1
|
Fang X, Jia Z, Yu T, Rui P, Zheng H, Lu Y, Peng J, Rao S, Wu J, Chen J, Yan F, Wu G. FATTY ACID DESATURASE4 enhances plant RNA virus replication and undergoes host vacuolar ATPase-mediated degradation. PLANT PHYSIOLOGY 2024; 196:1502-1517. [PMID: 38935533 DOI: 10.1093/plphys/kiae350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 05/14/2024] [Accepted: 05/14/2024] [Indexed: 06/29/2024]
Abstract
Emerging evidence indicates that fatty acid (FA) metabolic pathways regulate host immunity to vertebrate viruses. However, information on FA signaling in plant virus infection remains elusive. In this study, we demonstrate the importance of fatty acid desaturase (FAD), an enzyme that catalyzes the rate-limiting step in the conversion of saturated FAs into unsaturated FAs, during infection by a plant RNA virus. We previously found that the rare Kua-ubiquitin-conjugating enzyme (Kua-UEV1) fusion protein FAD4 from Nicotiana benthamiana (NbFAD4) was downregulated upon turnip mosaic virus (TuMV) infection. We now demonstrate that NbFAD4 is unstable and is degraded as TuMV infection progresses. NbFAD4 is required for TuMV replication, as it interacts with TuMV replication protein 6K2 and colocalizes with viral replication complexes. Moreover, NbFAD4 overexpression dampened the accumulation of immunity-related phytohormones and FA metabolites, and its catalytic activity appears to be crucial for TuMV infection. Finally, a yeast 2-hybrid library screen identified the vacuolar H+-ATPase component ATP6V0C as involved in NbFAD4 degradation and further suppression of TuMV infection. This study reveals the intricate role of FAD4 in plant virus infection, and sheds light on a new mechanism by which a V-ATPase is involved in plant antiviral defense.
Collapse
Affiliation(s)
- Xinxin Fang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Zhaoxing Jia
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Tianqi Yu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Penghuan Rui
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Hongying Zheng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Yuwen Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Jiejun Peng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Shaofei Rao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Jian Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Jianping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Fei Yan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Guanwei Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| |
Collapse
|
2
|
Wu G, Wang L, He R, Cui X, Chen X, Wang A. Two plant membrane-shaping reticulon-like proteins play contrasting complex roles in turnip mosaic virus infection. MOLECULAR PLANT PATHOLOGY 2024; 25:e70017. [PMID: 39412487 PMCID: PMC11481689 DOI: 10.1111/mpp.70017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 09/10/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024]
Abstract
Positive-sense RNA viruses remodel cellular cytoplasmic membranes as the membranous sources for the formation of viral replication organelles (VROs) for viral genome replication. In plants, they traffic through plasmodesmata (PD), plasma membrane-lined pores enabling cytoplasmic connections between cells for intercellular movement and systemic infection. In this study, we employed turnip mosaic virus (TuMV), a plant RNA virus to investigate the involvement of RTNLB3 and RTNLB6, two ER (endoplasmic reticulum) membrane-bending, PD-located reticulon-like (RTNL) non-metazoan group B proteins (RTNLBs) in viral infection. We show that RTNLB3 interacts with TuMV 6K2 integral membrane protein and RTNLB6 binds to TuMV coat protein (CP). Knockdown of RTNLB3 promoted viral infection, whereas downregulation of RTNLB6 restricted viral infection, suggesting that these two RTNLs play contrasting roles in TuMV infection. We further demonstrate that RTNLB3 targets the α-helix motif 42LRKSM46 of 6K2 to interrupt 6K2 self-interactions and compromise 6K2-induced VRO formation. Moreover, overexpression of AtRTNLB3 apparently promoted the selective degradation of the ER and ER-associated protein calnexin, but not 6K2. Intriguingly, mutation of the α-helix motif of 6K2 that is required for induction of VROs severely affected 6K2 stability and abolished TuMV infection. Thus, RTNLB3 attenuates TuMV replication, probably through the suppression of 6K2 function. We also show that RTNLB6 promotes viral intercellular movement but does not affect viral replication. Therefore, the proviral role of RTNLB6 is probably by enhancing viral cell-to-cell trafficking. Taken together, our data demonstrate that RTNL family proteins may play diverse complex, even opposite, roles in viral infection in plants.
Collapse
Affiliation(s)
- Guanwei Wu
- London Research and Development Centre, Agriculture and Agri‐Food CanadaLondonOntarioCanada
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Industrial CropsJiangsu Academy of Agricultural SciencesNanjingChina
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐Products, Institute of Plant VirologyNingbo UniversityNingboChina
| | - Liping Wang
- London Research and Development Centre, Agriculture and Agri‐Food CanadaLondonOntarioCanada
- State Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural UniversityWuhanChina
| | - Rongrong He
- London Research and Development Centre, Agriculture and Agri‐Food CanadaLondonOntarioCanada
- Department of BiologyWestern UniversityLondonOntarioCanada
| | - Xiaoyan Cui
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Industrial CropsJiangsu Academy of Agricultural SciencesNanjingChina
| | - Xin Chen
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Industrial CropsJiangsu Academy of Agricultural SciencesNanjingChina
| | - Aiming Wang
- London Research and Development Centre, Agriculture and Agri‐Food CanadaLondonOntarioCanada
- Department of BiologyWestern UniversityLondonOntarioCanada
| |
Collapse
|
3
|
Chiang BJ, Lin KY, Chen YF, Huang CY, Goh FJ, Huang LT, Chen LH, Wu CH. Development of a tightly regulated copper-inducible transient gene expression system in Nicotiana benthamiana incorporating a suicide exon and Cre recombinase. THE NEW PHYTOLOGIST 2024; 244:318-331. [PMID: 39081031 DOI: 10.1111/nph.20021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 07/15/2024] [Indexed: 09/17/2024]
Abstract
Chemical-inducible gene expression systems are commonly used to regulate gene expression for functional genomics in various plant species. However, a convenient system that can tightly regulate transgene expression in Nicotiana benthamiana is still lacking. In this study, we developed a tightly regulated copper-inducible system that can control transgene expression and conduct cell death assays in N. benthamiana. We tested several chemical-inducible systems using Agrobacterium-mediated transient expression and found that the copper-inducible system exhibited the least concerns regarding leakiness in N. benthamiana. Although the copper-inducible system can control the expression of some tested reporters, it is not sufficiently tight to regulate certain tested hypersensitive cell death responses. Using the MoClo-based synthetic biology approach, we incorporated the suicide exon HyP5SM/OsL5 and Cre/LoxP as additional regulatory elements to enhance the tightness of the regulation. This new design allowed us to tightly control the hypersensitive cell death induced by several tested leucine-rich repeat-containing proteins and their matching avirulence factors, and it can be easily applied to regulate the expression of other transgenes in transient expression assays. Our findings offer new approaches for both fundamental and translational studies in plant functional genomics.
Collapse
Affiliation(s)
- Bing-Jen Chiang
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 115 201, Taiwan
| | - Kuan-Yu Lin
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 115 201, Taiwan
| | - Yi-Feng Chen
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 115 201, Taiwan
| | - Ching-Yi Huang
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 115 201, Taiwan
| | - Foong-Jing Goh
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 115 201, Taiwan
| | - Lo-Ting Huang
- Department of Plant Pathology, National Chung Hsing University, Taichung, 402 202, Taiwan
| | - Li-Hung Chen
- Department of Plant Pathology, National Chung Hsing University, Taichung, 402 202, Taiwan
- Advanced Plant and Food Crop Biotechnology Center, National Chung Hsing University, Taichung, 402 202, Taiwan
| | - Chih-Hang Wu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 115 201, Taiwan
| |
Collapse
|
4
|
Xia Y, Sun G, Xiao J, He X, Jiang H, Zhang Z, Zhang Q, Li K, Zhang S, Shi X, Wang Z, Liu L, Zhao Y, Yang Y, Duan K, Ye W, Wang Y, Dong S, Wang Y, Ma Z, Wang Y. AlphaFold-guided redesign of a plant pectin methylesterase inhibitor for broad-spectrum disease resistance. MOLECULAR PLANT 2024; 17:1344-1368. [PMID: 39030909 DOI: 10.1016/j.molp.2024.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/18/2024] [Accepted: 07/15/2024] [Indexed: 07/22/2024]
Abstract
Plant cell walls are a critical site where plants and pathogens continuously struggle for physiological dominance. Here we show that dynamic remodeling of pectin methylesterification of plant cell walls is a component of the physiological and co-evolutionary struggles between hosts and pathogens. A pectin methylesterase (PsPME1) secreted by Phytophthora sojae decreases the degree of pectin methylesterification, thus synergizing with an endo-polygalacturonase (PsPG1) to weaken plant cell walls. To counter PsPME1-mediated susceptibility, a plant-derived pectin methylesterase inhibitor protein, GmPMI1, protects pectin to maintain a high methylesterification status. GmPMI1 protects plant cell walls from enzymatic degradation by inhibiting both soybean and P. sojae pectin methylesterases during infection. However, constitutive expression of GmPMI1 disrupted the trade-off between host growth and defense responses. We therefore used AlphaFold structure tools to design a modified form of GmPMI1 (GmPMI1R) that specifically targets and inhibits pectin methylesterases secreted from pathogens but not from plants. Transient expression of GmPMI1R enhanced plant resistance to oomycete and fungal pathogens. In summary, our work highlights the biochemical modification of the cell wall as an important focal point in the physiological and co-evolutionary conflict between hosts and microbes, providing an important proof of concept that AI-driven structure-based tools can accelerate the development of new strategies for plant protection.
Collapse
Affiliation(s)
- Yeqiang Xia
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China; Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Guangzheng Sun
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China; Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Junhua Xiao
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China; Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Xinyi He
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China; Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Haibin Jiang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China; Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Zhichao Zhang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China; Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Qi Zhang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China; Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Kainan Li
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China; Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Sicong Zhang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China; Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Xuechao Shi
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China; Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Zhaoyun Wang
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, Hefei 230036, China
| | - Lin Liu
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yao Zhao
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China; Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Yuheng Yang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China; Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Kaixuan Duan
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China; Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Wenwu Ye
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China; Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Yiming Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China; Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Suomeng Dong
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China; Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Yan Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China; Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Zhenchuan Ma
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China; Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Yuanchao Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China; Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, Jiangsu 210095, China.
| |
Collapse
|
5
|
Huang CY, Huang YS, Sugihara Y, Wang HY, Huang LT, Lopez-Agudelo JC, Chen YF, Lin KY, Chiang BJ, Toghani A, Kourelis J, Wang CH, Derevnina L, Wu CH. Subfunctionalization of NRC3 altered the genetic structure of the Nicotiana NRC network. PLoS Genet 2024; 20:e1011402. [PMID: 39264953 PMCID: PMC11421798 DOI: 10.1371/journal.pgen.1011402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 09/24/2024] [Accepted: 08/26/2024] [Indexed: 09/14/2024] Open
Abstract
Nucleotide-binding domain and leucine-rich repeat (NLR) proteins play crucial roles in immunity against pathogens in both animals and plants. In solanaceous plants, activation of several sensor NLRs triggers their helper NLRs, known as NLR-required for cell death (NRC), to form resistosome complexes to initiate immune responses. While the sensor NLRs and downstream NRC helpers display diverse genetic compatibility, molecular evolutionary events leading to the complex network architecture remained elusive. Here, we showed that solanaceous NRC3 variants underwent subfunctionalization after the divergence of Solanum and Nicotiana, altering the genetic architecture of the NRC network in Nicotiana. Natural solanaceous NRC3 variants form three allelic groups displaying distinct compatibilities with the sensor NLR Rpi-blb2. Ancestral sequence reconstruction and analyses of natural and chimeric variants identified six key amino acids involved in sensor-helper compatibility. These residues are positioned on multiple surfaces of the resting NRC3 homodimer, collectively contributing to their compatibility with Rpi-blb2. Upon activation, Rpi-blb2-compatible NRC3 variants form membrane-associated punctate and high molecular weight complexes, and confer resistance to the late blight pathogen Phytophthora infestans. Our findings revealed how mutations in NRC alleles lead to subfunctionalization, altering sensor-helper compatibility and contributing to the increased complexity of the NRC network.
Collapse
Affiliation(s)
- Ching-Yi Huang
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Yu-Seng Huang
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Yu Sugihara
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
- Iwate Biotechnology Research Center, Iwate, Japan
| | - Hung-Yu Wang
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Lo-Ting Huang
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | | | - Yi-Feng Chen
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Kuan-Yu Lin
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Bing-Jen Chiang
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - AmirAli Toghani
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Jiorgos Kourelis
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
- Department of Life Sciences, Imperial College, London, United Kingdom
| | - Chun-Hsiung Wang
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Lida Derevnina
- Crop Science Center, Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Chih-Hang Wu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
6
|
Betz R, Heidt S, Figueira-Galán D, Hartmann M, Langner T, Requena N. Alternative splicing regulation in plants by SP7-like effectors from symbiotic arbuscular mycorrhizal fungi. Nat Commun 2024; 15:7107. [PMID: 39160162 PMCID: PMC11333574 DOI: 10.1038/s41467-024-51512-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 08/08/2024] [Indexed: 08/21/2024] Open
Abstract
Most plants in natural ecosystems associate with arbuscular mycorrhizal (AM) fungi to survive soil nutrient limitations. To engage in symbiosis, AM fungi secrete effector molecules that, similar to pathogenic effectors, reprogram plant cells. Here we show that the Glomeromycotina-specific SP7 effector family impacts on the alternative splicing program of their hosts. SP7-like effectors localize at nuclear condensates and interact with the plant mRNA processing machinery, most prominently with the splicing factor SR45 and the core splicing proteins U1-70K and U2AF35. Ectopic expression of these effectors in the crop plant potato and in Arabidopsis induced developmental changes that paralleled to the alternative splicing modulation of a specific subset of genes. We propose that SP7-like proteins act as negative regulators of SR45 to modulate the fate of specific mRNAs in arbuscule-containing cells. Unraveling the communication mechanisms between symbiotic fungi and their host plants will help to identify targets to improve plant nutrition.
Collapse
Affiliation(s)
- Ruben Betz
- Joseph Kölreuter Institute for Plant Sciences. Molecular Phytopathology Department, Karlsruhe Institute of Technology (KIT) - South Campus, Fritz-Haber-Weg 4, Karlsruhe, Germany
| | - Sven Heidt
- Joseph Kölreuter Institute for Plant Sciences. Molecular Phytopathology Department, Karlsruhe Institute of Technology (KIT) - South Campus, Fritz-Haber-Weg 4, Karlsruhe, Germany
| | - David Figueira-Galán
- Joseph Kölreuter Institute for Plant Sciences. Molecular Phytopathology Department, Karlsruhe Institute of Technology (KIT) - South Campus, Fritz-Haber-Weg 4, Karlsruhe, Germany
| | - Meike Hartmann
- Joseph Kölreuter Institute for Plant Sciences. Molecular Phytopathology Department, Karlsruhe Institute of Technology (KIT) - South Campus, Fritz-Haber-Weg 4, Karlsruhe, Germany
| | - Thorsten Langner
- Max Planck Institute for Biology Tübingen - Max-Planck-Ring 5, Tübingen, Germany
| | - Natalia Requena
- Joseph Kölreuter Institute for Plant Sciences. Molecular Phytopathology Department, Karlsruhe Institute of Technology (KIT) - South Campus, Fritz-Haber-Weg 4, Karlsruhe, Germany.
| |
Collapse
|
7
|
Ibe CN, Bailey SL, Korolev AV, Brett P, Saunders DGO. Isocitrate lyase promotes Puccinia striiformis f. sp. tritici susceptibility in wheat (Triticum aestivum) by suppressing accumulation of glyoxylate cycle intermediates. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:2033-2044. [PMID: 38949911 DOI: 10.1111/tpj.16908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 06/16/2024] [Accepted: 06/20/2024] [Indexed: 07/03/2024]
Abstract
Plant fungal parasites manipulate host metabolism to support their own survival. Among the many central metabolic pathways altered during infection, the glyoxylate cycle is frequently upregulated in both fungi and their host plants. Here, we examined the response of the glyoxylate cycle in bread wheat (Triticum aestivum) to infection by the obligate biotrophic fungal pathogen Puccinia striiformis f. sp. tritici (Pst). Gene expression analysis revealed that wheat genes encoding the two unique enzymes of the glyoxylate cycle, isocitrate lyase (TaICL) and malate synthase, diverged in their expression between susceptible and resistant Pst interactions. Focusing on TaICL, we determined that the TaICL B homoeolog is specifically upregulated during early stages of a successful Pst infection. Furthermore, disruption of the B homoeolog alone was sufficient to significantly perturb Pst disease progression. Indeed, Pst infection of the TaICL-B disruption mutant (TaICL-BY400*) was inhibited early during initial penetration, with the TaICL-BY400* line also accumulating high levels of malic acid, citric acid, and aconitic acid. Exogenous application of malic acid or aconitic acid also suppressed Pst infection, with trans-aconitic acid treatment having the most pronounced effect by decreasing fungal biomass 15-fold. Thus, enhanced TaICL-B expression during Pst infection may lower accumulation of malic acid and aconitic acid to promote Pst proliferation. As exogenous application of aconitic acid and malic acid has previously been shown to inhibit other critical pests and pathogens, we propose TaICL as a potential target for disruption in resistance breeding that could have wide-reaching protective benefits for wheat and beyond.
Collapse
Affiliation(s)
- Carol N Ibe
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Sarah L Bailey
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | | | - Paul Brett
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | | |
Collapse
|
8
|
Mostaffa NH, Suhaimi AH, Al-Idrus A. Interactomics in plant defence: progress and opportunities. Mol Biol Rep 2023; 50:4605-4618. [PMID: 36920596 DOI: 10.1007/s11033-023-08345-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 02/15/2023] [Indexed: 03/16/2023]
Abstract
Interactomics is a branch of systems biology that deals with the study of protein-protein interactions and how these interactions influence phenotypes. Identifying the interactomes involved during host-pathogen interaction events may bring us a step closer to deciphering the molecular mechanisms underlying plant defence. Here, we conducted a systematic review of plant interactomics studies over the last two decades and found that while a substantial progress has been made in the field, plant-pathogen interactomics remains a less-travelled route. As an effort to facilitate the progress in this field, we provide here a comprehensive research pipeline for an in planta plant-pathogen interactomics study that encompasses the in silico prediction step to the validation step, unconfined to model plants. We also highlight four challenges in plant-pathogen interactomics with plausible solution(s) for each.
Collapse
Affiliation(s)
- Nur Hikmah Mostaffa
- Programme of Genetics, Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Ahmad Husaini Suhaimi
- Programme of Genetics, Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Aisyafaznim Al-Idrus
- Programme of Genetics, Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
| |
Collapse
|
9
|
Helm M, Singh R, Hiles R, Jaiswal N, Myers A, Iyer-Pascuzzi AS, Goodwin SB. Candidate Effector Proteins from the Maize Tar Spot Pathogen Phyllachora maydis Localize to Diverse Plant Cell Compartments. PHYTOPATHOLOGY 2022; 112:2538-2548. [PMID: 35815936 DOI: 10.1094/phyto-05-22-0181-r] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Most fungal pathogens secrete effector proteins into host cells to modulate their immune responses, thereby promoting pathogenesis and fungal growth. One such fungal pathogen is the ascomycete Phyllachora maydis, which causes tar spot disease on leaves of maize (Zea mays). Sequencing of the P. maydis genome revealed 462 putatively secreted proteins, of which 40 contain expected effector-like sequence characteristics. However, the subcellular compartments targeted by P. maydis effector candidate (PmEC) proteins remain unknown, and it will be important to prioritize them for further functional characterization. To test the hypothesis that PmECs target diverse subcellular compartments, cellular locations of super yellow fluorescent protein-tagged PmEC proteins were identified using a Nicotiana benthamiana-based heterologous expression system. Immunoblot analyses showed that most of the PmEC-fluorescent protein fusions accumulated protein in N. benthamiana, indicating that the candidate effectors could be expressed in dicot leaf cells. Laser-scanning confocal microscopy of N. benthamiana epidermal cells revealed that most of the P. maydis putative effectors localized to the nucleus and cytosol. One candidate effector, PmEC01597, localized to multiple subcellular compartments including the nucleus, nucleolus, and plasma membrane, whereas an additional putative effector, PmEC03792, preferentially labelled both the nucleus and nucleolus. Intriguingly, one candidate effector, PmEC04573, consistently localized to the stroma of chloroplasts as well as stroma-containing tubules (stromules). Collectively, these data suggest that effector candidate proteins from P. maydis target diverse cellular organelles and could thus provide valuable insights into their putative functions, as well as host processes potentially manipulated by this fungal pathogen.
Collapse
Affiliation(s)
- Matthew Helm
- Crop Production and Pest Control Research Unit, U.S. Department of Agriculture-Agricultural Research Service (USDA-ARS), West Lafayette, IN 47907
| | - Raksha Singh
- Crop Production and Pest Control Research Unit, U.S. Department of Agriculture-Agricultural Research Service (USDA-ARS), West Lafayette, IN 47907
| | - Rachel Hiles
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907
| | - Namrata Jaiswal
- Crop Production and Pest Control Research Unit, U.S. Department of Agriculture-Agricultural Research Service (USDA-ARS), West Lafayette, IN 47907
| | - Ariana Myers
- Crop Production and Pest Control Research Unit, U.S. Department of Agriculture-Agricultural Research Service (USDA-ARS), West Lafayette, IN 47907
| | | | - Stephen B Goodwin
- Crop Production and Pest Control Research Unit, U.S. Department of Agriculture-Agricultural Research Service (USDA-ARS), West Lafayette, IN 47907
| |
Collapse
|
10
|
Wu N, Ozketen AC, Cheng Y, Jiang W, Zhou X, Zhao X, Guan Y, Xiang Z, Akkaya MS. Puccinia striiformis f. sp. tritici effectors in wheat immune responses. FRONTIERS IN PLANT SCIENCE 2022; 13:1012216. [PMID: 36420019 PMCID: PMC9677129 DOI: 10.3389/fpls.2022.1012216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
The obligate biotrophic fungus Puccinia striiformis f. sp. tritici, which causes yellow (stripe) rust disease, is among the leading biological agents resulting in tremendous yield losses on global wheat productions per annum. The combatting strategies include, but are not limited to, fungicide applications and the development of resistant cultivars. However, evolutionary pressure drives rapid changes, especially in its "effectorome" repertoire, thus allowing pathogens to evade and breach resistance. The extracellular and intracellular effectors, predominantly secreted proteins, are tactical arsenals aiming for many defense processes of plants. Hence, the identity of the effectors and the molecular mechanisms of the interactions between the effectors and the plant immune system have long been targeted in research. The obligate biotrophic nature of P. striiformis f. sp. tritici and the challenging nature of its host, the wheat, impede research on this topic. Next-generation sequencing and novel prediction algorithms in bioinformatics, which are accompanied by in vitro and in vivo validation approaches, offer a speedy pace for the discovery of new effectors and investigations of their biological functions. Here, we briefly review recent findings exploring the roles of P. striiformis f. sp. tritici effectors together with their cellular/subcellular localizations, host responses, and interactors. The current status and the challenges will be discussed. We hope that the overall work will provide a broader view of where we stand and a reference point to compare and evaluate new findings.
Collapse
Affiliation(s)
- Nan Wu
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | | | - Yu Cheng
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Wanqing Jiang
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Xuan Zhou
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Xinran Zhao
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Yaorong Guan
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Zhaoxia Xiang
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Mahinur S. Akkaya
- School of Bioengineering, Dalian University of Technology, Dalian, China
| |
Collapse
|
11
|
Zhao B, Shao Z, Wang L, Zhang F, Chakravarty D, Zong W, Dong J, Song L, Qiao H. MYB44-ENAP1/2 restricts HDT4 to regulate drought tolerance in Arabidopsis. PLoS Genet 2022; 18:e1010473. [PMID: 36413574 PMCID: PMC9681084 DOI: 10.1371/journal.pgen.1010473] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 10/11/2022] [Indexed: 11/23/2022] Open
Abstract
Histone acetylation has been shown to involve in stress responses. However, the detailed molecular mechanisms that how histone deacetylases and transcription factors function in drought stress response remain to be understood. In this research, we show that ENAP1 and ENAP2 are positive regulators of drought tolerance in plants, and the enap1enap2 double mutant is more sensitive to drought stress. Both ENAP1 and ENAP2 interact with MYB44, a transcription factor that interacts with histone deacetylase HDT4. Genetics data show that myb44 null mutation enhances the sensitivity of enap1enap2 to drought stress. Whereas, HDT4 negatively regulates plant drought response, the hdt4 mutant represses enap1enap2myb44 drought sensitive phenotype. In the normal condition, ENAP1/2 and MYB44 counteract the HDT4 function for the regulation of H3K27ac. Upon drought stress, the accumulation of MYB44 and reduction of HDT4 leads to the enrichment of H3K27ac and the activation of target gene expression. Overall, this research provides a novel molecular mechanism by which ENAP1, ENAP2 and MYB44 form a complex to restrict the function of HDT4 in the normal condition; under drought condition, accumulated MYB44 and reduced HDT4 lead to the elevation of H3K27ac and the expression of drought responsive genes, as a result, plants are drought tolerant.
Collapse
Affiliation(s)
- Bo Zhao
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, United States of America
| | - Zhengyao Shao
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, United States of America
| | - Likai Wang
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, United States of America
| | - Fan Zhang
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, United States of America
| | - Daveraj Chakravarty
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, United States of America
| | - Wei Zong
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, United States of America
| | - Juan Dong
- Department of Plant Biology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, United States of America
| | - Liang Song
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| | - Hong Qiao
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, United States of America
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas, United States of America
| |
Collapse
|
12
|
Regressive evolution of an effector following a host jump in the Irish potato famine pathogen lineage. PLoS Pathog 2022; 18:e1010918. [DOI: 10.1371/journal.ppat.1010918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 11/08/2022] [Accepted: 10/05/2022] [Indexed: 11/06/2022] Open
Abstract
In order to infect a new host species, the pathogen must evolve to enhance infection and transmission in the novel environment. Although we often think of evolution as a process of accumulation, it is also a process of loss. Here, we document an example of regressive evolution of an effector activity in the Irish potato famine pathogen (Phytophthora infestans) lineage, providing evidence that a key sequence motif in the effector PexRD54 has degenerated following a host jump. We began by looking at PexRD54 and PexRD54-like sequences from across Phytophthora species. We found that PexRD54 emerged in the common ancestor of Phytophthora clade 1b and 1c species, and further sequence analysis showed that a key functional motif, the C-terminal ATG8-interacting motif (AIM), was also acquired at this point in the lineage. A closer analysis showed that the P. mirabilis PexRD54 (PmPexRD54) AIM is atypical, the otherwise-conserved central residue mutated from a glutamate to a lysine. We aimed to determine whether this PmPexRD54 AIM polymorphism represented an adaptation to the Mirabilis jalapa host environment. We began by characterizing the M. jalapa ATG8 family, finding that they have a unique evolutionary history compared to previously characterized ATG8s. Then, using co-immunoprecipitation and isothermal titration calorimetry assays, we showed that both full-length PmPexRD54 and the PmPexRD54 AIM peptide bind weakly to the M. jalapa ATG8s. Through a combination of binding assays and structural modelling, we showed that the identity of the residue at the position of the PmPexRD54 AIM polymorphism can underpin high-affinity binding to plant ATG8s. Finally, we conclude that the functionality of the PexRD54 AIM was lost in the P. mirabilis lineage, perhaps owing to as-yet-unknown selection pressure on this effector in the new host environment.
Collapse
|
13
|
Wu G, Jia Z, Rui P, Zheng H, Lu Y, Lin L, Peng J, Rao S, Wang A, Chen J, Yan F. Acidic dileucine motifs in the cylindrical inclusion protein of turnip mosaic virus are crucial for endosomal targeting and viral replication. MOLECULAR PLANT PATHOLOGY 2022; 23:1381-1389. [PMID: 35611885 PMCID: PMC9366067 DOI: 10.1111/mpp.13231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 04/27/2022] [Accepted: 04/30/2022] [Indexed: 06/15/2023]
Abstract
Previously we reported that the multifunctional cylindrical inclusion (CI) protein of turnip mosaic virus (TuMV) is targeted to endosomes through the interaction with the medium subunit of adaptor protein complex 2 (AP2β), which is essential for viral infection. Although several functionally important regions in the CI have been identified, little is known about the determinant(s) for endosomal trafficking. The CI protein contains seven conserved acidic dileucine motifs [(D/E)XXXL(L/I)] typical of endocytic sorting signals recognized by AP2β. Here, we selected five motifs for further study and identified that they all were located in the regions of CI interacting with AP2β. Coimmunoprecipitation assays revealed that alanine substitutions in the each of these acidic dileucine motifs decreased binding with AP2β. Moreover, these CI mutants also showed decreased accumulation of punctate bodies, which enter endocytic-tracking styryl-stained endosomes. The mutations were then introduced into a full-length infectious clone of TuMV, and each mutant had reduced viral replication and systemic infection. The data suggest that the acidic dileucine motifs in CI are indispensable for interacting with AP2β for efficient viral replication. This study provides new insights into the role of endocytic sorting motifs in the intracellular movement of viral proteins for replication.
Collapse
Affiliation(s)
- Guanwei Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐Products, Institute of Plant VirologyNingbo UniversityNingboChina
| | - Zhaoxing Jia
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐Products, Institute of Plant VirologyNingbo UniversityNingboChina
- College of Plant ProtectionNanjing Agricultural UniversityNanjingChina
| | - Penghuan Rui
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐Products, Institute of Plant VirologyNingbo UniversityNingboChina
| | - Hongying Zheng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐Products, Institute of Plant VirologyNingbo UniversityNingboChina
| | - Yuwen Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐Products, Institute of Plant VirologyNingbo UniversityNingboChina
| | - Lin Lin
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐Products, Institute of Plant VirologyNingbo UniversityNingboChina
| | - Jiejun Peng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐Products, Institute of Plant VirologyNingbo UniversityNingboChina
| | - Shaofei Rao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐Products, Institute of Plant VirologyNingbo UniversityNingboChina
| | - Aiming Wang
- London Research and Development CentreAgriculture and Agri‐Food CanadaOttawaOntarioCanada
| | - Jianping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐Products, Institute of Plant VirologyNingbo UniversityNingboChina
| | - Fei Yan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐Products, Institute of Plant VirologyNingbo UniversityNingboChina
| |
Collapse
|
14
|
Lee H, Seo Y, Lee JH, Lee SE, Oh S, Kim J, Jung S, Kim H, Park H, Kim S, Mang H, Choi D. Plasma membrane-localized plant immune receptor targets H + -ATPase for membrane depolarization to regulate cell death. THE NEW PHYTOLOGIST 2022; 233:934-947. [PMID: 34632584 PMCID: PMC9298278 DOI: 10.1111/nph.17789] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 09/22/2021] [Indexed: 06/13/2023]
Abstract
The hypersensitive response (HR) is a robust immune response mediated by nucleotide-binding, leucine-rich repeat receptors (NLRs). However, the early molecular event that links activated NLRs to cell death is unclear. Here, we demonstrate that NLRs target plasma membrane H+ -ATPases (PMAs) that generate electrochemical potential, an essential component of living cells, across the plasma membrane. CCA 309, an autoactive N-terminal domain of a coiled-coil NLR (CNL) in pepper, is associated with PMAs. Silencing or overexpression of PMAs reversibly affects cell death induced by CCA 309 in Nicotiana benthamiana. CCA 309-induced extracellular alkalization causes plasma membrane depolarization, followed by cell death. Coimmunoprecipitation analyses suggest that CCA 309 inhibits PMA activation by preoccupying the dephosphorylated penultimate threonine residue of PMA. Moreover, pharmacological experiments using fusicoccin, an irreversible PMA activator, showed that inhibition of PMAs contributes to CNL-type (but not Toll interleukin-1 receptor NLR-type) resistance protein-induced cell death. We suggest PMAs as primary targets of plasma membrane-associated CNLs leading to HR-associated cell death by disturbing the electrochemical gradient across the membrane. These results provide new insight into NLR-mediated cell death in plants, as well as innate immunity in higher eukaryotes.
Collapse
Affiliation(s)
- Hye‐Young Lee
- Plant Immunity Research CenterSeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826Korea
| | - Ye‐Eun Seo
- Plant Immunity Research CenterSeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826Korea
- Department of Agriculture, Forestry and BioresourcesPlant Genomics and Breeding InstituteSeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826Korea
| | - Joo Hyun Lee
- Plant Immunity Research CenterSeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826Korea
| | - So Eui Lee
- Plant Immunity Research CenterSeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826Korea
- Department of Agriculture, Forestry and BioresourcesPlant Genomics and Breeding InstituteSeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826Korea
| | - Soohyun Oh
- Plant Immunity Research CenterSeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826Korea
- Department of Agriculture, Forestry and BioresourcesPlant Genomics and Breeding InstituteSeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826Korea
| | - Jihyun Kim
- Plant Immunity Research CenterSeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826Korea
- Department of Agriculture, Forestry and BioresourcesPlant Genomics and Breeding InstituteSeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826Korea
| | - Seungmee Jung
- Plant Immunity Research CenterSeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826Korea
| | - Haeun Kim
- Plant Immunity Research CenterSeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826Korea
- Department of Agriculture, Forestry and BioresourcesPlant Genomics and Breeding InstituteSeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826Korea
| | - Hyojeong Park
- Plant Immunity Research CenterSeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826Korea
- Department of Agriculture, Forestry and BioresourcesPlant Genomics and Breeding InstituteSeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826Korea
| | - Sejun Kim
- Plant Immunity Research CenterSeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826Korea
- Department of Agriculture, Forestry and BioresourcesPlant Genomics and Breeding InstituteSeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826Korea
| | - Hyunggon Mang
- Plant Immunity Research CenterSeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826Korea
| | - Doil Choi
- Plant Immunity Research CenterSeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826Korea
- Department of Agriculture, Forestry and BioresourcesPlant Genomics and Breeding InstituteSeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826Korea
| |
Collapse
|
15
|
Derevnina L, Contreras MP, Adachi H, Upson J, Vergara Cruces A, Xie R, Skłenar J, Menke FLH, Mugford ST, MacLean D, Ma W, Hogenhout SA, Goverse A, Maqbool A, Wu CH, Kamoun S. Plant pathogens convergently evolved to counteract redundant nodes of an NLR immune receptor network. PLoS Biol 2021; 19:e3001136. [PMID: 34424903 PMCID: PMC8412950 DOI: 10.1371/journal.pbio.3001136] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 09/02/2021] [Accepted: 07/27/2021] [Indexed: 12/16/2022] Open
Abstract
In plants, nucleotide-binding domain and leucine-rich repeat (NLR)-containing proteins can form receptor networks to confer hypersensitive cell death and innate immunity. One class of NLRs, known as NLR required for cell death (NRCs), are central nodes in a complex network that protects against multiple pathogens and comprises up to half of the NLRome of solanaceous plants. Given the prevalence of this NLR network, we hypothesised that pathogens convergently evolved to secrete effectors that target NRC activities. To test this, we screened a library of 165 bacterial, oomycete, nematode, and aphid effectors for their capacity to suppress the cell death response triggered by the NRC-dependent disease resistance proteins Prf and Rpi-blb2. Among 5 of the identified suppressors, 1 cyst nematode protein and 1 oomycete protein suppress the activity of autoimmune mutants of NRC2 and NRC3, but not NRC4, indicating that they specifically counteract a subset of NRC proteins independently of their sensor NLR partners. Whereas the cyst nematode effector SPRYSEC15 binds the nucleotide-binding domain of NRC2 and NRC3, the oomycete effector AVRcap1b suppresses the response of these NRCs via the membrane trafficking-associated protein NbTOL9a (Target of Myb 1-like protein 9a). We conclude that plant pathogens have evolved to counteract central nodes of the NRC immune receptor network through different mechanisms. Coevolution with pathogen effectors may have driven NRC diversification into functionally redundant nodes in a massively expanded NLR network.
Collapse
Affiliation(s)
- Lida Derevnina
- The Sainsbury Laboratory, University of East Anglia, Norwich, United Kingdom
| | | | - Hiroaki Adachi
- The Sainsbury Laboratory, University of East Anglia, Norwich, United Kingdom
| | - Jessica Upson
- The Sainsbury Laboratory, University of East Anglia, Norwich, United Kingdom
| | - Angel Vergara Cruces
- The Sainsbury Laboratory, University of East Anglia, Norwich, United Kingdom
- Department of Biology, Swiss Federal Institute of Technology (ETH), Zürich, Switzerland
| | - Rongrong Xie
- The Sainsbury Laboratory, University of East Anglia, Norwich, United Kingdom
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai, Jiao Tong University, Shanghai, China
| | - Jan Skłenar
- The Sainsbury Laboratory, University of East Anglia, Norwich, United Kingdom
| | - Frank L. H. Menke
- The Sainsbury Laboratory, University of East Anglia, Norwich, United Kingdom
| | - Sam T. Mugford
- Department of Crop Genetics, John Innes Centre, Norwich, United Kingdom
| | - Dan MacLean
- The Sainsbury Laboratory, University of East Anglia, Norwich, United Kingdom
| | - Wenbo Ma
- The Sainsbury Laboratory, University of East Anglia, Norwich, United Kingdom
- Department of Plant Pathology and Microbiology, University of California, Riverside, California, United States of America
| | | | - Aska Goverse
- Laboratory of Nematology, Wageningen University and Research, Wageningen, the Netherlands
| | - Abbas Maqbool
- The Sainsbury Laboratory, University of East Anglia, Norwich, United Kingdom
| | - Chih-Hang Wu
- The Sainsbury Laboratory, University of East Anglia, Norwich, United Kingdom
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Sophien Kamoun
- The Sainsbury Laboratory, University of East Anglia, Norwich, United Kingdom
| |
Collapse
|
16
|
Białas A, Langner T, Harant A, Contreras MP, Stevenson CE, Lawson DM, Sklenar J, Kellner R, Moscou MJ, Terauchi R, Banfield MJ, Kamoun S. Two NLR immune receptors acquired high-affinity binding to a fungal effector through convergent evolution of their integrated domain. eLife 2021; 10:e66961. [PMID: 34288868 PMCID: PMC8294853 DOI: 10.7554/elife.66961] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 07/01/2021] [Indexed: 12/17/2022] Open
Abstract
A subset of plant NLR immune receptors carry unconventional integrated domains in addition to their canonical domain architecture. One example is rice Pik-1 that comprises an integrated heavy metal-associated (HMA) domain. Here, we reconstructed the evolutionary history of Pik-1 and its NLR partner, Pik-2, and tested hypotheses about adaptive evolution of the HMA domain. Phylogenetic analyses revealed that the HMA domain integrated into Pik-1 before Oryzinae speciation over 15 million years ago and has been under diversifying selection. Ancestral sequence reconstruction coupled with functional studies showed that two Pik-1 allelic variants independently evolved from a weakly binding ancestral state to high-affinity binding of the blast fungus effector AVR-PikD. We conclude that for most of its evolutionary history the Pik-1 HMA domain did not sense AVR-PikD, and that different Pik-1 receptors have recently evolved through distinct biochemical paths to produce similar phenotypic outcomes. These findings highlight the dynamic nature of the evolutionary mechanisms underpinning NLR adaptation to plant pathogens.
Collapse
Affiliation(s)
- Aleksandra Białas
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Thorsten Langner
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Adeline Harant
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Mauricio P Contreras
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Clare Em Stevenson
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - David M Lawson
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Jan Sklenar
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Ronny Kellner
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Matthew J Moscou
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Ryohei Terauchi
- Division of Genomics and Breeding, Iwate Biotechnology Research Centre, Iwate, Japan
- Laboratory of Crop Evolution, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Mark J Banfield
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Sophien Kamoun
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| |
Collapse
|
17
|
Białas A, Langner T, Harant A, Contreras MP, Stevenson CE, Lawson DM, Sklenar J, Kellner R, Moscou MJ, Terauchi R, Banfield MJ, Kamoun S. Two NLR immune receptors acquired high-affinity binding to a fungal effector through convergent evolution of their integrated domain. eLife 2021; 10:66961. [PMID: 34288868 DOI: 10.1101/2021.01.26.428286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 07/01/2021] [Indexed: 05/21/2023] Open
Abstract
A subset of plant NLR immune receptors carry unconventional integrated domains in addition to their canonical domain architecture. One example is rice Pik-1 that comprises an integrated heavy metal-associated (HMA) domain. Here, we reconstructed the evolutionary history of Pik-1 and its NLR partner, Pik-2, and tested hypotheses about adaptive evolution of the HMA domain. Phylogenetic analyses revealed that the HMA domain integrated into Pik-1 before Oryzinae speciation over 15 million years ago and has been under diversifying selection. Ancestral sequence reconstruction coupled with functional studies showed that two Pik-1 allelic variants independently evolved from a weakly binding ancestral state to high-affinity binding of the blast fungus effector AVR-PikD. We conclude that for most of its evolutionary history the Pik-1 HMA domain did not sense AVR-PikD, and that different Pik-1 receptors have recently evolved through distinct biochemical paths to produce similar phenotypic outcomes. These findings highlight the dynamic nature of the evolutionary mechanisms underpinning NLR adaptation to plant pathogens.
Collapse
Affiliation(s)
- Aleksandra Białas
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Thorsten Langner
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Adeline Harant
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Mauricio P Contreras
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Clare Em Stevenson
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - David M Lawson
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Jan Sklenar
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Ronny Kellner
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Matthew J Moscou
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Ryohei Terauchi
- Division of Genomics and Breeding, Iwate Biotechnology Research Centre, Iwate, Japan
- Laboratory of Crop Evolution, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Mark J Banfield
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Sophien Kamoun
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| |
Collapse
|
18
|
Petre B, Contreras MP, Bozkurt TO, Schattat MH, Sklenar J, Schornack S, Abd-El-Haliem A, Castells-Graells R, Lozano-Durán R, Dagdas YF, Menke FLH, Jones AME, Vossen JH, Robatzek S, Kamoun S, Win J. Host-interactor screens of Phytophthora infestans RXLR proteins reveal vesicle trafficking as a major effector-targeted process. THE PLANT CELL 2021. [PMID: 33677602 DOI: 10.1101/2020.09.24.308585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Pathogens modulate plant cell structure and function by secreting effectors into host tissues. Effectors typically function by associating with host molecules and modulating their activities. This study aimed to identify the host processes targeted by the RXLR class of host-translocated effectors of the potato blight pathogen Phytophthora infestans. To this end, we performed an in planta protein-protein interaction screen by transiently expressing P. infestans RXLR effectors in Nicotiana benthamiana leaves followed by coimmunoprecipitation and liquid chromatography-tandem mass spectrometry. This screen generated an effector-host protein interactome matrix of 59 P. infestans RXLR effectors x 586 N. benthamiana proteins. Classification of the host interactors into putative functional categories revealed over 35 biological processes possibly targeted by P. infestans. We further characterized the PexRD12/31 family of RXLR-WY effectors, which associate and colocalize with components of the vesicle trafficking machinery. One member of this family, PexRD31, increased the number of FYVE positive vesicles in N. benthamiana cells. FYVE positive vesicles also accumulated in leaf cells near P. infestans hyphae, indicating that the pathogen may enhance endosomal trafficking during infection. This interactome dataset will serve as a useful resource for functional studies of P. infestans effectors and of effector-targeted host processes.
Collapse
Affiliation(s)
- Benjamin Petre
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
- Université de Lorraine, INRAE, IAM, Nancy, France
| | - Mauricio P Contreras
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Tolga O Bozkurt
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
- Department of Life Sciences, Imperial College London, London, UK
| | - Martin H Schattat
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
- Department of Plant Physiology, Institute for Biology, Martin-Luther University Halle-Wittenberg, Halle, Germany
| | - Jan Sklenar
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Sebastian Schornack
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
- Sainsbury Laboratory, University of Cambridge, Cambridge, UK
| | | | - Roger Castells-Graells
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, California, USA
| | - Rosa Lozano-Durán
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yasin F Dagdas
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Vienna, Austria
| | - Frank L H Menke
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Alexandra M E Jones
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
- School of Life Sciences, University of Warwick, Coventry, UK
| | - Jack H Vossen
- Plant Breeding, Wageningen University and Research, Wageningen, The Netherlands
| | - Silke Robatzek
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
- Ludwig-Maximilian-University of Munich, Munich, Germany
| | - Sophien Kamoun
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Joe Win
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
| |
Collapse
|
19
|
Petre B, Contreras MP, Bozkurt TO, Schattat MH, Sklenar J, Schornack S, Abd-El-Haliem A, Castells-Graells R, Lozano-Durán R, Dagdas YF, Menke FLH, Jones AME, Vossen JH, Robatzek S, Kamoun S, Win J. Host-interactor screens of Phytophthora infestans RXLR proteins reveal vesicle trafficking as a major effector-targeted process. THE PLANT CELL 2021; 33:1447-1471. [PMID: 33677602 PMCID: PMC8254500 DOI: 10.1093/plcell/koab069] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 02/19/2021] [Indexed: 05/20/2023]
Abstract
Pathogens modulate plant cell structure and function by secreting effectors into host tissues. Effectors typically function by associating with host molecules and modulating their activities. This study aimed to identify the host processes targeted by the RXLR class of host-translocated effectors of the potato blight pathogen Phytophthora infestans. To this end, we performed an in planta protein-protein interaction screen by transiently expressing P. infestans RXLR effectors in Nicotiana benthamiana leaves followed by coimmunoprecipitation and liquid chromatography-tandem mass spectrometry. This screen generated an effector-host protein interactome matrix of 59 P. infestans RXLR effectors x 586 N. benthamiana proteins. Classification of the host interactors into putative functional categories revealed over 35 biological processes possibly targeted by P. infestans. We further characterized the PexRD12/31 family of RXLR-WY effectors, which associate and colocalize with components of the vesicle trafficking machinery. One member of this family, PexRD31, increased the number of FYVE positive vesicles in N. benthamiana cells. FYVE positive vesicles also accumulated in leaf cells near P. infestans hyphae, indicating that the pathogen may enhance endosomal trafficking during infection. This interactome dataset will serve as a useful resource for functional studies of P. infestans effectors and of effector-targeted host processes.
Collapse
Affiliation(s)
- Benjamin Petre
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
- Université de Lorraine, INRAE, IAM, Nancy, France
| | - Mauricio P Contreras
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Tolga O Bozkurt
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
- Department of Life Sciences, Imperial College London, London, UK
| | - Martin H Schattat
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
- Department of Plant Physiology, Institute for Biology, Martin-Luther University Halle-Wittenberg, Halle, Germany
| | - Jan Sklenar
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Sebastian Schornack
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
- Sainsbury Laboratory, University of Cambridge, Cambridge, UK
| | | | - Roger Castells-Graells
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, California, USA
| | - Rosa Lozano-Durán
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yasin F Dagdas
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Vienna, Austria
| | - Frank L H Menke
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Alexandra M E Jones
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
- School of Life Sciences, University of Warwick, Coventry, UK
| | - Jack H Vossen
- Plant Breeding, Wageningen University and Research, Wageningen, The Netherlands
| | - Silke Robatzek
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
- Ludwig-Maximilian-University of Munich, Munich, Germany
| | - Sophien Kamoun
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Joe Win
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
| |
Collapse
|
20
|
Qiang X, Liu X, Wang X, Zheng Q, Kang L, Gao X, Wei Y, Wu W, Zhao H, Shan W. Susceptibility factor RTP1 negatively regulates Phytophthora parasitica resistance via modulating UPR regulators bZIP60 and bZIP28. PLANT PHYSIOLOGY 2021; 186:1269-1287. [PMID: 33720348 PMCID: PMC8608195 DOI: 10.1093/plphys/kiab126] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 02/23/2021] [Indexed: 05/03/2023]
Abstract
The unfolded protein response (UPR) is a conserved stress adaptive signaling pathway in eukaryotic organisms activated by the accumulation of misfolded proteins in the endoplasmic reticulum (ER). UPR can be elicited in the course of plant defense, playing important roles in plant-microbe interactions. The major signaling pathways of plant UPR rely on the transcriptional activity of activated forms of ER membrane-associated stress sensors bZIP60 and bZIP28, which are transcription factors that modulate expression of UPR genes. In this study, we report the plant susceptibility factor Resistance to Phytophthora parasitica 1 (RTP1) is involved in ER stress sensing and rtp1-mediated resistance against P. parasitica is synergistically regulated with UPR, as demonstrated by the simultaneous strong induction of UPR and ER stress-associated immune genes in Arabidopsis thaliana rtp1 mutant plants during the infection by P. parasitica. We further demonstrate RTP1 contributes to stabilization of the ER membrane-associated bZIP60 and bZIP28 through manipulating the bifunctional protein kinase/ribonuclease IRE1-mediated bZIP60 splicing activity and interacting with bZIP28. Consequently, we find rtp1bzip60 and rtp1bzip28 mutant plants exhibit compromised resistance accompanied with attenuated induction of ER stress-responsive immune genes and reduction of callose deposition in response to P. parasitica infection. Taken together, we demonstrate RTP1 may exert negative modulating roles in the activation of key UPR regulators bZIP60 and bZIP28, which are required for rtp1-mediated plant resistance to P. parasitica. This facilitates our understanding of the important roles of stress adaptive UPR and ER stress in plant immunity.
Collapse
Affiliation(s)
- Xiaoyu Qiang
- College of Agronomy, Northwest A&F University, Yangling,
Shaanxi 712100, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F
University, Yangling, Shaanxi 712100, China
| | - Xingshao Liu
- College of Agronomy, Northwest A&F University, Yangling,
Shaanxi 712100, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F
University, Yangling, Shaanxi 712100, China
| | - Xiaoxue Wang
- College of Agronomy, Northwest A&F University, Yangling,
Shaanxi 712100, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F
University, Yangling, Shaanxi 712100, China
| | - Qing Zheng
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F
University, Yangling, Shaanxi 712100, China
- College of Plant Protection, Northwest A&F University,
Yangling, Shaanxi 712100, China
| | - Lijuan Kang
- College of Agronomy, Northwest A&F University, Yangling,
Shaanxi 712100, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F
University, Yangling, Shaanxi 712100, China
| | - Xianxian Gao
- College of Agronomy, Northwest A&F University, Yangling,
Shaanxi 712100, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F
University, Yangling, Shaanxi 712100, China
| | - Yushu Wei
- College of Agronomy, Northwest A&F University, Yangling,
Shaanxi 712100, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F
University, Yangling, Shaanxi 712100, China
| | - Wenjie Wu
- College of Agronomy, Northwest A&F University, Yangling,
Shaanxi 712100, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F
University, Yangling, Shaanxi 712100, China
| | - Hong Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F
University, Yangling, Shaanxi 712100, China
- College of Plant Protection, Northwest A&F University,
Yangling, Shaanxi 712100, China
| | - Weixing Shan
- College of Agronomy, Northwest A&F University, Yangling,
Shaanxi 712100, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F
University, Yangling, Shaanxi 712100, China
- Author for communication:
| |
Collapse
|
21
|
In-depth secretome analysis of Puccinia striiformis f. sp. tritici in infected wheat uncovers effector functions. Biosci Rep 2020; 40:226968. [PMID: 33275764 PMCID: PMC7724613 DOI: 10.1042/bsr20201188] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 11/10/2020] [Accepted: 11/12/2020] [Indexed: 11/17/2022] Open
Abstract
The importance of wheat yellow rust disease, caused by Puccinia striiformis f. sp. tritici (Pst), has increased substantially due to the emergence of aggressive new Pst races in the last couple of decades. In an era of escalating human populations and climate change, it is vital to understand the infection mechanism of Pst in order to develop better strategies to combat wheat yellow disease. The present study focuses on the identification of small secreted proteins (SSPs) and candidate-secreted effector proteins (CSEPs) that are used by the pathogen to support infection and control disease development. We generated de novo assembled transcriptomes of Pst collected from wheat fields in central Anatolia. We inoculated both susceptible and resistant seedlings with Pst and analyzed haustoria formation. At 10 days post-inoculation (dpi), we analyzed the transcriptomes and identified 10550 Differentially Expressed Unigenes (DEGs), of which 6072 were Pst-mapped. Among those Pst-related genes, 227 were predicted as PstSSPs. In silico characterization was performed using an approach combining the transcriptomic data and data mining results to provide a reliable list to narrow down the ever-expanding repertoire of predicted effectorome. The comprehensive analysis detected 14 Differentially Expressed Small-Secreted Proteins (DESSPs) that overlapped with the genes in available literature data to serve as the best CSEPs for experimental validation. One of the CSEPs was cloned and studied to test the reliability of the presented data. Biological assays show that the randomly selected CSEP, Unigene17495 (PSTG_10917), localizes in the chloroplast and is able to suppress cell death induced by INF1 in a Nicotiana benthamiana heterologous expression system.
Collapse
|
22
|
Xia Y, Ma Z, Qiu M, Guo B, Zhang Q, Jiang H, Zhang B, Lin Y, Xuan M, Sun L, Shu H, Xiao J, Ye W, Wang Y, Wang Y, Dong S, Tyler BM, Wang Y. N -glycosylation shields Phytophthora sojae apoplastic effector PsXEG1 from a specific host aspartic protease. Proc Natl Acad Sci U S A 2020; 117:27685-27693. [PMID: 33082226 PMCID: PMC7959567 DOI: 10.1073/pnas.2012149117] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Hosts and pathogens are engaged in a continuous evolutionary struggle for physiological dominance. A major site of this struggle is the apoplast. In Phytophthora sojae-soybean interactions, PsXEG1, a pathogen-secreted apoplastic endoglucanase, is a key focal point of this struggle, and the subject of two layers of host defense and pathogen counterdefense. Here, we show that N-glycosylation of PsXEG1 represents an additional layer of this coevolutionary struggle, protecting PsXEG1 against a host apoplastic aspartic protease, GmAP5, that specifically targets PsXEG1. This posttranslational modification also attenuated binding by the previously described host inhibitor, GmGIP1. N-glycosylation of PsXEG1 at N174 and N190 inhibited binding and degradation by GmAP5 and was essential for PsXEG1's full virulence contribution, except in GmAP5-silenced soybeans. Silencing of GmAP5 reduced soybean resistance against WT P. sojae but not against PsXEG1 deletion strains of P. sojae. The crucial role of N-glycosylation within the three layers of defense and counterdefense centered on PsXEG1 highlight the critical importance of this conserved apoplastic effector and its posttranslational modification in Phytophthora-host coevolutionary conflict.
Collapse
Affiliation(s)
- Yeqiang Xia
- Department of Plant Pathology, Nanjing Agricultural University, 210095 Nanjing, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, 210095 Nanjing, China
| | - Zhenchuan Ma
- Department of Plant Pathology, Nanjing Agricultural University, 210095 Nanjing, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, 210095 Nanjing, China
| | - Min Qiu
- Department of Plant Pathology, Nanjing Agricultural University, 210095 Nanjing, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, 210095 Nanjing, China
| | - Baodian Guo
- Department of Plant Pathology, Nanjing Agricultural University, 210095 Nanjing, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, 210095 Nanjing, China
| | - Qi Zhang
- Department of Plant Pathology, Nanjing Agricultural University, 210095 Nanjing, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, 210095 Nanjing, China
| | - Haibin Jiang
- Department of Plant Pathology, Nanjing Agricultural University, 210095 Nanjing, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, 210095 Nanjing, China
| | - Baiyu Zhang
- Department of Plant Pathology, Nanjing Agricultural University, 210095 Nanjing, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, 210095 Nanjing, China
| | - Yachun Lin
- Department of Plant Pathology, Nanjing Agricultural University, 210095 Nanjing, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, 210095 Nanjing, China
| | - Mingrun Xuan
- Department of Plant Pathology, Nanjing Agricultural University, 210095 Nanjing, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, 210095 Nanjing, China
| | - Liang Sun
- Department of Plant Pathology, Nanjing Agricultural University, 210095 Nanjing, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, 210095 Nanjing, China
| | - Haidong Shu
- Department of Plant Pathology, Nanjing Agricultural University, 210095 Nanjing, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, 210095 Nanjing, China
| | - Junhua Xiao
- Department of Plant Pathology, Nanjing Agricultural University, 210095 Nanjing, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, 210095 Nanjing, China
| | - Wenwu Ye
- Department of Plant Pathology, Nanjing Agricultural University, 210095 Nanjing, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, 210095 Nanjing, China
| | - Yan Wang
- Department of Plant Pathology, Nanjing Agricultural University, 210095 Nanjing, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, 210095 Nanjing, China
| | - Yiming Wang
- Department of Plant Pathology, Nanjing Agricultural University, 210095 Nanjing, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, 210095 Nanjing, China
| | - Suomeng Dong
- Department of Plant Pathology, Nanjing Agricultural University, 210095 Nanjing, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, 210095 Nanjing, China
| | - Brett M Tyler
- Center for Genome Research and Biocomputing, Oregon State University, Corvallis, OR 97331
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331
| | - Yuanchao Wang
- Department of Plant Pathology, Nanjing Agricultural University, 210095 Nanjing, China;
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, 210095 Nanjing, China
| |
Collapse
|
23
|
Wood KJ, Nur M, Gil J, Fletcher K, Lakeman K, Gann D, Gothberg A, Khuu T, Kopetzky J, Naqvi S, Pandya A, Zhang C, Maisonneuve B, Pel M, Michelmore R. Effector prediction and characterization in the oomycete pathogen Bremia lactucae reveal host-recognized WY domain proteins that lack the canonical RXLR motif. PLoS Pathog 2020; 16:e1009012. [PMID: 33104763 PMCID: PMC7644090 DOI: 10.1371/journal.ppat.1009012] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 11/05/2020] [Accepted: 09/29/2020] [Indexed: 12/11/2022] Open
Abstract
Pathogens that infect plants and animals use a diverse arsenal of effector proteins to suppress the host immune system and promote infection. Identification of effectors in pathogen genomes is foundational to understanding mechanisms of pathogenesis, for monitoring field pathogen populations, and for breeding disease resistance. We identified candidate effectors from the lettuce downy mildew pathogen Bremia lactucae by searching the predicted proteome for the WY domain, a structural fold found in effectors that has been implicated in immune suppression as well as effector recognition by host resistance proteins. We predicted 55 WY domain containing proteins in the genome of B. lactucae and found substantial variation in both sequence and domain architecture. These candidate effectors exhibit several characteristics of pathogen effectors, including an N-terminal signal peptide, lineage specificity, and expression during infection. Unexpectedly, only a minority of B. lactucae WY effectors contain the canonical N-terminal RXLR motif, which is a conserved feature in the majority of cytoplasmic effectors reported in Phytophthora spp. Functional analysis of 21 effectors containing WY domains revealed 11 that elicited cell death on wild accessions and domesticated lettuce lines containing resistance genes, indicative of recognition of these effectors by the host immune system. Only two of the 11 recognized effectors contained the canonical RXLR motif, suggesting that there has been an evolutionary divergence in sequence motifs between genera; this has major consequences for robust effector prediction in oomycete pathogens.
Collapse
Affiliation(s)
- Kelsey J. Wood
- The Genome Center, University of California, Davis, Davis, California, United States of America
- Integrative Genetics & Genomics Graduate Group, University of California, Davis, Davis, California, United States of America
| | - Munir Nur
- The Genome Center, University of California, Davis, Davis, California, United States of America
| | - Juliana Gil
- The Genome Center, University of California, Davis, Davis, California, United States of America
- Plant Pathology Graduate Group, University of California, Davis, Davis, California, United States of America
| | - Kyle Fletcher
- The Genome Center, University of California, Davis, Davis, California, United States of America
| | | | - Dasan Gann
- The Genome Center, University of California, Davis, Davis, California, United States of America
| | - Ayumi Gothberg
- The Genome Center, University of California, Davis, Davis, California, United States of America
| | - Tina Khuu
- The Genome Center, University of California, Davis, Davis, California, United States of America
| | - Jennifer Kopetzky
- The Genome Center, University of California, Davis, Davis, California, United States of America
| | - Sanye Naqvi
- The Genome Center, University of California, Davis, Davis, California, United States of America
| | - Archana Pandya
- The Genome Center, University of California, Davis, Davis, California, United States of America
| | - Chi Zhang
- The Genome Center, University of California, Davis, Davis, California, United States of America
| | | | | | - Richard Michelmore
- The Genome Center, University of California, Davis, Davis, California, United States of America
- Departments of Plant Sciences, Molecular & Cellular Biology, Medical Microbiology & Immunology, University of California, Davis, Davis, California, United States of America
| |
Collapse
|
24
|
Zdrzałek R, Kamoun S, Terauchi R, Saitoh H, Banfield MJ. The rice NLR pair Pikp-1/Pikp-2 initiates cell death through receptor cooperation rather than negative regulation. PLoS One 2020; 15:e0238616. [PMID: 32931489 PMCID: PMC7491719 DOI: 10.1371/journal.pone.0238616] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 08/20/2020] [Indexed: 12/21/2022] Open
Abstract
Plant NLR immune receptors are multidomain proteins that can function as specialized sensor/helper pairs. Paired NLR immune receptors are generally thought to function via negative regulation, where one NLR represses the activity of the second and detection of pathogen effectors relieves this repression to initiate immunity. However, whether this mechanism is common to all NLR pairs is not known. Here, we show that the rice NLR pair Pikp-1/Pikp-2, which confers resistance to strains of the blast pathogen Magnaporthe oryzae (syn. Pyricularia oryzae) expressing the AVR-PikD effector, functions via receptor cooperation, with effector-triggered activation requiring both NLRs to trigger the immune response. To investigate the mechanism of Pikp-1/Pikp-2 activation, we expressed truncated variants of these proteins, and made mutations in previously identified NLR sequence motifs. We found that any domain truncation, in either Pikp-1 or Pikp-2, prevented cell death in the presence of AVR-PikD, revealing that all domains are required for activity. Further, expression of individual Pikp-1 or Pikp-2 domains did not result in cell death. Mutations in the conserved P-loop and MHD sequence motifs in both Pikp-1 and Pikp-2 prevented cell death activation, demonstrating that these motifs are required for the function of the two partner NLRs. Finally, we showed that Pikp-1 and Pikp-2 associate to form homo- and hetero-complexes in planta in the absence of AVR-PikD; on co-expression the effector binds to Pikp-1 generating a tri-partite complex. Taken together, we provide evidence that Pikp-1 and Pikp-2 form a fine-tuned system that is activated by AVR-PikD via receptor cooperation rather than negative regulation.
Collapse
Affiliation(s)
- Rafał Zdrzałek
- Department of Biological Chemistry, John Innes Centre, Norwich, United Kingdom
| | - Sophien Kamoun
- The Sainsbury Laboratory, University of East Anglia, Norwich, United Kingdom
| | - Ryohei Terauchi
- Division of Genomics and Breeding, Iwate Biotechnology Research Centre, Iwate, Japan
- Laboratory of Crop Evolution, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Hiromasa Saitoh
- Laboratory of Plant Symbiotic and Parasitic Microbes, Department of Molecular Microbiology, Faculty of Life Sciences, Tokyo University of Agriculture, Tokyo, Japan
| | - Mark J. Banfield
- Department of Biological Chemistry, John Innes Centre, Norwich, United Kingdom
| |
Collapse
|
25
|
Wu G, Cui X, Dai Z, He R, Li Y, Yu K, Bernards M, Chen X, Wang A. A plant RNA virus hijacks endocytic proteins to establish its infection in plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 101:384-400. [PMID: 31562664 DOI: 10.1111/tpj.14549] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 09/11/2019] [Accepted: 09/16/2019] [Indexed: 06/10/2023]
Abstract
Endocytosis and endosomal trafficking play essential roles in diverse biological processes including responses to pathogen attack. It is well established that animal viruses enter host cells through receptor-mediated endocytosis for infection. However, the role of endocytosis in plant virus infection still largely remains unknown. Plant dynamin-related proteins 1 (DRP1) and 2 (DRP2) are the large, multidomain GTPases that participate together in endocytosis. Recently, we have discovered that DRP2 is co-opted by Turnip mosaic virus (TuMV) for infection in plants. We report here that DRP1 is also required for TuMV infection. We show that overexpression of DRP1 from Arabidopsis thaliana (AtDRP1A) promotes TuMV infection, and AtDRP1A interacts with several viral proteins including VPg and cylindrical inclusion (CI), which are the essential components of the virus replication complex (VRC). AtDRP1A colocalizes with the VRC in TuMV-infected cells. Transient expression of a dominant negative (DN) mutant of DRP1A disrupts DRP1-dependent endocytosis and supresses TuMV replication. As adaptor protein (AP) complexes mediate cargo selection for endocytosis, we further investigated the requirement of AP in TuMV infection. Our data suggest that the medium unit of the AP2 complex (AP2β) is responsible for recognizing the viral proteins as cargoes for endocytosis, and knockout of AP2β impairs intracellular endosomal trafficking of VPg and CI and inhibits TuMV replication. Collectively, our results demonstrate that DRP1 and AP2β are two proviral host factors of TuMV and shed light into the involvement of endocytosis and endosomal trafficking in plant virus infection.
Collapse
Affiliation(s)
- Guanwei Wu
- London Research and Development Centre, Agriculture and Agri-Food Canada, 1391 Sandford St, London, Ontario, N5V 4T3, Canada
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, Jiangsu, 210014, People's Republic of China
- Department of Biology, University of Western Ontario, 1151 Richmond ST, London, Ontario, N6A 5B7, Canada
| | - Xiaoyan Cui
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, Jiangsu, 210014, People's Republic of China
| | - Zhaoji Dai
- London Research and Development Centre, Agriculture and Agri-Food Canada, 1391 Sandford St, London, Ontario, N5V 4T3, Canada
- Department of Biology, University of Western Ontario, 1151 Richmond ST, London, Ontario, N6A 5B7, Canada
| | - Rongrong He
- London Research and Development Centre, Agriculture and Agri-Food Canada, 1391 Sandford St, London, Ontario, N5V 4T3, Canada
- Department of Biology, University of Western Ontario, 1151 Richmond ST, London, Ontario, N6A 5B7, Canada
| | - Yinzi Li
- London Research and Development Centre, Agriculture and Agri-Food Canada, 1391 Sandford St, London, Ontario, N5V 4T3, Canada
| | - Kangfu Yu
- Harrow Research and Development Centre, Agriculture and Agri-Food Canada, 2585 County Road 20, Harrow, Ontario, N0R 1G0, Canada
| | - Mark Bernards
- Department of Biology, University of Western Ontario, 1151 Richmond ST, London, Ontario, N6A 5B7, Canada
| | - Xin Chen
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, Jiangsu, 210014, People's Republic of China
| | - Aiming Wang
- London Research and Development Centre, Agriculture and Agri-Food Canada, 1391 Sandford St, London, Ontario, N5V 4T3, Canada
- Department of Biology, University of Western Ontario, 1151 Richmond ST, London, Ontario, N6A 5B7, Canada
| |
Collapse
|
26
|
Yang Q, Huai B, Lu Y, Cai K, Guo J, Zhu X, Kang Z, Guo J. A stripe rust effector Pst18363 targets and stabilises TaNUDX23 that promotes stripe rust disease. THE NEW PHYTOLOGIST 2020; 225:880-895. [PMID: 31529497 DOI: 10.1111/nph.16199] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Accepted: 09/09/2019] [Indexed: 05/27/2023]
Abstract
Wheat stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), poses a tremendous threat to the production of wheat worldwide. The molecular mechanisms of Pst effectors that regulate wheat immunity are poorly understood. In this study, we identified an effector Pst18363 from Pst that suppresses plant cell death in Nicotiana benthamiana and in wheat. Knocking down Pst18363 expression by virus-mediated host-induced gene silencing significantly decreased the number of rust pustules, indicating that Pst18363 functions as an important pathogenicity factor in Pst. Pst18363 was proven to interact with wheat Nudix hydrolase 23 TaNUDX23. In wheat, silencing of TaNUDX23 by virus-induced gene silencing increased reactive oxygen species (ROS) accumulation induced by the avirulent Pst race CYR23, whereas overexpression of TaNUDX23 suppressed ROS accumulation induced by flg22 in Arabidopsis. In addition, TaNUDX23 suppressed Pst candidate effector Pst322-trigged cell death by decreasing ROS accumulation in N. benthamiana. Knocking down of TaNUDX23 expression attenuated Pst infection, indicating that TaNUDX23 is a negative regulator of defence. In N. benthamiana, Pst18363 stabilises TaNUDX23. Overall, our data suggest that Pst18363 stabilises TaNUDX23, which suppresses ROS accumulation to facilitate Pst infection.
Collapse
Affiliation(s)
- Qian Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Baoyu Huai
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yuxi Lu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Kunyan Cai
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jia Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xiaoguo Zhu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jun Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China
| |
Collapse
|
27
|
Zess EK, Jensen C, Cruz-Mireles N, De la Concepcion JC, Sklenar J, Stephani M, Imre R, Roitinger E, Hughes R, Belhaj K, Mechtler K, Menke FLH, Bozkurt T, Banfield MJ, Kamoun S, Maqbool A, Dagdas YF. N-terminal β-strand underpins biochemical specialization of an ATG8 isoform. PLoS Biol 2019; 17:e3000373. [PMID: 31329577 PMCID: PMC6675122 DOI: 10.1371/journal.pbio.3000373] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 08/01/2019] [Accepted: 07/09/2019] [Indexed: 02/07/2023] Open
Abstract
Autophagy-related protein 8 (ATG8) is a highly conserved ubiquitin-like protein that modulates autophagy pathways by binding autophagic membranes and a number of proteins, including cargo receptors and core autophagy components. Throughout plant evolution, ATG8 has expanded from a single protein in algae to multiple isoforms in higher plants. However, the degree to which ATG8 isoforms have functionally specialized to bind distinct proteins remains unclear. Here, we describe a comprehensive protein-protein interaction resource, obtained using in planta immunoprecipitation (IP) followed by mass spectrometry (MS), to define the potato ATG8 interactome. We discovered that ATG8 isoforms bind distinct sets of plant proteins with varying degrees of overlap. This prompted us to define the biochemical basis of ATG8 specialization by comparing two potato ATG8 isoforms using both in vivo protein interaction assays and in vitro quantitative binding affinity analyses. These experiments revealed that the N-terminal β-strand-and, in particular, a single amino acid polymorphism-underpins binding specificity to the substrate PexRD54 by shaping the hydrophobic pocket that accommodates this protein's ATG8-interacting motif (AIM). Additional proteomics experiments indicated that the N-terminal β-strand shapes the broader ATG8 interactor profiles, defining interaction specificity with about 80 plant proteins. Our findings are consistent with the view that ATG8 isoforms comprise a layer of specificity in the regulation of selective autophagy pathways in plants.
Collapse
Affiliation(s)
- Erin K. Zess
- The Sainsbury Laboratory, University of East Anglia, Norwich, United Kingdom
| | - Cassandra Jensen
- Department of Biological Chemistry, John Innes Centre, Norwich, United Kingdom
| | - Neftaly Cruz-Mireles
- The Sainsbury Laboratory, University of East Anglia, Norwich, United Kingdom
- Department of Biological Chemistry, John Innes Centre, Norwich, United Kingdom
| | - Juan Carlos De la Concepcion
- The Sainsbury Laboratory, University of East Anglia, Norwich, United Kingdom
- Department of Biological Chemistry, John Innes Centre, Norwich, United Kingdom
| | - Jan Sklenar
- The Sainsbury Laboratory, University of East Anglia, Norwich, United Kingdom
| | - Madlen Stephani
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC), Vienna, Austria
| | - Richard Imre
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC), Vienna, Austria
- Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
- Institute of Molecular Biotechnology, Austrian Academy of Sciences, Vienna BioCenter (VBC), Vienna, Austria
| | - Elisabeth Roitinger
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC), Vienna, Austria
- Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
- Institute of Molecular Biotechnology, Austrian Academy of Sciences, Vienna BioCenter (VBC), Vienna, Austria
| | - Richard Hughes
- Department of Biological Chemistry, John Innes Centre, Norwich, United Kingdom
| | - Khaoula Belhaj
- The Sainsbury Laboratory, University of East Anglia, Norwich, United Kingdom
| | - Karl Mechtler
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC), Vienna, Austria
- Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
- Institute of Molecular Biotechnology, Austrian Academy of Sciences, Vienna BioCenter (VBC), Vienna, Austria
| | - Frank L. H. Menke
- The Sainsbury Laboratory, University of East Anglia, Norwich, United Kingdom
| | - Tolga Bozkurt
- Imperial College London, Department of Life Sciences, London, United Kingdom
| | - Mark J. Banfield
- Department of Biological Chemistry, John Innes Centre, Norwich, United Kingdom
| | - Sophien Kamoun
- The Sainsbury Laboratory, University of East Anglia, Norwich, United Kingdom
| | - Abbas Maqbool
- The Sainsbury Laboratory, University of East Anglia, Norwich, United Kingdom
- Department of Biological Chemistry, John Innes Centre, Norwich, United Kingdom
| | - Yasin F. Dagdas
- The Sainsbury Laboratory, University of East Anglia, Norwich, United Kingdom
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC), Vienna, Austria
| |
Collapse
|
28
|
Li Y, Sun Q, Zhao T, Xiang H, Zhang X, Wu Z, Zhou C, Zhang X, Wang Y, Zhang Y, Wang X, Li D, Yu J, Dinesh‐Kumar SP, Han C. Interaction between Brassica yellows virus silencing suppressor P0 and plant SKP1 facilitates stability of P0 in vivo against degradation by proteasome and autophagy pathways. THE NEW PHYTOLOGIST 2019; 222:1458-1473. [PMID: 30664234 PMCID: PMC6593998 DOI: 10.1111/nph.15702] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Accepted: 01/08/2019] [Indexed: 05/21/2023]
Abstract
P0 protein of some polerovirus members can target ARGONAUTE1 (AGO1) to suppress RNA silencing. Although P0 harbors an F-box-like motif reported to be essential for interaction with S phase kinase-associated protein 1 (SKP1) and RNA silencing suppression, it is the autophagy pathway that was shown to contribute to AGO1 degradation. Therefore, the role of P0-SKP1 interaction in silencing suppression remains unclear. We conducted global mutagenesis and comparative functional analysis of P0 encoded by Brassica yellows virus (BrYV) (P0Br ). We found that several residues within P0Br are required for local and systemic silencing suppression activities. Remarkably, the F-box-like motif mutant of P0Br , which failed to interact with SKP1, is destabilized in vivo. Both the 26S proteasome system and autophagy pathway play a role in destabilization of the mutant protein. Furthermore, silencing of a Nicotiana benthamiana SKP1 ortholog leads to the destabilization of P0Br . Genetic analyses indicated that the P0Br -SKP1 interaction is not directly required for silencing suppression activity of P0Br , but it facilitates stability of P0Br to ensure efficient RNA silencing suppression. Consistent with these findings, efficient systemic infection of BrYV requires P0Br . Our results reveal a novel strategy used by BrYV for facilitating viral suppressors of RNA silencing stability against degradation by plant cells.
Collapse
Affiliation(s)
- Yuanyuan Li
- State Key Laboratory for Agro‐Biotechnology and Ministry of Agriculture Key Laboratory of Pest Monitoring and Green ManagementChina Agricultural UniversityBeijing100193China
| | - Qian Sun
- State Key Laboratory for Agro‐Biotechnology and Ministry of Agriculture Key Laboratory of Pest Monitoring and Green ManagementChina Agricultural UniversityBeijing100193China
| | - Tianyu Zhao
- State Key Laboratory for Agro‐Biotechnology and Ministry of Agriculture Key Laboratory of Pest Monitoring and Green ManagementChina Agricultural UniversityBeijing100193China
| | - Haiying Xiang
- State Key Laboratory for Agro‐Biotechnology and Ministry of Agriculture Key Laboratory of Pest Monitoring and Green ManagementChina Agricultural UniversityBeijing100193China
| | - Xiaoyan Zhang
- State Key Laboratory for Agro‐Biotechnology and Ministry of Agriculture Key Laboratory of Pest Monitoring and Green ManagementChina Agricultural UniversityBeijing100193China
| | - Zhanyu Wu
- State Key Laboratory for Agro‐Biotechnology and Ministry of Agriculture Key Laboratory of Pest Monitoring and Green ManagementChina Agricultural UniversityBeijing100193China
| | - Cuiji Zhou
- State Key Laboratory for Agro‐Biotechnology and Ministry of Agriculture Key Laboratory of Pest Monitoring and Green ManagementChina Agricultural UniversityBeijing100193China
| | - Xin Zhang
- State Key Laboratory for Agro‐Biotechnology and Ministry of Agriculture Key Laboratory of Pest Monitoring and Green ManagementChina Agricultural UniversityBeijing100193China
| | - Ying Wang
- State Key Laboratory for Agro‐Biotechnology and Ministry of Agriculture Key Laboratory of Pest Monitoring and Green ManagementChina Agricultural UniversityBeijing100193China
| | - Yongliang Zhang
- State Key Laboratory of Agro‐Biotechnology and Ministry of Agriculture Key Laboratory of Soil MicrobiologyCollege of Biological SciencesChina Agricultural UniversityBeijing100193China
| | - Xianbing Wang
- State Key Laboratory of Agro‐Biotechnology and Ministry of Agriculture Key Laboratory of Soil MicrobiologyCollege of Biological SciencesChina Agricultural UniversityBeijing100193China
| | - Dawei Li
- State Key Laboratory of Agro‐Biotechnology and Ministry of Agriculture Key Laboratory of Soil MicrobiologyCollege of Biological SciencesChina Agricultural UniversityBeijing100193China
| | - Jialin Yu
- State Key Laboratory of Agro‐Biotechnology and Ministry of Agriculture Key Laboratory of Soil MicrobiologyCollege of Biological SciencesChina Agricultural UniversityBeijing100193China
| | - Savithramma P. Dinesh‐Kumar
- Department of Plant Biology and The Genome CenterCollege of Biological SciencesUniversity of California, DavisDavisCA95616USA
| | - Chenggui Han
- State Key Laboratory for Agro‐Biotechnology and Ministry of Agriculture Key Laboratory of Pest Monitoring and Green ManagementChina Agricultural UniversityBeijing100193China
| |
Collapse
|
29
|
Wu G, Cui X, Chen H, Renaud JB, Yu K, Chen X, Wang A. Dynamin-Like Proteins of Endocytosis in Plants Are Coopted by Potyviruses To Enhance Virus Infection. J Virol 2018; 92:e01320-18. [PMID: 30258010 PMCID: PMC6232491 DOI: 10.1128/jvi.01320-18] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 09/17/2018] [Indexed: 01/03/2023] Open
Abstract
Endocytosis and endosomal trafficking regulate the proteins targeted to the plasma membrane and play essential roles in diverse cellular processes, including responses to pathogen attack. Here, we report the identification of Glycine max (soybean) endocytosis dynamin-like protein 5A (GmSDL5A) associated with purified soybean mosaic virus (SMV) virions from soybean using a bottom-up proteomics approach. Knockdown of GmSDL5A and its homologous gene GmSDL12A inhibits SMV infection in soybean. The role of analogous dynamin-like proteins in potyvirus infection was further confirmed and investigated using the Arabidopsis/turnip mosaic virus (TuMV) pathosystem. We demonstrate that dynamin-related proteins 2A and 2B in Arabidopsis thaliana (AtDRP2A, AtDRP2B), homologs of GmSDL5A, are recruited to the virus replication complex (VRC) of TuMV. TuMV infection is inhibited in both A. thalianadrp2a (atdrp2a) and atdrp2b knockout mutants. Overexpression of AtDRP2 promotes TuMV replication and intercellular movement. AtRDP2 interacts with TuMV VPg, CP, CI, and 6K2. Of these viral proteins, VPg, CP, and CI are essential for viral intercellular movement, and 6K2, VPg, and CI are critical components of the VRC. We reveal that VPg and CI are present in the punctate structures labeled by the endocytic tracer FM4-64, suggesting that VPg and CI can be endocytosed. Treatment of plant leaves with a dynamin-specific inhibitor disrupts the delivery of VPg and CI to endocytic structures and suppresses TuMV replication and intercellular movement. Taken together, these data suggest that dynamin-like proteins are novel host factors of potyviruses and that endocytic processes are involved in potyvirus infection.IMPORTANCE It is well known that animal viruses enter host cells via endocytosis, whereas plant viruses require physical assistance, such as human and insect activities, to penetrate the host cell to establish their infection. In this study, we report that the endocytosis pathway is also involved in virus infection in plants. We show that plant potyviruses recruit endocytosis dynamin-like proteins to support their infection. Depletion of them by knockout of the corresponding genes suppresses virus replication, whereas overexpression of them enhances virus replication and intercellular movement. We also demonstrate that the dynamin-like proteins interact with several viral proteins that are essential for virus replication and cell-to-cell movement. We further show that treatment of a dynamin-specific inhibitor disrupts endocytosis and inhibits virus replication and intercellular movement. Therefore, the dynamin-like proteins are novel host factors of potyviruses. The corresponding genes may be manipulated using advanced biotechnology to control potyviral diseases.
Collapse
Affiliation(s)
- Guanwei Wu
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, Ontario, Canada
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, Jiangsu, People's Republic of China
- Department of Biology, University of Western Ontario, London, Ontario, Canada
| | - Xiaoyan Cui
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, Ontario, Canada
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, Jiangsu, People's Republic of China
- Department of Biology, University of Western Ontario, London, Ontario, Canada
| | - Hui Chen
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, Ontario, Canada
- Department of Biology, University of Western Ontario, London, Ontario, Canada
| | - Justin B Renaud
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, Ontario, Canada
| | - Kangfu Yu
- Harrow Research and Development Centre, Agriculture and Agri-Food Canada, Harrow, Ontario, Canada
| | - Xin Chen
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, Jiangsu, People's Republic of China
| | - Aiming Wang
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, Ontario, Canada
- Department of Biology, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
30
|
Wang A, Pang L, Wang N, Ai P, Yin D, Li S, Deng Q, Zhu J, Liang Y, Zhu J, Li P, Zheng A. The pathogenic mechanisms of Tilletia horrida as revealed by comparative and functional genomics. Sci Rep 2018; 8:15413. [PMID: 30337609 PMCID: PMC6194002 DOI: 10.1038/s41598-018-33752-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 10/04/2018] [Indexed: 11/09/2022] Open
Abstract
Tilletia horrida is a soil-borne, mononucleate basidiomycete fungus with a biotrophic lifestyle that causes rice kernel smut, a disease that is distributed throughout hybrid rice growing areas worldwide. Here we report on the high-quality genome sequence of T. horrida; it is composed of 23.2 Mb that encode 7,729 predicted genes and 6,973 genes supported by RNA-seq. The genome contains few repetitive elements that account for 8.45% of the total. Evolutionarily, T. horrida lies close to the Ustilago fungi, suggesting grass species as potential hosts, but co-linearity was not observed between T. horrida and the barley smut Ustilago hordei. Genes and functions relevant to pathogenicity were presumed. T. horrida possesses a smaller set of carbohydrate-active enzymes and secondary metabolites, which probably reflect the specific characteristics of its infection and biotrophic lifestyle. Genes that encode secreted proteins and enzymes of secondary metabolism, and genes that are represented in the pathogen-host interaction gene database genes, are highly expressed during early infection; this is consistent with their potential roles in pathogenicity. Furthermore, among the 131 candidate pathogen effectors identified according to their expression patterns and functionality, we validated two that trigger leaf cell death in Nicotiana benthamiana. In summary, we have revealed new molecular mechanisms involved in the evolution, biotrophy, and pathogenesis of T. horrida.
Collapse
Affiliation(s)
- Aijun Wang
- Rice Research Institute of Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, China
- Key laboratory of Sichuan Crop Major Disease, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, China
- Key Laboratory of Southwest Crop Gene Resource and Genetic Improvement of Ministry of Education, Sichuan Agricultural University, Yaan, Sichuan, 611130, China
| | - Linxiu Pang
- Rice Research Institute of Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, China
| | - Na Wang
- Rice Research Institute of Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, China
| | - Peng Ai
- Rice Research Institute of Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, China
| | - Desuo Yin
- Food Crop Research Institute, Hubei Academy of Agricultural Science, Wuhan, Hubei, 611130, China
| | - Shuangcheng Li
- Rice Research Institute of Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, China
- Key laboratory of Sichuan Crop Major Disease, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, China
- Key Laboratory of Southwest Crop Gene Resource and Genetic Improvement of Ministry of Education, Sichuan Agricultural University, Yaan, Sichuan, 611130, China
| | - Qiming Deng
- Rice Research Institute of Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, China
- Key laboratory of Sichuan Crop Major Disease, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, China
- Key Laboratory of Southwest Crop Gene Resource and Genetic Improvement of Ministry of Education, Sichuan Agricultural University, Yaan, Sichuan, 611130, China
| | - Jun Zhu
- Rice Research Institute of Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, China
- Key laboratory of Sichuan Crop Major Disease, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, China
- Key Laboratory of Southwest Crop Gene Resource and Genetic Improvement of Ministry of Education, Sichuan Agricultural University, Yaan, Sichuan, 611130, China
| | - Yueyang Liang
- Rice Research Institute of Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, China
- Key laboratory of Sichuan Crop Major Disease, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, China
- Key Laboratory of Southwest Crop Gene Resource and Genetic Improvement of Ministry of Education, Sichuan Agricultural University, Yaan, Sichuan, 611130, China
| | - Jianqing Zhu
- Rice Research Institute of Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, China
| | - Ping Li
- Rice Research Institute of Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, China
- Key laboratory of Sichuan Crop Major Disease, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, China
- Key Laboratory of Southwest Crop Gene Resource and Genetic Improvement of Ministry of Education, Sichuan Agricultural University, Yaan, Sichuan, 611130, China
| | - Aiping Zheng
- Rice Research Institute of Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, China.
- Key laboratory of Sichuan Crop Major Disease, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, China.
- Key Laboratory of Southwest Crop Gene Resource and Genetic Improvement of Ministry of Education, Sichuan Agricultural University, Yaan, Sichuan, 611130, China.
| |
Collapse
|
31
|
Lee HR, Lee S, Park S, van Kleeff PJM, Schuurink RC, Ryu CM. Transient Expression of Whitefly Effectors in Nicotiana benthamiana Leaves Activates Systemic Immunity Against the Leaf Pathogen Pseudomonas syringae and Soil-Borne Pathogen Ralstonia solanacearum. Front Ecol Evol 2018. [DOI: 10.3389/fevo.2018.00090] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
|
32
|
Sun Q, Li YY, Wang Y, Zhao HH, Zhao TY, Zhang ZY, Li DW, Yu JL, Wang XB, Zhang YL, Han CG. Brassica yellows virus P0 protein impairs the antiviral activity of NbRAF2 in Nicotiana benthamiana. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:3127-3139. [PMID: 29659986 PMCID: PMC5972614 DOI: 10.1093/jxb/ery131] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 03/24/2018] [Indexed: 05/29/2023]
Abstract
In interactions between poleroviruses and their hosts, few cellular proteins have been identified that directly interact with the multifunctional virus P0 protein. To help explore the functions of P0, we identified a Brassica yellows virus genotype A (BrYV-A) P0BrA-interacting protein from Nicotiana benthamiana, Rubisco assembly factor 2 (NbRAF2), which localizes in the nucleus, cell periphery, chloroplasts, and stromules. We found that its C-terminal domain (amino acids 183-211) is required for self-interaction. A split ubiquitin membrane-bound yeast two-hybrid system and co-immunoprecipitation assays showed that NbRAF2 interacted with P0BrA, and co-localized in the nucleus and at the cell periphery. Interestingly, the nuclear pool of NbRAF2 decreased in the presence of P0BrA and during BrYV-A infection, and the P0BrA-mediated reduction of nuclear NbRAF2 required dual localization of NbRAF2 in the chloroplasts and nucleus. Tobacco rattle virus-based virus-induced gene silencing of NbRAF2 promoted BrYV-A infection in N. benthamiana, and the overexpression of nuclear NbRAF2 inhibited BrYV-A accumulation. Potato leafroll virus P0PL also interacted with NbRAF2 and decreased its nuclear accumulation, indicating that NbRAF2 may be a common target of poleroviruses. These results suggest that nuclear NbRAF2 possesses antiviral activity against BrYV-A infection, and that BrYV-A P0BrA interacts with NbRAF2 and alters its localization pattern to facilitate virus infection.
Collapse
Affiliation(s)
- Qian Sun
- State Key Laboratory for Agro-biotechnology and Ministry of Agriculture Key Laboratory of Plant Pathology, China Agricultural University, Beijing, P. R. China
| | - Yuan-Yuan Li
- State Key Laboratory for Agro-biotechnology and Ministry of Agriculture Key Laboratory of Plant Pathology, China Agricultural University, Beijing, P. R. China
| | - Ying Wang
- State Key Laboratory for Agro-biotechnology and Ministry of Agriculture Key Laboratory of Plant Pathology, China Agricultural University, Beijing, P. R. China
| | - Hang-Hai Zhao
- State Key Laboratory for Agro-biotechnology and Ministry of Agriculture Key Laboratory of Plant Pathology, China Agricultural University, Beijing, P. R. China
| | - Tian-Yu Zhao
- State Key Laboratory for Agro-biotechnology and Ministry of Agriculture Key Laboratory of Plant Pathology, China Agricultural University, Beijing, P. R. China
| | - Zong-Ying Zhang
- State Key Laboratory for Agro-biotechnology and Ministry of Agriculture Key Laboratory of Plant Pathology, China Agricultural University, Beijing, P. R. China
| | - Da-Wei Li
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, P. R., China
| | - Jia-Lin Yu
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, P. R., China
| | - Xian-Bing Wang
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, P. R., China
| | - Yong-Liang Zhang
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, P. R., China
| | - Cheng-Gui Han
- State Key Laboratory for Agro-biotechnology and Ministry of Agriculture Key Laboratory of Plant Pathology, China Agricultural University, Beijing, P. R. China
| |
Collapse
|
33
|
Lorrain C, Petre B, Duplessis S. Show me the way: rust effector targets in heterologous plant systems. Curr Opin Microbiol 2018; 46:19-25. [PMID: 29454191 DOI: 10.1016/j.mib.2018.01.016] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 01/14/2018] [Accepted: 01/31/2018] [Indexed: 11/27/2022]
Abstract
For years, the study of rust fungal effectors has been impeded by the lack of molecular genetic tools in rust pathosystems. The recent use of heterologous plants to perform effector screens (effectoromics)-including effector localisation (cellular targets) and protein interactors (molecular targets) in plant cells-has changed the game. These screens revealed that many candidate effectors from various rust fungi target specific plant cell compartments, including chloroplasts, and associate with specific plant protein complexes. Such information represents unparalleled opportunities to understand how effectors sustain extreme parasitic interactions and obligate biotrophy. Despite their limitations, we here portray how the use of heterologous expression systems has been essential for gaining new insight into rust effectors.
Collapse
Affiliation(s)
- Cécile Lorrain
- INRA/Université de Lorraine, UMR 1136 Interactions Arbres/Microorganismes, INRA Centre Grand Est-Nancy, Champenoux, France
| | - Benjamin Petre
- INRA/Université de Lorraine, UMR 1136 Interactions Arbres/Microorganismes, INRA Centre Grand Est-Nancy, Champenoux, France
| | - Sébastien Duplessis
- INRA/Université de Lorraine, UMR 1136 Interactions Arbres/Microorganismes, INRA Centre Grand Est-Nancy, Champenoux, France.
| |
Collapse
|
34
|
de Freitas Pereira M, Veneault-Fourrey C, Vion P, Guinet F, Morin E, Barry KW, Lipzen A, Singan V, Pfister S, Na H, Kennedy M, Egli S, Grigoriev I, Martin F, Kohler A, Peter M. Secretome Analysis from the Ectomycorrhizal Ascomycete Cenococcum geophilum. Front Microbiol 2018; 9:141. [PMID: 29487573 PMCID: PMC5816826 DOI: 10.3389/fmicb.2018.00141] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 01/22/2018] [Indexed: 11/21/2022] Open
Abstract
Cenococcum geophilum is an ectomycorrhizal fungus with global distribution in numerous habitats and associates with a large range of host species including gymnosperm and angiosperm trees. Moreover, C. geophilum is the unique ectomycorrhizal species within the clade Dothideomycetes, the largest class of Ascomycetes containing predominantly saprotrophic and many devastating phytopathogenic fungi. Recent studies highlight that mycorrhizal fungi, as pathogenic ones, use effectors in form of Small Secreted Proteins (SSPs) as molecular keys to promote symbiosis. In order to better understand the biotic interaction of C. geophilum with its host plants, the goal of this work was to characterize mycorrhiza-induced small-secreted proteins (MiSSPs) that potentially play a role in the ectomycorrhiza formation and functioning of this ecologically very important species. We combined different approaches such as gene expression profiling, genome localization and conservation of MiSSP genes in different C. geophilum strains and closely related species as well as protein subcellular localization studies of potential targets of MiSSPs in interacting plants using in tobacco leaf cells. Gene expression analyses of C. geophilum interacting with Pinus sylvestris (pine) and Populus tremula × Populus alba (poplar) showed that similar sets of genes coding for secreted proteins were up-regulated and only few were specific to each host. Whereas pine induced more carbohydrate active enzymes (CAZymes), the interaction with poplar induced the expression of specific SSPs. We identified a set of 22 MiSSPs, which are located in both, gene-rich, repeat-poor or gene-sparse, repeat-rich regions of the C. geophilum genome, a genome showing a bipartite architecture as seen for some pathogens but not yet for an ectomycorrhizal fungus. Genome re-sequencing data of 15 C. geophilum strains and two close relatives Glonium stellatum and Lepidopterella palustris were used to study sequence conservation of MiSSP-encoding genes. The 22 MiSSPs showed a high presence-absence polymorphism among the studied C. geophilum strains suggesting an evolution through gene gain/gene loss. Finally, we showed that six CgMiSSPs target four distinct sub-cellular compartments such as endoplasmic reticulum, plasma membrane, cytosol and tonoplast. Overall, this work presents a comprehensive analysis of secreted proteins and MiSSPs in different genetic level of C. geophilum opening a valuable resource to future functional analysis.
Collapse
Affiliation(s)
- Maíra de Freitas Pereira
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1136 Interactions Arbres, Microorganismes, Laboratoire D'excellence Recherches Avancés sur la Biologie de l'Arbre et les Ecosystémes Forestiers, Centre Institut National de la Recherche Agronomique-Lorraine, Champenoux, France
- Swiss Federal Research Institute WSL, Forest Dynamics, Birmensdorf, Switzerland
| | - Claire Veneault-Fourrey
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1136 Interactions Arbres, Microorganismes, Laboratoire D'excellence Recherches Avancés sur la Biologie de l'Arbre et les Ecosystémes Forestiers, Centre Institut National de la Recherche Agronomique-Lorraine, Champenoux, France
- Université de Lorraine, Unité Mixte de Recherche 1136 Interactions Arbres-Microorganismes, Vandoeuvre les Nancy, France
| | - Patrice Vion
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1136 Interactions Arbres, Microorganismes, Laboratoire D'excellence Recherches Avancés sur la Biologie de l'Arbre et les Ecosystémes Forestiers, Centre Institut National de la Recherche Agronomique-Lorraine, Champenoux, France
| | - Fréderic Guinet
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1136 Interactions Arbres, Microorganismes, Laboratoire D'excellence Recherches Avancés sur la Biologie de l'Arbre et les Ecosystémes Forestiers, Centre Institut National de la Recherche Agronomique-Lorraine, Champenoux, France
- Université de Lorraine, Unité Mixte de Recherche 1136 Interactions Arbres-Microorganismes, Vandoeuvre les Nancy, France
| | - Emmanuelle Morin
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1136 Interactions Arbres, Microorganismes, Laboratoire D'excellence Recherches Avancés sur la Biologie de l'Arbre et les Ecosystémes Forestiers, Centre Institut National de la Recherche Agronomique-Lorraine, Champenoux, France
| | - Kerrie W. Barry
- United States Department of Energy Joint Genome Institute, Walnut Creek, CA, United States
| | - Anna Lipzen
- United States Department of Energy Joint Genome Institute, Walnut Creek, CA, United States
| | - Vasanth Singan
- United States Department of Energy Joint Genome Institute, Walnut Creek, CA, United States
| | - Stephanie Pfister
- Swiss Federal Research Institute WSL, Forest Dynamics, Birmensdorf, Switzerland
| | - Hyunsoo Na
- United States Department of Energy Joint Genome Institute, Walnut Creek, CA, United States
| | - Megan Kennedy
- United States Department of Energy Joint Genome Institute, Walnut Creek, CA, United States
| | - Simon Egli
- Swiss Federal Research Institute WSL, Forest Dynamics, Birmensdorf, Switzerland
| | - Igor Grigoriev
- United States Department of Energy Joint Genome Institute, Walnut Creek, CA, United States
| | - Francis Martin
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1136 Interactions Arbres, Microorganismes, Laboratoire D'excellence Recherches Avancés sur la Biologie de l'Arbre et les Ecosystémes Forestiers, Centre Institut National de la Recherche Agronomique-Lorraine, Champenoux, France
| | - Annegret Kohler
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1136 Interactions Arbres, Microorganismes, Laboratoire D'excellence Recherches Avancés sur la Biologie de l'Arbre et les Ecosystémes Forestiers, Centre Institut National de la Recherche Agronomique-Lorraine, Champenoux, France
| | - Martina Peter
- Swiss Federal Research Institute WSL, Forest Dynamics, Birmensdorf, Switzerland
| |
Collapse
|
35
|
Pitino M, Allen V, Duan Y. LasΔ5315 Effector Induces Extreme Starch Accumulation and Chlorosis as Ca. Liberibacter asiaticus Infection in Nicotiana benthamiana. FRONTIERS IN PLANT SCIENCE 2018; 9:113. [PMID: 29467782 PMCID: PMC5808351 DOI: 10.3389/fpls.2018.00113] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 01/22/2018] [Indexed: 05/21/2023]
Abstract
Huanglongbing (HLB), a destructive plant bacterial disease, severely impedes worldwide citrus production. HLB is associated with a phloem-limited α-proteobacterium, Candidatus Liberibacter asiaticus (Las). Las infection causes yellow shoots and blotchy mottle on leaves and is associated with excessive starch accumulation. However, the mechanisms underlying the starch accumulation remain unknown. We previously showed that the Las5315mp effector induced callose deposition and cell death in Nicotiana benthamiana. In this study, we demonstrated that Las can experimentally infect N. benthamiana via dodder transmission. Furthermore, we revealed another key function of the Las5315 effector by demonstrating that transient expression of the truncated form of the effector, LasΔ5315, induced excessive starch accumulation by 6 fold after 8 dpi in N. benthamiana after removal of the chloroplast transit peptide from the Las5315mp. The induction mechanisms of LasΔ5315 in N. benthamiana were attributed to the up-regulation of ADP-glucose pyrophosphorylase, granule-bound starch synthase, soluble starch synthase, and starch branching enzyme for increasing starch production, and to the significant down-regulation of the starch degradation enzymes: alpha-glucosidase, alpha-amylase, and glycosyl hydrolase for decreasing starch degradation. This is the first report that Las can infect the model plant N. benthamiana. Using this model plant, we demonstrated that the LasΔ5315 effector caused the most prominent HLB symptoms, starch accumulation and chlorosis as Las infection in N. benthamiana. Altogether the Las 5315 effector is critical for Las pathogenesis, and therefore, an important target for interference.
Collapse
Affiliation(s)
| | | | - Yongping Duan
- US Horticultural Research Laboratory, USDA-ARS, Fort Pierce, FL, United States
| |
Collapse
|
36
|
Yang G, Tang L, Gong Y, Xie J, Fu Y, Jiang D, Li G, Collinge DB, Chen W, Cheng J. A cerato-platanin protein SsCP1 targets plant PR1 and contributes to virulence of Sclerotinia sclerotiorum. THE NEW PHYTOLOGIST 2018; 217:739-755. [PMID: 29076546 DOI: 10.1111/nph.14842] [Citation(s) in RCA: 136] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 09/05/2017] [Indexed: 05/20/2023]
Abstract
Cerato-platanin proteins (CPs), which are secreted by filamentous fungi, are phytotoxic to host plants, but their functions have not been well defined to date. Here we characterized a CP (SsCP1) from the necrotrophic phytopathogen Sclerotinia sclerotiorum. Sscp1 transcripts accumulated during plant infection, and deletion of Sscp1 significantly reduced virulence. SsCP1 could induce significant cell death when expressed in Nicotiana benthamiana. Using yeast two-hybrid, GST pull-down, co-immunoprecipitation and bimolecular florescence complementation, we found that SsCP1 interacts with PR1 in the apoplast to facilitate infection by S. sclerotiorum. Overexpressing PR1 enhanced resistance to the wild-type strain, but not to the Sscp1 knockout strain of S. sclerotiorum. Sscp1-expressing transgenic plants showed increased concentrations of salicylic acid (SA) and higher levels of resistance to several plant pathogens (namely Botrytis cinerea, Alternaria brassicicola and Golovinomyces orontii). Our results suggest that SsCP1 is important for virulence of S. sclerotiorum and that it can be recognized by plants to trigger plant defense responses. Our results also suggest that the SA signaling pathway is involved in CP-mediated plant defense .
Collapse
Affiliation(s)
- Guogen Yang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Liguang Tang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Yingdi Gong
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Jiatao Xie
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Yanping Fu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Daohong Jiang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Guoqing Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - David B Collinge
- Department of Plant and Environmental Sciences and Copenhagen Plant Science Centre, University of Copenhagen, 1871, Frederiksberg C, Denmark
| | - Weidong Chen
- United States Department of Agriculture, Agricultural Research Service, Washington State University, Pullman, WA, 99164, USA
| | - Jiasen Cheng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| |
Collapse
|
37
|
Raffaello T, Asiegbu FO. Small secreted proteins from the necrotrophic conifer pathogen Heterobasidion annosum s.l. (HaSSPs) induce cell death in Nicotiana benthamiana. Sci Rep 2017; 7:8000. [PMID: 28801666 PMCID: PMC5554239 DOI: 10.1038/s41598-017-08010-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 07/05/2017] [Indexed: 01/07/2023] Open
Abstract
The basidiomycete Heterobasidion annosum sensu lato (s.l.) is considered to be one of the most destructive conifer pathogens in the temperate forests of the northern hemisphere. H. annosum is characterized by a dual fungal lifestyle. The fungus grows necrotrophically on living plant cells and saprotrophically on dead wood material. In this study, we screened the H. annosum genome for small secreted proteins (HaSSPs) that could potentially be involved in promoting necrotrophic growth during the fungal infection process. The final list included 58 HaSSPs that lacked predictable protein domains. The transient expression of HaSSP encoding genes revealed the ability of 8 HaSSPs to induce cell chlorosis and cell death in Nicotiana benthamiana. In particular, one protein (HaSSP30) could induce a rapid, strong, and consistent cell death within 2 days post-infiltration. HaSSP30 also increased the transcription of host-defence-related genes in N. benthamiana, which suggested a necrotrophic-specific immune response. This is the first line of evidence demonstrating that the H. annosum genome encodes HaSSPs with the capability to induce plant cell death in a non-host plant.
Collapse
Affiliation(s)
- Tommaso Raffaello
- Department of Forest Sciences, University of Helsinki, Faculty of Agriculture and Forestry, Latokartanonkaari 7, 00014, Helsinki, Finland
| | - Fred O Asiegbu
- Department of Forest Sciences, University of Helsinki, Faculty of Agriculture and Forestry, Latokartanonkaari 7, 00014, Helsinki, Finland.
| |
Collapse
|
38
|
Varden FA, De la Concepcion JC, Maidment JH, Banfield MJ. Taking the stage: effectors in the spotlight. CURRENT OPINION IN PLANT BIOLOGY 2017; 38:25-33. [PMID: 28460241 DOI: 10.1016/j.pbi.2017.04.013] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Revised: 04/10/2017] [Accepted: 04/11/2017] [Indexed: 06/07/2023]
Abstract
Plant pathogens are a serious threat to agriculture and to global food security, causing diverse crop diseases which lead to extensive annual yield losses. Production of effector proteins by pathogens, to manipulate host cellular processes, is central to their success. An understanding of fundamental effector biology is key to addressing the threat posed by these pathogens. Recent advances in 'omics' technologies have facilitated high-throughput identification of putative effector proteins, while evolving cellular, structural and biochemical approaches have assisted in characterising their function. Furthermore, structures of effectors in complex with host factors now provide opportunities for applying our knowledge of effector biology to influence disease outcomes. In this review, we highlight recent advances in the field and suggest avenues for future research.
Collapse
Affiliation(s)
- Freya A Varden
- Dept. of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | | | - Josephine Hr Maidment
- Dept. of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | - Mark J Banfield
- Dept. of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom.
| |
Collapse
|
39
|
Tao T, Zhou CJ, Wang Q, Chen XR, Sun Q, Zhao TY, Ye JC, Wang Y, Zhang ZY, Zhang YL, Guo ZJ, Wang XB, Li DW, Yu JL, Han CG. Rice black streaked dwarf virus P7-2 forms a SCF complex through binding to Oryza sativa SKP1-like proteins, and interacts with GID2 involved in the gibberellin pathway. PLoS One 2017; 12:e0177518. [PMID: 28494021 PMCID: PMC5426791 DOI: 10.1371/journal.pone.0177518] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 04/29/2017] [Indexed: 11/18/2022] Open
Abstract
As a core subunit of the SCF complex that promotes protein degradation through the 26S proteasome, S-phase kinase-associated protein 1 (SKP1) plays important roles in multiple cellular processes in eukaryotes, including gibberellin (GA), jasmonate, ethylene, auxin and light responses. P7-2 encoded by Rice black streaked dwarf virus (RBSDV), a devastating viral pathogen that causes severe symptoms in infected plants, interacts with SKP1 from different plants. However, whether RBSDV P7-2 forms a SCF complex and targets host proteins is poorly understood. In this study, we conducted yeast two-hybrid assays to further explore the interactions between P7-2 and 25 type I Oryza sativa SKP1-like (OSK) proteins, and found that P7-2 interacted with eight OSK members with different binding affinity. Co-immunoprecipitation assay further confirmed the interaction of P7-2 with OSK1, OSK5 and OSK20. It was also shown that P7-2, together with OSK1 and O. sativa Cullin-1, was able to form the SCF complex. Moreover, yeast two-hybrid assays revealed that P7-2 interacted with gibberellin insensitive dwarf2 (GID2) from rice and maize plants, which is essential for regulating the GA signaling pathway. It was further demonstrated that the N-terminal region of P7-2 was necessary for the interaction with GID2. Overall, these results indicated that P7-2 functioned as a component of the SCF complex in rice, and interaction of P7-2 with GID2 implied possible roles of the GA signaling pathway during RBSDV infection.
Collapse
Affiliation(s)
- Tao Tao
- State Key Laboratory for Agro-biotechnology and Ministry of Agriculture Key Laboratory for Plant Pathology, China Agricultural University, Beijing, People's Republic of China
| | - Cui-Ji Zhou
- State Key Laboratory for Agro-biotechnology and Ministry of Agriculture Key Laboratory for Plant Pathology, China Agricultural University, Beijing, People's Republic of China
| | - Qian Wang
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong Province, People's Republic of China
| | - Xiang-Ru Chen
- State Key Laboratory for Agro-biotechnology and Ministry of Agriculture Key Laboratory for Plant Pathology, China Agricultural University, Beijing, People's Republic of China
| | - Qian Sun
- State Key Laboratory for Agro-biotechnology and Ministry of Agriculture Key Laboratory for Plant Pathology, China Agricultural University, Beijing, People's Republic of China
| | - Tian-Yu Zhao
- State Key Laboratory for Agro-biotechnology and Ministry of Agriculture Key Laboratory for Plant Pathology, China Agricultural University, Beijing, People's Republic of China
| | - Jian-Chun Ye
- State Key Laboratory for Agro-biotechnology and Ministry of Agriculture Key Laboratory for Plant Pathology, China Agricultural University, Beijing, People's Republic of China
| | - Ying Wang
- State Key Laboratory for Agro-biotechnology and Ministry of Agriculture Key Laboratory for Plant Pathology, China Agricultural University, Beijing, People's Republic of China
| | - Zong-Ying Zhang
- State Key Laboratory for Agro-biotechnology and Ministry of Agriculture Key Laboratory for Plant Pathology, China Agricultural University, Beijing, People's Republic of China
| | - Yong-Liang Zhang
- State Key Laboratory for Agro-biotechnology and Ministry of Agriculture Key Laboratory for Plant Pathology, China Agricultural University, Beijing, People's Republic of China
| | - Ze-Jian Guo
- State Key Laboratory for Agro-biotechnology and Ministry of Agriculture Key Laboratory for Plant Pathology, China Agricultural University, Beijing, People's Republic of China
| | - Xian-Bing Wang
- State Key Laboratory for Agro-biotechnology and Ministry of Agriculture Key Laboratory for Plant Pathology, China Agricultural University, Beijing, People's Republic of China
| | - Da-Wei Li
- State Key Laboratory for Agro-biotechnology and Ministry of Agriculture Key Laboratory for Plant Pathology, China Agricultural University, Beijing, People's Republic of China
| | - Jia-Lin Yu
- State Key Laboratory for Agro-biotechnology and Ministry of Agriculture Key Laboratory for Plant Pathology, China Agricultural University, Beijing, People's Republic of China
| | - Cheng-Gui Han
- State Key Laboratory for Agro-biotechnology and Ministry of Agriculture Key Laboratory for Plant Pathology, China Agricultural University, Beijing, People's Republic of China
| |
Collapse
|
40
|
Dagvadorj B, Ozketen AC, Andac A, Duggan C, Bozkurt TO, Akkaya MS. A Puccinia striiformis f. sp. tritici secreted protein activates plant immunity at the cell surface. Sci Rep 2017; 7:1141. [PMID: 28442716 PMCID: PMC5430700 DOI: 10.1038/s41598-017-01100-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 03/24/2017] [Indexed: 01/02/2023] Open
Abstract
Pathogens secrete effector proteins to suppress host immunity, mediate nutrient uptake and subsequently enable parasitism. However, on non-adapted hosts, effectors can be detected as non-self by host immune receptors and activate non-host immunity. Nevertheless, the molecular mechanisms of effector triggered non-host resistance remain unknown. Here, we report that a small cysteine-rich protein PstSCR1 from the wheat rust pathogen Puccinia striiformis f. sp. tritici (Pst) activates immunity in the non-host solanaceous model plant Nicotiana benthamiana. PstSCR1 homologs were found to be conserved in Pst, and in its closest relatives, Puccinia graminis f. sp. tritici and Puccinia triticina. When PstSCR1 was expressed in N. benthamiana with its signal peptide, it provoked the plant immune system, whereas no stimulation was observed when it was expressed without its signal peptide. PstSCR1 expression in N. benthamiana significantly reduced infection capacity of the oomycete pathogens. Moreover, apoplast-targeted PstSCR1 triggered plant cell death in a dose dependent manner. However, in Brassinosteroid insensitive 1-Associated Kinase 1 (SERK3/BAK1) silenced N. benthamiana, cell death was remarkably decreased. Finally, purified PstSCR1 protein activated defence related gene expression in N. benthamiana. Our results show that a Pst-secreted protein, PstSCR1 can activate surface mediated immunity in non-adapted hosts and contribute to non-host resistance.
Collapse
Affiliation(s)
- Bayantes Dagvadorj
- Middle East Technical University, Biotechnology Program, Department of Chemistry, Dumlupinar Blvd., Cankaya, Ankara, TR-06800, Turkey
| | - Ahmet Caglar Ozketen
- Middle East Technical University, Biotechnology Program, Department of Chemistry, Dumlupinar Blvd., Cankaya, Ankara, TR-06800, Turkey
| | - Ayse Andac
- Middle East Technical University, Biotechnology Program, Department of Chemistry, Dumlupinar Blvd., Cankaya, Ankara, TR-06800, Turkey
| | - Cian Duggan
- Imperial College London, Department of Life Sciences, London, SW7 2AZ, UK
| | | | - Mahinur S Akkaya
- Middle East Technical University, Biotechnology Program, Department of Chemistry, Dumlupinar Blvd., Cankaya, Ankara, TR-06800, Turkey.
| |
Collapse
|
41
|
Zhang K, Zhang Y, Yang M, Liu S, Li Z, Wang X, Han C, Yu J, Li D. The Barley stripe mosaic virus γb protein promotes chloroplast-targeted replication by enhancing unwinding of RNA duplexes. PLoS Pathog 2017; 13:e1006319. [PMID: 28388677 PMCID: PMC5397070 DOI: 10.1371/journal.ppat.1006319] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 04/19/2017] [Accepted: 03/27/2017] [Indexed: 11/19/2022] Open
Abstract
RNA viruses encode various RNA binding proteins that function in many steps of viral infection cycles. These proteins function as RNA helicases, methyltransferases, RNA-dependent RNA polymerases, RNA silencing suppressors, RNA chaperones, movement proteins, and so on. Although many of the proteins bind the viral RNA genome during different stages of infection, our knowledge about the coordination of their functions is limited. In this study, we describe a novel role for the Barley stripe mosaic virus (BSMV) γb as an enhancer of αa RNA helicase activity, and we show that the γb protein is recruited by the αa viral replication protein to chloroplast membrane sites of BSMV replication. Mutagenesis or deletion of γb from BSMV resulted in reduced positive strand (+) RNAα accumulation, but γb mutations abolishing viral suppressor of RNA silencing (VSR) activity did not completely eliminate genomic RNA replication. In addition, cis- or trans-expression of the Tomato bushy stunt virus p19 VSR protein failed to complement the γb replication functions, indicating that the direct involvement of γb in BSMV RNA replication is independent of VSR functions. These data support a model whereby two BSMV-encoded RNA-binding proteins act coordinately to regulate viral genome replication and provide new insights into strategies whereby double-stranded viral RNA unwinding is regulated, as well as formation of viral replication complexes.
Collapse
Affiliation(s)
- Kun Zhang
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, P. R. China
| | - Yongliang Zhang
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, P. R. China
| | - Meng Yang
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, P. R. China
| | - Songyu Liu
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, P. R. China
| | - Zhenggang Li
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, P. R. China
| | - Xianbing Wang
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, P. R. China
| | - Chenggui Han
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, P. R. China
| | - Jialin Yu
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, P. R. China
| | - Dawei Li
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, P. R. China
| |
Collapse
|
42
|
Ma Z, Zhu L, Song T, Wang Y, Zhang Q, Xia Y, Qiu M, Lin Y, Li H, Kong L, Fang Y, Ye W, Wang Y, Dong S, Zheng X, Tyler BM, Wang Y. A paralogous decoy protects Phytophthora sojae apoplastic effector PsXEG1 from a host inhibitor. Science 2017; 355:710-714. [PMID: 28082413 DOI: 10.1126/science.aai7919] [Citation(s) in RCA: 158] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Accepted: 12/28/2016] [Indexed: 12/15/2022]
Abstract
The extracellular space (apoplast) of plant tissue represents a critical battleground between plants and attacking microbes. Here we show that a pathogen-secreted apoplastic xyloglucan-specific endoglucanase, PsXEG1, is a focus of this struggle in the Phytophthora sojae-soybean interaction. We show that soybean produces an apoplastic glucanase inhibitor protein, GmGIP1, that binds to PsXEG1 to block its contribution to virulence. P. sojae, however, secretes a paralogous PsXEG1-like protein, PsXLP1, that has lost enzyme activity but binds to GmGIP1 more tightly than does PsXEG1, thus freeing PsXEG1 to support P. sojae infection. The gene pair encoding PsXEG1 and PsXLP1 is conserved in many Phytophthora species, and the P. parasitica orthologs PpXEG1 and PpXLP1 have similar functions. Thus, this apoplastic decoy strategy may be widely used in Phytophthora pathosystems.
Collapse
Affiliation(s)
- Zhenchuan Ma
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing 210095, China
| | - Lin Zhu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing 210095, China
| | - Tianqiao Song
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing 210095, China
| | - Yang Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing 210095, China
| | - Qi Zhang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing 210095, China
| | - Yeqiang Xia
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing 210095, China
| | - Min Qiu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing 210095, China
| | - Yachun Lin
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing 210095, China
| | - Haiyang Li
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing 210095, China
| | - Liang Kong
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing 210095, China
| | - Yufeng Fang
- Center for Genome Research and Biocomputing and Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA
| | - Wenwu Ye
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing 210095, China
| | - Yan Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing 210095, China
| | - Suomeng Dong
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing 210095, China
| | - Xiaobo Zheng
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing 210095, China
| | - Brett M Tyler
- Center for Genome Research and Biocomputing and Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA
| | - Yuanchao Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China.
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing 210095, China
| |
Collapse
|
43
|
Petre B, Hecker A, Germain H, Tsan P, Sklenar J, Pelletier G, Séguin A, Duplessis S, Rouhier N. The Poplar Rust-Induced Secreted Protein (RISP) Inhibits the Growth of the Leaf Rust Pathogen Melampsora larici-populina and Triggers Cell Culture Alkalinisation. FRONTIERS IN PLANT SCIENCE 2016; 7:97. [PMID: 26925067 PMCID: PMC4756128 DOI: 10.3389/fpls.2016.00097] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 01/18/2016] [Indexed: 05/31/2023]
Abstract
Plant cells secrete a wide range of proteins in extracellular spaces in response to pathogen attack. The poplar rust-induced secreted protein (RISP) is a small cationic protein of unknown function that was identified as the most induced gene in poplar leaves during immune responses to the leaf rust pathogen Melampsora larici-populina, an obligate biotrophic parasite. Here, we combined in planta and in vitro molecular biology approaches to tackle the function of RISP. Using a RISP-mCherry fusion transiently expressed in Nicotiana benthamiana leaves, we demonstrated that RISP is secreted into the apoplast. A recombinant RISP specifically binds to M. larici-populina urediniospores and inhibits their germination. It also arrests the growth of the fungus in vitro and on poplar leaves. Interestingly, RISP also triggers poplar cell culture alkalinisation and is cleaved at the C-terminus by a plant-encoded mechanism. Altogether our results indicate that RISP is an antifungal protein that has the ability to trigger cellular responses.
Collapse
Affiliation(s)
- Benjamin Petre
- Institut National de la Recherche Agronomique, Centre INRA Nancy Lorraine, UMR 1136 Interactions Arbres/MicroorganismesChampenoux, France
- Faculté des Sciences et Technologies, UMR 1136 Interactions Arbres/Microorganismes, Université de LorraineVandoeuvre-lès-Nancy, France
- The Sainsbury LaboratoryNorwich, UK
| | - Arnaud Hecker
- Institut National de la Recherche Agronomique, Centre INRA Nancy Lorraine, UMR 1136 Interactions Arbres/MicroorganismesChampenoux, France
- Faculté des Sciences et Technologies, UMR 1136 Interactions Arbres/Microorganismes, Université de LorraineVandoeuvre-lès-Nancy, France
| | - Hugo Germain
- Groupe de Recherche en Biologie Végétale, Université du Québec à Trois-Rivières, Trois-RivièresQC, Canada
| | - Pascale Tsan
- CRM, Equipe BioMod, Faculté des Sciences et Technologies, UMR 7036, Université de LorraineVandoeuvre-lès-Nancy, France
- CNRS, CRM, Equipe BioMod, Faculté des Sciences et Technologies, UMR 7036Vandoeuvre-lès-Nancy, France
| | | | - Gervais Pelletier
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, QuébecQC, Canada
| | - Armand Séguin
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, QuébecQC, Canada
| | - Sébastien Duplessis
- Institut National de la Recherche Agronomique, Centre INRA Nancy Lorraine, UMR 1136 Interactions Arbres/MicroorganismesChampenoux, France
- Faculté des Sciences et Technologies, UMR 1136 Interactions Arbres/Microorganismes, Université de LorraineVandoeuvre-lès-Nancy, France
| | - Nicolas Rouhier
- Institut National de la Recherche Agronomique, Centre INRA Nancy Lorraine, UMR 1136 Interactions Arbres/MicroorganismesChampenoux, France
- Faculté des Sciences et Technologies, UMR 1136 Interactions Arbres/Microorganismes, Université de LorraineVandoeuvre-lès-Nancy, France
| |
Collapse
|
44
|
Giannakopoulou A, Steele JFC, Segretin ME, Bozkurt TO, Zhou J, Robatzek S, Banfield MJ, Pais M, Kamoun S. Tomato I2 Immune Receptor Can Be Engineered to Confer Partial Resistance to the Oomycete Phytophthora infestans in Addition to the Fungus Fusarium oxysporum. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2015; 28:1316-29. [PMID: 26367241 DOI: 10.1094/mpmi-07-15-0147-r] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Plants and animals rely on immune receptors, known as nucleotide-binding domain and leucine-rich repeat (NLR)-containing proteins, to defend against invading pathogens and activate immune responses. How NLR receptors respond to pathogens is inadequately understood. We previously reported single-residue mutations that expand the response of the potato immune receptor R3a to AVR3a(EM), a stealthy effector from the late blight oomycete pathogen Phytophthora infestans. I2, another NLR that mediates resistance to the will-causing fungus Fusarium oxysporum f. sp. lycopersici, is the tomato ortholog of R3a. We transferred previously identified R3a mutations to I2 to assess the degree to which the resulting I2 mutants have an altered response. We discovered that wild-type I2 protein responds weakly to AVR3a. One mutant in the N-terminal coiled-coil domain, I2(I141N), appeared sensitized and displayed markedly increased response to AVR3a. Remarkably, I2(I141N) conferred partial resistance to P. infestans. Further, I2(I141N) has an expanded response spectrum to F. oxysporum f. sp. lycopersici effectors compared with the wild-type I2 protein. Our results suggest that synthetic immune receptors can be engineered to confer resistance to phylogenetically divergent pathogens and indicate that knowledge gathered for one NLR could be exploited to improve NLR from other plant species.
Collapse
Affiliation(s)
| | - John F C Steele
- 2 Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, United Kingdom
| | | | - Tolga O Bozkurt
- 1 The Sainsbury Laboratory, Norwich Research Park, NR4 7UH Norwich, United Kingdom
- 4 Imperial College, Faculty of Natural Sciences, Department of Life Sciences, South Kensington Campus, London SW7 2AZ, United Kingdom; and
| | - Ji Zhou
- 1 The Sainsbury Laboratory, Norwich Research Park, NR4 7UH Norwich, United Kingdom
- 5 The Genome Analysis Centre, Norwich Research Park, NR4 7UH Norwich, United Kingdom
| | - Silke Robatzek
- 1 The Sainsbury Laboratory, Norwich Research Park, NR4 7UH Norwich, United Kingdom
| | - Mark J Banfield
- 2 Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, United Kingdom
| | - Marina Pais
- 1 The Sainsbury Laboratory, Norwich Research Park, NR4 7UH Norwich, United Kingdom
| | - Sophien Kamoun
- 1 The Sainsbury Laboratory, Norwich Research Park, NR4 7UH Norwich, United Kingdom
| |
Collapse
|
45
|
Petre B, Lorrain C, Saunders DG, Win J, Sklenar J, Duplessis S, Kamoun S. Rust fungal effectors mimic host transit peptides to translocate into chloroplasts. Cell Microbiol 2015; 18:453-65. [DOI: 10.1111/cmi.12530] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 09/22/2015] [Accepted: 09/29/2015] [Indexed: 02/06/2023]
Affiliation(s)
- Benjamin Petre
- The Sainsbury Laboratory; Norwich Research Park; Norwich NR4 7UH UK
- INRA, UMR 1136 Interactions Arbres/Microorganismes; Centre INRA Nancy Lorraine; Champenoux 54280 France
- Université de Lorraine; UMR 1136 Interactions Arbres/Microorganismes, Faculté des Sciences et Technologies; Vandoeuvre-lès-Nancy 54506 France
| | - Cécile Lorrain
- The Sainsbury Laboratory; Norwich Research Park; Norwich NR4 7UH UK
- INRA, UMR 1136 Interactions Arbres/Microorganismes; Centre INRA Nancy Lorraine; Champenoux 54280 France
- Université de Lorraine; UMR 1136 Interactions Arbres/Microorganismes, Faculté des Sciences et Technologies; Vandoeuvre-lès-Nancy 54506 France
| | - Diane G.O. Saunders
- The Sainsbury Laboratory; Norwich Research Park; Norwich NR4 7UH UK
- The Genome Analysis Centre; Norwich Research Park; Norwich NR4 7UH UK
- The John Innes Centre; Norwich Research Park; Norwich NR4 7UH UK
| | - Joe Win
- The Sainsbury Laboratory; Norwich Research Park; Norwich NR4 7UH UK
| | - Jan Sklenar
- The Sainsbury Laboratory; Norwich Research Park; Norwich NR4 7UH UK
| | - Sébastien Duplessis
- INRA, UMR 1136 Interactions Arbres/Microorganismes; Centre INRA Nancy Lorraine; Champenoux 54280 France
- Université de Lorraine; UMR 1136 Interactions Arbres/Microorganismes, Faculté des Sciences et Technologies; Vandoeuvre-lès-Nancy 54506 France
| | - Sophien Kamoun
- The Sainsbury Laboratory; Norwich Research Park; Norwich NR4 7UH UK
| |
Collapse
|
46
|
Chaparro-Garcia A, Schwizer S, Sklenar J, Yoshida K, Petre B, Bos JIB, Schornack S, Jones AME, Bozkurt TO, Kamoun S. Phytophthora infestans RXLR-WY Effector AVR3a Associates with Dynamin-Related Protein 2 Required for Endocytosis of the Plant Pattern Recognition Receptor FLS2. PLoS One 2015; 10:e0137071. [PMID: 26348328 PMCID: PMC4562647 DOI: 10.1371/journal.pone.0137071] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 08/12/2015] [Indexed: 11/18/2022] Open
Abstract
Pathogens utilize effectors to suppress basal plant defense known as PTI (Pathogen-associated molecular pattern-triggered immunity). However, our knowledge of PTI suppression by filamentous plant pathogens, i.e. fungi and oomycetes, remains fragmentary. Previous work revealed that the co-receptor BAK1/SERK3 contributes to basal immunity against the potato pathogen Phytophthora infestans. Moreover BAK1/SERK3 is required for the cell death induced by P. infestans elicitin INF1, a protein with characteristics of PAMPs. The P. infestans host-translocated RXLR-WY effector AVR3a is known to supress INF1-mediated cell death by binding the plant E3 ligase CMPG1. In contrast, AVR3aKI-Y147del, a deletion mutant of the C-terminal tyrosine of AVR3a, fails to bind CMPG1 and does not suppress INF1-mediated cell death. Here, we studied the extent to which AVR3a and its variants perturb additional BAK1/SERK3-dependent PTI responses in N. benthamiana using the elicitor/receptor pair flg22/FLS2 as a model. We found that all tested variants of AVR3a suppress defense responses triggered by flg22 and reduce internalization of activated FLS2. Moreover, we discovered that AVR3a associates with the Dynamin-Related Protein 2 (DRP2), a plant GTPase implicated in receptor-mediated endocytosis. Interestingly, silencing of DRP2 impaired ligand-induced FLS2 internalization but did not affect internalization of the growth receptor BRI1. Our results suggest that AVR3a associates with a key cellular trafficking and membrane-remodeling complex involved in immune receptor-mediated endocytosis. We conclude that AVR3a is a multifunctional effector that can suppress BAK1/SERK3-mediated immunity through at least two different pathways.
Collapse
Affiliation(s)
| | - Simon Schwizer
- The Sainsbury Laboratory, Norwich Research Park, Norwich, United Kingdom
| | - Jan Sklenar
- The Sainsbury Laboratory, Norwich Research Park, Norwich, United Kingdom
| | - Kentaro Yoshida
- The Sainsbury Laboratory, Norwich Research Park, Norwich, United Kingdom
| | - Benjamin Petre
- The Sainsbury Laboratory, Norwich Research Park, Norwich, United Kingdom
| | - Jorunn I. B. Bos
- The Sainsbury Laboratory, Norwich Research Park, Norwich, United Kingdom
| | | | | | - Tolga O. Bozkurt
- The Sainsbury Laboratory, Norwich Research Park, Norwich, United Kingdom
| | - Sophien Kamoun
- The Sainsbury Laboratory, Norwich Research Park, Norwich, United Kingdom
| |
Collapse
|
47
|
Petre B, Saunders DGO, Sklenar J, Lorrain C, Win J, Duplessis S, Kamoun S. Candidate Effector Proteins of the Rust Pathogen Melampsora larici-populina Target Diverse Plant Cell Compartments. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2015; 28:689-700. [PMID: 25650830 DOI: 10.1094/mpmi-01-15-0003-r] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Rust fungi are devastating crop pathogens that deliver effector proteins into infected tissues to modulate plant functions and promote parasitic growth. The genome of the poplar leaf rust fungus Melampsora larici-populina revealed a large catalog of secreted proteins, some of which have been considered candidate effectors. Unraveling how these proteins function in host cells is a key to understanding pathogenicity mechanisms and developing resistant plants. In this study, we used an effectoromics pipeline to select, clone, and express 20 candidate effectors in Nicotiana benthamiana leaf cells to determine their subcellular localization and identify the plant proteins they interact with. Confocal microscopy revealed that six candidate effectors target the nucleus, nucleoli, chloroplasts, mitochondria, and discrete cellular bodies. We also used coimmunoprecipitation (coIP) and mass spectrometry to identify 606 N. benthamiana proteins that associate with the candidate effectors. Five candidate effectors specifically associated with a small set of plant proteins that may represent biologically relevant interactors. We confirmed the interaction between the candidate effector MLP124017 and TOPLESS-related protein 4 from poplar by in planta coIP. Altogether, our data enable us to validate effector proteins from M. larici-populina and reveal that these proteins may target multiple compartments and processes in plant cells. It also shows that N. benthamiana can be a powerful heterologous system to study effectors of obligate biotrophic pathogens.
Collapse
Affiliation(s)
- Benjamin Petre
- 1 The Sainsbury Laboratory, Norwich Research Park, NR4 7UH Norwich, U.K
- 2 INRA, UMR 1136 Interactions Arbres/Microorganismes, Centre INRA Nancy Lorraine, 54280 Champenoux, France
- 3 Université de Lorraine, UMR 1136 Interactions Arbres/Microorganismes, Faculté des Sciences et Technologies, 54506 Vandoeuvre-lès-Nancy, France
| | - Diane G O Saunders
- 1 The Sainsbury Laboratory, Norwich Research Park, NR4 7UH Norwich, U.K
- 4 The Genome Analysis Centre, Norwich Research Park, NR4 7UH Norwich, U.K
- 5 The John Innes Centre, Norwich Research Park, NR4 7UH Norwich, U.K
| | - Jan Sklenar
- 1 The Sainsbury Laboratory, Norwich Research Park, NR4 7UH Norwich, U.K
| | - Cécile Lorrain
- 1 The Sainsbury Laboratory, Norwich Research Park, NR4 7UH Norwich, U.K
- 2 INRA, UMR 1136 Interactions Arbres/Microorganismes, Centre INRA Nancy Lorraine, 54280 Champenoux, France
- 3 Université de Lorraine, UMR 1136 Interactions Arbres/Microorganismes, Faculté des Sciences et Technologies, 54506 Vandoeuvre-lès-Nancy, France
| | - Joe Win
- 1 The Sainsbury Laboratory, Norwich Research Park, NR4 7UH Norwich, U.K
| | - Sébastien Duplessis
- 2 INRA, UMR 1136 Interactions Arbres/Microorganismes, Centre INRA Nancy Lorraine, 54280 Champenoux, France
- 3 Université de Lorraine, UMR 1136 Interactions Arbres/Microorganismes, Faculté des Sciences et Technologies, 54506 Vandoeuvre-lès-Nancy, France
| | - Sophien Kamoun
- 1 The Sainsbury Laboratory, Norwich Research Park, NR4 7UH Norwich, U.K
| |
Collapse
|
48
|
Kim SB, Lee HY, Seo S, Lee JH, Choi D. RNA-dependent RNA polymerase (NIb) of the potyviruses is an avirulence factor for the broad-spectrum resistance gene Pvr4 in Capsicum annuum cv. CM334. PLoS One 2015; 10:e0119639. [PMID: 25760376 PMCID: PMC4356556 DOI: 10.1371/journal.pone.0119639] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 02/02/2015] [Indexed: 11/18/2022] Open
Abstract
Potyviruses are one of the most destructive viral pathogens of Solanaceae plants. In Capsicum annuum landrace CM334, a broad-spectrum gene, Pvr4 is known to be involved in resistance against multiple potyviruses, including Pepper mottle virus (PepMoV), Pepper severe mosaic virus (PepSMV), and Potato virus Y (PVY). However, a potyvirus avirulence factor against Pvr4 has not been identified. To identify the avirulence factor corresponding to Pvr4 in potyviruses, we performed Agrobacterium-mediated transient expressions of potyvirus protein coding regions in potyvirus-resistant (Pvr4) and -susceptible (pvr4) pepper plants. Hypersensitive response (HR) was observed only when a RNA-dependent RNA polymerase (NIb) of PepMoV, PepSMV, or PVY was expressed in Pvr4-bearing pepper leaves in a genotype-specific manner. In contrast, HR was not observed when the NIb of Tobacco etch virus (TEV), a virulent potyvirus, was expressed in Pvr4-bearing pepper leaves. Our results clearly demonstrate that NIbs of PepMoV, PepSMV, and PVY serve as avirulence factors for Pvr4 in pepper plants.
Collapse
Affiliation(s)
- Saet-Byul Kim
- Department of Plant Science, Plant Genomics and Breeding Institute, Seoul National University, Seoul, Korea
| | - Hye-Young Lee
- Department of Plant Science, Plant Genomics and Breeding Institute, Seoul National University, Seoul, Korea
| | - Seungyeon Seo
- Department of Plant Science, Plant Genomics and Breeding Institute, Seoul National University, Seoul, Korea
| | - Joo Hyun Lee
- Department of Plant Science, Plant Genomics and Breeding Institute, Seoul National University, Seoul, Korea
| | - Doil Choi
- Department of Plant Science, Plant Genomics and Breeding Institute, Seoul National University, Seoul, Korea
- * E-mail:
| |
Collapse
|
49
|
Bozkurt TO, Richardson A, Dagdas YF, Mongrand S, Kamoun S, Raffaele S. The Plant Membrane-Associated REMORIN1.3 Accumulates in Discrete Perihaustorial Domains and Enhances Susceptibility to Phytophthora infestans. PLANT PHYSIOLOGY 2014; 165:1005-1018. [PMID: 24808104 PMCID: PMC4081318 DOI: 10.1104/pp.114.235804] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Filamentous pathogens such as the oomycete Phytophthora infestans infect plants by developing specialized structures termed haustoria inside the host cells. Haustoria are thought to enable the secretion of effector proteins into the plant cells. Haustorium biogenesis, therefore, is critical for pathogen accommodation in the host tissue. Haustoria are enveloped by a specialized host-derived membrane, the extrahaustorial membrane (EHM), which is distinct from the plant plasma membrane. The mechanisms underlying the biogenesis of the EHM are unknown. Remarkably, several plasma membrane-localized proteins are excluded from the EHM, but the remorin REM1.3 accumulates around P. infestans haustoria. Here, we used overexpression, colocalization with reporter proteins, and superresolution microscopy in cells infected by P. infestans to reveal discrete EHM domains labeled by REM1.3 and the P. infestans effector AVRblb2. Moreover, SYNAPTOTAGMIN1, another previously identified perihaustorial protein, localized to subdomains that are mainly not labeled by REM1.3 and AVRblb2. Functional characterization of REM1.3 revealed that it is a susceptibility factor that promotes infection by P. infestans. This activity, and REM1.3 recruitment to the EHM, require the REM1.3 membrane-binding domain. Our results implicate REM1.3 membrane microdomains in plant susceptibility to an oomycete pathogen.
Collapse
Affiliation(s)
- Tolga O Bozkurt
- Sainsbury Laboratory, Norwich NR4 7UH, United Kingdom (T.O.B., A.R., Y.F.D., S.K., S.R.);Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom (T.O.B.);John Innes Centre, Norwich NR4 7UH, United Kingdom (A.R.);Laboratoire de Biogenèse Membranaire, Unité Mixte de Recherche 5200 Centre National de la Recherche Scientifique-Université Bordeaux Segalen-Institut National de la Recherche Agronomique, F-33883 Villenave d'Ornon cedex, France (S.M.); andLaboratoire des Interactions Plantes-Microorganismes, Unité Mixte de Recherche 441 Institut National de la Recherche Agronomique-Unité Mixte de Recherche 2594 Centre National de la Recherche Scientifique, F-31326 Castanet-Tolosan, France (S.R.)
| | - Annis Richardson
- Sainsbury Laboratory, Norwich NR4 7UH, United Kingdom (T.O.B., A.R., Y.F.D., S.K., S.R.);Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom (T.O.B.);John Innes Centre, Norwich NR4 7UH, United Kingdom (A.R.);Laboratoire de Biogenèse Membranaire, Unité Mixte de Recherche 5200 Centre National de la Recherche Scientifique-Université Bordeaux Segalen-Institut National de la Recherche Agronomique, F-33883 Villenave d'Ornon cedex, France (S.M.); andLaboratoire des Interactions Plantes-Microorganismes, Unité Mixte de Recherche 441 Institut National de la Recherche Agronomique-Unité Mixte de Recherche 2594 Centre National de la Recherche Scientifique, F-31326 Castanet-Tolosan, France (S.R.)
| | - Yasin F Dagdas
- Sainsbury Laboratory, Norwich NR4 7UH, United Kingdom (T.O.B., A.R., Y.F.D., S.K., S.R.);Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom (T.O.B.);John Innes Centre, Norwich NR4 7UH, United Kingdom (A.R.);Laboratoire de Biogenèse Membranaire, Unité Mixte de Recherche 5200 Centre National de la Recherche Scientifique-Université Bordeaux Segalen-Institut National de la Recherche Agronomique, F-33883 Villenave d'Ornon cedex, France (S.M.); andLaboratoire des Interactions Plantes-Microorganismes, Unité Mixte de Recherche 441 Institut National de la Recherche Agronomique-Unité Mixte de Recherche 2594 Centre National de la Recherche Scientifique, F-31326 Castanet-Tolosan, France (S.R.)
| | - Sébastien Mongrand
- Sainsbury Laboratory, Norwich NR4 7UH, United Kingdom (T.O.B., A.R., Y.F.D., S.K., S.R.);Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom (T.O.B.);John Innes Centre, Norwich NR4 7UH, United Kingdom (A.R.);Laboratoire de Biogenèse Membranaire, Unité Mixte de Recherche 5200 Centre National de la Recherche Scientifique-Université Bordeaux Segalen-Institut National de la Recherche Agronomique, F-33883 Villenave d'Ornon cedex, France (S.M.); andLaboratoire des Interactions Plantes-Microorganismes, Unité Mixte de Recherche 441 Institut National de la Recherche Agronomique-Unité Mixte de Recherche 2594 Centre National de la Recherche Scientifique, F-31326 Castanet-Tolosan, France (S.R.)
| | - Sophien Kamoun
- Sainsbury Laboratory, Norwich NR4 7UH, United Kingdom (T.O.B., A.R., Y.F.D., S.K., S.R.);Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom (T.O.B.);John Innes Centre, Norwich NR4 7UH, United Kingdom (A.R.);Laboratoire de Biogenèse Membranaire, Unité Mixte de Recherche 5200 Centre National de la Recherche Scientifique-Université Bordeaux Segalen-Institut National de la Recherche Agronomique, F-33883 Villenave d'Ornon cedex, France (S.M.); andLaboratoire des Interactions Plantes-Microorganismes, Unité Mixte de Recherche 441 Institut National de la Recherche Agronomique-Unité Mixte de Recherche 2594 Centre National de la Recherche Scientifique, F-31326 Castanet-Tolosan, France (S.R.)
| | - Sylvain Raffaele
- Sainsbury Laboratory, Norwich NR4 7UH, United Kingdom (T.O.B., A.R., Y.F.D., S.K., S.R.);Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom (T.O.B.);John Innes Centre, Norwich NR4 7UH, United Kingdom (A.R.);Laboratoire de Biogenèse Membranaire, Unité Mixte de Recherche 5200 Centre National de la Recherche Scientifique-Université Bordeaux Segalen-Institut National de la Recherche Agronomique, F-33883 Villenave d'Ornon cedex, France (S.M.); andLaboratoire des Interactions Plantes-Microorganismes, Unité Mixte de Recherche 441 Institut National de la Recherche Agronomique-Unité Mixte de Recherche 2594 Centre National de la Recherche Scientifique, F-31326 Castanet-Tolosan, France (S.R.)
| |
Collapse
|
50
|
Dong S, Stam R, Cano LM, Song J, Sklenar J, Yoshida K, Bozkurt TO, Oliva R, Liu Z, Tian M, Win J, Banfield MJ, Jones AME, van der Hoorn RAL, Kamoun S. Effector specialization in a lineage of the Irish potato famine pathogen. Science 2014; 343:552-5. [PMID: 24482481 DOI: 10.1126/science.1246300] [Citation(s) in RCA: 141] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Accelerated gene evolution is a hallmark of pathogen adaptation following a host jump. Here, we describe the biochemical basis of adaptation and specialization of a plant pathogen effector after its colonization of a new host. Orthologous protease inhibitor effectors from the Irish potato famine pathogen, Phytophthora infestans, and its sister species, Phytophthora mirabilis, which is responsible for infection of Mirabilis jalapa, are adapted to protease targets unique to their respective host plants. Amino acid polymorphisms in both the inhibitors and their target proteases underpin this biochemical specialization. Our results link effector specialization to diversification and speciation of this plant pathogen.
Collapse
Affiliation(s)
- Suomeng Dong
- The Sainsbury Laboratory, Norwich Research Park, Norwich NR4 7UH, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|