1
|
Ebenezer TE, Low RS, O'Neill EC, Huang I, DeSimone A, Farrow SC, Field RA, Ginger ML, Guerrero SA, Hammond M, Hampl V, Horst G, Ishikawa T, Karnkowska A, Linton EW, Myler P, Nakazawa M, Cardol P, Sánchez-Thomas R, Saville BJ, Shah MR, Simpson AGB, Sur A, Suzuki K, Tyler KM, Zimba PV, Hall N, Field MC. Euglena International Network (EIN): Driving euglenoid biotechnology for the benefit of a challenged world. Biol Open 2022; 11:bio059561. [PMID: 36412269 PMCID: PMC9836076 DOI: 10.1242/bio.059561] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Euglenoids (Euglenida) are unicellular flagellates possessing exceptionally wide geographical and ecological distribution. Euglenoids combine a biotechnological potential with a unique position in the eukaryotic tree of life. In large part these microbes owe this success to diverse genetics including secondary endosymbiosis and likely additional sources of genes. Multiple euglenoid species have translational applications and show great promise in production of biofuels, nutraceuticals, bioremediation, cancer treatments and more exotically as robotics design simulators. An absence of reference genomes currently limits these applications, including development of efficient tools for identification of critical factors in regulation, growth or optimization of metabolic pathways. The Euglena International Network (EIN) seeks to provide a forum to overcome these challenges. EIN has agreed specific goals, mobilized scientists, established a clear roadmap (Grand Challenges), connected academic and industry stakeholders and is currently formulating policy and partnership principles to propel these efforts in a coordinated and efficient manner.
Collapse
Affiliation(s)
- ThankGod Echezona Ebenezer
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Ross S. Low
- Organisms and Ecosystems, Earlham Institute, Norwich Research Park, Norwich NR4 7UZ, UK
| | | | - Ishuo Huang
- Office of Regulatory Science, United States Food and Drug Administration, Center for Food Safety and Applied Nutrition, College Park, MD 20740, USA
| | - Antonio DeSimone
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa 56127, Italy
| | - Scott C. Farrow
- Discovery Biology, Noblegen Inc., Peterborough, Ontario K9L 1Z8, Canada
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, Ontario K9L 0G2, Canada
| | - Robert A. Field
- Department of Chemistry and Manchester Institute of Biotechnology, University of Manchester, Manchester M1 7DN, UK
| | - Michael L. Ginger
- School of Applied Sciences, University of Huddersfield, Huddersfield HD1 3DH, UK
| | - Sergio Adrián Guerrero
- Laboratorio de Enzimología Molecular, Instituto de Agrobiotecnología del Litoral. CCT CONICET Santa Fe, Santa Fe 3000, Argentina
| | - Michael Hammond
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice 370 05, Czech Republic
| | - Vladimír Hampl
- Charles University, Faculty of Science, Department of Parasitology, BIOCEV, Vestec 25250, Czech Republic
| | - Geoff Horst
- Kemin Industries, Research and Development, Plymouth, MI 48170, USA
| | - Takahiro Ishikawa
- Institute of Agricultural and Life Sciences, Academic Assembly, Shimane University, Matsue 690-8504, Japan
| | - Anna Karnkowska
- Institute of Evolutionary Biology, Faculty of Biology, University of Warsaw, Warsaw 02-089, Poland
| | - Eric W. Linton
- Department of Biology, Central Michigan University, Mt. Pleasant, MI 48859, USA
| | - Peter Myler
- Center for Global Infectious Disease Research, Seattle Children's Research Institute and Department of Biomedical Informatics & Medical Education, University of Washington, WA 98109, USA
| | - Masami Nakazawa
- Department of Applied Biochemistry, Faculty of Agriculture, Osaka Metropolitan University, Sakai, Osaka, 599-8531, Japan
| | - Pierre Cardol
- Department of Life Sciences, Institut de Botanique, Université de Liège, Liège 4000, Belgium
| | | | - Barry J. Saville
- Forensic Science, Environmental and Life Sciences Graduate Program, Trent University, Peterborough K9L 0G2, Canada
| | - Mahfuzur R. Shah
- Discovery Biology, Noblegen Inc., Peterborough, Ontario K9L 1Z8, Canada
| | - Alastair G. B. Simpson
- Department of Biology and Institute for Comparative Genomics, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Aakash Sur
- Center for Global Infectious Disease Research, Seattle Children's Research Institute and Department of Biomedical Informatics & Medical Education, University of Washington, WA 98109, USA
| | - Kengo Suzuki
- R&D Company, Euglena Co., Ltd., 2F Yokohama Bio Industry Center (YBIC), 1-6 Suehiro, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan
| | - Kevin M. Tyler
- Biomedical Research Centre, Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
- Center of Excellence for Bionanoscience Research, King Abdul Aziz University, Jeddah, Saudi Arabia
| | - Paul V. Zimba
- PVZimba, LLC, 12241 Percival St, Chester, VA 23831, USA
- Rice Rivers Center, VA Commonwealth University, Richmond, VA 23284, USA
| | - Neil Hall
- Organisms and Ecosystems, Earlham Institute, Norwich Research Park, Norwich NR4 7UZ, UK
- School of Biological Sciences, University of East Anglia, Norwich, NR4 7TJ, Norfolk, UK
| | - Mark C. Field
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice 370 05, Czech Republic
- School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| |
Collapse
|
2
|
He J, Du M, Chen Y, Liu Y, Zhang J(K, Fu W, Lei A, Wang J. Fatty Acid Accumulations and Transcriptome Analyses Under Different Treatments in a Model Microalga Euglena gracilis. FRONTIERS IN CHEMICAL ENGINEERING 2022. [DOI: 10.3389/fceng.2022.884451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
With the continuous growth of the world’s population and the increasing development of industrialization, the demand for energy by human beings has been expanding, resulting in an increasingly severe energy crisis. Microalgae are considered the most potential alternatives to traditional fossil fuels due to their many advantages, like fast growth rate, strong carbon sequestration capacity, and low growth environment requirements. Euglena can use carbon sources such as glucose, ethanol, and others for heterotrophic growth. Moreover, Euglena is highly adaptable to the environment and has a high tolerance to various environmental stresses, such as salinity, heavy metals, antibiotics, etc. Different treatments of Euglena cells could affect their growth and the accumulation of bioactive substances, especially fatty acids. To expand the industrial application of Euglena as a potential biodiesel candidate, we determine the physiological responses of Euglena against environmental stresses (antibiotics, heavy metals, salinity) or carbon resources (glucose and ethanol), and evaluate the potential for higher quality and yield of fatty acid with a high growth rate. Adding glucose into the culture media increases cell biomass and fatty acid production with high-quality biodiesel characters. The transcriptome analysis helped explore the possible regulation and biosynthesis of fatty acids under different treatments and exploited in the improvement of biodiesel production. This study provides insights for further improvement and various culture treatments for Euglena-based biodiesel and jet fuels.
Collapse
|
3
|
Chen Z, Zhu J, Du M, Chen Z, Liu Q, Zhu H, Lei A, Wang J. A Synthetic Biology Perspective on the Bioengineering Tools for an Industrial Microalga: Euglena gracilis. Front Bioeng Biotechnol 2022; 10:882391. [PMID: 35464731 PMCID: PMC9020809 DOI: 10.3389/fbioe.2022.882391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 03/11/2022] [Indexed: 11/13/2022] Open
Abstract
Euglena is a genus of single-celled eukaryotes that show both plant- and animal-like characteristics. Euglena gracilis, a model species, is of great academic interest for studying endosymbiosis and chloroplast development. As an industrial species, E. gracilis is also of primary biotechnological and economic importance as high value-added food, medicine, and cosmetic and high-quality feedstock for jet-fuel production because of its cells containing many high-value products, such as vitamins, amino acids, pigments, unsaturated fatty acids, and carbohydrate paramylon, as metabolites. For more than half a century, E. gracilis has been used as an industrial biotechnology platform for fundamental biology research, mainly exploring relevant physiological and biochemical method studies. Although many researchers focused on genetic engineering tools for E. gracilis in recent years, little progress has been achieved because of the lack of high-quality genome information and efficient techniques for genetic operation. This article reviewed the progress of the genetic transformation of E. gracilis, including methods for the delivery of exogenous materials and other advanced biotechnological tools for E. gracilis, such as CRISPR and RNA interference. We hope to provide a reference to improve the research in functional genomics and synthetic biology of Euglena.
Collapse
Affiliation(s)
- Zhenfan Chen
- College of Food Engineering and Biotechnology, Hanshan Normal University, Chaozhou, China
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, China
| | - Jiayi Zhu
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Ming Du
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Zixi Chen
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Qiong Liu
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
- Shenzhen-Hong Kong Institute of Brain Science, Shenzhen, China
| | - Hui Zhu
- College of Food Engineering and Biotechnology, Hanshan Normal University, Chaozhou, China
| | - Anping Lei
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Jiangxin Wang
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
- *Correspondence: Jiangxin Wang,
| |
Collapse
|
4
|
Molecular Cross-Talk between Gravity- and Light-Sensing Mechanisms in Euglena gracilis. Int J Mol Sci 2022; 23:ijms23052776. [PMID: 35269918 PMCID: PMC8911436 DOI: 10.3390/ijms23052776] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/19/2022] [Accepted: 03/01/2022] [Indexed: 12/14/2022] Open
Abstract
Euglena gracilis is a photosynthetic flagellate. To acquire a suitable position in its surrounding aquatic environment, it exploits light and gravity primarily as environmental cues. Several physiological studies have indicated a fine-tuned relationship between gravity sensing (gravitaxis) and light sensing in E. gracilis. However, the underlying molecular mechanism is largely unknown. The photoreceptor photoactivated adenylyl cyclase (PAC) has been studied for over a decade. Nevertheless, no direct/indirect interaction partner (upstream/downstream) has been reported for PAC. It has been shown that a specific protein, kinase A (PKA), showed to be involved in phototaxis and gravitaxis. The current study reports the localization of the specific PKA and its relationship with PAC.
Collapse
|
5
|
Inoue AH, Domingues PF, Serpeloni M, Hiraiwa PM, Vidal NM, Butterfield ER, Del Pino RC, Ludwig A, Boehm C, Field MC, Ávila AR. Proteomics Uncovers Novel Components of an Interactive Protein Network Supporting RNA Export in Trypanosomes. Mol Cell Proteomics 2022; 21:100208. [PMID: 35091090 PMCID: PMC8938319 DOI: 10.1016/j.mcpro.2022.100208] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 01/15/2022] [Accepted: 01/24/2022] [Indexed: 11/03/2022] Open
Abstract
In trypanosomatids, transcription is polycistronic and all mRNAs are processed by trans-splicing, with export mediated by noncanonical mechanisms. Although mRNA export is central to gene regulation and expression, few orthologs of proteins involved in mRNA export in higher eukaryotes are detectable in trypanosome genomes, necessitating direct identification of protein components. We previously described conserved mRNA export pathway components in Trypanosoma cruzi, including orthologs of Sub2, a component of the TREX complex, and eIF4AIII (previously Hel45), a core component of the exon junction complex (EJC). Here, we searched for protein interactors of both proteins using cryomilling and mass spectrometry. Significant overlap between TcSub2 and TceIF4AIII-interacting protein cohorts suggests that both proteins associate with similar machinery. We identified several interactions with conserved core components of the EJC and multiple additional complexes, together with proteins specific to trypanosomatids. Additional immunoisolations of kinetoplastid-specific proteins both validated and extended the superinteractome, which is capable of supporting RNA processing from splicing through to nuclear export and cytoplasmic events. We also suggest that only proteomics is powerful enough to uncover the high connectivity between multiple aspects of mRNA metabolism and to uncover kinetoplastid-specific components that create a unique amalgam to support trypanosome mRNA maturation.
Collapse
Affiliation(s)
| | | | | | | | - Newton Medeiros Vidal
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | | | | | - Adriana Ludwig
- Instituto Carlos Chagas, FIOCRUZ, Curitiba, Paraná, Brazil
| | - Cordula Boehm
- School of Life Sciences, University of Dundee, Dundee, Scotland, UK
| | - Mark C Field
- School of Life Sciences, University of Dundee, Dundee, Scotland, UK; Biology Centre, University of South Bohemia, České Budějovice, Czech Republic.
| | | |
Collapse
|
6
|
He J, Liu C, Du M, Zhou X, Hu Z, Lei A, Wang J. Metabolic Responses of a Model Green Microalga Euglena gracilis to Different Environmental Stresses. Front Bioeng Biotechnol 2021; 9:662655. [PMID: 34354984 PMCID: PMC8329484 DOI: 10.3389/fbioe.2021.662655] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 06/10/2021] [Indexed: 12/11/2022] Open
Abstract
Euglena gracilis, a green microalga known as a potential candidate for jet fuel producers and new functional food resources, is highly tolerant to antibiotics, heavy metals, and other environmental stresses. Its cells contain many high-value products, including vitamins, amino acids, pigments, unsaturated fatty acids, and carbohydrate paramylon as metabolites, which change contents in response to various extracellular environments. However, mechanism insights into the cellular metabolic response of Euglena to different toxic chemicals and adverse environmental stresses were very limited. We extensively investigated the changes of cell biomass, pigments, lipids, and paramylon of E. gracilis under several environmental stresses, such as heavy metal CdCl2, antibiotics paromomycin, and nutrient deprivation. In addition, global metabolomics by Ultra-high-performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) was applied to study other metabolites and potential regulatory mechanisms behind the differential accumulation of major high-valued metabolites. This study collects a comprehensive update on the biology of E. gracilis for various metabolic responses to stress conditions, and it will be of great value for Euglena cultivation and high-value [154mm][10mm]Q7metabolite production.
Collapse
Affiliation(s)
- Jiayi He
- Shenzhen Key Laboratory of Marine Bioresources and Eco-environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China.,Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, China
| | - ChenChen Liu
- Shenzhen Key Laboratory of Marine Bioresources and Eco-environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Mengzhe Du
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, China
| | - Xiyi Zhou
- Shenzhen Key Laboratory of Marine Bioresources and Eco-environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Zhangli Hu
- Shenzhen Key Laboratory of Marine Bioresources and Eco-environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China.,Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, China
| | - Anping Lei
- Shenzhen Key Laboratory of Marine Bioresources and Eco-environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Jiangxin Wang
- Shenzhen Key Laboratory of Marine Bioresources and Eco-environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| |
Collapse
|
7
|
Agrobacterium tumefaciens-Mediated Nuclear Transformation of a Biotechnologically Important Microalga- Euglena gracilis. Int J Mol Sci 2021; 22:ijms22126299. [PMID: 34208268 PMCID: PMC8230907 DOI: 10.3390/ijms22126299] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/07/2021] [Accepted: 06/09/2021] [Indexed: 12/30/2022] Open
Abstract
Euglena gracilis (E. gracilis) is an attractive organism due to its evolutionary history and substantial potential to produce biochemicals of commercial importance. This study describes the establishment of an optimized protocol for the genetic transformation of E. gracilis mediated by Agrobacterium (A. tumefaciens). E. gracilis was found to be highly sensitive to hygromycin and zeocin, thus offering a set of resistance marker genes for the selection of transformants. A. tumefaciens-mediated transformation (ATMT) yielded hygromycin-resistant cells. However, hygromycin-resistant cells hosting the gus gene (encoding β-glucuronidase (GUS)) were found to be GUS-negative, indicating that the gus gene had explicitly been silenced. To circumvent transgene silencing, GUS was expressed from the nuclear genome as transcriptional fusions with the hygromycin resistance gene (hptII) (encoding hygromycin phosphotransferase II) with the foot and mouth disease virus (FMDV)-derived 2A self-cleaving sequence placed between the coding sequences. ATMT of Euglena with the hptII-2A–gus gene yielded hygromycin-resistant, GUS-positive cells. The transformation was verified by PCR amplification of the T-DNA region genes, determination of GUS activity, and indirect immunofluorescence assays. Cocultivation factors optimization revealed that a higher number of transformants was obtained when A. tumefaciens LBA4404 (A600 = 1.0) and E. gracilis (A750 = 2.0) cultures were cocultured for 48 h at 19 °C in an organic medium (pH 6.5) containing 50 µM acetosyringone. Transformation efficiency of 8.26 ± 4.9% was achieved under the optimized cocultivation parameters. The molecular toolkits and method presented here can be used to bioengineer E. gracilis for producing high-value products and fundamental studies.
Collapse
|
8
|
Cordoba J, Perez E, Van Vlierberghe M, Bertrand AR, Lupo V, Cardol P, Baurain D. De Novo Transcriptome Meta-Assembly of the Mixotrophic Freshwater Microalga Euglena gracilis. Genes (Basel) 2021; 12:842. [PMID: 34072576 PMCID: PMC8227486 DOI: 10.3390/genes12060842] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/24/2021] [Accepted: 05/27/2021] [Indexed: 01/01/2023] Open
Abstract
Euglena gracilis is a well-known photosynthetic microeukaryote considered as the product of a secondary endosymbiosis between a green alga and a phagotrophic unicellular belonging to the same eukaryotic phylum as the parasitic trypanosomatids. As its nuclear genome has proven difficult to sequence, reliable transcriptomes are important for functional studies. In this work, we assembled a new consensus transcriptome by combining sequencing reads from five independent studies. Based on a detailed comparison with two previously released transcriptomes, our consensus transcriptome appears to be the most complete so far. Remapping the reads on it allowed us to compare the expression of the transcripts across multiple culture conditions at once and to infer a functionally annotated network of co-expressed genes. Although the emergence of meaningful gene clusters indicates that some biological signal lies in gene expression levels, our analyses confirm that gene regulation in euglenozoans is not primarily controlled at the transcriptional level. Regarding the origin of E. gracilis, we observe a heavily mixed gene ancestry, as previously reported, and rule out sequence contamination as a possible explanation for these observations. Instead, they indicate that this complex alga has evolved through a convoluted process involving much more than two partners.
Collapse
Affiliation(s)
- Javier Cordoba
- InBioS—PhytoSYSTEMS, Laboratoire de Génétique et Physiologie des Microalgues, ULiège, B-4000 Liège, Belgium; (J.C.); (E.P.); (P.C.)
| | - Emilie Perez
- InBioS—PhytoSYSTEMS, Laboratoire de Génétique et Physiologie des Microalgues, ULiège, B-4000 Liège, Belgium; (J.C.); (E.P.); (P.C.)
- InBioS—PhytoSYSTEMS, Unit of Eukaryotic Phylogenomics, ULiège, B-4000 Liège, Belgium; (M.V.V.); (A.R.B.); (V.L.)
| | - Mick Van Vlierberghe
- InBioS—PhytoSYSTEMS, Unit of Eukaryotic Phylogenomics, ULiège, B-4000 Liège, Belgium; (M.V.V.); (A.R.B.); (V.L.)
| | - Amandine R. Bertrand
- InBioS—PhytoSYSTEMS, Unit of Eukaryotic Phylogenomics, ULiège, B-4000 Liège, Belgium; (M.V.V.); (A.R.B.); (V.L.)
| | - Valérian Lupo
- InBioS—PhytoSYSTEMS, Unit of Eukaryotic Phylogenomics, ULiège, B-4000 Liège, Belgium; (M.V.V.); (A.R.B.); (V.L.)
| | - Pierre Cardol
- InBioS—PhytoSYSTEMS, Laboratoire de Génétique et Physiologie des Microalgues, ULiège, B-4000 Liège, Belgium; (J.C.); (E.P.); (P.C.)
| | - Denis Baurain
- InBioS—PhytoSYSTEMS, Unit of Eukaryotic Phylogenomics, ULiège, B-4000 Liège, Belgium; (M.V.V.); (A.R.B.); (V.L.)
| |
Collapse
|
9
|
Gumińska N, Zakryś B, Milanowski R. A New Type of Circular RNA derived from Nonconventional Introns in Nuclear Genes of Euglenids. J Mol Biol 2020; 433:166758. [PMID: 33316270 DOI: 10.1016/j.jmb.2020.166758] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 12/06/2020] [Accepted: 12/07/2020] [Indexed: 10/22/2022]
Abstract
Nuclear protein-coding genes of euglenids (Discoba, Euglenozoa, Euglenida) contain conventional (spliceosomal) and nonconventional introns. The latter have been found only in euglenozoans. A unique feature of nonconventional introns is the ability to form a stable and slightly conserved RNA secondary structure bringing together intron ends and placing adjacent exons in proximity. To date, little is known about the mechanism of their excision (e.g. whether it involves the spliceosome or not). The tubA gene of Euglena gracilis harbors three conventional and three nonconventional introns. While the conventional introns are excised as lariats, nonconventional introns are present in the cell solely as circular RNAs with full-length ends. Based on this discovery as well as on previous observations indicating that nonconventional introns are observed frequently at unique positions of genes, we suggest that this new type of intronic circRNA might play a role in intron mobility.
Collapse
Affiliation(s)
- Natalia Gumińska
- Institute of Evolutionary Biology, Faculty of Biology, Biological and Chemical Research Center, University of Warsaw, ul. Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Bożena Zakryś
- Institute of Evolutionary Biology, Faculty of Biology, Biological and Chemical Research Center, University of Warsaw, ul. Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Rafał Milanowski
- Institute of Evolutionary Biology, Faculty of Biology, Biological and Chemical Research Center, University of Warsaw, ul. Żwirki i Wigury 101, 02-089 Warsaw, Poland.
| |
Collapse
|
10
|
Abstract
Most secondary nonphotosynthetic eukaryotes have retained residual plastids whose physiological role is often still unknown. One such example is Euglena longa, a close nonphotosynthetic relative of Euglena gracilis harboring a plastid organelle of enigmatic function. By mining transcriptome data from E. longa, we finally provide an overview of metabolic processes localized to its elusive plastid. The organelle plays no role in the biosynthesis of isoprenoid precursors and fatty acids and has a very limited repertoire of pathways concerning nitrogen-containing metabolites. In contrast, the synthesis of phospholipids and glycolipids has been preserved, curiously with the last step of sulfoquinovosyldiacylglycerol synthesis being catalyzed by the SqdX form of an enzyme so far known only from bacteria. Notably, we show that the E. longa plastid synthesizes tocopherols and a phylloquinone derivative, the first such report for nonphotosynthetic plastids studied so far. The most striking attribute of the organelle could be the presence of a linearized Calvin-Benson (CB) pathway, including RuBisCO yet lacking the gluconeogenetic part of the standard cycle, together with ferredoxin-NADP+ reductase (FNR) and the ferredoxin/thioredoxin system. We hypothesize that the ferredoxin/thioredoxin system activates the linear CB pathway in response to the redox status of the E. longa cell and speculate on the role of the pathway in keeping the redox balance of the cell. Altogether, the E. longa plastid defines a new class of relic plastids that is drastically different from the best-studied organelle of this category, the apicoplast.IMPORTANCE Colorless plastids incapable of photosynthesis evolved in many plant and algal groups, but what functions they perform is still unknown in many cases. Here, we study the elusive plastid of Euglena longa, a nonphotosynthetic cousin of the familiar green flagellate Euglena gracilis We document an unprecedented combination of metabolic functions that the E. longa plastid exhibits in comparison with previously characterized nonphotosynthetic plastids. For example, and truly surprisingly, it has retained the synthesis of tocopherols (vitamin E) and a phylloquinone (vitamin K) derivative. In addition, we offer a possible solution of the long-standing conundrum of the presence of the CO2-fixing enzyme RuBisCO in E. longa Our work provides a detailed account on a unique variant of relic plastids, the first among nonphotosynthetic plastids that evolved by secondary endosymbiosis from a green algal ancestor, and suggests that it has persisted for reasons not previously considered in relation to nonphotosynthetic plastids.
Collapse
|
11
|
Hammond MJ, Nenarokova A, Butenko A, Zoltner M, Dobáková EL, Field MC, Lukeš J. A Uniquely Complex Mitochondrial Proteome from Euglena gracilis. Mol Biol Evol 2020; 37:2173-2191. [PMID: 32159766 PMCID: PMC7403612 DOI: 10.1093/molbev/msaa061] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Euglena gracilis is a metabolically flexible, photosynthetic, and adaptable free-living protist of considerable environmental importance and biotechnological value. By label-free liquid chromatography tandem mass spectrometry, a total of 1,786 proteins were identified from the E. gracilis purified mitochondria, representing one of the largest mitochondrial proteomes so far described. Despite this apparent complexity, protein machinery responsible for the extensive RNA editing, splicing, and processing in the sister clades diplonemids and kinetoplastids is absent. This strongly suggests that the complex mechanisms of mitochondrial gene expression in diplonemids and kinetoplastids occurred late in euglenozoan evolution, arising independently. By contrast, the alternative oxidase pathway and numerous ribosomal subunits presumed to be specific for parasitic trypanosomes are present in E. gracilis. We investigated the evolution of unexplored protein families, including import complexes, cristae formation proteins, and translation termination factors, as well as canonical and unique metabolic pathways. We additionally compare this mitoproteome with the transcriptome of Eutreptiella gymnastica, illuminating conserved features of Euglenida mitochondria as well as those exclusive to E. gracilis. This is the first mitochondrial proteome of a free-living protist from the Excavata and one of few available for protists as a whole. This study alters our views of the evolution of the mitochondrion and indicates early emergence of complexity within euglenozoan mitochondria, independent of parasitism.
Collapse
Affiliation(s)
- Michael J Hammond
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, České Budějovice, Budweis, Czech Republic
| | - Anna Nenarokova
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, České Budějovice, Budweis, Czech Republic
- Faculty of Sciences, University of South Bohemia, České Budějovice, Budweis, Czech Republic
| | - Anzhelika Butenko
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, České Budějovice, Budweis, Czech Republic
- Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Martin Zoltner
- School of Life Sciences, University of Dundee, Dundee, United Kingdom
- Faculty of Science, Charles University, Biocev, Vestec, Czech Republic
| | - Eva Lacová Dobáková
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, České Budějovice, Budweis, Czech Republic
| | - Mark C Field
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, České Budějovice, Budweis, Czech Republic
- School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Julius Lukeš
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, České Budějovice, Budweis, Czech Republic
- Faculty of Sciences, University of South Bohemia, České Budějovice, Budweis, Czech Republic
| |
Collapse
|
12
|
Harada R, Nomura T, Yamada K, Mochida K, Suzuki K. Genetic Engineering Strategies for Euglena gracilis and Its Industrial Contribution to Sustainable Development Goals: A Review. Front Bioeng Biotechnol 2020; 8:790. [PMID: 32760709 PMCID: PMC7371780 DOI: 10.3389/fbioe.2020.00790] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 06/22/2020] [Indexed: 11/20/2022] Open
Abstract
The sustainable development goals (SDGs) adopted at the 2015 United Nations Summit are globally applicable goals designed to help countries realize a sustainable future. To achieve these SDGs, it is necessary to utilize renewable biological resources. In recent years, bioeconomy has been an attractive concept for achieving the SDGs. Microalgae are one of the biological resources that show promise in realizing the "5F"s (food, fiber, feed, fertilizer, and fuel). Among the microalgae, Euglena gracilis has the potential for achieving the "5F"s strategy owing to its unique features, such as production of paramylon, that are lacking in other microalgae. E. gracilis has already been produced on an industrial scale for use as an ingredient in functional foods and cosmetics. In recent years, genetic engineering methods for breeding E. gracilis have been researched and developed to achieve higher yields. In this article, we summarize how microalgae contribute toward achieving the SDGs. We focus on the contribution of E. gracilis to the bioeconomy, including its advantages in industrial use as well as its unique characteristics. In addition, we review genetic engineering-related research trends centered on E. gracilis, including a complete nuclear genome determination project, genome editing technology using the CRISPR-Cas9 system, and the development of a screening method for selecting useful strains. In particular, genome editing in E. gracilis could be a breakthrough for molecular breeding of industrially useful strains because of its high efficiency.
Collapse
Affiliation(s)
- Ryo Harada
- RIKEN Baton Zone Program, Yokohama, Japan
| | - Toshihisa Nomura
- RIKEN Baton Zone Program, Yokohama, Japan
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Koji Yamada
- RIKEN Baton Zone Program, Yokohama, Japan
- Euglena Co Ltd, Tokyo, Japan
| | - Keiichi Mochida
- RIKEN Baton Zone Program, Yokohama, Japan
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Kengo Suzuki
- RIKEN Baton Zone Program, Yokohama, Japan
- Euglena Co Ltd, Tokyo, Japan
| |
Collapse
|
13
|
A Global Analysis of Enzyme Compartmentalization to Glycosomes. Pathogens 2020; 9:pathogens9040281. [PMID: 32290588 PMCID: PMC7237986 DOI: 10.3390/pathogens9040281] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/08/2020] [Accepted: 04/09/2020] [Indexed: 12/28/2022] Open
Abstract
In kinetoplastids, the first seven steps of glycolysis are compartmentalized into a glycosome along with parts of other metabolic pathways. This organelle shares a common ancestor with the better-understood eukaryotic peroxisome. Much of our understanding of the emergence, evolution, and maintenance of glycosomes is limited to explorations of the dixenous parasites, including the enzymatic contents of the organelle. Our objective was to determine the extent that we could leverage existing studies in model kinetoplastids to determine the composition of glycosomes in species lacking evidence of experimental localization. These include diverse monoxenous species and dixenous species with very different hosts. For many of these, genome or transcriptome sequences are available. Our approach initiated with a meta-analysis of existing studies to generate a subset of enzymes with highest evidence of glycosome localization. From this dataset we extracted the best possible glycosome signal peptide identification scheme for in silico identification of glycosomal proteins from any kinetoplastid species. Validation suggested that a high glycosome localization score from our algorithm would be indicative of a glycosomal protein. We found that while metabolic pathways were consistently represented across kinetoplastids, individual proteins within those pathways may not universally exhibit evidence of glycosome localization.
Collapse
|
14
|
Krüger J, Richter P, Stoltze J, Strauch SM, Krüger M, Daiker V, Prasad B, Sonnewald S, Reid S, Lebert M. Changes of Gene Expression in Euglena gracilis Obtained During the 29 th DLR Parabolic Flight Campaign. Sci Rep 2019; 9:14260. [PMID: 31582787 PMCID: PMC6776534 DOI: 10.1038/s41598-019-50611-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 09/02/2019] [Indexed: 01/14/2023] Open
Abstract
Parabolic flight maneuvers of Novespace's Airbus A310 ZERO-G produce subsequent phases of hypergravity (about 20 s), microgravity (about 22 s) and another 20 s hypergravity on experiments located in the experiment area of the aircraft. The 29th DLR parabolic flight campaign consisted of four consecutive flight days with thirty-one parabolas each day. Euglena gracilis cells were fixed with TRIzol during different acceleration conditions at the first and the last parabola of each flight. Samples were collected and analyzed with microarrays for one-color gene expression analysis. The data indicate significant changes in gene expression in E. gracilis within short time. Hierarchical clustering shows that changes induced by the different accelerations yield reproducible effects at independent flight days. Transcription differed between the first and last parabolas indicating adaptation effects in the course of the flight. Different gene groups were found to be affected in different phases of the parabolic flight, among others, genes involved in signal transduction, calcium signaling, transport mechanisms, metabolic pathways, and stress-response as well as membrane and cytoskeletal proteins. In addition, transcripts of other areas, e.g., DNA and protein modification, were altered. The study contributes to the understanding of short-term effects of microgravity and different accelerations on cells at a molecular level.
Collapse
Affiliation(s)
- Julia Krüger
- Cell Biology Division: Gravitational Biology Group, Department of Biology, Friedrich-Alexander University Erlangen-Nürnberg, Staudtstraße 5, 91058, Erlangen, Germany
| | - Peter Richter
- Cell Biology Division: Gravitational Biology Group, Department of Biology, Friedrich-Alexander University Erlangen-Nürnberg, Staudtstraße 5, 91058, Erlangen, Germany
| | - Julia Stoltze
- Cell Biology Division: Gravitational Biology Group, Department of Biology, Friedrich-Alexander University Erlangen-Nürnberg, Staudtstraße 5, 91058, Erlangen, Germany
| | - Sebastian M Strauch
- Cell Biology Division: Gravitational Biology Group, Department of Biology, Friedrich-Alexander University Erlangen-Nürnberg, Staudtstraße 5, 91058, Erlangen, Germany
- Postgraduate Program in Health and Environment, University of Joinville Region, Rua Paulo Malschitzki, 10 - Zona Industrial Norte, Joinville, SC, CEP 89219-710, Brazil
| | - Marcus Krüger
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto von Guericke University Magdeburg, Leipziger Straße 44, 39120, Magdeburg, Germany
| | - Viktor Daiker
- Cell Biology Division: Gravitational Biology Group, Department of Biology, Friedrich-Alexander University Erlangen-Nürnberg, Staudtstraße 5, 91058, Erlangen, Germany
| | - Binod Prasad
- Cell Biology Division: Gravitational Biology Group, Department of Biology, Friedrich-Alexander University Erlangen-Nürnberg, Staudtstraße 5, 91058, Erlangen, Germany
| | - Sophia Sonnewald
- Biochemistry Division, Department of Biology, Friedrich-Alexander University Erlangen-Nürnberg, Staudtstraße 5, 91058, Erlangen, Germany
| | - Stephen Reid
- Biochemistry Division, Department of Biology, Friedrich-Alexander University Erlangen-Nürnberg, Staudtstraße 5, 91058, Erlangen, Germany
| | - Michael Lebert
- Cell Biology Division: Gravitational Biology Group, Department of Biology, Friedrich-Alexander University Erlangen-Nürnberg, Staudtstraße 5, 91058, Erlangen, Germany.
| |
Collapse
|
15
|
Klinger CM, Richardson E. Small Genomes and Big Data: Adaptation of Plastid Genomics to the High-Throughput Era. Biomolecules 2019; 9:E299. [PMID: 31344945 PMCID: PMC6723049 DOI: 10.3390/biom9080299] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 07/15/2019] [Accepted: 07/16/2019] [Indexed: 12/17/2022] Open
Abstract
Plastid genome sequences are becoming more readily available with the increase in high-throughput sequencing, and whole-organelle genetic data is available for algae and plants from across the diversity of photosynthetic eukaryotes. This has provided incredible opportunities for studying species which may not be amenable to in vivo study or genetic manipulation or may not yet have been cultured. Research into plastid genomes has pushed the limits of what can be deduced from genomic information, and in particular genomic information obtained from public databases. In this Review, we discuss how research into plastid genomes has benefitted enormously from the explosion of publicly available genome sequence. We describe two case studies in how using publicly available gene data has supported previously held hypotheses about plastid traits from lineage-restricted experiments across algal and plant diversity. We propose how this approach could be used across disciplines for inferring functional and biological characteristics from genomic approaches, including integration of new computational and bioinformatic approaches such as machine learning. We argue that the techniques developed to gain the maximum possible insight from plastid genomes can be applied across the eukaryotic tree of life.
Collapse
Affiliation(s)
- Christen M Klinger
- Division of Infectious Diseases, Department of Medicine, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Elisabeth Richardson
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2R3, Canada.
| |
Collapse
|
16
|
Vesteg M, Hadariová L, Horváth A, Estraño CE, Schwartzbach SD, Krajčovič J. Comparative molecular cell biology of phototrophic euglenids and parasitic trypanosomatids sheds light on the ancestor of Euglenozoa. Biol Rev Camb Philos Soc 2019; 94:1701-1721. [PMID: 31095885 DOI: 10.1111/brv.12523] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 04/30/2019] [Accepted: 05/02/2019] [Indexed: 01/23/2023]
Abstract
Parasitic trypanosomatids and phototrophic euglenids are among the most extensively studied euglenozoans. The phototrophic euglenid lineage arose relatively recently through secondary endosymbiosis between a phagotrophic euglenid and a prasinophyte green alga that evolved into the euglenid secondary chloroplast. The parasitic trypanosomatids (i.e. Trypanosoma spp. and Leishmania spp.) and the freshwater phototrophic euglenids (i.e. Euglena gracilis) are the most evolutionary distant lineages in the Euglenozoa phylogenetic tree. The molecular and cell biological traits they share can thus be considered as ancestral traits originating in the common euglenozoan ancestor. These euglenozoan ancestral traits include common mitochondrial presequence motifs, respiratory chain complexes containing various unique subunits, a unique ATP synthase structure, the absence of mitochondria-encoded transfer RNAs (tRNAs), a nucleus with a centrally positioned nucleolus, closed mitosis without dissolution of the nuclear membrane and nucleoli, a nuclear genome containing the unusual 'J' base (β-D-glucosyl-hydroxymethyluracil), processing of nucleus-encoded precursor messenger RNAs (pre-mRNAs) via spliced-leader RNA (SL-RNA) trans-splicing, post-transcriptional gene silencing by the RNA interference (RNAi) pathway and the absence of transcriptional regulation of nuclear gene expression. Mitochondrial uridine insertion/deletion RNA editing directed by guide RNAs (gRNAs) evolved in the ancestor of the kinetoplastid lineage. The evolutionary origin of other molecular features known to be present only in either kinetoplastids (i.e. polycistronic transcripts, compaction of nuclear genomes) or euglenids (i.e. monocistronic transcripts, huge genomes, many nuclear cis-spliced introns, polyproteins) is unclear.
Collapse
Affiliation(s)
- Matej Vesteg
- Department of Biology and Ecology, Faculty of Natural Sciences, Matej Bel University, 974 01, Banská Bystrica, Slovakia
| | - Lucia Hadariová
- Biotechnology and Biomedicine Center of the Academy of Sciences and Charles University in Vestec (BIOCEV), 252 50, Vestec, Czech Republic.,Department of Parasitology, Faculty of Science, Charles University in Prague, 128 44, Prague, Czech Republic
| | - Anton Horváth
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University, 842 15, Bratislava, Slovakia
| | - Carlos E Estraño
- Department of Biological Sciences, University of Memphis, Memphis, TN, 38152-3560, USA
| | - Steven D Schwartzbach
- Department of Biological Sciences, University of Memphis, Memphis, TN, 38152-3560, USA
| | - Juraj Krajčovič
- Department of Biology, Faculty of Natural Sciences, University of ss. Cyril and Methodius, 917 01, Trnava, Slovakia
| |
Collapse
|
17
|
Ebenezer TE, Zoltner M, Burrell A, Nenarokova A, Novák Vanclová AMG, Prasad B, Soukal P, Santana-Molina C, O'Neill E, Nankissoor NN, Vadakedath N, Daiker V, Obado S, Silva-Pereira S, Jackson AP, Devos DP, Lukeš J, Lebert M, Vaughan S, Hampl V, Carrington M, Ginger ML, Dacks JB, Kelly S, Field MC. Transcriptome, proteome and draft genome of Euglena gracilis. BMC Biol 2019; 17:11. [PMID: 30732613 PMCID: PMC6366073 DOI: 10.1186/s12915-019-0626-8] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 01/08/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Photosynthetic euglenids are major contributors to fresh water ecosystems. Euglena gracilis in particular has noted metabolic flexibility, reflected by an ability to thrive in a range of harsh environments. E. gracilis has been a popular model organism and of considerable biotechnological interest, but the absence of a gene catalogue has hampered both basic research and translational efforts. RESULTS We report a detailed transcriptome and partial genome for E. gracilis Z1. The nuclear genome is estimated to be around 500 Mb in size, and the transcriptome encodes over 36,000 proteins and the genome possesses less than 1% coding sequence. Annotation of coding sequences indicates a highly sophisticated endomembrane system, RNA processing mechanisms and nuclear genome contributions from several photosynthetic lineages. Multiple gene families, including likely signal transduction components, have been massively expanded. Alterations in protein abundance are controlled post-transcriptionally between light and dark conditions, surprisingly similar to trypanosomatids. CONCLUSIONS Our data provide evidence that a range of photosynthetic eukaryotes contributed to the Euglena nuclear genome, evidence in support of the 'shopping bag' hypothesis for plastid acquisition. We also suggest that euglenids possess unique regulatory mechanisms for achieving extreme adaptability, through mechanisms of paralog expansion and gene acquisition.
Collapse
Affiliation(s)
- ThankGod E Ebenezer
- School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK.,Department of Biochemistry, University of Cambridge, Cambridge, CB2 1QW, UK
| | - Martin Zoltner
- School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Alana Burrell
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK
| | - Anna Nenarokova
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, and Faculty of Sciences, University of South Bohemia, 37005, České Budějovice, Czech Republic
| | - Anna M G Novák Vanclová
- Department of Parasitology, Faculty of Science,, Charles University, BIOCEV, 252 50, Vestec, Czech Republic
| | - Binod Prasad
- Cell Biology Division, Department of Biology, University of Erlangen-Nuremberg, 91058, Erlangen, Germany
| | - Petr Soukal
- Department of Parasitology, Faculty of Science,, Charles University, BIOCEV, 252 50, Vestec, Czech Republic
| | - Carlos Santana-Molina
- Centro Andaluz de Biología del Desarrollo (CABD)-CSIC, Pablo de Olavide University, Seville, Spain
| | - Ellis O'Neill
- Department of Plant Sciences, University of Oxford, Oxford, OX1 3RB, UK
| | - Nerissa N Nankissoor
- Division of Infectious Disease, Department of Medicine, University of Alberta, Edmonton, Alberta, T6G, Canada
| | - Nithya Vadakedath
- Cell Biology Division, Department of Biology, University of Erlangen-Nuremberg, 91058, Erlangen, Germany
| | - Viktor Daiker
- Cell Biology Division, Department of Biology, University of Erlangen-Nuremberg, 91058, Erlangen, Germany
| | - Samson Obado
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, NY, 10065, USA
| | - Sara Silva-Pereira
- Department of Infection Biology, Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| | - Andrew P Jackson
- Department of Infection Biology, Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| | - Damien P Devos
- Centro Andaluz de Biología del Desarrollo (CABD)-CSIC, Pablo de Olavide University, Seville, Spain
| | - Julius Lukeš
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, and Faculty of Sciences, University of South Bohemia, 37005, České Budějovice, Czech Republic
| | - Michael Lebert
- Cell Biology Division, Department of Biology, University of Erlangen-Nuremberg, 91058, Erlangen, Germany
| | - Sue Vaughan
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK
| | - Vladimίr Hampl
- Department of Parasitology, Faculty of Science,, Charles University, BIOCEV, 252 50, Vestec, Czech Republic
| | - Mark Carrington
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1QW, UK
| | - Michael L Ginger
- Department of Biological and Geographical Sciences, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK
| | - Joel B Dacks
- Division of Infectious Disease, Department of Medicine, University of Alberta, Edmonton, Alberta, T6G, Canada. .,Department of Life Sciences, The Natural History Museum, Cromwell Road, London, SW7 5BD, UK.
| | - Steven Kelly
- Department of Plant Sciences, University of Oxford, Oxford, OX1 3RB, UK.
| | - Mark C Field
- School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK. .,Biology Centre, Institute of Parasitology, Czech Academy of Sciences, and Faculty of Sciences, University of South Bohemia, 37005, České Budějovice, Czech Republic.
| |
Collapse
|
18
|
Makki A, Rada P, Žárský V, Kereïche S, Kováčik L, Novotný M, Jores T, Rapaport D, Tachezy J. Triplet-pore structure of a highly divergent TOM complex of hydrogenosomes in Trichomonas vaginalis. PLoS Biol 2019; 17:e3000098. [PMID: 30608924 PMCID: PMC6334971 DOI: 10.1371/journal.pbio.3000098] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 01/16/2019] [Accepted: 12/11/2018] [Indexed: 11/30/2022] Open
Abstract
Mitochondria originated from proteobacterial endosymbionts, and their transition to organelles was tightly linked to establishment of the protein import pathways. The initial import of most proteins is mediated by the translocase of the outer membrane (TOM). Although TOM is common to all forms of mitochondria, an unexpected diversity of subunits between eukaryotic lineages has been predicted. However, experimental knowledge is limited to a few organisms, and so far, it remains unsettled whether the triplet-pore or the twin-pore structure is the generic form of TOM complex. Here, we analysed the TOM complex in hydrogenosomes, a metabolically specialised anaerobic form of mitochondria found in the excavate Trichomonas vaginalis. We demonstrate that the highly divergent β-barrel T. vaginalis TOM (TvTom)40-2 forms a translocation channel to conduct hydrogenosomal protein import. TvTom40-2 is present in high molecular weight complexes, and their analysis revealed the presence of four tail-anchored (TA) proteins. Two of them, Tom36 and Tom46, with heat shock protein (Hsp)20 and tetratricopeptide repeat (TPR) domains, can bind hydrogenosomal preproteins and most likely function as receptors. A third subunit, Tom22-like protein, has a short cis domain and a conserved Tom22 transmembrane segment but lacks a trans domain. The fourth protein, hydrogenosomal outer membrane protein 19 (Homp19) has no known homology. Furthermore, our data indicate that TvTOM is associated with sorting and assembly machinery (Sam)50 that is involved in β-barrel assembly. Visualisation of TvTOM by electron microscopy revealed that it forms three pores and has an unconventional skull-like shape. Although TvTOM seems to lack Tom7, our phylogenetic profiling predicted Tom7 in free-living excavates. Collectively, our results suggest that the triplet-pore TOM complex, composed of three conserved subunits, was present in the last common eukaryotic ancestor (LECA), while receptors responsible for substrate binding evolved independently in different eukaryotic lineages. The highly divergent outer membrane translocase (TOM) from the Trichomonas hydrogenosome (an organelle related to mitochondria) is composed of conserved core and lineage-specific subunits, and has an unconventional skull-like triplet-pore structure. Mitochondria carry out many vital functions in the eukaryotic cells, from energy metabolism to programmed cell death. These organelles descended from bacterial endosymbionts, and during their evolution, the cell established a mechanism to transport nuclear-encoded proteins into mitochondria. Embedded in the mitochondrial outer membrane is a molecular machine, known as the translocase of the outer membrane (TOM) complex, that plays a key role in protein import and biogenesis of the organelle. Here, we provide evidence that the TOM complex of hydrogenosomes, a metabolically specialised anaerobic form of mitochondria in Trichomonas vaginalis, is composed of highly divergent core subunits and lineage-specific peripheral subunits. Despite the evolutionary distance, the T. vaginalis TOM (TvTOM) complex has a conserved triplet-pore structure but with a unique skull-like shape suggesting that the TOM in the early mitochondrion could have formed three pores. Our results contribute to a better understanding of the evolution and adaptation of protein import machinery in anaerobic forms of mitochondria.
Collapse
Affiliation(s)
- Abhijith Makki
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Prague, Czech Republic
| | - Petr Rada
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Prague, Czech Republic
| | - Vojtěch Žárský
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Prague, Czech Republic
| | - Sami Kereïche
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Lubomír Kováčik
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Marian Novotný
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Tobias Jores
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Doron Rapaport
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Jan Tachezy
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Prague, Czech Republic
- * E-mail:
| |
Collapse
|
19
|
Khatiwada B, Kautto L, Sunna A, Sun A, Nevalainen H. Nuclear transformation of the versatile microalga Euglena gracilis. ALGAL RES 2019. [DOI: 10.1016/j.algal.2018.11.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
20
|
Strauch SM, Grimm D, Corydon TJ, Krüger M, Bauer J, Lebert M, Wise P, Infanger M, Richter P. Current knowledge about the impact of microgravity on the proteome. Expert Rev Proteomics 2018; 16:5-16. [PMID: 30451542 DOI: 10.1080/14789450.2019.1550362] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Introduction: Microgravity (µg) is an extreme stressor for plants, animals, and humans and influences biological systems. Humans in space experience various health problems during and after a long-term stay in orbit. Various studies have demonstrated structural alterations and molecular biological changes within the cellular milieu of plants, bacteria, microorganisms, animals, and cells. These data were obtained by proteomics investigations applied in gravitational biology to elucidate changes in the proteome occurring when cells or organisms were exposed to real µg (r-µg) and simulated µg (s-µg). Areas covered: In this review, we summarize the current knowledge about the impact of µg on the proteome in plants, animals, and human cells. The literature suggests that µg impacts the proteome and thus various biological processes such as angiogenesis, apoptosis, cell adhesion, cytoskeleton, extracellular matrix proteins, migration, proliferation, stress response, and signal transduction. The changes in cellular function depend on the respective cell type. Expert commentary: This data is important for the topics of gravitational biology, tissue engineering, cancer research, and translational regenerative medicine. Moreover, it may provide new ideas for countermeasures to protect the health of future space travelers.
Collapse
Affiliation(s)
- Sebastian M Strauch
- a Department of Biology, Cell Biology , Friedrich-Alexander-University Erlangen-Nuremberg , Erlangen , Germany
| | - Daniela Grimm
- b Department of Biomedicine , Aarhus University , Aarhus C , Denmark.,c Clinic and Policlinic for Plastic, Aesthetic and Hand Surgery , Otto-von-Guericke-University , Magdeburg , Germany.,d Gravitational Biology and Translational Regenerative Medicine, Faculty of Medicine and Mechanical Engineering , Otto-von-Guericke-University Magdeburg , Magdeburg , Germany
| | - Thomas J Corydon
- b Department of Biomedicine , Aarhus University , Aarhus C , Denmark.,e Department of Ophthalmology , Aarhus University Hospital , Aarhus C , Denmark
| | - Marcus Krüger
- c Clinic and Policlinic for Plastic, Aesthetic and Hand Surgery , Otto-von-Guericke-University , Magdeburg , Germany
| | - Johann Bauer
- f Max-Planck-Institute of Biochemistry, Information Retrieval Services , Martinsried , Germany
| | - Michael Lebert
- a Department of Biology, Cell Biology , Friedrich-Alexander-University Erlangen-Nuremberg , Erlangen , Germany
| | - Petra Wise
- g Charles R. Drew University of Medicine and Science, AXIS Center , Los Angeles , CA , USA
| | - Manfred Infanger
- c Clinic and Policlinic for Plastic, Aesthetic and Hand Surgery , Otto-von-Guericke-University , Magdeburg , Germany
| | - Peter Richter
- a Department of Biology, Cell Biology , Friedrich-Alexander-University Erlangen-Nuremberg , Erlangen , Germany
| |
Collapse
|
21
|
Peculiar features of the plastids of the colourless alga Euglena longa and photosynthetic euglenophytes unveiled by transcriptome analyses. Sci Rep 2018; 8:17012. [PMID: 30451959 PMCID: PMC6242988 DOI: 10.1038/s41598-018-35389-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 11/02/2018] [Indexed: 12/17/2022] Open
Abstract
Euglenophytes are a familiar algal group with green alga-derived secondary plastids, but the knowledge of euglenophyte plastid function and evolution is still highly incomplete. With this in mind we sequenced and analysed the transcriptome of the non-photosynthetic species Euglena longa. The transcriptomic data confirmed the absence of genes for the photosynthetic machinery, but provided candidate plastid-localised proteins bearing N-terminal bipartite topogenic signals (BTSs) of the characteristic euglenophyte type. Further comparative analyses including transcriptome assemblies available for photosynthetic euglenophytes enabled us to unveil salient aspects of the basic euglenophyte plastid infrastructure, such as plastidial targeting of several proteins as C-terminal translational fusions with other BTS-bearing proteins or replacement of the conventional eubacteria-derived plastidial ribosomal protein L24 by homologs of archaeo-eukaryotic origin. Strikingly, no homologs of any key component of the TOC/TIC system and the plastid division apparatus are discernible in euglenophytes, and the machinery for intraplastidial protein targeting has been simplified by the loss of the cpSRP/cpFtsY system and the SEC2 translocon. Lastly, euglenophytes proved to encode a plastid-targeted homolog of the termination factor Rho horizontally acquired from a Lambdaproteobacteria-related donor. Our study thus further documents a substantial remodelling of the euglenophyte plastid compared to its green algal progenitor.
Collapse
|
22
|
Order of removal of conventional and nonconventional introns from nuclear transcripts of Euglena gracilis. PLoS Genet 2018; 14:e1007761. [PMID: 30365503 PMCID: PMC6221363 DOI: 10.1371/journal.pgen.1007761] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 11/07/2018] [Accepted: 10/12/2018] [Indexed: 11/27/2022] Open
Abstract
Nuclear genes of euglenids and marine diplonemids harbor atypical, nonconventional introns which are not observed in the genomes of other eukaryotes. Nonconventional introns do not have the conserved borders characteristic for spliceosomal introns or the sequence complementary to U1 snRNA at the 5' end. They form a stable secondary structure bringing together both exon/intron junctions, nevertheless, this conformation does not resemble the form of self-splicing or tRNA introns. In the genes studied so far, frequent nonconventional introns insertions at new positions have been observed, whereas conventional introns have been either found at the conserved positions, or simply lost. In this work, we examined the order of intron removal from Euglena gracilis transcripts of the tubA and gapC genes, which contain two types of introns: nonconventional and spliceosomal. The relative order of intron excision was compared for pairs of introns belonging to different types. Furthermore, intermediate products of splicing were analyzed using the PacBio Next Generation Sequencing system. The analysis led to the main conclusion that nonconventional introns are removed in a rapid way but later than spliceosomal introns. Moreover, the observed accumulation of transcripts with conventional introns removed and nonconventional present may suggest the existence of a time gap between the two types of splicing. The existence of conventional spliceosomal introns in genes of eukaryotic organisms is a well-known theorem. However, genes of the unicellular algae group, euglenids, contain also another type of introns, so-called nonconventional ones. They lack canonical borders, a feature most characteristic for conventional introns and form a stable secondary structure bringing together their ends. Along with the increasing popularity of whole genome studies, nonconventional introns were also disclosed in the genes of other protists, diplonemids. In this study we were particularly interested which introns–conventional or nonconventional–are removed earlier from euglenids’ pre-mRNA. To track this process we analyzed transcripts of the two Euglena gracilis genes. The relative order of intron excision was compared for pairs of introns belonging to different types. We also surveyed thousands of intermediate products of splicing using the Next-Generation Sequencing system. Summarizing the results of both experiments, we proved that spliceosomal introns are removed at an earlier stage of pre-mRNA maturation than nonconventional ones.
Collapse
|
23
|
Moore AN, McWatters DC, Hudson AJ, Russell AG. RNA-Seq employing a novel rRNA depletion strategy reveals a rich repertoire of snoRNAs in Euglena gracilis including box C/D and Ψ-guide RNAs targeting the modification of rRNA extremities. RNA Biol 2018; 15:1309-1318. [PMID: 30252600 PMCID: PMC6284569 DOI: 10.1080/15476286.2018.1526561] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 08/21/2018] [Accepted: 09/16/2018] [Indexed: 01/06/2023] Open
Abstract
Previous mRNA transcriptome studies of Euglena gracilis have shown that this organism possesses a large and diverse complement of protein coding genes; however, the study of non-coding RNA classes has been limited. The natural extensive fragmentation of the E. gracilis large subunit ribosomal RNA presents additional barriers to the identification of non-coding RNAs as size-selected small RNA libraries will be dominated by rRNA sequences. In this study we have developed a strategy to significantly reduce rRNA amplification prior to RNA-Seq analysis thereby producing a ncRNA library allowing for the identification of many new E. gracilis small RNAs. Library analysis reveals 113 unique new small nucleolar (sno) RNAs and a large collection of snoRNA isoforms, as well as the first significant collection of nuclear tRNAs in this organism. A 3' end AGAUGN consensus motif and conserved structural features can now be defined for E. gracilis pseudouridine guide RNAs. snoRNAs of both classes were identified that target modification of the 3' extremities of rRNAs utilizing predicted base-pairing interactions with internally transcribed spacers (ITS), providing insight into the timing of steps in rRNA maturation. Cumulatively, this represents the most comprehensive analysis of small ncRNAs in Euglena gracilis to date.
Collapse
Affiliation(s)
- Ashley N. Moore
- Department of Biological Sciences, and Alberta RNA Research and Training Institute, University of Lethbridge, Lethbridge, AB, Canada
| | - David C. McWatters
- Department of Biological Sciences, and Alberta RNA Research and Training Institute, University of Lethbridge, Lethbridge, AB, Canada
| | - Andrew J. Hudson
- Department of Biological Sciences, and Alberta RNA Research and Training Institute, University of Lethbridge, Lethbridge, AB, Canada
| | - Anthony G. Russell
- Department of Biological Sciences, and Alberta RNA Research and Training Institute, University of Lethbridge, Lethbridge, AB, Canada
| |
Collapse
|
24
|
Sun A, Hasan MT, Hobba G, Nevalainen H, Te'o J. Comparative assessment of the Euglena gracilis var. saccharophila variant strain as a producer of the β-1,3-glucan paramylon under varying light conditions. JOURNAL OF PHYCOLOGY 2018; 54:529-538. [PMID: 29889303 DOI: 10.1111/jpy.12758] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 05/08/2018] [Indexed: 05/16/2023]
Abstract
Euglena gracilis Z and a "sugar loving" variant strain E. gracilis var. saccharophila were investigated as producers of paramylon, a β-1,3-glucan polysaccharide with potential medicinal and industrial applications. The strains were grown under diurnal or dark growth conditions on a glucose-yeast extract medium supporting high-level paramylon production. Both strains produced the highest paramylon yields (7.4-8 g · L-1 , respectively) while grown in the dark, but the maximum yield was achieved faster by E. gracilis var. saccharophila (48 h vs. 72 h). The glucose-to-paramylon yield coefficient Ypar/glu = 0.46 ± 0.03 in the E. gracilis var. saccharophila cultivation, obtained in this study, is the highest reported to date. Proteomic analysis of the metabolic pathways provided molecular clues for the strain behavior observed during cultivation. For example, overexpression of enzymes in the gluconeogenesis/glycolysis pathways including fructokinase-1 and chloroplastic fructose-1,6-bisphosphatase (FBP) may have contributed to the faster rate of paramylon accumulation in E. gracilis var. saccharophila. Differentially expressed proteins in the early steps of chloroplastogenesis pathway including plastid uroporphyrinogen decarboxylases, photoreceptors, and a highly abundant (68-fold increase) plastid transketolase may have provided the E. gracilis var. saccharophila strain an advantage in paramylon production during diurnal cultivations. In conclusion, the variant strain E. gracilis var. saccharophila seems to be well suited for producing large amounts of paramylon. This work has also resulted in the identification of molecular targets for future improvement of paramylon production in E. gracilis, including the FBP and phosophofructokinase 1, the latter being a key regulator of glycolysis.
Collapse
Affiliation(s)
- Angela Sun
- Department of Molecular Sciences, Macquarie University, Sydney, New South Wales, Australia
- Biomolecular Discovery and Design Research Centre, Macquarie University, Sydney, New South Wales, Australia
| | - Mafruha Tasnin Hasan
- Department of Molecular Sciences, Macquarie University, Sydney, New South Wales, Australia
- Biomolecular Discovery and Design Research Centre, Macquarie University, Sydney, New South Wales, Australia
| | - Graham Hobba
- Agritechnology Pty Ltd, Borenore, New South Wales, Australia
| | - Helena Nevalainen
- Department of Molecular Sciences, Macquarie University, Sydney, New South Wales, Australia
- Biomolecular Discovery and Design Research Centre, Macquarie University, Sydney, New South Wales, Australia
| | - Junior Te'o
- Department of Molecular Sciences, Macquarie University, Sydney, New South Wales, Australia
- Biomolecular Discovery and Design Research Centre, Macquarie University, Sydney, New South Wales, Australia
- School of Earth, Environmental and Biological Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
| |
Collapse
|
25
|
Silva Pereira S, Jackson AP. UDP-glycosyltransferase genes in trypanosomatid genomes have diversified independently to meet the distinct developmental needs of parasite adaptations. BMC Evol Biol 2018; 18:31. [PMID: 29540192 PMCID: PMC5853035 DOI: 10.1186/s12862-018-1149-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 03/06/2018] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Trypanosomatid parasites such as Trypanosoma spp. and Leishmania spp. are a major source of infectious disease in humans and domestic animals worldwide. Fundamental to the host-parasite interactions of these potent pathogens are their cell surfaces, which are highly decorated with glycosylated proteins and other macromolecules. Trypanosomatid genomes contain large multi-copy gene families encoding UDP-dependent glycosyltransferases (UGTs), the primary role of which is cell-surface decoration. Here we report a phylogenetic analysis of UGTs from diverse trypanosomatid genomes, the aim of which was to understand the origin and evolution of their diversity. RESULTS By combining phylogenetics with analyses of recombination, and selection, we compared UGT repertoire, genomic context and sequence evolution across 19 trypanosomatids. We identified a UGT lineage present in stercorarian trypanosomes and a free-living kinetoplastid Bodo saltans that likely represents the ancestral state of this gene family. The phylogeny of parasite-specific genes shows that UGTs repertoire in Leishmaniinae and salivarian trypanosomes has expanded independently and with distinct evolutionary dynamics. In the former, the ancestral UGT repertoire was organised in a tandem array from which sporadic transpositions to telomeric regions occurred, allowing expansion most likely through telomeric exchange. In the latter, the ancestral UGT repertoire was comprised of seven subtelomeric lineages, two of which have greatly expanded potentially by gene transposition between these dynamic regions of the genome. CONCLUSIONS The phylogeny of UGTs confirms that they represent a substantial parasite-specific innovation, which has diversified independently in the distinct trypanosomatid lineages. Nonetheless, developmental regulation has been a strong driver of UGTs diversification in both African trypanosomes and Leishmania.
Collapse
Affiliation(s)
- Sara Silva Pereira
- Department of Infection Biology, Institute of Infection and Global Health, University of Liverpool, Liverpool Science Park Ic2, 146 Brownlow Hill, Liverpool, L3 5RF, UK.
| | - Andrew P Jackson
- Department of Infection Biology, Institute of Infection and Global Health, University of Liverpool, Liverpool Science Park Ic2, 146 Brownlow Hill, Liverpool, L3 5RF, UK
| |
Collapse
|
26
|
Freire ER, Moura DMN, Bezerra MJR, Xavier CC, Morais-Sobral MC, Vashisht AA, Rezende AM, Wohlschlegel JA, Sturm NR, de Melo Neto OP, Campbell DA. Trypanosoma brucei EIF4E2 cap-binding protein binds a homolog of the histone-mRNA stem-loop-binding protein. Curr Genet 2017; 64:821-839. [DOI: 10.1007/s00294-017-0795-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 12/01/2017] [Accepted: 12/08/2017] [Indexed: 12/12/2022]
|
27
|
Rockwell NC, Lagarias JC. Ferredoxin-dependent bilin reductases in eukaryotic algae: Ubiquity and diversity. JOURNAL OF PLANT PHYSIOLOGY 2017; 217. [PMID: 28641882 PMCID: PMC5603387 DOI: 10.1016/j.jplph.2017.05.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Linear tetrapyrroles (bilins) are produced from heme by heme oxygenase, usually forming biliverdin IXα (BV). Fungi and bacteria use BV as chromophore for phytochrome photoreceptors. Oxygenic photosynthetic organisms use BV as a substrate for ferredoxin-dependent bilin reductases (FDBRs), enzymes that produce diverse reduced bilins used as light-harvesting pigments in phycobiliproteins and as photoactive photoreceptor chromophores. Bilin biosynthesis is essential for phototrophic growth in Chlamydomonas reinhardtii despite the absence of phytochromes or phycobiliproteins in this organism, raising the possibility that bilins are more generally required for phototrophic growth by algae. We here leverage the recent expansion in available algal transcriptomes, cyanobacterial genomes, and environmental metagenomes to analyze the distribution and diversification of FDBRs. With the possible exception of euglenids, FDBRs are present in all photosynthetic eukaryotic lineages. Phylogenetic analysis demonstrates that algal FDBRs belong to the three previously recognized FDBR lineages. Our studies provide new insights into FDBR evolution and diversification.
Collapse
Affiliation(s)
- Nathan C Rockwell
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, United States
| | - J Clark Lagarias
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, United States.
| |
Collapse
|