1
|
Murai T, Naeve S, Annor GA. Regional Variability in Sugar and Amino Acid Content of U.S. Soybeans and the Impact of Autoclaving on Reducing Sugars and Free Lysine. Foods 2024; 13:1884. [PMID: 38928825 PMCID: PMC11202694 DOI: 10.3390/foods13121884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/10/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
Exploring the sugar and amino acid content variability and the influence of thermal processing on these in soybeans can help optimize their utilization in animal feed. This study examined 209 samples harvested in 2020 and 55 samples harvested in 2021 from across the U.S. to assess their sugar variability and amino acid variability. Harvest regions included the East Corn Belt, West Corn Belt, Mid-South, East Coast, and the Southeast of the U.S. In addition to the sugar and amino acid contents, protein, oil, and seed size were also analyzed. Samples from 2021 were evaluated for their sugar and amino acid contents before and after autoclaving the seeds at 105-110 °C for 15 min. For the samples harvested in 2020, sucrose (4.45 g 100 g-1) and stachyose (1.34 g 100 g-1) were the most prevalent sugars. For the samples harvested in 2021, L-arginine (9.82 g 100 g-1), leucine (5.29 g 100 g-1), and glutamate (4.90 g 100 g-1) were the most prevalent amino acids. Heat treatment resulted in an 8.47%, 20.88%, 11.18%, and 1.46% median loss of free lysine, sucrose, glucose, and fructose. This study's insights into the variability in sugar and amino acid content and the heat-induced changes in the nutritional composition of soybeans provide a reference for improving soybean quality assessment and optimizing its use in animal feed formulations in the U.S.
Collapse
Affiliation(s)
- Takehiro Murai
- Department of Food Science and Nutrition, College of Food, Agricultural and Natural Resource Sciences, University of Minnesota, 1334 Eckles Avenue, St. Paul, MN 55108, USA;
| | - Seth Naeve
- Department of Agronomy and Plant Genetics, College of Food, Agricultural and Natural Resource Sciences, University of Minnesota, 411 Borlaug Hall 1991 Upper Buford Circle, St. Paul, MN 55108, USA;
| | - George A. Annor
- Department of Food Science and Nutrition, College of Food, Agricultural and Natural Resource Sciences, University of Minnesota, 1334 Eckles Avenue, St. Paul, MN 55108, USA;
| |
Collapse
|
2
|
Zhan X, Hou L, He Z, Cao S, Wen X, Liu S, Li Y, Chen S, Zheng H, Deng D, Gao K, Yang X, Jiang Z, Wang L. Effect of Miscellaneous Meals Replacing Soybean Meal in Feed on Growth Performance, Serum Biochemical Parameters, and Microbiota Composition of 25-50 kg Growing Pigs. Animals (Basel) 2024; 14:1354. [PMID: 38731358 PMCID: PMC11083263 DOI: 10.3390/ani14091354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 04/28/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024] Open
Abstract
The present study aims to determine the effect of miscellaneous meals (rapeseed meal, cottonseed meal, and sunflower meal) replacing soybean meal in feed on growth performance, apparent digestibility of nutrients, serum biochemical parameters, serum free amino acid content, microbiota composition and SCFAs content in growing pigs (25-50 kg). A total of 72 (Duroc × Landrace × Yorkshire) growing pigs with initial weights of 25.79 ± 0.23 kg were randomly divided into three treatments. The pigs were fed corn-soybean meal (CON), corn-soybean-miscellaneous meals (CSM), and corn-miscellaneous meals (CMM). Each treatment included six replicates with four pigs per pen (n = 24, 12 barrows and 12 gilts). Soybean meal accounted for 22.10% of the basal diet in the CON group. In the CSM group, miscellaneous meals partially replaced soybean meal with a mixture of 4.50% rapeseed meal, 3.98% cottonseed meal, and 4.50% sunflower meal. In the CMM group, miscellaneous meals entirely replaced soybean meal with a mixture of 8.50% rapeseed meal, 8.62% cottonseed meal, and 8.5% sunflower. The results showed that compared with the CON, the CSM and CMM groups significantly improved the average daily gain (ADG) of growing pigs during the 25-50 kg stage (p < 0.05) but had no effects on average daily feed intake (ADFI) and average daily feed intake/average daily gain (F/G) (p > 0.05). Moreover, the CMM group significantly reduced nutrient apparent digestibility of gross energy compared with the CON group. The serum biochemical parameters results showed that the CSM group significantly improved the contents of total protein (TP) compared with the CON group (p < 0.05). The CMM group significantly improved the contents of total protein (TP), high-density lipoprotein cholesterol (HDL-C), and low-density lipoprotein cholesterol (LDL-C) compared with the CON group in serum (p < 0.05). In comparison with the CON group, the CMM group also significantly improved lysine (Lys), threonine (Thr), valine (Val), isoleucine (Ile), leucine (Leu), phenylalanine (Phe), arginine (Arg), and citrulline (Cit) levels in serum (p < 0.05). However, the CMM group significantly decreased non-essential amino acid content glycine (Gly) in serum compared with CON (p < 0.05), while compared with the CON group, the CSM and CMM groups had no significant effects on the relative abundance, the alpha-diversity, or the beta-diversity of fecal microbiota. Moreover, compared with the CON group, the CSM group significantly increased butyric acid and valeric acid contents of short-chain fatty acids (SCFAs) in feces (p < 0.05). In contrast to the CON group, the CMM group significantly reduced the contents of SCFAs in feces, including acetic acid, propionic acid, and isobutyric acid (p < 0.05). Collectively, the results of the present study indicate that miscellaneous meals (rapeseed meal, cottonseed meal, and sunflower meal) can partially replace the soybean meal and significantly improve the growth performance of growing pigs during the 25-50 kg stage. Thus, miscellaneous meals are a suitable protein source as basal diets to replace soybean meals for 25-50 kg growing pigs. These results can be helpful to further develop miscellaneous meals as a functional alternative feed ingredient to soybean meal.
Collapse
Affiliation(s)
| | | | | | - Shuting Cao
- State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (X.Z.); (L.H.); (Z.H.); (X.W.); (S.L.); (Y.L.); (S.C.); (H.Z.); (D.D.); (K.G.); (X.Y.); (Z.J.)
| | | | | | | | | | | | | | | | | | | | - Li Wang
- State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (X.Z.); (L.H.); (Z.H.); (X.W.); (S.L.); (Y.L.); (S.C.); (H.Z.); (D.D.); (K.G.); (X.Y.); (Z.J.)
| |
Collapse
|
3
|
Posey EA, He W, Steele CC, Savell JW, Bazer FW, Wu G. Dietary glycine supplementation enhances creatine availability in tissues of pigs with intrauterine growth restriction. J Anim Sci 2024; 102:skae344. [PMID: 39513322 PMCID: PMC11600959 DOI: 10.1093/jas/skae344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 11/04/2024] [Indexed: 11/15/2024] Open
Abstract
This study tested the hypothesis that dietary supplementation with glycine (Gly) enhances the synthesis and availability of creatine (Cr) in tissues of pigs with intrauterine growth restriction (IUGR). At weaning (21 d of age), IUGR pigs and litter mates with normal birth weights (NBW) were assigned randomly to 1 of the 2 groups, namely, supplementation with 1% Gly or 1.19% l-alanine (isonitrogenous control) to a corn- and soybean meal-based diet. Blood, kidneys, liver, pancreas, jejunum, longissimus lumborum muscle (LLM), and gastrocnemius muscle (GM) were obtained from the pigs within 1 wk after the feeding trial ended at 188 d of age to determine concentrations of guanidinoacetate (GAA), Cr, creatinine, and phosphocreatine (CrP). The organs were also analyzed for activities and mRNA levels for Cr-synthetic enzymes: l-arginine:glycine amidinotransferase (AGAT; forming GAA from Gly and l-arginine) and guanidinoacetate n-methyltransferase (GAMT; converting GAA and l-methionine into Cr). AGAT activity was present in the kidneys, liver, and pancreas, whereas GAMT activity was found in all the organs analyzed. AGAT and GAMT were most active per gram of tissue in the kidneys and pancreas, respectively. Based on tissue mass, the kidneys had the greatest (P < 0.001) AGAT activity per whole organ, followed by the liver, while skeletal muscle had the greatest (P < 0.001) GAMT activity per whole organ, followed by the liver. Thus, the kidneys played a dominant role in forming GAA, whereas skeletal muscle and liver were the major sites for converting GAA into Cr. Dietary supplementation with 1% Gly enhanced AGAT activity in the kidneys and pancreas but reduced GAMT activity in the pancreas and small intestine, therefore directing GAA to the liver and skeletal muscle for Cr production. IUGR selectively reduced the concentration of Cr in LLM among all the organs studied. Except for the GM that had greater mRNA levels for GAMT in IUGR than in NBW pigs, neither Gly nor IUGR affected mRNA levels for the selected genes in the tissues examined. Collectively, these novel results indicate that dietary Gly intake upregulates the Cr-synthetic pathway in swine.
Collapse
Affiliation(s)
- Erin A Posey
- Department of Animal Science, Texas A&M University, College Station, TX, USA 77843
| | - Wenliang He
- Department of Animal Science, Texas A&M University, College Station, TX, USA 77843
| | - Chandler C Steele
- Department of Animal Science, Texas A&M University, College Station, TX, USA 77843
| | - Jeffrey W Savell
- Department of Animal Science, Texas A&M University, College Station, TX, USA 77843
| | - Fuller W Bazer
- Department of Animal Science, Texas A&M University, College Station, TX, USA 77843
| | - Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, TX, USA 77843
| |
Collapse
|
4
|
He W, Posey EA, Steele CC, Savell JW, Bazer FW, Wu G. Dietary glycine supplementation activates mechanistic target of rapamycin signaling pathway in tissues of pigs with intrauterine growth restriction. J Anim Sci 2024; 102:skae141. [PMID: 38761109 PMCID: PMC11217904 DOI: 10.1093/jas/skae141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 05/16/2024] [Indexed: 05/20/2024] Open
Abstract
The mechanistic target of rapamycin (mTOR) cell signaling pathway serves as the central mechanism for the regulation of tissue protein synthesis and growth. We recently reported that supplementing 1% glycine to corn- and soybean meal-based diets enhanced growth performance between weaning and market weights in pigs with intrauterine growth restriction (IUGR). Results of recent studies have revealed an important role for glycine in activating mTOR and protein synthesis in C2C12 muscle cells. Therefore, the present study tested the hypothesis that dietary glycine supplementation enhanced the mTOR cell signaling pathway in skeletal muscle and other tissues of IUGR pigs. At weaning (21 d of age), IUGR pigs and litter mates with normal birth weights (NBW) were assigned randomly to one of the two groups: supplementation with either 1% glycine or 1.19% l-alanine (isonitrogenous control) to a corn- and soybean meal-based diet. Tissues were obtained from the pigs within 1 wk after the feeding trial ended at 188 d of age to determine the abundances of total and phosphorylated forms of mTOR and its two major downstream proteins: eukaryotic initiation factor 4E-binding protein-1 (4EBP1) and ribosomal protein S6 kinase-1 (p70S6K). Results showed that IUGR decreased (P < 0.05) the abundances of both total and phosphorylated mTOR, 4EBP1, and p70S6K in the gastrocnemius muscle and jejunum. In the longissimus lumborum muscle of IUGR pigs, the abundances of total mTOR did not differ (P > 0.05) but those for phosphorylated mTOR and both total and phosphorylated 4EBP1 and p70S6K were downregulated (P < 0.05), when compared to NBW pigs. These adverse effects of IUGR in the gastrocnemius muscle, longissimus lumborum muscle, and jejunum were prevented (P < 0.05) by dietary glycine supplementation. Interestingly, the abundances of total or phosphorylated mTOR, 4EBP1, and p70S6K in the liver were not affected (P > 0.05) by IUGR or glycine supplementation. Collectively, our findings indicate that IUGR impaired the mTOR cell signaling pathway in the tissues of pigs and that adequate glycine intake was crucial for maintaining active mTOR-dependent protein synthesis for the growth and development of skeletal muscle.
Collapse
Affiliation(s)
- Wenliang He
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA
| | - Erin A Posey
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA
| | - Chandler C Steele
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA
| | - Jeffrey W Savell
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA
| | - Fuller W Bazer
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA
| | - Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
5
|
He W, Connolly ED, Wu G. Characteristics of the Digestive Tract of Dogs and Cats. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1446:15-38. [PMID: 38625523 DOI: 10.1007/978-3-031-54192-6_2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
As for other mammals, the digestive system of dogs (facultative carnivores) and cats (obligate carnivores) includes the mouth, teeth, tongue, pharynx, esophagus, stomach, small intestine, large intestine, and accessory digestive organs (salivary glands, pancreas, liver, and gallbladder). These carnivores have a relatively shorter digestive tract but longer canine teeth, a tighter digitation of molars, and a greater stomach volume than omnivorous mammals such as humans and pigs. Both dogs and cats have no detectable or a very low activity of salivary α-amylase but dogs, unlike cats, possess a relatively high activity of pancreatic α-amylase. Thus, cats select low-starch foods but dogs can consume high-starch diets. In contrast to many mammals, the vitamin B12 (cobalamin)-binding intrinsic factor for the digestion and absorption of vitamin B12 is produced in: (a) dogs primarily by pancreatic ductal cells and to a lesser extent the gastric mucosa; and (b) cats exclusively by the pancreatic tissue. Amino acids (glutamate, glutamine, and aspartate) are the main metabolic fuels in enterocytes of the foregut. The primary function of the small intestine is to digest and absorb dietary nutrients, and its secondary function is to regulate the entry of dietary nutrients into the blood circulation, separate the external from the internal milieu, and perform immune surveillance. The major function of the large intestine is to ferment undigested food (particularly fiber and protein) and to absorb water, short-chain fatty acids (serving as major metabolic fuels for epithelial cells of the large intestine), as well as vitamins. The fermentation products, water, sloughed cells, digestive secretions, and microbes form feces and then pass into the rectum for excretion via the anal canal. The microflora influences colonic absorption and cell metabolism, as well as feces quality. The digestive tract is essential for the health, survival, growth, and development of dogs and cats.
Collapse
Affiliation(s)
- Wenliang He
- Department of Animal Science, Texas A&M University, College Station, TX, 77843, USA
| | - Erin D Connolly
- Department of Animal Science, Texas A&M University, College Station, TX, 77843, USA
| | - Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
6
|
Wu J, Wang Y, An Y, Tian C, Wang L, Liu Z, Qi D. Identification of genes related to growth and amino acid metabolism from the transcriptome profile of the liver of growing laying hens. Poult Sci 2024; 103:103181. [PMID: 37939592 PMCID: PMC10656263 DOI: 10.1016/j.psj.2023.103181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 09/24/2023] [Accepted: 10/06/2023] [Indexed: 11/10/2023] Open
Abstract
The growing period is a critical period for the growth and development of hens and affects their production performance during the laying period. During the early stage of growing, bone and muscle growth is rapid, making it necessary to provide sufficient amino acids (AA) to support the growth and development of laying hens. In this experiment, RNA-Sequencing (RNA-Seq) was applied to compare the liver tissues from 6- to 12-wk-old growing laying hens to identify candidate genes related to growth and AA transport and metabolism. In the liver tissues, 596 differentially expressed genes (DEG) were identified, of which 424 genes were up-regulated and 172 were down-regulated. Through enrichment analysis and DEGs analysis, some DEGs and pathways related to AA transport and metabolism were identified. Additionally, there were significantly increased activities in the liver of glutamate dehydrogenase (GDH), glutamic oxaloacetic transaminase (GOT), and glutamate pyruvate transaminase (GPT). Meanwhile, the level of serum insulin-like growth factor binding protein-5 (IGFBP-5) significantly elevated, and insulin-like growth factor-1 (IGF-1) levels significantly reduced at 12 wk compared to 6 wk. The AA contents in the breast muscle were not significantly altered, while the levels of the free AA in the serum underwent significant changes. This study discovered that the transport and metabolism of AAs in growing laying hens at different ages changed, which influenced the growth and development of growing laying hens. This contributes to future research on the mechanisms of growth and AA metabolism during the growing period of laying hens.
Collapse
Affiliation(s)
- Jiayu Wu
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yanan Wang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yu An
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Changyu Tian
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Lingfeng Wang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Zuhong Liu
- Institute of Animal Husbandry and Veterinary Sciences, Wuhan Academy of Agricultural Sciences, Wuhan 430208, China
| | - Desheng Qi
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
7
|
Li P, Wu G. Characteristics of Nutrition and Metabolism in Dogs and Cats. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1446:55-98. [PMID: 38625525 DOI: 10.1007/978-3-031-54192-6_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Domestic dogs and cats have evolved differentially in some aspects of nutrition, metabolism, chemical sensing, and feeding behavior. The dogs have adapted to omnivorous diets containing taurine-abundant meat and starch-rich plant ingredients. By contrast, domestic cats must consume animal-sourced foods for survival, growth, and development. Both dogs and cats synthesize vitamin C and many amino acids (AAs, such as alanine, asparagine, aspartate, glutamate, glutamine, glycine, proline, and serine), but have a limited ability to form de novo arginine and vitamin D3. Compared with dogs, cats have greater endogenous nitrogen losses and higher dietary requirements for AAs (particularly arginine, taurine, and tyrosine), B-complex vitamins (niacin, thiamin, folate, and biotin), and choline; exhibit greater rates of gluconeogenesis; are less sensitive to AA imbalances and antagonism; are more capable of concentrating urine through renal reabsorption of water; and cannot tolerate high levels of dietary starch due to limited pancreatic α-amylase activity. In addition, dogs can form sufficient taurine from cysteine (for most breeds); arachidonic acid from linoleic acid; eicosapentaenoic acid and docosahexaenoic acid from α-linolenic acid; all-trans-retinol from β-carotene; and niacin from tryptophan. These synthetic pathways, however, are either absent or limited in all cats due to (a) no or low activities of key enzymes (including pyrroline-5-carboxylate synthase, cysteine dioxygenase, ∆6-desaturase, β-carotene dioxygenase, and quinolinate phosphoribosyltransferase) and (b) diversion of intermediates to other metabolic pathways. Dogs can thrive on one large meal daily, select high-fat over low-fat diets, and consume sweet substances. By contrast, cats eat more frequently during light and dark periods, select high-protein over low-protein diets, refuse dry food, enjoy a consistent diet, and cannot taste sweetness. This knowledge guides the feeding and care of dogs and cats, as well as the manufacturing of their foods. As abundant sources of essential nutrients, animal-derived foodstuffs play important roles in optimizing the growth, development, and health of the companion animals.
Collapse
Affiliation(s)
- Peng Li
- North American Renderers Association, Alexandria, VA, 22314, USA
| | - Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
8
|
Amino acid nutrition and metabolism in domestic cats and dogs. J Anim Sci Biotechnol 2023; 14:19. [PMID: 36803865 PMCID: PMC9942351 DOI: 10.1186/s40104-022-00827-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 12/21/2022] [Indexed: 02/22/2023] Open
Abstract
Domestic cats and dogs are carnivores that have evolved differentially in the nutrition and metabolism of amino acids. This article highlights both proteinogenic and nonproteinogenic amino acids. Dogs inadequately synthesize citrulline (the precursor of arginine) from glutamine, glutamate, and proline in the small intestine. Although most breeds of dogs have potential for adequately converting cysteine into taurine in the liver, a small proportion (1.3%-2.5%) of the Newfoundland dogs fed commercially available balanced diets exhibit a deficiency of taurine possibly due to gene mutations. Certain breeds of dogs (e.g., golden retrievers) are more prone to taurine deficiency possibly due to lower hepatic activities of cysteine dioxygenase and cysteine sulfinate decarboxylase. De novo synthesis of arginine and taurine is very limited in cats. Thus, concentrations of both taurine and arginine in feline milk are the greatest among domestic mammals. Compared with dogs, cats have greater endogenous nitrogen losses and higher dietary requirements for many amino acids (e.g., arginine, taurine, cysteine, and tyrosine), and are less sensitive to amino acid imbalances and antagonisms. Throughout adulthood, cats and dogs may lose 34% and 21% of their lean body mass, respectively. Adequate intakes of high-quality protein (i.e., 32% and 40% animal protein in diets of aging dogs and cats, respectively; dry matter basis) are recommended to alleviate aging-associated reductions in the mass and function of skeletal muscles and bones. Pet-food grade animal-sourced foodstuffs are excellent sources of both proteinogenic amino acids and taurine for cats and dogs, and can help to optimize their growth, development, and health.
Collapse
|
9
|
Bertocci F, Mannino G. Pearls before Swine: Plant-Derived Wastes to Produce Low-Cholesterol Meat from Farmed Pigs-A Bibliometric Analysis Combined to Meta-Analytic Studies. Foods 2023; 12:571. [PMID: 36766100 PMCID: PMC9914002 DOI: 10.3390/foods12030571] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
Due to environmental and human factors, there is a growing amount of agri-food waste worldwide. The European Commission is incentivizing a zero-waste policy by 2025, pushing to find a "second life" for at least the avoidable ones. In this review, after summarizing the nutritional values of pork and the importance of its inclusion in human diet, a phylogenetic analysis was conducted to investigate potential differences in the structure and activity of HMGCR, which is a key enzyme in cholesterol metabolism. In addition, a bibliometric analysis combined with visual and meta-analytical studies on 1047 scientific articles was conducted to understand whether the inclusion of agro-food waste could affect the growth performance of pigs and reduce cholesterol levels in pork. Although some critical issues were highlighted, the overall data suggest a modern and positive interest in the reuse of agri-food waste as swine feed. However, although interesting and promising results have been reported in several experimental trials, further investigation is needed, since animal health and meat quality are often given marginal consideration.
Collapse
Affiliation(s)
- Filippo Bertocci
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, 80134 Naples, Italy
| | - Giuseppe Mannino
- Department of Life Sciences and Systems Biology, University of Turin, Via Quarello 15/a, 10135 Turin, Italy
| |
Collapse
|
10
|
He W, Posey EA, Steele CC, Savell JW, Bazer FW, Wu G. Dietary glycine supplementation enhances postweaning growth and meat quality of pigs with intrauterine growth restriction. J Anim Sci 2023; 101:skad354. [PMID: 37837640 PMCID: PMC10630012 DOI: 10.1093/jas/skad354] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 10/12/2023] [Indexed: 10/16/2023] Open
Abstract
Pigs with intrauterine growth restriction (IUGR) have suboptimum growth performance and impaired synthesis of glycine (the most abundant amino acid in the body). Conventional corn- and soybean meal-based diets for postweaning pigs contain relatively low amounts of glycine and may not provide sufficient glycine to meet requirements for IUGR pigs. This hypothesis was tested using 52 IUGR pigs and 52 litter mates with normal birth weights (NBW). At weaning (21 d of age), IUGR or NBW pigs were assigned randomly to one of two nutritional groups: supplementation of a corn-soybean meal-based diet with either 1% glycine plus 0.19% cornstarch or 1.19% L-alanine (isonitrogenous control). Feed consumption and body weight (BW) of pigs were recorded daily and every 2 or 4 wks, respectively. All pigs had free access to their respective diets and clean drinking water. Within 1 wk after the feeding trial ended at 188 d of age, blood and other tissue samples were obtained from pigs to determine concentrations of amino acids and meat quality. Neither IUGR nor glycine supplementation affected (P > 0.05) feed intakes of pigs per kg BW. The final BW, gain:feed ratio, carcass dressing percentages, and four-lean-cuts percentages of IUGR pigs were 13.4 kg, 4.4%, 2%, and 15% lower (P < 0.05) for IUGR pigs than NBW pigs, respectively. Compared with pigs in the alanine group, dietary glycine supplementation increased (P < 0.05) final BW, gain:feed ratio, and meat a* value (a redness score) by 3.8 kg, 11%, and 10%, respectively, while reducing (P < 0.05) backfat thickness by 18%. IUGR pigs had lower (P < 0.05) concentrations of glycine in plasma (-45%), liver (-25%), jejunum (-19%), longissimus dorsi muscle (-23%), gastrocnemius muscle (-26%), kidney (-15%), and pancreas (-6%), as compared to NBW pigs. In addition, dietary glycine supplementation increased (P < 0.05) concentrations of glycine in plasma and all analyzed tissues. Thus, supplementing 1% of glycine to corn-soybean meal-based diets improves the growth performance, feed efficiency, and meat quality of IUGR pigs.
Collapse
Affiliation(s)
- Wenliang He
- Department of Animal Science, Texas A&M University, College Station, TX 77843
| | - Erin A Posey
- Department of Animal Science, Texas A&M University, College Station, TX 77843
| | - Chandler C Steele
- Department of Animal Science, Texas A&M University, College Station, TX 77843
| | - Jeffrey W Savell
- Department of Animal Science, Texas A&M University, College Station, TX 77843
| | - Fuller W Bazer
- Department of Animal Science, Texas A&M University, College Station, TX 77843
| | - Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, TX 77843
| |
Collapse
|
11
|
Herring CM, Bazer FW, Johnson GA, Seo H, Hu S, Elmetwally M, He W, Long DB, Wu G. Dietary supplementation with 0.4% L-arginine between days 14 and 30 of gestation enhances NO and polyamine syntheses and water transport in porcine placentae. J Anim Sci Biotechnol 2022; 13:134. [PMID: 36476252 PMCID: PMC9730586 DOI: 10.1186/s40104-022-00794-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 10/06/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Most embryonic loss in pigs occurs before d 30 of gestation. Dietary supplementation with L-arginine (Arg) during early gestation can enhance the survival and development of conceptuses (embryo/fetus and its extra-embryonic membranes) in gilts. However, the underlying mechanisms remain largely unknown. METHODS Between d 14 and 30 of gestation, each gilt was fed daily 2 kg of a corn- and soybean-meal based diet (12% crude protein) supplemented with either 0.4% Arg (as Arg-HCl) or an isonitrogenous amount of L-alanine (Control). There were 10 gilts per treatment group. On d 30 of gestation, gilts were fed either Arg-HCl or L-alanine 30 min before they were hysterectomized, followed by the collection of placentae, embryos, fetal membranes, and fetal fluids. Amniotic and allantoic fluids were analyzed for nitrite and nitrate [NOx; stable oxidation products of nitric oxide (NO)], polyamines, and amino acids. Placentae were analyzed for syntheses of NO and polyamines, water and amino acid transport, concentrations of amino acid-related metabolites, and the expression of angiogenic factors and aquaporins (AQPs). RESULTS Compared to the control group, Arg supplementation increased (P < 0.05) the number of viable fetuses by 1.9 per litter, the number and diameter of placental blood vessels (+ 25.9% and + 17.0% respectively), embryonic survival (+ 18.5%), total placental weight (+ 36.5%), the total weight of viable fetuses (+ 33.5%), fetal crown-to-rump length (+ 4.7%), and total allantoic and amniotic fluid volumes (+ 44.6% and + 75.5% respectively). Compared to control gilts, Arg supplementation increased (P < 0.05) placental activities of GTP cyclohydrolase-1 (+ 33.1%) and ornithine decarboxylase (+ 29.3%); placental syntheses of NO (+ 26.2%) and polyamines (+ 28.9%); placental concentrations of NOx (+ 22.5%), tetrahydrobiopterin (+ 21.1%), polyamines (+ 20.4%), cAMP (+ 27.7%), and cGMP (+ 24.7%); total amounts of NOx (+ 61.7% to + 96.8%), polyamines (+ 60.7% to + 88.7%), amino acids (+ 39% to + 118%), glucose (+ 60.5% to + 62.6%), and fructose (+ 41.4% to + 57.0%) in fetal fluids; and the placental transport of water (+ 33.9%), Arg (+ 78.4%), glutamine (+ 89.9%), and glycine (+ 89.6%). Furthermore, Arg supplementation increased (P < 0.05) placental mRNA levels for angiogenic factors [VEGFA120 (+ 117%), VEGFR1 (+ 445%), VEGFR2 (+ 373%), PGF (+ 197%), and GCH1 (+ 126%)] and AQPs [AQP1 (+ 280%), AQP3 (+ 137%), AQP5 (+ 172%), AQP8 (+ 165%), and AQP9 (+ 127%)]. CONCLUSION Supplementing 0.4% Arg to a conventional diet for gilts between d 14 and d 30 of gestation enhanced placental NO and polyamine syntheses, angiogenesis, and water and amino acid transport to improve conceptus development and survival.
Collapse
Affiliation(s)
- Cassandra M. Herring
- grid.264756.40000 0004 4687 2082Department of Animal Science, Texas A&M University, College Station, TX 77843 USA
| | - Fuller W. Bazer
- grid.264756.40000 0004 4687 2082Department of Animal Science, Texas A&M University, College Station, TX 77843 USA
| | - Gregory A. Johnson
- grid.264756.40000 0004 4687 2082Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843 USA
| | - Heewon Seo
- grid.264756.40000 0004 4687 2082Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843 USA
| | - Shengdi Hu
- grid.264756.40000 0004 4687 2082Department of Animal Science, Texas A&M University, College Station, TX 77843 USA
| | - Mohammed Elmetwally
- grid.264756.40000 0004 4687 2082Department of Animal Science, Texas A&M University, College Station, TX 77843 USA
| | - Wenliang He
- grid.264756.40000 0004 4687 2082Department of Animal Science, Texas A&M University, College Station, TX 77843 USA
| | - Daniel B. Long
- grid.264756.40000 0004 4687 2082Department of Animal Science, Texas A&M University, College Station, TX 77843 USA
| | - Guoyao Wu
- grid.264756.40000 0004 4687 2082Department of Animal Science, Texas A&M University, College Station, TX 77843 USA
| |
Collapse
|
12
|
Rezaei R, Wu G. Branched-chain amino acids regulate intracellular protein turnover in porcine mammary epithelial cells. Amino Acids 2022; 54:1491-1504. [DOI: 10.1007/s00726-022-03203-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 08/23/2022] [Indexed: 01/17/2023]
|
13
|
Abstract
Amino acids (AAs) are required for syntheses of proteins and low-molecular-weight substances with enormous physiological importance. Since 1912, AAs have been classified as nutritionally essential amino acids (EAAs) or nonessential amino acids (NEAAs) for animals. EAAs are those AAs that are either not synthesized or insufficiently synthesized de novo in the organisms. It was assumed that all NEAAs (now known as AAs that are synthesizable in animal cells de novo [AASAs]) were formed sufficiently in animals and were not needed in diets. However, studies over the past three decades have shown that sufficient dietary AASAs (e.g. glutamine, glutamate, glycine, and proline) are necessary for the maximum growth and optimum health of pigs, chickens, and fish. Thus, the concept of "ideal protein" (protein with an optimal EAA pattern that precisely meets the physiological needs of animals), which was originally proposed in the 1950s but ignored AASAs, is not ideal in animal nutrition. Ideal diets must provide all physiologically and nutritionally essential AAs. Improved patterns of AAs in diets for swine and chickens as well as zoo and companion animals have been proposed in recent years. Animal-sourced feedstuffs supply abundant EAAs and AASAs (including glutamate, glutamine, glycine, proline, 4-hydroxyproline, and taurine) for diets of swine, poultry, fish, and crustaceans to improve their growth, development, reproduction, and health, while sustaining global animal production. Nutritionists should move beyond the "ideal protein" concept to consider optimum ratios and amounts of all proteinogenic AAs in diets for mammals, birds, and aquatic animals, and, in the case of carnivores, also taurine.
Collapse
Affiliation(s)
- Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA
| | - Peng Li
- North American Renderers Association, Alexandria, VA 22314, USA
| |
Collapse
|
14
|
Rezaei R, Gabriel AS, Wu G. Dietary supplementation with monosodium glutamate enhances milk production by lactating sows and the growth of suckling piglets. Amino Acids 2022; 54:1055-1068. [PMID: 35292855 DOI: 10.1007/s00726-022-03147-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 02/25/2022] [Indexed: 12/14/2022]
Abstract
This study was conducted to test the hypothesis that increasing dietary content of glutamate through addition of monosodium glutamate (MSG) enhances milk production by lactating sows and the growth of their offspring. Thirty multiparous sows (Landrace × Large White) were assigned randomly into one of three dietary groups: control (a corn- and soybean meal-based diet), the basal diet + 1% MSG, and the basal diet + 2% MSG. Diets were made isonitrogenous by the addition of appropriate amounts of L-alanine. Lactating sows had free access to drinking water and were fed twice daily their respective diets. The number of live-born piglets was standardized to 9 per sow at day 0 of lactation (the day of farrowing). On days 3, 15, and 29 of lactation, body weight and milk consumption of piglets were measured, and blood samples obtained from sows and piglets at 2 h and 1 h after feeding, respectively. Feed intake of sows did not differ (P > 0.05) among the three groups of sows. Concentrations of aspartate, glutamine, citrulline, arginine, tryptophan, proline, branched-chain amino acids, and glutamate were greater (P < 0.05) in the plasma of MSG-supplemented sows and their piglets than for controls. When compared with the control, dietary supplementation with 1-2% MSG increased (P < 0.05): concentrations of many free amino acids (including glutamate plus glutamine) and all protein-bound amino acids in milk; the milk intake of piglets by 14-25%; and daily weight gains of piglets by 23-44%. These results indicate that dietary supplementation with 1-2% MSG to lactating sows enhances milk production to support the growth of sow-reared piglets.
Collapse
Affiliation(s)
- Reza Rezaei
- Department of Animal Science, Texas A&M University, College Station, TX, 77843, USA
| | - Ana San Gabriel
- Ajinomoto Co., Inc, 1-15-1 Kyobashi, Chuoku, Tokyo, 104-8315, Japan
| | - Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
15
|
He W, Wu G. Oxidation of amino acids, glucose, and fatty acids as metabolic fuels in enterocytes of developing pigs. Amino Acids 2022; 54:1025-1039. [PMID: 35294675 DOI: 10.1007/s00726-022-03151-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 03/01/2022] [Indexed: 11/28/2022]
Abstract
Enterocytes of young pigs are known to use glutamine, glutamate, and glucose as major metabolic fuels. However, little is known about the roles of aspartate, alanine, and fatty acids as energy sources for these cells. Therefore, this study simultaneously determined the oxidation of the amino acids and glucose as well as short- and long-chain fatty acids in enterocytes of developing pigs. Jejunal enterocytes were isolated from 0-, 7-, 14- and 21-day-old piglets, and incubated at 37 °C for 30 min in Krebs-Henseleit bicarbonate buffer (pH 7.4) containing 5 mM D-glucose and one of the following: D-[U-14C]glucose, 0.5-5 mM L-[U-14C]glutamate, 0.5-5 mM L-[U-14C]glutamine, 0.5-5 mM L-[U-14C]aspartate, 0.5-5 mM L-[U-14C]alanine, 0.5-2 mM L-[U-14C]palmitate, 0.5-5 mM [U-14C]propionate, and 0.5-5 mM [1-14C]butyrate. At the end of the incubation, 14CO2 produced from each 14C-labeled substrate was collected. Rates of oxidation of each substrate by enterocytes from all age groups of piglets increased (P < 0.05) gradually with increasing its extracellular concentrations. The rates of oxidation of glutamate, glutamine, aspartate, and glucose by enterocytes from 0- to 21-day-old pigs and of alanine from newborn pigs were much greater (P < 0.05) than those for the same concentrations of palmitate, propionate, and butyrate. Compared with 0-day-old pigs, the rates of oxidation of glutamate, aspartate, glutamine, alanine, and glucose by enterocytes from 21-day-old pigs decreased (P < 0.05) markedly, without changes in palmitate oxidation. Oxidation of alanine, propionate, butyrate and palmitate by enterocytes of pigs was limited during their postnatal growth. At each postnatal age, the oxidation of glutamate, glutamine, aspartate, and glucose produced much more ATP than alanine, propionate, butyrate and palmitate. The degradation of glutamate was initiated primarily by glutamate-pyruvate and glutamate-oxaloacetate transaminases. Our results indicated that amino acids (glutamate plus glutamine plus aspartate) are the major metabolic fuels in enterocytes of 0- to 21-day-old pigs.
Collapse
Affiliation(s)
- Wenliang He
- Department of Animal Science, Texas A&M University, College Station, TX, 77843, USA
| | - Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
16
|
Liu J, Liu M, Shi T, Sun G, Gao N, Zhao X, Guo X, Ni X, Yuan Q, Feng J, Liu Z, Guo Y, Chen J, Wang Y, Zheng P, Sun J. CRISPR-assisted rational flux-tuning and arrayed CRISPRi screening of an L-proline exporter for L-proline hyperproduction. Nat Commun 2022; 13:891. [PMID: 35173152 PMCID: PMC8850433 DOI: 10.1038/s41467-022-28501-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 01/24/2022] [Indexed: 02/07/2023] Open
Abstract
Development of hyperproducing strains is important for biomanufacturing of biochemicals and biofuels but requires extensive efforts to engineer cellular metabolism and discover functional components. Herein, we optimize and use the CRISPR-assisted editing and CRISPRi screening methods to convert a wild-type Corynebacterium glutamicum to a hyperproducer of L-proline, an amino acid with medicine, feed, and food applications. To facilitate L-proline production, feedback-deregulated variants of key biosynthetic enzyme γ-glutamyl kinase are screened using CRISPR-assisted single-stranded DNA recombineering. To increase the carbon flux towards L-proline biosynthesis, flux-control genes predicted by in silico analysis are fine-tuned using tailored promoter libraries. Finally, an arrayed CRISPRi library targeting all 397 transporters is constructed to discover an L-proline exporter Cgl2622. The final plasmid-, antibiotic-, and inducer-free strain produces L-proline at the level of 142.4 g/L, 2.90 g/L/h, and 0.31 g/g. The CRISPR-assisted strain development strategy can be used for engineering industrial-strength strains for efficient biomanufacturing.
Collapse
Affiliation(s)
- Jiao Liu
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.,National Technology Innovation Center of Synthetic Biology, Tianjin, 300308, China
| | - Moshi Liu
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.,National Technology Innovation Center of Synthetic Biology, Tianjin, 300308, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tuo Shi
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.,National Technology Innovation Center of Synthetic Biology, Tianjin, 300308, China
| | - Guannan Sun
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.,National Technology Innovation Center of Synthetic Biology, Tianjin, 300308, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ning Gao
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.,National Technology Innovation Center of Synthetic Biology, Tianjin, 300308, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaojia Zhao
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.,National Technology Innovation Center of Synthetic Biology, Tianjin, 300308, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xuan Guo
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.,National Technology Innovation Center of Synthetic Biology, Tianjin, 300308, China
| | - Xiaomeng Ni
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.,National Technology Innovation Center of Synthetic Biology, Tianjin, 300308, China
| | - Qianqian Yuan
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.,National Technology Innovation Center of Synthetic Biology, Tianjin, 300308, China
| | - Jinhui Feng
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.,National Technology Innovation Center of Synthetic Biology, Tianjin, 300308, China
| | - Zhemin Liu
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.,National Technology Innovation Center of Synthetic Biology, Tianjin, 300308, China
| | - Yanmei Guo
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.,National Technology Innovation Center of Synthetic Biology, Tianjin, 300308, China
| | - Jiuzhou Chen
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.,National Technology Innovation Center of Synthetic Biology, Tianjin, 300308, China
| | - Yu Wang
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China. .,National Technology Innovation Center of Synthetic Biology, Tianjin, 300308, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Ping Zheng
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China. .,National Technology Innovation Center of Synthetic Biology, Tianjin, 300308, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Jibin Sun
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.,National Technology Innovation Center of Synthetic Biology, Tianjin, 300308, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
17
|
Nutritional and Physiological Regulation of Water Transport in the Conceptus. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1354:109-125. [PMID: 34807439 DOI: 10.1007/978-3-030-85686-1_6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Water transport during pregnancy is essential for maintaining normal growth and development of conceptuses (embryo/fetus and associated membranes). Aquaporins (AQPs) are a family of small integral plasma membrane proteins that primarily transport water across the plasma membrane. At least 11 isoforms of AQPs (AQPs 1-9, 11, and 12) are differentially expressed in the mammalian placenta (amnion, allantois, and chorion), and organs (kidney, lung, brain, heart, and skin) of embryos/fetuses during prenatal development. Available evidence suggests that the presence of AQPs in the conceptus mediates water movement across the placenta to support the placentation, the homeostasis of amniotic and allantoic fluid volumes, as well as embryonic and fetal survival, growth and development. Abundances of AQPs in the conceptus can be modulated by nutritional status and physiological factors affecting the pregnant female. Here, we summarize the effects of maternal dietary factors (such as intakes of protein, arginine, lipids, all-trans retinoic acid, copper, zinc, and mercury) on the expression of AQPs in the conceptus. We also discuss the physiological changes in hormones (e.g., progesterone and estrogen), oxygen supply, nitric oxide, pH, and osmotic pressure associated with the regulation of fluid exchange between mother and fetus. These findings may help to improve the survival, growth, and development of embryo/fetus in livestock species and other mammals (including humans).
Collapse
|
18
|
Moses RM, Kramer AC, Seo H, Wu G, Johnson GA, Bazer FW. A Role for Fructose Metabolism in Development of Sheep and Pig Conceptuses. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1354:49-62. [PMID: 34807436 DOI: 10.1007/978-3-030-85686-1_3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The period of conceptus (embryo and extraembryonic membrane) development between fertilization and implantation in mammalian species is critical as it sets the stage for placental and fetal development. The trophectoderm and endoderm of pre-implantation ovine and porcine conceptuses undergo elongation, which requires rapid proliferation, migration, and morphological modification of the trophectoderm cells. These complex events occur in a hypoxic intrauterine environment and are supported through the transport of secretions from maternal endometrial glands to the conceptus required for the biochemical processes of cell proliferation, migration, and differentiation. The conceptus utilizes glucose provided by the mother to initiate metabolic pathways that provide energy and substrates for other metabolic pathways. Fructose, however, is in much greater abundance than glucose in amniotic and allantoic fluids, and fetal blood during pregnancy. Despite this, the role(s) of fructose is largely unknown even though a switch to fructosedriven metabolism in subterranean rodents and some cancers are key to their adaptation to hypoxic environments.
Collapse
Affiliation(s)
- Robyn M Moses
- Departments of Animal Science and Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, 77843, USA
| | - Avery C Kramer
- Departments of Animal Science and Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, 77843, USA
| | - Heewon Seo
- Departments of Animal Science and Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, 77843, USA
| | - Guoyao Wu
- Departments of Animal Science and Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, 77843, USA
| | - Gregory A Johnson
- Departments of Animal Science and Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, 77843, USA
| | - Fuller W Bazer
- Departments of Animal Science and Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
19
|
Nutrition and Metabolism: Foundations for Animal Growth, Development, Reproduction, and Health. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1354:1-24. [PMID: 34807434 DOI: 10.1007/978-3-030-85686-1_1] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Consumption of high-quality animal protein plays an important role in improving human nutrition, growth, development, and health. With an exponential growth of the global population, demands for animal-sourced protein are expected to increase by 60% between 2021 and 2050. In addition to the production of food protein and fiber (wool), animals are useful models for biomedical research to prevent and treat human diseases and serve as bioreactors to produce therapeutic proteins. For a high efficiency to transform low-quality feedstuffs and forages into high-quality protein and highly bioavailable essential minerals in diets of humans, farm animals have dietary requirements for energy, amino acids, lipids, carbohydrates, minerals, vitamins, and water in their life cycles. All nutrients interact with each other to influence the growth, development, and health of mammals, birds, fish, and crustaceans, and adequate nutrition is crucial for preventing and treating their metabolic disorders (including metabolic diseases) and infectious diseases. At the organ level, the small intestine is not only the terminal site for nutrient digestion and absorption, but also intimately interacts with a diverse community of intestinal antigens and bacteria to influence gut and whole-body health. Understanding the species and metabolism of intestinal microbes, as well as their interactions with the intestinal immune systems and the host intestinal epithelium can help to mitigate antimicrobial resistance and develop prebiotic and probiotic alternatives to in-feed antibiotics in animal production. As abundant sources of amino acids, bioactive peptides, energy, and highly bioavailable minerals and vitamins, animal by-product feedstuffs are effective for improving the growth, development, health, feed efficiency, and survival of livestock and poultry, as well as companion and aquatic animals. The new knowledge covered in this and related volumes of Adv Exp Med Biol is essential to ensure sufficient provision of animal protein for humans, while helping reduce greenhouse gas emissions, minimize the urinary and fecal excretion of nitrogenous and other wastes to the environment, and sustain animal agriculture (including aquaculture).
Collapse
|
20
|
Functional Molecules of Intestinal Mucosal Products and Peptones in Animal Nutrition and Health. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1354:263-277. [PMID: 34807446 DOI: 10.1007/978-3-030-85686-1_13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
There is growing interest in the use of intestinal mucosal products and peptones (partial protein hydrolysates) to enhance the food intake, growth, development, and health of animals. The mucosa of the small intestine consists of the epithelium, the lamina propria, and the muscularis mucosa. The diverse population of cells (epithelial, immune, endocrine, neuronal, vascular, and elastic cells) in the intestinal mucosa contains not only high-quality food protein (e.g., collagen) but also a wide array of low-, medium-, and high-molecular-weight functional molecules with enormous nutritional, physiological, and immunological importance. Available evidence shows that intestinal mucosal products and peptones provide functional substances, including growth factors, enzymes, hormones, large peptides, small peptides, antimicrobials, cytokines, bioamines, regulators of nutrient metabolism, unique amino acids (e.g., taurine and 4-hydroxyproline), and other bioactive substances (e.g., creatine and glutathione). Therefore, dietary supplementation with intestinal mucosal products and peptones can cost-effectively improve feed intake, immunity, health (the intestine and the whole body), well-being, wound healing, growth performance, and feed efficiency in livestock, poultry, fish, and crustaceans. In feeding practices, an inclusion level of an intestinal mucosal product or a mucosal peptone product at up to 5% (as-fed basis) is appropriate in the diets of these animals, as well as companion and zoo animals.
Collapse
|
21
|
Wu G, Bazer FW, Satterfield MC, Gilbreath KR, Posey EA, Sun Y. L-Arginine Nutrition and Metabolism in Ruminants. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1354:177-206. [PMID: 34807443 DOI: 10.1007/978-3-030-85686-1_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
L-Arginine (Arg) plays a central role in the nitrogen metabolism (e.g., syntheses of protein, nitric oxide, polyamines, and creatine), blood flow, nutrient utilization, and health of ruminants. This amino acid is produced by ruminal bacteria and is also synthesized from L-glutamine, L-glutamate, and L-proline via the formation of L-citrulline (Cit) in the enterocytes of young and adult ruminants. In pre-weaning ruminants, most of the Cit formed de novo by the enterocytes is used locally for Arg production. In post-weaning ruminants, the small intestine-derived Cit is converted into Arg primarily in the kidneys and, to a lesser extent, in endothelial cells, macrophages, and other cell types. Under normal feeding conditions, Arg synthesis contributes 65% and 68% of total Arg requirements for nonpregnant and late pregnany ewes fed a diet with ~12% crude protein, respectively, whereas creatine production requires 40% and 36% of Arg utilized by nonpregnant and late pregnant ewes, respectively. Arg has not traditionally been considered a limiting nutrient in diets for post-weaning, gestating, or lactating ruminants because it has been assumed that these animals can synthesize sufficient Arg to meet their nutritional and physiological needs. This lack of a full understanding of Arg nutrition and metabolism has contributed to suboptimal efficiencies for milk production, reproductive performance, and growth in ruminants. There is now considerable evidence that dietary supplementation with rumen-protected Arg (e.g., 0.25-0.5% of dietary dry matter) can improve all these production indices without adverse effects on metabolism or health. Because extracellular Cit is not degraded by microbes in the rumen due to the lack of uptake, Cit can be used without any encapsulation as an effective dietary source for the synthesis of Arg in ruminants, including dairy and beef cows, as well as sheep and goats. Thus, an adequate amount of supplemental rumen-protected Arg or unencapsulated Cit is necessary to support maximum survival, growth, lactation, reproductive performance, and feed efficiency, as well as optimum health and well-being in all ruminants.
Collapse
Affiliation(s)
- Guoyao Wu
- Departments of Animal Science and Nutrition, Texas A&M University, College Station, TX, 77843, USA.
| | - Fuller W Bazer
- Departments of Animal Science and Nutrition, Texas A&M University, College Station, TX, 77843, USA
| | - M Carey Satterfield
- Departments of Animal Science and Nutrition, Texas A&M University, College Station, TX, 77843, USA
| | - Kyler R Gilbreath
- Departments of Animal Science and Nutrition, Texas A&M University, College Station, TX, 77843, USA
| | - Erin A Posey
- Departments of Animal Science and Nutrition, Texas A&M University, College Station, TX, 77843, USA
| | - Yuxiang Sun
- Departments of Animal Science and Nutrition, Texas A&M University, College Station, TX, 77843, USA
| |
Collapse
|
22
|
Dai Z, Wu Z, Zhu W, Wu G. Amino Acids in Microbial Metabolism and Function. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1354:127-143. [PMID: 34807440 DOI: 10.1007/978-3-030-85686-1_7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Amino acids (AAs) not only serve as building blocks for protein synthesis in microorganisms but also play important roles in their metabolism, survival, inter-species crosstalk, and virulence. Different AAs have their distinct functions in microbes of the digestive tract and this in turn has important impacts on host nutrition and physiology. Deconjugation and re-conjugation of glycine- or taurine- conjugated bile acids in the process of their enterohepatic recycling is a good example of the bacterial adaptation to harsh gut niches, inter-kingdom cross-talk with AA metabolism, and cell signaling as the critical control point. It is also a big challenge for scientists to modulate the homeostasis of the pools of AAs and their metabolites in the digestive tract with the aim to improve nutrition and regulate AA metabolism related to anti-virulence reactions. Diversity of the metabolic pathways of AAs and their multi-functions in modulating bacterial growth and survival in the digestive tract should be taken into consideration in recommending nutrient requirements for animals. Thus, the concept of functional amino acids can guide not only microbiological studies but also nutritional and physiological investigations. Cutting edge discoveries in this research area will help to better understand the mechanisms responsible for host-microbe interactions and develop new strategies for improving the nutrition, health, and well-being of both animals and humans.
Collapse
Affiliation(s)
- Zhaolai Dai
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| | - Zhenlong Wu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Weiyun Zhu
- National Center for International Research On Animal Gut Nutrition, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, 77843, TX, USA
| |
Collapse
|
23
|
Jia S, Li X, He W, Wu G. Protein-Sourced Feedstuffs for Aquatic Animals in Nutrition Research and Aquaculture. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1354:237-261. [PMID: 34807445 DOI: 10.1007/978-3-030-85686-1_12] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Aquatic animals have particularly high requirements for dietary amino acids (AAs) for health, survival, growth, development, and reproduction. These nutrients are usually provided from ingested proteins and may also be derived from supplemental crystalline AA. AAs are the building blocks of protein (a major component of tissue growth) and, therefore, are the determinants of the growth performance and feed efficiency of farmed fish. Because protein is generally the most expensive ingredient in aqua feeds, much attention has been directed to ensure that dietary protein feedstuff is of high quality and cost-effective for feeding fish, crustaceans, and other aquatic animals worldwide. Due to the rapid development of aquaculture worldwide and a limited source of fishmeal (the traditionally sole or primary source of AAs for aquatic animals), alternative protein sources must be identified to feed aquatic animals. Plant-sourced feedstuffs for aquatic animals include soybean meal, extruded soybean meal, fermented soybean meal, soybean protein concentrates, soybean protein isolates, leaf meal, hydrolyzed plant protein, wheat, wheat hydrolyzed protein, canola meal, cottonseed meal, peanut meal, sunflower meal, peas, rice, dried brewers grains, and dried distillers grains. Animal-sourced feedstuffs include fishmeal, fish paste, bone meal, meat and bone meal, poultry by-product meal, chicken by-product meal, chicken visceral digest, spray-dried poultry plasma, spray-dried egg product, hydrolyzed feather meal, intestine-mucosa product, peptones, blood meal (bovine or poultry), whey powder with high protein content, cheese powder, and insect meal. Microbial sources of protein feedstuffs include yeast protein and single-cell microbial protein (e.g., algae); they have more balanced AA profiles than most plant proteins for animal feeding. Animal-sourced ingredients can be used as a single source of dietary protein or in complementary combinations with plant and microbial sources of proteins. All protein feedstuffs must adequately provide functional AAs for aquatic animals.
Collapse
Affiliation(s)
- Sichao Jia
- Department of Animal Science, Texas A&M University, College Station, TX, 77843, USA
| | - Xinyu Li
- Department of Animal Science, Texas A&M University, College Station, TX, 77843, USA
| | - Wenliang He
- Department of Animal Science, Texas A&M University, College Station, TX, 77843, USA
| | - Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
24
|
Elmetwally MA, Li X, Johnson GA, Burghardt RC, Herring CM, Kramer AC, Meininger CJ, Bazer FW, Wu G. Dietary supplementation with L-arginine between days 14 and 25 of gestation enhances NO and polyamine syntheses and the expression of angiogenic proteins in porcine placentae. Amino Acids 2021; 54:193-204. [PMID: 34741684 DOI: 10.1007/s00726-021-03097-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 10/28/2021] [Indexed: 12/14/2022]
Abstract
Dietary supplementation with 0.4 or 0.8% L-arginine (Arg) to gilts between days 14 and 25 of gestation enhances embryonic survival and vascular development in placentae; however, the underlying mechanisms are largely unknown. This study tested the hypothesis that Arg supplementation stimulated placental expression of mRNAs and proteins that enhance angiogenesis, including endothelial nitric oxide synthase (eNOS), vascular endothelial growth factor (VEGF), placental growth factor (PGF), GTP cyclohydrolase-I (GTP-CH1), ornithine decarboxylase (ODC1), and vascular endothelial growth factor receptors 1 and 2 (VEGFR1 and VEGFR2). Beginning on the day of breeding, gilts were fed daily 2 kg of a corn-soybean meal-based diet supplemented with 0.0 (control), 0.4, or 0.8% Arg. On day 25 of gestation, gilts were hysterectomized to obtain uteri and conceptuses for histochemical and biochemical analyses. eNOS and VEGFR1 proteins were localized to endothelial cells of maternal uterine blood vessels and to the uterine luminal epithelium, respectively. Compared with the control, dietary supplementation with 0.4 or 0.8% Arg increased (P < 0.05) the amounts of nitrite plus nitrate (NOx; oxidation products of NO) and polyamines in allantoic and amniotic fluids, concentrations of NOx, tetrahydrobiopterin (BH4, an essential cofactor for all NOS isoforms) and polyamines in placentae, as well as placental protein abundances of GTP-CH1 (the key enzyme for BH4 production) and ODC1 (the key enzyme for polyamine synthesis). Placental mRNA levels for GTP-CH1, eNOS, PGF, VEGF, and VEGFR2 increased in response to both 0.4% and 0.8% Arg supplementation. Collectively, these results indicate that dietary Arg supplementation to gilts between days 14 and 25 of pregnancy promotes placental angiogenesis by increasing the expression of mRNAs and proteins for angiogenic factors as well as NO and polyamine syntheses.
Collapse
Affiliation(s)
- Mohammed A Elmetwally
- Departments of Animal Science, Texas A&M University, College Station, TX, 77843, USA
| | - Xilong Li
- Departments of Animal Science, Texas A&M University, College Station, TX, 77843, USA
| | - Gregory A Johnson
- Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, 77843, USA
| | - Robert C Burghardt
- Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, 77843, USA
| | - Cassandra M Herring
- Departments of Animal Science, Texas A&M University, College Station, TX, 77843, USA
| | - Avery C Kramer
- Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, 77843, USA
| | | | - Fuller W Bazer
- Departments of Animal Science, Texas A&M University, College Station, TX, 77843, USA
| | - Guoyao Wu
- Departments of Animal Science, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
25
|
Furukawa K, He W, Bailey CA, Bazer FW, Toyomizu M, Wu G. Polyamine synthesis from arginine and proline in tissues of developing chickens. Amino Acids 2021; 53:1739-1748. [PMID: 34613458 DOI: 10.1007/s00726-021-03084-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/23/2021] [Indexed: 12/15/2022]
Abstract
Polyamines (putrescine, spermidine, and spermine) are synthesized primarily from ornithine via ornithine decarboxylase (ODC) in mammals. Although avian tissues contain ODC activity, little is known about intracellular sources of ornithine for their polyamine synthesis. This study tested the hypothesis that arginase and proline oxidase contribute to polyamine synthesis in chickens. Kidney, jejunum, leg muscle, and liver from 0-, 7-, 14- and 21-day-old broiler chickens were assayed for the activities of arginase, proline oxidase (POX), ornithine aminotransferase (OAT), and ornithine decarboxylase (ODC). Kidney slices were also used to determine 14C-polyamine synthesis from [U-14C]arginine and [U-14C]proline. Furthermore, these tissues and plasma were analyzed for polyamines. Results indicate that all tissues contained OAT (mitochondrial) and ODC (cytosolic) activities, but arginase and POX activities were only detected in the mitochondria of chicken kidneys. Renal POX and arginase activities were greater at 7 days of age compared to newly hatched birds, and declined by Day 14. Renal arginase activity was greater at 21 days compared to 14 days of age, but there was no change in renal POX activity during that same period. Concentrations of polyamines in the kidneys and plasma were greater on Day 7 compared to Day 0 and decreased thereafter on Days 14 and 21. Kidney slices readily converted arginine and proline into polyamines, with peak rates being on Day 7. Concentrations of putrescine, spermidine and spermine in the plasma of chickens were about 20- to 100-fold greater than those in mammals. Our results indicate that polyamines are synthesized from arginine and proline in avian kidneys. Unlike mammals, polyamines released from the kidneys are likely the major source of polyamines in the blood and other extra-renal tissues in chickens.
Collapse
Affiliation(s)
- Kyohei Furukawa
- Department of Animal Science, Texas A&M University, College Station, TX, 77843-2471, USA.,Animal Nutrition, Graduate School of Agricultural Science, Tohoku University, Sendai, 980-8572, Japan.,International Education and Research Center for Food and Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Sendai, 980-8572, Japan
| | - Wenliang He
- Department of Animal Science, Texas A&M University, College Station, TX, 77843-2471, USA
| | - Christopher A Bailey
- Department of Poultry Science, Texas A&M University, College Station, TX, 77843-2471, USA
| | - Fuller W Bazer
- Department of Animal Science, Texas A&M University, College Station, TX, 77843-2471, USA
| | - Masaaki Toyomizu
- Animal Nutrition, Graduate School of Agricultural Science, Tohoku University, Sendai, 980-8572, Japan.,International Education and Research Center for Food and Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Sendai, 980-8572, Japan
| | - Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, TX, 77843-2471, USA.
| |
Collapse
|
26
|
Hydroxyproline in animal metabolism, nutrition, and cell signaling. Amino Acids 2021; 54:513-528. [PMID: 34342708 DOI: 10.1007/s00726-021-03056-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 07/26/2021] [Indexed: 12/11/2022]
Abstract
trans-4-Hydroxy-L-proline is highly abundant in collagen (accounting for about one-third of body proteins in humans and other animals). This imino acid (loosely called amino acid) and its minor analogue trans-3-hydroxy-L-proline in their ratio of approximately 100:1 are formed from the post-translational hydroxylation of proteins (primarily collagen and, to a much lesser extent, non-collagen proteins). Besides their structural and physiological significance in the connective tissue, both trans-4-hydroxy-L-proline and trans-3-hydroxy-L-proline can scavenge reactive oxygen species and have both structural and physiological significance in animals. The formation of trans-4-hydroxy-L-proline residues in protein kinases B and DYRK1A, eukaryotic elongation factor 2 activity, and hypoxia-inducible transcription factor plays an important role in regulating their phosphorylation and catalytic activation as well as cell signaling in animal cells. These biochemical events contribute to the modulation of cell metabolism, growth, development, responses to nutritional and physiological changes (e.g., dietary protein intake and hypoxia), and survival. Milk, meat, skin hydrolysates, and blood, as well as whole-body collagen degradation provide a large amount of trans-4-hydroxy-L-proline. In animals, most (nearly 90%) of the collagen-derived trans-4-hydroxy-L-proline is catabolized to glycine via the trans-4-hydroxy-L-proline oxidase pathway, and trans-3-hydroxy-L-proline is degraded via the trans-3-hydroxy-L-proline dehydratase pathway to ornithine and glutamate, thereby conserving dietary and endogenously synthesized proline and arginine. Supplementing trans-4-hydroxy-L-proline or its small peptides to plant-based diets can alleviate oxidative stress, while increasing collagen synthesis and accretion in the body. New knowledge of hydroxyproline biochemistry and nutrition aids in improving the growth, health and well-being of humans and other animals.
Collapse
|
27
|
Cortisol enhances citrulline synthesis from proline in enterocytes of suckling piglets. Amino Acids 2021; 53:1957-1966. [PMID: 34244859 DOI: 10.1007/s00726-021-03039-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 06/30/2021] [Indexed: 02/06/2023]
Abstract
There are marked decreases in plasma concentrations of cortisol and arginine (an essential amino acid for neonates) as well as intestinal citrulline synthesis in piglets during the first 14 days of life. The objective of this study was to test the hypothesis that increasing plasma cortisol concentrations by cortisol administration may prevent the decline in intestinal citrulline and arginine synthesis from proline, thereby possibly increasing plasma arginine concentration in suckling piglets and their growth. Seven-day-old pigs reared by sows received daily intramuscular injections of hydrocortisone 21-acetate (25 mg/kg) or vehicle solution (saline) (n = 10/group). At 14 days of age, piglets were used to prepare jejunal enterocytes. Cells were incubated at 37 °C for 30 min in oxygenated Krebs buffer containing 5 mM glucose, 2 mM [U-14C]proline, and 2 mM glutamine. Cortisol treatment increased plasma cortisol concentration, mitochondrial proline oxidase and N-acetylglutamate synthase activities, cytosolic argininosuccinate lyase activity, and the intracellular concentrations of N-acetylglutamate and carbamoyl phosphate for citrulline and arginine synthesis. However, cortisol treatment induced the expression of intestinal arginase-II for arginine hydrolysis, resulting in no change in plasma arginine concentration. Administration of cortisol had no effect on milk consumption or the whole-body growth rate of piglets, but increased villus height in the jejunum and ileum. Collectively, these results suggest an important role for proline oxidase and N-acetylglutamate in regulating citrulline and arginine synthesis from proline in pig enterocytes. Because proline catabolism plays an important role in modulating protein synthesis, cell proliferation, and arginine production, our findings may have important implications for understanding the role of proline oxidase in the growth and health of the mammalian small intestine.
Collapse
|
28
|
Composition of Amino Acids in Foodstuffs for Humans and Animals. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1332:189-210. [PMID: 34251645 DOI: 10.1007/978-3-030-74180-8_11] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Amino acids (AAs) are the building blocks of proteins that have both structural and metabolic functions in humans and other animals. In mammals, birds, fish, and crustaceans, proteinogenic AAs are alanine, arginine, asparagine, aspartate, cysteine, glutamate, glutamine, glycine, histidine, isoleucine, leucine, lysine, methionine, phenylalanine, proline, serine, threonine, tryptophan, tyrosine, and valine. All animals can synthesize de novo alanine, asparagine, aspartate, glutamate, glutamine, glycine, proline, and serine, whereas most mammals (including humans and pigs) can synthesize de novo arginine. Results of extensive research over the past three decades have shown that humans and other animals have dietary requirements for AAs that are synthesizable de novo in animal cells. Recent advances in analytical methods have allowed us to determine all proteinogenic AAs in foods consumed by humans, livestock, poultry, fish, and crustaceans. Both plant- and animal-sourced foods contain high amounts of glutamate, glutamine, aspartate, asparagine, and branched-chain AAs. Cysteine, glycine, lysine, methionine, proline, threonine, and tryptophan generally occur in low amounts in plant products but are enriched in animal products. In addition, taurine and creatine (essential for the integrity and function of tissues) are absent from plants but are abundant in meat and present in all animal-sourced foods. A combination of plant- and animal products is desirable for the healthy diets of humans and omnivorous animals. Furthermore, animal-sourced feedstuffs can be included in the diets of farm and companion animals to cost-effectively improve their growth performance, feed efficiency, and productivity, while helping to sustain the global animal agriculture (including aquaculture).
Collapse
|
29
|
Oxidation of Energy Substrates in Tissues of Fish: Metabolic Significance and Implications for Gene Expression and Carcinogenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1332:67-83. [PMID: 34251639 DOI: 10.1007/978-3-030-74180-8_5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Fish are useful animal models for studying effects of nutrients and environmental factors on gene expression (including epigenetics), toxicology, and carcinogenesis. To optimize the response of the animals to substances of interest (including toxins and carcinogens), water pollution, or climate changes, it is imperative to understand their fundamental biochemical processes. One of these processes concerns energy metabolism for growth, development, and survival. We have recently shown that tissues of hybrid striped bass (HSB), zebrafish, and largemouth bass (LMB) use amino acids (AAs; such as glutamate, glutamine, aspartate, alanine, and leucine) as major energy sources. AAs contribute to about 80% of ATP production in the liver, proximal intestine, kidney, and skeletal muscle tissue of the fish. Thus, as for mammals (including humans), AAs are the primary metabolic fuels in the proximal intestine of fish. In contrast, glucose and fatty acids are only minor metabolic fuels in the fish. Fish tissues have high activities of glutamate dehydrogenase, glutamate-oxaloacetate transaminase, and glutamate-pyruvate transaminase, as well as high rates of glutamate uptake. In contrast, the activities of hexokinase, pyruvate dehydrogenase, and carnitine palmitoyltransferase 1 in all the tissues are relatively low. Furthermore, unlike mammals, the skeletal muscle (the largest tissue) of HSB and LMB has a limited uptake of long-chain fatty acids and barely oxidizes fatty acids. Our findings explain differences in the metabolic patterns of AAs, glucose, and lipids among various tissues in fish. These new findings have important implications for understanding metabolic significance of the tissue-specific oxidation of AAs (particularly glutamate and glutamine) in gene expression (including epigenetics), nutrition, and health, as well as carcinogenesis in fish, mammals (including humans), and other animals.
Collapse
|
30
|
Halloran KM, Stenhouse C, Wu G, Bazer FW. Arginine, Agmatine, and Polyamines: Key Regulators of Conceptus Development in Mammals. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1332:85-105. [PMID: 34251640 DOI: 10.1007/978-3-030-74180-8_6] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Arginine is a key amino acid in pregnant females as it is the precursor for nitric oxide (NO) via nitric oxide synthase and for polyamines (putrescine, spermidine, and spermine) by either arginase II and ornithine decarboxylase to putrescine or via arginine decarboxylase to agmatine and agmatine to putrescine via agmatinase. Polyamines are critical for placental growth and vascularization. Polyamines stabilize DNA and mRNA for gene transcription and mRNA translation, stimulate proliferation of trophectoderm, and formation of multinucleated trophectoderm cells that give rise to giant cells in the placentae of species such as mice. Polyamines activate MTOR cell signaling to stimulate protein synthesis and they are important for motility through modification of beta-catenin phosphorylation, integrin signaling via focal adhesion kinases, cytoskeletal organization, and invasiveness or superficial implantation of blastocysts. Physiological levels of arginine, agmatine, and polyamines are critical to the secretion of interferon tau for pregnancy recognition in ruminants. Arginine, polyamines, and agmatine are very abundant in fetal fluids, fetal blood, and tissues of the conceptus during gestation. The polyamines are thus available to influence a multitude of events including activation of development of blastocysts, implantation, placentation, fetal growth, and development required for the successful establishment and maintenance of pregnancy in mammals.
Collapse
Affiliation(s)
- Katherine M Halloran
- Department of Animal Science, Texas A&M University, College Station, TX, 77843, USA
| | - Claire Stenhouse
- Department of Animal Science, Texas A&M University, College Station, TX, 77843, USA
| | - Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, TX, 77843, USA
| | - Fuller W Bazer
- Department of Animal Science, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
31
|
He W, Furukawa K, Toyomizu M, Nochi T, Bailey CA, Wu G. Interorgan Metabolism, Nutritional Impacts, and Safety of Dietary L-Glutamate and L-Glutamine in Poultry. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1332:107-128. [PMID: 34251641 DOI: 10.1007/978-3-030-74180-8_7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
L-glutamine (Gln) is the most abundant amino acid (AA) in the plasma and skeletal muscle of poultry, and L-glutamate (Glu) is among the most abundant AAs in the whole bodies of all avian tissues. During the first-pass through the small intestine into the portal circulation, dietary Glu is extensively oxidized to CO2, but dietary Gln undergoes limited catabolism in birds. Their extra-intestinal tissues (e.g., skeletal muscle, kidneys, and lymphoid organs) have a high capacity to degrade Gln. To maintain Glu and Gln homeostasis in the body, they are actively synthesized from branched-chain AAs (abundant AAs in both plant and animal proteins) and glucose via interorgan metabolism involving primarily the skeletal muscle, heart, adipose tissue, and brain. In addition, ammonia (produced from the general catabolism of AAs) and α-ketoglutarate (α-KG, derived primarily from glucose) serve as substrates for the synthesis of Glu and Gln in avian tissues, particularly the liver. Over the past 20 years, there has been growing interest in Glu and Gln metabolism in the chicken, which is an agriculturally important species and also a useful model for studying some aspects of human physiology and diseases. Increasing evidence shows that the adequate supply of dietary Glu and Gln is crucial for the optimum growth, anti-oxidative responses, productivity, and health of chickens, ducklings, turkeys, and laying fowl, particularly under stress conditions. Like mammals, poultry have dietary requirements for both Glu and Gln. Based on feed intake, tissue integrity, growth performance, and health status, birds can tolerate up to 12% Glu and 3.5% Gln in diets (on the dry matter basis). Glu and Gln are quantitatively major nutrients for chickens and other avian species to support their maximum growth, production, and feed efficiency, as well as their optimum health and well-being.
Collapse
Affiliation(s)
- Wenliang He
- Departments of Animal Science, Texas A&M University, College Station, TX, 77843, USA
| | - Kyohei Furukawa
- Departments of Animal Science, Texas A&M University, College Station, TX, 77843, USA.,Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Masaaki Toyomizu
- Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Tomonori Nochi
- Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Christopher A Bailey
- Departments of Poultry Science, Texas A&M University, College Station, TX, 77843, USA
| | - Guoyao Wu
- Departments of Animal Science, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
32
|
Herring CM, Bazer FW, Wu G. Amino Acid Nutrition for Optimum Growth, Development, Reproduction, and Health of Zoo Animals. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1285:233-253. [PMID: 33770410 DOI: 10.1007/978-3-030-54462-1_12] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Proteins are large polymers of amino acids (AAs) linked via peptide bonds, and major components for the growth and development of tissues in zoo animals (including mammals, birds, and fish). The proteinogenic AAs are alanine, arginine, aspartate, asparagine, cysteine, glutamate, glutamine, glycine, histidine, isoleucine, leucine, lysine, methionine, phenylalanine, proline, serine, threonine, tryptophan, tyrosine, and valine. Except for glycine, they are all present in the L-isoform. Some carnivores may also need taurine (a nonproteinogenic AA) in their diet. Adequate dietary intakes of AAs are necessary for the growth, development, reproduction, health and longevity of zoo animals. Extensive research has established dietary nutrient requirements for humans, domestic livestock and companion animals. However, this is not true for many exotic or endangered species found in zoos due to the obstacles that accompany working with these species. Information on diets and nutrient profiles of free-ranging animals is needed. Even with adequate dietary intake of crude protein, dietary AAs may still be unbalanced, which can lead to nutrition-related diseases and disorders commonly observed in captive zoo species, such as dilated cardiomyopathy, urolithiasis, gut dysbiosis, and hormonal imbalances. There are differences in AA metabolism among carnivores, herbivores and omnivores. It is imperative to consider these idiosyncrasies when formulating diets based on established nutritional requirements of domestic species. With optimal health, populations of zoo animals will have a vastly greater chance of thriving in captivity. For endangered species especially, maintaining stable captive populations is crucial for conservation. Thus, adequate provision of AAs in diets plays a crucial role in the management, sustainability and expansion of healthy zoo animals.
Collapse
Affiliation(s)
- Cassandra M Herring
- Department of Animal Science, Texas A&M University, College Station, TX, USA
| | - Fuller W Bazer
- Department of Animal Science, Texas A&M University, College Station, TX, USA
| | - Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, TX, USA.
| |
Collapse
|