1
|
Jensen M, Heinl ES, Federlein A, Schwartz U, Lund L, Madsen K, Jensen BL, Schweda F. Identification of natriuretic peptide receptor A-related gene expression signatures in podocytes in vivo reveals baseline control of protective pathways. Am J Physiol Renal Physiol 2024; 327:F806-F821. [PMID: 39298549 DOI: 10.1152/ajprenal.00394.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 08/26/2024] [Accepted: 09/17/2024] [Indexed: 09/22/2024] Open
Abstract
Natriuretic peptide receptor-A (NPR-A) is the principal receptor for the natriuretic peptides atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP). Targeted deletion of NPR-A in mouse glomerular podocytes significantly enhances renal injury in vivo in the DOCA-salt experimental model. It was therefore hypothesized that natriuretic peptides exert a direct protective effect on glomerular barrier integrity through activation of NPR-A and modulation of gene expression patterns in podocytes. Green fluorescence-positive podocytes from mice with a conditional deletion of Npr1 encoding NPR-A were isolated by fluorescence-activated cell sorting (FACS). Differentially expressed genes (DEGs) in podocytes were identified by RNA sequencing of podocytes from wild-type and NPR-A-deleted mice. Enrichment analysis was performed on the DEGs using Gene Ontology (GO) terms. Identified transcripts were validated by real-time PCR and ELISA of cultured isolated human and mouse glomeruli. In addition, the effect of natriuretic peptides on podocyte migration was investigated by measuring the outgrowth of podocytes from cultured glomeruli. A total of 158 DEGs were identified with 81 downregulated DEGs and 77 upregulated DEGs in Npr1-deficient podocytes. Among the downregulated genes were protein S and semaphorin 3G, which are known to have protective effects in podocytes. Protein S was also expressed in and secreted from isolated human glomeruli. GO enrichment analysis revealed that the upregulated DEGs in NPR-A deficient podocytes were associated with cell migration and motility. In line, BNP significantly decreased podocyte outgrowth from cultured glomeruli. In conclusion, endogenous levels of natriuretic peptides in mice support baseline protective pathways at glomerular podocytes such as protein S and suppress podocyte migration.NEW & NOTEWORTHY A combination of fluorescence-activated cell sorting and RNA sequencing identified 158 changed gene products in adult mouse kidneys with and without podocyte-specific deletion of the natriuretic peptide receptor A. Downregulated products included protein S and semaphorin 3G, both with proven renoprotective impact, whereas upregulated products were related to mobility of podocytes. Protein S was produced and released from human and murine isolated glomeruli, and atrial natriuretic peptide (ANP) led to decreased migration of podocytes.
Collapse
Affiliation(s)
- Mia Jensen
- Unit of Cardiovascular and Renal Research, Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Elena-Sofia Heinl
- Institute of Physiology, University of Regensburg, Regensburg, Germany
| | - Anna Federlein
- Institute of Physiology, University of Regensburg, Regensburg, Germany
| | - Uwe Schwartz
- NGS Analysis Center, Biology and Pre-Clinical Medicine, University of Regensburg, Regensburg, Germany
| | - Lars Lund
- Department of Urology, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Kirsten Madsen
- Unit of Cardiovascular and Renal Research, Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
- Department of Pathology, Odense University Hospital, Odense, Denmark
| | - Boye L Jensen
- Unit of Cardiovascular and Renal Research, Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Frank Schweda
- Institute of Physiology, University of Regensburg, Regensburg, Germany
| |
Collapse
|
2
|
Weber CJ, Weitzel AJ, Liu AY, Gacasan EG, Sah RL, Cooper KL. Cellular and molecular mechanisms that shape the development and evolution of tail vertebral proportion in mice and jerboas. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.25.620311. [PMID: 39484405 PMCID: PMC11527341 DOI: 10.1101/2024.10.25.620311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Despite the functional importance of the vertebral skeleton, little is known about how individual vertebrae elongate or achieve disproportionate lengths as in the giraffe neck. Rodent tails are an abundantly diverse and more tractable system to understand mechanisms of vertebral growth and proportion. In many rodents, disproportionately long mid-tail vertebrae form a 'crescendo-decrescendo' of lengths in the tail series. In bipedal jerboas, these vertebrae grow exceptionally long such that the adult tail is 1.5x the length of a mouse tail, relative to body length, with four fewer vertebrae. How do vertebrae with the same regional identity elongate differently from their neighbors to establish and diversify adult proportion? Here, we find that vertebral lengths are largely determined by differences in growth cartilage height and the number of cells progressing through endochondral ossification. Hypertrophic chondrocyte size, a major contributor to differential elongation in mammal limb bones, differs only in the longest jerboa mid-tail vertebrae where they are exceptionally large. To uncover candidate molecular mechanisms of disproportionate vertebral growth, we performed intersectional RNA-Seq of mouse and jerboa tail vertebrae with similar and disproportionate elongation rates. Many regulators of posterior axial identity and endochondral elongation are disproportionately differentially expressed in jerboa vertebrae. Among these, the inhibitory natriuretic peptide receptor C (NPR3) appears in multiple studies of rodent and human skeletal proportion suggesting it refines local growth rates broadly in the skeleton and broadly in mammals. Consistent with this hypothesis, NPR3 loss of function mice have abnormal tail and limb proportions. Therefore, in addition to genetic components of the complex process of vertebral evolution, these studies reveal fundamental mechanisms of skeletal growth and proportion.
Collapse
|
3
|
Dickinson YA, Moyes AJ, Hobbs AJ. C-type natriuretic peptide (CNP): The cardiovascular system and beyond. Pharmacol Ther 2024; 262:108708. [PMID: 39154787 DOI: 10.1016/j.pharmthera.2024.108708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/30/2024] [Accepted: 08/15/2024] [Indexed: 08/20/2024]
Abstract
C-type natriuretic peptide (CNP) represents the 'local' member of the natriuretic peptide family, functioning in an autocrine or paracrine capacity to modulate a hugely diverse portfolio of physiological processes. Whilst the best-characterised of these regulatory roles are in the cardiovascular system, akin to its predominantly endocrine siblings atrial (ANP) and brain (BNP) natriuretic peptides, CNP governs many additional, unrelated mechanisms including bone growth, gamete maturation, auditory processing, and neuronal integrity. Furthermore, there is currently great interest in mimicking the biological activity of CNP for therapeutic gain in many of these disparate organ systems. Herein, we provide an overview of the physiology, pathophysiology and pharmacology of CNP in both cardiovascular and non-cardiovascular settings.
Collapse
Affiliation(s)
- Yasmin A Dickinson
- William Harvey Research Institute, Faculty of Medicine and Dentistry, Barts & The London, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Amie J Moyes
- William Harvey Research Institute, Faculty of Medicine and Dentistry, Barts & The London, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Adrian J Hobbs
- William Harvey Research Institute, Faculty of Medicine and Dentistry, Barts & The London, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK.
| |
Collapse
|
4
|
Zhazykbayeva S, Budde H, Kaçmaz M, Zemedie Y, Osman H, Hassoun R, Jaquet K, Akin I, El-Battrawy I, Herwig M, Hamdani N. Exploring PKG signaling as a therapeutic avenue for pressure overload, ischemia, and HFpEF. Expert Opin Ther Targets 2024:1-17. [PMID: 39329430 DOI: 10.1080/14728222.2024.2400093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 08/30/2024] [Indexed: 09/28/2024]
Abstract
INTRODUCTION Heart failure (HF) is a complex and heterogeneous syndrome resulting from any diastolic or systolic dysfunction of the cardiac muscle. In addition to comorbid conditions, pressure overload, and myocardial ischemia are associated with cardiac remodeling which manifests as extracellular matrix (ECM) perturbations, impaired cellular responses, and subsequent ventricular dysfunction. AREAS COVERED The current review discusses the main aspects of the cyclic guanosine monophosphate (cGMP)-protein kinase G (PKG) pathway (cGMP-PKG) pathway modulators and highlights the promising outcomes of its novel pharmacological boosters. EXPERT OPINION Among several signaling pathways involved in the pathogenesis of pressure overload, ischemia and HF with preserved ejection fraction (HFpEF) is cGMP-PKG pathway. This pathway plays a pivotal role in the regulation of cardiac contractility, and modulation of cGMP-PKG signaling, contributing to the development of the diseases. Ventricular cardiomyocytes of HF patients and animal models are known to exhibit reduced cGMP levels and disturbed cGMP signaling including hypophosphorylation of PKG downstream targets. However, restoration of cGMP-PKG signaling improves cardiomyocyte function and promotes cardioprotective effects.
Collapse
Affiliation(s)
- S Zhazykbayeva
- Department of Cellular and Translational Physiology, Institute of Physiology, Ruhr University Bochum, Bochum, Germany
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany
| | - H Budde
- Department of Cellular and Translational Physiology, Institute of Physiology, Ruhr University Bochum, Bochum, Germany
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany
| | - M Kaçmaz
- Department of Cellular and Translational Physiology, Institute of Physiology, Ruhr University Bochum, Bochum, Germany
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany
- HCEMM-SU Cardiovascular Comorbidities Research Group, Center for Pharmacology and Drug Research & Development, Department of Pharmacology and Pharmacotherapy, Intézet címe Semmelweis University, Budapest, Hungary
| | - Y Zemedie
- Department of Cellular and Translational Physiology, Institute of Physiology, Ruhr University Bochum, Bochum, Germany
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany
| | - H Osman
- Department of Cellular and Translational Physiology, Institute of Physiology, Ruhr University Bochum, Bochum, Germany
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany
| | - R Hassoun
- Department of Cellular and Translational Physiology, Institute of Physiology, Ruhr University Bochum, Bochum, Germany
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany
| | - K Jaquet
- Department of Cellular and Translational Physiology, Institute of Physiology, Ruhr University Bochum, Bochum, Germany
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany
| | - I Akin
- Medical University Mannheim, Medical Faculty, Mannheim University, Heidelberg, Germany
| | - I El-Battrawy
- Department of Cellular and Translational Physiology, Institute of Physiology, Ruhr University Bochum, Bochum, Germany
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany
- Department of Cardiology, St. Josef-Hospital, UK RUB, Ruhr University, Bochum, Germany
| | - M Herwig
- Department of Cellular and Translational Physiology, Institute of Physiology, Ruhr University Bochum, Bochum, Germany
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany
| | - N Hamdani
- Department of Cellular and Translational Physiology, Institute of Physiology, Ruhr University Bochum, Bochum, Germany
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany
- HCEMM-SU Cardiovascular Comorbidities Research Group, Center for Pharmacology and Drug Research & Development, Department of Pharmacology and Pharmacotherapy, Intézet címe Semmelweis University, Budapest, Hungary
- Department of Cardiology, St. Josef-Hospital, UK RUB, Ruhr University, Bochum, Germany
- Department of Physiology, Cardiovascular Research Institute, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
5
|
Freuville L, Matthys C, Quinton L, Gillet JP. Venom-derived peptides for breaking through the glass ceiling of drug development. Front Chem 2024; 12:1465459. [PMID: 39398192 PMCID: PMC11468230 DOI: 10.3389/fchem.2024.1465459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 09/04/2024] [Indexed: 10/15/2024] Open
Abstract
Venoms are complex mixtures produced by animals and consist of hundreds of components including small molecules, peptides, and enzymes selected for effectiveness and efficacy over millions of years of evolution. With the development of venomics, which combines genomics, transcriptomics, and proteomics to study animal venoms and their effects deeply, researchers have identified molecules that selectively and effectively act against membrane targets, such as ion channels and G protein-coupled receptors. Due to their remarkable physico-chemical properties, these molecules represent a credible source of new lead compounds. Today, not less than 11 approved venom-derived drugs are on the market. In this review, we aimed to highlight the advances in the use of venom peptides in the treatment of diseases such as neurological disorders, cardiovascular diseases, or cancer. We report on the origin and activity of the peptides already approved and provide a comprehensive overview of those still in development.
Collapse
Affiliation(s)
- Lou Freuville
- Laboratory of Mass Spectrometry, MolSys Research Unit, University of Liège, Liège, Belgium
| | - Chloé Matthys
- Laboratory of Molecular Cancer Biology, URPhyM, NARILIS, University of Namur, Namur, Belgium
| | - Loïc Quinton
- Laboratory of Mass Spectrometry, MolSys Research Unit, University of Liège, Liège, Belgium
| | - Jean-Pierre Gillet
- Laboratory of Molecular Cancer Biology, URPhyM, NARILIS, University of Namur, Namur, Belgium
| |
Collapse
|
6
|
KINOSHITA R, SHIRAKATA C, TAKUBO K, EBISAWA K, NAKAYAMA S, KOIE H. Evaluation of plasma atrial natriuretic peptide concentration in healthy bottlenose dolphins (Tursiops truncates). J Vet Med Sci 2024; 86:1027-1031. [PMID: 39085134 PMCID: PMC11422697 DOI: 10.1292/jvms.23-0429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 07/07/2024] [Indexed: 08/02/2024] Open
Abstract
There are currently no standard methods for diagnosing cardiac diseases in dolphins. These diseases may consequently be overlooked and go undiagnosed. The presence and severity of cardiac diseases in humans can be determined using blood tests. Atrial natriuretic peptide (ANP) used in human cardiac examinations has low species specificity. There have already been reports of homology between dolphin and human ANP; however, its potential for clinical application in dolphins has not been tested. This study was conducted to establish a reference for ANP levels in healthy bottlenose dolphins. Healthy bottlenose dolphins (seven females; estimated to be 7-30 years of age) at an aquarium in Japan were sampled. Each animal was tested for ANP at least three times, and the mean value and standard deviation were calculated to be 43.4 ± 19.2 pg/mL. In humans, patients with high plasma ANP levels have a poor prognosis. In veterinary medicine, cutoff values for the diagnosis of mitral regurgitation and heart failure in dogs have been established and used to predict prognosis. The results of the present study may contribute to the health management of bottlenose dolphins, particularly in the early detection and treatment of cardiac diseases.
Collapse
Affiliation(s)
- Rie KINOSHITA
- Laboratory of Veterinary Physiology, Nihon University, Kanagawa, Japan
| | - Chika SHIRAKATA
- Enoshima Aquarium, Kanagawa, Japan
- Laboratory of Veterinary Physiology, Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | | | - Kazumasa EBISAWA
- Laboratory of Veterinary Physiology, Nihon University, Kanagawa, Japan
| | - Shunya NAKAYAMA
- Laboratory of Veterinary Physiology, Nihon University, Kanagawa, Japan
| | - Hiroshi KOIE
- Laboratory of Veterinary Physiology, Nihon University, Kanagawa, Japan
| |
Collapse
|
7
|
Potter LR. Phosphorylation-Dependent Regulation of Guanylyl Cyclase (GC)-A and Other Membrane GC Receptors. Endocr Rev 2024; 45:755-771. [PMID: 38713083 PMCID: PMC11405504 DOI: 10.1210/endrev/bnae015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 04/07/2024] [Accepted: 05/01/2024] [Indexed: 05/08/2024]
Abstract
Receptor guanylyl cyclases (GCs) are single membrane spanning, multidomain enzymes, that synthesize cGMP in response to natriuretic peptides or other ligands. They are evolutionarily conserved from sea urchins to humans and regulate diverse physiologies. Most family members are phosphorylated on 4 to 7 conserved serines or threonines at the beginning of their kinase homology domains. This review describes studies that demonstrate that phosphorylation and dephosphorylation are required for activation and inactivation of these enzymes, respectively. Phosphorylation sites in GC-A, GC-B, GC-E, and sea urchin receptors are discussed, as are mutant receptors that mimic the dephosphorylated inactive or phosphorylated active forms of GC-A and GC-B, respectively. A salt bridge model is described that explains why phosphorylation is required for enzyme activation. Potential kinases, phosphatases, and ATP regulation of GC receptors are also discussed. Critically, knock-in mice with glutamate substitutions for receptor phosphorylation sites are described. The inability of opposing signaling pathways to inhibit cGMP synthesis in mice where GC-A or GC-B cannot be dephosphorylated demonstrates the necessity of receptor dephosphorylation in vivo. Cardiac hypertrophy, oocyte meiosis, long-bone growth/achondroplasia, and bone density are regulated by GC phosphorylation, but additional processes are likely to be identified in the future.
Collapse
Affiliation(s)
- Lincoln R Potter
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| |
Collapse
|
8
|
Munkhjargal U, Fukuda D, Maeda J, Hara T, Okamoto S, Bavuu O, Yamamoto T, Sata M. LCZ696, an Angiotensin Receptor-Neprilysin Inhibitor, Ameliorates Endothelial Dysfunction in Diabetic C57BL/6 Mice. J Atheroscler Thromb 2024; 31:1333-1340. [PMID: 38616113 PMCID: PMC11374559 DOI: 10.5551/jat.64468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 02/18/2024] [Indexed: 04/16/2024] Open
Abstract
AIMS LCZ696 (sacubitril/valsartan) exerts cardioprotective effects. Recent studies have suggested that it improves the endothelial function; however, the underlying mechanisms have not been thoroughly investigated. We investigated whether LCZ696 ameliorates diabetes-induced endothelial dysfunction. METHODS Diabetes was induced using streptozotocin in 8-week-old male C57BL/6 mice. Diabetic mice were randomly assigned to receive LCZ696 (100 mg/kg/day), valsartan (50 mg/kg/day), or a vehicle for three weeks. The endothelium-dependent and endothelium-independent vascular responses of the aortic segments were determined based on the response to acetylcholine and sodium nitroprusside, respectively. Human umbilical vein endothelial cells (HUVEC) and aortic segments obtained from C57BL/6 mice were used to perform in vitro and ex vivo experiments, respectively. RESULTS LCZ696 and valsartan reduced the blood pressure in diabetic mice (P<0.05). The administration of LCZ696 (P<0.001) and valsartan (P<0.01) ameliorated endothelium-dependent vascular relaxation, but not endothelium-independent vascular relaxation, under diabetic conditions. LCZ696, but not valsartan, increased eNOSSer1177 (P=0.06) and Akt (P<0.05) phosphorylation in the aorta. In HUVEC, methylglyoxal (MGO), a major precursor of advanced glycation end products, decreased eNOSSer1177 phosphorylation (P<0.05) and increased eNOSThr495 phosphorylation (P<0.001). However, atrial natriuretic peptide (ANP) reversed these effects. ANP also ameliorated the MGO-induced impairment of endothelium-dependent vascular relaxation in the aortic segments (P<0.05), although L-NAME completely blocked this effect (P<0.001). CONCLUSION LCZ696 ameliorated diabetes-induced endothelial dysfunction by increasing the bioavailability of ANP. Our findings suggest that LCZ696 has a vascular protective effect in a diabetic model and highlight that it may be more effective than valsartan.
Collapse
Affiliation(s)
- Uugantsetseg Munkhjargal
- Department of Cardiovascular Medicine, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Daiju Fukuda
- Department of Cardiovascular Medicine, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Juri Maeda
- Department of Cardiovascular Medicine, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Tomoya Hara
- Department of Cardiovascular Medicine, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Shintaro Okamoto
- Department of Cardiovascular Medicine, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Oyunbileg Bavuu
- Department of Cardiovascular Medicine, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
- Department of Cardiovascular Medicine, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Takayuki Yamamoto
- Department of Cardiovascular Medicine, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
- Department of Cardiovascular Medicine, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Masataka Sata
- Department of Cardiovascular Medicine, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| |
Collapse
|
9
|
Peters AM. The physiological basis of renal nuclear medicine. Nucl Med Commun 2024; 45:745-757. [PMID: 38903047 DOI: 10.1097/mnm.0000000000001872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Renal physiology underpins renal nuclear medicine, both academic and clinical. Clearance, an important concept in renal physiology, comprises tissue uptake rate of tracer (tissue clearance), disappearance rate from plasma (plasma clearance), appearance rate in urine (urinary clearance) and disappearance rate from tissue. In clinical research, steady-state plasma clearances of para-amino-hippurate and inulin have been widely used to measure renal blood flow (RBF) and glomerular filtration rate (GFR), respectively. Routinely, GFR is measured at non-steady state as plasma clearance of a filtration agent, such as technetium-99m diethylenetriaminepentaacetic acid. Scaled to three-dimensional whole body metrics rather than body surface area, GFR in women is higher than in men but declines faster with age. Age-related decline is predominantly from nephron loss. Tubular function determines parenchymal transit time, which is important in renography, and the route of uptake of technetium-99m dimercaptosuccinic acid, which is via filtration. Resistance to flow is defined according to the pressure-flow relationship but in renography, only transit time can be measured, which, being equal to urine flow divided by collecting system volume, introduces further uncertainty because the volume is also unmeasurable. Tubuloglomerular feedback governs RBF and GFR, is regulated by the macula densa, mediated by adenosine and renin, and can be manipulated with proximal tubular sodium-glucose cotransporter-2 inhibitors. Other determinants of renal haemodynamics include prostaglandins, nitric oxide and dopamine, while protein meal and amino acid infusion are used to measure renal functional reserve. In conclusion, for measuring renal responses to exogenous agents, steady-state para-amino-hippurate and inulin clearances should be replaced with rubidium-82 and gallium-68 EDTA for measuring RBF and GFR.
Collapse
|
10
|
Rezabakhsh A, Fathi F, Habtemariam S, Ahmadian E. Cardiorenal syndrome: Plasmonic biosensors. Clin Chim Acta 2024; 562:119870. [PMID: 39002559 DOI: 10.1016/j.cca.2024.119870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 07/10/2024] [Accepted: 07/10/2024] [Indexed: 07/15/2024]
Abstract
Cardiorenal syndrome (CRS) is defined as a broad spectrum of conditions encompassing both the heart and kidneys in which acute or chronic heart disorder may induce acute or chronic tubular injury in the kidneys and vice versa. Early diagnosis allows timely intervention and attenuates disease progression. Two well-established biomarkers, neutrophil gelatinase-associated lipocalin (NGAL) and brain (B-type) natriuretic peptide (BNP), are reflective of impaired cardiac and kidney function associated with poor prognosis in various cardiac disorders, including heart failure and coronary artery disease. Given the ongoing contribution of CRS to the high morbidity and mortality post-MI, early risk stratification and preventive measures are highly significant. In this review, we examine Surface Plasmon Resonance (SPR) optical biosensors for detection of these biomarkers and discuss potential implications of this highly sensitive and specific technology in CRS detection, treatment and outcomes.
Collapse
Affiliation(s)
- Aysa Rezabakhsh
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farzaneh Fathi
- Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, Iran.
| | - Solomon Habtemariam
- Pharmacognosy Research & Herbal Analysis Services UK, Central Avenue, Chatham-Maritime, Kent ME4 4TB, UK
| | - Elham Ahmadian
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
11
|
Ludwikowska KM, Tokarczyk M, Paleczny B, Tracewski P, Szenborn L, Kusa J. Clinical Significance of B-Type Natriuretic Peptide and N-Terminal Pro-B-Type Natriuretic Peptide in Pediatric Patients: Insights into Their Utility in the Presence or Absence of Pre-Existing Heart Conditions. Int J Mol Sci 2024; 25:8781. [PMID: 39201467 PMCID: PMC11354905 DOI: 10.3390/ijms25168781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/26/2024] [Accepted: 08/01/2024] [Indexed: 09/02/2024] Open
Abstract
The clinical significance of B-type natriuretic peptide (BNP) and N-terminal pro-B-type natriuretic peptide (NT-proBNP) in pediatric patients remains an area of evolving understanding, particularly regarding their utility in the presence or absence of pre-existing heart conditions. While clear cutoff values and established roles in heart failure are understood in adult patients, pediatric norms vary with age, complicating interpretation. Notably, the emergence of multi-system inflammatory syndrome in children (MIS-C) has highlighted the importance of these markers not only in the detection of acute heart failure but also as a marker of disease severity and even as a differential diagnosis tool. This review summarizes current knowledge on the utility of BNP and NT-proBNP in pediatric patients. Their unique physiology, including circulation and compensation mechanisms, likely influence BNP and NT-proBNP release, potentially even in non-heart failure states. Factors such as dynamic volemic changes accompanying inflammatory diseases in children may contribute. Thus, understanding the nuanced roles of BNP and NT-proBNP in pediatric populations is crucial for the accurate diagnosis, management, and differentiation of cardiac and non-cardiac conditions.
Collapse
Affiliation(s)
- Kamila Maria Ludwikowska
- Department of Pediatric Infectious Diseases, Wroclaw Medical University, Ludwika Pasteura 1, 50-367 Wrocław, Poland; (K.M.L.); (L.S.)
| | - Monika Tokarczyk
- Department of Pediatric Infectious Diseases, Wroclaw Medical University, Ludwika Pasteura 1, 50-367 Wrocław, Poland; (K.M.L.); (L.S.)
| | - Bartłomiej Paleczny
- Department of Physiology and Pathophysiology, Wroclaw Medical University, Ludwika Pasteura 1, 50-367 Wrocław, Poland;
| | - Paweł Tracewski
- Department of Pediatric Cardiology, Regional Specialist Hospital in Wroclaw, Research and Development Center, Kamieńskiego 73a, 51-124 Wrocław, Poland; (P.T.); (J.K.)
| | - Leszek Szenborn
- Department of Pediatric Infectious Diseases, Wroclaw Medical University, Ludwika Pasteura 1, 50-367 Wrocław, Poland; (K.M.L.); (L.S.)
| | - Jacek Kusa
- Department of Pediatric Cardiology, Regional Specialist Hospital in Wroclaw, Research and Development Center, Kamieńskiego 73a, 51-124 Wrocław, Poland; (P.T.); (J.K.)
- Pediatric Cardiology Department, Medical University of Silesia, Medyków 16, 40-752 Katowice, Poland
| |
Collapse
|
12
|
Afsar B, Afsar RE, Caliskan Y, Lentine KL. Brain natriuretic peptide and N-terminal pro b-type natriuretic peptide in kidney transplantation: More than just cardiac markers. Transplant Rev (Orlando) 2024; 38:100869. [PMID: 38909518 DOI: 10.1016/j.trre.2024.100869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/15/2024] [Accepted: 06/16/2024] [Indexed: 06/25/2024]
Abstract
Although kidney transplantation (KT) is the best treatment option for most patients with end-stage kidney disease (ESKD) due to reduced mortality, morbidity and increased quality of life, long- term complications such as chronic kidney allograft dysfunction (CKAD) and increased cardiovascular disease burden are still major challenges. Thus, routine screening of KT recipients (KTRs) is very important to identify and quantify risks and guide preventative measures. However, no screening parameter has perfect sensitivity and specificity, and there is unmet need for new markers. In this review, we evaluate brain natriuretic peptide (BNP) and N-terminal pro b-type natriuretic peptide (NT-proBNP) as promising markers for risk stratification in the kidney transplant recipients (KTRs). The usefulness of these markers are already proven in heart failure, hypertension, coronary artery disease. In the context of KT, evidence is emerging. BNP and NT-proBNP has shown to be associated with kidney function, graft failure, echocardiographic parameters, major cardiovascular events and mortality but the underlying mechanisms are not known. Although BNP and NT-proBNP interact with immune system, renin angiotensin system and sympathetic system; it is not known whether these interactions are responsible for the clinical findings observed in KTRs. Future studies are needed whether these biomarkers show clinical efficacy, especially with regard to hard outcomes such as major adverse cardiovascular events and graft dysfunction and whether routine implementation of these markers are cost effective in KTRs.
Collapse
Affiliation(s)
- Baris Afsar
- Suleyman Demirel University, School of Medicine, Department of Nephrology, Turkey; Saint Louis University Transplant Center, SSM Health Saint Louis University Hospital, St. Louis, MO, USA.
| | - Rengin Elsurer Afsar
- Suleyman Demirel University, School of Medicine, Department of Nephrology, Turkey; Saint Louis University Transplant Center, SSM Health Saint Louis University Hospital, St. Louis, MO, USA
| | - Yasar Caliskan
- Saint Louis University Transplant Center, SSM Health Saint Louis University Hospital, St. Louis, MO, USA
| | - Krista L Lentine
- Saint Louis University Transplant Center, SSM Health Saint Louis University Hospital, St. Louis, MO, USA
| |
Collapse
|
13
|
Aslan A, Ari Yuka S. Therapeutic peptides for coronary artery diseases: in silico methods and current perspectives. Amino Acids 2024; 56:37. [PMID: 38822212 PMCID: PMC11143054 DOI: 10.1007/s00726-024-03397-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 05/06/2024] [Indexed: 06/02/2024]
Abstract
Many drug formulations containing small active molecules are used for the treatment of coronary artery disease, which affects a significant part of the world's population. However, the inadequate profile of these molecules in terms of therapeutic efficacy has led to the therapeutic use of protein and peptide-based biomolecules with superior properties, such as target-specific affinity and low immunogenicity, in critical diseases. Protein‒protein interactions, as a consequence of advances in molecular techniques with strategies involving the combined use of in silico methods, have enabled the design of therapeutic peptides to reach an advanced dimension. In particular, with the advantages provided by protein/peptide structural modeling, molecular docking for the study of their interactions, molecular dynamics simulations for their interactions under physiological conditions and machine learning techniques that can work in combination with all these, significant progress has been made in approaches to developing therapeutic peptides that can modulate the development and progression of coronary artery diseases. In this scope, this review discusses in silico methods for the development of peptide therapeutics for the treatment of coronary artery disease and strategies for identifying the molecular mechanisms that can be modulated by these designs and provides a comprehensive perspective for future studies.
Collapse
Affiliation(s)
- Ayca Aslan
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Esenler, Istanbul, Turkey
- Health Biotechnology Joint Research and Application Center of Excellence, Esenler, Istanbul, Turkey
| | - Selcen Ari Yuka
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Esenler, Istanbul, Turkey.
- Health Biotechnology Joint Research and Application Center of Excellence, Esenler, Istanbul, Turkey.
| |
Collapse
|
14
|
Giovou AE, Gladka MM, Christoffels VM. The Impact of Natriuretic Peptides on Heart Development, Homeostasis, and Disease. Cells 2024; 13:931. [PMID: 38891063 PMCID: PMC11172276 DOI: 10.3390/cells13110931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/24/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
During mammalian heart development, the clustered genes encoding peptide hormones, Natriuretic Peptide A (NPPA; ANP) and B (NPPB; BNP), are transcriptionally co-regulated and co-expressed predominately in the atrial and ventricular trabecular cardiomyocytes. After birth, expression of NPPA and a natural antisense transcript NPPA-AS1 becomes restricted to the atrial cardiomyocytes. Both NPPA and NPPB are induced by cardiac stress and serve as markers for cardiovascular dysfunction or injury. NPPB gene products are extensively used as diagnostic and prognostic biomarkers for various cardiovascular disorders. Membrane-localized guanylyl cyclase receptors on many cell types throughout the body mediate the signaling of the natriuretic peptide ligands through the generation of intracellular cGMP, which interacts with and modulates the activity of cGMP-activated kinase and other enzymes and ion channels. The natriuretic peptide system plays a fundamental role in cardio-renal homeostasis, and its potent diuretic and vasodilatory effects provide compensatory mechanisms in cardiac pathophysiological conditions and heart failure. In addition, both peptides, but also CNP, have important intracardiac actions during heart development and homeostasis independent of the systemic functions. Exploration of the intracardiac functions may provide new leads for the therapeutic utility of natriuretic peptide-mediated signaling in heart diseases and rhythm disorders. Here, we review recent insights into the regulation of expression and intracardiac functions of NPPA and NPPB during heart development, homeostasis, and disease.
Collapse
Affiliation(s)
- Alexandra E Giovou
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, 1105AZ Amsterdam, The Netherlands
| | - Monika M Gladka
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, 1105AZ Amsterdam, The Netherlands
| | - Vincent M Christoffels
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, 1105AZ Amsterdam, The Netherlands
| |
Collapse
|
15
|
Dabaghie D, Charrin E, Tonelius P, Rosengren B, Korkut G, Granqvist AB, Lal M, Patrakka J. Unraveling the role of natriuretic peptide clearance receptor (NPR3) in glomerular diseases. Sci Rep 2024; 14:11850. [PMID: 38782980 PMCID: PMC11116399 DOI: 10.1038/s41598-024-61603-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 05/07/2024] [Indexed: 05/25/2024] Open
Abstract
Natriuretic peptides (NPs) are cardio-derived hormones that have a crucial role in maintaining cardiovascular homeostasis. Physiological effects of NPs are mediated by binding to natriuretic peptide receptors 1 and 2 (NPR1/2), whereas natriuretic peptide receptor 3 (NPR3) acts as a clearance receptor that removes NPs from the circulation. Mouse studies have shown that local NP-signaling in the kidney glomerulus is important for the maintenance of renal homeostasis. In this study we examined the expression of NPR3 in kidney tissue and explored its involvement in renal physiology and disease by generating podocyte-specific knockout mice (NPR3podKO) as well as by using an NPR3 inhibitor (NPR3i) in rodent models of kidney disease. NPR3 was highly expressed by podocytes. NPR3podKO animals showed no renal abnormalities under healthy conditions and responded similarly to nephrotoxic serum (NTS) induced glomerular injury. However, NPR3i showed reno-protective effects in the NTS-induced model evidenced by decreased glomerulosclerosis and reduced podocyte loss. In a ZSF1 rat model of diabetic kidney injury, therapy alone with NPR3i did not have beneficial effects on renal function/histology, but when combined with losartan (angiotensin receptor blocker), NPR3i potentiated its ameliorative effects on albuminuria. In conclusion, these results suggest that NPR3 may contribute to kidney disease progression.
Collapse
Affiliation(s)
- Dina Dabaghie
- Division of Pathology, Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Emmanuelle Charrin
- Division of Pathology, Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Pernilla Tonelius
- Bioscience Renal, Cardiovascular, Renal and Metabolism (CVRM), R&D Biopharmaceuticals, AstraZeneca, Gothenburg, Sweden
| | - Birgitta Rosengren
- Bioscience Renal, Cardiovascular, Renal and Metabolism (CVRM), R&D Biopharmaceuticals, AstraZeneca, Gothenburg, Sweden
| | - Gizem Korkut
- Division of Pathology, Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Anna B Granqvist
- Bioscience Renal, Cardiovascular, Renal and Metabolism (CVRM), R&D Biopharmaceuticals, AstraZeneca, Gothenburg, Sweden
| | - Mark Lal
- Bioscience Renal, Cardiovascular, Renal and Metabolism (CVRM), R&D Biopharmaceuticals, AstraZeneca, Gothenburg, Sweden
| | - Jaakko Patrakka
- Division of Pathology, Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden.
- Department of Pathology, Unilabs, Stockholm, Sweden.
| |
Collapse
|
16
|
Mohammadi K, Shafie D, Ghomashi N, Abdolizadeh A, Sadeghpour M. Kinin-kallikrein system: New perspectives in heart failure. Heart Fail Rev 2024; 29:729-737. [PMID: 38381277 DOI: 10.1007/s10741-024-10393-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/13/2024] [Indexed: 02/22/2024]
Abstract
Heart failure (HF) is a pervasive clinical challenge characterized by compromised cardiac function and reduced quality of life. The kinin-kallikrein system (KSS), a multifaceted peptide cascade, has garnered substantial attention due to its potential role in HF. Through activation of B1 and/or B2 receptors and downstream signaling, kinins modulate various physiological processes, including inflammation, coagulation, pain, blood pressure control, and vascular permeability. Notably, aberrations in KKS components have been linked to HF risk. The elevation of vasodilatory bradykinin (BK) due to kallikrein activity reduces preload and afterload, while concurrently fostering sodium reabsorption inhibition. However, kallikrein's conversion of prorenin to renin leads to angiotensinsII upregulation, resulting in vasoconstriction and fluid retention, alongside increased immune cell activity that fuels inflammation and cardiac remodeling. Importantly, prolonged KKS activation resulting from volume overload and tissue stretch contributes to cardiac collagen loss. The conventional renin-angiotensin-aldosterone system (RAAS) inhibitors used in HF management may inadvertently intensify KKS activity, exacerbating collagen depletion and cardiac remodeling. It is crucial to balance the KKS's role in acute cardiac damage, which may temporarily enhance function and metabolic parameters against its detrimental long-term effects. Thus, KKS blockade emerges as a promising strategy to impede HF progression. By attenuating the link between immune system function and tissue damage, KKS inhibition can potentially reduce cardiac remodeling and alleviate HF symptoms. However, the nuanced roles of BK in various acute conditions necessitate further investigation into the sustained benefits of kallikrein inhibitors in patients with chronic HF.
Collapse
Affiliation(s)
- Keivan Mohammadi
- Shahid Chamran Heart Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Davood Shafie
- Heart Failure Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Newsha Ghomashi
- School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ali Abdolizadeh
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Majid Sadeghpour
- School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
17
|
Sleem B, El Rassi C, Zareef R, Bitar F, Arabi M. NT-proBNP cardiac value in COVID-19: a focus on the paediatric population. Cardiol Young 2024; 34:959-968. [PMID: 38528805 DOI: 10.1017/s1047951124000283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
NT-proBNP is a peptide related to brain natriuretic peptide, a cardiac biomarker and a member of the natriuretic family of peptides. NT-proBNP has demonstrated its clinical utility in the assessment of a wide spectrum of cardiac manifestations. It is also considered a more precise diagnostic and prognostic cardiac biomarker than brain natriuretic peptide. With the appearance of the Severe Acute Respiratory Syndrome Coronavirus 2 virus and the subsequent COVID-19 pandemic, diagnosis of heart implications began to pose an increasing struggle for the physician. Echocardiography is considered a central means of evaluating cardiac disorders like heart failure, and it is considered a reliable method. However, other diagnostic methods are currently being explored, one of which involves the assessment of NT-proBNP levels. In the literature that involves the adult population, significant positive correlations were drawn between the levels of NT-proBNP and COVID-19 outcomes such as high severity and fatality. In the paediatric population, however, the literature is scarce, and most of the investigations assess NT-proBNP in the context of Multiple Inflammatory Syndrome in Children, where studies have shown that cohorts with this syndrome had elevated levels of NT-proBNP when compared to non-syndromic cohorts. Thus, more large-scale studies on existing COVID-19 data should be carried out in the paediatric population to further understand the prognostic and diagnostic roles of NT-proBNP.
Collapse
Affiliation(s)
- Bshara Sleem
- Faculty of Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Christophe El Rassi
- Faculty of Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Rana Zareef
- Faculty of Medicine, American University of Beirut Medical Center, Beirut, Lebanon
- Department of Pediatrics and Adolescent Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Fadi Bitar
- Faculty of Medicine, American University of Beirut Medical Center, Beirut, Lebanon
- Department of Pediatrics and Adolescent Medicine, American University of Beirut Medical Center, Beirut, Lebanon
- Pediatric Department, Division of Pediatric Cardiology, American University of Beirut Medical Center, Beirut, Lebanon
| | - Mariam Arabi
- Faculty of Medicine, American University of Beirut Medical Center, Beirut, Lebanon
- Department of Pediatrics and Adolescent Medicine, American University of Beirut Medical Center, Beirut, Lebanon
- Pediatric Department, Division of Pediatric Cardiology, American University of Beirut Medical Center, Beirut, Lebanon
| |
Collapse
|
18
|
Romero-Becera R, Santamans AM, Arcones AC, Sabio G. From Beats to Metabolism: the Heart at the Core of Interorgan Metabolic Cross Talk. Physiology (Bethesda) 2024; 39:98-125. [PMID: 38051123 DOI: 10.1152/physiol.00018.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/26/2023] [Accepted: 12/01/2023] [Indexed: 12/07/2023] Open
Abstract
The heart, once considered a mere blood pump, is now recognized as a multifunctional metabolic and endocrine organ. Its function is tightly regulated by various metabolic processes, at the same time it serves as an endocrine organ, secreting bioactive molecules that impact systemic metabolism. In recent years, research has shed light on the intricate interplay between the heart and other metabolic organs, such as adipose tissue, liver, and skeletal muscle. The metabolic flexibility of the heart and its ability to switch between different energy substrates play a crucial role in maintaining cardiac function and overall metabolic homeostasis. Gaining a comprehensive understanding of how metabolic disorders disrupt cardiac metabolism is crucial, as it plays a pivotal role in the development and progression of cardiac diseases. The emerging understanding of the heart as a metabolic and endocrine organ highlights its essential contribution to whole body metabolic regulation and offers new insights into the pathogenesis of metabolic diseases, such as obesity, diabetes, and cardiovascular disorders. In this review, we provide an in-depth exploration of the heart's metabolic and endocrine functions, emphasizing its role in systemic metabolism and the interplay between the heart and other metabolic organs. Furthermore, emerging evidence suggests a correlation between heart disease and other conditions such as aging and cancer, indicating that the metabolic dysfunction observed in these conditions may share common underlying mechanisms. By unraveling the complex mechanisms underlying cardiac metabolism, we aim to contribute to the development of novel therapeutic strategies for metabolic diseases and improve overall cardiovascular health.
Collapse
Affiliation(s)
| | | | - Alba C Arcones
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
- Centro Nacional de Investigaciones Oncológicas, Madrid, Spain
| | - Guadalupe Sabio
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
- Centro Nacional de Investigaciones Oncológicas, Madrid, Spain
| |
Collapse
|
19
|
Xiao Y, Wang R, Kong S, Zhao T, Situ Y, Nie H. Comparison of Protective Effect of Tri-circulator and Coenzyme Q10 on Myocardial Injury and the Mechanism Study by Zebrafish Model. Cardiovasc Toxicol 2024; 24:258-265. [PMID: 38316695 DOI: 10.1007/s12012-024-09828-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/09/2024] [Indexed: 02/07/2024]
Abstract
Tri-Circulator (TC) is a product comprising coenzyme Q10 (CoQ10), Salvia miltiorrhiza, and Panax notoginseng. Individually, each of these constituents has demonstrated protective effects on myocardial injury. The purpose of this study is to evaluate the protective efficacy of TC on heart function and compare the differential effects between CoQ10 and TC. Two myocardial injury models of zebrafish, the hypoxia-reoxygenation model (H/R) and the isoproterenol (ISO, a β-receptor agonist) model, were used in this experiment. The zebrafish subjects were divided into 4 groups: control, H/R, TC, and CoQ10. Heart rate, stroke volume (SV), cardiac output (CO), ejection fraction (EF), fractional area change (FAC), and pericardial height were monitored to assess changes in heart function. The gene expression of atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP) was studied as markers of injury/stress. TC significantly suppresses elevated heart rate induced by H/R and prevents the decrease of heart rate induced by ISO. It alleviates the pericardial infusion induced by ISO, whereas CoQ10 does not possess a similar effect. Both TC and CoQ10 significantly inhibit the decline in SV, CO, EF, and FAC induced by H/R and ISO, and suppress the expression of ANP and BNP in cardiomyocytes induced by ISO. It is noteworthy that TC demonstrates a more pronounced effect on EF, FAC, ANP, and BNP gene expression compared to CoQ10. Both TC and CoQ10 have a protective effect on myocardial injury of zebrafish. However, TC exhibits a greater efficacy compared to CoQ10 alone in mitigating myocardial injury.
Collapse
Affiliation(s)
- Yuan Xiao
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou, 510632, China
| | - Ranjing Wang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou, 510632, China
| | - Shang Kong
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou, 510632, China
| | - Tingting Zhao
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou, 510632, China
| | - Yongli Situ
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou, 510632, China
| | - Hong Nie
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou, 510632, China.
| |
Collapse
|
20
|
Martini L, Mandoli GE, Pastore MC, Pagliaro A, Bernazzali S, Maccherini M, Henein M, Cameli M. Heart transplantation and biomarkers: a review about their usefulness in clinical practice. Front Cardiovasc Med 2024; 11:1336011. [PMID: 38327491 PMCID: PMC10847311 DOI: 10.3389/fcvm.2024.1336011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 01/12/2024] [Indexed: 02/09/2024] Open
Abstract
Advanced heart failure (AdvHF) can only be treated definitively by heart transplantation (HTx), yet problems such right ventricle dysfunction (RVD), rejection, cardiac allograft vasculopathy (CAV), and primary graft dysfunction (PGD) are linked to a poor prognosis. As a result, numerous biomarkers have been investigated in an effort to identify and prevent certain diseases sooner. We looked at both established biomarkers, such as NT-proBNP, hs-troponins, and pro-inflammatory cytokines, and newer ones, such as extracellular vesicles (EVs), donor specific antibodies (DSA), gene expression profile (GEP), donor-derived cell free DNA (dd-cfDNA), microRNA (miRNA), and soluble suppression of tumorigenicity 2 (sST2). These biomarkers are typically linked to complications from HTX. We also highlight the relationships between each biomarker and one or more problems, as well as their applicability in routine clinical practice.
Collapse
Affiliation(s)
- L. Martini
- Department of Medical Biotechnology, University of Siena, Siena, Italy
| | - G. E. Mandoli
- Department of Medical Biotechnology, University of Siena, Siena, Italy
| | - M. C. Pastore
- Department of Medical Biotechnology, University of Siena, Siena, Italy
| | - A. Pagliaro
- Cardio-Thoracic-Vascular Department, Siena University Hospital, Siena, Italy
| | - S. Bernazzali
- Cardio-Thoracic-Vascular Department, Siena University Hospital, Siena, Italy
| | - M. Maccherini
- Cardio-Thoracic-Vascular Department, Siena University Hospital, Siena, Italy
| | - M. Henein
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - M. Cameli
- Department of Medical Biotechnology, University of Siena, Siena, Italy
| |
Collapse
|
21
|
Barashi R, Milwidsky A, Viskin D, Giladi M, Hochstadt A, Morgan S, Rosso R, Chorin E, Viskin S. Teleological reasoning for QT prolongation caused by severe bradycardia: Correlation between QT interval and brain natriuretic peptide levels during atrioventricular block. Heart Rhythm 2024; 21:106-112. [PMID: 37757960 DOI: 10.1016/j.hrthm.2023.09.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 09/05/2023] [Accepted: 09/20/2023] [Indexed: 09/29/2023]
Affiliation(s)
- Rami Barashi
- Department of Cardiology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Assi Milwidsky
- Department of Cardiology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Dana Viskin
- Department of Cardiology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Moshe Giladi
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Department of Internal Medicine D, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Aviram Hochstadt
- Department of Cardiology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Samuel Morgan
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Raphael Rosso
- Department of Cardiology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ehud Chorin
- Department of Cardiology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Sami Viskin
- Department of Cardiology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
22
|
Sousa MP, Bettencourt P, Brás-Silva C, Pereira C. Biosensors for natriuretic peptides in cardiovascular diseases. A review. Curr Probl Cardiol 2024; 49:102180. [PMID: 37907188 DOI: 10.1016/j.cpcardiol.2023.102180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 10/28/2023] [Indexed: 11/02/2023]
Abstract
Heart failure (HF) is a complex clinical syndrome associated with high rates of morbidity and mortality. Over the years, it has been crucial to find accurate biomarkers capable of doing a precise monitor of HF and provide an early diagnosis. Of these, it has been established an important role of natriuretic peptides in HF assessment. Moreover, the development of biosensors has been garnering interest as new diagnostic medical tools. In this review we first provide a general overview of HF, its pathogenesis, and diagnostic features. We then discuss the role of natriuretic peptides in heart failure by characterizing them and point out their potential as biomarkers. Finally, we adress the evolution of biosensors development and the available natriuretic peptides biosensors for disease monitoring.
Collapse
Affiliation(s)
- Mariana P Sousa
- Instituto de Investigação e Inovação em Saúde - i3S, Universidade do Porto, Porto 4200-135, Portugal
| | - Paulo Bettencourt
- Cardiovascular R&D Centre-UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, 4200-319, Porto, Portugal
| | - Carmen Brás-Silva
- Cardiovascular R&D Centre-UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, 4200-319, Porto, Portugal
| | - Claudia Pereira
- FP-I3ID, Instituto de Investigação, Inovação e Desenvolvimento, FP-BHS, Biomedical and Health Sciences, Universidade Fernando Pessoa, Porto 4249-004, Portugal; HE-FP-Hospital Fernando Pessoa, CECLIN, Center of Clinical Studies, 4420-096 Gondomar, Portugal; FCS-Faculty of Health Sciences, Fernando Pessoa University, 4249-004 Porto, Portugal.
| |
Collapse
|
23
|
Rao RA, Varghese SS, Ansari F, Rao A, Meng E, El-Diasty M. The Role of Natriuretic Peptides in Predicting Adverse Outcomes After Cardiac Surgery: An Updated Systematic Review. Am J Cardiol 2024; 210:16-36. [PMID: 37884264 DOI: 10.1016/j.amjcard.2023.09.101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/12/2023] [Accepted: 09/25/2023] [Indexed: 10/28/2023]
Abstract
The increasing global burden of cardiovascular disease, particularly, in the aging population, has led to an increase in high-risk cardiac surgical procedures. The current preoperative risk stratification scores, such as the European System for Cardiac Operative Risk Evaluation and the Society for Thoracic Surgeons score, have limitations in their predictive accuracy and tend to underestimate the mortality risk in higher-risk populations. This systematic review aimed to evaluate the utility of natriuretic peptides, brain natriuretic peptide (BNP) and its precursor prohormone (N-terminal prohormone BNP), as predictive biomarkers for adverse outcomes after cardiac surgery. A comprehensive search strategy was performed, and 63 studies involving 40,667 patients who underwent major cardiac operations were included for data extraction. Preoperative levels of BNP and N-terminal prohormone BNP seemed to be associated with an increased risk of short- and long-term mortality, postoperative heart failure, kidney injury, and length of intensive care unit stay. However, their predictive value for postoperative arrhythmias and myocardial infarction was less established. Our findings suggest that natriuretic peptides may play an important role in risk prediction in patients who underwent cardiac surgery. The addition of these biomarkers to the existing clinical risk stratification strategies may enhance their predictive accuracy. However, this needs to be endorsed by data derived from wide-scale clinical trials.
Collapse
Affiliation(s)
- Reddi Ashwin Rao
- Queen's University School of Medicine, Kingston, Ontario, Canada
| | | | - Farzan Ansari
- Queen's University School of Medicine, Kingston, Ontario, Canada
| | - Aditya Rao
- Queen's University School of Medicine, Kingston, Ontario, Canada
| | - Eric Meng
- Queen's University School of Medicine, Kingston, Ontario, Canada
| | - Mohammad El-Diasty
- Harrington Heart and Vascular Institute, Cardiac Surgery Department, University Hospitals, Cleveland, Ohio.
| |
Collapse
|
24
|
Tan SK, Pinzon-Cortes JA, Cooper ME. Novel pharmacological interventions for diabetic kidney disease. Curr Opin Nephrol Hypertens 2024; 33:13-25. [PMID: 37889557 DOI: 10.1097/mnh.0000000000000935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
PURPOSE OF REVIEW The purpose of this review is to summarize the latest evidence on the prevention and progression of diabetic kidney disease (DKD), as well as novel pharmacological interventions from preclinical and early clinical studies with promising findings in the reduction of this condition's burden. RECENT FINDINGS We will cover the latest evidence on the reduction of proteinuria and kidney function decline in DKD achieved through established renin-angiotensin-aldosterone system (RAAS) system blockade and the more recent addition of SGLT2i, nonsteroidal mineralocorticoid receptor antagonists (MRAs) and GLP1-RA, that combined will most likely integrate the mainstay for current DKD treatment. We also highlight evidence from new mechanisms of action in DKD, including other haemodynamic anti-inflammatory and antifibrotic interventions, oxidative stress modulators and cell identity and epigenetic targets. SUMMARY Renal specific outcome trials have become more popular and are increasing the available armamentarium to diminish the progression of renal decline in patients at greater risk of end-stage kidney disease (ESKD) such as diabetic individuals. A combined pharmaceutical approach based on available rigorous studies should include RAAS blockade, SGLT2 inhibitors, nonsteroidal MRA and expectedly GLP1-RA on a personalized based-intervention. New specific trials designed to address renal outcomes will be needed for innovative therapies to conclude on their potential benefits in DKD.
Collapse
Affiliation(s)
- Seng Kiong Tan
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Diabetes Centre, Khoo Teck Puat Hospital, Singapore, Singapore
| | - Jairo A Pinzon-Cortes
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Mark E Cooper
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
25
|
Marta CI, Craina M, Nitu R, Maghiari AL, Abu-Awwad SA, Boscu L, Diaconu M, Dumitru C, Dahma G, Yasar II, Babes K. A Comparative Analysis of NT-proBNP Levels in Pregnant Women and the Impact of SARS-CoV-2 Infection: Influence on Birth Outcome. Diseases 2023; 12:10. [PMID: 38248361 PMCID: PMC10814387 DOI: 10.3390/diseases12010010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/26/2023] [Accepted: 12/29/2023] [Indexed: 01/23/2024] Open
Abstract
BACKGROUND The cardiac biomarker NT-proBNP is released by the ventricles in response to increased cardiac wall tension, showing cardiac activity in heart failure. The primary objective of this comparative study was to analyze the variations of NT-proBNP levels among pregnant patients and to determine the potential influence of SARS-CoV-2 infection on these values. Secondly, the study focused on NT-proBNP levels and their influence on the type of birth. METHODS Blood samples were taken from 160 pregnant mothers in order to determine, through the solid-phase enzyme-linked immunosorbent assay (ELISA) method, the NT-proBNP concentrations from the plasma. The cohort was separated into two distinct groups based on SARS-CoV-2 diagnostic results: negative to the infection, and positive to the infection. RESULTS The SARS-CoV-2-positive group of patients presented with higher levels of NT-proBNP and had higher rates of cesarean sections. (4) Conclusions: Our research highlights the crucial relationship between elevated NT-proBNP values and the mode of giving birth, natural delivery or cesarean section, and also the influence of SARS-CoV-2 viral infection and this biomarker.
Collapse
Affiliation(s)
- Carmen-Ioana Marta
- Doctoral School, Faculty of Medicine and Pharmacy of Oradea, University of Oradea, 410087 Oradea, Romania;
- Clinic of Obstetrics and Gynecology, “Pius Brinzeu” County Clinical Emergency Hospital, 300723 Timisoara, Romania; (M.C.); (M.D.); (C.D.); (G.D.)
- Department of Obstetrics and Gynecology, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Marius Craina
- Clinic of Obstetrics and Gynecology, “Pius Brinzeu” County Clinical Emergency Hospital, 300723 Timisoara, Romania; (M.C.); (M.D.); (C.D.); (G.D.)
- Department of Obstetrics and Gynecology, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Razvan Nitu
- Clinic of Obstetrics and Gynecology, “Pius Brinzeu” County Clinical Emergency Hospital, 300723 Timisoara, Romania; (M.C.); (M.D.); (C.D.); (G.D.)
- Department of Obstetrics and Gynecology, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Anca Laura Maghiari
- Department I—Discipline of Anatomy and Embryology, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania;
| | - Simona-Alina Abu-Awwad
- Doctoral School, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (S.-A.A.-A.); (L.B.); (I.-I.Y.)
| | - Lioara Boscu
- Doctoral School, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (S.-A.A.-A.); (L.B.); (I.-I.Y.)
| | - Mircea Diaconu
- Clinic of Obstetrics and Gynecology, “Pius Brinzeu” County Clinical Emergency Hospital, 300723 Timisoara, Romania; (M.C.); (M.D.); (C.D.); (G.D.)
- Department of Obstetrics and Gynecology, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Catalin Dumitru
- Clinic of Obstetrics and Gynecology, “Pius Brinzeu” County Clinical Emergency Hospital, 300723 Timisoara, Romania; (M.C.); (M.D.); (C.D.); (G.D.)
- Department of Obstetrics and Gynecology, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - George Dahma
- Clinic of Obstetrics and Gynecology, “Pius Brinzeu” County Clinical Emergency Hospital, 300723 Timisoara, Romania; (M.C.); (M.D.); (C.D.); (G.D.)
- Department of Obstetrics and Gynecology, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
- Doctoral School, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (S.-A.A.-A.); (L.B.); (I.-I.Y.)
| | - Ionela-Iasmina Yasar
- Doctoral School, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (S.-A.A.-A.); (L.B.); (I.-I.Y.)
- Department IX: Surgery I, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Katalin Babes
- Faculty of Medicine and Pharmacy of Oradea, University of Oradea, 410087 Oradea, Romania;
- Clinical County Emergency Hospital of Oradea, 410167 Oradea, Romania
| |
Collapse
|
26
|
Juraver-Geslin H, Devotta A, Saint-Jeannet JP. Developmental roles of natriuretic peptides and their receptors. Cells Dev 2023; 176:203878. [PMID: 37742795 PMCID: PMC10841480 DOI: 10.1016/j.cdev.2023.203878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/18/2023] [Accepted: 09/19/2023] [Indexed: 09/26/2023]
Abstract
Natriuretic peptides and their receptors are implicated in the physiological control of blood pressure, bone growth, and cardiovascular and renal homeostasis. They mediate their action through the modulation of intracellular levels of cGMP and cAMP, two second-messengers that have broad biological roles. In this review, we briefly describe the major players of this signaling pathway and their physiological roles in the adult, and discuss several reports describing their activity in the control of various aspects of embryonic development in several species. While the core components of this signaling pathway are well conserved, their functions have diverged in the embryo and the adult to control a diverse array of biological processes.
Collapse
Affiliation(s)
- Hugo Juraver-Geslin
- Department of Molecular Pathobiology, New York University, College of Dentistry, New York, NY 10010, USA
| | - Arun Devotta
- Department of Molecular Pathobiology, New York University, College of Dentistry, New York, NY 10010, USA
| | - Jean-Pierre Saint-Jeannet
- Department of Molecular Pathobiology, New York University, College of Dentistry, New York, NY 10010, USA.
| |
Collapse
|
27
|
Bhatia MS, Attri R, Sharda SC, Swarup P, Garg A. Natriuretic Peptides and Need for Reliable Tool to Assess Pulmonary Congestion for Treatment Monitoring in Heart Failure. J Community Hosp Intern Med Perspect 2023; 13:120-125. [PMID: 38596554 PMCID: PMC11000840 DOI: 10.55729/2000-9666.1260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/08/2023] [Accepted: 08/10/2023] [Indexed: 04/11/2024] Open
Abstract
Natriuretic peptides (NPs) play a significant role in the pathophysiology of heart failure (HF) and are considered reliable diagnostic and prognostic indicators of congestive HF. Pulmonary congestion in HF patients leads to clinical deterioration and hospitalizations. It remains an important aspect to address the management and treatment tailoring in HF patients. However, the role of NP-guided therapy remains debatable due to contrasting reports in the literature. Current guidelines do not recommend the use of NP-guided therapy in the treatment monitoring of HF. Therefore, there is an urgent need to identify reliable markers for treatment monitoring in congestive HF. For early detection of congestion, a technology-based approach to monitor pulmonary hemodynamics and absolute lung fluid measurement is found to be effective in guiding treatment. Remote dielectric sensing technology is one such non-invasive approach that measures pulmonary fluid levels in the lungs which results in reduced hospitalization and re-admission rate in HF patients. In this review, we summarized the role of natriuretic peptides and the need for a reliable tool to assess pulmonary congestion for treatment monitoring in HF.
Collapse
Affiliation(s)
- Mandip S. Bhatia
- Department of Internal Medicine, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh,
India
| | - Ritu Attri
- Department of General Medicine, Dr.BR. Ambedkar State Institute of Medical Sciences, Mohali, Punjab,
India
| | - Saurabh C. Sharda
- Department of Internal Medicine, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh,
India
| | - Pulkit Swarup
- Medical & Clinical Affairs, Terumo India Pvt. Ltd.,
India
| | - Amit Garg
- Medical & Clinical Affairs, Terumo India Pvt. Ltd.,
India
| |
Collapse
|
28
|
Clemente G, Soldano JS, Tuttolomondo A. Heart Failure: Is There an Ideal Biomarker? Rev Cardiovasc Med 2023; 24:310. [PMID: 39076445 PMCID: PMC11272844 DOI: 10.31083/j.rcm2411310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/06/2023] [Accepted: 06/30/2023] [Indexed: 07/31/2024] Open
Abstract
An always-rising prevalence of heart failure (HF), formerly classified as an emerging epidemic in 1997 and still representing a serious problem of public health, imposes on us to examine more in-depth the pathophysiological mechanisms it is based on. Over the last few years, several biomarkers have been chosen and used in the management of patients affected by HF. The research about biomarkers has broadened our knowledge by identifying some underlying pathophysiological mechanisms occurring in patients with both acute and chronic HF. This review aims to provide an overview of the role of biomarkers previously identified as responsible for the pathophysiological mechanisms subtending the disease and other emerging ones to conduct the treatment and identify possible prognostic implications that may allow the optimization of the therapy and/or influence a closer follow-up. Taking the high prevalence of HF-associated comorbidities into account, an integrated approach using various biomarkers has shown promising results in predicting mortality, a preferable risk stratification, and the decrease of rehospitalizations, reducing health care costs as well.
Collapse
Affiliation(s)
- Giuseppe Clemente
- Internal Medicine and Stroke Care Ward, University Hospital Policlinico P.
Giaccone, 90127 Palermo, Italy
| | - John Sebastian Soldano
- Internal Medicine and Stroke Care Ward, University Hospital Policlinico P.
Giaccone, 90127 Palermo, Italy
| | - Antonino Tuttolomondo
- Internal Medicine and Stroke Care Ward, University Hospital Policlinico P.
Giaccone, 90127 Palermo, Italy
| |
Collapse
|
29
|
Bekele AT. Natriuretic Peptide Receptors (NPRs) as a Potential Target for the Treatment of Heart Failure. Curr Heart Fail Rep 2023; 20:429-440. [PMID: 37710133 DOI: 10.1007/s11897-023-00628-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/22/2023] [Indexed: 09/16/2023]
Abstract
PURPOSE OF REVIEW Heart failure is defined as a complex clinical syndrome that results from any structural or functional impairment of ventricular filling or ejection of blood. The natriuretic peptide is known to exert its biological action on the kidney, heart, blood vessels, renin-angiotensin system, autonomous nervous system, and central nervous system. The natriuretic peptide-natriuretic receptor system plays an important role in the regulation of blood pressure and body fluid volume through its pleiotropic effects. RECENT FINDINGS The clinical and animal studies suggest that natriuretic peptide-natriuretic receptors are important targets for the treatment of heart failure and other cardiovascular diseases. Even though attempts targeting natriuretic peptide receptors are underway for heart failure treatment, they seem insufficient despite the receptor systems' potential. This review summarizes natriuretic peptide-natriuretic receptor system's physiological actions and potential target for the treatment of heart failure. Natriuretic peptides play multiple roles in different parts of the body, almost all of the activities related to this receptor system appear to have the potential to be harnessed to treat heart failure or symptoms associated with heart failure.
Collapse
Affiliation(s)
- Adamu T Bekele
- Department of Pharmacology and Clinical Pharmacy, School of Pharmacy, College of Health Sciences, Addis Ababa University, P.O. Box 9086, Addis Ababa, Ethiopia.
| |
Collapse
|
30
|
Bachmann JC, Kirchhoff JE, Napolitano JE, Sorota S, Gordon WM, Feric N, Aschar‐Sobbi R, Lv J, Cao Z, Coppieters K, Borghetti G, Nyberg M. C-type natriuretic peptide induces inotropic and lusitropic effects in human 3D-engineered cardiac tissue: Implications for the regulation of cardiac function in humans. Exp Physiol 2023; 108:1172-1188. [PMID: 37493451 PMCID: PMC10988518 DOI: 10.1113/ep091303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/06/2023] [Indexed: 07/27/2023]
Abstract
The role of C-type natriuretic peptide (CNP) in the regulation of cardiac function in humans remains to be established as previous investigations have been confined to animal model systems. Here, we used well-characterized engineered cardiac tissues (ECTs) generated from human stem cell-derived cardiomyocytes and fibroblasts to study the acute effects of CNP on contractility. Application of CNP elicited a positive inotropic response as evidenced by increases in maximum twitch amplitude, maximum contraction slope and maximum calcium amplitude. This inotropic response was accompanied by a positive lusitropic response as demonstrated by reductions in time from peak contraction to 90% of relaxation and time from peak calcium transient to 90% of decay that paralleled increases in maximum contraction decay slope and maximum calcium decay slope. To establish translatability, CNP-induced changes in contractility were also assessed in rat ex vivo (isolated heart) and in vivo models. Here, the effects on force kinetics observed in ECTs mirrored those observed in both the ex vivo and in vivo model systems, whereas the increase in maximal force generation with CNP application was only detected in ECTs. In conclusion, CNP induces a positive inotropic and lusitropic response in ECTs, thus supporting an important role for CNP in the regulation of human cardiac function. The high degree of translatability between ECTs, ex vivo and in vivo models further supports a regulatory role for CNP and expands the current understanding of the translational value of human ECTs. NEW FINDINGS: What is the central question of this study? What are the acute responses to C-type natriuretic peptide (CNP) in human-engineered cardiac tissues (ECTs) on cardiac function and how well do they translate to matched concentrations in animal ex vivo and in vivo models? What is the main finding and its importance? Acute stimulation of ECTs with CNP induced positive lusitropic and inotropic effects on cardiac contractility, which closely reflected the changes observed in rat ex vivo and in vivo cardiac models. These findings support an important role for CNP in the regulation of human cardiac function and highlight the translational value of ECTs.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Juan Lv
- Research & Early DevelopmentNovo Nordisk A/SMaaloevDenmark
| | - Zhiyou Cao
- Research & Early DevelopmentNovo Nordisk A/SMaaloevDenmark
| | - Ken Coppieters
- Research & Early DevelopmentNovo Nordisk A/SMaaloevDenmark
| | | | - Michael Nyberg
- Research & Early DevelopmentNovo Nordisk A/SMaaloevDenmark
| |
Collapse
|
31
|
Xie B, Zhang Y, Han M, Wang M, Yu Y, Chen X, Wu Y, Hashimoto K, Yuan S, Shang Y, Zhang J. Reversal of the detrimental effects of social isolation on ischemic cerebral injury and stroke-associated pneumonia by inhibiting small intestinal γδ T-cell migration into the brain and lung. J Cereb Blood Flow Metab 2023; 43:1267-1284. [PMID: 37017434 PMCID: PMC10369145 DOI: 10.1177/0271678x231167946] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 03/09/2023] [Accepted: 03/16/2023] [Indexed: 04/06/2023]
Abstract
Social isolation (ISO) is associated with an increased risk and poor outcomes of ischemic stroke. However, the roles and mechanisms of ISO in stroke-associated pneumonia (SAP) remain unclear. Adult male mice were single- or pair-housed with an ovariectomized female mouse and then subjected to transient middle cerebral artery occlusion. Isolated mice were treated with the natriuretic peptide receptor A antagonist A71915 or anti-gamma-delta (γδ) TCR monoclonal antibody, whereas pair-housed mice were treated with recombinant human atrial natriuretic peptide (rhANP). Subdiaphragmatic vagotomy (SDV) was performed 14 days before single- or pair-housed conditions. We found that ISO significantly worsened brain and lung injuries relative to pair housing, which was partially mediated by elevated interleukin (IL)-17A levels and the migration of small intestine-derived inflammatory γδ T-cells into the brain and lung. However, rhANP treatment or SDV could ameliorate ISO-exacerbated post-stroke brain and lung damage by reducing IL-17A levels and inhibiting the migration of inflammatory γδ T-cells into the brain and lung. Our results suggest that rhANP mitigated ISO-induced exacerbation of SAP and ischemic cerebral injury by inhibiting small intestine-derived γδ T-cell migration into the lung and brain, which could be mediated by the subdiaphragmatic vagus nerve.
Collapse
Affiliation(s)
- Bing Xie
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Yujing Zhang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Mengqi Han
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Mengyuan Wang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Yuan Yu
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Xiaoyan Chen
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Yuming Wu
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Kenji Hashimoto
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, Japan
| | - Shiying Yuan
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - You Shang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Jiancheng Zhang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| |
Collapse
|
32
|
Guarino BD, Dado CD, Kumar A, Braza J, Harrington EO, Klinger JR. Deletion of the Npr3 gene increases severity of acute lung injury in obese mice. Pulm Circ 2023; 13:e12270. [PMID: 37528869 PMCID: PMC10387407 DOI: 10.1002/pul2.12270] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 07/05/2023] [Accepted: 07/09/2023] [Indexed: 08/03/2023] Open
Abstract
Previous studies have shown that atrial natriuretic peptide (ANP) attenuates agonist-induced pulmonary edema and that this effect may be mediated in part by the ANP clearance receptor, natriuretic peptide receptor-C (NPR-C). Obesity has been associated with lower plasma ANP levels due to increased expression of NPR-C, and with decreased severity of acute lung injury (ALI). Therefore, we hypothesized that increased expression of NPR-C may attenuate ALI severity in obese populations. To test this, we examined ALI in Npr3 wild-type (WT) and knockout (KO) mice fed normal chow (NC) or high-fat diets (HFD). After 12 weeks, ALI was induced with intra-tracheal administration of Pseudomonas aeruginosa strain 103 (PA103) or saline. ALI severity was determined by lung wet-to-dry ratio (W/D) along with measurement of cell count, protein levels from bronchoalveolar lavage fluid (BALF), and quantitative polymerase chain reaction was performed on whole lung to measure cytokine/chemokine and Npr3 mRNA expression. ANP levels were measured from plasma. PA103 caused ALI as determined by significant increases in W/D, BALF protein concentration, and whole lung cytokine/chemokine expression. PA103 increased Npr3 expression in the lungs of wild-type (WT) mice regardless of diet. There was a nonsignificant trend toward increased Npr3 expression in the lungs of WT mice fed HFD versus NC. No differences in ALI were seen between Npr3 knockout (KO) mice and WT-fed NC, but Npr3 KO mice fed HFD had a significantly greater W/D and BALF protein concentration than WT mice fed HFD. These findings support the hypothesis that Npr3 may help protect against ALI in obesity.
Collapse
Affiliation(s)
- Brianna D. Guarino
- Vascular Research LabProvidence Veterans Affairs Medical CenterProvidenceRhode IslandUSA
- Department of Medicine, Sleep and Critical Care MedicineRhode Island HospitalProvidenceRhode IslandUSA
- Warren Alpert Medical School of Brown UniversityProvidenceRhode IslandUSA
| | - Christopher D. Dado
- Vascular Research LabProvidence Veterans Affairs Medical CenterProvidenceRhode IslandUSA
- Department of Medicine, Sleep and Critical Care MedicineRhode Island HospitalProvidenceRhode IslandUSA
- Warren Alpert Medical School of Brown UniversityProvidenceRhode IslandUSA
| | - Ashok Kumar
- Vascular Research LabProvidence Veterans Affairs Medical CenterProvidenceRhode IslandUSA
- Warren Alpert Medical School of Brown UniversityProvidenceRhode IslandUSA
| | - Julie Braza
- Vascular Research LabProvidence Veterans Affairs Medical CenterProvidenceRhode IslandUSA
- Warren Alpert Medical School of Brown UniversityProvidenceRhode IslandUSA
| | - Elizabeth O. Harrington
- Vascular Research LabProvidence Veterans Affairs Medical CenterProvidenceRhode IslandUSA
- Department of Medicine, Sleep and Critical Care MedicineRhode Island HospitalProvidenceRhode IslandUSA
- Warren Alpert Medical School of Brown UniversityProvidenceRhode IslandUSA
| | - James R. Klinger
- Vascular Research LabProvidence Veterans Affairs Medical CenterProvidenceRhode IslandUSA
- Department of Medicine, Sleep and Critical Care MedicineRhode Island HospitalProvidenceRhode IslandUSA
- Warren Alpert Medical School of Brown UniversityProvidenceRhode IslandUSA
| |
Collapse
|
33
|
Bojti I, Przewosnik AS, Luxenburger H, Hofmann M, Neumann-Haefelin C, Esser JS, Siegel PM, Maier A, Kovacs SB, Kardos L, Csanádi Z, Rieder M, Duerschmied D, Lother A, Bode C, Szabó GT, Czuriga D. Decreased level of serum NT-proCNP associates with disease severity in COVID-19. Respir Res 2023; 24:174. [PMID: 37386635 PMCID: PMC10311835 DOI: 10.1186/s12931-023-02469-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 06/05/2023] [Indexed: 07/01/2023] Open
Abstract
BACKGROUND C-type natriuretic peptide (CNP) is an endothelium-derived paracrine molecule with an important role in vascular homeostasis. In septic patients, the serum level of the amino-terminal propeptide of CNP (NT-proCNP) shows a strong positive correlation with inflammatory biomarkers and, if elevated, correlates with disease severity and indicates a poor outcome. It is not yet known whether NT-proCNP also correlates with the clinical outcome of patients suffering from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. In the current study, we aimed to determine possible changes in the NT-proCNP levels of patients with coronavirus disease 2019 (COVID-19), with special regard to disease severity and outcome. METHODS In this retrospective analysis, we determined the serum level of NT-proCNP in hospitalized patients with symptoms of upper respiratory tract infection, using their blood samples taken on admission, stored in a biobank. The NT-proCNP levels of 32 SARS-CoV-2 positive and 35 SARS-CoV-2 negative patients were measured to investigate possible correlation with disease outcome. SARS-CoV-2 positive patients were then divided into two groups based on their need for intensive care unit treatment (severe and mild COVID-19). RESULTS The NT-proCNP was significantly different in the study groups (e.g. severe and mild COVID-19 and non-COVID-19 patients), but showed inverse changes compared to previous observations in septic patients: lowest levels were detected in critically ill COVID-19 patients, while highest levels in the non-COVID-19 group. A low level of NT-proCNP on admission was significantly associated with severe disease outcome. CONCLUSIONS Low-level NT-proCNP on hospital admission is associated with a severe COVID-19 disease course. The pathomechanism underlying this observation remains to be elucidated, while future studies in larger patient cohorts are necessary to confirm these observations and reveal therapeutic importance. Trial registration DRKS00026655 Registered 26. November 2021.
Collapse
Affiliation(s)
- Istvan Bojti
- Department of Cardiology and Angiology, University Heart Center, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| | - Anne-Sophie Przewosnik
- Department of Cardiology and Angiology, University Heart Center, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Hendrik Luxenburger
- Department of Medicine II (Gastroenterology, Hepatology, Endocrinology and Infectious Diseases), Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- IMM-PACT, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Maike Hofmann
- Department of Medicine II (Gastroenterology, Hepatology, Endocrinology and Infectious Diseases), Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Christoph Neumann-Haefelin
- Department of Medicine II (Gastroenterology, Hepatology, Endocrinology and Infectious Diseases), Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jennifer S Esser
- Department of Cardiology and Angiology, University Heart Center, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Patrick M Siegel
- Department of Cardiology and Angiology, University Heart Center, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Alexander Maier
- Department of Cardiology and Angiology, University Heart Center, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Sarolta Bojtine Kovacs
- IMM-PACT, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Section of Molecular Hematology, Department of Medicine I, Hematology, Oncology and Stem Cell Transplantation, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Laszlo Kardos
- Clinical Department of Infectious Diseases, Clinical Center, University of Debrecen, Debrecen, Hungary
| | - Zoltan Csanádi
- Division of Cardiology, Department of Cardiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Marina Rieder
- Department of Cardiology and Angiology, University Heart Center, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Daniel Duerschmied
- Department of Cardiology, Angiology, Haemostaseology and Medical Intensive Care, University Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
- European Center for AngioScience (ECAS) and German Center for Cardiovascular Research (DZHK) Partner Site Heidelberg/Mannheim, Mannheim, Germany
| | - Achim Lother
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Interdisciplinary Medical Intensive Care, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Christoph Bode
- Department of Cardiology and Angiology, University Heart Center, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Gabor Tamas Szabó
- Division of Cardiology, Department of Cardiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Daniel Czuriga
- Division of Cardiology, Department of Cardiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
34
|
Della Corte V, Pacinella G, Todaro F, Pecoraro R, Tuttolomondo A. The Natriuretic Peptide System: A Single Entity, Pleiotropic Effects. Int J Mol Sci 2023; 24:ijms24119642. [PMID: 37298592 DOI: 10.3390/ijms24119642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/29/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
In the modern scientific landscape, natriuretic peptides are a complex and interesting network of molecules playing pleiotropic effects on many organs and tissues, ensuring the maintenance of homeostasis mainly in the cardiovascular system and regulating the water-salt balance. The characterization of their receptors, the understanding of the molecular mechanisms through which they exert their action, and the discovery of new peptides in the last period have made it possible to increasingly feature the physiological and pathophysiological role of the members of this family, also allowing to hypothesize the possible settings for using these molecules for therapeutic purposes. This literature review traces the history of the discovery and characterization of the key players among the natriuretic peptides, the scientific trials performed to ascertain their physiological role, and the applications of this knowledge in the clinical field, leaving a glimpse of new and exciting possibilities for their use in the treatment of diseases.
Collapse
Affiliation(s)
- Vittoriano Della Corte
- Internal Medicine and Stroke Care Ward, Department of Health Promotion, Maternal and Infant Care, Internal Medicine and Medical Specialities (PROMISE) "G. D'Alessandro", University of Palermo, 90127 Palermo, Italy
| | - Gaetano Pacinella
- Internal Medicine and Stroke Care Ward, Department of Health Promotion, Maternal and Infant Care, Internal Medicine and Medical Specialities (PROMISE) "G. D'Alessandro", University of Palermo, 90127 Palermo, Italy
| | - Federica Todaro
- Internal Medicine and Stroke Care Ward, Department of Health Promotion, Maternal and Infant Care, Internal Medicine and Medical Specialities (PROMISE) "G. D'Alessandro", University of Palermo, 90127 Palermo, Italy
| | - Rosaria Pecoraro
- Internal Medicine and Stroke Care Ward, Department of Health Promotion, Maternal and Infant Care, Internal Medicine and Medical Specialities (PROMISE) "G. D'Alessandro", University of Palermo, 90127 Palermo, Italy
| | - Antonino Tuttolomondo
- Internal Medicine and Stroke Care Ward, Department of Health Promotion, Maternal and Infant Care, Internal Medicine and Medical Specialities (PROMISE) "G. D'Alessandro", University of Palermo, 90127 Palermo, Italy
| |
Collapse
|
35
|
Katsukunya JN, Soko ND, Naidoo J, Rayner B, Blom D, Sinxadi P, Chimusa ER, Dandara M, Dzobo K, Jones E, Dandara C. Pharmacogenomics of Hypertension in Africa: Paving the Way for a Pharmacogenetic-Based Approach for the Treatment of Hypertension in Africans. Int J Hypertens 2023; 2023:9919677. [PMID: 38633331 PMCID: PMC11022520 DOI: 10.1155/2023/9919677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/21/2023] [Accepted: 05/22/2023] [Indexed: 04/19/2024] Open
Abstract
In Africa, the burden of hypertension has been rising at an alarming rate for the last two decades and is a major cause for cardiovascular disease (CVD) mortality and morbidity. Hypertension is characterised by elevated blood pressure (BP) ≥ 140/90 mmHg. Current hypertension guidelines recommend the use of antihypertensives belonging to the following classes: calcium channel blockers (CCB), angiotensin converting inhibitors (ACEI), angiotensin receptor blockers (ARB), diuretics, β-blockers, and mineralocorticoid receptor antagonists (MRAs), to manage hypertension. Still, a considerable number of hypertensives in Africa have their BP uncontrolled due to poor drug response and remain at the risk of CVD events. Genetic factors are a major contributing factor, accounting for 20% to 80% of individual variability in therapy and poor response. Poor response to antihypertensive drug therapy is characterised by elevated BPs and occurrence of adverse drug reactions (ADRs). As a result, there have been numerous studies which have examined the role of genetic variation and its influence on antihypertensive drug response. These studies are predominantly carried out in non-African populations, including Europeans and Asians, with few or no Africans participating. It is important to note that the greatest genetic diversity is observed in African populations as well as the highest prevalence of hypertension. As a result, this warrants a need to focus on how genetic variation affects response to therapeutic interventions used to manage hypertension in African populations. In this paper, we discuss the implications of genetic diversity in CYP11B2, GRK4, NEDD4L, NPPA, SCNN1B, UMOD, CYP411, WNK, CYP3A4/5, ACE, ADBR1/2, GNB3, NOS3, B2, BEST3, SLC25A31, LRRC15 genes, and chromosome 12q loci on hypertension susceptibility and response to antihypertensive therapy. We show that African populations are poorly explored genetically, and for the few characterised genes, they exhibit qualitative and quantitative differences in the profile of pharmacogene variants when compared to other ethnic groups. We conclude by proposing prioritization of pharmacogenetics research in Africa and possible adoption of pharmacogenetic-guided therapies for hypertension in African patients. Finally, we outline the implications, challenges, and opportunities these studies present for populations of non-European descent.
Collapse
Affiliation(s)
- Jonathan N. Katsukunya
- Division of Human Genetics, Department of Pathology and Institute of Infectious Disease and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- UCT/South African Medical Research Council (SAMRC) Platform for Pharmacogenomics Research and Translation Unit, University of Cape Town, Cape Town, South Africa
| | - Nyarai D. Soko
- Division of Human Genetics, Department of Pathology and Institute of Infectious Disease and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- UCT/South African Medical Research Council (SAMRC) Platform for Pharmacogenomics Research and Translation Unit, University of Cape Town, Cape Town, South Africa
| | - Jashira Naidoo
- Department of Medicine, Division of Nephrology and Hypertension, Groote Schuur Hospital and Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Brian Rayner
- UCT/South African Medical Research Council (SAMRC) Platform for Pharmacogenomics Research and Translation Unit, University of Cape Town, Cape Town, South Africa
- Department of Medicine, Division of Nephrology and Hypertension, Groote Schuur Hospital and Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Dirk Blom
- UCT/South African Medical Research Council (SAMRC) Platform for Pharmacogenomics Research and Translation Unit, University of Cape Town, Cape Town, South Africa
- Department of Medicine, Division of Lipidology and Cape Heart Institute, Groote Schuur Hospital and Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Phumla Sinxadi
- UCT/South African Medical Research Council (SAMRC) Platform for Pharmacogenomics Research and Translation Unit, University of Cape Town, Cape Town, South Africa
- Department of Medicine, Division of Clinical Pharmacology, Groote Schuur Hospital and Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Emile R. Chimusa
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle, Tyne and Wear NE1 8ST, UK
| | - Michelle Dandara
- UCT/South African Medical Research Council (SAMRC) Platform for Pharmacogenomics Research and Translation Unit, University of Cape Town, Cape Town, South Africa
| | - Kevin Dzobo
- Medical Research Council-SA Wound Healing Unit, Hair and Skin Research Laboratory, Division of Dermatology, Department of Medicine, Groote Schuur Hospital, Faculty of Health Sciences University of Cape Town, Anzio Road Observatory, Cape Town 7925, South Africa
| | - Erika Jones
- UCT/South African Medical Research Council (SAMRC) Platform for Pharmacogenomics Research and Translation Unit, University of Cape Town, Cape Town, South Africa
- Department of Medicine, Division of Nephrology and Hypertension, Groote Schuur Hospital and Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Collet Dandara
- Division of Human Genetics, Department of Pathology and Institute of Infectious Disease and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- UCT/South African Medical Research Council (SAMRC) Platform for Pharmacogenomics Research and Translation Unit, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
36
|
Ma X, Iyer SR, Ma X, Reginauld SH, Chen Y, Pan S, Zheng Y, Moroni DG, Yu Y, Zhang L, Cannone V, Chen HH, Ferrario CM, Sangaralingham SJ, Burnett JC. Evidence for Angiotensin II as a Naturally Existing Suppressor for the Guanylyl Cyclase A Receptor and Cyclic GMP Generation. Int J Mol Sci 2023; 24:8547. [PMID: 37239899 PMCID: PMC10218449 DOI: 10.3390/ijms24108547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/03/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
The natriuretic peptide system (NPS) and renin-angiotensin-aldosterone system (RAAS) function oppositely at multiple levels. While it has long been suspected that angiotensin II (ANGII) may directly suppress NPS activity, no clear evidence to date supports this notion. This study was designed to systematically investigate ANGII-NPS interaction in humans, in vivo, and in vitro. Circulating atrial, b-type, and c-type natriuretic peptides (ANP, BNP, CNP), cyclic guanosine monophosphate (cGMP), and ANGII were simultaneously investigated in 128 human subjects. Prompted hypothesis was validated in vivo to determine the influence of ANGII on ANP actions. The underlying mechanisms were further explored via in vitro approaches. In humans, ANGII demonstrated an inverse relationship with ANP, BNP, and cGMP. In regression models predicting cGMP, adding ANGII levels and the interaction term between ANGII and natriuretic peptides increased the predictive accuracy of the base models constructed with either ANP or BNP, but not CNP. Importantly, stratified correlation analysis further revealed a positive association between cGMP and ANP or BNP only in subjects with low, but not high, ANGII levels. In rats, co-infusion of ANGII even at a physiological dose attenuated cGMP generation mediated by ANP infusion. In vitro, we found the suppressive effect of ANGII on ANP-stimulated cGMP requires the presence of ANGII type-1 (AT1) receptor and mechanistically involves protein kinase C (PKC), as this suppression can be substantially rescued by either valsartan (AT1 blocker) or Go6983 (PKC inhibitor). Using surface plasmon resonance (SPR), we showed ANGII has low binding affinity to the guanylyl cyclase A (GC-A) receptor compared to ANP or BNP. Our study reveals ANGII is a natural suppressor for the cGMP-generating action of GC-A via AT1/PKC dependent manner and highlights the importance of dual-targeting RAAS and NPS in maximizing beneficial properties of natriuretic peptides in cardiovascular protection.
Collapse
Affiliation(s)
- Xiao Ma
- Cardiorenal Research Laboratory, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Seethalakshmi R. Iyer
- Cardiorenal Research Laboratory, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Xiaoyu Ma
- Cardiorenal Research Laboratory, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Shawn H. Reginauld
- Cardiorenal Research Laboratory, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Yang Chen
- Cardiorenal Research Laboratory, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Shuchong Pan
- Cardiorenal Research Laboratory, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Ye Zheng
- Cardiorenal Research Laboratory, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Dante G. Moroni
- Cardiorenal Research Laboratory, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Yue Yu
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55902, USA
| | - Lianwen Zhang
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55902, USA
| | - Valentina Cannone
- Cardiorenal Research Laboratory, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Horng H. Chen
- Cardiorenal Research Laboratory, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Carlos M. Ferrario
- Department of Surgery, Wake Forest School of Medicine, Winston Salem, NC 27157, USA
| | - S. Jeson Sangaralingham
- Cardiorenal Research Laboratory, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55902, USA
| | - John C. Burnett
- Cardiorenal Research Laboratory, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55902, USA
| |
Collapse
|
37
|
Wang S, Wang Y, Deng Y, Zhang J, Jiang X, Yu J, Gan J, Zeng W, Guo M. Sacubitril/valsartan: research progress of multi-channel therapy for cardiorenal syndrome. Front Pharmacol 2023; 14:1167260. [PMID: 37214467 PMCID: PMC10196136 DOI: 10.3389/fphar.2023.1167260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 04/17/2023] [Indexed: 05/24/2023] Open
Abstract
Cardiorenal syndrome (CRS) results from complex interaction between heart and kidneys, inducing simultaneous acute or chronic dysfunction of these organs. Although its incidence rate is increasing with higher mortality in patients, effective clinical treatment drugs are currently not available. The literature suggests that renin-angiotensin-aldosterone system (RAAS) and diuretic natriuretic peptide (NP) system run through CRS. Drugs only targeting the RAAS and NPs systems are not effective. Sacubitril/valsartan contains two agents (sacubitril and valsartan) that can regulate RAAS and NPs simultaneously. In the 2017 American College of Cardiology/American Heart Association/American Heart Failure (HF) ssociation (ACC/AHA/HFSA) guideline, sacubitril/valsartan was recommended as standard therapy for HF patients. The latest research shows that Combined levosimendan and Sacubitril/Valsartan markets are protected the heart and kidney against cardiovascular syndrome in rat. However, fewer studies have reported its therapeutic efficacy in CRS treatment, and their results are inconclusive. Therefore, based on RAAS and NPs as CRS biomarkers, this paper summarizes possible pathophysiological mechanisms and preliminary clinical application effects of sacubitril/valsartan in the prevention and treatment of CRS. This will provide a pharmacological justification for expanding sacubitril/valsartan use to the treatment of CRS.
Collapse
Affiliation(s)
- Shuangcui Wang
- Oncology Department, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yuli Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yun Deng
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jiaqi Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xijuan Jiang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jianchun Yu
- Oncology Department, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jiali Gan
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Wenyun Zeng
- Traditional Chinese Medicine Department, Ganzhou People’s Hospital, Ganzhou, China
| | - Maojuan Guo
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
38
|
Vitez L, Starc V, Jug B, Bunc M. Improved Endothelial and Autonomic Function after Transcatheter Aortic Valve Implantation. Rev Cardiovasc Med 2023; 24:140. [PMID: 39076751 PMCID: PMC11273032 DOI: 10.31083/j.rcm2405140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/20/2023] [Accepted: 03/24/2023] [Indexed: 07/31/2024] Open
Abstract
Background Degenerative aortic stenosis is an atherosclerotic-like process associated with impaired endothelial and autonomic function. Transcatheter aortic valve implantation (TAVI) has become a treatment of choice for patient with severe degenerative aortic stenosis at high surgical risk. The effect of this procedure on endothelial function measured with flow mediated dilatation (FMD) and autonomic function measured with heart rate variability (HRV) at different time-points of disease management (early and late follow-up) remains unknown. Methods We prospectively included 50 patients with severe aortic stenosis who were deemed suitable for TAVI by the Heart Team. FMD and HRV parameters were collected at baseline ( < 24 h pre-TAVI), at early follow-up (up to 48 h post-TAVI) and at late follow-up (3-6 months post-TAVI). Results 43 patients (mean age 81 (75-85); 60% women) completed the study. FMD significantly improved from 2.8 ± 1.5% before TAVI to 4.7 ± 2.7% early after TAVI (p < 0.001) and was later maintained on late follow-up (4.8 ± 2.7%, p = 0.936). Conversely, high-resolution ECG parameters remained preserved at early and improved at late follow-up after TAVI. Significant improvement was detected in a high frequency-domain parameter-HF (from 5231 ± 1783 to 6507 ± 1789 ms 2 ; p = 0.029) and in two Poincare plot parameters: ratio of the short- and long-term R-R variability in the Poincare plot-SD1/SD2 (from 0.682 to 0.884 ms 2 ; p = 0.003) and short-term R-R variability in the Poincare plot-SDRR (from 9.6 to 23.9 ms; p = 0.001). Echocardiographic parameters comprising baseline maximal aortic valve velocity (R = 0.415; p = 0.011), mean aortic gradient (R = 0.373; p = 0.018), indexed stroke volume (R = 0.503; p = 0.006), change in aortic valve maximal velocity (R = 0.365; p = 0.031), change in mean aortic gradient (R = 0.394; p = 0.019) and NT-proBNP (R = 0.491; p = 0.001) were found as significant predictors of change in FMD. Conclusions Endothelial function measured with FMD and autonomic function obtained with HRV parameters significantly improve after TAVI. While endothelial function improves early and is maintained later after TAVI, autonomic function remains stable and improves on late follow-up. This is most likely caused by early hemodynamic changes after resolution of aortic valve obstruction and gradual left ventricular remodeling. Clinical Trial Registration www.clinicaltrials.gov, identifier NCT04286893.
Collapse
Affiliation(s)
- Luka Vitez
- Department of Cardiology, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Vito Starc
- Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Borut Jug
- Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
- Department of Vascular Diseases, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia
| | - Matjaž Bunc
- Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
- Department of Vascular Diseases, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia
| |
Collapse
|
39
|
Martin TG, Juarros MA, Leinwand LA. Regression of cardiac hypertrophy in health and disease: mechanisms and therapeutic potential. Nat Rev Cardiol 2023; 20:347-363. [PMID: 36596855 PMCID: PMC10121965 DOI: 10.1038/s41569-022-00806-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/08/2022] [Indexed: 01/05/2023]
Abstract
Left ventricular hypertrophy is a leading risk factor for cardiovascular morbidity and mortality. Although reverse ventricular remodelling was long thought to be irreversible, evidence from the past three decades indicates that this process is possible with many existing heart disease therapies. The regression of pathological hypertrophy is associated with improved cardiac function, quality of life and long-term health outcomes. However, less than 50% of patients respond favourably to most therapies, and the reversibility of remodelling is influenced by many factors, including age, sex, BMI and disease aetiology. Cardiac hypertrophy also occurs in physiological settings, including pregnancy and exercise, although in these cases, hypertrophy is associated with normal or improved ventricular function and is completely reversible postpartum or with cessation of training. Studies over the past decade have identified the molecular features of hypertrophy regression in health and disease settings, which include modulation of protein synthesis, microRNAs, metabolism and protein degradation pathways. In this Review, we summarize the evidence for hypertrophy regression in patients with current first-line pharmacological and surgical interventions. We further discuss the molecular features of reverse remodelling identified in cell and animal models, highlighting remaining knowledge gaps and the essential questions for future investigation towards the goal of designing specific therapies to promote regression of pathological hypertrophy.
Collapse
Affiliation(s)
- Thomas G Martin
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, USA
| | - Miranda A Juarros
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, USA
| | - Leslie A Leinwand
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO, USA.
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, USA.
| |
Collapse
|
40
|
Fu D, Luo J, Wu Y, Zhang L, Li L, Chen H, Wen T, Fu Y, Xiong W. Angiotensin II-induced calcium overload affects mitochondrial functions in cardiac hypertrophy by targeting the USP2/MFN2 axis. Mol Cell Endocrinol 2023; 571:111938. [PMID: 37100191 DOI: 10.1016/j.mce.2023.111938] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/12/2023] [Accepted: 04/23/2023] [Indexed: 04/28/2023]
Abstract
Ubiquitination, a common type of post-translational modification, is known to affect various diseases, including cardiac hypertrophy. Ubiquitin-specific peptidase 2 (USP2) plays a crucial role in regulating cell functions, but its role in cardiac functions remains elusive. The present study aims to investigate the mechanism of USP2 in cardiac hypertrophy. Animal and cell models of cardiac hypertrophy were established using Angiotensin II (Ang II) induction. Our experiments revealed that Ang II induced USP2 downregulation in the in vitro and in vivo models. USP2 overexpression suppressed the degree of cardiac hypertrophy (decreased ANP, BNP, and β-MHC mRNA levels, cell surface area, and ratio of protein/DNA), calcium overload (decreased Ca2+ concentration and t-CaMKⅡ and p-CaMKⅡ, and increased SERCA2), and mitochondrial dysfunction (decreased MDA and ROS and increased MFN1, ATP, MMP, and complex Ⅰ and II) both in vitro and in vivo. Mechanically, USP2 interacted with MFN2 and improved the protein level of MFN2 through deubiquitination. Rescue experiments confirmed that MFN2 downregulation neutralized the protective role of USP2 overexpression in cardiac hypertrophy. Overall, our findings suggested that USP2 overexpression mediated deubiquitination to upregulate MFN2, thus alleviating calcium overload-induced mitochondrial dysfunction and cardiac hypertrophy.
Collapse
Affiliation(s)
- Daoyao Fu
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China; Hypertension Research Institute of Jiangxi Province, Nanchang, 330006, Jiangxi, China
| | - Jing Luo
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China; Hypertension Research Institute of Jiangxi Province, Nanchang, 330006, Jiangxi, China
| | - Yanze Wu
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China; Hypertension Research Institute of Jiangxi Province, Nanchang, 330006, Jiangxi, China
| | - Liuping Zhang
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China; Hypertension Research Institute of Jiangxi Province, Nanchang, 330006, Jiangxi, China
| | - Lei Li
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China; Hypertension Research Institute of Jiangxi Province, Nanchang, 330006, Jiangxi, China
| | - Hui Chen
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China; Hypertension Research Institute of Jiangxi Province, Nanchang, 330006, Jiangxi, China
| | - Tong Wen
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China; Hypertension Research Institute of Jiangxi Province, Nanchang, 330006, Jiangxi, China
| | - Yongnan Fu
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China; Hypertension Research Institute of Jiangxi Province, Nanchang, 330006, Jiangxi, China
| | - Wenjun Xiong
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China; Hypertension Research Institute of Jiangxi Province, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|
41
|
Forte M, Marchitti S, Di Nonno F, Stanzione R, Schirone L, Cotugno M, Bianchi F, Schiavon S, Raffa S, Ranieri D, Fioriniello S, Della Ragione F, Torrisi MR, Carnevale R, Valenti V, Versaci F, Frati G, Vecchione C, Volpe M, Rubattu S, Sciarretta S. NPPA/atrial natriuretic peptide is an extracellular modulator of autophagy in the heart. Autophagy 2023; 19:1087-1099. [PMID: 35998113 PMCID: PMC10012953 DOI: 10.1080/15548627.2022.2115675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 08/11/2022] [Accepted: 08/16/2022] [Indexed: 12/09/2022] Open
Abstract
NPPA/atrial natriuretic peptide (natriuretic peptide type A) exerts critical pleiotropic effects in the cardiovascular system, limiting cardiomyocyte hypertrophy and death, reducing cardiac fibrosis and promoting vascular integrity. However, the molecular mechanisms underlying these beneficial effects still need to be clarified. We demonstrated for the first time that macroautophagy/autophagy is involved in the local protective effects of NPPA in cardiomyocytes (CMs), both in vitro and in vivo. Exogenous NPPA rapidly activates autophagy in CMs through NPR1/type A natriuretic peptide receptor and PRKG/protein kinase G signaling and also increases cardiac autophagy in mice. Remarkably, endogenous NPPA is secreted by CMs in response to glucose deprivation or hypoxia, thereby stimulating autophagy through autocrine/paracrine mechanisms. NPPA preserves cell viability and reduces hypertrophy in response to stress through autophagy activation. In vivo, we found that Nppa knockout mice undergoing ischemia-reperfusion (I/R) show increased infarct size and reduced autophagy. Reactivation of autophagy by Tat-Beclin D11 limits I/R injury. We also found that the protective effects of NPPA in reducing infarct size are abrogated in the presence of autophagy inhibition. Mechanistically, we found that NPPA stimulates autophagy through the activation of TFEB (transcription factor EB). Our data suggest that NPPA is a novel extracellular regulator of autophagy in the heart.
Collapse
Affiliation(s)
- Maurizio Forte
- Department of Angio Cardio Neurology, IRCCS Neuromed, Pozzilli, Italy
| | - Simona Marchitti
- Department of Angio Cardio Neurology, IRCCS Neuromed, Pozzilli, Italy
| | - Flavio Di Nonno
- Department of Angio Cardio Neurology, IRCCS Neuromed, Pozzilli, Italy
| | - Rosita Stanzione
- Department of Angio Cardio Neurology, IRCCS Neuromed, Pozzilli, Italy
| | - Leonardo Schirone
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
- Department of Internal, Anesthetic and Cardiovascular Clinical Sciences, “La Sapienza” University of Rome, Rome, Italy
| | - Maria Cotugno
- Department of Angio Cardio Neurology, IRCCS Neuromed, Pozzilli, Italy
| | - Franca Bianchi
- Department of Angio Cardio Neurology, IRCCS Neuromed, Pozzilli, Italy
| | - Sonia Schiavon
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| | - Salvatore Raffa
- Department of Clinical and Molecular Medicine, School of Medicine and Psychology, Sapienza University of Rome, Rome
| | - Danilo Ranieri
- Department of Clinical and Molecular Medicine, School of Medicine and Psychology, Sapienza University of Rome, Rome
| | - Salvatore Fioriniello
- Institute of Genetics and Biophysics (IGB), Adriano Buzzati-Traverso”, Consiglio Nazionale delle Ricerche (CNR), Naples, Italy
| | - Floriana Della Ragione
- Institute of Genetics and Biophysics (IGB), Adriano Buzzati-Traverso”, Consiglio Nazionale delle Ricerche (CNR), Naples, Italy
| | - Maria Rosaria Torrisi
- Department of Clinical and Molecular Medicine, School of Medicine and Psychology, Sapienza University of Rome, Rome
| | - Roberto Carnevale
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
- Mediterranea Cardiocentro, via Orazio, Naples, Italy
| | - Valentina Valenti
- Department of Cardiology, Ospedale Santa Maria Goretti, Latina, Italy
| | - Francesco Versaci
- Department of Cardiology, Ospedale Santa Maria Goretti, Latina, Italy
| | - Giacomo Frati
- Department of Angio Cardio Neurology, IRCCS Neuromed, Pozzilli, Italy
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| | - Carmine Vecchione
- Department of Angio Cardio Neurology, IRCCS Neuromed, Pozzilli, Italy
- Department of Medicine, Surgery and Dentistry, “Scuola Medica Salernitana”, University of Salerno, Baronissi (SA), Italy
| | - Massimo Volpe
- Department of Angio Cardio Neurology, IRCCS Neuromed, Pozzilli, Italy
- Department of Clinical and Molecular Medicine, School of Medicine and Psychology, Sapienza University of Rome, Rome
| | - Speranza Rubattu
- Department of Angio Cardio Neurology, IRCCS Neuromed, Pozzilli, Italy
- Department of Clinical and Molecular Medicine, School of Medicine and Psychology, Sapienza University of Rome, Rome
| | - Sebastiano Sciarretta
- Department of Angio Cardio Neurology, IRCCS Neuromed, Pozzilli, Italy
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| |
Collapse
|
42
|
Binder NK, Beard S, de Alwis N, Fato BR, Nguyen TV, Kaitu’u-Lino TJ, Hannan NJ. Investigating the Effects of Atrial Natriuretic Peptide on the Maternal Endothelium to Determine Potential Implications for Preeclampsia. Int J Mol Sci 2023; 24:ijms24076182. [PMID: 37047162 PMCID: PMC10094118 DOI: 10.3390/ijms24076182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/15/2023] [Accepted: 03/20/2023] [Indexed: 03/29/2023] Open
Abstract
Preeclampsia is associated with an increased lifelong risk of cardiovascular disease (CVD). It is not clear whether this is induced by persistent systemic organ and vascular damage following preeclampsia or due to a predisposition to both conditions that share cardiovascular pathophysiology. Common to both CVD and preeclampsia is the dysregulation of corin and its proteolytic product, atrial natriuretic peptide (ANP). ANP, a hypotensive hormone converted from pro-ANP by corin, is involved in blood pressure homeostasis. While corin is predominantly a cardiac enzyme, both corin and pro-ANP are significantly upregulated in the gravid uterus and dysregulated in preeclampsia. Relatively little is known about ANP function in the endothelium during a pregnancy complicated by preeclampsia. Here, we investigated the effect of ANP on endothelial cell proliferation and migration, markers of endothelial dysfunction, and receptor expression in omental arteries exposed to circulating preeclamptic toxins. ANP receptor expression is significantly upregulated in preeclamptic vasculature but not because of exposure to preeclampsia toxins tumour necrosis factor α or soluble fms-like tyrosine kinase-1. The supplementation of endothelial cells with ANP did not promote proliferation or migration, nor did ANP improve markers of endothelial dysfunction. The role of ANP in preeclampsia is unlikely to be via endothelial pathways.
Collapse
Affiliation(s)
- Natalie K. Binder
- Therapeutics Discovery and Vascular Function in Pregnancy Laboratory, Heidelberg, VIC 3084, Australia
- Department of Obstetrics and Gynaecology, University of Melbourne, Heidelberg, VIC 3084, Australia
- Mercy Perinatal, Mercy Hospital for Women, Heidelberg, VIC 3084, Australia
| | - Sally Beard
- Therapeutics Discovery and Vascular Function in Pregnancy Laboratory, Heidelberg, VIC 3084, Australia
- Department of Obstetrics and Gynaecology, University of Melbourne, Heidelberg, VIC 3084, Australia
- Mercy Perinatal, Mercy Hospital for Women, Heidelberg, VIC 3084, Australia
| | - Natasha de Alwis
- Therapeutics Discovery and Vascular Function in Pregnancy Laboratory, Heidelberg, VIC 3084, Australia
- Department of Obstetrics and Gynaecology, University of Melbourne, Heidelberg, VIC 3084, Australia
- Mercy Perinatal, Mercy Hospital for Women, Heidelberg, VIC 3084, Australia
| | - Bianca R. Fato
- Therapeutics Discovery and Vascular Function in Pregnancy Laboratory, Heidelberg, VIC 3084, Australia
- Department of Obstetrics and Gynaecology, University of Melbourne, Heidelberg, VIC 3084, Australia
- Mercy Perinatal, Mercy Hospital for Women, Heidelberg, VIC 3084, Australia
| | - Tuong-Vi Nguyen
- Department of Obstetrics and Gynaecology, University of Melbourne, Heidelberg, VIC 3084, Australia
- Mercy Perinatal, Mercy Hospital for Women, Heidelberg, VIC 3084, Australia
- Diagnostics Discovery and Reverse Translation Laboratory, Heidelberg, VIC 3084, Australia
| | - Tu’uhevaha J. Kaitu’u-Lino
- Department of Obstetrics and Gynaecology, University of Melbourne, Heidelberg, VIC 3084, Australia
- Mercy Perinatal, Mercy Hospital for Women, Heidelberg, VIC 3084, Australia
- Diagnostics Discovery and Reverse Translation Laboratory, Heidelberg, VIC 3084, Australia
| | - Natalie J. Hannan
- Therapeutics Discovery and Vascular Function in Pregnancy Laboratory, Heidelberg, VIC 3084, Australia
- Department of Obstetrics and Gynaecology, University of Melbourne, Heidelberg, VIC 3084, Australia
- Mercy Perinatal, Mercy Hospital for Women, Heidelberg, VIC 3084, Australia
- Correspondence: ; Tel.: +613-8458-4371
| |
Collapse
|
43
|
Custodia A, Aramburu-Núñez M, Rodríguez-Arrizabalaga M, Pías-Peleteiro JM, Vázquez-Vázquez L, Camino-Castiñeiras J, Aldrey JM, Castillo J, Ouro A, Sobrino T, Romaus-Sanjurjo D. Biomarkers Assessing Endothelial Dysfunction in Alzheimer's Disease. Cells 2023; 12:cells12060962. [PMID: 36980302 PMCID: PMC10047803 DOI: 10.3390/cells12060962] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/07/2023] [Accepted: 03/10/2023] [Indexed: 03/30/2023] Open
Abstract
Alzheimer's disease (AD) is the most common degenerative disorder in the elderly in developed countries. Currently, growing evidence is pointing at endothelial dysfunction as a key player in the cognitive decline course of AD. As a main component of the blood-brain barrier (BBB), the dysfunction of endothelial cells driven by vascular risk factors associated with AD allows the passage of toxic substances to the cerebral parenchyma, producing chronic hypoperfusion that eventually causes an inflammatory and neurotoxic response. In this process, the levels of several biomarkers are disrupted, such as an increase in adhesion molecules that allow the passage of leukocytes to the cerebral parenchyma, increasing the permeability of the BBB; moreover, other vascular players, including endothelin-1, also mediate artery inflammation. As a consequence of the disruption of the BBB, a progressive neuroinflammatory response is produced that, added to the astrogliosis, eventually triggers neuronal degeneration (possibly responsible for cognitive deterioration). Recently, new molecules have been proposed as early biomarkers for endothelial dysfunction that can constitute new therapeutic targets as well as early diagnostic and prognostic markers for AD.
Collapse
Affiliation(s)
- Antía Custodia
- NeuroAging Group (NEURAL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Marta Aramburu-Núñez
- NeuroAging Group (NEURAL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Mariña Rodríguez-Arrizabalaga
- NeuroAging Group (NEURAL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
| | - Juan Manuel Pías-Peleteiro
- NeuroAging Group (NEURAL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Laura Vázquez-Vázquez
- NeuroAging Group (NEURAL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Javier Camino-Castiñeiras
- NeuroAging Group (NEURAL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - José Manuel Aldrey
- NeuroAging Group (NEURAL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - José Castillo
- Neuroimaging and Biotechnology Laboratory (NOBEL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
| | - Alberto Ouro
- NeuroAging Group (NEURAL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Tomás Sobrino
- NeuroAging Group (NEURAL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Daniel Romaus-Sanjurjo
- NeuroAging Group (NEURAL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
44
|
Ndiaye JF, Nekka F, Craig M. Understanding the Mechanisms and Treatment of Heart Failure: Quantitative Systems Pharmacology Models with a Focus on SGLT2 Inhibitors and Sex-Specific Differences. Pharmaceutics 2023; 15:1002. [PMID: 36986862 PMCID: PMC10052171 DOI: 10.3390/pharmaceutics15031002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/06/2023] [Accepted: 03/13/2023] [Indexed: 03/30/2023] Open
Abstract
Heart failure (HF), which is a major clinical and public health challenge, commonly develops when the myocardial muscle is unable to pump an adequate amount of blood at typical cardiac pressures to fulfill the body's metabolic needs, and compensatory mechanisms are compromised or fail to adjust. Treatments consist of targeting the maladaptive response of the neurohormonal system, thereby decreasing symptoms by relieving congestion. Sodium-glucose co-transporter 2 (SGLT2) inhibitors, which are a recent antihyperglycemic drug, have been found to significantly improve HF complications and mortality. They act through many pleiotropic effects, and show better improvements compared to others existing pharmacological therapies. Mathematical modeling is a tool used to describe the pathophysiological processes of the disease, quantify clinically relevant outcomes in response to therapies, and provide a predictive framework to improve therapeutic scheduling and strategies. In this review, we describe the pathophysiology of HF, its treatment, and how an integrated mathematical model of the cardiorenal system was built to capture body fluid and solute homeostasis. We also provide insights into sex-specific differences between males and females, thereby encouraging the development of more effective sex-based therapies in the case of heart failure.
Collapse
Affiliation(s)
- Jean François Ndiaye
- Department of Mathematics and Statistics, Université de Montréal, Montréal, QC H3C 3J7, Canada
- Sainte-Justine University Hospital Research Centre, Montréal, QC H3T 1C5, Canada
| | - Fahima Nekka
- Faculty of Pharmacy, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Morgan Craig
- Department of Mathematics and Statistics, Université de Montréal, Montréal, QC H3C 3J7, Canada
- Sainte-Justine University Hospital Research Centre, Montréal, QC H3T 1C5, Canada
| |
Collapse
|
45
|
Ovcharova MA, Schelkunov MI, Geras’kina OV, Makarova NE, Sukhacheva MV, Martyanov SV, Nevolina ED, Zhurina MV, Feofanov AV, Botchkova EA, Plakunov VK, Gannesen AV. C-Type Natriuretic Peptide Acts as a Microorganism-Activated Regulator of the Skin Commensals Staphylococcus epidermidis and Cutibacterium acnes in Dual-Species Biofilms. BIOLOGY 2023; 12:436. [PMID: 36979128 PMCID: PMC10045295 DOI: 10.3390/biology12030436] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/06/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023]
Abstract
The effect of C-type natriuretic peptide in a concentration closer to the normal level in human blood plasma was studied on the mono-species and dual-species biofilms of the skin commensal bacteria Cutibacterium acnes HL043PA2 and Staphylococcus epidermidis ATCC14990. Despite the marginal effect of the hormone on cutibacteria in mono-species biofilms, the presence of staphylococci in the community resulted in a global shift of the CNP effect, which appeared to increase the competitive properties of C. acnes, its proliferation and the metabolic activity of the community. S. epidermidis was mostly inhibited in the presence of CNP. Both bacteria had a significant impact on the gene expression levels revealed by RNA-seq. CNP did not affect the gene expression levels in mono-species cutibacterial biofilms; however, in the presence of staphylococci, five genes were differentially expressed in the presence of the hormone, including two ribosomal proteins and metal ABC transporter permease. In staphylococci, the Na-translocating system protein MpsB NADH-quinone oxidoreductase subunit L was downregulated in the dual-species biofilms in the presence of CNP, while in mono-species biofilms, two proteins of unknown function were downregulated. Hypothetically, at least one of the CNP mechanisms of action is via the competition for zinc, at least on cutibacteria.
Collapse
Affiliation(s)
- Maria A. Ovcharova
- Federal Research Centre “Fundamentals of Biotechnology” of Russian Academy of Sciences, Moscow 119071, Russia
| | - Mikhail I. Schelkunov
- Skolkovo Institute of Science and Technology, Moscow 121205, Russia
- Institute for Information Transmission Problems of Russian Academy of Sciences, Moscow 127051, Russia
| | - Olga V. Geras’kina
- Biological Faculty, Lomonosov Moscow State University, Moscow 119192, Russia
| | | | - Marina V. Sukhacheva
- Federal Research Centre “Fundamentals of Biotechnology” of Russian Academy of Sciences, Moscow 119071, Russia
| | - Sergey V. Martyanov
- Federal Research Centre “Fundamentals of Biotechnology” of Russian Academy of Sciences, Moscow 119071, Russia
| | - Ekaterina D. Nevolina
- Federal Research Centre “Fundamentals of Biotechnology” of Russian Academy of Sciences, Moscow 119071, Russia
| | - Marina V. Zhurina
- Federal Research Centre “Fundamentals of Biotechnology” of Russian Academy of Sciences, Moscow 119071, Russia
| | - Alexey V. Feofanov
- Biological Faculty, Lomonosov Moscow State University, Moscow 119192, Russia
| | - Ekaterina A. Botchkova
- Federal Research Centre “Fundamentals of Biotechnology” of Russian Academy of Sciences, Moscow 119071, Russia
| | - Vladimir K. Plakunov
- Federal Research Centre “Fundamentals of Biotechnology” of Russian Academy of Sciences, Moscow 119071, Russia
| | - Andrei V. Gannesen
- Federal Research Centre “Fundamentals of Biotechnology” of Russian Academy of Sciences, Moscow 119071, Russia
| |
Collapse
|
46
|
Sánchez-Aguilar M, Ibarra-Lara L, Cano-Martínez A, Soria-Castro E, Castrejón-Téllez V, Pavón N, Osorio-Yáñez C, Díaz-Díaz E, Rubio-Ruíz ME. PPAR Alpha Activation by Clofibrate Alleviates Ischemia/Reperfusion Injury in Metabolic Syndrome Rats by Decreasing Cardiac Inflammation and Remodeling and by Regulating the Atrial Natriuretic Peptide Compensatory Response. Int J Mol Sci 2023; 24:ijms24065321. [PMID: 36982395 PMCID: PMC10049157 DOI: 10.3390/ijms24065321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/06/2023] [Accepted: 03/08/2023] [Indexed: 03/18/2023] Open
Abstract
Metabolic syndrome (MetS) is a cluster of factors that increase the risk of developing diabetes, stroke, and heart failure. The pathophysiology of injury by ischemia/reperfusion (I/R) is highly complex and the inflammatory condition plays an important role by increasing matrix remodeling and cardiac apoptosis. Natriuretic peptides (NPs) are cardiac hormones with numerous beneficial effects mainly mediated by a cell surface receptor named atrial natriuretic peptide receptor (ANPr). Although NPs are powerful clinical markers of cardiac failure, their role in I/R is still controversial. Peroxisome proliferator-activated receptor α agonists exert cardiovascular therapeutic actions; however, their effect on the NPs’ signaling pathway has not been extensively studied. Our study provides important insight into the regulation of both ANP and ANPr in the hearts of MetS rats and their association with the inflammatory conditions caused by damage from I/R. Moreover, we show that pre-treatment with clofibrate was able to decrease the inflammatory response that, in turn, decreases myocardial fibrosis, the expression of metalloprotease 2 and apoptosis. Treatment with clofibrate is also associated with a decrease in ANP and ANPr expression.
Collapse
Affiliation(s)
- María Sánchez-Aguilar
- Department of Pharmacology, Juan Badiano 1, Sección XVI, Tlalpan, Mexico City 14080, Mexico; (M.S.-A.); (L.I.-L.); (N.P.)
| | - Luz Ibarra-Lara
- Department of Pharmacology, Juan Badiano 1, Sección XVI, Tlalpan, Mexico City 14080, Mexico; (M.S.-A.); (L.I.-L.); (N.P.)
| | - Agustina Cano-Martínez
- Department of Physiology, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano 1, Sección XVI, Tlalpan, México City 14080, Mexico; (A.C.-M.); (V.C.-T.)
| | - Elizabeth Soria-Castro
- Department of Cardiovascular Biomedicine, Juan Badiano 1, Sección XVI, Tlalpan, México City 14080, Mexico;
| | - Vicente Castrejón-Téllez
- Department of Physiology, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano 1, Sección XVI, Tlalpan, México City 14080, Mexico; (A.C.-M.); (V.C.-T.)
| | - Natalia Pavón
- Department of Pharmacology, Juan Badiano 1, Sección XVI, Tlalpan, Mexico City 14080, Mexico; (M.S.-A.); (L.I.-L.); (N.P.)
| | - Citlalli Osorio-Yáñez
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Apartado Postal 70228, Ciudad de México 04510, Mexico;
- Laboratorio de Fisiología Cardiovascular y Transplante Renal, Unidad de Investigación UNAM-INCICH, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano 1, Sección XVI, Tlalpan, México City 14080, Mexico
| | - Eulises Díaz-Díaz
- Department of Reproductive Biology, Instituto Nacional de Ciencias Médicas y de la Nutrición “Salvador Zubirán”, Vasco de Quiroga 15, Sección XVI, Tlalpan, México City 14000, Mexico;
| | - María Esther Rubio-Ruíz
- Department of Physiology, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano 1, Sección XVI, Tlalpan, México City 14080, Mexico; (A.C.-M.); (V.C.-T.)
- Correspondence:
| |
Collapse
|
47
|
Ma X, Iyer SR, Ma X, Reginauld SH, Chen Y, Pan S, Zheng Y, Moroni D, Yu Y, Zhang L, Cannone V, Chen HH, Ferrario CM, Sangaralingham SJ, Burnett JC. EVIDENCE FOR ANGIOTENSIN II AS A NATURALLY EXISTING SUPPRESSOR FOR THE NATRIURETIC PEPTIDE SYSTEM. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.26.525806. [PMID: 36747784 PMCID: PMC9901178 DOI: 10.1101/2023.01.26.525806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Background Natriuretic peptide system (NPS) and renin angiotensin aldosterone system (RAAS) function oppositely at multiple levels. While it has long been suspected that angiotensin II (ANGII) may directly suppress NPS activity, no clear evidence to date support this notion. Objectives This study was designed to systematically investigate ANGII-NPS interaction in humans, in vivo, and in vitro for translational insights. Methods Circulating atrial, b-type, and c-type natriuretic peptides (ANP, BNP, CNP), cyclic guanosine monophosphate (cGMP), and ANGII were simultaneously investigated in 128 human subjects. Prompted hypothesis was validated in rat model to determine influence of ANGII on ANP actions. Multiple engineered HEK293 cells and surface plasmon resonance (SPR) technology were leveraged for mechanistic exploration. Results In humans, ANGII showed inverse relationship with ANP, BNP, and cGMP. In regression models predicting cGMP, adding ANGII levels and interaction term between ANGII and natriuretic peptide increased predicting accuracy of base models constructed with either ANP or BNP, but not CNP. Importantly, stratified correlation analysis further revealed positive association between cGMP with ANP or BNP only in subjects with low, but not high, ANGII levels. In rats, co-infusion of ANGII even at physiological dose attenuated blood pressure reduction and cGMP generation triggered by ANP infusion. In vitro, we showed that the suppression effect of ANGII on ANP-stimulated cGMP requires the presence of ANGII type-1 (AT1) receptor and mechanistically involves protein kinase C (PKC), which can be substantially rescued by either valsartan (AT1 blocker) or Go6983 (PKC inhibitor). Using SPR, we showed ANGII has low affinity for particulate guanylyl cyclase A (GC-A) receptor binding compared to ANP or BNP. Conclusions Our study reveals ANGII as a natural suppressor for cGMP-generating action of GC-A via AT1/PKC dependent manner and highlights importance of dual-targeting RAAS and NPS in maximizing beneficial properties of natriuretic peptides in cardiovascular disease.
Collapse
Affiliation(s)
- Xiao Ma
- Cardiorenal Research Laboratory, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Seethalakshmi R. Iyer
- Cardiorenal Research Laboratory, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Xiaoyu Ma
- Cardiorenal Research Laboratory, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Shawn H. Reginauld
- Cardiorenal Research Laboratory, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Yang Chen
- Cardiorenal Research Laboratory, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Shuchong Pan
- Cardiorenal Research Laboratory, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Ye Zheng
- Cardiorenal Research Laboratory, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Dante Moroni
- Cardiorenal Research Laboratory, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Yue Yu
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Lianwen Zhang
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Valentina Cannone
- Cardiorenal Research Laboratory, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Horng H. Chen
- Cardiorenal Research Laboratory, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Carlos M. Ferrario
- Department of Surgery, Wake Forest School of Medicine, Winston Salem, NC, USA
| | - S. Jeson Sangaralingham
- Cardiorenal Research Laboratory, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - John C. Burnett
- Cardiorenal Research Laboratory, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
48
|
Lu S, Tang Y, Yao R, Xu R, Zhang H, Liu J, Gao Y, Wei Q, Zhao X, Liu J, Han B, Pan MH, Ma B. E2/ER signaling mediates the meiotic arrest of goat intrafollicular oocytes induced by follicle-stimulating hormone. J Anim Sci 2023; 101:skad351. [PMID: 37925610 PMCID: PMC10630185 DOI: 10.1093/jas/skad351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 10/10/2023] [Indexed: 11/06/2023] Open
Abstract
The increased production of high-quality oocytes lies at the heart of the search to accelerate the reproduction of high-quality breeding livestock using assisted reproductive technology. Follicle-stimulating hormone (FSH) maintains the arrest of oocyte meiosis during early follicular development in vivo and promotes the synchronous maturation of nucleus and cytoplasm to improve oocyte quality. However, the mechanism by which FSH maintains meiotic arrest in oocytes is still not fully understood. Oocytes spontaneously resume meiosis once released from the arrested state. In this study, we isolated goat antral follicles with a diameter of 2.0-4.0 mm, cultured them in vitro either with or without added FSH, and finally collected the oocytes to observe their meiotic state. The results showed that FSH effectively inhibited the meiotic recovery of oocytes in follicles [4 h: control (n = 84) vs. with FSH (n = 86), P = .0115; 6 h: control (n = 86) vs. FSH (n = 85), P = 0.0308; and 8 h: control (n = 95) vs. FSH (n = 101), P = 0.0039]. FSH significantly inhibited the downregulation of natriuretic peptide receptor 2 (NPR2) expression and cyclic guanosine monophosphate (cGMP) synthesis during follicular culture in vitro (P < 0.05). Further exploration found that FSH promoted the synthesis of 17β-estradiol (E2) (P = .0249 at 4 h and P = .0039 at 8 h) and maintained the expression of the estrogen nuclear receptor ERβ, but not the estrogen nuclear receptor ERα during follicle culture in vitro (P = .0190 at 2 h, and P = .0100 at 4 h). In addition, E2/ER (estrogen nuclear receptors ERα and ERβ) mediated the inhibitory effect of FSH on the downregulation of NPR2 expression and cGMP synthesis, ultimately preventing the meiotic recovery of oocytes (P < .05). In summary, our study showed that FSH-induced estrogen production in goat follicles, and the E2/ER signaling pathway, both mediated meiotic arrest in FSH-induced goat oocytes.
Collapse
Affiliation(s)
- Sihai Lu
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Yaju Tang
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Ru Yao
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Rui Xu
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Hui Zhang
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Jie Liu
- Yulin Agricultural Product Quality and Safety Center, Yulin, Shaanxi, China
| | - Yan Gao
- Yulin Animal Husbandry and Veterinary Service Center, Yulin, Shaanxi, China
| | - Qiang Wei
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiaoe Zhao
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Jianpeng Liu
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Bin Han
- Yulin Animal Husbandry and Veterinary Service Center, Yulin, Shaanxi, China
| | - Meng-Hao Pan
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Baohua Ma
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
49
|
Association of Paraoxonase-1 and NT-proBNP with Clinical, Clinico-Pathologic and Echocardiographic Variables in Dogs with Mitral Valve Disease. Vet Sci 2023; 10:vetsci10010033. [PMID: 36669034 PMCID: PMC9866008 DOI: 10.3390/vetsci10010033] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/13/2022] [Accepted: 12/29/2022] [Indexed: 01/04/2023] Open
Abstract
The objective of the present study was to measure the concentration of Paraoxonase-1 (PON-1) and N-terminal-prohormone-B-type natriuretic peptide (NT-proBNP), in the serum of dogs with degenerative Mitral Valve Disease (MVD), in order to identify their association with the clinical stage and specific clinico-pathologic and echocardiographic findings.Eighty dogs diagnosed with MVD and staged according to the ACVIM (American College of Veterinary Internal Medicine) consensus statement (B1, B2, C and D), based on their clinical, radiographic, and echocardiographic findings, were included in the study. NT-proBNP was measured only in stage B1 and B2 dogs. Clinical stage did not have a significant effect on PON-1 concentrations (p = 0.149), but NT-proBNP levels were lower in B1 dogs (p = 0.001). A significant correlation between PON-1 and total plasma proteins (p = 0.001), albumin (p = 0.003) and white blood cell count (p = 0.041) was detected, whereas there was no significant correlation (p = 0.847) between PON-1 and NT-proBNP concentrations. PON-1 showed a significant but weak negative correlation with normalized left ventricular internal diameter at diastole (LVIDdn) (p = 0.022) and systole (LVIDsn) (p = 0.012), as well as mitral valve E to A wave velocity ratio (MV E/A) (p = 0.015), but not with Left Atrial to Aortic root ratio (LA/Ao) (p = 0.892) or fractional shortening (FS%) (p = 0.944). PON-1 seems to be an insensitive marker of clinical stage and disease severity in MVD, but can be indicative of some clinico-pathological and echocardiographic changes. NT-proBNP changes are independent of oxidative stress.
Collapse
|
50
|
Ye X, Li J, Liu Z, Sun X, Wei D, Song L, Wu C. Peptide mediated therapy in fibrosis: Mechanisms, advances and prospects. Biomed Pharmacother 2023; 157:113978. [PMID: 36423541 DOI: 10.1016/j.biopha.2022.113978] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/30/2022] [Accepted: 11/03/2022] [Indexed: 11/22/2022] Open
Abstract
Fibrosis, a disease characterized by an excess accumulation of extracellular matrix components, could lead to organ failure and death, and is to blame for up to 45 % of all fatalities in developed nations. These disorders all share the common trait of an unchecked and increasing accumulation of fibrotic tissue in the affected organs, which leads to their malfunction and eventual failure, even if their underlying causes are highly diverse and, in some cases, remain unclear. Numerous studies have identified activated myofibroblasts as the common cellular elements ultimately responsible for the replacement of normal tissues with nonfunctional fibrotic tissue. The transforming growth factor-β pathway, for instance, plays a significant role in practically all kinds of fibrosis. However, there is no specific drug for the treatment of fibrosis, several medications with anti-hepatic fibrosis properties are still in the research and development stages. Peptide, which refers to a substance consisting of 2-50 amino acids, is characterized by structural diversity, low toxicity, biological activities, easy absorption, specific targeting, few side effects, and has been proven to be effective in anti-fibrosis. Here, we summarized various anti-fibrosis peptides in fibrosis including the liver, lungs, kidneys, and other organs. This review will provide a new insight into peptide mediated anti-fibrosis and is helpful to creation of antifibrotic medications.
Collapse
Affiliation(s)
- Xun Ye
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Jinhu Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Zibo Liu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Xue Sun
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Daneng Wei
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Linjiang Song
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, PR China.
| | - Chunjie Wu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China.
| |
Collapse
|