1
|
Beli E, Yan Y, Moldovan L, Lydic TA, Krishman P, Tersey SA, Duan Y, Salazar TE, Dominguez JM, Nguyen DV, Cox A, Li Calzi S, Beam C, Mirmira RG, Evans-Molina C, Busik JV, Grant MB. Reshaping lipid metabolism with long-term alternate day feeding in type 2 diabetes mice. NPJ METABOLIC HEALTH AND DISEASE 2025; 3:3. [PMID: 39911696 PMCID: PMC11790504 DOI: 10.1038/s44324-024-00039-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 11/07/2024] [Indexed: 02/07/2025]
Abstract
Strategies to improve metabolic health include calorie restriction, time restricted eating and fasting several days per week or month. These approaches have demonstrated benefits for individuals experiencing obesity, metabolic syndrome, and prediabetes. However, their impact on established diabetes remains incompletely studied. The chronicity of type 2 diabetes (T2D) requires that interventions must be undertaken for extended periods of time, typically the entire lifetime of the individual. In this study, we examined the impact of intermittent fasting (IF), with an every-other-day protocol for a duration of 6 months in a murine model of T2D, the db/db (D) mouse on metabolism and liver steatosis. We compared D-IF mice with diabetic ad-libitum (AL; D-AL), control-IF (C-IF) and control-AL (C-AL) cohorts. We demonstrated using lipidomic, microbiome, metabolomic and liver transcriptomic studies that chronic IF improved carbohydrate utilization and glucose homeostasis without weight loss and reduced white adipose tissue inflammation and significantly impacted lipid metabolism in the liver. Microbiome studies and predicted functional analysis of gut microbiota showed that IF increased beneficial bacteria involved in sphingolipid (SL) metabolism. The metabolomic studies showed that oxidation of lipid species and ceramide levels were reduced in D-IF compared to D-AL. The liver lipidomic analysis and liver microarray confirmed a reduction in overall lipid content in D-IF mice compared to D-AL mice, especially in the feeding state as well as an overall reduction in oxidized lipids and ceramides. These studies support that long-term IF can improve glucose homeostasis and dramatically altered lipid metabolism in the absence of weight loss.
Collapse
Affiliation(s)
- Eleni Beli
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN USA
- Center for Diabetes and Metabolic Diseases, and the Herman B Wells
Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN USA
- Present Address: Wellcome-Wolfson Institute of Experimental Medicine, Queen’s University Belfast, Belfast, UK
| | - Yuanqing Yan
- Department of Surgery, The Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Leni Moldovan
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN USA
- Present Address: Department of Surgery, Indiana University School of Medicine, Indianapolis, IN USA
| | - Todd A. Lydic
- Department of Physiology, Michigan State University, East Lansing, MI USA
| | - Preethi Krishman
- Center for Diabetes and Metabolic Diseases, and the Herman B Wells
Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN USA
| | - Sarah A. Tersey
- Center for Diabetes and Metabolic Diseases, and the Herman B Wells
Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN USA
- Present Address: Department of Medicine, The University of Chicago, Chicago, IL USA
| | - Yaqian Duan
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN USA
| | - Tatiana E. Salazar
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN USA
| | - James M. Dominguez
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN USA
| | - Dung V. Nguyen
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN USA
| | - Abigail Cox
- Department of Comparative Pathobiology, College of Veterinary
Medicine, Purdue University, Lafayette, IN USA
| | - Sergio Li Calzi
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN USA
- Present Address: Department of Ophthalmology and Visual Science, University of Alabama Birmingham, Birmingham, AL USA
| | - Craig Beam
- Department of Biomedical Sciences, Homer Stryker MD School of
Medicine, Western Michigan University, Kalamazoo, MI USA
| | - Raghavendra G. Mirmira
- Center for Diabetes and Metabolic Diseases, and the Herman B Wells
Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN USA
- Present Address: Department of Medicine, The University of Chicago, Chicago, IL USA
| | - Carmella Evans-Molina
- Center for Diabetes and Metabolic Diseases, and the Herman B Wells
Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN USA
| | - Julia V. Busik
- Department of Physiology, Michigan State University, East Lansing, MI USA
- Present Address: Department of Biochemistry and Physiology, The university of Oklahoma Health Sciences, Oklahoma City, OK USA
| | - Maria B. Grant
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN USA
- Present Address: Department of Ophthalmology and Visual Science, University of Alabama Birmingham, Birmingham, AL USA
| |
Collapse
|
2
|
Dorweiler TF, Singh A, Ganju A, Lydic TA, Glazer LC, Kolesnick RN, Busik JV. Diabetic retinopathy is a ceramidopathy reversible by anti-ceramide immunotherapy. Cell Metab 2024; 36:1521-1533.e5. [PMID: 38718792 PMCID: PMC11222062 DOI: 10.1016/j.cmet.2024.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 03/08/2024] [Accepted: 04/17/2024] [Indexed: 05/16/2024]
Abstract
Diabetic retinopathy is a microvascular disease that causes blindness. Using acid sphingomyelinase knockout mice, we reported that ceramide generation is critical for diabetic retinopathy development. Here, in patients with proliferative diabetic retinopathy, we identify vitreous ceramide imbalance with pathologic long-chain C16-ceramides increasing and protective very long-chain C26-ceramides decreasing. C16-ceramides generate pro-inflammatory/pro-apoptotic ceramide-rich platforms on endothelial surfaces. To geo-localize ceramide-rich platforms, we invented a three-dimensional confocal assay and showed that retinopathy-producing cytokines TNFα and IL-1β induce ceramide-rich platform formation on retinal endothelial cells within seconds, with volumes increasing 2-logs, yielding apoptotic death. Anti-ceramide antibodies abolish these events. Furthermore, intravitreal and systemic anti-ceramide antibodies protect from diabetic retinopathy in standardized rodent ischemia reperfusion and streptozotocin models. These data support (1) retinal endothelial ceramide as a diabetic retinopathy treatment target, (2) early-stage therapy of non-proliferative diabetic retinopathy to prevent progression, and (3) systemic diabetic retinopathy treatment; and they characterize diabetic retinopathy as a "ceramidopathy" reversible by anti-ceramide immunotherapy.
Collapse
Affiliation(s)
- Tim F Dorweiler
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA; Vascular Biology Program, Boston Children's Hospital and Department of Surgery, Harvard Medical School, Boston, MA 02113, USA
| | - Arjun Singh
- Memorial Sloan Kettering Cancer Center, Molecular Pharmacology Program, Sloan Kettering Institute New York, New York, NY 10065, USA
| | - Aditya Ganju
- Memorial Sloan Kettering Cancer Center, Molecular Pharmacology Program, Sloan Kettering Institute New York, New York, NY 10065, USA
| | - Todd A Lydic
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA
| | - Louis C Glazer
- Vitreo-Retinal Associates, Grand Rapids, MI 49546, USA; Ophthalmology, Michigan State University, East Lansing, MI 48824, USA
| | - Richard N Kolesnick
- Memorial Sloan Kettering Cancer Center, Molecular Pharmacology Program, Sloan Kettering Institute New York, New York, NY 10065, USA.
| | - Julia V Busik
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA; Biochemistry and Physiology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| |
Collapse
|
3
|
Hachem M, Ahmmed MK, Nacir-Delord H. Phospholipidomics in Clinical Trials for Brain Disorders: Advancing our Understanding and Therapeutic Potentials. Mol Neurobiol 2024; 61:3272-3295. [PMID: 37981628 PMCID: PMC11087356 DOI: 10.1007/s12035-023-03793-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 10/31/2023] [Indexed: 11/21/2023]
Abstract
Phospholipidomics is a specialized branch of lipidomics that focuses on the characterization and quantification of phospholipids. By using sensitive analytical techniques, phospholipidomics enables researchers to better understand the metabolism and activities of phospholipids in brain disorders such as Alzheimer's and Parkinson's diseases. In the brain, identifying specific phospholipid biomarkers can offer valuable insights into the underlying molecular features and biochemistry of these diseases through a variety of sensitive analytical techniques. Phospholipidomics has emerged as a promising tool in clinical studies, with immense potential to advance our knowledge of neurological diseases and enhance diagnosis and treatment options for patients. In the present review paper, we discussed numerous applications of phospholipidomics tools in clinical studies, with a particular focus on the neurological field. By exploring phospholipids' functions in neurological diseases and the potential of phospholipidomics in clinical research, we provided valuable insights that could aid researchers and clinicians in harnessing the full prospective of this innovative practice and improve patient outcomes by providing more potent treatments for neurological diseases.
Collapse
Affiliation(s)
- Mayssa Hachem
- Department of Chemistry and Healthcare Engineering Innovation Center, Khalifa University of Sciences and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates.
| | - Mirja Kaizer Ahmmed
- Department of Fishing and Post-Harvest Technology, Chattogram Veterinary and Animal Sciences University, Chattogram, Bangladesh
- Riddet Institute, Massey University, Palmerston North, New Zealand
| | - Houda Nacir-Delord
- Department of Chemistry, Khalifa University of Sciences and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| |
Collapse
|
4
|
Gavrizi SZ, Hosseinzadeh P, Brush RS, Tytanic M, Eckart E, Peck JD, Craig LB, Diamond MP, Agbaga MP, Hansen KR. Sperm very long-chain polyunsaturated fatty acids: relation to semen parameters and live birth outcome in a multicenter trial. Fertil Steril 2023; 119:753-760. [PMID: 36681262 PMCID: PMC10176595 DOI: 10.1016/j.fertnstert.2023.01.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 12/23/2022] [Accepted: 01/11/2023] [Indexed: 01/21/2023]
Abstract
OBJECTIVE To determine whether the levels of sperm very long-chain polyunsaturated fatty acids (VLC-PUFAs) are correlated with sperm parameters and the outcome of live birth after conventional therapy for unexplained infertility. DESIGN Cohort analysis of the Reproductive Medicine Network's Assessment of Multiple Intrauterine Gestations from Ovarian Stimulation randomized controlled trial. SETTING Multicenter randomized controlled trial. PATIENTS Male partners from 185 couples with unexplained infertility who provided baseline semen samples for analysis. INTERVENTION We determined the levels of VLC-PUFAs in total lipid isolated from sperm membranes using liquid chromatography-mass spectrometry/mass spectrometry analyses. MAIN OUTCOME MEASURES Sperm concentration, motility, morphology, total motile count (TMC), and live birth after standard treatment for unexplained infertility. RESULTS Total VLC-PUFA percentage was positively correlated with sperm concentration (Spearman's rank correlation (rs) 0.56, P<.0001), TMC (rs = 0.40, P<.0001), and morphology (rs = 0.26, P=.0005). After adjustment for male body mass index, age, and race, a one-standard-deviation increase in the percentage of total VLC-PUFA was associated with a 62% increase in the geometric mean (GM) of sperm concentration (GM Ratio: 1.62 [95% confidence intervals {CI}: 1.45, 1.82]) and a 43% increase in the geometric mean of TMC (GM Ratio: 1.43 [95% CI; 1.24, 1.63]). Although no evidence of association was observed for sperm motility, a positive relationship was also observed between the percentage of total VLC-PUFA and sperm morphology [adjusted incidence rate ratio (IRR) for one-standard-deviation increase in total VLC-PUFA: 1.18 (95% CI; 1.02, 1.36)]. After adjustment for female age and treatment group, the probability of a live birth outcome was 72% more likely among those in the third tertile of hydroxylated VLC-PUFA percentage than in the first tertile (RR 1.72 [95% CI; 1.01, 2.94]). CONCLUSIONS The positive correlation between sperm VLC-PUFAs percentage and sperm parameters, as well as the significant association between hydroxylated VLC-PUFA percentage and the outcome of live birth, strongly suggest that this class of fatty liquid chromatography-mass spectrometry/mass spectrometry acids is essential for normal sperm structure and function.
Collapse
Affiliation(s)
- Sarah Z Gavrizi
- Department of Obstetrics and Gynecology, University of Oklahoma College of Medicine, Oklahoma City, Oklahoma
| | - Pardis Hosseinzadeh
- Department of Obstetrics and Gynecology, University of Oklahoma College of Medicine, Oklahoma City, Oklahoma.
| | - Richard Steven Brush
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma; Dean A. McGee Eye Institute, Oklahoma City, Oklahoma
| | - Madison Tytanic
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma; Dean A. McGee Eye Institute, Oklahoma City, Oklahoma
| | - Erin Eckart
- Department of Biostatistics and Epidemiology, University of Oklahoma College of Public Health, Oklahoma City, Oklahoma
| | - Jennifer D Peck
- Department of Obstetrics and Gynecology, University of Oklahoma College of Medicine, Oklahoma City, Oklahoma; Department of Biostatistics and Epidemiology, University of Oklahoma College of Public Health, Oklahoma City, Oklahoma
| | - LaTasha B Craig
- Department of Obstetrics and Gynecology, University of Oklahoma College of Medicine, Oklahoma City, Oklahoma
| | - Michael P Diamond
- Department of Obstetrics and Gynaecology, Augusta University, Augusta, Georgia
| | - Martin-Paul Agbaga
- Department of Cell Biology, University of Oklahoma College of Medicine, Oklahoma City, Oklahoma; Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma; Dean A. McGee Eye Institute, Oklahoma City, Oklahoma
| | - Karl R Hansen
- Department of Obstetrics and Gynecology, University of Oklahoma College of Medicine, Oklahoma City, Oklahoma
| |
Collapse
|
5
|
Bernardo-Colón A, Dong L, Abu-Asab M, Brush RS, Agbaga MP, Becerra SP. Ablation of pigment epithelium-derived factor receptor (PEDF-R/Pnpla2) causes photoreceptor degeneration. J Lipid Res 2023; 64:100358. [PMID: 36934843 PMCID: PMC10233210 DOI: 10.1016/j.jlr.2023.100358] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/03/2023] [Accepted: 03/04/2023] [Indexed: 03/19/2023] Open
Abstract
Photoreceptor cells express the patatin-like phospholipase domain-containing 2 (PNPLA2) gene that codes for pigment epithelium-derived factor receptor (PEDF-R) (also known as ATGL). PEDF-R exhibits phospholipase activity that mediates the neurotrophic action of its ligand PEDF. Because phospholipids are the most abundant lipid class in the retina, we investigated the role of PEDF-R in photoreceptors by generating CRISPR Pnpla2 knock-out mouse lines in a retinal degeneration-free background. Pnpla2-/- mice had undetectable retinal Pnpla2 gene expression and PEDF-R protein levels as assayed by RT-PCR and immunofluorescence, respectively. The photoreceptors of mice deficient in PEDF-R had deformities as examined by histology and transmission electron microscopy. Pnpla2 knockdown diminished the PLA2 enzymatic activity of PEDF-R in the retina. Lipidomic analyses revealed the accumulation of lysophosphatidyl choline-DHA and lysophosphatidyl ethanolamine-DHA in PEDF-R-deficient retinas, suggesting a possible causal link to photoreceptor dysfunction. Loss of PEDF-R decreased levels of rhodopsin, opsin, PKCα, and synaptophysin relative to controls. Pnpla2-/- photoreceptors had surface-exposed phosphatidylserine, and their nuclei were TUNEL positive and condensed, revealing an apoptotic onset. Paralleling its structural defects, PEDF-R deficiency compromised photoreceptor function in vivo as indicated by the attenuation of photoreceptor a- and b-waves in Pnpla2-/- and Pnpla2+/- mice relative to controls as determined by electroretinography. In conclusion, ablation of PEDF-R in mice caused alteration in phospholipid composition associated with malformation and malperformance of photoreceptors. These findings identify PEDF-R as an important component for photoreceptor structure and function, highlighting its role in phospholipid metabolism for retinal survival and its consequences.
Collapse
Affiliation(s)
- Alexandra Bernardo-Colón
- Section of Protein Structure and Function, Laboratory of Retinal Cell and Molecular Biology, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Lijin Dong
- Genetic Engineering Core, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Mones Abu-Asab
- Histopathology Core Facility, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Richard S Brush
- Department of Ophthalmology(,) and Dean A. McGee Eye Institute, Oklahoma City, OK, USA
| | - Martin-Paul Agbaga
- Department of Ophthalmology(,) and Dean A. McGee Eye Institute, Oklahoma City, OK, USA; Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - S Patricia Becerra
- Section of Protein Structure and Function, Laboratory of Retinal Cell and Molecular Biology, National Eye Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
6
|
Untargeted Analysis of Lipids Containing Very Long Chain Fatty Acids in Retina and Retinal Tight Junctions. Methods Mol Biol 2023; 2625:269-290. [PMID: 36653650 DOI: 10.1007/978-1-0716-2966-6_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Several recent studies suggest that C24-C38 very long chain fatty acids (VLCFA) play an important role in vision, and decreased levels of retina VLCFA have been associated with vision disorders including the onset and progression of diabetic retinopathy in animal models. Traditional methods for VLCFA analysis lack the sensitivity and specificity needed to enable detailed characterization of VLCFA incorporation into complex lipids in tissues and subcellular components. To assess whether decreased VLCFA in diabetic retina are directly implicated in diabetes-induced breakdown of the blood-retinal barrier, we demonstrated the utility of performing untargeted lipid analysis via Orbitrap high resolution/accurate mass MS and MS/MS-based shotgun lipidomics to identify structural lipids containing VLCFA substituents. This comprehensive and highly sensitive approach to untargeted lipid identification enabled us to characterize low-abundance sphingolipids containing very long chain fatty acids from isolated retinal tight junction complexes, as well as VLCFA-containing phospholipids in retinal tissues. To facilitate future biochemical and physiological studies of the roles of VLCFA in blood-retina barrier integrity and maintenance of vision, this chapter describes steps to isolate tight junction complexes from a cell culture model of the outer blood-retinal barrier and perform untargeted Orbitrap high resolution/accurate mass-based lipid analysis to identify VLCFA in tight junctions and retina tissue.
Collapse
|
7
|
Agbaga MP, McClellan ME, Elliott MH. Analysis of Lipids, Fatty Acid, and Cholesterol in Membrane Microdomains. Methods Mol Biol 2023; 2625:129-139. [PMID: 36653639 PMCID: PMC11238714 DOI: 10.1007/978-1-0716-2966-6_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The original concept that lipid and protein components are randomly distributed in cellular membranes has been challenged by evidence of compartmentalization of such components into discrete membrane microdomains (known as lipid rafts). The lipid microdomain hypothesis has generated significant controversy and rigorous inquiry to test the idea that such domains concentrate machinery to mediate cellular processes such as signaling, synaptic plasticity, and endocytosis. As such, a large number of studies have used biochemical, cell biological, and biophysical methodologies to define the composition of membrane microdomains in experimental contexts. Although biochemical preparation strategies are not without limitations (as discussed herein), the isolation of detergent-resistant and detergent-free membrane domains can provide important information about the segregation of lipids and proteins in membranes. In this chapter, we describe methodologies to isolate membranes from cell or tissue sources with biophysical/biochemical properties of membrane microdomains and also provide methods for subsequent classical or mass spectrometry-based lipid analytical approaches.
Collapse
Affiliation(s)
- Martin-Paul Agbaga
- Department of Ophthalmology/Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Mark E McClellan
- Department of Ophthalmology/Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Michael H Elliott
- Department of Ophthalmology/Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| |
Collapse
|
8
|
Liu H, Witzigreuter L, Sathiaseelan R, Agbaga MP, Brush RS, Stout MB, Zhu S. Obesity promotes lipid accumulation in mouse cartilage-A potential role of acetyl-CoA carboxylase (ACC) mediated chondrocyte de novo lipogenesis. J Orthop Res 2022; 40:2771-2779. [PMID: 35279877 PMCID: PMC9647658 DOI: 10.1002/jor.25322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 01/27/2022] [Accepted: 03/01/2022] [Indexed: 02/04/2023]
Abstract
Obesity promotes the development of osteoarthritis (OA). It is also well-established that obesity leads to excessive lipid deposition in nonadipose tissues, which often induces lipotoxicity. The objective of this study was to investigate changes in the levels of various lipids in mouse cartilage in the context of obesity and determine if chondrocyte de novo lipogenesis is altered. We used Oil Red O to determine the accumulation of lipid droplets in cartilage from mice fed high-fat diet (HFD) or low-fat diet (LFD). We further used mass spectrometry-based lipidomic analyses to quantify levels of different lipid species. Expression of genes involving in fatty acid (FA) uptake, synthesis, elongation, and desaturation were examined using quantitative polymerase chain reaction. To further study the potential mechanisms, we cultured primary mouse chondrocytes under high-glucose and high-insulin conditions to mimic the local microenvironment associated with obesity and subsequently examined the abundance of cellular lipid droplets. The acetyl-CoA carboxylase (ACC) inhibitor, ND-630, was added to the culture medium to examine the effect of inhibiting de novo lipogenesis on lipid accumulation in chondrocytes. When compared to the mice receiving LFD, the HFD group displayed more chondrocytes with visible intracellular lipid droplets. Significantly higher amounts of total FAs were also detected in the HFD group. Five out of six significantly upregulated FAs were ω-6 FAs, while the two significantly downregulated FAs were ω-3 FAs. Consequently, the HFD group displayed a significantly higher ω-6/ω-3 FA ratio. Ether linked phosphatidylcholine was also found to be higher in the HFD group. Fatty acid desaturase (Fad1-3), fatty acid-binding protein 4 (Fabp4), and fatty acid synthase (Fasn) transcripts were not found to be different between the treatment groups and fatty acid elongase (Elovl1-7) transcripts were undetectable in cartilage. Ceramide synthase 2 (Cers-2), the only transcript found to be changed in these studies, was significantly upregulated in the HFD group. In vitro, chondrocytes upregulated de novo lipogenesis when cultured under high-glucose, high-insulin conditions, and this observation was associated with the activation of ACC, which was attenuated by the addition of ND-630. This study provides the first evidence that lipid deposition is increased in cartilage with obesity and that this is associated with the upregulation of ACC-mediated de novo lipogenesis. This was supported by our observation that ACC inhibition ameliorated lipid accumulation in chondrocytes, thereby suggesting that ACC could potentially be targeted to treat obesity-associated OA.
Collapse
Affiliation(s)
- Huanhuan Liu
- Department of Biomedical Sciences, Ohio University, OH, 45701, USA
- Ohio Musculoskeletal and Neurological Institute (OMNI), Ohio University, OH, 45701, USA
| | - Luke Witzigreuter
- Department of Biological Sciences, Ohio University, Athens, OH, 45701, USA
| | - Roshini Sathiaseelan
- Department of Nutritional Sciences, University of Oklahoma Health Sciences Center, OK, 73117, USA
| | - Martin-Paul Agbaga
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, OK, 73104, USA
- Dean A. McGee Eye Institute, OK, 73104, USA
| | - Richard S. Brush
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, OK, 73104, USA
- Dean A. McGee Eye Institute, OK, 73104, USA
| | - Michael B. Stout
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Shouan Zhu
- Department of Biomedical Sciences, Ohio University, OH, 45701, USA
- Ohio Musculoskeletal and Neurological Institute (OMNI), Ohio University, OH, 45701, USA
| |
Collapse
|
9
|
Ezhilvendhan K, Sathiyamoorthy A, Prakash BJ, Bhava BS, Shenoy A. Association of Dyslipidemia with Diabetic Retinopathy in Type 2 Diabetes Mellitus Patients: A Hospital-Based Study. J Pharm Bioallied Sci 2021; 13:S1062-S1067. [PMID: 35017930 PMCID: PMC8686907 DOI: 10.4103/jpbs.jpbs_164_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 08/19/2021] [Accepted: 05/09/2021] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND Dyslipidemia is an important risk factor that can lead to the progression of retinopathy (DR). Diabetic dyslipidemia with low high-density lipoprotein (HDL) and increased triglycerides (TGs) are seen frequently among Type 2 diabetic mellitus. AIMS AND OBJECTIVES (1) To assess the level of serum lipids (total cholesterol, TGs, HDL, and low-density lipoprotein [LDL]) among type 2 diabetes patients. (2) To determine the association between serum lipid levels and DR. MATERIALS AND METHODS This was a hospital-based cross-sectional study conducted in a tertiary care hospital in Salem from September 2018 to March 2020 with a sample size of 200. Details of their diabetic history were obtained. Patients were evaluated for their HbA1C levels, hypertension, and lipid profile status. Early treatment DR Study system was used to classify DR. Low density lipoprotein cholesterol was calculated by Freidewald's equation. RESULTS This study showed a significant association among DR and LDL cholesterol. DR with raised LDL, TGs levels, and lowered HDL on adjusted analysis. There was strong association between DR and serum cholesterol in unadjusted analysis; however, there was no association when adjusted for factors such as age, gender, duration of diabetes, and glycemic control. Majority of participants were males (57.5%) with a male: female = 1.35:1. The mean age of the patients in our study was 57.8 (5.8) years and 54.4 (6.6) years in patients with DR and patients without retinopathy, and it was found to be statistically significant. There was a significant difference in the duration of diabetes with the presence of DR and the patients with DR were having longer duration of diabetes (7.9 vs. 6.2 years; P < 0.001). Moderate nonproliferative diabetic retinopathy (NPDR) was found to be present in 41.0% of eyes followed by mild NPDR (20.5% eyes). Proliferative diabetic retinopathy was present only in 9.5%, and the severity of retinopathy was associated only with the HDL level, and there was no association found with total cholesterol, TG, and LDL cholesterol. CONCLUSION A statistically significant correlation was found between dyslipidemia and the severity of DR among Type 2 diabetic patients.
Collapse
Affiliation(s)
- Kalaimamani Ezhilvendhan
- Professor and HOD, Department of ophthalmology,Vinayaka mission's kirupananda variyar medical college, salem, India
| | - Anitha Sathiyamoorthy
- Final year postgraduate, Department of ophthalmology, Vinayaka mission's medical college and hospital, Salem, India,Address for correspondence: Dr. Anitha Sathiyamoorthy, Final Year Postgraduate, Department of Ophthalmology, Vinayaka Mission Kirupananda Variyar Medical College, Salem, Tamil Nadau, India. E-mail:
| | - B. Jey Prakash
- Associate Professor, Department of ophthalmology, Vinayaka mission's kirupananda variyar medical college, salem, India
| | - B. Saravana Bhava
- Professor, Department of ophthalmology, Vinayaka mission's kirupananda variyar medical college, salem, India
| | - Arjun Shenoy
- Final year, Postgraduate, Vinayaka missions kirupanada variayar medical college, salem, India
| |
Collapse
|
10
|
HK2 Mediated Glycolytic Metabolism in Mouse Photoreceptors Is Not Required to Cause Late Stage Age-Related Macular Degeneration-Like Pathologies. Biomolecules 2021; 11:biom11060871. [PMID: 34208233 PMCID: PMC8230848 DOI: 10.3390/biom11060871] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/01/2021] [Accepted: 06/09/2021] [Indexed: 12/12/2022] Open
Abstract
Age-related macular degeneration (AMD) is a multifactorial disease of unclear etiology. We previously proposed that metabolic adaptations in photoreceptors (PRs) play a role in disease progression. We mimicked these metabolic adaptations in mouse PRs through deletion of the tuberous sclerosis complex (TSC) protein TSC1. Here, we confirm our previous findings by deletion of the other complex protein, namely TSC2, in rod photoreceptors. Similar to deletion of Tsc1, mice with deletion of Tsc2 in rods develop AMD-like pathologies, including accumulation of apolipoproteins, migration of microglia, geographic atrophy, and neovascular pathologies. Subtle differences between the two mouse models, such as a significant increase in microglia activation with loss of Tsc2, were seen as well. To investigate the role of altered glucose metabolism in disease pathogenesis, we generated mice with simulation deletions of Tsc2 and hexokinase-2 (Hk2) in rods. Although retinal lactate levels returned to normal in mice with Tsc2-Hk2 deletion, AMD-like pathologies still developed. The data suggest that the metabolic adaptations in PRs that cause AMD-like pathologies are independent of HK2-mediated aerobic glycolysis.
Collapse
|
11
|
The Feasibility of Studying Metabolites in PICU Multi-Organ Dysfunction Syndrome Patients over an 8-Day Course Using an Untargeted Approach. CHILDREN-BASEL 2021; 8:children8020151. [PMID: 33670443 PMCID: PMC7922853 DOI: 10.3390/children8020151] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 02/07/2021] [Accepted: 02/11/2021] [Indexed: 12/14/2022]
Abstract
Metabolites are generated from critical biological functions and metabolism. This pediatric study reviewed plasma metabolites in patients suffering from multi-organ dysfunction syndrome (MODS) in the pediatric intensive care unit (PICU) using an untargeted metabolomics approach. Patients meeting the criteria for MODS were screened for eligibility and consented (n = 24), and blood samples were collected at baseline, 72 h, and 8 days; control patients (n = 4) presented for routine sedation in an outpatient setting. A subset of MODS patients (n = 8) required additional support with veno-atrial extracorporeal membrane oxygenation (VA-ECMO) therapy. Metabolites from thawed blood plasma were determined from ion pairing reversed-phase liquid chromatography–mass spectrometry (LC-MS) analysis. Chromatographic peak alignment, identification, relative quantitation, and statistical and bioinformatics evaluation were performed using MAVEN and MetaboAnalyst 4.0. Metabolite analysis revealed 115 peaks per sample. From the partial least squares-discriminant analysis (PLS-DA) with variance of importance (VIP) scores above ≥2.0, 7 dynamic metabolites emerged over the three time points: tauro-chenodeoxycholic acid (TCDCA), hexose, p-hydroxybenzoate, hydroxyphenylacetic acid (HPLA), 2_3-dihydroxybenzoic acid, 2-keto-isovalerate, and deoxyribose phosphate. After Bonferroni adjustment for repeated measures, hexose and p-hydroxybenzoate were significant at one time point or more. Kendall’s tau-b test was used for internal validation of creatinine. Metabolites may be benign or significant in describing a patient’s pathophysiology and require operator interpretation.
Collapse
|
12
|
The Elovl4 Spinocerebellar Ataxia-34 Mutation 736T>G (p.W246G) Impairs Retinal Function in the Absence of Photoreceptor Degeneration. Mol Neurobiol 2020; 57:4735-4753. [PMID: 32780351 PMCID: PMC7515967 DOI: 10.1007/s12035-020-02052-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 07/30/2020] [Indexed: 02/08/2023]
Abstract
Elongation of very long chain fatty acids-4 (ELOVL4) is essential for synthesis of very long chain polyunsaturated and saturated fatty acids (VLC-PUFA and VLC-SFA, respectively) of chain length greater than 26 carbons. Mutations in the ELOVL4 gene cause several distinct neurodegenerative diseases including Stargardt-like macular dystrophy (STGD3), spinocerebellar ataxia 34 (SCA34), and a neuro-ichthyotic syndrome with severe seizures and spasticity, as well as erythrokeratitis variabilis (EKV), a skin disorder. However, the relationship between ELOVL4 mutations, its VLC-PUFA and VLC-SFA products, and specific neurological symptoms remains unclear. We generated a knock-in rat line (SCA34-KI) that expresses the 736T>G (p.W246G) form of ELOVL4 that causes human SCA34. Lipids were analyzed by gas chromatography and mass spectrometry. Retinal function was assessed using electroretinography. Retinal integrity was assessed by histology, optical coherence tomography, and immunolabeling. Analysis of retina and skin lipids showed that the W246G mutation selectively impaired synthesis of VLC-SFA, but not VLC-PUFA. Homozygous SCA34-KI rats showed reduced ERG a- and b-wave amplitudes by 90 days of age, particularly for scotopic responses. Anatomical analyses revealed no indication of neurodegeneration in heterozygote or homozygote SCA34-KI rats out to 6-7 months of age. These studies reveal a previously unrecognized role for VLC-SFA in regulating retinal function, particularly transmission from photoreceptors to the inner retina, in the absence of neurodegeneration. Furthermore, these findings suggest that the tissue specificity and symptoms associated with disease-causing ELOVL4 mutations likely arise from selective differences in the ability of the mutant ELOVL4 enzymes to support synthesis of VLC-PUFA and/or VLC-SFA.
Collapse
|
13
|
Craig LB, Brush RS, Sullivan MT, Zavy MT, Agbaga MP, Anderson RE. Decreased very long chain polyunsaturated fatty acids in sperm correlates with sperm quantity and quality. J Assist Reprod Genet 2019; 36:1379-1385. [PMID: 31073727 DOI: 10.1007/s10815-019-01464-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 04/26/2019] [Indexed: 12/15/2022] Open
Abstract
PURPOSE To determine if levels of very long chain polyunsaturated fatty acids (VLC-PUFA; ≥ 28 carbons;4-6 double bonds) in human sperm correlate with sperm quantity and quality as determined by a complete semen analysis. METHODS Ejaculates from 70 men underwent a complete semen analysis, which included volume, count, motility, progression, agglutination, viscosity, morphology, and pH. For lipid analysis, sperm were pelleted to remove the semen. Lipids were extracted from the cell pellet and methyl esters of total lipids analyzed by gas chromatography. The sphingolipids were enriched and sphingomyelin (SM) species measured using tandem mass spectrometry. Pair-wise Pearson correlation and linear regression analysis compared percent VLC-PUFA-SM and percent docosahexaenoic acid (DHA) to results from the semen analysis. RESULTS VLC-PUFA-SM species having 28-34 carbon fatty acids were detected in sperm samples, with 28 and 30 carbon VLC-PUFA as most the abundant. The sum of all VLC-PUFA-SM species comprised 0 to 6.1% of the overall SM pool (mean 2.1%). Pair-wise Pearson analyses showed that lower levels of VLC-PUFA-SM positively correlated with lower total motile count (0.68) and lower total count (0.67). Total VLC-PUFA-SM and mole % DHA (22:6n3) were not strongly correlated (- 0.24). Linear regression analysis confirmed these findings. CONCLUSION This study revealed a positive correlation between the levels of VLC-PUFA with sperm count and total motile count and suggests that both sperm quality and quantity may depend on the presence of VLC-PUFA. The lack of correlation between VLC-PUFA and DHA suggests that low VLC-PUFA levels do not result from inadequate PUFA precursors.
Collapse
Affiliation(s)
- LaTasha B Craig
- Section of Reproductive Endocrinology & Infertility, Department of Obstetrics and Gynecology, College of Medicine, University of Oklahoma Health Sciences Center, PO Box 26901, AAT 2400, Oklahoma City, OK, 73126, USA.
| | - Richard S Brush
- Department of Ophthalmology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA.,Dean A. McGee Eye Institute, Oklahoma City, OK, 73104, USA
| | - Michael T Sullivan
- Department of Ophthalmology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA.,Dean A. McGee Eye Institute, Oklahoma City, OK, 73104, USA
| | - Michael T Zavy
- Section of Reproductive Endocrinology & Infertility, Department of Obstetrics and Gynecology, College of Medicine, University of Oklahoma Health Sciences Center, PO Box 26901, AAT 2400, Oklahoma City, OK, 73126, USA
| | - Martin-Paul Agbaga
- Department of Ophthalmology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA.,Dean A. McGee Eye Institute, Oklahoma City, OK, 73104, USA.,Department of Cell Biology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Robert E Anderson
- Department of Ophthalmology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA.,Dean A. McGee Eye Institute, Oklahoma City, OK, 73104, USA.,Department of Cell Biology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| |
Collapse
|
14
|
De Vita T, Albani C, Realini N, Migliore M, Basit A, Ottonello G, Cavalli A. Inhibition of Serine Palmitoyltransferase by a Small Organic Molecule Promotes Neuronal Survival after Astrocyte Amyloid Beta 1-42 Injury. ACS Chem Neurosci 2019; 10:1627-1635. [PMID: 30481470 DOI: 10.1021/acschemneuro.8b00556] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Alzheimer's disease (AD) is a slow-progressing disease of the brain characterized by symptoms such as impairment of memory and other cognitive functions. AD is associated with an inflammatory process that involves astrocytes and microglial cells, among other components. Astrocytes are the most abundant type of glial cells in the central nervous system (CNS). They are involved in inducing neuroinflammation. The present study uses astrocyte-neuron cocultures to investigate how ARN14494, a serine palmitoyltransferase (SPT) inhibitor, affects the CNS in terms of anti-inflammation and neuroprotection. SPT is the first rate-limiting enzyme in the de novo ceramide synthesis pathway. Consistent evidence suggests that ceramide is increased in AD brain patients. After β-amyloid 1-42 injury in an in vitro model of AD, ARN14494 inhibits SPT activity and the synthesis of long-chain ceramides and dihydroceramides that are involved in AD progression. In mouse primary cortical astrocytes, ARN14494 prevents the synthesis of proinflammatory cytokines TNFα and IL1β, growth factor TGFβ1, and oxidative stress-related enzymes iNOS and COX2. ARN14494 also exerts neuroprotective properties in primary cortical neurons. ARN14494 decreases neuronal death and caspase-3 activation in neurons, when the neuroinflammation is attenuated in astrocytes. These findings suggest that ARN14494 protects neurons from β-amyloid 1-42 induced neurotoxicity through a variety of mechanisms, including antioxidation, antiapoptosis, and anti-inflammation. SPT inhibition could therefore be a safe therapeutic strategy for ameliorating the pathology of Alzheimer's disease.
Collapse
Affiliation(s)
- Teresa De Vita
- Computational and Chemical Biology, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Clara Albani
- Drug Discovery and Development, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Natalia Realini
- D3 Validation, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Marco Migliore
- Drug Discovery and Development, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Abdul Basit
- Analytical Chemistry Facility, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Giuliana Ottonello
- Analytical Chemistry Facility, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Andrea Cavalli
- Computational and Chemical Biology, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
- Dipartimento di Farmacia e Biotecnologie, Università di Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| |
Collapse
|
15
|
Chen J, Panthi S. Lipidomic analysis of meibomian gland secretions from the tree shrew: Identification of candidate tear lipids critical for reducing evaporation. Chem Phys Lipids 2019; 220:36-48. [PMID: 30660743 DOI: 10.1016/j.chemphyslip.2019.01.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 01/08/2019] [Accepted: 01/14/2019] [Indexed: 02/07/2023]
Abstract
Lipids secreted from the meibomian glands form the outermost layer of the tear film and reduce its evaporation. Abnormal changes in the quantities or compositions of lipids present in meibomian gland secretions (meibum) are known to lead to dry eye disease, although the underlying mechanism is not yet well understood. The tree shrew is the non-primate mammal most closely related to humans. To assess the utility of the tree shrew as a model for the study of dry eye disease, we analyzed the lipid profile of tree shrew meibum using an untargeted ESI-MS and MS/MSall shotgun approach. The resulting lipidome shared many similarities with human meibum, while displaying some interesting differences. For example, several classes of lipids, including wax esters, cholesteryl esters, diesters, and (O-acyl)-ω-hydroxy fatty acids, had relatively longer chain lengths in tree shrew meibum. These increases in length may promote more effective reduction of tear evaporation in the tree shrew, which likely underlies the much longer blinking interval of this mammal. Our results suggest that the tree shrew could be an effective model for the study of dry eye.
Collapse
Affiliation(s)
- Jianzhong Chen
- Department of Optometry and Vision Science, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
| | - Shyam Panthi
- Department of Optometry and Vision Science, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| |
Collapse
|
16
|
Agbaga MP, Merriman DK, Brush RS, Lydic TA, Conley SM, Naash MI, Jackson S, Woods AS, Reid GE, Busik JV, Anderson RE. Differential composition of DHA and very-long-chain PUFAs in rod and cone photoreceptors. J Lipid Res 2018; 59:1586-1596. [PMID: 29986998 PMCID: PMC6121944 DOI: 10.1194/jlr.m082495] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 06/28/2018] [Indexed: 11/20/2022] Open
Abstract
Long-chain PUFAs (LC-PUFAs; C20-C22; e.g., DHA and arachidonic acid) are highly enriched in vertebrate retina, where they are elongated to very-long-chain PUFAs (VLC-PUFAs; C 28) by the elongation of very-long-chain fatty acids-4 (ELOVL4) enzyme. These fatty acids play essential roles in modulating neuronal function and health. The relevance of different lipid requirements in rods and cones to disease processes, such as age-related macular degeneration, however, remains unclear. To better understand the role of LC-PUFAs and VLC-PUFAs in the retina, we investigated the lipid compositions of whole retinas or photoreceptor outer segment (OS) membranes in rodents with rod- or cone-dominant retinas. We analyzed fatty acid methyl esters and the molecular species of glycerophospholipids (phosphatidylcholine, phosphatidylethanolamine, and phosphatidylserine) by GC-MS/GC-flame ionization detection and ESI-MS/MS, respectively. We found that whole retinas and OS membranes in rod-dominant animals compared with cone-dominant animals had higher amounts of LC-PUFAs and VLC-PUFAs. Compared with those of rod-dominant animals, retinas and OS membranes from cone-dominant animals also had about 2-fold lower levels of di-DHA (22:6/22:6) molecular species of glycerophospholipids. Because PUFAs are necessary for optimal G protein-coupled receptor signaling in rods, these findings suggest that cones may not have the same lipid requirements as rods.
Collapse
Affiliation(s)
- Martin-Paul Agbaga
- Departments of Ophthalmology University of Oklahoma Health Sciences Center, Oklahoma City, OK; Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK; Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK; Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK; Dean McGee Eye Institute, Oklahoma City, OK.
| | - Dana K Merriman
- McPherson Eye Research Institute, University of Wisconsin Oshkosh, Oshkosh, WI
| | - Richard S Brush
- Departments of Ophthalmology University of Oklahoma Health Sciences Center, Oklahoma City, OK; Dean McGee Eye Institute, Oklahoma City, OK
| | - Todd A Lydic
- Department of Physiology, Michigan State University, East Lansing, MI
| | - Shannon M Conley
- Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Muna I Naash
- Department of Biomedical Engineering, University of Houston, Houston, TX
| | - Shelley Jackson
- National Institute on Drug Abuse Intramural Research Program Structural Biology Unit, Baltimore, MD
| | - Amina S Woods
- National Institute on Drug Abuse Intramural Research Program Structural Biology Unit, Baltimore, MD
| | - Gavin E Reid
- School of Chemistry and Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Julia V Busik
- Department of Physiology, Michigan State University, East Lansing, MI
| | - Robert E Anderson
- Departments of Ophthalmology University of Oklahoma Health Sciences Center, Oklahoma City, OK; Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK; Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK; Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK; Dean McGee Eye Institute, Oklahoma City, OK
| |
Collapse
|
17
|
Kady NM, Liu X, Lydic TA, Syed MH, Navitskaya S, Wang Q, Hammer SS, O'Reilly S, Huang C, Seregin SS, Amalfitano A, Chiodo VA, Boye SL, Hauswirth WW, Antonetti DA, Busik JV. ELOVL4-Mediated Production of Very Long-Chain Ceramides Stabilizes Tight Junctions and Prevents Diabetes-Induced Retinal Vascular Permeability. Diabetes 2018; 67:769-781. [PMID: 29362226 PMCID: PMC5860862 DOI: 10.2337/db17-1034] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 01/08/2018] [Indexed: 12/25/2022]
Abstract
Tight junctions (TJs) involve close apposition of transmembrane proteins between cells. Although TJ proteins have been studied in detail, the role of lipids is largely unknown. We addressed the role of very long-chain (VLC ≥26) ceramides in TJs using diabetes-induced loss of the blood-retinal barrier as a model. VLC fatty acids that incorporate into VLC ceramides are produced by elongase elongation of very long-chain fatty acids protein 4 (ELOVL4). ELOVL4 is significantly reduced in the diabetic retina. Overexpression of ELOVL4 significantly decreased basal permeability, inhibited vascular endothelial growth factor (VEGF)- and interleukin-1β-induced permeability, and prevented VEGF-induced decrease in occludin expression and border staining of TJ proteins ZO-1 and claudin-5. Intravitreal delivery of AAV2-hELOVL4 reduced diabetes-induced increase in vascular permeability. Ultrastructure and lipidomic analysis revealed that ω-linked acyl-VLC ceramides colocalize with TJ complexes. Overall, normalization of retinal ELOVL4 expression could prevent blood-retinal barrier dysregulation in diabetic retinopathy through an increase in VLC ceramides and stabilization of TJs.
Collapse
Affiliation(s)
- Nermin M Kady
- Department of Physiology, Michigan State University, East Lansing, MI
| | - Xuwen Liu
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI
| | - Todd A Lydic
- Department of Physiology, Michigan State University, East Lansing, MI
| | - Meesum H Syed
- Department of Physiology, Michigan State University, East Lansing, MI
| | | | - Qi Wang
- Department of Physiology, Michigan State University, East Lansing, MI
| | - Sandra S Hammer
- Department of Physiology, Michigan State University, East Lansing, MI
| | - Sandra O'Reilly
- Department of Physiology, Michigan State University, East Lansing, MI
| | - Chao Huang
- Department of Physiology, Michigan State University, East Lansing, MI
| | - Sergey S Seregin
- Department of Microbiology & Molecular Genetics, Michigan State University, East Lansing, MI
| | - Andrea Amalfitano
- Department of Microbiology & Molecular Genetics, Michigan State University, East Lansing, MI
| | - Vince A Chiodo
- Ophthalmology and Molecular Genetics and Retina Gene Therapy Group, University of Florida, Gainesville, FL
| | - Sanford L Boye
- Ophthalmology and Molecular Genetics and Retina Gene Therapy Group, University of Florida, Gainesville, FL
| | - William W Hauswirth
- Ophthalmology and Molecular Genetics and Retina Gene Therapy Group, University of Florida, Gainesville, FL
| | - David A Antonetti
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI
| | - Julia V Busik
- Department of Physiology, Michigan State University, East Lansing, MI
| |
Collapse
|
18
|
Messias MCF, Mecatti GC, Priolli DG, de Oliveira Carvalho P. Plasmalogen lipids: functional mechanism and their involvement in gastrointestinal cancer. Lipids Health Dis 2018. [PMID: 29514688 PMCID: PMC5842581 DOI: 10.1186/s12944-018-0685-9] [Citation(s) in RCA: 129] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The plasmalogens are a class of glycerophospholipids which contain a vinyl-ether and an ester bond at the sn-1 and sn-2 positions, respectively, in the glycerol backbone. They constitute 10 mol% of the total mass of phospholipids in humans, mainly as membrane structure components. Plasmalogens are important for the organization and stability of lipid raft microdomains and cholesterol-rich membrane regions involved in cellular signaling. In addition to their structural roles, a subset of ether lipids are thought to function as endogenous antioxidants and emerging studies suggest that they are involved in cell differentiation and signaling pathways. Although the clinical significance of plasmalogens is linked to peroxisomal disorders, the pathophysiological roles and their possible metabolic pathways are not fully understood since they present unique structural attributes for the different tissue types. Studies suggest that changes in plasmalogen metabolism may contribute to the development of various types of cancer. Here, we review the molecular characteristics of plasmalogens in order to significantly increase our understanding of the plasmalogen molecule and its involvement in gastrointestinal cancers as well as other types of cancers.
Collapse
Affiliation(s)
- Márcia Cristina Fernandes Messias
- Laboratory of Multidisciplinary Research, São Francisco University, USF, São Francisco de Assis Avenue, 218, Bragança Paulista, SP, 12916-900, Brazil.
| | - Giovana Colozza Mecatti
- Laboratory of Multidisciplinary Research, São Francisco University, USF, São Francisco de Assis Avenue, 218, Bragança Paulista, SP, 12916-900, Brazil
| | - Denise Gonçalves Priolli
- Laboratory of Multidisciplinary Research, São Francisco University, USF, São Francisco de Assis Avenue, 218, Bragança Paulista, SP, 12916-900, Brazil
| | - Patrícia de Oliveira Carvalho
- Laboratory of Multidisciplinary Research, São Francisco University, USF, São Francisco de Assis Avenue, 218, Bragança Paulista, SP, 12916-900, Brazil.
| |
Collapse
|
19
|
Haramija M. Software ion scan functions in analysis of glycomic and lipidomic MS/MS datasets. JOURNAL OF MASS SPECTROMETRY : JMS 2018; 53:264-277. [PMID: 29285818 DOI: 10.1002/jms.4059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 12/14/2017] [Accepted: 12/18/2017] [Indexed: 06/07/2023]
Abstract
Hardware ion scan functions unique to tandem mass spectrometry (MS/MS) mode of data acquisition, such as precursor ion scan (PIS) and neutral loss scan (NLS), are important for selective extraction of key structural data from complex MS/MS spectra. However, their software counterparts, software ion scan (SIS) functions, are still not regularly available. Software ion scan functions can be easily coded for additional functionalities, such as software multiple precursor ion scan, software no ion scan, and software variable ion scan functions. These are often necessary, since they allow more efficient analysis of complex MS/MS datasets, often encountered in glycomics and lipidomics. Software ion scan functions can be easily coded by using modern script languages and can be independent of instrument manufacturer. Here we demonstrate the utility of SIS functions on a medium-size glycomic MS/MS dataset. Knowledge of sample properties, as well as of diagnostic and conditional diagnostic ions crucial for data analysis, was needed. Based on the tables constructed with the output data from the SIS functions performed, a detailed analysis of a complex MS/MS glycomic dataset could be carried out in a quick, accurate, and efficient manner. Glycomic research is progressing slowly, and with respect to the MS experiments, one of the key obstacles for moving forward is the lack of appropriate bioinformatic tools necessary for fast analysis of glycomic MS/MS datasets. Adding novel SIS functionalities to the glycomic MS/MS toolbox has a potential to significantly speed up the glycomic data analysis process. Similar tools are useful for analysis of lipidomic MS/MS datasets as well, as will be discussed briefly.
Collapse
Affiliation(s)
- Marko Haramija
- Department of Biotechnology, University of Rijeka, Radmile Matejčić 2, 51 000, Rijeka, Croatia
| |
Collapse
|
20
|
Pyruvate kinase M2 regulates photoreceptor structure, function, and viability. Cell Death Dis 2018; 9:240. [PMID: 29445082 PMCID: PMC5833680 DOI: 10.1038/s41419-018-0296-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 12/18/2017] [Accepted: 12/27/2017] [Indexed: 01/30/2023]
Abstract
Pyruvate kinase M2 (PKM2) is a glycolytic enzyme that is expressed in cancer cells. Its role in tumor metabolism is not definitively established, but investigators have suggested that regulation of PKM2 activity can cause accumulation of glycolytic intermediates and increase flux through the pentose phosphate pathway. Recent evidence suggests that PKM2 also may have non-metabolic functions, including as a transcriptional co-activator in gene regulation. We reported previously that PKM2 is abundant in photoreceptor cells in mouse retinas. In the present study, we conditionally deleted PKM2 (rod-cre PKM2-KO) in rod photoreceptors and found that the absence of PKM2 causes increased expression of PKM1 in rods. Analysis of metabolic flux from U-13C glucose shows that rod-cre PKM2-KO retinas accumulate glycolytic intermediates, consistent with an overall reduction in the amount of pyruvate kinase activity. Rod-cre PKM2-KO mice also have an increased NADPH availability could favor lipid synthesis, but we found no difference in phospholipid synthesis between rod-cre PKM2 KO and PKM2-positive controls. As rod-cre PKM2-KO mice aged, we observed a significant loss of rod function, reduced thickness of the photoreceptor outer segment layer, and reduced expression of photoreceptor proteins, including PDE6β. The rod-cre PKM2-KO retinas showed greater TUNEL staining than wild-type retinas, indicating a slow retinal degeneration. In vitro analysis showed that PKM2 can regulate transcriptional activity from the PDE6β promoter in vitro. Our findings indicate that both the metabolic and transcriptional regulatory functions of PKM2 may contribute to photoreceptor structure, function, and viability.
Collapse
|
21
|
Challenges in Separations of Proteins and Small Biomolecules and the Role of Modern Mass Spectroscopy Tools for Solving Them, as Well as Bypassing Them, in Structural Analytical Studies of Complex Biomolecular Mixtures. SEPARATIONS 2018. [DOI: 10.3390/separations5010011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
22
|
Hammer SS, Busik JV. The role of dyslipidemia in diabetic retinopathy. Vision Res 2017; 139:228-236. [PMID: 28545981 DOI: 10.1016/j.visres.2017.04.010] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 04/06/2017] [Accepted: 04/13/2017] [Indexed: 02/08/2023]
Abstract
Diabetic retinopathy (DR) affects over 93million people worldwide and is the number one cause of blindness among working age adults. These indicators coupled with the projected rise of patients diagnosed with diabetes, makes DR a serious and prevalent vision threating disease. Data from recent clinical trials demonstrate that in addition to the well accepted role of hyperglycemia, dyslipidemia is an important, but often overlooked factor in the development of DR. The central aim of this review article is to showcase the critical role of dyslipidemia in DR progression as well as highlight novel therapeutic solutions that take advantage of the vital roles lipid metabolism plays in DR progression.
Collapse
Affiliation(s)
- Sandra S Hammer
- Department of Physiology, Michigan State University, East Lansing, MI, United States
| | - Julia V Busik
- Department of Physiology, Michigan State University, East Lansing, MI, United States.
| |
Collapse
|
23
|
Hopiavuori BR, Agbaga MP, Brush RS, Sullivan MT, Sonntag WE, Anderson RE. Regional changes in CNS and retinal glycerophospholipid profiles with age: a molecular blueprint. J Lipid Res 2017; 58:668-680. [PMID: 28202633 PMCID: PMC5392743 DOI: 10.1194/jlr.m070714] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 02/13/2017] [Indexed: 12/16/2022] Open
Abstract
We present here a quantitative molecular blueprint of the three major glycerophospholipid (GPL) classes, phosphatidylcholine (PC), phosphatidylserine (PS), and phosphatidylethanolamine (PE), in retina and six regions of the brain in C57Bl6 mice at 2, 10, and 26 months of age. We found an age-related increase in molecular species containing saturated and monoenoic FAs and an overall decrease in the longer-chain PUFA molecular species across brain regions, with loss of DHA-containing molecular species as the most consistent and dramatic finding. Although we found very-long-chain PUFAs (VLC-PUFAs) (C28) in PC in the retina, no detectable levels were found in any brain region at any of the ages examined. All brain regions (except hippocampus and retina) showed a significant increase with age in PE plasmalogens. All three retina GPLs had di-PUFA molecular species (predominantly 44:12), which were most abundant in PS (∼30%). In contrast, low levels of di-PUFA GPL (1-2%) were found in all regions of the brain. This study provides a regional and age-related assessment of the brain's lipidome with a level of detail, inclusion, and quantification that has not heretofore been published.
Collapse
Affiliation(s)
- Blake R Hopiavuori
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| | - Martin-Paul Agbaga
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104; Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104; Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104; Dean McGee Eye Institute, Oklahoma City, OK 73104
| | - Richard S Brush
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104; Dean McGee Eye Institute, Oklahoma City, OK 73104
| | - Michael T Sullivan
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| | - William E Sonntag
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104; Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| | - Robert E Anderson
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104; Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104; Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104; Dean McGee Eye Institute, Oklahoma City, OK 73104.
| |
Collapse
|
24
|
Kancherla S, Kohler WJ, van der Merwe Y, Chan KC. In Vivo Evaluation of the Visual Pathway in Streptozotocin-Induced Diabetes by Diffusion Tensor MRI and Contrast Enhanced MRI. PLoS One 2016; 11:e0165169. [PMID: 27768755 PMCID: PMC5074510 DOI: 10.1371/journal.pone.0165169] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 10/07/2016] [Indexed: 02/07/2023] Open
Abstract
Visual function has been shown to deteriorate prior to the onset of retinopathy in some diabetic patients and experimental animal models. This suggests the involvement of the brain's visual system in the early stages of diabetes. In this study, we tested this hypothesis by examining the integrity of the visual pathway in a diabetic rat model using in vivo multi-modal magnetic resonance imaging (MRI). Ten-week-old Sprague-Dawley rats were divided into an experimental diabetic group by intraperitoneal injection of 65 mg/kg streptozotocin in 0.01 M citric acid, and a sham control group by intraperitoneal injection of citric acid only. One month later, diffusion tensor MRI (DTI) was performed to examine the white matter integrity in the brain, followed by chromium-enhanced MRI of retinal integrity and manganese-enhanced MRI of anterograde manganese transport along the visual pathway. Prior to MRI experiments, the streptozotocin-induced diabetic rats showed significantly smaller weight gain and higher blood glucose level than the control rats. DTI revealed significantly lower fractional anisotropy and higher radial diffusivity in the prechiasmatic optic nerve of the diabetic rats compared to the control rats. No apparent difference was observed in the axial diffusivity of the optic nerve, the chromium enhancement in the retina, or the manganese enhancement in the lateral geniculate nucleus and superior colliculus between groups. Our results suggest that streptozotocin-induced diabetes leads to early injury in the optic nerve when no substantial change in retinal integrity or anterograde transport along the visual pathways was observed in MRI using contrast agent enhancement. DTI may be a useful tool for detecting and monitoring early pathophysiological changes in the visual system of experimental diabetes non-invasively.
Collapse
Affiliation(s)
- Swarupa Kancherla
- NeuroImaging Laboratory, University of Pittsburgh, Pittsburgh, PA, United States of America
- UPMC Eye Center, Ophthalmology and Visual Science Research Center, Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - William J. Kohler
- NeuroImaging Laboratory, University of Pittsburgh, Pittsburgh, PA, United States of America
- UPMC Eye Center, Ophthalmology and Visual Science Research Center, Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Yolandi van der Merwe
- NeuroImaging Laboratory, University of Pittsburgh, Pittsburgh, PA, United States of America
- UPMC Eye Center, Ophthalmology and Visual Science Research Center, Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, United States of America
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America
- Louis J. Fox Center for Vision Restoration, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Kevin C. Chan
- NeuroImaging Laboratory, University of Pittsburgh, Pittsburgh, PA, United States of America
- UPMC Eye Center, Ophthalmology and Visual Science Research Center, Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, United States of America
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America
- Louis J. Fox Center for Vision Restoration, University of Pittsburgh, Pittsburgh, PA, United States of America
- Center for the Neural Basis of Cognition, University of Pittsburgh and Carnegie Mellon University, Pittsburgh, PA, United States of America
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, China
- * E-mail:
| |
Collapse
|
25
|
Ryan E, Reid GE. Chemical Derivatization and Ultrahigh Resolution and Accurate Mass Spectrometry Strategies for "Shotgun" Lipidome Analysis. Acc Chem Res 2016; 49:1596-604. [PMID: 27575732 DOI: 10.1021/acs.accounts.6b00030] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Lipids play critical structural and functional roles in the regulation of cellular homeostasis, and it is increasingly recognized that the disruption of lipid metabolism or signaling or both is associated with the onset and progression of certain metabolically linked diseases. As a result, the field of lipidomics has emerged to comprehensively identify and structurally characterize the diverse range of lipid species within a sample of interest and to quantitatively monitor their abundances under different physiological or pathological conditions. Mass spectrometry (MS) has become a critical enabling platform technology for lipidomic researchers. However, the presence of isobaric (i.e., same nominal mass) and isomeric (i.e., same exact mass) lipids within complex lipid extracts means that MS-based identification and quantification of individual lipid species remains a significant analytical challenge. Ultrahigh resolution and accurate mass spectrometry (UHRAMS) offers a convenient solution to the isobaric mass overlap problem, while a range of chromatographic separation, differential extraction, intrasource separation and selective ionization methods, or tandem mass spectrometry (MS/MS) strategies may be used to address some types of isomeric mass lipid overlaps. Alternatively, chemical derivatization strategies represent a more recent approach for the separation of lipids within complex mixtures, including for isomeric lipids. In this Account, we highlight the key components of a lipidomics workflow developed in our laboratory, whereby certain lipid classes or subclasses, namely, aminophospholipids and O-alk-1'-enyl (i.e., plasmalogen) ether-containing lipids, are shifted in mass following sequential functional group selective chemical derivatization reactions prior to "shotgun" nano-ESI-UHRAMS analysis, "targeted" MS/MS, and automated database searching. This combined derivatization and UHRAMS approach resolves both isobaric mass lipids and certain categories of isomeric mass lipids within crude lipid extracts, with no requirement for extensive sample handling prior to analysis, with additional potential for enhanced ionization efficiencies, improved molecular level structural characterization, and multiplexed relative quantification. When integrated with a monophasic method for the simultaneous global extraction of both highly polar and nonpolar lipids, this workflow has been shown to enable the sum composition level identification and relative quantification of 500-600 individual lipid species across four lipid categories and from 36 lipid classes and subclasses, in only 1-2 min data acquisition time and with minimal sample consumption. Thus, while some analytical challenges remain to be addressed, shotgun lipidomics workflows encompassing chemical derivatization strategies have particular promise for the analysis of samples with limited availability that require rapid and unbiased assessment of global lipid metabolism.
Collapse
Affiliation(s)
- Eileen Ryan
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Gavin E. Reid
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
- Department
of Biochemistry and Molecular Biology, The University of Melbourne, Parkville, Victoria 3010, Australia
- Bio21
Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
26
|
Essaid D, Rosilio V, Daghildjian K, Solgadi A, Vergnaud J, Kasselouri A, Chaminade P. Artificial plasma membrane models based on lipidomic profiling. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:2725-2736. [PMID: 27457703 DOI: 10.1016/j.bbamem.2016.07.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 06/18/2016] [Accepted: 07/21/2016] [Indexed: 12/27/2022]
Abstract
Phospholipid monolayers are often described as membrane models for analyzing drug-lipid interactions. In many works, a single phosphatidylcholine is chosen, sometimes with one or two additional components. Drug penetration is studied at 30mN/m, a surface pressure considered as corresponding to the pressure in bilayers, independently of the density of lipid molecular packing. In this work, we have extracted, identified, and quantified the major lipids constituting the lipidome of plasma and mitochondrial membranes of retinoblastoma (Y79) and retinal pigment epithelium cells (ARPE-19), using liquid chromatography coupled to high-resolution mass spectrometry (LC-MS/MS). The results obtained from this lipidomic analysis were used in an attempt to build an artificial lipid monolayer with a composition mimicking that of the plasma membrane of Y79 cells, better than a single phospholipid. The variety and number of lipid classes and species in cell extracts monolayers exceeding by far those of the phospholipids chosen to mimic them, the π-A isotherms of model monolayers differed from those of lipid extracts in shape and apparent packing density. We propose a model monolayer based on the most abundant species identified in the extracts, with a surface compressional modulus at 30mN/m close to the one of the lipid extracts.
Collapse
Affiliation(s)
- Donia Essaid
- Institut Galien Paris Sud, UMR 8612, Univ Paris-Sud, CNRS, Université Paris-Saclay, 5 rue J.B. Clément, F-92290 Châtenay-Malabry, France; Lip(Sys)(2), Chimie Analytique Pharmaceutique (FKA EA4041 Groupe de Chimie Analytique de Paris-Sud), Univ Paris-Sud, Université Paris-Saclay, F-92290 Châtenay-Malabry, France
| | - Véronique Rosilio
- Institut Galien Paris Sud, UMR 8612, Univ Paris-Sud, CNRS, Université Paris-Saclay, 5 rue J.B. Clément, F-92290 Châtenay-Malabry, France.
| | - Katia Daghildjian
- Institut Galien Paris Sud, UMR 8612, Univ Paris-Sud, CNRS, Université Paris-Saclay, 5 rue J.B. Clément, F-92290 Châtenay-Malabry, France
| | - Audrey Solgadi
- Institut Paris-Saclay d'Innovation Thérapeutique, UMS IPSIT SAMM, Châtenay-Malabry, France
| | - Juliette Vergnaud
- Institut Galien Paris Sud, UMR 8612, Univ Paris-Sud, CNRS, Université Paris-Saclay, 5 rue J.B. Clément, F-92290 Châtenay-Malabry, France
| | - Athena Kasselouri
- Lip(Sys)(2), Chimie Analytique Pharmaceutique (FKA EA4041 Groupe de Chimie Analytique de Paris-Sud), Univ Paris-Sud, Université Paris-Saclay, F-92290 Châtenay-Malabry, France
| | - Pierre Chaminade
- Lip(Sys)(2), Chimie Analytique Pharmaceutique (FKA EA4041 Groupe de Chimie Analytique de Paris-Sud), Univ Paris-Sud, Université Paris-Saclay, F-92290 Châtenay-Malabry, France
| |
Collapse
|
27
|
FragClust and TestClust, two informatics tools for chemical structure hierarchical clustering analysis applied to lipidomics. The example of Alzheimer's disease. Anal Bioanal Chem 2016; 408:2215-26. [DOI: 10.1007/s00216-015-9229-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 11/25/2015] [Accepted: 11/27/2015] [Indexed: 01/08/2023]
|
28
|
Bednaski A, Trevisan-Silva D, Matsubara F, Boia-Ferreira M, Olivério M, Gremski L, Cavalheiro R, De Paula D, Paredes-Gamero E, Takahashi H, Toledo M, Nader H, Veiga S, Chaim O, Senff-Ribeiro A. Characterization of Brown spider (Loxosceles intermedia) hemolymph: Cellular and biochemical analyses. Toxicon 2015; 98:62-74. [DOI: 10.1016/j.toxicon.2015.02.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 02/11/2015] [Accepted: 02/17/2015] [Indexed: 10/23/2022]
|
29
|
Cai Y, Lydic TA, Turkette T, Reid GE, Olson LK. Impact of alogliptin and pioglitazone on lipid metabolism in islets of prediabetic and diabetic Zucker Diabetic Fatty rats. Biochem Pharmacol 2015; 95:46-57. [PMID: 25801003 DOI: 10.1016/j.bcp.2015.03.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 03/13/2015] [Indexed: 12/30/2022]
Abstract
Prolonged exposure of pancreatic beta (β) cells to elevated glucose and free fatty acids (FFA) as occurs in type 2 diabetes results in loss of β cell function and survival. In Zucker Diabetic Fatty (ZDF) rats, β cell failure is associated with increased triacylglyceride (TAG) synthesis and disruption of the glycerolipid/FFA (GL/FFA) cycle, a critical arm of glucose-stimulated insulin secretion (GSIS). The aim of this study was to determine the impact of activation of PPARγ and increased incretin action via dipeptidyl-peptidase inhibition using pioglitazone and/or alogliptin, respectively, on islet lipid metabolism in prediabetic and diabetic ZDF rats. Transition of control prediabetic ZDF rats to diabetes was associated with reduced plasma insulin levels, reduced islet insulin content and GSIS, reduced stearoyl-CoA desaturase 2 (SCD 2) expression, and increased islet TAG, diacylglyceride (DAG) and ceramides species containing saturated FA. Treatment of prediabetic ZDF rats with a combination of pioglitazone and alogliptin, but not individually, prevented the transition to diabetes and was associated with marked lowering of islet TAG and DAG levels. Pioglitazone and alogliptin, however, did not restore SCD2 expression, the degree of FA saturation in TAG, DAG or ceramides, islet insulin content, or lower ceramide levels. These findings are consistent with activation of PPARγ and increased incretin action working in concert to restore GL/FFA cycle in β cells of ZDF rats. Restoration of the GL/FFA cycle without correcting islet FA desaturation, production of islet ceramides, and/or insulin sensitivity, however, may place these islets at risk for β cell failure.
Collapse
Affiliation(s)
- Ying Cai
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA.
| | - Todd A Lydic
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA.
| | - Thomas Turkette
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA.
| | - Gavin E Reid
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA; Department of Chemistry, Michigan State University, East Lansing, MI 48824 USA.
| | - L Karl Olson
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
30
|
Lydic TA, Busik JV, Reid GE. A monophasic extraction strategy for the simultaneous lipidome analysis of polar and nonpolar retina lipids. J Lipid Res 2014; 55:1797-809. [PMID: 24879804 DOI: 10.1194/jlr.d050302] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2014] [Indexed: 01/03/2023] Open
Abstract
Lipid extraction using a monophasic chloroform/methanol/water mixture, coupled with functional group selective derivatization and direct infusion nano-ESI-high-resolution/accurate MS, is shown to facilitate the simultaneous analysis of both highly polar and nonpolar lipids from a single retina lipid extract, including low abundance highly polar ganglioside lipids, nonpolar sphingolipids, and abundant glycerophospholipids. Quantitative comparison showed that the monophasic lipid extraction method yielded similar lipid distributions to those obtained from established "gold standard" biphasic lipid extraction methods known to enrich for either highly polar gangliosides or nonpolar lipids, respectively, with only modest relative ion suppression effects. This improved lipid extraction and analysis strategy therefore enables detailed lipidome analyses of lipid species across a broad range of polarities and abundances, from minimal amounts of biological samples and without need for multiple lipid class-specific extractions or chromatographic separation prior to analysis.
Collapse
Affiliation(s)
- Todd A Lydic
- Departments of Chemistry, Michigan State University, East Lansing, MI 48824
| | - Julia V Busik
- Physiology, Michigan State University, East Lansing, MI 48824
| | - Gavin E Reid
- Departments of Chemistry, Michigan State University, East Lansing, MI 48824 Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824
| |
Collapse
|
31
|
Mandal NA, Tran JTA, Zheng L, Wilkerson JL, Brush RS, McRae J, Agbaga MP, Zhang K, Petrukhin K, Ayyagari R, Anderson RE. In vivo effect of mutant ELOVL4 on the expression and function of wild-type ELOVL4. Invest Ophthalmol Vis Sci 2014; 55:2705-13. [PMID: 24644051 DOI: 10.1167/iovs.13-13198] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Mutations in the elongation of very long chain fatty acids 4 (ELOVL4) gene cause human Stargardt's macular dystrophy 3 (STGD3), a juvenile onset dominant form of macular degeneration. To understand the role of the ELOVL4 protein in retinal function, several mouse models have been developed by using transgenic (TG), knock-in (Elovl4(+/mut)), and knockout (Elovl4(+/-)) approaches. Here we analyzed quantitatively the ELOVL4 protein and its enzymatic products (very long chain saturated fatty acid [VLC-FA] and VLC-polyunsaturated fatty acid [VLC-PUFA]) in the retinas of 8 to 10-week-old TG1(+), TG2(+), and Elovl4(+/mut) mice that harbor the mutant ELOVL4 and compared them to their wild-type littermates and Elovl4(+/-) that do not express the mutant protein. We also analyzed skin from these mice to gain insight into the pathogenesis resulting from the ELOVL4 mutation. METHODS ELOVL4 protein localization in the retina was determined by immunohistochemistry. Levels of wild-type ELOVL4 protein in skin and retinas were determined by Western blotting. Total lipids from skin and retinas were measured by gas chromatography-mass spectrometry (GC-MS). Retinal glycerophosphatidylcholines (PC) were analyzed by tandem mass spectrometry. RESULTS Immunohistochemical and Western analysis indicated that wild-type ELOVL4 protein was reduced in heterozygous Elovl4(+/mut) and Elovl4(+/-) retinas, but not in TG2(+) retinas. We found that VLC-FA was reduced by 50% in the skin of Elovl4(+/-) and by 60% to 65% in Elovl4(+/mut). We found VLC-PUFA levels at ∼ 50% in both the retinas, and wild-type levels of VLC-PUFA in TG2(+) retinas. CONCLUSIONS We conclude that the presence of the mutant ELOVL4 does not affect the function of wild-type ELOVL4 in the fully developed 8- to 10-week-old retinas.
Collapse
Affiliation(s)
- Nawajes A Mandal
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Bennett LD, Hopiavuori BR, Brush RS, Chan M, Van Hook MJ, Thoreson WB, Anderson RE. Examination of VLC-PUFA-deficient photoreceptor terminals. Invest Ophthalmol Vis Sci 2014; 55:4063-72. [PMID: 24764063 DOI: 10.1167/iovs.14-13997] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Juvenile-onset autosomal dominant Stargardt-like macular dystrophy (STGD3) is caused by mutations in ELOVL4 (elongation of very long fatty acids-4), an elongase necessary for the biosynthesis of very long chain fatty acids (VLC-FAs ≥ C26). Photoreceptors are enriched with VLC polyunsaturated fatty acids (VLC-PUFAs), which are necessary for long-term survival of rod photoreceptors. The purpose of these studies was to determine the effect of deletion of VLC-PUFAs on rod synaptic function in retinas of mice conditionally depleted (KO) of Elovl4. METHODS Retina function was assessed in wild-type (WT) and KO by electroretinography. Outer plexiform structure was evaluated by immunofluorescence and transmission electron microscopy. Single-cell recordings measured rod ion channel operation and rod bipolar glutamate signaling. Sucrose gradient centrifugation was used to isolate synaptosomes from bovine retina. Proteins and lipids were analyzed by Western blotting and tandem mass spectroscopy, respectively. RESULTS Inner retinal responses (b-wave, oscillatory potentials, and scotopic threshold responses) of the ERG were decreased in the KO mice compared to controls. However the rod ion channel operation and bipolar glutamate responses were comparable between groups. Biochemical analysis revealed that conventional and ribbon synapses have VLC-PUFAs. Ultrastructural analysis showed that the outer plexiform layer was disorganized and the diameter of vesicles in rod terminals was smaller in the KO mice. CONCLUSIONS Very long chain PUFAs affect rod function by contributing to synaptic vesicle size, which may alter the dynamics of synaptic transmission, ultimately resulting in a loss of neuronal connectivity and death of rod photoreceptors.
Collapse
Affiliation(s)
- Lea D Bennett
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States Dean McGee Eye Institute, Oklahoma City, Oklahoma, United States
| | - Blake R Hopiavuori
- Dean McGee Eye Institute, Oklahoma City, Oklahoma, United States Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| | - Richard S Brush
- Dean McGee Eye Institute, Oklahoma City, Oklahoma, United States Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| | - Michael Chan
- Dean McGee Eye Institute, Oklahoma City, Oklahoma, United States Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| | - Matthew J Van Hook
- Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, Nebraska, United States
| | - Wallace B Thoreson
- Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, Nebraska, United States Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska, United States
| | - Robert E Anderson
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| |
Collapse
|
33
|
Bennett LD, Brush RS, Chan M, Lydic TA, Reese K, Reid GE, Busik JV, Elliott MH, Anderson RE. Effect of reduced retinal VLC-PUFA on rod and cone photoreceptors. Invest Ophthalmol Vis Sci 2014; 55:3150-7. [PMID: 24722693 DOI: 10.1167/iovs.14-13995] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Autosomal dominant Stargardt-like macular dystrophy (STGD3) is a juvenile-onset disease that is caused by mutations in Elovl4 (elongation of very long fatty acids-4). The Elovl4 catalyzes the first step in the conversion of C24 and longer fatty acids (FAs) to very long-chain FAs (VLC-FAs, ≥C26). Photoreceptors are particularly rich in VLC polyunsaturated FAs (VLC-PUFA). To explore the role of VLC-PUFAs in photoreceptors, we conditionally deleted Elovl4 in the mouse retina. METHODS Proteins were analyzed by Western blotting and lipids by gas chromatography (GC)-mass spectrometry, GC-flame ionization detection, and tandem mass spectrometry. Retina function was assessed by electroretinography (ERG), and structure was evaluated by bright field, immunofluorescence, and transmission electron microscopy. RESULTS Conditional deletion (KO) of retinal Elovl4 reduced RNA and protein levels by 91% and 96%, respectively. Total retina VLC-PUFAs were reduced by 88% compared to the wild type (WT) levels. Retinal VLC-PUFAs incorporated in phosphatidylcholine were less abundant at 12 months compared to 8-week-old levels. Amplitudes of the ERG a-wave were reduced by 22%, consistent with photoreceptor degeneration (11% loss of photoreceptors). Analysis of the rod a-wave responses gave no evidence of a role for VLC-PUFA in visual transduction. However, there were significant reductions in rod b-wave amplitudes (>30%) that could not be explained by loss of rod photoreceptors. There was no effect of VLC-PUFA reduction on cone ERG responses, and cone density was not different between the WT and KO mice at 12 months of age. CONCLUSIONS The VLC-PUFAs are important for rod, but not cone, function and for rod photoreceptor longevity.
Collapse
Affiliation(s)
- Lea D Bennett
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States Dean McGee Eye Institute, Oklahoma City, Oklahoma, United States
| | - Richard S Brush
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States Dean McGee Eye Institute, Oklahoma City, Oklahoma, United States
| | - Michael Chan
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States Dean McGee Eye Institute, Oklahoma City, Oklahoma, United States
| | - Todd A Lydic
- Department of Chemistry, Michigan State University, East Lansing, Michigan, United States
| | - Kristen Reese
- Department of Chemistry, Michigan State University, East Lansing, Michigan, United States
| | - Gavin E Reid
- Department of Chemistry, Michigan State University, East Lansing, Michigan, United States Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, United States
| | - Julia V Busik
- Department of Physiology, Michigan State University, East Lansing, Michigan, United States
| | - Michael H Elliott
- Dean McGee Eye Institute, Oklahoma City, Oklahoma, United States Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| | - Robert E Anderson
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States Dean McGee Eye Institute, Oklahoma City, Oklahoma, United States Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| |
Collapse
|
34
|
Yu Y, Vidalino L, Anesi A, Macchi P, Guella G. A lipidomics investigation of the induced hypoxia stress on HeLa cells by using MS and NMR techniques. MOLECULAR BIOSYSTEMS 2014; 10:878-90. [PMID: 24496110 DOI: 10.1039/c3mb70540d] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Induced hypoxia stress on cervical cancer derived cells (HeLa cells) leads to significant changes in their membrane lipid profiles. The lipidome of HeLa cells was characterized by a joint approach wherein liquid chromatography-mass spectrometry (LC-MS) analysis was followed by high resolution NMR measurements. Multivariate data analysis showed apparent separation between control and hypoxia-treated HeLa cells and thus demonstrated hypoxia effects on lipid metabolism. The most striking finding was that hypoxia stimulation significantly reduced the total amount of cellular phosphoinositols (PI) but caused a prominent increase in the amount of lyso phosphocholines (lyso-PC) and lyso phosphoethanolamines (lyso-PE). The observed decrease of PI amount under hypoxic conditions is probably due to the accumulation of cellular myo-inositol, which is known to play a critical role in de novo synthesis of PI. Moreover, our study suggests that polyunsaturated phospholipid species are stronger biomarkers for discriminating the effect of hypoxia treatment. The evaluation of changes in the average unsaturation index (UI) of the membrane lipids acyl chains reveals that UI slightly increases in several lipid classes, thus affecting membrane fluidity and further membrane-dependent functions. The plausible mechanisms by which HeLa cells adapt to hypoxia conditions are also briefly reported.
Collapse
Affiliation(s)
- Yang Yu
- Bioorganic Chemistry Laboratory, Department of Physics, University of Trento, Trento, Italy.
| | | | | | | | | |
Collapse
|
35
|
Marchette L, Sherry D, Brush RS, Chan M, Wen Y, Wang J, Ash JD, Anderson RE, Mandal NA. Very long chain polyunsaturated fatty acids and rod cell structure and function. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 801:637-45. [PMID: 24664753 PMCID: PMC4456017 DOI: 10.1007/978-1-4614-3209-8_80] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
The gene encoding Elongation of Very Long Chain Fatty Acids-4 (ELOVL4) is mutated in patients with autosomal dominant Stargardt's Macular Dystrophy Type 3 (STDG3). ELOVL4 catalyzes the initial condensation step in the elongation of polyunsaturated fatty acids (PUFA) containing more than 26 carbons (26C) to very long chain PUFA (VLC-PUFA; C28 and greater). To investigate the role of VLC-PUFA in rod photoreceptors, we generated mice with rod-specific deletion of Elovl4 (RcKO). The mosaic deletion of rod-expressed ELOVL4 protein resulted in a 36 % lower amount of VLC-PUFA in the retinal phosphatidylcholine (PC) fraction compared to retinas from wild-type mice. However, this reduction was not sufficient to cause rod dysfunction at 7 months or photoreceptor degeneration at 9 or 15 months.
Collapse
Affiliation(s)
- L.D. Marchette
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, 608 Stanton L. Young Blvd., Oklahoma City, OK 73104, USA
| | - D.M Sherry
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - R. S Brush
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, 608 Stanton L. Young Blvd., Oklahoma City, OK 73104, USA
| | - M. Chan
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, 608 Stanton L. Young Blvd., Oklahoma City, OK 73104, USA
| | - Y. Wen
- Amherst College, Amherst, MA, USA
| | - J. Wang
- University of Florida, Gainesville, FL, USA
| | | | - Robert E. Anderson
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, 608 Stanton L. Young Blvd., Oklahoma City, OK 73104, USA
| | - N. A. Mandal
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, 608 Stanton L. Young Blvd., Oklahoma City, OK 73104, USA
| |
Collapse
|
36
|
Castro EV, Yoneyama KG, Haapalainen EF, Toledo MS, Takahashi HK, Straus AH. Myriocin, a Serine Palmitoyltransferase Inhibitor, Blocks Cytokinesis in Leishmania (Viannia) braziliensis
Promastigotes. J Eukaryot Microbiol 2013; 60:377-87. [DOI: 10.1111/jeu.12043] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Revised: 01/29/2013] [Accepted: 01/30/2013] [Indexed: 12/13/2022]
Affiliation(s)
- Erica V. Castro
- Department of Biochemistry; Escola Paulista de Medicina; Universidade Federal de São Paulo; Rua Botucatu 862 São Paulo SP 04023-900 Brazil
| | - Kelly G. Yoneyama
- Department of Biochemistry; Escola Paulista de Medicina; Universidade Federal de São Paulo; Rua Botucatu 862 São Paulo SP 04023-900 Brazil
| | - Edna F. Haapalainen
- Electron Microscopy Center; Escola Paulista de Medicina; Universidade Federal de São Paulo; Rua Botucatu 862 São Paulo SP 04023-900 Brazil
| | - Marcos S. Toledo
- Department of Biochemistry; Escola Paulista de Medicina; Universidade Federal de São Paulo; Rua Botucatu 862 São Paulo SP 04023-900 Brazil
| | - Helio K. Takahashi
- Department of Biochemistry; Escola Paulista de Medicina; Universidade Federal de São Paulo; Rua Botucatu 862 São Paulo SP 04023-900 Brazil
| | - Anita H. Straus
- Department of Biochemistry; Escola Paulista de Medicina; Universidade Federal de São Paulo; Rua Botucatu 862 São Paulo SP 04023-900 Brazil
| |
Collapse
|
37
|
Miller R, Durrett TP, Kosma DK, Lydic TA, Muthan B, Koo AJK, Bukhman YV, Reid GE, Howe GA, Ohlrogge J, Benning C. Altered lipid composition and enhanced nutritional value of Arabidopsis leaves following introduction of an algal diacylglycerol acyltransferase 2. THE PLANT CELL 2013; 25:677-93. [PMID: 23417035 PMCID: PMC3608786 DOI: 10.1105/tpc.112.104752] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Enhancement of acyl-CoA-dependent triacylglycerol (TAG) synthesis in vegetative tissues is widely discussed as a potential avenue to increase the energy density of crops. Here, we report the identification and characterization of Chlamydomonas reinhardtii diacylglycerol acyltransferase type two (DGTT) enzymes and use DGTT2 to alter acyl carbon partitioning in plant vegetative tissues. This enzyme can accept a broad range of acyl-CoA substrates, allowing us to interrogate different acyl pools in transgenic plants. Expression of DGTT2 in Arabidopsis thaliana increased leaf TAG content, with some molecular species containing very-long-chain fatty acids. The acyl compositions of sphingolipids and surface waxes were altered, and cutin was decreased. The increased carbon partitioning into TAGs in the leaves of DGTT2-expressing lines had little effect on transcripts of the sphingolipid/wax/cutin pathway, suggesting that the supply of acyl groups for the assembly of these lipids is not transcriptionally adjusted. Caterpillars of the generalist herbivore Spodoptera exigua reared on transgenic plants gained more weight. Thus, the nutritional value and/or energy density of the transgenic lines was increased by ectopic expression of DGTT2 and acyl groups were diverted from different pools into TAGs, demonstrating the interconnectivity of acyl metabolism in leaves.
Collapse
|
38
|
Liu L, Martin R, Chan C. Palmitate-activated astrocytes via serine palmitoyltransferase increase BACE1 in primary neurons by sphingomyelinases. Neurobiol Aging 2013; 34:540-50. [PMID: 22727944 PMCID: PMC3459302 DOI: 10.1016/j.neurobiolaging.2012.05.017] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Revised: 04/27/2012] [Accepted: 05/26/2012] [Indexed: 10/28/2022]
Abstract
Astrocytes play a critical role in neurodegenerative diseases, including Alzheimer's disease (AD). Previously, we showed that saturated free fatty acid, palmitic acid (PA), upregulates β-site amyloid precursor protein-cleaving enzyme 1 (BACE1) level and amyloidogenesis in primary rat neurons mediated by astrocytes. However, the molecular mechanisms by which conditioned media from PA-treated astrocytes upregulates BACE1 level in neurons are unknown. This study demonstrates that serine palmitoyltransferase (SPT) in the astrocytes increases ceramide levels, which enhances the release of cytokines that mediate the activation of neural and acidic sphingomyelinase (SMase) in the neurons, to propagate the deleterious effects of PA (i.e., BACE1 upregulation). In support of the relevance of SPT in AD, our laboratory recently measured and found SPT levels to be significantly upregulated in AD brains as compared with controls. Cytokines, namely tumor necrosis factor-α and interleukin-1β, released into the conditioned media of PA-treated astrocytes activate neural and acidic SMase in the neurons. Neutralizing the cytokines in the PA-treated astrocyte conditioned media reduced BACE1 upregulation. However, inhibiting SPT in the astrocytes decreased the levels of both tumor necrosis factor-α and interleukin-1β in the conditioned media, which in turn reduced the SMase activities and BACE1 level in primary neurons. Thus, our results suggest that the activation of the astrocytes by PA is mediated by SPT, and the activated astrocytes increases BACE1 level in the neurons; the latter is mediate by the SMases.
Collapse
Affiliation(s)
- Li Liu
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824
| | - Rebecca Martin
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824
| | - Christina Chan
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI 48824
| |
Collapse
|
39
|
Busik JV, Esselman WJ, Reid GE. Examining the role of lipid mediators in diabetic retinopathy. ACTA ACUST UNITED AC 2012; 7:661-675. [PMID: 23646066 DOI: 10.2217/clp.12.68] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Diabetic retinopathy is the most disabling complication of diabetes, affecting 65% of patients after 10 years of the disease. Current treatment options for diabetic retinopathy are highly invasive and fall short of complete amelioration of the disease. Understanding the pathogenesis of diabetic retinopathy is critical to the development of more effective treatment options. Diabetic hyperglycemia and dyslipidemia are the main metabolic insults that affect retinal degeneration in diabetes. Although the role of hyperglycemia in inducing diabetic retinopathy has been studied in detail, much less attention has been paid to dyslipidemia. Recent clinical studies have demonstrated a strong association between dyslipidemia and development of diabetic retinopathy, highlighting the importance of understanding the exact changes in retinal lipid metabolism in diabetes. This review describes what is known on the role of dyslipidemia in the development of diabetic retinopathy, with a focus on retinal-specific lipid metabolism and its dysregulation in diabetes.
Collapse
Affiliation(s)
- Julia V Busik
- Department of Physiology, Michigan State University, East Lansing, MI, USA
| | | | | |
Collapse
|
40
|
Fhaner CJ, Liu S, Ji H, Simpson RJ, Reid GE. Comprehensive lipidome profiling of isogenic primary and metastatic colon adenocarcinoma cell lines. Anal Chem 2012; 84:8917-26. [PMID: 23039336 DOI: 10.1021/ac302154g] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A "shotgun" lipidomics strategy consisting of sequential functional group selective chemical modification reactions coupled with high-resolution/accurate mass spectrometry and "targeted" tandem mass spectrometry (MS/MS) analysis has been developed and applied toward the comprehensive identification, characterization and quantitative analysis of changes in relative abundances of >600 individual glycerophospholipid, glycerolipid, sphingolipid and sterol lipids between a primary colorectal cancer (CRC) cell line, SW480, and its isogenic lymph node metastasized derivative, SW620. Selective chemical derivatization of glycerophosphoethanolamine and glycerophosphoserine lipids using a "fixed charge" sulfonium ion containing, d(6)-S,S'-dimethylthiobutanoylhydroxysuccinimide ester (d(6)-DMBNHS) reagent was used to eliminate the possibility of isobaric mass overlap of these species with the precursor ions of all other lipids in the crude extracts, thereby enabling their unambiguous assignment, while subsequent selective mild acid hydrolysis of plasmenyl (vinyl-ether) containing lipids using formic acid enabled these species to be readily differentiated from isobaric mass plasmanyl (alkyl-ether) containing lipids. Using this approach, statistically significant differences in the abundances of numerous lipid species previously identified as being associated with cancer progression or that play known roles as mediators in a range of physiological and pathological processes were observed between the SW480 and SW620 cells. Most notably, these included increased plasmanylcholine and triglyceride lipid levels, decreased plasmenylethanolamine lipids, decreased C-16 containing sphingomyelin and ceramide lipid levels, and a dramatic increase in the abundances of total cholesterol ester and triglyceride lipids in the SW620 cells compared to those in the SW480 cells.
Collapse
Affiliation(s)
- Cassie J Fhaner
- Department of Chemistry, Michigan State University, 578 South Shaw Lane, East Lansing, Michigan 48824, United States
| | | | | | | | | |
Collapse
|
41
|
Chan KC, Fan SJ, Zhou IY, Wu EX. In vivo chromium-enhanced MRI of the retina. Magn Reson Med 2011; 68:1202-10. [PMID: 22213133 DOI: 10.1002/mrm.24123] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2011] [Revised: 11/24/2011] [Accepted: 11/29/2011] [Indexed: 11/07/2022]
Abstract
Chromium (Cr) has been used histologically to stabilize lipid fractions in the retina and is suggested to enhance oxidizable lipids in brain MRI. This study explored the feasibility, sensitivity, and specificity of in vivo chromium-enhanced MRI of retinal lipids by determining its spatiotemporal profiles and toxic effect after intravitreal Cr(VI) injection to normal adult rats. One day after 3 μL Cr(VI) administration at 1-100 mM, the retina exhibited a dose-dependent increase in T1-weighted hyperintensity until 50 mM. Time-dependently, significant T1-weighted hyperintensity persisted up to 2 weeks after 10 mM Cr(VI) administration. Three-dimensional chromium-enhanced MRI of ex vivo normal eyes at isotropic 50-μm resolution showed at least five alternating bands across retinal layers, with the outermost layer being the brightest. This agreed with histology indicating alternating lipid contents with the highest level in the photoreceptor layer of the outer retina. Although Cr(VI) reduction may induce oxidative stress and depolymerize microtubules, manganese-enhanced MRI after chromium-enhanced MRI showed a dose-dependent effect of Cr toxicity on manganese uptake and axonal transport along the visual pathway. These results potentiated future longitudinal chromium-enhanced MRI studies on retinal lipid metabolism upon further optimization of Cr doses with visual cell viability.
Collapse
Affiliation(s)
- Kevin C Chan
- Laboratory of Biomedical Imaging and Signal Processing, Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | | | | | | |
Collapse
|
42
|
Wang Y, Zhang H. Tracking phospholipid profiling of muscle from Ctennopharyngodon idellus during storage by shotgun lipidomics. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:11635-11642. [PMID: 21961876 DOI: 10.1021/jf2030852] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
This paper aims to study phospholipid (PL) profiling of muscle from Ctenopharyngodon idellus during room-temperature storage for 72 h by direct-infusion electrospray ionization tandem mass spectrometry (ESI-MS/MS). Five classes of PLs, including phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylinositol (PI), phosphatidylserine (PS), and sphingomyelin (SM), were analyzed. At least 110 molecular species of PLs were identified, including 32 species of PC, 34 species of PE, 24 species of PS, 18 species of PI, and 2 species of SM. The result showed that oxidation and hydrolysis are the two main causes for the deterioration of PLs in fish muscle during storage. Most content of PL molecular species increased and then decreased gradually. However, some special PE molecular species with former low abundance, such as PE 32:1, PE 34:2, and PE 34:1, emerged during the storage in quantity. It indicated that those PE molecular species may come from the microbe bred in the muscle. This phenomenon was found and discussed for the first time. The possible relevance between the emergence of these special PE molecular species and the freshness of the fish muscle during storage will be investigated in further studies.
Collapse
Affiliation(s)
- Youyi Wang
- School of Food Science and Biological Engineering, Zhejiang Gongshang University, Hangzhou, Zhejiang Province 310035, People's Republic of China
| | | |
Collapse
|
43
|
Opreanu M, Tikhonenko M, Bozack S, Lydic TA, Reid GE, McSorley KM, Sochacki A, Perez GI, Esselman WJ, Kern T, Kolesnick R, Grant MB, Busik JV. The unconventional role of acid sphingomyelinase in regulation of retinal microangiopathy in diabetic human and animal models. Diabetes 2011; 60:2370-8. [PMID: 21771974 PMCID: PMC3161322 DOI: 10.2337/db10-0550] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
OBJECTIVE Acid sphingomyelinase (ASM) is an important early responder in inflammatory cytokine signaling. The role of ASM in retinal vascular inflammation and vessel loss associated with diabetic retinopathy is not known and represents the goal of this study. RESEARCH DESIGN AND METHODS Protein and gene expression profiles were determined by quantitative RT-PCR and Western blot. ASM activity was determined using Amplex Red sphingomyelinase assay. Caveolar lipid composition was analyzed by nano-electrospray ionization tandem mass spectrometry. Streptozotocin-induced diabetes and retinal ischemia-reperfusion models were used in in vivo studies. RESULTS We identify endothelial caveolae-associated ASM as an essential component in mediating inflammation and vascular pathology in in vivo and in vitro models of diabetic retinopathy. Human retinal endothelial cells (HREC), in contrast with glial and epithelial cells, express the plasma membrane form of ASM that overlaps with caveolin-1. Treatment of HREC with docosahexaenoic acid (DHA) specifically reduces expression of the caveolae-associated ASM, prevents a tumor necrosis factor-α-induced increase in the ceramide-to-sphingomyelin ratio in the caveolae, and inhibits cytokine-induced inflammatory signaling. ASM is expressed in both vascular and neuroretina; however, only vascular ASM is specifically increased in the retinas of animal models at the vasodegenerative phase of diabetic retinopathy. The absence of ASM in ASM(-/-) mice or inhibition of ASM activity by DHA prevents acellular capillary formation. CONCLUSIONS This is the first study demonstrating activation of ASM in the retinal vasculature of diabetic retinopathy animal models. Inhibition of ASM could be further explored as a potential therapeutic strategy in treating diabetic retinopathy.
Collapse
Affiliation(s)
- Madalina Opreanu
- Department of Physiology, Michigan State University, East Lansing, Michigan
- Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan
| | - Maria Tikhonenko
- Department of Physiology, Michigan State University, East Lansing, Michigan
| | - Svetlana Bozack
- Department of Physiology, Michigan State University, East Lansing, Michigan
- Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan
| | - Todd A. Lydic
- Department of Physiology, Michigan State University, East Lansing, Michigan
- Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan
| | - Gavin E. Reid
- Chemistry and Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan
| | - Kelly M. McSorley
- Department of Physiology, Michigan State University, East Lansing, Michigan
| | - Andrew Sochacki
- Department of Physiology, Michigan State University, East Lansing, Michigan
| | - Gloria I. Perez
- Department of Physiology, Michigan State University, East Lansing, Michigan
| | - Walter J. Esselman
- Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan
| | - Timothy Kern
- Department of Medicine, Division of Endocrinology, Case Western Reserve University, Cleveland, Ohio
| | - Richard Kolesnick
- Department of Molecular Pharmacology and Chemistry, Sloan-Kettering Institute, New York, New York
| | - Maria B. Grant
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, Florida
| | - Julia V. Busik
- Department of Physiology, Michigan State University, East Lansing, Michigan
- Corresponding author: Julia V. Busik,
| |
Collapse
|
44
|
Roy MC, Nakanishi H, Takahashi K, Nakanishi S, Kajihara S, Hayasaka T, Setou M, Ogawa K, Taguchi R, Naito T. Salamander retina phospholipids and their localization by MALDI imaging mass spectrometry at cellular size resolution. J Lipid Res 2010; 52:463-70. [PMID: 21149645 DOI: 10.1194/jlr.m010546] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Salamander large cells facilitated identification and localization of lipids by MALDI imaging mass spectrometry. Salamander retina lipid extract showed similarity with rodent retina lipid extract in phospholipid content and composition. Like rodent retina section, distinct layer distributions of phospholipids were observed in the salamander retina section. Phosphatidylcholines (PCs) composing saturated and monounsaturated fatty acids (PC 32:0, PC 32:1, and PC 34:1) were detected mainly in the outer and inner plexiform layers (OPL and IPL), whereas PCs containing polyunsaturated fatty acids (PC 36:4, PC 38:6, and PC 40:6) composed the inner segment (IS) and outer segment (OS). The presence of PCs containing polyunsaturated fatty acids in the OS layer implied that these phospholipids form flexible lipid bilayers, which facilitate phototransduction process occurring in the rhodopsin rich OS layer. Distinct distributions and relative signal intensities of phospholipids also indicated their relative abundance in a particular cell or a cell part. Using salamander large cells, a single cell level localization and identification of biomolecules could be achieved by MALDI imaging mass spectrometry.
Collapse
Affiliation(s)
- Michael C Roy
- Molecular Neuroscience Unit, Okinawa Institute of Science and Technology, 12-22 Suzaki, Uruma, Okinawa 904-2234, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Opreanu M, Lydic TA, Reid GE, McSorley KM, Esselman WJ, Busik JV. Inhibition of cytokine signaling in human retinal endothelial cells through downregulation of sphingomyelinases by docosahexaenoic acid. Invest Ophthalmol Vis Sci 2010; 51:3253-63. [PMID: 20071681 DOI: 10.1167/iovs.09-4731] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
PURPOSE The authors have previously demonstrated that DHA inhibits cytokine-induced inflammation in human retinal endothelial cells (HRECs), the resident vasculature affected by diabetic retinopathy. However, the anti-inflammatory mechanism of docosahexaenoic acid (DHA) is still not well understood. Sphingolipids represent a major component of membrane microdomains, and ceramide-enriched microdomains appear to be a prerequisite for inflammatory cytokine signaling. Acid sphingomyelinase (ASMase) and neutral sphingomyelinase (NSMase) are key regulatory enzymes of sphingolipid metabolism, promoting sphingomyelin hydrolysis to proinflammatory ceramide. The authors address the hypothesis that DHA inhibits cytokine-induced inflammatory signaling in HRECs by downregulating sphingomyelinases. METHODS ASMase and NSMase activity was determined by sphingomyelinase assay in primary cultures of HRECs. The expression of ASMase, NSMase, ICAM-1, and VCAM-1 was assessed by quantitative PCR and Western blot analysis. Gene silencing of ASMase and NSMase was obtained by siRNA treatment. RESULTS Inflammatory cytokines TNFalpha and IL-1beta induced cellular adhesion molecule (CAM) expression and rapid increase in ASMase and NSMase activity in HRECs. DHA decreased basal and cytokine-induced ASMase and NSMase expression and activity and the upregulation of CAM expression. Anti-inflammatory effects of DHA on cytokine-induced CAM expression were mimicked by inhibition/gene silencing of ASMase and NSMase. The sphingomyelinase pathway rather than ceramide de novo synthesis pathway was important for inflammatory signaling in HRECs. CONCLUSIONS This study provides a novel potential mechanism for the anti-inflammatory effect of DHA in HRECs. DHA downregulates the basal and cytokine-induced ASMase and NSMase expression and activity level in HRECs, and inhibition of sphingomyelinases in endothelial cells prevents cytokine-induced inflammatory response.
Collapse
Affiliation(s)
- Madalina Opreanu
- Department of Physiology, Michigan State University, East Lansing, Michigan 48824, USA
| | | | | | | | | | | |
Collapse
|