1
|
Lyons CL, Cowan E, Nilsson O, Mohar M, Peña-Martínez P, Eliasson L, Lagerstedt JO. Apolipoprotein A-I priming via SR-BI and ABCA1 receptor binding upregulates mitochondrial metabolism to promote insulin secretion in INS-1E cells. PLoS One 2024; 19:e0311039. [PMID: 39546458 PMCID: PMC11567530 DOI: 10.1371/journal.pone.0311039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/11/2024] [Indexed: 11/17/2024] Open
Abstract
Apolipoprotein A-I (ApoA-I), the primary component of high-density lipoprotein (HDL) cholesterol primes β-cells to increase insulin secretion, however, the mechanisms involved are not fully defined. Here, we aimed to confirm ApoA-I receptors in β-cells and delineate ApoA-I-receptor pathways in β-cell insulin output. An LRC-TriCEPS experiment was performed using the INS-1E rat β-cell model and ApoA-I for unbiased identification of ApoA-I receptors. Identified targets, alongside ATP binding cassette transporter A1 (ABCA1) (included control) were silenced in the same cells, and insulin secretion (ELISA) and mitochondrial metabolism (seahorse) were assessed with/without ApoA-I priming. Human β-cell expression data was used to investigate ApoA-I receptor pathways in type 2 diabetes (T2D). Scavenger receptor B1 (SR-BI) and regulator of microtubule dynamics 1 were identified as ApoA-I targets. SR-BI or ABCA1 silencing abolished ApoA-I induced increases in insulin secretion. ApoA-I priming increased mitochondrial OXPHOS, however this was greatly attenuated with SR-BI or ABCA1 silencing. Supporting this, human β-cell expression data investigations found SR-BI and ABCA1 to be correlated with genes associated with mitochondrial pathways. In all, SR-BI and ABCA1 correlated with 73 and 3 genes differentially expressed in T2D, respectively. We confirm that SR-BI and ABCA1 are the primary β-cell ApoA-I receptors and demonstrate that ApoA-I priming enhances β-cell insulin secretion via the upregulation of mitochondrial metabolism through ApoA-I-SR-BI and ApoA-I-ABCA1 pathways. We propose that SR-BI relies on mitochondrial and exocytotic pathways, while ABCA1 depends solely on mitochondrial pathways. Our findings uncover new targets in ApoA-I β-cell mechanism for T2D therapies.
Collapse
Affiliation(s)
- Claire L. Lyons
- Department of Experimental Medical Sciences, Unit of Medical Protein Science, Lund University, Lund, Sweden
| | - Elaine Cowan
- Department of Clinical Sciences, Unit of Islet Cell Exocytosis, Lund University Diabetes Centre, Malmö, Sweden
| | - Oktawia Nilsson
- Department of Experimental Medical Sciences, Unit of Medical Protein Science, Lund University, Lund, Sweden
| | - Manca Mohar
- Department of Experimental Medical Sciences, Unit of Medical Protein Science, Lund University, Lund, Sweden
| | - Pablo Peña-Martínez
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Lena Eliasson
- Department of Clinical Sciences, Unit of Islet Cell Exocytosis, Lund University Diabetes Centre, Malmö, Sweden
| | - Jens O. Lagerstedt
- Department of Experimental Medical Sciences, Unit of Medical Protein Science, Lund University, Lund, Sweden
- Department of Clinical Sciences, Unit of Islet Cell Exocytosis, Lund University Diabetes Centre, Malmö, Sweden
| |
Collapse
|
2
|
Ferreira AM, Silva-Álvarez V, Kraev I, Uysal-Onganer P, Lange S. Extracellular vesicles and citrullination signatures are novel biomarkers in sturgeon (Acipenser gueldenstaedtii) during chronic stress due to seasonal temperature challenge. FISH & SHELLFISH IMMUNOLOGY 2024; 154:109974. [PMID: 39426640 DOI: 10.1016/j.fsi.2024.109974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 10/03/2024] [Accepted: 10/16/2024] [Indexed: 10/21/2024]
Abstract
Acipenser gueldenstaedtii is one of the most cultured sturgeon species worldwide and of considerable economic value for caviar production. There are though considerable challenges around chronic stress responses due to increased summer temperatures, impacting sturgeons' immune responses and their susceptibility to opportunistic infections. The identification of molecular and cellular pathways involved in stress responses may contribute to identifying novel biomarkers reflective of fish health status, crucial for successful sturgeon aquaculture. Protein citrullination is a calcium-catalysed post-translational modification caused by peptidylarginine deiminases (PADs), altering target protein function and affecting protein interactions in physiological and pathobiological processes. PADs can also modulate extracellular vesicle (EVs) profiles, which play critical roles in cellular communication, via transport of their cargoes (proteins, including post-translationally modified proteins, genetic material and micro-RNAs). This study identified differences in EV signatures, and citrullinated proteins in sera from winter and summer farmed sturegeons. EVs were significantly elevated in sera of the summer chronically stressed group. The citrullinated proteins and associated gene ontology (GO) pathways in sera and serum-EVs of chronically heat stressed A. gueldenstaedtii, showed some changes, with specific citrullinated serum protein targets including alpa-2-macroglobulin, alpha globin, calcium-dependent secretion activator, ceruloplasmin, chemokine XC receptor, complement C3 isoforms, complement C9, plectin, selenoprotein and vitellogenin. In serum-EVs, citrullinated protein cargoes identified only in the chronically stressed summer group included alpha-1-antiproteinase, apolipoprotein B-100, microtubule actin crosslinking factor and histone H3. Biological gene ontology (GO) pathways related to citrullinated serum proteins in the chronically stressed group were associated with innate and adaptive immune responses, stress responses and metabolic processes. In serum-EVs of the heat-stressed group the citrullinome associated with various metabolic GO pathways. In addition to modified citrullinated protein content, Serum-EVs from the stressed summer group showed significantly increased levels of the inflammatory associated miR-155 and the hypoxia-associated miR-210, but significantly reduced levels of the growth-associated miR-206. Our findings highlight roles for protein citrullination and EV signatures in response to chronic heat stress in A. gueldenstaedtii, indicating a trade-off in immunity versus growth and may be of value for sturgeon aquaculture.
Collapse
Affiliation(s)
- Ana María Ferreira
- Laboratorio de Inmunología, Instituto de Química Biológica, Facultad de Ciencias, Instituto de Higiene, UdelaR, Uruguay; Área de Inmunología, Departamento de Biociencias, Facultad de Química, Instituto de Higiene, UdelaR, Uruguay.
| | - Valeria Silva-Álvarez
- Laboratorio de Inmunología, Instituto de Química Biológica, Facultad de Ciencias, Instituto de Higiene, UdelaR, Uruguay; Área de Inmunología, Departamento de Biociencias, Facultad de Química, Instituto de Higiene, UdelaR, Uruguay.
| | - Igor Kraev
- Electron Microscopy Suite, Faculty of Science, Technology, Engineering and Mathematics, Open University, Milton Keynes MK7 6AA, UK.
| | - Pinar Uysal-Onganer
- Cancer Mechanisms and Biomarkers Research Group, School of Life Sciences, University of Westminster, London W1W 6UW, UK.
| | - Sigrun Lange
- Pathobiology and Extracellular Vesicles Research Group, School of Life Sciences, University of Westminster, London W1W 6UW, UK.
| |
Collapse
|
3
|
Chunowski P, Migda B, Madetko-Alster N, Migda A, Kutyłowski M, Królicki L, Alster P. The possible connection between neutrophil-to-high-density lipoprotein ratio and cerebral perfusion in clinically established corticobasal syndrome: a pilot study. Front Neurol 2024; 15:1464524. [PMID: 39421569 PMCID: PMC11484016 DOI: 10.3389/fneur.2024.1464524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 09/16/2024] [Indexed: 10/19/2024] Open
Abstract
Introduction Progressive supranuclear palsy (PSP) and corticobasal syndrome (CBS) are tauopathic atypical parkinsonisms. Given their overlap in terms of clinical manifestation, there is growing interest in the mechanisms leading to these entities. Materials and methods In total, 71 patients were included in the study, 19 of whom were clinically diagnosed with CBS, 37 with PSP, and 15 with Parkinson's disease (PD). The mean ages of the participants were 72.8, 72.9, and 64.0 years, respectively, and the disease duration varied from 3 to 6 years. Each individual underwent blood collection. Morphological and biochemical evaluation of blood samples was performed to analyze the neutrophil-to-lymphocyte ratio (NLR), platelet-to-lymphocyte ratio (PLR), and neutrophil-to-high-density lipoprotein ratio (NHR). A single-photon emission computed tomography (SPECT) with technetium-99m hexamethylpropyleneamine oxime (99Tc-HMPAO) tracer was used to assess perfusion in two regions of interest (ROI): the thalamus and insula. Using Pearson correlation to assess the linear relationship between NHR and perfusion in the insula and thalamus for CBS, PSP, and PD patients, the authors intended to verify possible correlations between NLR, PLR, and NHR and perfusion in the indicated ROIs. Results The study revealed a negative linear correlation between NHR and perfusion of both the left (Insula L; R = -0.59) and right (Insula R; R = -0.58) insula regions. Similar to the insula, a linear correlation between NHR and activity in both the left (Thalamus L) and right (Thalamus R) thalamus regions in CBS subjects with a relatively stronger correlation in the right thalamus (R = -0.64 vs. R = -0.58) was found. These observations were not confirmed in PSP and PD patients. Conclusion Simultaneously using non-specific parameters for peripheral inflammation (NLR, PLR, and NHR) and perfusion, SPECT may be an interesting beginning point for further analysis of inflammatory disease mechanisms. To the best of our knowledge, this is the first study to address the potential correlation between the peripheral neuroinflammatory markers NLR, PLR, and NHR and perfusion disturbances in particular ROIs.
Collapse
Affiliation(s)
- Patryk Chunowski
- Department of Neurology, Medical University of Warsaw, Warsaw, Poland
| | - Bartosz Migda
- Diagnostic Ultrasound Lab, Department of Pediatric Radiology, Medical University of Warsaw, Warsaw, Poland
| | | | - Anna Migda
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Warsaw, Warsaw, Poland
| | | | - Leszek Królicki
- Department of Nuclear Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Piotr Alster
- Department of Neurology, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
4
|
Walker S, Sahinaho UM, Vekki S, Sulonen M, Laukkanen JA, Sipilä S, Peltonen H, Laakkonen E, Lehti M. Two-week step-reduction has limited negative effects on physical function and metabolic health in older adults. Eur J Appl Physiol 2024; 124:2019-2033. [PMID: 38383794 PMCID: PMC11199225 DOI: 10.1007/s00421-024-05426-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 01/21/2024] [Indexed: 02/23/2024]
Abstract
PURPOSE This study determined the effects of a 2-week step-reduction period followed by 4-week exercise rehabilitation on physical function, body composition, and metabolic health in 70-80-year-olds asymptomatic for injury/illness. METHODS A parallel-group randomized controlled trial (ENDURE-study, NCT04997447) was used, where 66 older adults (79% female) were randomized to either intervention or control group. The intervention group reduced daily steps to < 2000, monitored by accelerometer, for two weeks (Period I) and then step-reduction requirement was removed with an additional exercise rehabilitation 4 times per week for 4 weeks (Period II). The control group continued their habitual physical activity throughout with no additional exercise intervention. Laboratory tests were performed at baseline, after Period I and Period II. The primary outcome measure was leg lean mass (LLM). Secondary outcomes included total lean and fat mass, blood glucose and insulin concentration, LDL cholesterol and HDL cholesterol concentration, maximal isometric leg press force (MVC), and chair rise and stair climb performance. RESULTS LLM remained unchanged in both groups and no changes occurred in physical function nor body composition in the intervention group in Period I. HDL cholesterol concentration reduced after Period I (from 1.62 ± 0.37 to 1.55 ± 0.36 mmol·L-1, P = 0.017) and returned to baseline after Period II (1.66 ± 0.38 mmol·L-1) in the intervention group (Time × Group interaction: P = 0.065). MVC improved after Period II only (Time × Group interaction: P = 0.009, Δ% = 15%, P < 0.001). CONCLUSION Short-term step-reduction in healthy older adults may not be as detrimental to health or physical function as currently thought.
Collapse
Affiliation(s)
- Simon Walker
- Faculty of Sport and Health Sciences, University of Jyväskylä, Room VIV225, 40014-FI, Jyväskylä, Finland.
- NeuroMuscular Research Center, University of Jyväskylä, Jyväskylä, Finland.
| | - Ulla-Maria Sahinaho
- Faculty of Sport and Health Sciences, University of Jyväskylä, Room VIV225, 40014-FI, Jyväskylä, Finland
| | - Sakari Vekki
- Faculty of Sport and Health Sciences, University of Jyväskylä, Room VIV225, 40014-FI, Jyväskylä, Finland
| | - Mari Sulonen
- Faculty of Sport and Health Sciences, University of Jyväskylä, Room VIV225, 40014-FI, Jyväskylä, Finland
| | - Jari A Laukkanen
- Institute of Clinical Medicine, Department of Medicine, University of Eastern Finland, Kuopio, Finland
- Department of Medicine, Wellbeing Services County of Central Finland, Jyväskylä, Finland
| | - Sarianna Sipilä
- Faculty of Sport and Health Sciences, University of Jyväskylä, Room VIV225, 40014-FI, Jyväskylä, Finland
- Gerontology Research Center, University of Jyväskylä, Jyväskylä, Finland
| | - Heikki Peltonen
- JAMK University of Applied Science, The School of Business, Sport Business, Jyväskylä, Finland
| | - Eija Laakkonen
- Faculty of Sport and Health Sciences, University of Jyväskylä, Room VIV225, 40014-FI, Jyväskylä, Finland
- Gerontology Research Center, University of Jyväskylä, Jyväskylä, Finland
| | - Maarit Lehti
- Faculty of Sport and Health Sciences, University of Jyväskylä, Room VIV225, 40014-FI, Jyväskylä, Finland
| |
Collapse
|
5
|
Giacona JM, Petric UB, Kositanurit W, Wang J, Saldanha S, Young BE, Khan G, Connelly MA, Smith SA, Rohatgi A, Vongpatanasin W. HDL-C and apolipoprotein A-I are independently associated with skeletal muscle mitochondrial function in healthy humans. Am J Physiol Heart Circ Physiol 2024; 326:H916-H922. [PMID: 38334968 PMCID: PMC11279711 DOI: 10.1152/ajpheart.00017.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/01/2024] [Accepted: 02/04/2024] [Indexed: 02/10/2024]
Abstract
Prior animal and cell studies have demonstrated a direct role of high-density lipoprotein (HDL) and apolipoprotein A-I (ApoA-I) in enhancing skeletal muscle mitochondrial function and exercise capacity. However, the relevance of these animal and cell investigations in humans remains unknown. Therefore, a cross-sectional study was conducted in 48 adults (67% female, 8% Black participants, age 39 ± 15.4 yr old) to characterize the associations between HDL measures, ApoA-I, and muscle mitochondrial function. Forearm muscle oxygen recovery time (tau) from postexercise recovery kinetics was used to assess skeletal muscle mitochondrial function. Lipoprotein measures were assessed by nuclear magnetic resonance. HDL efflux capacity was assessed using J774 macrophages, radiolabeled cholesterol, and apolipoprotein B-depleted plasma both with and without added cyclic adenosine monophosphate. In univariate analyses, faster skeletal muscle oxygen recovery time (lower tau) was significantly associated with higher levels of HDL cholesterol (HDL-C), ApoA-I, and larger mean HDL size, but not HDL cholesterol efflux capacity. Slower recovery time (higher tau) was positively associated with body mass index (BMI) and fasting plasma glucose (FPG). In multivariable linear regression analyses, higher levels of HDL-C and ApoA-I, as well as larger HDL size, were independently associated with faster skeletal muscle oxygen recovery times that persisted after adjusting for BMI and FPG (all P < 0.05). In conclusion, higher levels of HDL-C, ApoA-I, and larger mean HDL size were independently associated with enhanced skeletal muscle mitochondrial function in healthy humans.NEW & NOTEWORTHY Our study provides the first direct evidence supporting the beneficial role of HDL-C and ApoA-I on enhanced skeletal muscle mitochondrial function in healthy young to middle-aged humans without cardiometabolic disease.
Collapse
Affiliation(s)
- John M Giacona
- Hypertension Section, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, United States
- Department of Applied Clinical Research, School of Health Professions, University of Texas Southwestern Medical Center, Dallas, Texas, United States
- Cardiology Division, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Ursa B Petric
- Hypertension Section, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Weerapat Kositanurit
- Hypertension Section, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, United States
- Department of Physiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Jijia Wang
- Department of Applied Clinical Research, School of Health Professions, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Suzanne Saldanha
- Cardiology Division, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Benjamin E Young
- Department of Applied Clinical Research, School of Health Professions, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Ghazi Khan
- Hypertension Section, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | | | - Scott A Smith
- Department of Applied Clinical Research, School of Health Professions, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Anand Rohatgi
- Cardiology Division, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Wanpen Vongpatanasin
- Hypertension Section, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, United States
- Cardiology Division, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| |
Collapse
|
6
|
Carmo HRP, Bonilha I, Barreto J, Tognolini M, Zanotti I, Sposito AC. High-Density Lipoproteins at the Interface between the NLRP3 Inflammasome and Myocardial Infarction. Int J Mol Sci 2024; 25:1290. [PMID: 38279290 PMCID: PMC10816227 DOI: 10.3390/ijms25021290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/10/2024] [Accepted: 01/18/2024] [Indexed: 01/28/2024] Open
Abstract
Despite significant therapeutic advancements, morbidity and mortality following myocardial infarction (MI) remain unacceptably high. This clinical challenge is primarily attributed to two significant factors: delayed reperfusion and the myocardial injury resulting from coronary reperfusion. Following reperfusion, there is a rapid intracellular pH shift, disruption of ionic balance, heightened oxidative stress, increased activity of proteolytic enzymes, initiation of inflammatory responses, and activation of several cell death pathways, encompassing apoptosis, necroptosis, and pyroptosis. The inflammatory cell death or pyroptosis encompasses the activation of the intracellular multiprotein complex known as the NLRP3 inflammasome. High-density lipoproteins (HDL) are endogenous particles whose components can either promote or mitigate the activation of the NLRP3 inflammasome. In this comprehensive review, we explore the role of inflammasome activation in the context of MI and provide a detailed analysis of how HDL can modulate this process.
Collapse
Affiliation(s)
- Helison R. P. Carmo
- Atherosclerosis and Vascular Biology Laboratory (Aterolab), Division of Cardiology, State University of Campinas (UNICAMP), Campinas 13084-971, SP, Brazil; (H.R.P.C.); (I.B.); (J.B.); (A.C.S.)
| | - Isabella Bonilha
- Atherosclerosis and Vascular Biology Laboratory (Aterolab), Division of Cardiology, State University of Campinas (UNICAMP), Campinas 13084-971, SP, Brazil; (H.R.P.C.); (I.B.); (J.B.); (A.C.S.)
| | - Joaquim Barreto
- Atherosclerosis and Vascular Biology Laboratory (Aterolab), Division of Cardiology, State University of Campinas (UNICAMP), Campinas 13084-971, SP, Brazil; (H.R.P.C.); (I.B.); (J.B.); (A.C.S.)
| | | | - Ilaria Zanotti
- Department of Food and Drug, University of Parma, 43124 Parma, Italy;
| | - Andrei C. Sposito
- Atherosclerosis and Vascular Biology Laboratory (Aterolab), Division of Cardiology, State University of Campinas (UNICAMP), Campinas 13084-971, SP, Brazil; (H.R.P.C.); (I.B.); (J.B.); (A.C.S.)
| |
Collapse
|
7
|
Lund J, Lähteenmäki E, Eklund T, Bakke HG, Thoresen GH, Pirinen E, Jauhiainen M, Rustan AC, Lehti M. Human HDL subclasses modulate energy metabolism in skeletal muscle cells. J Lipid Res 2024; 65:100481. [PMID: 38008260 PMCID: PMC10770614 DOI: 10.1016/j.jlr.2023.100481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/20/2023] [Accepted: 11/22/2023] [Indexed: 11/28/2023] Open
Abstract
In addition to its antiatherogenic role, HDL reportedly modulates energy metabolism at the whole-body level. HDL functionality is associated with its structure and composition, and functional activities can differ between HDL subclasses. Therefore, we studied if HDL2 and HDL3, the two major HDL subclasses, are able to modulate energy metabolism of skeletal muscle cells. Differentiated mouse and primary human skeletal muscle myotubes were used to investigate the influences of human HDL2 and HDL3 on glucose and fatty uptake and oxidation. HDL-induced changes in lipid distribution and mRNA expression of genes related to energy substrate metabolism, mitochondrial function, and HDL receptors were studied with human myotubes. Additionally, we examined the effects of apoA-I and discoidal, reconstituted HDL particles on substrate metabolism. In mouse myotubes, HDL subclasses strongly enhanced glycolysis upon high and low glucose concentrations. HDL3 caused a minor increase in ATP-linked respiration upon glucose conditioning but HDL2 improved complex I-mediated mitochondrial respiration upon fatty acid treatment. In human myotubes, glucose metabolism was attenuated but fatty acid uptake and oxidation were markedly increased by both HDL subclasses, which also increased mRNA expression of genes related to fatty acid metabolism and HDL receptors. Finally, both HDL subclasses induced incorporation of oleic acid into different lipid classes. These results, demonstrating that HDL subclasses enhance fatty acid oxidation in human myotubes but improve anaerobic metabolism in mouse myotubes, support the role of HDL as a circulating modulator of energy metabolism. Exact mechanisms and components of HDL causing the change, require further investigation.
Collapse
Affiliation(s)
- Jenny Lund
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Emilia Lähteenmäki
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland.
| | - Tiia Eklund
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | - Hege G Bakke
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway
| | - G Hege Thoresen
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway; Department of Pharmacology, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Eija Pirinen
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Research Unit for Biomedicine and Internal Medicine, Faculty of Medicine, University of Oulu, Oulu, Finland; Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland; Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Matti Jauhiainen
- Department of Public Health and Welfare, Minerva Foundation Institute for Medical Research and Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Arild C Rustan
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Maarit Lehti
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| |
Collapse
|
8
|
Liu IF, Lin TC, Wang SC, Yen CH, Li CY, Kuo HF, Hsieh CC, Chang CY, Chang CR, Chen YH, Liu YR, Lee TY, Huang CY, Hsu CH, Lin SJ, Liu PL. Long-term administration of Western diet induced metabolic syndrome in mice and causes cardiac microvascular dysfunction, cardiomyocyte mitochondrial damage, and cardiac remodeling involving caveolae and caveolin-1 expression. Biol Direct 2023; 18:9. [PMID: 36879344 PMCID: PMC9987103 DOI: 10.1186/s13062-023-00363-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 02/21/2023] [Indexed: 03/08/2023] Open
Abstract
BACKGROUND Long-term consumption of an excessive fat and sucrose diet (Western diet, WD) has been considered a risk factor for metabolic syndrome (MS) and cardiovascular disease. Caveolae and caveolin-1 (CAV-1) proteins are involved in lipid transport and metabolism. However, studies investigating CAV-1 expression, cardiac remodeling, and dysfunction caused by MS, are limited. This study aimed to investigate the correlation between the expression of CAV-1 and abnormal lipid accumulation in the endothelium and myocardium in WD-induced MS, and the occurrence of myocardial microvascular endothelial cell dysfunction, myocardial mitochondrial remodeling, and damage effects on cardiac remodeling and cardiac function. METHODS We employed a long-term (7 months) WD feeding mouse model to measure the effect of MS on caveolae/vesiculo-vacuolar organelle (VVO) formation, lipid deposition, and endothelial cell dysfunction in cardiac microvascular using a transmission electron microscopy (TEM) assay. CAV-1 and endothelial nitric oxide synthase (eNOS) expression and interaction were evaluated using real-time polymerase chain reaction, Western blot, and immunostaining. Cardiac mitochondrial shape transition and damage, mitochondria-associated endoplasmic reticulum membrane (MAM) disruption, cardiac function change, caspase-mediated apoptosis pathway activation, and cardiac remodeling were examined using TEM, echocardiography, immunohistochemistry, and Western blot assay. RESULTS Our study demonstrated that long-term WD feeding caused obesity and MS in mice. In mice, MS increased caveolae and VVO formation in the microvascular system and enhanced CAV-1 and lipid droplet binding affinity. In addition, MS caused a significant decrease in eNOS expression, vascular endothelial cadherin, and β-catenin interactions in cardiac microvascular endothelial cells, accompanied by impaired vascular integrity. MS-induced endothelial dysfunction caused massive lipid accumulation in the cardiomyocytes, leading to MAM disruption, mitochondrial shape transition, and damage. MS promoted brain natriuretic peptide expression and activated the caspase-dependent apoptosis pathway, leading to cardiac dysfunction in mice. CONCLUSION MS resulted in cardiac dysfunction, remodeling by regulating caveolae and CAV-1 expression, and endothelial dysfunction. Lipid accumulation and lipotoxicity caused MAM disruption and mitochondrial remodeling in cardiomyocytes, leading to cardiomyocyte apoptosis and cardiac dysfunction and remodeling.
Collapse
Affiliation(s)
- I-Fan Liu
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, 112304, Taiwan.,Heart Center, Cheng Hsin General Hospital, Taipei, 112401, Taiwan
| | - Tzu-Chieh Lin
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807378, Taiwan.,Division of Cardiology, Department of Internal Medicine, Kaohsiung Medical University, Kaohsiung, 807378, Taiwan
| | - Shu-Chi Wang
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung, 807378, Taiwan
| | - Chia-Hung Yen
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, 807378, Taiwan
| | - Chia-Yang Li
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807378, Taiwan
| | - Hsuan-Fu Kuo
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Medical University, Kaohsiung, 807378, Taiwan.,Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807378, Taiwan.,Department of Internal Medicine, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, 807378, Taiwan.,Department of Internal Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807378, Taiwan
| | - Chong-Chao Hsieh
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807378, Taiwan.,Division of Cardiovascular Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, 807378, Taiwan.,Department of Surgery, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807378, Taiwan
| | - Chia-Yuan Chang
- Department of Mechanical Engineering, National Cheng Kung University, Tainan, 701401, Taiwan
| | - Chuang-Rung Chang
- Department of Medical Science, National Tsing Hua University, Hsinchu, 300044, Taiwan.,Institute of Biotechnology, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Yung-Hsiang Chen
- Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University, Taichung, 404333, Taiwan.,Department of Psychology, College of Medical and Health Science, Asia University, Taichung, 413305, Taiwan
| | - Yu-Ru Liu
- Department of Respiratory Therapy, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807378, Taiwan
| | - Tsung-Ying Lee
- Department of Respiratory Therapy, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807378, Taiwan
| | - Chi-Yuan Huang
- Department of Respiratory Therapy, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807378, Taiwan
| | - Chih-Hsin Hsu
- Department of Internal Medicine, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University, Tainan, 701401, Taiwan.
| | - Shing-Jong Lin
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, 112304, Taiwan. .,Cardiovascular Research Center, National Yang Ming Chiao Tung University, Taipei, 112304, Taiwan. .,Department of Medical Research, Taipei Veterans General Hospital, Taipei, 112201, Taiwan. .,Taipei Heart Institute, Taipei Medical University, Taipei, 110301, Taiwan. .,Heart Center, Cheng-Hsin General Hospital, Taipei, 112401, Taiwan.
| | - Po-Len Liu
- Department of Respiratory Therapy, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807378, Taiwan. .,Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, 807378, Taiwan. .,Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung, 807378, Taiwan.
| |
Collapse
|
9
|
Werbner B, Tavakoli-Rouzbehani OM, Fatahian AN, Boudina S. The dynamic interplay between cardiac mitochondrial health and myocardial structural remodeling in metabolic heart disease, aging, and heart failure. THE JOURNAL OF CARDIOVASCULAR AGING 2023; 3:9. [PMID: 36742465 PMCID: PMC9894375 DOI: 10.20517/jca.2022.42] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
This review provides a holistic perspective on the bi-directional relationship between cardiac mitochondrial dysfunction and myocardial structural remodeling in the context of metabolic heart disease, natural cardiac aging, and heart failure. First, a review of the physiologic and molecular drivers of cardiac mitochondrial dysfunction across a range of increasingly prevalent conditions such as metabolic syndrome and cardiac aging is presented, followed by a general review of the mechanisms of mitochondrial quality control (QC) in the heart. Several important mechanisms by which cardiac mitochondrial dysfunction triggers or contributes to structural remodeling of the heart are discussed: accumulated metabolic byproducts, oxidative damage, impaired mitochondrial QC, and mitochondrial-mediated cell death identified as substantial mechanistic contributors to cardiac structural remodeling such as hypertrophy and myocardial fibrosis. Subsequently, the less studied but nevertheless important reverse relationship is explored: the mechanisms by which cardiac structural remodeling feeds back to further alter mitochondrial bioenergetic function. We then provide a condensed pathogenesis of several increasingly important clinical conditions in which these relationships are central: diabetic cardiomyopathy, age-associated declines in cardiac function, and the progression to heart failure, with or without preserved ejection fraction. Finally, we identify promising therapeutic opportunities targeting mitochondrial function in these conditions.
Collapse
Affiliation(s)
- Benjamin Werbner
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT 84112, USA
| | | | - Amir Nima Fatahian
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT 84112, USA
| | - Sihem Boudina
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
10
|
Inoue A, Piao L, Yue X, Huang Z, Hu L, Wu H, Meng X, Xu W, Yu C, Sasaki T, Itakura K, Umegaki H, Kuzuya M, Cheng XW. Young bone marrow transplantation prevents aging-related muscle atrophy in a senescence-accelerated mouse prone 10 model. J Cachexia Sarcopenia Muscle 2022; 13:3078-3090. [PMID: 36058630 PMCID: PMC9745469 DOI: 10.1002/jcsm.13058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 06/22/2022] [Accepted: 07/04/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Young bone marrow transplantation (YBMT) has been shown to stimulate vascular regeneration in pathological conditions, including ageing. Here, we investigated the benefits and mechanisms of the preventive effects of YBMT on loss of muscle mass and function in a senescence-associated mouse prone 10 (SAMP10) model, with a special focus on the role of growth differentiation factor 11 (GDF-11). METHODS Nine-week-old male SAMP10 mice were randomly assigned to a non-YBMT group (n = 6) and a YBMT group (n = 7) that received the bone marrow of 8-week-old C57BL/6 mice. RESULTS Compared to the non-YBMT mice, the YBMT mice showed the following significant increases (all P < 0.05 in 6-7 mice): endurance capacity (>61.3%); grip strength (>37.9%), percentage of slow myosin heavy chain fibres (>14.9-15.9%). The YBMT also increased the amounts of proteins or mRNAs for insulin receptor substrate 1, p-Akt, p-extracellular signal-regulated protein kinase1/2, p-mammalian target of rapamycin, Bcl-2, peroxisom proliferator-activated receptor-γ coactivator (PGC-1α), plus cytochrome c oxidase IV and the numbers of proliferating cells (n = 5-7, P < 0.05) and CD34+/integrin-α7+ muscle stem cells (n = 5-6, P < 0.05). The YMBT significantly decreased the levels of gp91phox, caspase-9 proteins and apoptotic cells (n = 5-7, P < 0.05) in both muscles; these beneficial changes were diminished by the blocking of GDF-11 (n = 5-6, P < 0.05). An administration of mouse recombinant GDF-11 improved the YBMT-mediated muscle benefits (n = 5-6, P < 0.05). Cell therapy with young bone marrow from green fluorescent protein (GFP) transgenic mice exhibited GFP+ myofibres in aged muscle tissues. CONCLUSIONS These findings suggest that YBMT can prevent muscle wasting and dysfunction by mitigating apoptosis and proliferation via a modulation of GDF-11 signalling and mitochondrial dysfunction in SAMP10 mice.
Collapse
Affiliation(s)
- Aiko Inoue
- Institute of Innovation for Future Society, Nagoya University Graduate School of Medicine, Nagoya, Aichiken, Japan.,Department of Community Healthcare and Geriatrics, Nagoya University Graduate School of Medicine, Nagoya, Aichiken, Japan
| | - Limei Piao
- Department of Cardiology and Hypertension, Jilin Provincial Key Laboratory of Stress and Cardiovascular Disease, Yanbian University Hospital, Yanji, Jilin, PR China
| | - Xueling Yue
- Department of Cardiology and Hypertension, Jilin Provincial Key Laboratory of Stress and Cardiovascular Disease, Yanbian University Hospital, Yanji, Jilin, PR China
| | - Zhe Huang
- Department of Human Cord Applied Cell Therapy, Nagoya University Graduate School of Medicine, Nagoya, Aichiken, Japan
| | - Lina Hu
- Department of Public Health, Guilin Medical College, Guilin, Guangxi, PR China
| | - Hongxian Wu
- Shanghai Institute of Cardiovascular Disease, Zhongshan Hospital, Fudan University, Shanghai, PR China
| | - Xiangkun Meng
- Department of Community Healthcare and Geriatrics, Nagoya University Graduate School of Medicine, Nagoya, Aichiken, Japan
| | - Wenhu Xu
- Department of Cardiology and Hypertension, Jilin Provincial Key Laboratory of Stress and Cardiovascular Disease, Yanbian University Hospital, Yanji, Jilin, PR China
| | - Chenglin Yu
- Department of Cardiology and Hypertension, Jilin Provincial Key Laboratory of Stress and Cardiovascular Disease, Yanbian University Hospital, Yanji, Jilin, PR China
| | - Takeshi Sasaki
- Department of Anatomy and Neuroscience, Hamamatsu University School of Medicine, Hamamatsu, Shizuokaken, Japan
| | - Kohji Itakura
- Division for Medical Research Engineering, Nagoya University Graduate School of Medicine, Nagoya, Aichiken, Japan
| | - Hiroyuki Umegaki
- Institute of Innovation for Future Society, Nagoya University Graduate School of Medicine, Nagoya, Aichiken, Japan.,Department of Community Healthcare and Geriatrics, Nagoya University Graduate School of Medicine, Nagoya, Aichiken, Japan
| | - Masafumi Kuzuya
- Institute of Innovation for Future Society, Nagoya University Graduate School of Medicine, Nagoya, Aichiken, Japan.,Department of Community Healthcare and Geriatrics, Nagoya University Graduate School of Medicine, Nagoya, Aichiken, Japan
| | - Xian Wu Cheng
- Department of Cardiology and Hypertension, Jilin Provincial Key Laboratory of Stress and Cardiovascular Disease, Yanbian University Hospital, Yanji, Jilin, PR China
| |
Collapse
|
11
|
Braczko A, Kutryb-Zajac B, Jedrzejewska A, Krol O, Mierzejewska P, Zabielska-Kaczorowska M, Slominska EM, Smolenski RT. Cardiac Mitochondria Dysfunction in Dyslipidemic Mice. Int J Mol Sci 2022; 23:ijms231911488. [PMID: 36232794 PMCID: PMC9570391 DOI: 10.3390/ijms231911488] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/19/2022] [Accepted: 09/23/2022] [Indexed: 11/16/2022] Open
Abstract
Dyslipidemia triggers many severe pathologies, including atherosclerosis and chronic inflammation. Several lines of evidence, including our studies, have suggested direct effects of dyslipidemia on cardiac energy metabolism, but details of these effects are not clear. This study aimed to investigate how mild dyslipidemia affects cardiac mitochondria function and vascular nucleotide metabolism. The analyses were performed in 3- and 6-month-old knock-out mice for low-density lipoprotein receptor (Ldlr−/−) and compared to wild-type C57Bl/6J mice (WT). Cardiac isolated mitochondria function was analyzed using Seahorse metabolic flux analyzer. The mechanical function of the heart was measured using echocardiography. The levels of fusion, fission, and mitochondrial biogenesis proteins were determined by ELISA kits, while the cardiac intracellular nucleotide concentration and vascular pattern of nucleotide metabolism ecto-enzymes were analyzed using reverse-phase high-performance liquid chromatography. We revealed the downregulation of mitochondrial complex I, together with a decreased activity of citrate synthase (CS), reduced levels of nuclear respiratory factor 1 and mitochondrial fission 1 protein, as well as lower intracellular adenosine and guanosine triphosphates’ pool in the hearts of 6-month Ldlr−/− mice vs. age-matched WT. The analysis of vascular ecto-enzyme pattern revealed decreased rate of extracellular adenosine monophosphate hydrolysis and increased ecto-adenosine deaminase activity (eADA) in 6-month Ldlr−/− vs. WT mice. No changes were observed in echocardiography parameters in both age groups of Ldlr−/− mice. Younger hyperlipidemic mice revealed no differences in cardiac mitochondria function, CS activity, intracellular nucleotides, mitochondrial biogenesis, and dynamics but exhibited minor changes in vascular eADA activity vs. WT. This study revealed that dysfunction of cardiac mitochondria develops during prolonged mild hyperlipidemia at the time point corresponding to the formation of early vascular alterations.
Collapse
Affiliation(s)
- Alicja Braczko
- Department of Biochemistry, Medical University of Gdansk, Debinki 1 St., 80-211 Gdansk, Poland
| | - Barbara Kutryb-Zajac
- Department of Biochemistry, Medical University of Gdansk, Debinki 1 St., 80-211 Gdansk, Poland
- Correspondence: (B.K.-Z.); (R.T.S.); Tel.: +48-58-349-14-14 (B.K.-Z.); +48-58-349-14-60 (R.T.S.)
| | - Agata Jedrzejewska
- Department of Biochemistry, Medical University of Gdansk, Debinki 1 St., 80-211 Gdansk, Poland
| | - Oliwia Krol
- Department of Biochemistry, Medical University of Gdansk, Debinki 1 St., 80-211 Gdansk, Poland
| | - Paulina Mierzejewska
- Department of Biochemistry, Medical University of Gdansk, Debinki 1 St., 80-211 Gdansk, Poland
| | - Magdalena Zabielska-Kaczorowska
- Department of Biochemistry, Medical University of Gdansk, Debinki 1 St., 80-211 Gdansk, Poland
- Department of Physiology, Medical University of Gdansk, 80-211 Gdansk, Poland
| | - Ewa M. Slominska
- Department of Biochemistry, Medical University of Gdansk, Debinki 1 St., 80-211 Gdansk, Poland
| | - Ryszard T. Smolenski
- Department of Biochemistry, Medical University of Gdansk, Debinki 1 St., 80-211 Gdansk, Poland
- Correspondence: (B.K.-Z.); (R.T.S.); Tel.: +48-58-349-14-14 (B.K.-Z.); +48-58-349-14-60 (R.T.S.)
| |
Collapse
|
12
|
KANG JB, KOH PO. Identification of changed proteins by retinoic acid in cerebral ischemic damage: a proteomic study. J Vet Med Sci 2022; 84:1194-1204. [PMID: 35831120 PMCID: PMC9523306 DOI: 10.1292/jvms.22-0119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 07/03/2022] [Indexed: 11/22/2022] Open
Abstract
Ischemic stroke is a severe neurodegenerative disease with a high mortality rate. Retinoic acid is a representative metabolite of vitamin A. It has many beneficial effects including anti-inflammatory, anti-apoptotic, and neuroprotective effects. The purpose of this study is to identify specific proteins that are regulated by retinoic acid in ischemic stroke. Middle cerebral artery occlusion (MCAO) was performed to induce focal cerebral ischemia. Retinoic acid (5 mg/kg) or vehicle was injected intraperitoneally into male rats for four days prior to MCAO operation. Neurobehavioral tests were performed 24 hr after MCAO and the cerebral cortex was collected for proteomic study. Retinoic acid alleviates neurobehavioral deficits and histopathological changes caused by MCAO. Furthermore, we identified various proteins that were altered by retinoic acid in MCAO damage. Among these identified proteins, adenosylhomocysteinase, isocitrate dehydrogenase [NAD+] subunit α, glycerol-3-phosphate dehydrogenase, Rab GDP dissociation inhibitor β, and apolipoprotein A1 were down-regulated in MCAO animals with vehicle treatment, whereas retinoic acid treatment alleviated these reductions. However, heat shock protein 60 was up-regulated in MCAO animals with vehicle, while retinoic acid treatment attenuated this increase. The changes in these expressions were confirmed by reverse transcription-PCR. These proteins regulate cell metabolism and mediate stress responses. Our results demonstrated that retinoic acid attenuates the neuronal damage by MCAO and regulates the various protein expressions that are involved in the survival of cells. Thus, we can suggest that retinoic acid exerts neuroprotective effects on focal cerebral ischemia by modulation of specific proteins.
Collapse
Affiliation(s)
- Ju-Bin KANG
- Department of Anatomy, College of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University, Jinju, South Korea
| | - Phil-Ok KOH
- Department of Anatomy, College of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University, Jinju, South Korea
| |
Collapse
|
13
|
Thompson AG, Talbot K, Turner MR. Higher blood high density lipoprotein and apolipoprotein A1 levels are associated with reduced risk of developing amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry 2022; 93:75-81. [PMID: 34518331 PMCID: PMC8685635 DOI: 10.1136/jnnp-2021-327133] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 08/08/2021] [Indexed: 11/04/2022]
Abstract
BACKGROUND Premorbid body mass index, physical activity, diabetes and cardiovascular disease have been associated with an altered risk of developing amyotrophic lateral sclerosis (ALS). There is evidence of shared genetic risk between ALS and lipid metabolism. A very large prospective longitudinal population cohort permits the study of a range of metabolic parameters and the risk of subsequent diagnosis of ALS. METHODS The risk of subsequent ALS diagnosis in those enrolled prospectively to the UK Biobank (n=502 409) was examined in relation to baseline levels of blood high and low density lipoprotein (HDL, LDL), total cholesterol, total cholesterol:HDL ratio, apolipoproteins A1 and B (apoA1, apoB), triglycerides, glycated haemoglobin A1c (HbA1c) and creatinine, plus self-reported exercise and body mass index. RESULTS Controlling for age and sex, higher HDL (HR 0.84, 95% CI 0.73 to 0.96, p=0.010) and apoA1 (HR 0.83, 95% CI 0.72 to 0.94, p=0.005) were associated with a reduced risk of ALS. Higher total cholesterol:HDL was associated with an increased risk of ALS (HR 1.17, 95% CI 1.05 to 1.31, p=0.006). In models incorporating multiple metabolic markers, higher LDL or apoB was associated with an increased risk of ALS, in addition to a lower risk with higher HDL or apoA. Coronary artery disease, cerebrovascular disease and increasing age were also associated with an increased risk of ALS. CONCLUSIONS The association of HDL, apoA1 and LDL levels with risk of ALS contributes to an increasing body of evidence that the premorbid metabolic landscape may play a role in pathogenesis. Understanding the molecular basis for these changes will inform presymptomatic biomarker development and therapeutic targeting.
Collapse
Affiliation(s)
| | - Kevin Talbot
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Martin R Turner
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| |
Collapse
|
14
|
Haapala EA, Leppänen MH, Lehti M, Lintu N, Tompuri T, Viitasalo A, Schwab U, Lakka TA. Cross-sectional associations between cardiorespiratory fitness and NMR-derived metabolic biomarkers in children - the PANIC study. Front Endocrinol (Lausanne) 2022; 13:954418. [PMID: 36213296 PMCID: PMC9538338 DOI: 10.3389/fendo.2022.954418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 09/12/2022] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE Cardiorespiratory fitness has been inversely associated with cardiovascular risk across the lifespan. Some studies in adults suggest that higher cardiorespiratory fitness is associated with cardioprotective metabolite profile, but the evidence in children is lacking. Therefore, we investigated the cross-sectional association of cardiorespiratory fitness with serum nuclear magnetic resonance derived metabolic biomarkers in children. METHODS A population sample of 450 children aged 6-8 years was examined. Cardiorespiratory fitness was assessed by a maximal exercise test on a cycle ergometer and quantified as maximal power output normalised for lean body mass assessed by dual-energy X-ray absorbtiometry. Serum metabolites were assessed using a high throughput nuclear magnetic resonance platform. The data were analysed using linear regression analyses adjusted for age and sex and subsequently for body fat percentage (BF%) assessed by DXA. RESULTS Cardiorespiratory fitness was directly associated with high density lipoprotein (HDL) cholesterol (β=0.138, 95% CI=0.042 to 0.135, p=0.005), average HDL particle diameter (β=0.102, 95% CI=0.004 to 0.199, p=0.041), and the concentrations of extra-large HDL particles (β=0.103, 95% CI=0.006 to 0.201, p=0.038), large HDL particles (β=0.122, 95% CI=0.025 to 0.220, p=0.014), and medium HDL particles (β=0.143, 95% CI=0.047 to 0.239, p=0.004) after adjustment for age and sex. Higher cardiorespiratory fitness was also associated with higher concentrations of ApoA1 (β=0.145, 95% CI=0.047 to 0.242, p=0.003), glutamine (β=0.161, 95% CI=0.064 to 0.257, p=0.001), and phenylalanine (β=0.187, 95% CI=0.091 to 0.283, p<0.001). However, only the direct associations of cardiorespiratory fitness with the concentrations of HDL cholesterol (β=0.114, 95% CI=0.018 to 0.210, p=0.021), medium HDL particles (β=0.126, 95% CI=0.030 to 0.223, p=0.010), ApoA1 (β=0.126, 95% CI=0.030 to 0.223, p=0.011), glutamine (β=0.147, 95% CI=0.050 to 0.224, p=0.003), and phenylalanine (β=0.217, 95% CI=0.122 to 0.311, p<0.001) remained statistically significant after further adjustment for BF%. CONCLUSIONS Higher cardiorespiratory fitness was associated with a cardioprotective biomarker profile in children. Most associations were independent of BF% suggesting that the differences in serum metabolites between children are driven by cardiorespiratory fitness and not adiposity.
Collapse
Affiliation(s)
- Eero A. Haapala
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
- *Correspondence: Eero A. Haapala,
| | - Marja H. Leppänen
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
- Folkhälsan Research Center, Helsinki, Finland
| | - Maarit Lehti
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Niina Lintu
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Tuomo Tompuri
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
- Department of Clinical Physiology and Nuclear Medicine, Kuopio University Hospital, Kuopio, Finland
| | - Anna Viitasalo
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Ursula Schwab
- Institute of Public Health and Clinical Nutrition, School of Medicine, University of Eastern Finland, Kuopio, Finland
- Department of Medicine, Endocrinology and Clinical Nutrition, Kuopio University Hospital, Kuopio, Finland
| | - Timo A. Lakka
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
- Department of Clinical Physiology and Nuclear Medicine, Kuopio University Hospital, Kuopio, Finland
- Foundation for Research in Health Exercise and Nutrition, Kuopio Research Institute of Exercise Medicine, Kuopio, Finland
| |
Collapse
|
15
|
Theodoros K, Sharma M, Anton P, Hugo C, Ellen O, Hultgren NW, Ritou E, Williams DS, Orian S S, Srinivasa T R. The ApoA-I mimetic peptide 4F attenuates in vitro replication of SARS-CoV-2, associated apoptosis, oxidative stress and inflammation in epithelial cells. Virulence 2021; 12:2214-2227. [PMID: 34494942 PMCID: PMC8437485 DOI: 10.1080/21505594.2021.1964329] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 07/12/2021] [Accepted: 07/30/2021] [Indexed: 02/06/2023] Open
Abstract
An oral antiviral against SARS-CoV-2 that also attenuates inflammatory instigators of severe COVID-19 is not available to date. Herein, we show that the apoA-I mimetic peptide 4 F inhibits Spike mediated viral entry and has antiviral activity against SARS-CoV-2 in human lung epithelial Calu3 and Vero-E6 cells. In SARS-CoV-2 infected Calu3 cells, 4 F upregulated inducers of the interferon pathway such as MX-1 and Heme oxygenase 1 (HO-1) and downregulated mitochondrial reactive oxygen species (mito-ROS) and CD147, a host protein that mediates viral entry. 4 F also reduced associated cellular apoptosis and secretion of IL-6 in both SARS-CoV-2 infected Vero-E6 and Calu3 cells. Thus, 4 F attenuates in vitro SARS-CoV-2 replication, associated apoptosis in epithelial cells and secretion of IL-6, a major cytokine related to COVID-19 morbidity. Given established safety of 4 F in humans, clinical studies are warranted to establish 4 F as therapy for COVID-19.
Collapse
Affiliation(s)
- Kelesidis Theodoros
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Madhav Sharma
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Petcherski Anton
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Cristelle Hugo
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - O’Connor Ellen
- Molecular Toxicology Interdepartmental Degree Program, University of California Los Angeles, United States
| | - Nan W Hultgren
- Department of Ophthalmology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Eleni Ritou
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - David S Williams
- Department of Ophthalmology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Shirihai Orian S
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Reddy Srinivasa T
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
- Molecular Toxicology Interdepartmental Degree Program, University of California Los Angeles, United States
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| |
Collapse
|
16
|
Zheng A, Li H, Feng Z, Liu J. Integrative Analyses Reveal Tstd1 as a Potential Modulator of HDL Cholesterol and Mitochondrial Function in Mice. Cells 2021; 10:2976. [PMID: 34831199 PMCID: PMC8616306 DOI: 10.3390/cells10112976] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/25/2021] [Accepted: 10/27/2021] [Indexed: 11/16/2022] Open
Abstract
High-density lipoprotein (HDL) cholesterol levels are closely associated with human health and diseases. To identify genes modulating plasma HDL levels, we integrated HDL measurements and multi-omics data collected from diverse mouse cohorts and combined a list of systems genetics methods, including quantitative trait loci (QTL) mapping analysis, mediation analysis, transcriptome-wide association analysis (TWAS), and correlation analysis. We confirmed a significant and conserved QTL for plasma HDL on chromosome 1 and identified that Tstd1 liver transcript correlates with plasma HDL in several independent mouse cohorts, suggesting Tstd1 may be a potential modulator of plasma HDL levels. Correlation analysis using over 70 transcriptomics datasets in humans and mice revealed consistent correlations between Tstd1 and genes known to be involved in cholesterol and HDL regulation. Consistent with strong enrichment in gene sets related to cholesterol and lipoproteins in the liver, mouse strains with high Tstd1 exhibited higher plasma levels of HDL, total cholesterol and other lipid markers. GeneBridge using large-scale expression datasets identified conserved and positive associations between TSTD1/Tstd1 and mitochondrial pathways, as well as cholesterol and lipid pathways in human, mouse and rat. In summary, we identified Tstd1 as a new modulator of plasma HDL and mitochondrial function through integrative systems analyses, and proposed a new mechanism of HDL modulation and a potential therapeutic target for relevant diseases. This study highlights the value of such integrative approaches in revealing molecular mechanisms of complex traits or diseases.
Collapse
Affiliation(s)
- Adi Zheng
- Department of Biomedical Sciences, University of Lausanne, Bugnon 7, 1005 Lausanne, Switzerland;
| | - Hao Li
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China;
| | - Zhihui Feng
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China;
| | - Jiankang Liu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China;
- University of Health and Rehabilitation Sciences, Qingdao 266071, China
| |
Collapse
|
17
|
Yun X, Sun X, Hu X, Zhang H, Yin Z, Zhang X, Liu M, Zhang Y, Wang X. Prognostic and Therapeutic Value of Apolipoprotein A and a New Risk Scoring System Based on Apolipoprotein A and Adenosine Deaminase in Chronic Lymphocytic Leukemia. Front Oncol 2021; 11:698572. [PMID: 34277446 PMCID: PMC8281891 DOI: 10.3389/fonc.2021.698572] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 06/08/2021] [Indexed: 12/11/2022] Open
Abstract
Lipid metabolism is related to lymphomagenesis, and is a novel therapeutic target in some hematologic tumors. Apolipoprotein A (ApoA), the major protein of high-density lipoprotein (HDL), plays a crucial role in lipid transportation and protecting against cardiovascular disease, and takes effect on anti-inflammation and anti-oxidation. It is correlated with the prognosis of some solid tumors. Yet, there is no investigation involving the role of ApoA plays in chronic lymphocytic leukemia (CLL). Our retrospective study focuses on the prognostic value of ApoA in CLL and its therapeutic potential for CLL patients. Herein, ApoA is a favorable independent prognostic factor for both overall survival (OS) and progression-free survival (PFS) of CLL patients. ApoA is negatively associated with β2-microglobulin (β2-MG) and advanced stage, which are poor prognostic factors in CLL. Age, Rai stage, ApoA, and adenosine deaminase (ADA) are included in a new risk scoring system named ARAA-score. It is capable of assessing OS and PFS of CLL patients. Furthermore, cell proliferation assays show that the ApoA-I mimetic L-4F can inhibit the proliferation of CLL cell lines and primary cells. In conclusion, ApoA is of prognostic value in CLL, and is a potential therapy for CLL patients. The ARAA-score may optimize the risk stratification of CLL patients.
Collapse
Affiliation(s)
- Xiaoya Yun
- Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.,School of Medicine, Shandong University, Jinan, China.,Shandong Provincial Engineering Research Center of Lymphoma, Jinan, China.,Branch of National Clinical Research Center for Hematologic Diseases, Jinan, China.,National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiang Sun
- Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.,School of Medicine, Shandong University, Jinan, China.,Shandong Provincial Engineering Research Center of Lymphoma, Jinan, China.,Branch of National Clinical Research Center for Hematologic Diseases, Jinan, China.,National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xinting Hu
- Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.,School of Medicine, Shandong University, Jinan, China.,Shandong Provincial Engineering Research Center of Lymphoma, Jinan, China.,Branch of National Clinical Research Center for Hematologic Diseases, Jinan, China.,National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Huimin Zhang
- Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.,School of Medicine, Shandong University, Jinan, China.,Shandong Provincial Engineering Research Center of Lymphoma, Jinan, China.,Branch of National Clinical Research Center for Hematologic Diseases, Jinan, China.,National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zixun Yin
- Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.,School of Medicine, Shandong University, Jinan, China.,Shandong Provincial Engineering Research Center of Lymphoma, Jinan, China.,Branch of National Clinical Research Center for Hematologic Diseases, Jinan, China.,National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xin Zhang
- Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.,School of Medicine, Shandong University, Jinan, China.,Shandong Provincial Engineering Research Center of Lymphoma, Jinan, China.,Branch of National Clinical Research Center for Hematologic Diseases, Jinan, China.,National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Ming Liu
- Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.,School of Medicine, Shandong University, Jinan, China.,Shandong Provincial Engineering Research Center of Lymphoma, Jinan, China.,Branch of National Clinical Research Center for Hematologic Diseases, Jinan, China.,National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Ya Zhang
- Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.,School of Medicine, Shandong University, Jinan, China.,Shandong Provincial Engineering Research Center of Lymphoma, Jinan, China.,Branch of National Clinical Research Center for Hematologic Diseases, Jinan, China.,National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xin Wang
- Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.,School of Medicine, Shandong University, Jinan, China.,Shandong Provincial Engineering Research Center of Lymphoma, Jinan, China.,Branch of National Clinical Research Center for Hematologic Diseases, Jinan, China.,National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
18
|
Morris G, Puri BK, Bortolasci CC, Carvalho A, Berk M, Walder K, Moreira EG, Maes M. The role of high-density lipoprotein cholesterol, apolipoprotein A and paraoxonase-1 in the pathophysiology of neuroprogressive disorders. Neurosci Biobehav Rev 2021; 125:244-263. [PMID: 33657433 DOI: 10.1016/j.neubiorev.2021.02.037] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 01/29/2021] [Accepted: 02/23/2021] [Indexed: 12/11/2022]
Abstract
Lowered high-density lipoprotein (HDL) cholesterol has been reported in major depressive disorder, bipolar disorder, first episode of psychosis, and schizophrenia. HDL, its major apolipoprotein component, ApoA1, and the antioxidant enzyme paraoxonase (PON)1 (which is normally bound to ApoA1) all have anti-atherogenic, antioxidant, anti-inflammatory, and immunomodulatory roles, which are discussed in this paper. The paper details the pathways mediating the anti-inflammatory effects of HDL, ApoA1 and PON1 and describes the mechanisms leading to compromised HDL and PON1 levels and function in an environment of chronic inflammation. The molecular mechanisms by which changes in HDL, ApoA1 and PON1 might contribute to the pathophysiology of the neuroprogressive disorders are explained. Moreover, the anti-inflammatory actions of ApoM-mediated sphingosine 1-phosphate (S1P) signalling are reviewed as well as the deleterious effects of chronic inflammation and oxidative stress on ApoM/S1P signalling. Finally, therapeutic interventions specifically aimed at improving the levels and function of HDL and PON1 while reducing levels of inflammation and oxidative stress are considered. These include the so-called Mediterranean diet, extra virgin olive oil, polyphenols, flavonoids, isoflavones, pomegranate juice, melatonin and the Mediterranean diet combined with the ketogenic diet.
Collapse
Affiliation(s)
- Gerwyn Morris
- Deakin University, IMPACT - The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | | | - Chiara C Bortolasci
- Deakin University, IMPACT - The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia; Deakin University, CMMR Strategic Research Centre, School of Medicine, Geelong, Victoria, Australia.
| | - Andre Carvalho
- Deakin University, IMPACT - The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia; Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
| | - Michael Berk
- Deakin University, IMPACT - The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia; Orygen, The National Centre of Excellence in Youth Mental Health, The Department of Psychiatry and The Florey Institute for Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Ken Walder
- Deakin University, IMPACT - The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia; Deakin University, CMMR Strategic Research Centre, School of Medicine, Geelong, Victoria, Australia
| | - Estefania G Moreira
- Post-Graduation Program in Health Sciences, State University of Londrina, Londrina, PR, Brazil
| | - Michael Maes
- Deakin University, IMPACT - The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia; Department of Psychiatry, King Chulalongkorn University Hospital, Bangkok, Thailand; Department of Psychiatry, Medical University of Plovdiv, Plovdiv, Bulgaria
| |
Collapse
|
19
|
Li J, Meng Q, Fu Y, Yu X, Ji T, Chao Y, Chen Q, Li Y, Bian H. Novel insights: Dynamic foam cells derived from the macrophage in atherosclerosis. J Cell Physiol 2021; 236:6154-6167. [PMID: 33507545 DOI: 10.1002/jcp.30300] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/22/2020] [Accepted: 01/15/2021] [Indexed: 12/12/2022]
Abstract
Atherosclerosis can be regarded as a chronic disease derived from the interaction between disordered lipoproteins and an unsuitable immune response. The evolution of foam cells is not only a significant pathological change in the early stage of atherosclerosis but also a key stage in the occurrence and development of atherosclerosis. The formation of foam cells is mainly caused by the imbalance among lipids uptake, lipids treatment, and reverse cholesterol transport. Although a large number of studies have summarized the source of foam cells and the mechanism of foam cells formation, we propose a new idea about foam cells in atherosclerosis. Rather than an isolated microenvironment, the macrophage multiple lipid uptake pathways, lipid internalization, lysosome, mitochondria, endoplasmic reticulum, neutral cholesterol ester hydrolase (NCEH), acyl-coenzyme A-cholesterol acyltransferase (ACAT), and reverse cholesterol transport are mutually influential, and form a dynamic process under multi-factor regulation. The macrophage takes on different uptake lipid statuses depending on multiple uptake pathways and intracellular lipids, lipid metabolites versus pro-inflammatory factors. Except for NCEH and ACAT, the lipid internalization of macrophages also depends on multicellular organelles including the lysosome, mitochondria, and endoplasmic reticulum, which are associated with each other. A dynamic balance between esterification and hydrolysis of cholesterol for macrophages is essential for physiology and pathology. Therefore, we propose that the foam cell in the process of atherosclerosis may be dynamic under multi-factor regulation, and collate this study to provide a holistic and dynamic idea of the foam cell.
Collapse
Affiliation(s)
- Jun Li
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Qinghai Meng
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yu Fu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xichao Yu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Tingting Ji
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ying Chao
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Qi Chen
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yu Li
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Huimin Bian
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Key Laboratory of Therapeutic Material of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
20
|
Maiese K. Dysregulation of metabolic flexibility: The impact of mTOR on autophagy in neurodegenerative disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2020; 155:1-35. [PMID: 32854851 DOI: 10.1016/bs.irn.2020.01.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Non-communicable diseases (NCDs) that involve neurodegenerative disorders and metabolic disease impact over 400 million individuals globally. Interestingly, metabolic disorders, such as diabetes mellitus, are significant risk factors for the development of neurodegenerative diseases. Given that current therapies for these NCDs address symptomatic care, new avenues of discovery are required to offer treatments that affect disease progression. Innovative strategies that fill this void involve the mechanistic target of rapamycin (mTOR) and its associated pathways of mTOR complex 1 (mTORC1), mTOR complex 2 (mTORC2), AMP activated protein kinase (AMPK), trophic factors that include erythropoietin (EPO), and the programmed cell death pathways of autophagy and apoptosis. These pathways are intriguing in their potential to provide effective care for metabolic and neurodegenerative disorders. Yet, future work is necessary to fully comprehend the entire breadth of the mTOR pathways that can effectively and safely translate treatments to clinical medicine without the development of unexpected clinical disabilities.
Collapse
Affiliation(s)
- Kenneth Maiese
- Cellular and Molecular Signaling, New York, NY, United States.
| |
Collapse
|
21
|
Testai L, Citi V, Martelli A, Brogi S, Calderone V. Role of hydrogen sulfide in cardiovascular ageing. Pharmacol Res 2020; 160:105125. [PMID: 32783975 DOI: 10.1016/j.phrs.2020.105125] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/17/2020] [Accepted: 08/05/2020] [Indexed: 12/11/2022]
Abstract
Cardiovascular diseases are the main cause of morbidity and mortality in the Western society and ageing is a relevant non-modifiable risk factor. Morphological and functional alterations at endothelial level represent first events of ageing, inevitably followed by vascular dysfunction and consequent atherosclerosis that deeply influences cardiovascular health. Indeed, myocardial hypertrophy and fibrosis typically occur and contribute to compromise overall cardiac output. As regards the intracellular molecular mechanisms involved in the cardiovascular ageing, an intricate network is emerging, revealing a role for many mediators, including SIRT1/AMPK/PCG1α pathway, anti-oxidants factors (i.e. Nrf-2 and FOXOs) and pro-inflammatory cytokines. Thus, the search for pharmacological and non-pharmacological strategies that can promote a "healthy ageing", in order to slow down age-related machinery, are currently an exciting challenge for the biomedical research. Interestingly, hydrogen sulfide (H2S) has been recently recognized as a new player capable to influence intracellular machinery involved in ageing and then it is view as a potential target for preventing cardiovascular diseases. Therefore, this review is focused on the role of H2S in cardiovascular ageing, and on the evidence of the relationship between progressive decline in endogenous H2S levels and the onset of various cardiovascular age-related diseases.
Collapse
Affiliation(s)
- Lara Testai
- Department of Pharmacy, University of Pisa, via Bonanno, 6-56120, Pisa, Italy; Interdepartmental Research Centre of Ageing, Biology and Pathology, University of Pisa, 56120, Pisa, Italy; Interdepartmental Research Centre "Nutraceuticals and Food for Health (NUTRAFOOD)", University of Pisa, 56120, Pisa, Italy.
| | - Valentina Citi
- Department of Pharmacy, University of Pisa, via Bonanno, 6-56120, Pisa, Italy
| | - Alma Martelli
- Department of Pharmacy, University of Pisa, via Bonanno, 6-56120, Pisa, Italy; Interdepartmental Research Centre of Ageing, Biology and Pathology, University of Pisa, 56120, Pisa, Italy; Interdepartmental Research Centre "Nutraceuticals and Food for Health (NUTRAFOOD)", University of Pisa, 56120, Pisa, Italy
| | - Simone Brogi
- Department of Pharmacy, University of Pisa, via Bonanno, 6-56120, Pisa, Italy
| | - Vincenzo Calderone
- Department of Pharmacy, University of Pisa, via Bonanno, 6-56120, Pisa, Italy; Interdepartmental Research Centre of Ageing, Biology and Pathology, University of Pisa, 56120, Pisa, Italy; Interdepartmental Research Centre "Nutraceuticals and Food for Health (NUTRAFOOD)", University of Pisa, 56120, Pisa, Italy
| |
Collapse
|
22
|
Abstract
Metabolic disorders, such as diabetes mellitus (DM), are increasingly becoming significant risk factors for the health of the global population and consume substantial portions of the gross domestic product of all nations. Although conventional therapies that include early diagnosis, nutritional modification of diet, and pharmacological treatments may limit disease progression, tight serum glucose control cannot prevent the onset of future disease complications. With these concerns, novel strategies for the treatment of metabolic disorders that involve the vitamin nicotinamide, the mechanistic target of rapamycin (mTOR), mTOR Complex 1 (mTORC1), mTOR Complex 2 (mTORC2), AMP activated protein kinase (AMPK), and the cellular pathways of autophagy and apoptosis offer exceptional promise to provide new avenues of treatment. Oversight of these pathways can promote cellular energy homeostasis, maintain mitochondrial function, improve glucose utilization, and preserve pancreatic beta-cell function. Yet, the interplay among mTOR, AMPK, and autophagy pathways can be complex and affect desired clinical outcomes, necessitating further investigations to provide efficacious treatment strategies for metabolic dysfunction and DM.
Collapse
Affiliation(s)
- Kenneth Maiese
- Cellular and Molecular Signaling, New York, New York 10022,
| |
Collapse
|
23
|
Magnadóttir B, Uysal-Onganer P, Kraev I, Svansson V, Hayes P, Lange S. Deiminated proteins and extracellular vesicles - Novel serum biomarkers in whales and orca. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2020; 34:100676. [PMID: 32114311 DOI: 10.1016/j.cbd.2020.100676] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/16/2020] [Accepted: 02/17/2020] [Indexed: 02/06/2023]
Abstract
Peptidylarginine deiminases (PADs) are a family of phylogenetically conserved calcium-dependent enzymes which cause post-translational protein deimination. This can result in neoepitope generation, affect gene regulation and allow for protein moonlighting via functional and structural changes in target proteins. Extracellular vesicles (EVs) carry cargo proteins and genetic material and are released from cells as part of cellular communication. EVs are found in most body fluids where they can be useful biomarkers for assessment of health status. Here, serum-derived EVs were profiled, and post-translationally deiminated proteins and EV-related microRNAs are described in 5 ceataceans: minke whale, fin whale, humpback whale, Cuvier's beaked whale and orca. EV-serum profiles were assessed by transmission electron microscopy and nanoparticle tracking analysis. EV profiles varied between the 5 species and were identified to contain deiminated proteins and selected key inflammatory and metabolic microRNAs. A range of proteins, critical for immune responses and metabolism were identified to be deiminated in cetacean sera, with some shared KEGG pathways of deiminated proteins relating to immunity and physiology, while some KEGG pathways were species-specific. This is the first study to characterise and profile EVs and to report deiminated proteins and putative effects of protein-protein interaction networks via such post-translationald deimination in cetaceans, revealing key immune and metabolic factors to undergo this post-translational modification. Deiminated proteins and EVs profiles may possibly be developed as new biomarkers for assessing health status of sea mammals.
Collapse
Affiliation(s)
- Bergljót Magnadóttir
- Institute for Experimental Pathology, University of Iceland, Keldur v. Vesturlandsveg, 112 Reykjavik, Iceland.
| | - Pinar Uysal-Onganer
- Cancer Research Group, School of Life Sciences, University of Westminster, London W1W 6UW, UK.
| | - Igor Kraev
- Electron Microscopy Suite, Faculty of Science, Technology, Engineering and Mathematics, Open University, Milton Keynes MK7 6AA, UK.
| | - Vilhjálmur Svansson
- Institute for Experimental Pathology, University of Iceland, Keldur v. Vesturlandsveg, 112 Reykjavik, Iceland
| | - Polly Hayes
- Tissue Architecture and Regeneration Research Group, School of Life Sciences, University of Westminster, London W1W 6UW, UK.
| | - Sigrun Lange
- Tissue Architecture and Regeneration Research Group, School of Life Sciences, University of Westminster, London W1W 6UW, UK.
| |
Collapse
|
24
|
Phillips RA, Kraev I, Lange S. Protein Deimination and Extracellular Vesicle Profiles in Antarctic Seabirds. BIOLOGY 2020; 9:E15. [PMID: 31936359 PMCID: PMC7168935 DOI: 10.3390/biology9010015] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 12/19/2019] [Accepted: 01/07/2020] [Indexed: 02/06/2023]
Abstract
Pelagic seabirds are amongst the most threatened of all avian groups. They face a range of immunological challenges which seem destined to increase due to environmental changes in their breeding and foraging habitats, affecting prey resources and exposure to pollution and pathogens. Therefore, the identification of biomarkers for the assessment of their health status is of considerable importance. Peptidylarginine deiminases (PADs) post-translationally convert arginine into citrulline in target proteins in an irreversible manner. PAD-mediated deimination can cause structural and functional changes in target proteins, allowing for protein moonlighting in physiological and pathophysiological processes. PADs furthermore contribute to the release of extracellular vesicles (EVs), which play important roles in cellular communication. In the present study, post-translationally deiminated protein and EV profiles of plasma were assessed in eight seabird species from the Antarctic, representing two avian orders: Procellariiformes (albatrosses and petrels) and Charadriiformes (waders, auks, gulls and skuas). We report some differences between the species assessed, with the narrowest EV profiles of 50-200 nm in the northern giant petrel Macronectes halli, and the highest abundance of larger 250-500 nm EVs in the brown skua Stercorarius antarcticus. The seabird EVs were positive for phylogenetically conserved EV markers and showed characteristic EV morphology. Post-translational deimination was identified in a range of key plasma proteins critical for immune response and metabolic pathways in three of the bird species under study; the wandering albatross Diomedea exulans, south polar skua Stercorarius maccormicki and northern giant petrel. Some differences in Gene Ontology (GO) biological and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways for deiminated proteins were observed between these three species. This indicates that target proteins for deimination may differ, potentially contributing to a range of physiological functions relating to metabolism and immune response, as well as to key defence mechanisms. PAD protein homologues were identified in the seabird plasma by Western blotting via cross-reaction with human PAD antibodies, at an expected 75 kDa size. This is the first study to profile EVs and to identify deiminated proteins as putative novel plasma biomarkers in Antarctic seabirds. These biomarkers may be further refined to become useful indicators of physiological and immunological status in seabirds-many of which are globally threatened.
Collapse
Affiliation(s)
- Richard A. Phillips
- British Antarctic Survey, Natural Environment Research Council, Cambridge CB3 0ET, UK;
| | - Igor Kraev
- Electron Microscopy Suite, Faculty of Science, Technology, Engineering and Mathematics, Open University, Milton Keynes MK7 6AA, UK;
| | - Sigrun Lange
- Tissue Architecture and Regeneration Research Group, School of Life Sciences, University of Westminster, London W1W 6UW, UK
| |
Collapse
|
25
|
Criscitiello MF, Kraev I, Lange S. Deiminated proteins in extracellular vesicles and serum of llama (Lama glama)-Novel insights into camelid immunity. Mol Immunol 2020; 117:37-53. [PMID: 31733447 PMCID: PMC7112542 DOI: 10.1016/j.molimm.2019.10.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 10/05/2019] [Accepted: 10/23/2019] [Indexed: 02/07/2023]
Abstract
Peptidylarginine deiminases (PADs) are phylogenetically conserved calcium-dependent enzymes which post-translationally convert arginine into citrulline in target proteins in an irreversible manner, causing functional and structural changes in target proteins. Protein deimination causes generation of neo-epitopes, affects gene regulation and also allows for protein moonlighting. Furthermore, PADs have been found to be a phylogenetically conserved regulator for extracellular vesicle (EVs) release. EVs are found in most body fluids and participate in cellular communication via transfer of cargo proteins and genetic material. In this study, post-translationally deiminated proteins in serum and serum-EVs are described for the first time in camelids, using the llama (Lama glama L. 1758) as a model animal. We report a poly-dispersed population of llama serum EVs, positive for phylogenetically conserved EV-specific markers and characterised by TEM. In serum, 103 deiminated proteins were overall identified, including key immune and metabolic mediators including complement components, immunoglobulin-based nanobodies, adiponectin and heat shock proteins. In serum, 60 deiminated proteins were identified that were not in EVs, and 25 deiminated proteins were found to be unique to EVs, with 43 shared deiminated protein hits between both serum and EVs. Deiminated histone H3, a marker of neutrophil extracellular trap formation, was also detected in llama serum. PAD homologues were identified in llama serum by Western blotting, via cross reaction with human PAD antibodies, and detected at an expected 70 kDa size. This is the first report of deiminated proteins in serum and EVs of a camelid species, highlighting a hitherto unrecognized post-translational modification in key immune and metabolic proteins in camelids, which may be translatable to and inform a range of human metabolic and inflammatory pathologies.
Collapse
Affiliation(s)
- Michael F Criscitiello
- Comparative Immunogenetics Laboratory, Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843, USA; Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M Health Science Center, Texas A&M University, College Station, TX, 77843, USA.
| | - Igor Kraev
- Electron Microscopy Suite, Faculty of Science, Technology, Engineering and Mathematics, Open University, Milton Keynes, MK7 6AA, UK.
| | - Sigrun Lange
- Tissue Architecture and Regeneration Research Group, School of Life Sciences, University of Westminster, London W1W 6UW, UK.
| |
Collapse
|
26
|
Rao X, Wang Y. Apolipoprotein A-I improves hepatic autophagy through the AMPK pathway. Biochimie 2019; 165:210-218. [PMID: 31401190 DOI: 10.1016/j.biochi.2019.08.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 08/05/2019] [Indexed: 10/26/2022]
Abstract
Dysfunction in lipid metabolism may result in a decrease in hepatic autophagy, which contributes to the pathogenesis of non-alcoholic steatohepatitis. ATP-binding cassette transporter A1 transports free cholesterol and phospholipids to apolipoprotein A-I (apoA-I) to form nascent high-density lipoprotein particles. Results from previous studies showed that the overexpression of apoA-I significantly reduced levels of hepatic lipids and endoplasmic reticulum stress by modifying lipid transport. Here, we investigated the effects of apoA-I overexpression on hepatic autophagy in cultured hepatocytes and mice. The overexpression of apoA-I in HepG2 cells resulted in an increase in the levels of autophagy as well as the phosphorylation of AMP-activated protein kinase α (AMPKα) and ULK1 and a decrease in the phosphorylation of mammalian target of rapamycin (mTOR). An AMPK inhibitor and siRNA eliminated this apoA-I effect. Consistently, apoA-I transgenic mice showed increased autophagy and AMPKα phosphorylation. These results suggest that apoA-I overexpression alleviates steatohepatitis by increasing hepatic autophagy through the AMPK-mTOR-ULK1 pathway.
Collapse
Affiliation(s)
- Xia Rao
- Department of Cell Biology, Municipal Laboratory for Liver Protection and Regulation of Regeneration, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Yutong Wang
- Department of Cell Biology, Municipal Laboratory for Liver Protection and Regulation of Regeneration, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
27
|
Sposito AC, de Lima-Junior JC, Moura FA, Barreto J, Bonilha I, Santana M, Virginio VW, Sun L, Carvalho LSF, Soares AA, Nadruz W, Feinstein SB, Nofer JR, Zanotti I, Kontush A, Remaley AT. Reciprocal Multifaceted Interaction Between HDL (High-Density Lipoprotein) and Myocardial Infarction. Arterioscler Thromb Vasc Biol 2019; 39:1550-1564. [DOI: 10.1161/atvbaha.119.312880] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Despite decades of therapeutic advances, myocardial infarction remains a leading cause of death worldwide. Recent studies have identified HDLs (high-density lipoproteins) as a potential candidate for mitigating coronary ischemia/reperfusion injury via a broad spectrum of signaling pathways. HDL ligands, such as S1P (sphingosine-1-phosphate), Apo (apolipoprotein) A-I, clusterin, and miRNA, may influence the opening of the mitochondrial channel, insulin sensitivity, and production of vascular autacoids, such as NO, prostacyclin, and endothelin-1. In parallel, antioxidant activity and sequestration of oxidized molecules provided by HDL can attenuate the oxidative stress that triggers ischemia/reperfusion. Nevertheless, during myocardial infarction, oxidation and the capture of oxidized and proinflammatory molecules generate large phenotypic and functional changes in HDL, potentially limiting its beneficial properties. In this review, new findings from cellular and animal models, as well as from clinical studies, will be discussed to describe the cardioprotective benefits of HDL on myocardial infarction. Furthermore, mechanisms by which HDL modulates cardiac function and potential strategies to mitigate postmyocardial infarction risk damage by HDL will be detailed throughout the review.
Collapse
Affiliation(s)
- Andrei C. Sposito
- From the Atherosclerosis and Vascular Biology Laboratory, Cardiology Department, State University of Campinas, Brazil (A.C.S., J.C.d.L.-J., F.A.M., J.B., I.B., M.S., V.W.V., L.S.F.C., A.A.S.S., W.N.)
| | - José Carlos de Lima-Junior
- From the Atherosclerosis and Vascular Biology Laboratory, Cardiology Department, State University of Campinas, Brazil (A.C.S., J.C.d.L.-J., F.A.M., J.B., I.B., M.S., V.W.V., L.S.F.C., A.A.S.S., W.N.)
| | - Filipe A. Moura
- From the Atherosclerosis and Vascular Biology Laboratory, Cardiology Department, State University of Campinas, Brazil (A.C.S., J.C.d.L.-J., F.A.M., J.B., I.B., M.S., V.W.V., L.S.F.C., A.A.S.S., W.N.)
- Department of Medicine, Weill-Cornell Medical College, New York, NY (F.A.M.)
| | - Joaquim Barreto
- From the Atherosclerosis and Vascular Biology Laboratory, Cardiology Department, State University of Campinas, Brazil (A.C.S., J.C.d.L.-J., F.A.M., J.B., I.B., M.S., V.W.V., L.S.F.C., A.A.S.S., W.N.)
| | - Isabella Bonilha
- From the Atherosclerosis and Vascular Biology Laboratory, Cardiology Department, State University of Campinas, Brazil (A.C.S., J.C.d.L.-J., F.A.M., J.B., I.B., M.S., V.W.V., L.S.F.C., A.A.S.S., W.N.)
| | - Michele Santana
- From the Atherosclerosis and Vascular Biology Laboratory, Cardiology Department, State University of Campinas, Brazil (A.C.S., J.C.d.L.-J., F.A.M., J.B., I.B., M.S., V.W.V., L.S.F.C., A.A.S.S., W.N.)
| | - Vitor W. Virginio
- From the Atherosclerosis and Vascular Biology Laboratory, Cardiology Department, State University of Campinas, Brazil (A.C.S., J.C.d.L.-J., F.A.M., J.B., I.B., M.S., V.W.V., L.S.F.C., A.A.S.S., W.N.)
| | - Lufan Sun
- Lipoprotein Metabolism Section, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (L.S., A.T.R.)
- Department of Cardiology, The First Hospital of China Medical University, Shenyang, Liaoning Province, China (L.S.)
| | - Luiz Sergio F. Carvalho
- From the Atherosclerosis and Vascular Biology Laboratory, Cardiology Department, State University of Campinas, Brazil (A.C.S., J.C.d.L.-J., F.A.M., J.B., I.B., M.S., V.W.V., L.S.F.C., A.A.S.S., W.N.)
| | - Alexandre A.S. Soares
- From the Atherosclerosis and Vascular Biology Laboratory, Cardiology Department, State University of Campinas, Brazil (A.C.S., J.C.d.L.-J., F.A.M., J.B., I.B., M.S., V.W.V., L.S.F.C., A.A.S.S., W.N.)
| | - Wilson Nadruz
- From the Atherosclerosis and Vascular Biology Laboratory, Cardiology Department, State University of Campinas, Brazil (A.C.S., J.C.d.L.-J., F.A.M., J.B., I.B., M.S., V.W.V., L.S.F.C., A.A.S.S., W.N.)
| | - Steve B. Feinstein
- Division of Cardiology, Rush University Medical Center, Chicago, IL (S.B.F.)
| | - Jerzy-Roch Nofer
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Germany (J.-R.N.)
| | - Ilaria Zanotti
- Department of Food and Drugs, University of Parma, Italy (I.Z.)
| | - Anatol Kontush
- UMR-ICAN 1166, National Institute for Health and Medical Research (INSERM), Sorbonne University, Paris, France (A.K.)
| | - Alan T. Remaley
- Lipoprotein Metabolism Section, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (L.S., A.T.R.)
| |
Collapse
|
28
|
Xepapadaki E, Zvintzou E, Kalogeropoulou C, Filou S, Kypreos KE. Τhe Antioxidant Function of HDL in Atherosclerosis. Angiology 2019; 71:112-121. [PMID: 31185723 DOI: 10.1177/0003319719854609] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Atherosclerosis is a multistep process that progresses over a long period of time and displays a broad range of severity. In its final form, it manifests as a lesion of the intimal layer of the arterial wall. There is strong evidence supporting that oxidative stress contributes to coronary heart disease morbidity and mortality and antioxidant high-density lipoprotein (HDL) could have a beneficial role in the prevention and prognosis of the disease. Indeed, certain subspecies of HDL may act as natural antioxidants preventing oxidation of lipids on low-density lipoprotein (LDL) and biological membranes. The antioxidant function may be attributed to inhibition of synthesis or neutralization of free radicals and reactive oxygen species by HDL lipids and associated enzymes or transfer of oxidation prone lipids from LDL and biological membranes to HDL for catabolism. A limited number of clinical trials suggest that the increased antioxidant potential of HDL correlates with decreased risk for atherosclerosis. Some nutritional interventions to increase HDL antioxidant activity have been proposed with limited success so far. The limitations in measuring and understanding HDL antioxidant function in vivo are also discussed.
Collapse
Affiliation(s)
- Eva Xepapadaki
- Department of Pharmacology, School of Medicine, University of Patras, Rio Achaias, TK, Greece
| | - Evangelia Zvintzou
- Department of Pharmacology, School of Medicine, University of Patras, Rio Achaias, TK, Greece
| | | | - Serafoula Filou
- Department of Pharmacology, School of Medicine, University of Patras, Rio Achaias, TK, Greece
| | - Kyriakos E Kypreos
- Department of Pharmacology, School of Medicine, University of Patras, Rio Achaias, TK, Greece
| |
Collapse
|
29
|
Ding S, Fang J, Liu G, Veeramuthu D, Naif Abdullah AD, Yin Y. The impact of different levels of cysteine on the plasma metabolomics and intestinal microflora of sows from late pregnancy to lactation. Food Funct 2019; 10:691-702. [PMID: 30663724 DOI: 10.1039/c8fo01838c] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cysteine (Cys) is a semi-essential amino acid that is synthesized from methionine in mammals and affects their physiological state. This study aimed at investigating the effects of different Cys levels on the birth weight and survival rate of piglets as well as the plasma biochemical parameters, intestinal microbial diversity, and plasma metabolome of sows during late pregnancy. The results showed that 0.4% Cys supplementation increased the birth weight of piglets and decreased the calcium, triglyceride, and bilirubin levels in sows, whereas 0.5% Cys supplementation reduced the gamma-glutamyl transpeptidase levels and increased the serum glucose levels in sows at farrowing. Intestinal microbial analysis demonstrated that 0.4% Cys supplementation increased the diversity of fecal and intestinal microbiota compared with 0.5% Cys supplementation. In addition, plasma metabolomics identified 11 differential metabolites among the 0.4% Cys, 0.5% Cys, and control (basal diet) groups. The serum hypotaurine levels in sows increased by 0.4% and 0.5% Cys supplementation, and the serum acetylcysteine levels increased by 0.5% Cys supplementation; however, the differences in hypotaurine and acetylcysteine levels between the 0.4% and 0.5% Cys groups were not significant. Furthermore, Pearson analysis revealed a positive correlation between the hypotaurine levels and the abundance of Lactobacillus or Pseudobutyrivibrio and a negative correlation between the acetylcysteine levels and the abundance of Ruminococcaceae_UCG-014. Overall, the results indicated that 0.4% Cys supplementation increased the birth weight of piglets, increased the differential metabolites beneficial for combating antioxidative stress in embryos enhancing the intestinal microbial abundance in sows, and increased the diversity of fecal microbiota in sows. Thus, these findings suggest that 0.4% Cys supplementation is highly beneficial for maintaining the health of sows during late pregnancy.
Collapse
Affiliation(s)
- Sujuan Ding
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, Hunan 410125, China.
| | | | | | | | | | | |
Collapse
|
30
|
Magnadóttir B, Bragason BT, Bricknell IR, Bowden T, Nicholas AP, Hristova M, Guðmundsdóttir S, Dodds AW, Lange S. Peptidylarginine deiminase and deiminated proteins are detected throughout early halibut ontogeny - Complement components C3 and C4 are post-translationally deiminated in halibut (Hippoglossus hippoglossus L.). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 92:1-19. [PMID: 30395876 DOI: 10.1016/j.dci.2018.10.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 10/30/2018] [Accepted: 10/30/2018] [Indexed: 06/08/2023]
Abstract
Post-translational protein deimination is mediated by peptidylarginine deiminases (PADs), which are calcium dependent enzymes conserved throughout phylogeny with physiological and pathophysiological roles. Protein deimination occurs via the conversion of protein arginine into citrulline, leading to structural and functional changes in target proteins. In a continuous series of early halibut development from 37 to 1050° d, PAD, total deiminated proteins and deiminated histone H3 showed variation in temporal and spatial detection in various organs including yolksac, muscle, skin, liver, brain, eye, spinal cord, chondrocytes, heart, intestines, kidney and pancreas throughout early ontogeny. For the first time in any species, deimination of complement components C3 and C4 is shown in halibut serum, indicating a novel mechanism of complement regulation in immune responses and homeostasis. Proteomic analysis of deiminated target proteins in halibut serum further identified complement components C5, C7, C8 C9 and C1 inhibitor, as well as various other immunogenic, metabolic, cytoskeletal and nuclear proteins. Post-translational deimination may facilitate protein moonlighting, an evolutionary conserved phenomenon, allowing one polypeptide chain to carry out various functions to meet functional requirements for diverse roles in immune defences and tissue remodelling.
Collapse
Affiliation(s)
- Bergljót Magnadóttir
- Institute for Experimental Pathology, University of Iceland, Keldur v. Vesturlandsveg, 112 Reykjavik, Iceland.
| | - Birkir Thor Bragason
- Institute for Experimental Pathology, University of Iceland, Keldur v. Vesturlandsveg, 112 Reykjavik, Iceland.
| | - Ian R Bricknell
- Aquaculture Research Institute School of Marine Sciences, University of Maine, Orono, ME, USA.
| | - Timothy Bowden
- Aquaculture Research Institute School of Food & Agriculture, University of Maine, University of Maine, Orono, ME, USA.
| | - Anthony P Nicholas
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Mariya Hristova
- Perinatal Brain Protection and Repair Group, EGA Institute for Women's Health, University College London, London, WC1E 6HX, UK.
| | - Sigríður Guðmundsdóttir
- Institute for Experimental Pathology, University of Iceland, Keldur v. Vesturlandsveg, 112 Reykjavik, Iceland.
| | - Alister W Dodds
- MRC Immunochemistry Unit, Department of Biochemistry, University of Oxford, Oxford, UK.
| | - Sigrun Lange
- Tissue Architecture and Regeneration Research Group, School of Life Sciences, University of Westminster, London, W1W 6UW, UK.
| |
Collapse
|
31
|
Götz A, Lehti M, Donelan E, Striese C, Cucuruz S, Sachs S, Yi CX, Woods SC, Wright SD, Müller TD, Tschöp MH, Gao Y, Hofmann SM. Circulating HDL levels control hypothalamic astrogliosis via apoA-I. J Lipid Res 2018; 59:1649-1659. [PMID: 29991652 PMCID: PMC6121940 DOI: 10.1194/jlr.m085456] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 07/09/2018] [Indexed: 01/09/2023] Open
Abstract
Meta-inflammation of hypothalamic areas governing energy homeostasis has recently emerged as a process of potential pathophysiological relevance for the development of obesity and its metabolic sequelae. The current model suggests that diet-induced neuronal injury triggers microgliosis and astrocytosis, conditions which ultimately may induce functional impairment of hypothalamic circuits governing feeding behavior, systemic metabolism, and body weight. Epidemiological data indicate that low circulating HDL levels, besides conveying cardiovascular risk, also correlate strongly with obesity. We simulated that condition by using a genetic loss of function mouse model (apoA-I-/-) with markedly reduced HDL levels to investigate whether HDL may directly modulate hypothalamic inflammation. Astrogliosis was significantly enhanced in the hypothalami of apoA-I-/- compared with apoA-I+/+ mice and was associated with compromised mitochondrial function. apoA-I-/- mice exhibited key components of metabolic disease, like increased fat mass, fasting glucose levels, hepatic triglyceride content, and hepatic glucose output compared with apoA-I+/+ controls. Administration of reconstituted HDL (CSL-111) normalized hypothalamic inflammation and mitochondrial function markers in apoA-I-/- mice. Treatment of primary astrocytes with apoA-I resulted in enhanced mitochondrial activity, implying that circulating HDL levels are likely important for astrocyte function. HDL-based therapies may consequently avert reactive gliosis in hypothalamic astrocytes by improving mitochondrial bioenergetics and thereby offering potential treatment and prevention for obesity and metabolic disease.
Collapse
Affiliation(s)
- Anna Götz
- Institutes for Diabetes and Obesity Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany; Department of Internal Medicine I, University Hospital RWTH Aachen, Aachen, Germany
| | - Maarit Lehti
- LIKES Research Centre for Physical Activity and Health, Jyväskylä, Finland
| | - Elizabeth Donelan
- Metabolic Disease Institute, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH
| | - Cynthia Striese
- Diabetes and Regeneration Research, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Sebastian Cucuruz
- Diabetes and Regeneration Research, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Stephan Sachs
- Diabetes and Regeneration Research, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Chun-Xia Yi
- Department of Endocrinology and Metabolism, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Stephen C Woods
- Metabolic Disease Institute, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH
| | | | - Timo D Müller
- Institutes for Diabetes and Obesity Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany; German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Matthias H Tschöp
- Institutes for Diabetes and Obesity Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany; German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Yuanqing Gao
- Nanjing Medical University, College of Pharmacy, Nanjing, China.
| | - Susanna M Hofmann
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany; Medizinische Klinik und Poliklinik IV, Klinikum der Ludwig Maximilian Universität, Munich, Germany.
| |
Collapse
|
32
|
Castranio EL, Wolfe CM, Nam KN, Letronne F, Fitz NF, Lefterov I, Koldamova R. ABCA1 haplodeficiency affects the brain transcriptome following traumatic brain injury in mice expressing human APOE isoforms. Acta Neuropathol Commun 2018; 6:69. [PMID: 30049279 PMCID: PMC6062955 DOI: 10.1186/s40478-018-0569-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 07/12/2018] [Indexed: 02/07/2023] Open
Abstract
Expression of human Apolipoprotein E (APOE) modulates the inflammatory response in an isoform specific manner, with APOE4 isoform eliciting a stronger pro-inflammatory response, suggesting a possible mechanism for worse outcome following traumatic brain injury (TBI). APOE lipidation and stability is modulated by ATP-binding cassette transporter A1 (ABCA1), a transmembrane protein that transports lipids and cholesterol onto APOE. We examined the impact of Abca1 deficiency and APOE isoform expression on the response to TBI using 3-months-old, human APOE3+/+ (E3/Abca1+/+) and APOE4+/+ (E4/Abca1+/+) targeted replacement mice, and APOE3+/+ and APOE4+/+ mice with only one functional copy of the Abca1 gene (E3/Abca1+/-; E4/Abca1+/-). TBI-treated mice received a craniotomy followed by a controlled cortical impact (CCI) brain injury in the left hemisphere; sham-treated mice received the same surgical procedure without the impact. We performed RNA-seq using samples from cortices and hippocampi followed by genome-wide differential gene expression analysis. We found that TBI significantly impacted unique transcripts within each group, however, the proportion of unique transcripts was highest in E4/Abca1+/- mice. Additionally, we found that Abca1 haplodeficiency increased the expression of microglia sensome genes among only APOE4 injured mice, a response not seen in injured APOE3 mice, nor in either group of sham-treated mice. To identify gene networks, or modules, correlated to TBI, APOE isoform and Abca1 haplodeficiency, we used weighted gene co-expression network analysis (WGCNA). The module that positively correlated to TBI groups was associated with immune response and featured hub genes that were microglia-specific, including Trem2, Tyrobp, Cd68 and Hexb. The modules positively correlated with APOE4 isoform and negatively to Abca1 haplodeficient mice represented "protein translation" and "oxidation-reduction process", respectively. Our results reveal E4/Abca1+/- TBI mice have a distinct response to injury, and unique gene networks are associated with APOE isoform, Abca1 insufficiency and injury.
Collapse
Affiliation(s)
- Emilie L Castranio
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Cody M Wolfe
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Kyong Nyon Nam
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Florent Letronne
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Nicholas F Fitz
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Iliya Lefterov
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, 15261, USA.
| | - Radosveta Koldamova
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, 15261, USA.
| |
Collapse
|
33
|
Wong NKP, Nicholls SJ, Tan JTM, Bursill CA. The Role of High-Density Lipoproteins in Diabetes and Its Vascular Complications. Int J Mol Sci 2018; 19:E1680. [PMID: 29874886 PMCID: PMC6032203 DOI: 10.3390/ijms19061680] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 05/24/2018] [Accepted: 05/31/2018] [Indexed: 02/06/2023] Open
Abstract
Almost 600 million people are predicted to have diabetes mellitus (DM) by 2035. Diabetic patients suffer from increased rates of microvascular and macrovascular complications, associated with dyslipidaemia, impaired angiogenic responses to ischaemia, accelerated atherosclerosis, and inflammation. Despite recent treatment advances, many diabetic patients remain refractory to current approaches, highlighting the need for alternative agents. There is emerging evidence that high-density lipoproteins (HDL) are able to rescue diabetes-related vascular complications through diverse mechanisms. Such protective functions of HDL, however, can be rendered dysfunctional within the pathological milieu of DM, triggering the development of vascular complications. HDL-modifying therapies remain controversial as many have had limited benefits on cardiovascular risk, although more recent trials are showing promise. This review will discuss the latest data from epidemiological, clinical, and pre-clinical studies demonstrating various roles for HDL in diabetes and its vascular complications that have the potential to facilitate its successful translation.
Collapse
Affiliation(s)
- Nathan K P Wong
- Immunobiology Research Group, The Heart Research Institute, 7 Eliza Street, Newtown, NSW 2042, Australia.
- Discipline of Medicine, The University of Sydney School of Medicine, Camperdown, NSW 2006, Australia.
- Heart Health Theme, South Australian Health and Medical Research Institute, North Terrace, Adelaide, SA 5000, Australia.
| | - Stephen J Nicholls
- Heart Health Theme, South Australian Health and Medical Research Institute, North Terrace, Adelaide, SA 5000, Australia.
- Adelaide Medical School, Faculty of Health & Medical Sciences, University of Adelaide, Adelaide, SA 5000, Australia.
| | - Joanne T M Tan
- Immunobiology Research Group, The Heart Research Institute, 7 Eliza Street, Newtown, NSW 2042, Australia.
- Discipline of Medicine, The University of Sydney School of Medicine, Camperdown, NSW 2006, Australia.
- Heart Health Theme, South Australian Health and Medical Research Institute, North Terrace, Adelaide, SA 5000, Australia.
- Adelaide Medical School, Faculty of Health & Medical Sciences, University of Adelaide, Adelaide, SA 5000, Australia.
| | - Christina A Bursill
- Immunobiology Research Group, The Heart Research Institute, 7 Eliza Street, Newtown, NSW 2042, Australia.
- Discipline of Medicine, The University of Sydney School of Medicine, Camperdown, NSW 2006, Australia.
- Heart Health Theme, South Australian Health and Medical Research Institute, North Terrace, Adelaide, SA 5000, Australia.
- Adelaide Medical School, Faculty of Health & Medical Sciences, University of Adelaide, Adelaide, SA 5000, Australia.
| |
Collapse
|
34
|
Maiese K. Moving to the Rhythm with Clock (Circadian) Genes, Autophagy, mTOR, and SIRT1 in Degenerative Disease and Cancer. Curr Neurovasc Res 2018; 14:299-304. [PMID: 28721811 DOI: 10.2174/1567202614666170718092010] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 06/22/2017] [Accepted: 07/06/2017] [Indexed: 12/12/2022]
Abstract
BACKGROUND The mammalian circadian clock and its associated clock genes are increasingly been recognized as critical components for a number of physiological and disease processes that extend beyond hormone release, thermal regulation, and sleep-wake cycles. New evidence suggests that clinical behavior disruptions that involve prolonged shift work and even space travel may negatively impact circadian rhythm and lead to multi-system disease. METHODS In light of the significant role circadian rhythm can hold over the body's normal physiology as well as disease processes, we examined and discussed the impact circadian rhythm and clock genes hold over lifespan, neurodegenerative disorders, and tumorigenesis. RESULTS In experimental models, lifespan is significantly reduced with the introduction of arrhythmic mutants and leads to an increase in oxidative stress exposure. Interestingly, patients with Alzheimer's disease and Parkinson's disease may suffer disease onset or progression as a result of alterations in the DNA methylation of clock genes as well as prolonged pharmacological treatment for these disorders that may lead to impairment of circadian rhythm function. Tumorigenesis also can occur with the loss of a maintained circadian rhythm and lead to an increased risk for nasopharyngeal carcinoma, breast cancer, and metastatic colorectal cancer. Interestingly, the circadian clock system relies upon the regulation of the critical pathways of autophagy, the mechanistic target of rapamycin (mTOR), AMP activated protein kinase (AMPK), and silent mating type information regulation 2 homolog 1 (Saccharomyces cerevisiae) (SIRT1) as well as proliferative mechanisms that involve the wingless pathway of Wnt/β-catenin pathway to foster cell survival during injury and block tumor cell growth. CONCLUSION Future targeting of the pathways of autophagy, mTOR, SIRT1, and Wnt that control mammalian circadian rhythm may hold the key for the development of novel and effective therapies against aging- related disorders, neurodegenerative disease, and tumorigenesis.
Collapse
Affiliation(s)
- Kenneth Maiese
- Cellular and Molecular Signaling, Newark, NY. United States
| |
Collapse
|
35
|
Reactive Oxygen Species, Superoxide Dimutases, and PTEN-p53-AKT-MDM2 Signaling Loop Network in Mesenchymal Stem/Stromal Cells Regulation. Cells 2018; 7:cells7050036. [PMID: 29723979 PMCID: PMC5981260 DOI: 10.3390/cells7050036] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 04/22/2018] [Accepted: 04/28/2018] [Indexed: 12/11/2022] Open
Abstract
Mesenchymal stromal/stem cells (MSCs) are multipotent cells that can differentiate to various specialized cells, which have the potential capacity to differentiate properly and accelerate recovery in damaged sites of the body. This stem cell technology has become the fundamental element in regenerative medicine. As reactive oxygen species (ROS) have been reported to adversely influence stem cell properties, it is imperative to attenuate the extent of ROS to the promising protective approach with MSCs’ regenerative therapy. Oxidative stress also affects the culture expansion and longevity of MSCs. Therefore, there is great need to identify a method to prevent oxidative stress and replicative senescence in MSCs. Phosphatase and tensin homologue deleted on chromosome 10/Protein kinase B, PKB (PTEN/AKT) and the tumor suppressor p53 pathway have been proven to play a pivotal role in regulating cell apoptosis by regulating the oxidative stress and/or ROS quenching. In this review, we summarize the current research and our view of how PTEN/AKT and p53 with their partners transduce signals downstream, and what the implications are for MSCs’ biology.
Collapse
|
36
|
The mechanistic target of rapamycin (mTOR) and the silent mating-type information regulation 2 homolog 1 (SIRT1): oversight for neurodegenerative disorders. Biochem Soc Trans 2018. [PMID: 29523769 DOI: 10.1042/bst20170121] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
As a result of the advancing age of the global population and the progressive increase in lifespan, neurodegenerative disorders continue to increase in incidence throughout the world. New strategies for neurodegenerative disorders involve the novel pathways of the mechanistic target of rapamycin (mTOR) and the silent mating-type information regulation 2 homolog 1 (Saccharomyces cerevisiae) (SIRT1) that can modulate pathways of apoptosis and autophagy. The pathways of mTOR and SIRT1 are closely integrated. mTOR forms the complexes mTOR Complex 1 and mTOR Complex 2 and can impact multiple neurodegenerative disorders that include Alzheimer's disease, Huntington's disease, and Parkinson's disease. SIRT1 can control stem cell proliferation, block neuronal injury through limiting programmed cell death, drive vascular cell survival, and control clinical disorders that include dementia and retinopathy. It is important to recognize that oversight of programmed cell death by mTOR and SIRT1 requires a fine degree of precision to prevent the progression of neurodegenerative disorders. Additional investigations and insights into these pathways should offer effective and safe treatments for neurodegenerative disorders.
Collapse
|
37
|
Tumor necrosis factor α stimulates endogenous apolipoprotein A-I expression and secretion by human monocytes and macrophages: role of MAP-kinases, NF-κB, and nuclear receptors PPARα and LXRs. Mol Cell Biochem 2018; 448:211-223. [PMID: 29442267 DOI: 10.1007/s11010-018-3327-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 02/07/2018] [Indexed: 02/07/2023]
Abstract
Apolipoprotein A-I (ApoA-I) is the main structural and functional protein component of high-density lipoprotein. ApoA-I has been shown to regulate lipid metabolism and inflammation in macrophages. Recently, we found the moderate expression of endogenous apoA-I in human monocytes and macrophages and showed that pro-inflammatory cytokine tumor necrosis factor α (TNFα) increases apoA-I mRNA and stimulates ApoA-I protein secretion by human monocytes and macrophages. Here, we present data about molecular mechanisms responsible for the TNFα-mediated activation of apoA-I gene in human monocytes and macrophages. This activation depends on JNK and MEK1/2 signaling pathways in human monocytes, whereas inhibition of NFκB, JNK, or p38 blocks an increase of apoA-I gene expression in the macrophages treated with TNFα. Nuclear receptor PPARα is a ligand-dependent regulator of apoA-I gene, whereas LXRs stimulate apoA-I mRNA transcription and ApoA-I protein synthesis and secretion by macrophages. Treatment of human macrophages with PPARα or LXR synthetic ligands as well as knock-down of LXRα, and LXRβ by siRNAs interfered with the TNFα-mediated activation of apoA-I gene in human monocytes and macrophages. At the same time, TNFα differently regulated the levels of PPARα, LXRα, and LXRβ binding to the apoA-I gene promoter in THP-1 cells. Obtained results suggest a novel tissue-specific mechanism of the TNFα-mediated regulation of apoA-I gene in monocytes and macrophages and show that endogenous ApoA-I might be positively regulated in macrophage during inflammation.
Collapse
|
38
|
Maiese K. Novel Treatment Strategies for the Nervous System: Circadian Clock Genes, Non-coding RNAs, and Forkhead Transcription Factors. Curr Neurovasc Res 2018; 15:81-91. [PMID: 29557749 PMCID: PMC6021214 DOI: 10.2174/1567202615666180319151244] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Revised: 01/23/2018] [Accepted: 02/07/2018] [Indexed: 12/16/2022]
Abstract
BACKGROUND With the global increase in lifespan expectancy, neurodegenerative disorders continue to affect an ever-increasing number of individuals throughout the world. New treatment strategies for neurodegenerative diseases are desperately required given the lack of current treatment modalities. METHODS Here, we examine novel strategies for neurodegenerative disorders that include circadian clock genes, non-coding Ribonucleic Acids (RNAs), and the mammalian forkhead transcription factors of the O class (FoxOs). RESULTS Circadian clock genes, non-coding RNAs, and FoxOs offer exciting prospects to potentially limit or remove the significant disability and death associated with neurodegenerative disorders. Each of these pathways has an intimate relationship with the programmed death pathways of autophagy and apoptosis and share a common link to the silent mating type information regulation 2 homolog 1 (Saccharomyces cerevisiae) (SIRT1) and the mechanistic target of rapamycin (mTOR). Circadian clock genes are necessary to modulate autophagy, limit cognitive loss, and prevent neuronal injury. Non-coding RNAs can control neuronal stem cell development and neuronal differentiation and offer protection against vascular disease such as atherosclerosis. FoxOs provide exciting prospects to block neuronal apoptotic death and to activate pathways of autophagy to remove toxic accumulations in neurons that can lead to neurodegenerative disorders. CONCLUSION Continued work with circadian clock genes, non-coding RNAs, and FoxOs can offer new prospects and hope for the development of vital strategies for the treatment of neurodegenerative diseases. These innovative investigative avenues have the potential to significantly limit disability and death from these devastating disorders.
Collapse
Affiliation(s)
- Kenneth Maiese
- Cellular and Molecular Signaling, Newark, New Jersey 07101
| |
Collapse
|
39
|
Chen R, Wang J, Liao C, Ma N, Zhang L, Wang X. 1H NMR studies on serum metabonomic changes over time in a kidney-Yang deficiency syndrome model. RSC Adv 2017. [DOI: 10.1039/c7ra04057a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The central aim of this study was to investigate metabolite changes in metabolic pathwaysviametabonomic approaches in rats suffering from Kidney-Yang Deficiency Syndrome (KYDS) induced by hydrocortisone.
Collapse
Affiliation(s)
- Ruiqun Chen
- School of Basic Courses
- Guangdong Pharmaceutical University
- Guangzhou 510006
- P. R. China
| | - Jia Wang
- School of Basic Courses
- Guangdong Pharmaceutical University
- Guangzhou 510006
- P. R. China
| | - Chengbin Liao
- School of Basic Courses
- Guangdong Pharmaceutical University
- Guangzhou 510006
- P. R. China
| | - Na Ma
- School of Basic Courses
- Guangdong Pharmaceutical University
- Guangzhou 510006
- P. R. China
| | - Lei Zhang
- School of Basic Courses
- Guangdong Pharmaceutical University
- Guangzhou 510006
- P. R. China
| | - Xiufeng Wang
- School of Basic Courses
- Guangdong Pharmaceutical University
- Guangzhou 510006
- P. R. China
| |
Collapse
|