage (n = 13, P = 0.002). However, for anti-BP180, baseline serum levels were significantly elevated in only 38 of the 45 BP patients and significantly decreased in the disease control stage (n = 10, P = 0.004). CONCLUSIONS Relative expression levels of serum miR-1291 can reflect disease activity of BP. miR-1291 may function as an important new serum biomarker for BP.
Collapse
Affiliation(s)
- Li Qiu
- Department of Dermatology, The First Hospital of China Medical University, National Health Commission Key Laboratory of Immunodermatology, Key Laboratory of Immunodermatology of Ministry of Education, Shenyang, Liaoning, China
| | - Liming Zhang
- Department of Dermatology, The First Hospital of China Medical University, National Health Commission Key Laboratory of Immunodermatology, Key Laboratory of Immunodermatology of Ministry of Education, Shenyang, Liaoning, China
| | - Ruiqun Qi
- Department of Dermatology, The First Hospital of China Medical University, National Health Commission Key Laboratory of Immunodermatology, Key Laboratory of Immunodermatology of Ministry of Education, Shenyang, Liaoning, China
| | - Xinghua Gao
- Department of Dermatology, The First Hospital of China Medical University, National Health Commission Key Laboratory of Immunodermatology, Key Laboratory of Immunodermatology of Ministry of Education, Shenyang, Liaoning, China
| | - Hongduo Chen
- Department of Dermatology, The First Hospital of China Medical University, National Health Commission Key Laboratory of Immunodermatology, Key Laboratory of Immunodermatology of Ministry of Education, Shenyang, Liaoning, China
| | - Ting Xiao
- Department of Dermatology, The First Hospital of China Medical University, National Health Commission Key Laboratory of Immunodermatology, Key Laboratory of Immunodermatology of Ministry of Education, Shenyang, Liaoning, China
| |
Collapse
|
44
|
Zhu X, Wang X, Wang Y, Zhao Y. Exosomal long non-coding RNA GAS5 suppresses Th1 differentiation and promotes Th2 differentiation via downregulating EZH2 and T-bet in allergic rhinitis. Mol Immunol 2019; 118:30-39. [PMID: 31841965 DOI: 10.1016/j.molimm.2019.11.009] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 11/19/2019] [Accepted: 11/25/2019] [Indexed: 12/18/2022]
Abstract
The imbalance of helper T cell (Th) 1/Th2 differentiation is involved in the development of allergic rhinitis (AR). Recent studies reveal the regulatory function of exosomes on Th1/Th2 differentiation. However, the key mediator in exosomes that modulate such response remains unclear. In this study, the expression of long-noncoding RNA GAS5 (LncGAS5) was detected in exosomes which were isolated from AR patient nasal mucus (AR-EXO) and ovalbumin (OVA)-stimulated nasal epithelial cells (OVA-EXO). Th1/Th2 differentiation was induced in naïve CD4+ T cells, and the percentage of IFN-γ expressing cells (Th1 cells) and IL-4 expressing cells (Th2 cells) was detected using flow cytometry. The result showed that LncGAS5 was upregulated in AR epithelial samples, AR-EXO, and OVA-EXO. The coincubation of AR-EXO and CD4+ T cells suppressed Th1 differentiation and promoted Th2 differentiation, which is mediated by LncGAS5 in AR-EXO. The LncGAS5 in AR-EXO inhibited transcription and expression of EZH2, and it also inhibited T-bet expression at mRNA and protein levels. The gain-of-function and loss-of-function experiments suggested that LncGAS5 mediates Th1/Th2 differentiation partly through downregulating T-bet and EZH2. In summary, our findings demonstrated that LncGAS5 in AR epithelium-derived exosomes is the key mediator in Th1/Th2 differentiation, providing a possible therapeutic target of AR.
Collapse
Affiliation(s)
- Xiaoyuan Zhu
- Department of Rhinology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | - Xueping Wang
- Department of Rhinology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | - Ying Wang
- Department of Rhinology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | - Yulin Zhao
- Department of Rhinology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
45
|
Gutiérrez S, Svahn SL, Johansson ME. Effects of Omega-3 Fatty Acids on Immune Cells. Int J Mol Sci 2019; 20:ijms20205028. [PMID: 31614433 PMCID: PMC6834330 DOI: 10.3390/ijms20205028] [Citation(s) in RCA: 272] [Impact Index Per Article: 54.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 09/27/2019] [Accepted: 10/02/2019] [Indexed: 12/14/2022] Open
Abstract
Alterations on the immune system caused by omega-3 fatty acids have been described for 30 years. This family of polyunsaturated fatty acids exerts major alterations on the activation of cells from both the innate and the adaptive immune system, although the mechanisms for such regulation are diverse. First, as a constitutive part of the cellular membrane, omega-3 fatty acids can regulate cellular membrane properties, such as membrane fluidity or complex assembly in lipid rafts. In recent years, however, a new role for omega-3 fatty acids and their derivatives as signaling molecules has emerged. In this review, we describe the latest findings describing the effects of omega-3 fatty acids on different cells from the immune system and their possible molecular mechanisms.
Collapse
Affiliation(s)
- Saray Gutiérrez
- Department of Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden.
| | - Sara L Svahn
- Department of Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden.
| | - Maria E Johansson
- Department of Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden.
| |
Collapse
|
46
|
Bros M, Haas K, Moll L, Grabbe S. RhoA as a Key Regulator of Innate and Adaptive Immunity. Cells 2019; 8:cells8070733. [PMID: 31319592 PMCID: PMC6678964 DOI: 10.3390/cells8070733] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/04/2019] [Accepted: 07/10/2019] [Indexed: 12/13/2022] Open
Abstract
RhoA is a ubiquitously expressed cytoplasmic protein that belongs to the family of small GTPases. RhoA acts as a molecular switch that is activated in response to binding of chemokines, cytokines, and growth factors, and via mDia and the ROCK signaling cascade regulates the activation of cytoskeletal proteins, and other factors. This review aims to summarize our current knowledge on the role of RhoA as a general key regulator of immune cell differentiation and function. The contribution of RhoA for the primary functions of innate immune cell types, namely neutrophils, macrophages, and conventional dendritic cells (DC) to (i) get activated by pathogen-derived and endogenous danger signals, (ii) migrate to sites of infection and inflammation, and (iii) internalize pathogens has been fairly established. In activated DC, which constitute the most potent antigen-presenting cells of the immune system, RhoA is also important for the presentation of pathogen-derived antigen and the formation of an immunological synapse between DC and antigen-specific T cells as a prerequisite to induce adaptive T cell responses. In T cells and B cells as the effector cells of the adaptive immune system Rho signaling is pivotal for activation and migration. More recently, mutations of Rho and Rho-modulating factors have been identified to predispose for autoimmune diseases and as causative for hematopoietic malignancies.
Collapse
Affiliation(s)
- Matthias Bros
- University Medical Center Mainz, Department of Dermatology, Langenbeckstraße 1, 55131 Mainz, Germany.
| | - Katharina Haas
- University Medical Center Mainz, Department of Dermatology, Langenbeckstraße 1, 55131 Mainz, Germany
| | - Lorna Moll
- University Medical Center Mainz, Department of Dermatology, Langenbeckstraße 1, 55131 Mainz, Germany
| | - Stephan Grabbe
- University Medical Center Mainz, Department of Dermatology, Langenbeckstraße 1, 55131 Mainz, Germany
| |
Collapse
|
47
|
Nakamoto A, Mitani M, Urayama K, Maki A, Nakamoto M, Shuto E, Nii Y, Sakai T. Nobiletin Enhances Induction of Antigen-Specific Immune Responses in BALB/c Mice Immunized with Ovalbumin. J Nutr Sci Vitaminol (Tokyo) 2019; 65:278-282. [PMID: 31257269 DOI: 10.3177/jnsv.65.278] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
We examined the effect of nobiletin (5,6,7,8,3',4'-hexamethoxyflavone) on immune response in ovalbumin (OVA)-immunized mice. Treatment with nobiletin increased OVA-specific IL-4 and IL-10 production. In addition, mice that received nobiletin showed higher levels of OVA-specific IgE, IgG and IgG1 production than did control mice. The antibody response to the thymus-independent antigen 2,4,6-trinitrophenyl-Ficoll was not different in the control and nobiletin groups, suggesting that nobiletin does not directly stimulate antibody production. An in vitro study showed that treatment with nobiletin enhanced the ability of antigen presentation of bone marrow-derived dendritic cells. The in vivo and in vitro results indicate that nobiletin regulates immune function.
Collapse
Affiliation(s)
- Akiko Nakamoto
- Department of Public Health and Applied Nutrition, Institute of Biomedical Sciences, Tokushima University Graduate School
| | - Mami Mitani
- Department of Public Health and Applied Nutrition, Institute of Biomedical Sciences, Tokushima University Graduate School
| | - Kana Urayama
- Department of Public Health and Applied Nutrition, Institute of Biomedical Sciences, Tokushima University Graduate School
| | - Akari Maki
- Department of Public Health and Applied Nutrition, Institute of Biomedical Sciences, Tokushima University Graduate School
| | - Mariko Nakamoto
- Department of Public Health and Applied Nutrition, Institute of Biomedical Sciences, Tokushima University Graduate School
| | - Emi Shuto
- Department of Public Health and Applied Nutrition, Institute of Biomedical Sciences, Tokushima University Graduate School
| | - Yoshitaka Nii
- Food and Biotechnology Division, Tokushima Prefectural Industrial Technology Center
| | - Tohru Sakai
- Department of Public Health and Applied Nutrition, Institute of Biomedical Sciences, Tokushima University Graduate School
| |
Collapse
|
48
|
Liu G, Zhang F, Wang R, London SD, London L. Salivary gland immunization via Wharton's duct activates differential T-cell responses within the salivary gland immune system. FASEB J 2019; 33:6011-6022. [PMID: 30817215 PMCID: PMC6463922 DOI: 10.1096/fj.201801993r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 01/15/2019] [Indexed: 12/16/2022]
Abstract
Salivary glands are a major component of the mucosal immune system that confer adaptive immunity to mucosal pathogens. As previously demonstrated, immunization of the submandibular gland with tissue culture-derived murine cytomegalovirus (tcMCMV) or replication-deficient adenoviruses expressing individual murine cytomegalovirus (MCMV) genes protected mice against a lethal MCMV challenge. Here, we report that salivary gland inoculation of BALB/cByJ mice with tcMCMV or recombinant adenoviruses differentially activates T helper (Th)1, -2, and -17 cells in the salivary glands vs. the associated lymph nodes. After inoculation with tcMCMV, lymphocytes from the submandibular gland preferentially express the transcription factor T-cell-specific T-box transcription factor (T-bet), which controls the expression of the hallmark Th1 cytokine, IFN-γ. Lymphocytes from the periglandular lymph nodes (PGLNs) express both T-bet and GATA-binding protein 3 (GATA3), which promotes the secretion of IL-4, -5, and -10 from Th2 cells. In contrast, after inoculation with replication-deficient adenoviruses, lymphocytes from the submandibular gland express T-bet, GATA3, and RAR-related orphan receptor γ, thymus-specific isoform (RORγt) (required for differentiation of Th17 cells) and forkhead box P3 (Foxp3) (required for the differentiation of regulatory T cells). Lymphocytes from the PGLNs were not activated. The differential induction of Th responses in the salivary gland vs. the PGLNs after inoculation with attenuated virus vs. a nominal protein antigen supports the use of the salivary as an alternative mucosal route for administering vaccines.-Liu, G., Zhang, F., Wang, R., London, S. D., London, L. Salivary gland immunization via Wharton's duct activates differential T-cell responses within the salivary gland immune system.
Collapse
Affiliation(s)
- Guangliang Liu
- Department of Oral Biology and Pathology, School of Dental Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Fangfang Zhang
- Department of Oral Biology and Pathology, School of Dental Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Ruixue Wang
- Department of Oral Biology and Pathology, School of Dental Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Steven D. London
- Department of Oral Biology and Pathology, School of Dental Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Lucille London
- Department of Oral Biology and Pathology, School of Dental Medicine, Stony Brook University, Stony Brook, New York, USA
| |
Collapse
|
49
|
Li Z, Peng A, Feng Y, Zhang X, Liu F, Chen C, Ye X, Qu J, Jin C, Wang M, Qiu H, Qi Y, Huang J, Yang Q. Detection of T lymphocyte subsets and related functional molecules in follicular fluid of patients with polycystic ovary syndrome. Sci Rep 2019; 9:6040. [PMID: 30988342 PMCID: PMC6465402 DOI: 10.1038/s41598-019-42631-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 04/04/2019] [Indexed: 12/18/2022] Open
Abstract
Immune responses play an important role in the pathogenesis of polycystic ovary syndrome (PCOS). However, the characteristics of T lymphocyte subsets in PCOS remain insufficiently understood. In this study, lymphocytes of follicular fluid (FF) were obtained from oocyte retrieval before in-vitro fertilization (IVF) in infertile women with or without PCOS. The levels of cluster of differentiation 25 (CD25), CD69, programmed death 1 (PD-1), interferon-γ (IFN-γ), interleukin 17A (IL-17A) and IL-10 in T lymphocytes were determined by flow cytometry. Our results showed that the percentage of FF CD8+ T cells was significantly decreased in infertile patients with PCOS (P < 0.05). Furthermore, the levels of CD69 and IFN-γ were significantly decreased and the level of PD-1 was increased in both CD4+ and CD8+ T cells from infertile patients with PCOS (P < 0.05). Moreover, the expression of PD-1 on CD4+ or CD8+ T cells was positively correlated with the estradiol (E2) levels in the serum and reversely correlated with the expression of IFN-γ in CD4+ or CD8+ T cells in infertile patients with PCOS. These results suggested that T cell dysfunction may be involved in the pathogenesis of PCOS.
Collapse
Affiliation(s)
- Zitao Li
- Reproductive medical center, Guangdong Women and Children Hospital, Guangzhou Medical University, 511400, Guangzhou, China
| | - Anping Peng
- Clinical laboratory, Traditional Chinese Medicine Hospital of Guangdong province, 510120, Guangzhou, China
| | - Yuanfa Feng
- Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, Guangzhou Medical University, 511436, Guangzhou, China
| | - Xiaona Zhang
- The Sixth Affiliated Hospital of Sun Yat-Sen University, 510655, Guangzhou, China
| | - Fenghua Liu
- Reproductive medical center, Guangdong Women and Children Hospital, Guangzhou Medical University, 511400, Guangzhou, China
| | - Chuangqi Chen
- Reproductive medical center, Guangdong Women and Children Hospital, Guangzhou Medical University, 511400, Guangzhou, China
| | - Xin Ye
- Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, Guangzhou Medical University, 511436, Guangzhou, China
| | - Jiale Qu
- Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, Guangzhou Medical University, 511436, Guangzhou, China
| | - Chenxi Jin
- Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, Guangzhou Medical University, 511436, Guangzhou, China
| | - Mei Wang
- Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, Guangzhou Medical University, 511436, Guangzhou, China
| | - Huaina Qiu
- Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, Guangzhou Medical University, 511436, Guangzhou, China
| | - Yanwei Qi
- Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, Guangzhou Medical University, 511436, Guangzhou, China
| | - Jun Huang
- Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, Guangzhou Medical University, 511436, Guangzhou, China. .,State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, 510120, Guangzhou, China.
| | - Quan Yang
- Reproductive medical center, Guangdong Women and Children Hospital, Guangzhou Medical University, 511400, Guangzhou, China. .,Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, Guangzhou Medical University, 511436, Guangzhou, China. .,State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, 510120, Guangzhou, China.
| |
Collapse
|
50
|
Chronic arsenic exposure in drinking water interferes with the balances of T lymphocyte subpopulations as well as stimulates the functions of dendritic cells in vivo. Int Immunopharmacol 2019; 71:115-131. [PMID: 30889423 DOI: 10.1016/j.intimp.2019.03.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 03/09/2019] [Accepted: 03/09/2019] [Indexed: 12/12/2022]
Abstract
The immunomodulatory properties of arsenic are nowadays supposed be associated with pathological injuries of this toxicant and the details have not been clarified. Our objective was to explore inflammation, differentiation of diverse T cell subsets, as well as the phenotypic molecules and functions of dendritic cells (DCs) by chronic arsenic exposure in vivo. We exposed different concentrations of arsenic (0, 0.1, 1 and 10 mg/L) in drinking water for 6 and 12 months in C57BL/6 mice. We first confirmed that low levels of arsenic induced excess inflammation evidenced by accumulation of macrophages and lymphocytes in bronchoalveolar lavage fluid (BALF), secretion of pro-inflammatory cytokine IL-1β in BALF and serum, as well as histological analysis. Flow cytometry analysis revealed that arsenic disturbed CD4/CD8 T-cell ratio in isolated pneumonocytes and splenocytes, as well as enhanced IFN-γ and reduced IL-4 in spleen. The mRNA expressions of transcription factors (T-bet, GATA3, ROR-γt) and cytokines (IFN-γ, IL-4, IL-10, IL-23, IL-22) showed the imbalanced Th1/Th2/Th17 differentiation in arsenic exposed lung and spleen. We further testified that arsenic enhanced the percentages of CD11c+ DCs, and promoted the expressions of antigen presentation molecule MHC II and cytokine IL-12, co-stimulatory molecules (CD86, CD80), and chemokine receptors (CCR7, CCR5) in vivo. Moreover, arsenic activated the expressions of immune-related MAPKs and NF-κB. Taken together, our study here demonstrated that chronic arsenic exposure could disrupt the immune homeostasis in vivo possibly by interfering with the differentiation of Th1/Th2/Th17 subsets as well as the function of DCs.
Collapse
|