1
|
Grotra R, Karri PS, Gupta A, Malik R, Gupta AK, Meena JP, Seth R. Matched Unrelated Donor Hematopoietic Stem Cell Transplant as Successful Curative Therapy for IL10RB Mutation-Associated Very Early Onset IBD. Pediatr Transplant 2024; 28:e14891. [PMID: 39539152 DOI: 10.1111/petr.14891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/17/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Inflammatory bowel diseases are complex chronic disorders with a relapsing-remitting course that affect the gut due to dysregulated immune response. The incidence of these disorders is increasing globally along with an increase in the incidence in pediatric population. Very early onset inflammatory bowel diseases are seen in children with age less than 6 years, where monogenic causes predominate. With the advent of next-generation sequencing methods, these disorders are being diagnosed more. Interleukin-10 receptor mutation-associated inflammatory bowel diseases is one such monogenic disorder where immunosuppression shows poor response. METHODS We report the case of an 8-month-old child of Indian origin who presented with severe enterocolitis and rectovaginal fistulas. She was evaluated on lines of a very early onset inflammatory bowel disease. She was found to have a mutation in the interleukin-10 receptor causing severe enterocolitis. She underwent a diversion colostomy. She was admitted at 25 months of age for the hematopoietic-stem-cell-transplant (HSCT). The conditioning regimen used consisted of busulfan, fludarabine, and anti-thymocyte-globulin (ATG). The child received a 10/10 human leukocyte antigen (HLA) matched from a matched-unrelated adult female donor with bone marrow stem cell product at a dose of 5.6 million CD34+ cells per kg. RESULTS She was treated successfully by a matched unrelated donor HSCT. At present, she is 2 years and 4 months posttransplant and is cured. CONCLUSIONS Early recognition and prompt genetic testing can help in diagnosing and establishing the cause of a very early onset inflammatory bowel disease. Very early onset inflammatory bowel disease caused due to interleukin-10 receptor mutations can be cured by HSCT.
Collapse
Affiliation(s)
- Rohan Grotra
- Division of Pediatric Gastroenterology, Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| | - Padma Sagarika Karri
- Division of Pediatric Oncology, Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| | - Aditya Gupta
- Division of Pediatric Oncology, Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| | - Rohan Malik
- Division of Pediatric Gastroenterology, Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| | - Aditya Kumar Gupta
- Division of Pediatric Oncology, Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| | - Jagdish Prasad Meena
- Division of Pediatric Oncology, Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| | - Rachna Seth
- Division of Pediatric Oncology, Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
2
|
Jia H, Dong N. Effects of bile acid metabolism on intestinal health of livestock and poultry. J Anim Physiol Anim Nutr (Berl) 2024; 108:1258-1269. [PMID: 38649786 DOI: 10.1111/jpn.13969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 01/27/2024] [Accepted: 04/08/2024] [Indexed: 04/25/2024]
Abstract
Bile acids are synthesised in the liver and are essential amphiphilic steroids for maintaining the balance of cholesterol and energy metabolism in livestock and poultry. They can be used as novel feed additives to promote fat utilisation in the diet and the absorption of fat-soluble substances in the feed to improve livestock performance and enhance carcass quality. With the development of understanding of intestinal health, the balance of bile acid metabolism is closely related to the composition and growth of livestock intestinal microbiota, inflammatory response, and metabolic diseases. This paper systematically reviews the effects of bile acid metabolism on gut health and gut microbiology in livestock. In addition, our paper summarised the role of bile acid metabolism in performance and disease control.
Collapse
Affiliation(s)
- Hongpeng Jia
- The Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Na Dong
- The Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| |
Collapse
|
3
|
HosseiniRavesh F, Ghalibaf AM, Askari VR, Fayedeh F, Rahimi VB, Etemad L, Taherzadeh Z. Therapeutic potential of Capparis spinosa in experimental model of acute acetic acid-induced colitis: Anti-inflammatory and antioxidant effects. Heliyon 2024; 10:e32836. [PMID: 38948035 PMCID: PMC11211893 DOI: 10.1016/j.heliyon.2024.e32836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 06/10/2024] [Accepted: 06/10/2024] [Indexed: 07/02/2024] Open
Abstract
Introduction This study examined the anti-inflammatory and antioxidant properties of Capparis spinosa L. (caper) in order to determine its medicinal potential in the treatment of acute colitis. Method Sixty male rats were divided into six groups. After the experimental period, distal colonic extension was collected for determination of colonic damage, oxidative stress markers, along with antioxidant markers. The impact of altered levels of inflammatory cytokines in colon tissues on the underlying mechanisms examined. Results The results showed that administering different doses of caper led to significant decreases in TNF-α and IL-6 levels when compared to the control colitis group (p < 0.001). Caper treatment effectively lowered elevated oxidative stress factors (MDA, NO, and MPO) compared to the control colitis group (p < 0.001). Caper treatment resulted in a significant increase in antioxidant factors (CAT, SOD, and GSH) compared with the control colitis group (p < 0.001).Significant improvements in tissue repair were observed in caper-treated groups compared to positives and control colitis (p < 0.001). Conclusion The study highlights caper may be useful in the treatment of acute colitis due to its ameliorative effects on inflammation, oxidative stress, and tissue repair.
Collapse
Affiliation(s)
- Faezeh HosseiniRavesh
- Department of Pharmacodynamy and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Vahid Reza Askari
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farzad Fayedeh
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
| | - Vafa Baradaran Rahimi
- Department of Cardiovascular Diseases, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Leila Etemad
- Medical Toxicology Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zhila Taherzadeh
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Targeted Drug Delivery Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
4
|
Sang L, Gong X, Huang Y, Zhang L, Sun J. Immunotherapeutic implications on targeting the cytokines produced in rhinovirus-induced immunoreactions. FRONTIERS IN ALLERGY 2024; 5:1427762. [PMID: 38859875 PMCID: PMC11163110 DOI: 10.3389/falgy.2024.1427762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 05/13/2024] [Indexed: 06/12/2024] Open
Abstract
Rhinovirus is a widespread virus associated with several respiratory diseases, especially asthma exacerbation. Currently, there are no accurate therapies for rhinovirus. Encouragingly, it is found that during rhinovirus-induced immunoreactions the levels of certain cytokines in patients' serum will alter. These cytokines may have pivotal pro-inflammatory or anti-inflammatory effects via their specific mechanisms. Thus far, studies have shown that inhibitions of cytokines such as IL-1, IL-4, IL-5, IL-6, IL-13, IL-18, IL-25, and IL-33 may attenuate rhinovirus-induced immunoreactions, thereby relieving rhinovirus infection. Furthermore, such therapeutics for rhinovirus infection can be applied to viruses of other species, with certain practicability.
Collapse
Affiliation(s)
- Le Sang
- Department of Medicine, Shaoxing University, Shaoxing City, Zhejiang Province, China
| | - Xia Gong
- Department of Medicine, Shaoxing University, Shaoxing City, Zhejiang Province, China
| | - Yunlei Huang
- Department of Medicine, Shaoxing University, Shaoxing City, Zhejiang Province, China
| | - Linling Zhang
- Department of Respiratory Medicine, Shaoxing People’s Hospital, Shaoxing City, Zhejiang Province, China
| | - Jian Sun
- Department of Respiratory Medicine, Shaoxing People’s Hospital, Shaoxing City, Zhejiang Province, China
| |
Collapse
|
5
|
Lin Z, Luo W, Zhang K, Dai S. Environmental and Microbial Factors in Inflammatory Bowel Disease Model Establishment: A Review Partly through Mendelian Randomization. Gut Liver 2024; 18:370-390. [PMID: 37814898 PMCID: PMC11096900 DOI: 10.5009/gnl230179] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 07/09/2023] [Accepted: 07/24/2023] [Indexed: 10/11/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a complex condition resulting from environmental, microbial, immunologic, and genetic factors. With the advancement of Mendelian randomization research in IBD, we have gained new insights into the relationship between these factors and IBD. Many animal models of IBD have been developed using different methods, but few studies have attempted to model IBD by combining environmental factors and microbial factors. In this review, we examine how environmental factors and microbial factors affect the development and progression of IBD, and how they interact with each other and with the intestinal microbiota. We also summarize the current methods for creating animal models of IBD and compare their advantages and disadvantages. Based on the latest findings from Mendelian randomization studies on the role of environmental factors in IBD, we discuss which environmental and microbial factors could be used to construct a more realistic and reliable IBD experimental model. We propose that animal models of IBD should consider both environmental and microbial factors to better mimic human IBD pathogenesis and to reveal the underlying mechanisms of IBD at the immune and genetic levels. We highlight the importance of environmental and microbial factors in IBD pathogenesis and offer new perspectives and suggestions for improving experimental animal modeling. Our goal is to create a model that closely resembles the clinical picture of IBD.
Collapse
Affiliation(s)
- Zesheng Lin
- The First Clinical Medical School, Southern Medical University, Guangzhou, China
| | - Wenjing Luo
- The Second Clinical Medical School, Southern Medical University, Guangzhou, China
| | - Kaijun Zhang
- Department of Gastroenterology, Guangdong Provincial Geriatrics Institute, Guangzhou, ChinaNational Key Clinical Specialty, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Shixue Dai
- Department of Gastroenterology, Guangdong Provincial Geriatrics Institute, Guangzhou, ChinaNational Key Clinical Specialty, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Department of Gastroenterology, Geriatric Center, National Regional Medical Center, Ganzhou Hospital Affiliated to Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Ganzhou, China
| |
Collapse
|
6
|
Cox LS, Alvarez-Martinez M, Wu X, Gabryšová L, Luisier R, Briscoe J, Luscombe NM, O'Garra A. Blimp-1 and c-Maf regulate Il10 and negatively regulate common and unique proinflammatory gene networks in IL-12 plus IL-27-driven T helper-1 cells. Wellcome Open Res 2023; 8:403. [PMID: 38074197 PMCID: PMC10709690 DOI: 10.12688/wellcomeopenres.19680.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2023] [Indexed: 02/12/2024] Open
Abstract
Background CD4 + Th1 cells producing IFN-γ are required to eradicate intracellular pathogens, however if uncontrolled these cells can cause immunopathology. The cytokine IL-10 is produced by multiple immune cells including Th1 cells during infection and regulates the immune response to minimise collateral host damage. In this study we aimed to elucidate the transcriptional network of genes controlling the expression of Il10 and proinflammatory cytokines, including Ifng in Th1 cells differentiated from mouse naive CD4 + T cells. Methods We applied computational analysis of gene regulation derived from temporal profiling of gene expression clusters obtained from bulk RNA sequencing (RNA-seq) of flow cytometry sorted naïve CD4 + T cells from mouse spleens differentiated in vitro into Th1 effector cells with IL-12 and IL-27 to produce Ifng and Il10, compared to IL-27 alone which express Il10 only , or IL-12 alone which express Ifng and no Il10, or medium control driven-CD4 + T cells which do not express effector cytokines . Data were integrated with analysis of active genomic regions from these T cells using an assay for transposase-accessible chromatin with sequencing (ATAC)-seq, integrated with literature derived-Chromatin-immunoprecipitation (ChIP)-seq data and the RNA-seq data, to elucidate the transcriptional network of genes controlling expression of Il10 and pro-inflammatory effector genes in Th1 cells. The co-dominant role for the transcription factors, Prdm1 (encoding Blimp-1) and Maf (encoding c-Maf) , in cytokine gene regulation in Th1 cells, was confirmed using T cells obtained from mice with T-cell specific deletion of these transcription factors. Results We show that the transcription factors Blimp-1 and c-Maf each have unique and common effects on cytokine gene regulation and not only co-operate to induce Il10 gene expression in IL-12 plus IL-27 differentiated mouse Th1 cells, but additionally directly negatively regulate key proinflammatory cytokines including Ifng, thus providing mechanisms for reinforcement of regulated Th1 cell responses. Conclusions These data show that Blimp-1 and c-Maf positively and negatively regulate a network of both unique and common anti-inflammatory and pro-inflammatory genes to reinforce a Th1 response in mice that will eradicate pathogens with minimum immunopathology.
Collapse
Affiliation(s)
- Luke S. Cox
- Immunoregulation and Infection Laboratory, The Francis Crick Institute, London, England, NW1 1AT, UK
| | - Marisol Alvarez-Martinez
- Immunoregulation and Infection Laboratory, The Francis Crick Institute, London, England, NW1 1AT, UK
| | - Xuemei Wu
- Immunoregulation and Infection Laboratory, The Francis Crick Institute, London, England, NW1 1AT, UK
| | - Leona Gabryšová
- Immunoregulation and Infection Laboratory, The Francis Crick Institute, London, England, NW1 1AT, UK
| | - Raphaëlle Luisier
- Computational Biology Laboratory, The Francis Crick Institute, London, England, NW1 1AT, UK
| | - James Briscoe
- Developmental Dynamics Laboratory, The Francis Crick Institute, London, England, NW1 1AT, UK
| | - Nicholas M. Luscombe
- Computational Biology Laboratory, The Francis Crick Institute, London, England, NW1 1AT, UK
- UCL Genetics Institute, Department of Genetics, Evolution and Environment, University College London, London, England, UK
| | - Anne O'Garra
- Immunoregulation and Infection Laboratory, The Francis Crick Institute, London, England, NW1 1AT, UK
- National Heart and Lung Institute, Imperial College London, London, England, UK
| |
Collapse
|
7
|
Ma Q, Zhang X, Xu X, Lu Y, Chen Q, Chen Y, Liu C, Chen K. Long-term oral administration of burdock fructooligosaccharide alleviates DSS-induced colitis in mice by mediating anti-inflammatory effects and protection of intestinal barrier function. Immun Inflamm Dis 2023; 11:e1092. [PMID: 38018589 PMCID: PMC10664397 DOI: 10.1002/iid3.1092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 11/02/2023] [Accepted: 11/02/2023] [Indexed: 11/30/2023] Open
Abstract
BACKGROUND Ulcerative colitis, a typical subtype of inflammatory bowel disease, can cause many serious complications. Burdock fructooligosaccharide (BFO), a linear inulin with a purity of 99.439% and a molecular weight of 2345 Da, demonstrates anti-inflammatory and immunomodulatory properties. METHODS The Kunming mice were divided into two experimental models: a normal pretreatment model and a colitis experimental model. During the experimental treatment period, we assessed changes in weight and disease activity index (DAI), quantified the intestinal index, and determined myeloperoxidase (MPO) activity and reactive oxide species (ROS) levels in colitis mice. We also photographed colon morphology to investigate alterations in the integrity of the intestinal barrier function. Finally, we performed ELISA and qRT-PCR to evaluate the anti-inflammatory effect of BFO treatment on colitis mice. RESULT The long-term oral administration of BFO alone exhibited protective effects by preventing disruption of the intestinal functional structure and increasing the colon index in mice. However, in a dextran sodium sulfate (DSS)-induced colitis mouse model, BFO administration facilitated quick recovery of body weight and effectively reduced the DAI, especially in the BFO-H group (500 mg/kg/day). BFO treatment maintained the integrity of the intestinal barrier by attenuating the crypt distortion and increasing the goblet cells count It restored the DSS-induced colon shortening and reduced the symptoms of colitis. These effects may be attributed to the appropriate concentrations of BFO effectively inhibiting MPO activity, clearing excessive ROS, and relieving spleen abnormalitie. BFO also attenuated the overexpression and excessive secretion of inflammatory cytokines (TNF-α, IL-1β, IL-6, and MCP-1) induced by DSS, reduced intestinal inflammation, and consequently protected the intestinal barrier function. CONCLUSION BFO effectively alleviated the symptoms of DSS-induced colitis by mediating anti-inflammatory effects and protecting the intestinal barrier integrity, thereby potentially facilitating the utilization of safer and more efficacious polysaccharides for managing chronic inflammatory diseases.
Collapse
Affiliation(s)
- Qunfei Ma
- School of Life ScienceShandong UniversityQingdaoChina
- Department of PhysiologyNaval Medical UniversityShanghaiChina
| | - Xiujuan Zhang
- School of Life ScienceShandong UniversityQingdaoChina
| | - Xuan Xu
- School of Life ScienceShandong UniversityQingdaoChina
| | - Yan Lu
- School of Life ScienceShandong UniversityQingdaoChina
- Clinical Laboratory Medicine DepartmentJining No. 1 People's HospitalJiningChina
| | - Qiang Chen
- Burdock Biotechnology (Dezhou) Co., LtdDezhouChina
| | - Yiru Chen
- Burdock Biotechnology (Dezhou) Co., LtdDezhouChina
| | - Chunyan Liu
- Provincial Engineering Laboratory for Screening and Re‐Evaluation of Active Compounds of Herbal Medicines in Southern Anhui, School of PharmacyDrug Research & Development Center, Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Wannan Medical CollegeWuhuChina
| | - Kaoshan Chen
- School of Life ScienceShandong UniversityQingdaoChina
- Provincial Engineering Laboratory for Screening and Re‐Evaluation of Active Compounds of Herbal Medicines in Southern Anhui, School of PharmacyDrug Research & Development Center, Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Wannan Medical CollegeWuhuChina
| |
Collapse
|
8
|
Tsilifis C, Slatter MA, Gennery AR. Too much of a good thing: a review of primary immune regulatory disorders. Front Immunol 2023; 14:1279201. [PMID: 38022498 PMCID: PMC10645063 DOI: 10.3389/fimmu.2023.1279201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
Primary immune regulatory disorders (PIRDs) are inborn errors of immunity caused by a loss in the regulatory mechanism of the inflammatory or immune response, leading to impaired immunological tolerance or an exuberant inflammatory response to various stimuli due to loss or gain of function mutations. Whilst PIRDs may feature susceptibility to recurrent, severe, or opportunistic infection in their phenotype, this group of syndromes has broadened the spectrum of disease caused by defects in immunity-related genes to include autoimmunity, autoinflammation, lymphoproliferation, malignancy, and allergy; increasing focus on PIRDs has thus redefined the classical 'primary immunodeficiency' as one aspect of an overarching group of inborn errors of immunity. The growing number of genetic defects associated with PIRDs has expanded our understanding of immune tolerance mechanisms and prompted identification of molecular targets for therapy. However, PIRDs remain difficult to recognize due to incomplete penetrance of their diverse phenotype, which may cross organ systems and present to multiple clinical specialists prior to review by an immunologist. Control of immune dysregulation with immunosuppressive therapies must be balanced against the enhanced infective risk posed by the underlying defect and accumulated end-organ damage, posing a challenge to clinicians. Whilst allogeneic hematopoietic stem cell transplantation may correct the underlying immune defect, identification of appropriate patients and timing of transplant is difficult. The relatively recent description of many PIRDs and rarity of individual genetic entities that comprise this group means data on natural history, clinical progression, and treatment are limited, and so international collaboration will be needed to better delineate phenotypes and the impact of existing and potential therapies. This review explores pathophysiology, clinical features, current therapeutic strategies for PIRDs including cellular platforms, and future directions for research.
Collapse
Affiliation(s)
- Christo Tsilifis
- Paediatric Immunology and Haematopoietic Stem Cell Transplantation, Great North Children’s Hospital, Newcastle upon Tyne, United Kingdom
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Mary A. Slatter
- Paediatric Immunology and Haematopoietic Stem Cell Transplantation, Great North Children’s Hospital, Newcastle upon Tyne, United Kingdom
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Andrew R. Gennery
- Paediatric Immunology and Haematopoietic Stem Cell Transplantation, Great North Children’s Hospital, Newcastle upon Tyne, United Kingdom
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
9
|
Meyer-Arndt L, Kerkering J, Kuehl T, Infante AG, Paul F, Rosiewicz KS, Siffrin V, Alisch M. Inflammatory Cytokines Associated with Multiple Sclerosis Directly Induce Alterations of Neuronal Cytoarchitecture in Human Neurons. J Neuroimmune Pharmacol 2023; 18:145-159. [PMID: 36862362 PMCID: PMC10485132 DOI: 10.1007/s11481-023-10059-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 01/16/2023] [Indexed: 03/03/2023]
Abstract
Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system (CNS) coined by inflammation and neurodegeneration. The actual cause of the neurodegenerative component of the disease is however unclear. We investigated here the direct and differential effects of inflammatory mediators on human neurons. We used embryonic stem cell-derived (H9) human neuronal stem cells (hNSC) to generate neuronal cultures. Neurons were subsequently treated with tumour necrosis factor alpha (TNFα), interferon gamma (IFNγ), granulocyte-macrophage colony-stimulating factor (GM-CSF), interleukin 17A (IL-17A) and interleukin 10 (IL-10) separately or in combination. Immunofluorescence staining and quantitative polymerase chain reaction (qPCR) were used to assess cytokine receptor expression, cell integrity and transcriptomic changes upon treatment. H9-hNSC-derived neurons expressed cytokine receptors for IFNγ, TNFα, IL-10 and IL-17A. Neuronal exposure to these cytokines resulted in differential effects on neurite integrity parameters with a clear decrease for TNFα- and GM-CSF-treated neurons. The combinatorial treatment with IL-17A/IFNγ or IL-17A/TNFα induced a more pronounced effect on neurite integrity. Furthermore, combinatorial treatments with two cytokines induced several key signalling pathways, i.e. NFκB-, hedgehog and oxidative stress signalling, stronger than any of the cytokines alone. This work supports the idea of immune-neuronal crosstalk and the need to focus on the potential role of inflammatory cytokines on neuronal cytoarchitecture and function.
Collapse
Affiliation(s)
- Lil Meyer-Arndt
- Experimental and Clinical Research Center (ECRC), Charité - Universitätsmedizin Berlin und Max Delbrück Center for Molecular Medicine in the Helmholtz Association Berlin, Lindenberger Weg 80, 13125, Berlin, Germany
- Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humbolt-Universität Zu Berlin, and Berlin Institute of Health, 10117, Berlin, Germany
- NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humbolt-Universität Zu Berlin, and Berlin Institute of Health, 10117, Berlin, Germany
| | - Janis Kerkering
- Experimental and Clinical Research Center (ECRC), Charité - Universitätsmedizin Berlin und Max Delbrück Center for Molecular Medicine in the Helmholtz Association Berlin, Lindenberger Weg 80, 13125, Berlin, Germany
| | - Tess Kuehl
- Experimental and Clinical Research Center (ECRC), Charité - Universitätsmedizin Berlin und Max Delbrück Center for Molecular Medicine in the Helmholtz Association Berlin, Lindenberger Weg 80, 13125, Berlin, Germany
| | - Ana Gil Infante
- Experimental and Clinical Research Center (ECRC), Charité - Universitätsmedizin Berlin und Max Delbrück Center for Molecular Medicine in the Helmholtz Association Berlin, Lindenberger Weg 80, 13125, Berlin, Germany
| | - Friedemann Paul
- Experimental and Clinical Research Center (ECRC), Charité - Universitätsmedizin Berlin und Max Delbrück Center for Molecular Medicine in the Helmholtz Association Berlin, Lindenberger Weg 80, 13125, Berlin, Germany
- NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humbolt-Universität Zu Berlin, and Berlin Institute of Health, 10117, Berlin, Germany
| | - Kamil Sebastian Rosiewicz
- Experimental and Clinical Research Center (ECRC), Charité - Universitätsmedizin Berlin und Max Delbrück Center for Molecular Medicine in the Helmholtz Association Berlin, Lindenberger Weg 80, 13125, Berlin, Germany
| | - Volker Siffrin
- Experimental and Clinical Research Center (ECRC), Charité - Universitätsmedizin Berlin und Max Delbrück Center for Molecular Medicine in the Helmholtz Association Berlin, Lindenberger Weg 80, 13125, Berlin, Germany.
- Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humbolt-Universität Zu Berlin, and Berlin Institute of Health, 10117, Berlin, Germany.
| | - Marlen Alisch
- Experimental and Clinical Research Center (ECRC), Charité - Universitätsmedizin Berlin und Max Delbrück Center for Molecular Medicine in the Helmholtz Association Berlin, Lindenberger Weg 80, 13125, Berlin, Germany
| |
Collapse
|
10
|
Genetic and Epigenetic Etiology of Inflammatory Bowel Disease: An Update. Genes (Basel) 2022; 13:genes13122388. [PMID: 36553655 PMCID: PMC9778199 DOI: 10.3390/genes13122388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/06/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic disease with periods of exacerbation and remission of the disease. The etiology of IBD is not fully understood. Many studies point to the presence of genetic, immunological, environmental, and microbiological factors and the interactions between them in the occurrence of IBD. The review looks at genetic factors in the context of both IBD predisposition and pharmacogenetics.
Collapse
|
11
|
Papoutsopoulou S, Pollock L, Williams JM, Abdul-Mahdi MMLF, Dobbash R, Duckworth CA, Campbell BJ. Interleukin-10 Deficiency Impacts on TNF-Induced NFκB Regulated Responses In Vivo. BIOLOGY 2022; 11:1377. [PMID: 36290283 PMCID: PMC9598475 DOI: 10.3390/biology11101377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/12/2022] [Accepted: 09/17/2022] [Indexed: 11/16/2022]
Abstract
Interleukin-10 (IL-10) is an anti-inflammatory cytokine that has a major protective role against intestinal inflammation. We recently revealed that intestinal epithelial cells in vitro regulate NFκB-driven transcriptional responses to TNF via an autocrine mechanism dependent on IL-10 secretion. Here in this study, we investigated the impact of IL-10 deficiency on the NFκB pathway and its downstream targets in the small intestinal mucosa in vivo. We observed dysregulation of TNF, IκBα, and A20 gene and protein expression in the small intestine of steady-state or TNF-injected Il10-/- mice, compared to wild-type C57BL6/J counterparts. Upon TNF injection, tissue from the small intestine showed upregulation of NFκB p65[RelA] activity, which was totally diminished in Il10-/- mice and correlated with reduced levels of TNF, IκBα, and A20 expression. In serum, whilst IgA levels were noted to be markedly downregulated in IL-10-deficient- mice, normal levels of mucosal IgA were seen in intestine mucosa. Importantly, dysregulated cytokine/chemokine levels were observed in both serum and intestinal tissue lysates from naïve, as well as TNF-injected Il10-/- mice. These data further support the importance of the IL-10-canonical NFκB signaling pathway axis in regulating intestinal mucosa homeostasis and response to inflammatory triggers in vivo.
Collapse
Affiliation(s)
- Stamatia Papoutsopoulou
- The Henry Wellcome Laboratories of Molecular & Cellular Gastroenterology, University of Liverpool, Liverpool L69 3GE, UK
- Department of Biochemistry and Biotechnology, School of Health Sciences, University of Thessaly, 41500 Larissa, Greece
| | - Liam Pollock
- The Henry Wellcome Laboratories of Molecular & Cellular Gastroenterology, University of Liverpool, Liverpool L69 3GE, UK
- Department of Molecular Physiology & Cell Signalling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3GE, UK
| | - Jonathan M. Williams
- Pathobiology and Population Sciences, Royal Veterinary College, Hatfield AL9 7TA, UK
| | - Maya M. L. F. Abdul-Mahdi
- The Henry Wellcome Laboratories of Molecular & Cellular Gastroenterology, University of Liverpool, Liverpool L69 3GE, UK
- School of Life Sciences, University of Liverpool, Liverpool L69 3GE, UK
| | - Reyhaneh Dobbash
- The Henry Wellcome Laboratories of Molecular & Cellular Gastroenterology, University of Liverpool, Liverpool L69 3GE, UK
- School of Life Sciences, University of Liverpool, Liverpool L69 3GE, UK
| | - Carrie A. Duckworth
- The Henry Wellcome Laboratories of Molecular & Cellular Gastroenterology, University of Liverpool, Liverpool L69 3GE, UK
- Department of Molecular Physiology & Cell Signalling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3GE, UK
| | - Barry J. Campbell
- The Henry Wellcome Laboratories of Molecular & Cellular Gastroenterology, University of Liverpool, Liverpool L69 3GE, UK
- Department of Infection Biology & Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L69 3GE, UK
| |
Collapse
|
12
|
Abstract
Single-pass transmembrane receptors (SPTMRs) represent a diverse group of integral membrane proteins that are involved in many essential cellular processes, including signal transduction, cell adhesion, and transmembrane transport of materials. Dysregulation of the SPTMRs is linked with many human diseases. Despite extensive efforts in past decades, the mechanisms of action of the SPTMRs remain incompletely understood. One major hurdle is the lack of structures of the full-length SPTMRs in different functional states. Such structural information is difficult to obtain by traditional structural biology methods such as X-ray crystallography and nuclear magnetic resonance (NMR). The recent rapid development of single-particle cryo-electron microscopy (cryo-EM) has led to an exponential surge in the number of high-resolution structures of integral membrane proteins, including SPTMRs. Cryo-EM structures of SPTMRs solved in the past few years have tremendously improved our understanding of how SPTMRs function. In this review, we will highlight these progresses in the structural studies of SPTMRs by single-particle cryo-EM, analyze important structural details of each protein involved, and discuss their implications on the underlying mechanisms. Finally, we also briefly discuss remaining challenges and exciting opportunities in the field.
Collapse
Affiliation(s)
- Kai Cai
- Departments of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas 75231, USA
| | - Xuewu Zhang
- Departments of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas 75231, USA
- Departments of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas 75231, USA
- Corresponding Author: Xuewu Zhang, Department of pharmacology, UT Southwestern Medical Center, Dallas, TX 75390, USA;
| | - Xiao-chen Bai
- Departments of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas 75231, USA
- Departments of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75231, USA
- Corresponding Author: Xiao-chen Bai, Department of Biophysics, UT Southwestern Medical Center, Dallas, TX 75390, USA;
| |
Collapse
|
13
|
Hsu RJ, Yu WC, Peng GR, Ye CH, Hu S, Chong PCT, Yap KY, Lee JYC, Lin WC, Yu SH. The Role of Cytokines and Chemokines in Severe Acute Respiratory Syndrome Coronavirus 2 Infections. Front Immunol 2022; 13:832394. [PMID: 35464491 PMCID: PMC9021400 DOI: 10.3389/fimmu.2022.832394] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 02/24/2022] [Indexed: 12/15/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has resulted in countless infections and caused millions of deaths since its emergence in 2019. Coronavirus disease 2019 (COVID-19)-associated mortality is caused by uncontrolled inflammation, aberrant immune response, cytokine storm, and an imbalanced hyperactive immune system. The cytokine storm further results in multiple organ failure and lung immunopathology. Therefore, any potential treatments should focus on the direct elimination of viral particles, prevention strategies, and mitigation of the imbalanced (hyperactive) immune system. This review focuses on cytokine secretions of innate and adaptive immune responses against COVID-19, including interleukins, interferons, tumor necrosis factor-alpha, and other chemokines. In addition to the review focus, we discuss potential immunotherapeutic approaches based on relevant pathophysiological features, the systemic immune response against SARS-CoV-2, and data from recent clinical trials and experiments on the COVID-19-associated cytokine storm. Prompt use of these cytokines as diagnostic markers and aggressive prevention and management of the cytokine storm can help determine COVID-19-associated morbidity and mortality. The prophylaxis and rapid management of the cytokine storm appear to significantly improve disease outcomes. For these reasons, this study aims to provide advanced information to facilitate innovative strategies to survive in the COVID-19 pandemic.
Collapse
Affiliation(s)
- Ren-Jun Hsu
- Cancer Center, Hualien Tzu Chi Hospital, Buddhist Tzuchi Medical Foundation, Hualien, Taiwan.,School of Medicine, College of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Wei-Chieh Yu
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Guan-Ru Peng
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Chih-Hung Ye
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - SuiYun Hu
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | | | - Kah Yi Yap
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | | | - Wei-Chen Lin
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Shu-Han Yu
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
14
|
Wong WY, Chan BD, Sham TT, Lee MML, Chan CO, Chau CT, Mok DKW, Kwan YW, Tai WCS. Lactobacillus casei Strain Shirota Ameliorates Dextran Sulfate Sodium-Induced Colitis in Mice by Increasing Taurine-Conjugated Bile Acids and Inhibiting NF-κB Signaling via Stabilization of Iκ Bα. Front Nutr 2022; 9:816836. [PMID: 35529468 PMCID: PMC9069136 DOI: 10.3389/fnut.2022.816836] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 03/28/2022] [Indexed: 12/12/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic progressive intestinal inflammatory disease, characterized by an altered gut microbiota composition and accompanying alterations in circulatory bile acids. Increasing evidence supports the beneficial effect of probiotics intake on health. Introduction of probiotics to the intestines can modulate gut microbiota composition and in turn regulate the host immune system and modify the inflammatory response. Probiotics can also improve intestinal barrier function and exhibit a positive impact on host physiological and pathological conditions via gut microbiota-derived metabolites. Previous studies have demonstrated that Lactobacillus casei strain Shirota (LcS) treatment could inhibit clinical manifestation of colitis in dextran sulfate sodium (DSS)-induced mice, however, the underlying mechanisms remain unknown. In this study, we employed the DSS-induced acute colitis mouse model to investigate the anti-inflammatory effects of LcS and related mechanisms. Administration of LcS ameliorated the severity of DSS-induced colitis and enhanced intestinal integrity via induction of mucin-2 and occludin expression in colons. Fecal microbiota analysis showed that LcS increased the relative abundance of beneficial bacterial species in colitic mice, whereas the relative abundance of pathobionts was reduced. Additionally, LcS treatment modulated circulating bile acid profiles in colitic mice. In mice treated with LcS, we identified increased levels of primary taurine-conjugated bile acids, including taurocholic acid (TCA) and taurochenodeoxycholic acid (TCDCA). LcS treatment also increased the levels of secondary taurine-conjugated bile acids, including taurodeoxycholic acid (TDCA) and tauroursodeoxycholic acid (TUDCA). Moreover, LcS treatment exhibited a suppressive effect on the hydroxylated primary bile acids α-muricholic acid (α-MCA) and β-muricholic acid (β-MCA). We further demonstrated that LcS treatment suppressed the expression of pro-inflammatory mediators interferon-gamma (IFN-γ) and nitric oxide (NO), and increased the expression of the anti-inflammatory mediator interleukin-10 (IL-10) in colon tissues, potentially as a result of altered bile acid profiles. Mechanistically, we showed that LcS treatment suppressed the activation of nuclear factor-kappa B (NF-κB) signaling via stabilization of inhibitor of NF-κB alpha (IκBα). Altogether, we have demonstrated the therapeutic effects of LcS in DSS-induced colitis, providing new insights into its effect on bile acid metabolism and the related anti-inflammatory mechanisms. Our findings provide support for the application of LcS in the treatment of IBD.
Collapse
Affiliation(s)
- Wing-Yan Wong
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
- The Laboratory for Probiotic and Prebiotic Research in Human Health, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
| | - Brandon Dow Chan
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
- The Laboratory for Probiotic and Prebiotic Research in Human Health, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
| | - Tung-Ting Sham
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
| | - Magnolia Muk-Lan Lee
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
- The Laboratory for Probiotic and Prebiotic Research in Human Health, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
| | - Chi-On Chan
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), Shenzhen Research Institute, The Hong Kong Polytechnic University, Shenzhen, China
| | - Chung-Ting Chau
- School of Biomedical Sciences, The Chinese University of Hong Kong, Sha Tin, Hong Kong SAR, China
| | - Daniel Kam-Wah Mok
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), Shenzhen Research Institute, The Hong Kong Polytechnic University, Shenzhen, China
- Research Institute for Future Food, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
| | - Yiu-Wa Kwan
- School of Biomedical Sciences, The Chinese University of Hong Kong, Sha Tin, Hong Kong SAR, China
| | - William Chi-Shing Tai
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
- The Laboratory for Probiotic and Prebiotic Research in Human Health, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), Shenzhen Research Institute, The Hong Kong Polytechnic University, Shenzhen, China
- Research Institute for Future Food, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
| |
Collapse
|
15
|
Zhang L, Zhang J, He H, Ling X, Li F, Yang Z, Zhao J, Li H, Yang T, Zhao S, Shi K, Guan X, Zhao R, Li Z. Increased Cytokine Levels Assist in the Diagnosis of Respiratory Bacterial Infections or Concurrent Bacteremia in Patients With Non-Hodgkin’s Lymphoma. Front Cell Infect Microbiol 2022; 12:860526. [PMID: 35463642 PMCID: PMC9024136 DOI: 10.3389/fcimb.2022.860526] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 03/11/2022] [Indexed: 11/13/2022] Open
Abstract
Non-Hodgkin’s lymphoma (NHL) is a form of tumor that originates in the lymphoid tissues. Bacterial infections are very common in NHL patients. Because most of the patients do not experience apparent symptoms during the initial stage of infection, it is difficult to detect the underlying condition before it progresses to a more critical level. The activation of the cytokines is a hallmark of inflammation. Due to the advantages of short detection time and high sensitivity of cytokines, many studies have focused on relationship between cytokines and infection. However, few studies have been conducted on NHL patients with infection. Therefore, we reviewed the cytokine profiles of 229 newly diagnosed NHL patients and 40 healthy adults to predict respiratory bacterial infection and bacteremia. Our findings revealed that IL-6(41.67 vs 9.50 pg/mL), IL-8(15.55 vs 6.61 pg/mL), IL-10(8.02 vs 4.52 pg/mL),TNF-β(3.82 vs 2.96 pg/mL), IFN- γ(4.76 vs 2.96 pg/mL), body temperature(37.6 vs 36.5°C), CRP(20.80 vs 4.37 mg/L), and PCT(0.10 vs 0.04 ng/mL) levels were considerably greater in NHL cases with respiratory bacterial infections relative to NHL cases without infection (P<0.05). Furthermore, IL-6(145.00 vs 41.67 pg/mL), IL-8(34.60 vs 15.55 pg/mL),temperature(38.4 vs 37.6°C), PCT(0.79 vs 0.10 ng/mL), and CRP(93.70 vs 20.80 mg/L) levels in respiratory infectious NHL patients with more severe bacteremia were considerably elevated than in patients with respiratory bacterial infections only (P<0.05). Remarkably, increased levels of IL-6 and IL-8 are effective in determining whether or not pulmonary bacterial infectious NHL patients have bacteremia. Temperature, PCT, and CRP all have lower sensitivity and specificity than IL-6. IL-6 ≥18.79pg/mL indicates the presence of pulmonary bacterial infection in newly diagnosed NHL patients, and IL-6 ≥102.6pg/mL may suggest pulmonary bacterial infection with bacteremia. In short, this study shows that cytokines can be advantageous in the diagnosis and differentiation of pulmonary bacterial infection and bacteremia in newly diagnosed NHL patients and may also guide for the use of clinical antibiotics.
Collapse
Affiliation(s)
- Lihua Zhang
- Department of Hematology, The First People’s Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
- Yunnan Blood Disease Clinical Medical Center, The First People’s Hospital of Yunnan Province, Kunming, China
- Yunnan Blood Disease Hospital, The First People’s Hospital of Yunnan Province, Kunming, China
- National Key Clinical Specialty of Hematology, The First People’s Hospital of Yunnan Province, Kunming, China
| | - Jinping Zhang
- Department of Hematology, The First People’s Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
- Yunnan Blood Disease Clinical Medical Center, The First People’s Hospital of Yunnan Province, Kunming, China
- Yunnan Blood Disease Hospital, The First People’s Hospital of Yunnan Province, Kunming, China
- National Key Clinical Specialty of Hematology, The First People’s Hospital of Yunnan Province, Kunming, China
| | - Haiping He
- Department of Hematology, The First People’s Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
- Yunnan Blood Disease Clinical Medical Center, The First People’s Hospital of Yunnan Province, Kunming, China
- Yunnan Blood Disease Hospital, The First People’s Hospital of Yunnan Province, Kunming, China
- National Key Clinical Specialty of Hematology, The First People’s Hospital of Yunnan Province, Kunming, China
| | - Xiaosui Ling
- Department of Hematology, The First People’s Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
- Yunnan Blood Disease Clinical Medical Center, The First People’s Hospital of Yunnan Province, Kunming, China
- Yunnan Blood Disease Hospital, The First People’s Hospital of Yunnan Province, Kunming, China
- National Key Clinical Specialty of Hematology, The First People’s Hospital of Yunnan Province, Kunming, China
| | - Fan Li
- Department of Hematology, The First People’s Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
- Yunnan Blood Disease Clinical Medical Center, The First People’s Hospital of Yunnan Province, Kunming, China
- Yunnan Blood Disease Hospital, The First People’s Hospital of Yunnan Province, Kunming, China
- National Key Clinical Specialty of Hematology, The First People’s Hospital of Yunnan Province, Kunming, China
| | - Zefeng Yang
- Department of Hematology, The First People’s Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
- Yunnan Blood Disease Clinical Medical Center, The First People’s Hospital of Yunnan Province, Kunming, China
- Yunnan Blood Disease Hospital, The First People’s Hospital of Yunnan Province, Kunming, China
- National Key Clinical Specialty of Hematology, The First People’s Hospital of Yunnan Province, Kunming, China
| | - Jinlian Zhao
- Department of Hematology, The First People’s Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
- Yunnan Blood Disease Clinical Medical Center, The First People’s Hospital of Yunnan Province, Kunming, China
- Yunnan Blood Disease Hospital, The First People’s Hospital of Yunnan Province, Kunming, China
- National Key Clinical Specialty of Hematology, The First People’s Hospital of Yunnan Province, Kunming, China
| | - Huiyuan Li
- Department of Hematology, The First People’s Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
- Yunnan Blood Disease Clinical Medical Center, The First People’s Hospital of Yunnan Province, Kunming, China
- Yunnan Blood Disease Hospital, The First People’s Hospital of Yunnan Province, Kunming, China
- National Key Clinical Specialty of Hematology, The First People’s Hospital of Yunnan Province, Kunming, China
| | - Tonghua Yang
- Department of Hematology, The First People’s Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
- Yunnan Blood Disease Clinical Medical Center, The First People’s Hospital of Yunnan Province, Kunming, China
- Yunnan Blood Disease Hospital, The First People’s Hospital of Yunnan Province, Kunming, China
- National Key Clinical Specialty of Hematology, The First People’s Hospital of Yunnan Province, Kunming, China
| | - Shixiang Zhao
- Department of Hematology, The First People’s Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
- Yunnan Blood Disease Clinical Medical Center, The First People’s Hospital of Yunnan Province, Kunming, China
- Yunnan Blood Disease Hospital, The First People’s Hospital of Yunnan Province, Kunming, China
- National Key Clinical Specialty of Hematology, The First People’s Hospital of Yunnan Province, Kunming, China
| | - Keqian Shi
- Department of Hematology, The First People’s Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
- Yunnan Blood Disease Clinical Medical Center, The First People’s Hospital of Yunnan Province, Kunming, China
- Yunnan Blood Disease Hospital, The First People’s Hospital of Yunnan Province, Kunming, China
- National Key Clinical Specialty of Hematology, The First People’s Hospital of Yunnan Province, Kunming, China
| | - Xin Guan
- Department of Hematology, The First People’s Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
- Yunnan Blood Disease Clinical Medical Center, The First People’s Hospital of Yunnan Province, Kunming, China
- Yunnan Blood Disease Hospital, The First People’s Hospital of Yunnan Province, Kunming, China
- National Key Clinical Specialty of Hematology, The First People’s Hospital of Yunnan Province, Kunming, China
- *Correspondence: Xin Guan, ; Renbin Zhao, ; Zengzheng Li,
| | - Renbin Zhao
- Department of Hematology, The First People’s Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
- Yunnan Blood Disease Clinical Medical Center, The First People’s Hospital of Yunnan Province, Kunming, China
- Yunnan Blood Disease Hospital, The First People’s Hospital of Yunnan Province, Kunming, China
- National Key Clinical Specialty of Hematology, The First People’s Hospital of Yunnan Province, Kunming, China
- *Correspondence: Xin Guan, ; Renbin Zhao, ; Zengzheng Li,
| | - Zengzheng Li
- Department of Hematology, The First People’s Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
- Yunnan Blood Disease Clinical Medical Center, The First People’s Hospital of Yunnan Province, Kunming, China
- Yunnan Blood Disease Hospital, The First People’s Hospital of Yunnan Province, Kunming, China
- National Key Clinical Specialty of Hematology, The First People’s Hospital of Yunnan Province, Kunming, China
- *Correspondence: Xin Guan, ; Renbin Zhao, ; Zengzheng Li,
| |
Collapse
|
16
|
Shah JA, Warr AJ, Graustein AD, Saha A, Dunstan SJ, Thuong NTT, Thwaites GE, Caws M, Thai PVK, Bang ND, Chau TTH, Khor CC, Li Z, Hibberd M, Chang X, Nguyen FK, Hernandez CA, Jones MA, Sassetti CM, Fitzgerald KA, Musvosvi M, Gela A, Hanekom WA, Hatherill M, Scriba TJ, Hawn TR. REL and BHLHE40 Variants Are Associated with IL-12 and IL-10 Responses and Tuberculosis Risk. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:1352-1361. [PMID: 35217585 PMCID: PMC8917052 DOI: 10.4049/jimmunol.2100671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 01/03/2022] [Indexed: 11/19/2022]
Abstract
The major human genes regulating Mycobacterium tuberculosis-induced immune responses and tuberculosis (TB) susceptibility are poorly understood. Although IL-12 and IL-10 are critical for TB pathogenesis, the genetic factors that regulate their expression in humans are unknown. CNBP, REL, and BHLHE40 are master regulators of IL-12 and IL-10 signaling. We hypothesized that common variants in CNBP, REL, and BHLHE40 were associated with IL-12 and IL-10 production from dendritic cells, and that these variants also influence adaptive immune responses to bacillus Calmette-Guérin (BCG) vaccination and TB susceptibility. We characterized the association between common variants in CNBP, REL, and BHLHE40, innate immune responses in dendritic cells and monocyte-derived macrophages, BCG-specific T cell responses, and susceptibility to pediatric and adult TB in human populations. BHLHE40 single-nucleotide polymorphism (SNP) rs4496464 was associated with increased BHLHE40 expression in monocyte-derived macrophages and increased IL-10 from peripheral blood dendritic cells and monocyte-derived macrophages after LPS and TB whole-cell lysate stimulation. SNP BHLHE40 rs11130215, in linkage disequilibrium with rs4496464, was associated with increased BCG-specific IL-2+CD4+ T cell responses and decreased risk for pediatric TB in South Africa. SNPs REL rs842634 and rs842618 were associated with increased IL-12 production from dendritic cells, and SNP REL rs842618 was associated with increased risk for TB meningitis. In summary, we found that genetic variations in REL and BHLHE40 are associated with IL-12 and IL-10 cytokine responses and TB clinical outcomes. Common human genetic regulation of well-defined intermediate cellular traits provides insights into mechanisms of TB pathogenesis.
Collapse
Affiliation(s)
- Javeed A Shah
- University of Washington, Seattle, WA;
- VA Puget Sound Health Care System, Seattle, WA
| | | | - Andrew D Graustein
- University of Washington, Seattle, WA
- VA Puget Sound Health Care System, Seattle, WA
| | | | | | - Nguyen T T Thuong
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Guy E Thwaites
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Maxine Caws
- Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | | | | | | | | | - Zheng Li
- Genome Institute of Singapore, A-STAR, Singapore
| | - Martin Hibberd
- London School of Tropical Medicine and Hygiene, London, United Kingdom
| | - Xuling Chang
- University of Melbourne, Melbourne, Victoria, Australia
| | | | | | | | | | | | | | - Anele Gela
- South African Tuberculosis Vaccine Initiative, Cape Town, South Africa
| | - Willem A Hanekom
- South African Tuberculosis Vaccine Initiative, Cape Town, South Africa
| | - Mark Hatherill
- South African Tuberculosis Vaccine Initiative, Cape Town, South Africa
| | - Thomas J Scriba
- South African Tuberculosis Vaccine Initiative, Cape Town, South Africa
| | | |
Collapse
|
17
|
Ahlers J, Mantei A, Lozza L, Stäber M, Heinrich F, Bacher P, Hohnstein T, Menzel L, Yüz SG, Alvarez-Simon D, Bickenbach AR, Weidinger C, Mockel-Tenbrinck N, Kühl AA, Siegmund B, Maul J, Neumann C, Scheffold A. A Notch/STAT3-driven Blimp-1/c-Maf-dependent molecular switch induces IL-10 expression in human CD4 + T cells and is defective in Crohn´s disease patients. Mucosal Immunol 2022; 15:480-490. [PMID: 35169232 PMCID: PMC9038525 DOI: 10.1038/s41385-022-00487-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 01/10/2022] [Accepted: 01/19/2022] [Indexed: 02/04/2023]
Abstract
Immunosuppressive Interleukin (IL)-10 production by pro-inflammatory CD4+ T cells is a central self-regulatory function to limit aberrant inflammation. Still, the molecular mediators controlling IL-10 expression in human CD4+ T cells are largely undefined. Here, we identify a Notch/STAT3 signaling-module as a universal molecular switch to induce IL-10 expression across human naïve and major effector CD4+ T cell subsets. IL-10 induction was transient, jointly controlled by the transcription factors Blimp-1/c-Maf and accompanied by upregulation of several co-inhibitory receptors, including LAG-3, CD49b, PD-1, TIM-3 and TIGIT. Consistent with a protective role of IL-10 in inflammatory bowel diseases (IBD), effector CD4+ T cells from Crohn's disease patients were defective in Notch/STAT3-induced IL-10 production and skewed towards an inflammatory Th1/17 cell phenotype. Collectively, our data identify a Notch/STAT3-Blimp-1/c-Maf axis as a common anti-inflammatory pathway in human CD4+ T cells, which is defective in IBD and thus may represent an attractive therapeutic target.
Collapse
Affiliation(s)
- Jonas Ahlers
- grid.6363.00000 0001 2218 4662Department of Rheumatology and Clinical Immunology, Charité—Universitätsmedizin Berlin, Berlin, Germany ,grid.420214.1Present Address: Sanofi Pasteur, Sanofi-Aventis Deutschland GmbH, Berlin, Germany
| | - Andrej Mantei
- Labor Berlin, Charité Vivantes GmbH, Berlin, Germany
| | - Laura Lozza
- Cell Biology, Precision for Medicine GmbH, Berlin, Germany
| | - Manuela Stäber
- Central Lab Service, Max-Plack-Institute for Infection Biology, Berlin, Germany
| | - Frederik Heinrich
- grid.413453.40000 0001 2224 3060German Rheumatism Research Center (DRFZ) Berlin, Leibniz Association, Berlin, Germany
| | - Petra Bacher
- grid.5252.00000 0004 1936 973XInstitute of Immunology, Christian-Albrechts-University of Kiel & UKSH Schleswig-Holstein, Kiel, Schleswig-Holstein, Germany ,grid.9764.c0000 0001 2153 9986Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Schleswig-Holstein, Germany
| | - Thordis Hohnstein
- grid.6363.00000 0001 2218 4662Department of Microbiology, Infectious Diseases and Immunology, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Lutz Menzel
- grid.419491.00000 0001 1014 0849Translational Tumor Immunology, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Simge G. Yüz
- grid.5252.00000 0004 1936 973XInstitute of Immunology, Christian-Albrechts-University of Kiel & UKSH Schleswig-Holstein, Kiel, Schleswig-Holstein, Germany
| | - Daniel Alvarez-Simon
- grid.5252.00000 0004 1936 973XInstitute of Immunology, Christian-Albrechts-University of Kiel & UKSH Schleswig-Holstein, Kiel, Schleswig-Holstein, Germany
| | - Anne Rieke Bickenbach
- grid.5252.00000 0004 1936 973XInstitute of Immunology, Christian-Albrechts-University of Kiel & UKSH Schleswig-Holstein, Kiel, Schleswig-Holstein, Germany
| | - Carl Weidinger
- grid.6363.00000 0001 2218 4662Department of Gastroenterology, Infectious Diseases and Rheumatology, Campus Benjamin Franklin, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Nadine Mockel-Tenbrinck
- grid.59409.310000 0004 0552 5033Miltenyi Biotec B.V. & Co.KG, Bergisch-Gladbach, Nordrhein-Westfalen Germany
| | - Anja A. Kühl
- grid.6363.00000 0001 2218 4662iPATH, Campus Benjamin Franklin, Charité—Universitätsmedizin Berlin, Berlin, Germany
| | - Britta Siegmund
- grid.6363.00000 0001 2218 4662Department of Gastroenterology, Infectious Diseases and Rheumatology, Campus Benjamin Franklin, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Jochen Maul
- grid.6363.00000 0001 2218 4662Department of Gastroenterology, Infectious Diseases and Rheumatology, Campus Benjamin Franklin, Charité – Universitätsmedizin Berlin, Berlin, Germany ,Gastroenterologie am Bayerischen Platz, Berlin, Germany
| | - Christian Neumann
- grid.6363.00000 0001 2218 4662Department of Microbiology, Infectious Diseases and Immunology, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Alexander Scheffold
- grid.5252.00000 0004 1936 973XInstitute of Immunology, Christian-Albrechts-University of Kiel & UKSH Schleswig-Holstein, Kiel, Schleswig-Holstein, Germany
| |
Collapse
|
18
|
Li Z, Yang Z, Hu P, Guan X, Zhang L, Zhang J, Yang T, Zhang C, Zhao R. Cytokine Expression of Lung Bacterial Infection in Newly Diagnosed Adult Hematological Malignancies. Front Immunol 2021; 12:748585. [PMID: 34925324 PMCID: PMC8674689 DOI: 10.3389/fimmu.2021.748585] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 11/19/2021] [Indexed: 12/11/2022] Open
Abstract
Adult patients with hematological malignancies are frequently accompanied by bacterial infections in the lungs when they are first diagnosed. Sputum culture, procalcitonin (PCT), C-reactive protein (CRP), body temperature, and other routinely used assays are not always reliable. Cytokines are frequently abnormally produced in adult hematological malignancies associated with a lung infection, it is uncertain if cytokines can predict lung bacterial infections in individuals with hematological malignancies. Therefore, we reviewed 541 adult patients newly diagnosed with hematological malignancies, of which 254 patients had lung bacterial infections and 287 patients had no other clearly diagnosed infections. To explore the predictive value of cytokines for pulmonary bacterial infection in adult patients with hematological malignancies. Our results show that IL-4, IL-6, IL-8, IL-10, IL-12P70, IL-1β, IL-2, IFN-γ, TNF-α, TNF-β and IL-17A are in the lungs The expression level of bacterially infected individuals was higher than that of patients without any infections (P<0.05). Furthermore, we found that 88.89% (200/225) of patients with IL-6 ≥34.12 pg/ml had a bacterial infection in their lungs. With the level of IL-8 ≥16.35 pg/ml, 71.67% (210/293) of patients were infected. While 66.10% (193/292) of patients had lung bacterial infections with the level of IL-10 ≥5.62 pg/ml. When IL-6, IL-8, and IL-10 were both greater than or equal to their Cutoff-value, 98.52% (133/135) of patients had lung bacterial infection. Significantly better than PCT ≥0.11 ng/ml [63.83% (150/235)], body temperature ≥38.5°C [71.24% (62/87)], CRP ≥9.3 mg/L [53.59% (112/209)] the proportion of lung infection. In general. IL-6, IL-8 and IL-10 are abnormally elevated in patients with lung bacterial infections in adult hematological malignancies. Then, the abnormal increase of IL-6, IL-8 and IL-10 should pay close attention to the possible lung bacterial infection in patients.
Collapse
Affiliation(s)
- Zengzheng Li
- Department of Hematology, The First People's Hospital of Yunnan Province, Kunming, China.,Yunnan Blood Disease Clinical Medical Center, The First People's Hospital of Yunnan Province, Kunming, China.,Yunnan Blood Disease Hospital, The First People's Hospital of Yunnan Province, Kunming, China
| | - Zefeng Yang
- Department of Hematology, The First People's Hospital of Yunnan Province, Kunming, China.,Yunnan Blood Disease Clinical Medical Center, The First People's Hospital of Yunnan Province, Kunming, China.,Yunnan Blood Disease Hospital, The First People's Hospital of Yunnan Province, Kunming, China
| | - Peng Hu
- Department of Hematology, The First People's Hospital of Yunnan Province, Kunming, China.,Yunnan Blood Disease Clinical Medical Center, The First People's Hospital of Yunnan Province, Kunming, China.,Yunnan Blood Disease Hospital, The First People's Hospital of Yunnan Province, Kunming, China
| | - Xin Guan
- Department of Hematology, The First People's Hospital of Yunnan Province, Kunming, China.,Yunnan Blood Disease Clinical Medical Center, The First People's Hospital of Yunnan Province, Kunming, China.,Yunnan Blood Disease Hospital, The First People's Hospital of Yunnan Province, Kunming, China
| | - Lihua Zhang
- Department of Hematology, The First People's Hospital of Yunnan Province, Kunming, China.,Yunnan Blood Disease Clinical Medical Center, The First People's Hospital of Yunnan Province, Kunming, China.,Yunnan Blood Disease Hospital, The First People's Hospital of Yunnan Province, Kunming, China
| | - Jinping Zhang
- Department of Hematology, The First People's Hospital of Yunnan Province, Kunming, China.,Yunnan Blood Disease Clinical Medical Center, The First People's Hospital of Yunnan Province, Kunming, China.,Yunnan Blood Disease Hospital, The First People's Hospital of Yunnan Province, Kunming, China
| | - Tonghua Yang
- Department of Hematology, The First People's Hospital of Yunnan Province, Kunming, China.,Yunnan Blood Disease Clinical Medical Center, The First People's Hospital of Yunnan Province, Kunming, China.,Yunnan Blood Disease Hospital, The First People's Hospital of Yunnan Province, Kunming, China.,Kunming University of Science and Technology School of Medicine, Kunming, China
| | - Chaoran Zhang
- Department of Hematology, The First People's Hospital of Yunnan Province, Kunming, China.,Yunnan Blood Disease Clinical Medical Center, The First People's Hospital of Yunnan Province, Kunming, China.,Yunnan Blood Disease Hospital, The First People's Hospital of Yunnan Province, Kunming, China
| | - Renbin Zhao
- Department of Hematology, The First People's Hospital of Yunnan Province, Kunming, China.,Yunnan Blood Disease Clinical Medical Center, The First People's Hospital of Yunnan Province, Kunming, China.,Yunnan Blood Disease Hospital, The First People's Hospital of Yunnan Province, Kunming, China
| |
Collapse
|
19
|
Islam H, Neudorf H, Mui AL, Little JP. Interpreting 'anti-inflammatory' cytokine responses to exercise: focus on interleukin-10. J Physiol 2021; 599:5163-5177. [PMID: 34647335 DOI: 10.1113/jp281356] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 09/22/2021] [Indexed: 12/17/2022] Open
Abstract
Circulating concentrations of canonically pro- and anti-inflammatory cytokines are commonly measured when evaluating the anti-inflammatory effects of exercise. An important caveat to interpreting systemic cytokine concentrations as evidence for the anti-inflammatory effects of exercise is the observed dissociation between circulating cytokine concentrations and cytokine function at the tissue/cellular level. The dichotomization of cytokines as pro- or anti-inflammatory also overlooks the context dependence of cytokine function, which can vary depending on the physiological state being studied, the cytokine's cellular source/target, and magnitude of cytokine responses. We re-evaluate our current understanding of anti-inflammatory cytokine responses to exercise by highlighting nuances surrounding the interpretation of altered systemic cytokine concentrations as evidence for changes in inflammatory processes occurring at the tissue/cellular level. We highlight the lesser known pro-inflammatory and immunostimulatory actions of the prototypical anti-inflammatory cytokine, interleukin (IL)-10, including the potentiation of interferon gamma production during endotoxaemia, CD8+ T cell activation in tumour bearing rodents and cancer patients in vivo, and CD8+ T lymphocyte and natural killer cell activation in vitro. IL-10's more well-established anti-inflammatory actions can also be blunted following exercise training and under chronic inflammatory states such as type 2 diabetes (T2D) independently of circulating IL-10 concentrations. The resistance to IL-10's anti-inflammatory action in T2D coincides with blunted STAT3 phosphorylation and can be restored with small-molecule activators of IL-10 signalling, highlighting potential therapeutic avenues for restoring IL-10 action. We posit that inferences based on altered circulating cytokine concentrations alone can miss important functional changes in cytokine action occurring at the tissue/cellular level.
Collapse
Affiliation(s)
- Hashim Islam
- School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, BC, Canada
| | - Helena Neudorf
- School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, BC, Canada
| | - Alice L Mui
- Department of Surgery, University of British Columbia, Vancouver, BC, Canada.,Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| | - Jonathan P Little
- School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, BC, Canada
| |
Collapse
|
20
|
Kidess E, Kleerebezem M, Brugman S. Colonizing Microbes, IL-10 and IL-22: Keeping the Peace at the Mucosal Surface. Front Microbiol 2021; 12:729053. [PMID: 34603258 PMCID: PMC8484919 DOI: 10.3389/fmicb.2021.729053] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 08/25/2021] [Indexed: 12/15/2022] Open
Abstract
Our world is filled with microbes. Each multicellular organism has developed ways to interact with this microbial environment. Microbes do not always pose a threat; they can contribute to many processes that benefit the host. Upon colonization both host and microbes adapt resulting in dynamic ecosystems in different host niches. Regulatory processes develop within the host to prevent overt inflammation to beneficial microbes, yet keeping the possibility to respond when pathogens attempt to adhere and invade tissues. This review will focus on microbial colonization and the early (innate) host immune response, with special emphasis on the microbiota-modifying roles of IL-10 and IL-22 in the intestine. IL-10 knock out mice show an altered microbial composition, and spontaneously develop enterocolitis over time. IL-22 knock out mice, although not developing enterocolitis spontaneously, also have an altered microbial composition and increase of epithelial-adherent bacteria, mainly caused by a decrease in mucin and anti-microbial peptide production. Recently interesting links have been found between the IL-10 and IL-22 pathways. While IL-22 can function as a regulatory cytokine at the mucosal surface, it also has inflammatory roles depending on the context. For example, lack of IL-22 in the IL-10–/– mice model prevents spontaneous colitis development. Additionally, the reduced microbial diversity observed in IL-10–/– mice was also reversed in IL-10/IL-22 double mutant mice (Gunasekera et al., 2020). Since in early life, host immunity develops in parallel and in interaction with colonizing microbes, there is a need for future studies that focus on the effect of the timing of colonization in relation to the developmental phase of the host. To illustrate this, examples from zebrafish research will be compared with studies performed in mammals. Since zebrafish develop from eggs and are directly exposed to the outside microbial world, timing of the development of host immunity and subsequent control of microbial composition, is different from mammals that develop in utero and only get exposed after birth. Likewise, colonization studies using adult germfree mice might yield different results from those using neonatal germfree mice. Lastly, special emphasis will be given to the need for host genotype and environmental (co-housing) control of experiments.
Collapse
Affiliation(s)
- Evelien Kidess
- Animal Sciences Group, Host-Microbe Interactomics, Wageningen University and Research, Wageningen, Netherlands
| | - Michiel Kleerebezem
- Animal Sciences Group, Host-Microbe Interactomics, Wageningen University and Research, Wageningen, Netherlands
| | - Sylvia Brugman
- Animal Sciences Group, Host-Microbe Interactomics, Wageningen University and Research, Wageningen, Netherlands
| |
Collapse
|
21
|
Wang D, Zhang T, Hao H, Zhang H, Ye H, Zhao C. Probiotic properties of a Spaceflight-induced mutant Lactobacillus plantarum SS18-50 in mice. Endocr Metab Immune Disord Drug Targets 2021; 22:525-531. [PMID: 34533451 DOI: 10.2174/1871530321666210917163719] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 08/13/2021] [Accepted: 08/13/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Probiotics are a group of bacteria that play a critical role in intestinal microbiota homeostasis and may help adjunctively treat certain diseases like metabolic and immune disorders. OBJECTIVE We recently generated a space-flight mutated Lactobacillus plantarum SS18-50 with good in vitro probiotic characteristics. In the current research, we designed two in vivo experiments to evaluate whether L. plantarum SS18-50 had the ability to increase beneficial gut bacteria, regulate oxidative status and ameliorate inflammation in mice. METHODS Experiments I: the ICR mice were gavaged with L. plantarum SS18-50 or its wild type L. plantarum GS18 at 107 or 109 CFU/kg BW daily for one month, during which the body weight was recorded weekly. The feces were collected to determine the abundance of two main beneficial bacterial groups including Lactobacillus and Bifidobacterium by selective culturing, while the total triglycerides and cholesterols in sera were determined using commercial kits. Experiment II: the mice were gavaged with loperamide hydrochloride to develop oxidative stress and inflammation phenotypes. At the same time, the experimental mice were gavaged with L. plantarum SS18-50 or wild type L. plantarum GS18 at 107 or 109 CFU/kg BW daily for one month. At the end of experiment, oxidative indicators (SOD and MDA) and inflammatory cytokines (IL-17A and IL-10) were measured by commercial kits. RESULTS Results showed that L. plantarum SS18-50 increased the abundance of Lactobacillus and Bifidobacterium in mice after one month's administration. L. plantarum SS18-50 also showed the anti-oxidant activity by increasing SOD and decreasing MDA, and exerted the anti-inflammatory effect by increasing IL-10 and decreasing IL-17A in Lop treated mice. Both the wild type stain and the space mutant had such biomedical effects, but L. plantarum SS18-50 was better in increasing gut beneficial bacteria and oxidative regulation than the wild type (P<0.05). CONCLUSION we conclude that L. plantarum SS18-50 has a great potential to serve as a dietary functional probiotic supplement and/or adjunctive treatment strategy.
Collapse
Affiliation(s)
- Dan Wang
- College of Food Science and Engineering, Jilin University, 5333 Xi'an Rd., Changchun, China
| | - Tiehua Zhang
- College of Food Science and Engineering, Jilin University, 5333 Xi'an Rd., Changchun, China
| | - Hongwei Hao
- Fullarton Bioengineering Technology Co., Ltd, Beijing, China
| | - Hongxing Zhang
- College of Food Science and Engineering, Beijing University of Agriculture, Beijing, China
| | - Haiqing Ye
- College of Food Science and Engineering, Jilin University, 5333 Xi'an Rd., Changchun, China
| | - Changhui Zhao
- College of Food Science and Engineering, Jilin University, 5333 Xi'an Rd., Changchun, China
| |
Collapse
|
22
|
Jacobse J, Li J, Rings EHHM, Samsom JN, Goettel JA. Intestinal Regulatory T Cells as Specialized Tissue-Restricted Immune Cells in Intestinal Immune Homeostasis and Disease. Front Immunol 2021; 12:716499. [PMID: 34421921 PMCID: PMC8371910 DOI: 10.3389/fimmu.2021.716499] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 07/16/2021] [Indexed: 12/28/2022] Open
Abstract
FOXP3+ regulatory T cells (Treg cells) are a specialized population of CD4+ T cells that restrict immune activation and are essential to prevent systemic autoimmunity. In the intestine, the major function of Treg cells is to regulate inflammation as shown by a wide array of mechanistic studies in mice. While Treg cells originating from the thymus can home to the intestine, the majority of Treg cells residing in the intestine are induced from FOXP3neg conventional CD4+ T cells to elicit tolerogenic responses to microbiota and food antigens. This process largely takes place in the gut draining lymph nodes via interaction with antigen-presenting cells that convert circulating naïve T cells into Treg cells. Notably, dysregulation of Treg cells leads to a number of chronic inflammatory disorders, including inflammatory bowel disease. Thus, understanding intestinal Treg cell biology in settings of inflammation and homeostasis has the potential to improve therapeutic options for patients with inflammatory bowel disease. Here, the induction, maintenance, trafficking, and function of intestinal Treg cells is reviewed in the context of intestinal inflammation and inflammatory bowel disease. In this review we propose intestinal Treg cells do not compose fixed Treg cell subsets, but rather (like T helper cells), are plastic and can adopt different programs depending on microenvironmental cues.
Collapse
Affiliation(s)
- Justin Jacobse
- Department of Pediatrics, Willem-Alexander Children’s Hospital, Leiden University Medical Center, Leiden, Netherlands
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, TN, United States
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Jing Li
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, TN, United States
| | - Edmond H. H. M. Rings
- Department of Pediatrics, Willem-Alexander Children’s Hospital, Leiden University Medical Center, Leiden, Netherlands
- Department of Pediatrics, Sophia Children’s Hospital, Erasmus University, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Janneke N. Samsom
- Laboratory of Pediatrics, Division of Gastroenterology and Nutrition, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Jeremy A. Goettel
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, TN, United States
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, Vanderbilt University Medical Center, Nashville, TN, United States
- Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, United States
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN, United States
- Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
23
|
Suuring M, Moreau A. Regulatory Macrophages and Tolerogenic Dendritic Cells in Myeloid Regulatory Cell-Based Therapies. Int J Mol Sci 2021; 22:7970. [PMID: 34360736 PMCID: PMC8348814 DOI: 10.3390/ijms22157970] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/22/2021] [Accepted: 07/23/2021] [Indexed: 12/12/2022] Open
Abstract
Myeloid regulatory cell-based therapy has been shown to be a promising cell-based medicinal approach in organ transplantation and for the treatment of autoimmune diseases, such as type 1 diabetes, rheumatoid arthritis, Crohn's disease and multiple sclerosis. Dendritic cells (DCs) are the most efficient antigen-presenting cells and can naturally acquire tolerogenic properties through a variety of differentiation signals and stimuli. Several subtypes of DCs have been generated using additional agents, including vitamin D3, rapamycin and dexamethasone, or immunosuppressive cytokines, such as interleukin-10 (IL-10) and transforming growth factor-beta (TGF-β). These cells have been extensively studied in animals and humans to develop clinical-grade tolerogenic (tol)DCs. Regulatory macrophages (Mregs) are another type of protective myeloid cell that provide a tolerogenic environment, and have mainly been studied within the context of research on organ transplantation. This review aims to thoroughly describe the ex vivo generation of tolDCs and Mregs, their mechanism of action, as well as their therapeutic application and assessment in human clinical trials.
Collapse
Affiliation(s)
| | - Aurélie Moreau
- Centre de Recherche en Transplantation et Immunologie—UMR1064, INSERM—ITUN, Nantes Université, CHU Nantes, 44000 Nantes, France;
| |
Collapse
|
24
|
Papoutsopoulou S, Pollock L, Walker C, Tench W, Samad SS, Bergey F, Lenzi L, Sheibani-Tezerji R, Rosenstiel P, Alam MT, Martins Dos Santos VAP, Müller W, Campbell BJ. Impact of Interleukin 10 Deficiency on Intestinal Epithelium Responses to Inflammatory Signals. Front Immunol 2021; 12:690817. [PMID: 34220850 PMCID: PMC8244292 DOI: 10.3389/fimmu.2021.690817] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 05/25/2021] [Indexed: 12/30/2022] Open
Abstract
Interleukin 10 (IL-10) is a pleiotropic, anti-inflammatory cytokine that has a major protective role in the intestine. Although its production by cells of the innate and adaptive immune system has been extensively studied, its intrinsic role in intestinal epithelial cells is poorly understood. In this study, we utilised both ATAC sequencing and RNA sequencing to define the transcriptional response of murine enteroids to tumour necrosis factor (TNF). We identified that the key early phase drivers of the transcriptional response to TNF within intestinal epithelium were NFκB transcription factor dependent. Using wild-type and Il10-/- enteroid cultures, we showed an intrinsic, intestinal epithelium specific effect of IL-10 deficiency on TNF-induced gene transcription, with significant downregulation of identified NFκB target genes Tnf, Ccl20, and Cxcl10, and delayed overexpression of NFκB inhibitor encoding genes, Nfkbia and Tnfaip3. IL-10 deficiency, or immunoblockade of IL-10 receptor, impacted on TNF-induced endogenous NFκB activity and downstream NFκB target gene transcription. Intestinal epithelium-derived IL-10 appears to play a crucial role as a positive regulator of the canonical NFκB pathway, contributing to maintenance of intestinal homeostasis. This is particularly important in the context of an inflammatory environment and highlights the potential for future tissue-targeted IL-10 therapeutic intervention.
Collapse
Affiliation(s)
- Stamatia Papoutsopoulou
- The Henry Wellcome Laboratories of Molecular & Cellular Gastroenterology, Faculty of Health & Life Sciences, University of Liverpool, Liverpool, United Kingdom
- Department of Biochemistry and Biotechnology, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Liam Pollock
- The Henry Wellcome Laboratories of Molecular & Cellular Gastroenterology, Faculty of Health & Life Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Catherine Walker
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - William Tench
- The Henry Wellcome Laboratories of Molecular & Cellular Gastroenterology, Faculty of Health & Life Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Sakim Shakh Samad
- The Henry Wellcome Laboratories of Molecular & Cellular Gastroenterology, Faculty of Health & Life Sciences, University of Liverpool, Liverpool, United Kingdom
| | | | - Luca Lenzi
- Centre for Genomic Research (CGR), Department of Evolution, Ecology & Behaviour, University of Liverpool, Liverpool, United Kingdom
| | | | - Phillip Rosenstiel
- Institute of Clinical Molecular Biology, Christian Albrechts University of Kiel, Kiel, Germany
| | - Mohammad Tauqeer Alam
- Warwick Medical School, Bioinformatics Research Technology Platform (RTP), University of Warwick, Coventry, United Kingdom
- Department of Biology, College of Science, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Vitor A. P. Martins Dos Santos
- LifeGlimmer GmbH, Berlin, Germany
- Laboratory of Systems & Synthetic Biology, Wageningen University & Research, Wageningen, Netherlands
| | - Werner Müller
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Barry J. Campbell
- The Henry Wellcome Laboratories of Molecular & Cellular Gastroenterology, Faculty of Health & Life Sciences, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
25
|
Abstract
The presence of immune cells is a morphological hallmark of rapidly progressive glomerulonephritis, a disease group that includes anti-glomerular basement membrane glomerulonephritis, lupus nephritis, and anti-neutrophil cytoplasmic antibody (ANCA)-associated glomerulonephritis. The cellular infiltrates include cells from both the innate and the adaptive immune responses. The latter includes CD4+ and CD8+ T cells. In the past, CD4+ T cell subsets were viewed as terminally differentiated lineages with limited flexibility. However, it is now clear that Th17 cells can in fact have a high degree of plasticity and convert, for example, into pro-inflammatory Th1 cells or anti-inflammatory Tr1 cells. Interestingly, Th17 cells in experimental GN display limited spontaneous plasticity. Here we review the literature of CD4+ T cell plasticity focusing on immune-mediated kidney disease. We point out the key findings of the past decade, in particular that targeting pathogenic Th17 cells by anti-CD3 injection can be a tool to modulate the CD4+ T cell response. This anti-CD3 treatment can trigger a regulatory phenotype in Th17 cells and transdifferentiation of Th17 cells into immunosuppressive IL-10-expressing Tr1 cells (Tr1exTh17 cells). Thus, targeting Th17 cell plasticity could be envisaged as a new therapeutic approach in patients with glomerulonephritis.
Collapse
|
26
|
Taman H, Fenton CG, Anderssen E, Florholmen J, Paulssen RH. DNA hypo-methylation facilitates anti-inflammatory responses in severe ulcerative colitis. PLoS One 2021; 16:e0248905. [PMID: 33793617 PMCID: PMC8016308 DOI: 10.1371/journal.pone.0248905] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 03/06/2021] [Indexed: 12/16/2022] Open
Abstract
Severe ulcerative colitis (UC) is a potentially life-threatening disease with a potential colorectal cancer (CRC) risk. The aim of this study was to explore the relationship between transcriptomic and genome-wide DNA methylation profiles in a well-stratified, treatment-naïve severe UC patient population in order to define specific epigenetic changes that could be responsible for the grade of disease severity. Mucosal biopsies from treatment-naïve severe UC patients (n = 8), treatment-naïve mild UC (n = 8), and healthy controls (n = 8) underwent both whole transcriptome RNA-Seq and genome-wide DNA bisulfite- sequencing, and principal component analysis (PCA), cell deconvolutions and diverse statistical methods were applied to obtain a dataset of significantly differentially expressed genes (DEGs) with correlation to DNA methylation for severe UC. DNA hypo-methylation correlated with approximately 80% of all DEGs in severe UC when compared to mild UC. Enriched pathways of annotated hypo-methylated genes revealed neutrophil degranulation, and immuno-regulatory interactions of the lymphoid system. Specifically, hypo-methylated anti-inflammatory genes found for severe UC were IL10, SIGLEC5, CD86, CLMP and members of inflammasomes NLRP3 and NLRC4. Hypo-methylation of anti-inflammatory genes during severe UC implies an interplay between the epithelium and lamina propria in order to mitigate inflammation in the gut. The specifically DNA hypo-methylated genes found for severe UC can potentially be useful biomarkers for determining disease severity and in the development of new targeted treatment strategies for severe UC patients.
Collapse
Affiliation(s)
- Hagar Taman
- Clinical Bioinformatics Research Group, Department of Clinical Medicine, UiT- The Arctic University of Norway, Tromsø, Norway
- Genomics Support Centre Tromsø (GSCT), Department of Clinical Medicine, UiT- The Arctic University of Norway, Tromsø, Norway
| | - Christopher G. Fenton
- Genomics Support Centre Tromsø (GSCT), Department of Clinical Medicine, UiT- The Arctic University of Norway, Tromsø, Norway
| | - Endre Anderssen
- Genomics Support Centre Tromsø (GSCT), Department of Clinical Medicine, UiT- The Arctic University of Norway, Tromsø, Norway
| | - Jon Florholmen
- Gastroenterology and Nutrition Research Group, Department of Clinical Medicine, UiT- The Arctic University of Norway, Tromsø, Norway
| | - Ruth H. Paulssen
- Clinical Bioinformatics Research Group, Department of Clinical Medicine, UiT- The Arctic University of Norway, Tromsø, Norway
- Genomics Support Centre Tromsø (GSCT), Department of Clinical Medicine, UiT- The Arctic University of Norway, Tromsø, Norway
- * E-mail:
| |
Collapse
|
27
|
Sienkiewicz M, Szymańska P, Fichna J. Supplementation of Bovine Colostrum in Inflammatory Bowel Disease: Benefits and Contraindications. Adv Nutr 2021; 12:533-545. [PMID: 33070186 PMCID: PMC8009748 DOI: 10.1093/advances/nmaa120] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/06/2020] [Accepted: 09/03/2020] [Indexed: 12/12/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a group of chronic relapsing disorders whose etiology has not been fully explained. Therefore, available therapeutic approaches for IBD patients are still insufficient. Current treatment strategies are targeted to immune system dysfunctions, often associated with alternations in the microbiota, which contribute to the development of chronic intestinal inflammation. Therapeutics include anti-inflammatory drugs such as aminosalicylates and corticosteroids, immunosuppressive agents, antibiotics, and biological agents such as infliximab and vedolizumab. Auxiliary therapies involve a balanced and personalized diet, healthy lifestyle, avoiding stress, as well as dietary supplements. In this review, we discuss the use of bovine colostrum (BC) as a therapeutic agent, including its advantages and contraindications. We summarize our knowledge on well-researched BC constituents and their effects on the gastrointestinal tract as evidenced in in vitro and in vivo studies.
Collapse
Affiliation(s)
- Michał Sienkiewicz
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Patrycja Szymańska
- Department of Hemostasis and Hemostatic Disorders, Faculty of Health Sciences, Medical University of Lodz, Lodz, Poland
| | - Jakub Fichna
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
28
|
Saxton RA, Tsutsumi N, Su LL, Abhiraman GC, Mohan K, Henneberg LT, Aduri NG, Gati C, Garcia KC. Structure-based decoupling of the pro- and anti-inflammatory functions of interleukin-10. Science 2021; 371:371/6535/eabc8433. [PMID: 33737461 DOI: 10.1126/science.abc8433] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 10/14/2020] [Accepted: 01/15/2021] [Indexed: 12/23/2022]
Abstract
Interleukin-10 (IL-10) is an immunoregulatory cytokine with both anti-inflammatory and immunostimulatory properties and is frequently dysregulated in disease. We used a structure-based approach to deconvolute IL-10 pleiotropy by determining the structure of the IL-10 receptor (IL-10R) complex by cryo-electron microscopy at a resolution of 3.5 angstroms. The hexameric structure shows how IL-10 and IL-10Rα form a composite surface to engage the shared signaling receptor IL-10Rβ, enabling the design of partial agonists. IL-10 variants with a range of IL-10Rβ binding strengths uncovered substantial differences in response thresholds across immune cell populations, providing a means of manipulating IL-10 cell type selectivity. Some variants displayed myeloid-biased activity by suppressing macrophage activation without stimulating inflammatory CD8+ T cells, thereby uncoupling the major opposing functions of IL-10. These results provide a mechanistic blueprint for tuning the pleiotropic actions of IL-10.
Collapse
Affiliation(s)
- Robert A Saxton
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA.,Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Naotaka Tsutsumi
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA.,Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Leon L Su
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Gita C Abhiraman
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA.,Program in Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Kritika Mohan
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Lukas T Henneberg
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Nanda G Aduri
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA.,Biosciences Division, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Cornelius Gati
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA.,Biosciences Division, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - K Christopher Garcia
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA. .,Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA.,Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
29
|
Sanchez-Cano C, Alvarez-Puebla RA, Abendroth JM, Beck T, Blick R, Cao Y, Caruso F, Chakraborty I, Chapman HN, Chen C, Cohen BE, Conceição ALC, Cormode DP, Cui D, Dawson KA, Falkenberg G, Fan C, Feliu N, Gao M, Gargioni E, Glüer CC, Grüner F, Hassan M, Hu Y, Huang Y, Huber S, Huse N, Kang Y, Khademhosseini A, Keller TF, Körnig C, Kotov NA, Koziej D, Liang XJ, Liu B, Liu S, Liu Y, Liu Z, Liz-Marzán LM, Ma X, Machicote A, Maison W, Mancuso AP, Megahed S, Nickel B, Otto F, Palencia C, Pascarelli S, Pearson A, Peñate-Medina O, Qi B, Rädler J, Richardson JJ, Rosenhahn A, Rothkamm K, Rübhausen M, Sanyal MK, Schaak RE, Schlemmer HP, Schmidt M, Schmutzler O, Schotten T, Schulz F, Sood AK, Spiers KM, Staufer T, Stemer DM, Stierle A, Sun X, Tsakanova G, Weiss PS, Weller H, Westermeier F, Xu M, Yan H, Zeng Y, Zhao Y, Zhao Y, Zhu D, Zhu Y, Parak WJ. X-ray-Based Techniques to Study the Nano-Bio Interface. ACS NANO 2021; 15:3754-3807. [PMID: 33650433 PMCID: PMC7992135 DOI: 10.1021/acsnano.0c09563] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 01/25/2021] [Indexed: 05/03/2023]
Abstract
X-ray-based analytics are routinely applied in many fields, including physics, chemistry, materials science, and engineering. The full potential of such techniques in the life sciences and medicine, however, has not yet been fully exploited. We highlight current and upcoming advances in this direction. We describe different X-ray-based methodologies (including those performed at synchrotron light sources and X-ray free-electron lasers) and their potentials for application to investigate the nano-bio interface. The discussion is predominantly guided by asking how such methods could better help to understand and to improve nanoparticle-based drug delivery, though the concepts also apply to nano-bio interactions in general. We discuss current limitations and how they might be overcome, particularly for future use in vivo.
Collapse
Affiliation(s)
- Carlos Sanchez-Cano
- Center
for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramon 182, 20014 Donostia San Sebastián, Spain
| | - Ramon A. Alvarez-Puebla
- Universitat
Rovira i Virgili, 43007 Tarragona, Spain
- ICREA, Passeig Lluís
Companys 23, 08010 Barcelona, Spain
| | - John M. Abendroth
- Department
of Materials Science and Engineering, Stanford
University, Stanford, California 94305, United States
| | - Tobias Beck
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | - Robert Blick
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | - Yuan Cao
- Department
of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
- Biointerfaces
Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Frank Caruso
- ARC
Centre of Excellence in Convergent Bio-Nano Science and Technology
and the Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Indranath Chakraborty
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | - Henry N. Chapman
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
- Centre
for Ultrafast Imaging, Universität
Hamburg, 22761 Hamburg, Germany
- Deutsches
Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Chunying Chen
- National
Center for Nanoscience and Technology (NCNST), 100190 Beijing China
| | - Bruce E. Cohen
- The
Molecular Foundry and Division of Molecular Biophysics and Integrated
Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | | | - David P. Cormode
- Radiology
Department, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Daxiang Cui
- School
of Chemistry and Chemical Engineering, Frontiers Science Center for
Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | | | - Gerald Falkenberg
- Deutsches
Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Chunhai Fan
- School
of Chemistry and Chemical Engineering, Frontiers Science Center for
Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Neus Feliu
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
- CAN, Fraunhofer Institut, 20146 Hamburg, Germany
| | - Mingyuan Gao
- Department
of Radiotherapy and Radiation Oncology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Elisabetta Gargioni
- Department
of Radiotherapy and Radiation Oncology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Claus-C. Glüer
- Section
Biomedical Imaging, Department of Radiology and Neuroradiology, University Medical Clinic Schleswig-Holstein and Christian-Albrechts-University
Kiel, 24105 Kiel, Germany
| | - Florian Grüner
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
- Universität
Hamburg and Center for Free-Electron Laser Science, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Moustapha Hassan
- Karolinska University Hospital, Huddinge, and Karolinska
Institutet, 17177 Stockholm, Sweden
| | - Yong Hu
- College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China
| | - Yalan Huang
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | - Samuel Huber
- Department
of Radiotherapy and Radiation Oncology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Nils Huse
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | - Yanan Kang
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90049, United States
| | - Thomas F. Keller
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
- Deutsches
Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Christian Körnig
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
- Universität
Hamburg and Center for Free-Electron Laser Science, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Nicholas A. Kotov
- Department
of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
- Biointerfaces
Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
- Michigan
Institute for Translational Nanotechnology (MITRAN), Ypsilanti, Michigan 48198, United States
| | - Dorota Koziej
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | - Xing-Jie Liang
- National
Center for Nanoscience and Technology (NCNST), 100190 Beijing China
| | - Beibei Liu
- Department
of Radiotherapy and Radiation Oncology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Sijin Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology,
Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085 China
| | - Yang Liu
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | - Ziyao Liu
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | - Luis M. Liz-Marzán
- Center
for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramon 182, 20014 Donostia San Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
- Centro de Investigación Biomédica
en Red de Bioingeniería,
Biomateriales y Nanomedicina (CIBER-BBN), Paseo de Miramon 182, 20014 Donostia-San Sebastián, Spain
| | - Xiaowei Ma
- National
Center for Nanoscience and Technology (NCNST), 100190 Beijing China
| | - Andres Machicote
- Department
of Radiotherapy and Radiation Oncology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Wolfgang Maison
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | - Adrian P. Mancuso
- European XFEL, 22869 Schenefeld, Germany
- Department of Chemistry and Physics, La
Trobe Institute for Molecular
Science, La Trobe University, Melbourne 3086, Victoria, Australia
| | - Saad Megahed
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | - Bert Nickel
- Sektion Physik, Ludwig Maximilians Universität
München, 80539 München, Germany
| | - Ferdinand Otto
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | - Cristina Palencia
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | | | - Arwen Pearson
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | - Oula Peñate-Medina
- Section
Biomedical Imaging, Department of Radiology and Neuroradiology, University Medical Clinic Schleswig-Holstein and Christian-Albrechts-University
Kiel, 24105 Kiel, Germany
| | - Bing Qi
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | - Joachim Rädler
- Sektion Physik, Ludwig Maximilians Universität
München, 80539 München, Germany
| | - Joseph J. Richardson
- ARC
Centre of Excellence in Convergent Bio-Nano Science and Technology
and the Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Axel Rosenhahn
- Department
of Radiotherapy and Radiation Oncology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Kai Rothkamm
- Department
of Radiotherapy and Radiation Oncology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Michael Rübhausen
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | | | - Raymond E. Schaak
- Department of Chemistry, Department of Chemical Engineering,
and
Materials Research Institute, The Pennsylvania
State University, University Park, Pensylvania 16802, United States
| | - Heinz-Peter Schlemmer
- Department of Radiology, German Cancer
Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Marius Schmidt
- Department of Physics, University
of Wisconsin-Milwaukee, 3135 N. Maryland Avenue, Milwaukee, Wisconsin 53211, United States
| | - Oliver Schmutzler
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
- Universität
Hamburg and Center for Free-Electron Laser Science, Luruper Chaussee 149, 22761 Hamburg, Germany
| | | | - Florian Schulz
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | - A. K. Sood
- Department of Physics, Indian Institute
of Science, Bangalore 560012, India
| | - Kathryn M. Spiers
- Deutsches
Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Theresa Staufer
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
- Universität
Hamburg and Center for Free-Electron Laser Science, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Dominik M. Stemer
- California NanoSystems Institute, University
of California, Los Angeles, Los Angeles, California 90095, United States
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Andreas Stierle
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
- Deutsches
Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Xing Sun
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
- Molecular Science and Biomedicine Laboratory (MBL) State
Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry
and Chemical Engineering, Hunan University, Changsha 410082, P.R. China
| | - Gohar Tsakanova
- Institute of Molecular Biology of National
Academy of Sciences of
Republic of Armenia, 7 Hasratyan str., 0014 Yerevan, Armenia
- CANDLE Synchrotron Research Institute, 31 Acharyan str., 0040 Yerevan, Armenia
| | - Paul S. Weiss
- California NanoSystems Institute, University
of California, Los Angeles, Los Angeles, California 90095, United States
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, Los Angeles, California 90095, United States
- Department of Bioengineering, University
of California, Los Angeles, Los Angeles, California 90095, United States
| | - Horst Weller
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
- CAN, Fraunhofer Institut, 20146 Hamburg, Germany
| | - Fabian Westermeier
- Deutsches
Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Ming Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology,
Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085 China
| | - Huijie Yan
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | - Yuan Zeng
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | - Ying Zhao
- Karolinska University Hospital, Huddinge, and Karolinska
Institutet, 17177 Stockholm, Sweden
| | - Yuliang Zhao
- National
Center for Nanoscience and Technology (NCNST), 100190 Beijing China
| | - Dingcheng Zhu
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | - Ying Zhu
- Bioimaging Center, Shanghai Synchrotron Radiation Facility,
Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
- Division of Physical Biology, CAS Key Laboratory
of Interfacial
Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Wolfgang J. Parak
- Center
for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramon 182, 20014 Donostia San Sebastián, Spain
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
- School
of Chemistry and Chemical Engineering, Frontiers Science Center for
Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
30
|
Wisniewski PJ, Nagarkatti M, Nagarkatti PS. Regulation of Intestinal Stem Cell Stemness by the Aryl Hydrocarbon Receptor and Its Ligands. Front Immunol 2021; 12:638725. [PMID: 33777031 PMCID: PMC7988095 DOI: 10.3389/fimmu.2021.638725] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 02/08/2021] [Indexed: 12/15/2022] Open
Abstract
Maintenance of intestinal homeostasis requires the integration of immunological and molecular processes together with environmental, diet, metabolic and microbial cues. Key to this homeostasis is the proper functioning of epithelial cells originating from intestinal stem cells (ISCs). While local factors and numerous molecular pathways govern the ISC niche, the conduit through which these processes work in concordance is the aryl hydrocarbon receptor (AhR), a ligand-activated transcription factor, whose role in immunoregulation is critical at barrier surfaces. In this review, we discuss how AhR signaling is emerging as one of the critical regulators of molecular pathways involved in epithelial cell renewal. In addition, we examine the putative contribution of specific AhR ligands to ISC stemness and epithelial cell fate.
Collapse
Affiliation(s)
- Paul J Wisniewski
- Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC, United States
| | - Mitzi Nagarkatti
- Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC, United States
| | - Prakash S Nagarkatti
- Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC, United States
| |
Collapse
|
31
|
Krawiec P, Pawłowska-Kamieniak A, Pac-Kożuchowska E. Interleukin 10 and interleukin 10 receptor in paediatric inflammatory bowel disease: from bench to bedside lesson. JOURNAL OF INFLAMMATION-LONDON 2021; 18:13. [PMID: 33691712 PMCID: PMC7948370 DOI: 10.1186/s12950-021-00279-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Accepted: 03/04/2021] [Indexed: 01/21/2023]
Abstract
Background The differences between adults and children in inflammatory bowel disease (IBD) phenotype, severity, complications, co-morbidities, and response to the therapy resulted in the extraction of paediatric IBD. It has been revealed that the substantial role in the development of IBD in children under 6 years of age plays a single genetic mutation (monogenic IBD). On the other hand, in older children and adolescents IBD is usually associated with number of interactions between susceptibility loci (polygenic IBD). Main body Until now there have been described about 60 monogenic defects which affect the variety of immune mechanisms in IBD pathogenesis including epithelial barrier, function of neutrophil granulocytes and phagocytes, T- and B-cell selection and activation, immune inhibitory mechanisms, or apoptosis. Il-10 is an anti-inflammatory cytokine which modulates innate and adaptive immunity affecting expression of pro-inflammatory molecules and function of the variety of immune cells. Patients with identified defects in Il-10 pathway manifest with life-threating colitis with perianal lesions which occurs within first months of life. Allogenic hematopoietic stem cell transplantation is curative therapy in children with Il-10 signalling defects. Conclusion Clinical awareness of Il-10 signalling defects enables early recognition and prompt management of the disease.
Collapse
Affiliation(s)
- Paulina Krawiec
- Department of Paediatrics and Gastroenterology, Medical University of Lublin, Racławickie 1, 20-059, Lublin, Poland.
| | | | - Elżbieta Pac-Kożuchowska
- Department of Paediatrics and Gastroenterology, Medical University of Lublin, Racławickie 1, 20-059, Lublin, Poland
| |
Collapse
|
32
|
Zhang X, Tong Y, Lyu X, Wang J, Wang Y, Yang R. Prevention and Alleviation of Dextran Sulfate Sodium Salt-Induced Inflammatory Bowel Disease in Mice With Bacillus subtilis-Fermented Milk via Inhibition of the Inflammatory Responses and Regulation of the Intestinal Flora. Front Microbiol 2021; 11:622354. [PMID: 33519783 PMCID: PMC7845695 DOI: 10.3389/fmicb.2020.622354] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 11/25/2020] [Indexed: 12/12/2022] Open
Abstract
The pathogenesis of inflammatory bowel disease (IBD) might be related to the local inflammatory damage and the dysbacteriosis of intestinal flora. Probiotics can regulate the intestinal flora and ameliorate IBD. The probiotic Bacillus subtilis strain B. subtilis JNFE0126 was used as the starter of fermented milk. However, the therapeutic effects of B. subtilis-fermented milk on IBD remain to be explored. In this research, the therapeutic effect of B. subtilis-fermented milk on dextran sulfate sodium salt (DSS)-induced IBD mouse model was evaluated. Besides, the expression of pro-inflammatory/anti-inflammatory cytokines, the proliferation of the intestinal stem cells, and the reconstruction of the mucosa barrier were investigated. Finally, alteration of the gut microbiota was investigated by taxonomic analysis. As shown by the results, the disease activity index (DAI) of IBD was significantly decreased through oral administration of B. subtilis (JNFE0126)-fermented milk, and intestinal mucosa injury was attenuated. Moreover, B. subtilis could reduce the inflammatory response of the intestinal mucosa, induce proliferation of the intestinal stem cell, and promote reconstruction of the mucosal barrier. Furthermore, B. subtilis could rebalance the intestinal flora, increasing the abundance of Bacillus, Alistipes, and Lactobacillus while decreasing the abundance of Escherichia and Bacteroides. In conclusion, oral administration of the B. subtilis-fermented milk could alleviate DSS-induced IBD via inhibition of inflammatory response, promotion of the mucosal barrier reconstruction, and regulation of the intestinal flora.
Collapse
Affiliation(s)
- Xuan Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Yanjun Tong
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Xiaomei Lyu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jing Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Yuxue Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Ruijin Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
33
|
Mallikarjunappa S, Shandilya UK, Sharma A, Lamers K, Bissonnette N, Karrow NA, Meade KG. Functional analysis of bovine interleukin-10 receptor alpha in response to Mycobacterium avium subsp. paratuberculosis lysate using CRISPR/Cas9. BMC Genet 2020; 21:121. [PMID: 33138773 PMCID: PMC7607837 DOI: 10.1186/s12863-020-00925-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 10/20/2020] [Indexed: 12/21/2022] Open
Abstract
Background The interleukin-10 receptor alpha (IL10RA) gene codes for the alpha chain of the IL-10 receptor which binds the cytokine IL-10. IL-10 is an anti-inflammatory cytokine with immunoregulatory function during the pathogenesis of many inflammatory disorders in livestock, including Johne’s disease (JD). JD is a chronic enteritis in cattle caused by Mycobacterium avium subsp. paratuberculosis (MAP) and is responsible for significant economic losses to the dairy industry. Several candidate genes including IL10RA have been found to be associated with JD. The aim of this study was to better understand the functional significance of IL10RA in the context of immune stimulation with MAP cell wall lysate. Results An IL10RA knock out (KO) bovine mammary epithelial cell (MAC-T) line was generated using the CRISPR/cas9 (Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated protein 9) gene editing system. These IL10RA KO cells were stimulated with the immune stimulant MAP lysate +/− IL-10, or with LPS as a positive control. In comparison to unedited cells, relative quantification of immune-related genes after stimulation revealed that knocking out IL10RA resulted in upregulation of pro-inflammatory cytokine gene expression (TNFA, IL1A, IL1B and IL6) and downregulation of suppressor of cytokine signaling 3 (SOCS3), a negative regulator of pro-inflammatory cytokine signaling. At the protein level knocking out IL10RA also resulted in upregulation of inflammatory cytokines - TNF-α and IL-6 and chemokines - IL-8, CCL2 and CCL4, relative to unedited cells. Conclusions The findings of this study illustrate the broad and significant effects of knocking out the IL10RA gene in enhancing pro-inflammatory cytokine expression and further support the immunoregulatory role of IL10RA in eliciting an anti-inflammatory response as well as its potential functional involvement during the immune response associated with JD.
Collapse
Affiliation(s)
- Sanjay Mallikarjunappa
- Animal and Bioscience Research Department, Animal and Grassland Research and Innovation Centre, Teagasc, Grange, Co. Meath, Ireland.,Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Umesh K Shandilya
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Ankita Sharma
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Kristen Lamers
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Nathalie Bissonnette
- Agriculture and Agri-Food Canada, Sherbrooke Research and Development Centre, Sherbrooke, QC, J1M 0C8, Canada
| | - Niel A Karrow
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Kieran G Meade
- Animal and Bioscience Research Department, Animal and Grassland Research and Innovation Centre, Teagasc, Grange, Co. Meath, Ireland.
| |
Collapse
|
34
|
Formiga RDO, Alves Júnior EB, Vasconcelos RC, Guerra GCB, Antunes de Araújo A, de Carvalho TG, Garcia VB, de Araújo Junior RF, Gadelha FAAF, Vieira GC, Sobral MV, Barbosa Filho JM, Spiller F, Batista LM. p-Cymene and Rosmarinic Acid Ameliorate TNBS-Induced Intestinal Inflammation Upkeeping ZO-1 and MUC-2: Role of Antioxidant System and Immunomodulation. Int J Mol Sci 2020; 21:E5870. [PMID: 32824269 PMCID: PMC7461622 DOI: 10.3390/ijms21165870] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 06/04/2020] [Accepted: 06/11/2020] [Indexed: 02/07/2023] Open
Abstract
p-Cymene (p-C) and rosmarinic acid (RA) are secondary metabolites that are present in medicinal herbs and Mediterranean spices that have promising anti-inflammatory properties. This study aimed to evaluate their intestinal anti-inflammatory activity in the trinitrobenzene sulphonic acid (TNBS)-induced colitis model in rats. p-C and RA (25-200 mg/kg) oral administration reduced the macroscopic lesion score, ulcerative area, intestinal weight/length ratio, and diarrheal index in TNBS-treated animals. Both compounds (200 mg/kg) decreased malondialdehyde (MDA) and myeloperoxidase (MPO), restored glutathione (GSH) levels, and enhanced fluorescence intensity of superoxide dismutase (SOD). They also decreased interleukin (IL)-1β and tumor necrosis factor (TNF)-α, and maintained IL-10 basal levels. Furthermore, they modulated T cell populations (cluster of differentiation (CD)4+, CD8+, or CD3+CD4+CD25+) analyzed from the spleen, mesenteric lymph nodes, and colon samples, and also decreased cyclooxigenase 2 (COX-2), interferon (IFN)-γ, inducible nitric oxide synthase (iNOS), and nuclear transcription factor kappa B subunit p65 (NFκB-p65) mRNA transcription, but only p-C interfered in the suppressor of cytokine signaling 3 (SOCS3) expression in inflamed colons. An increase in gene expression and positive cells immunostained for mucin type 2 (MUC-2) and zonula occludens 1 (ZO-1) was observed. Altogether, these results indicate intestinal anti-inflammatory activity of p-C and RA involving the cytoprotection of the intestinal barrier, maintaining the mucus layer, and preserving communicating junctions, as well as through modulation of the antioxidant and immunomodulatory systems.
Collapse
Affiliation(s)
- Rodrigo de Oliveira Formiga
- Postgraduate Program in Natural and Synthetic Bioactive Products, Health Sciences Center, Federal University of Paraíba (UFPB), João Pessoa 58051970, Brazil; (R.d.O.F); (E.B.A.J.); (F.A.A.F.G.); (G.C.V.); (M.V.S.); (J.M.B.F.)
| | - Edvaldo Balbino Alves Júnior
- Postgraduate Program in Natural and Synthetic Bioactive Products, Health Sciences Center, Federal University of Paraíba (UFPB), João Pessoa 58051970, Brazil; (R.d.O.F); (E.B.A.J.); (F.A.A.F.G.); (G.C.V.); (M.V.S.); (J.M.B.F.)
| | - Roseane Carvalho Vasconcelos
- Department of Biophysics and Pharmacology, Biosciences Center, Federal University of Rio Grande do Norte, Natal 59064-741, Brazil; (R.C.V); (G.C.B.G.); (A.A.d.A.)
| | - Gerlane Coelho Bernardo Guerra
- Department of Biophysics and Pharmacology, Biosciences Center, Federal University of Rio Grande do Norte, Natal 59064-741, Brazil; (R.C.V); (G.C.B.G.); (A.A.d.A.)
| | - Aurigena Antunes de Araújo
- Department of Biophysics and Pharmacology, Biosciences Center, Federal University of Rio Grande do Norte, Natal 59064-741, Brazil; (R.C.V); (G.C.B.G.); (A.A.d.A.)
| | - Thaís Gomes de Carvalho
- Department of Morphology, Histology and Basic Pathology, Biosciences Center, Federal University of Rio Grande do Norte, Natal 59064-741, Brazil; (T.G.d.C.); (V.B.G.); (R.F.d.A.J.)
| | - Vinícius Barreto Garcia
- Department of Morphology, Histology and Basic Pathology, Biosciences Center, Federal University of Rio Grande do Norte, Natal 59064-741, Brazil; (T.G.d.C.); (V.B.G.); (R.F.d.A.J.)
| | - Raimundo Fernandes de Araújo Junior
- Department of Morphology, Histology and Basic Pathology, Biosciences Center, Federal University of Rio Grande do Norte, Natal 59064-741, Brazil; (T.G.d.C.); (V.B.G.); (R.F.d.A.J.)
| | - Francisco Allysson Assis Ferreira Gadelha
- Postgraduate Program in Natural and Synthetic Bioactive Products, Health Sciences Center, Federal University of Paraíba (UFPB), João Pessoa 58051970, Brazil; (R.d.O.F); (E.B.A.J.); (F.A.A.F.G.); (G.C.V.); (M.V.S.); (J.M.B.F.)
| | - Giciane Carvalho Vieira
- Postgraduate Program in Natural and Synthetic Bioactive Products, Health Sciences Center, Federal University of Paraíba (UFPB), João Pessoa 58051970, Brazil; (R.d.O.F); (E.B.A.J.); (F.A.A.F.G.); (G.C.V.); (M.V.S.); (J.M.B.F.)
| | - Marianna Vieira Sobral
- Postgraduate Program in Natural and Synthetic Bioactive Products, Health Sciences Center, Federal University of Paraíba (UFPB), João Pessoa 58051970, Brazil; (R.d.O.F); (E.B.A.J.); (F.A.A.F.G.); (G.C.V.); (M.V.S.); (J.M.B.F.)
| | - José Maria Barbosa Filho
- Postgraduate Program in Natural and Synthetic Bioactive Products, Health Sciences Center, Federal University of Paraíba (UFPB), João Pessoa 58051970, Brazil; (R.d.O.F); (E.B.A.J.); (F.A.A.F.G.); (G.C.V.); (M.V.S.); (J.M.B.F.)
| | - Fernando Spiller
- Department of Pharmacology, Federal University of Santa Catarina (UFSC), Florianópolis 88037-000, Brazil;
| | - Leônia Maria Batista
- Postgraduate Program in Natural and Synthetic Bioactive Products, Health Sciences Center, Federal University of Paraíba (UFPB), João Pessoa 58051970, Brazil; (R.d.O.F); (E.B.A.J.); (F.A.A.F.G.); (G.C.V.); (M.V.S.); (J.M.B.F.)
| |
Collapse
|
35
|
Chamberlain TC, Cheung ST, Yoon JSJ, Ming-Lum A, Gardill BR, Shakibakho S, Dzananovic E, Ban F, Samiea A, Jawanda K, Priatel J, Krystal G, Ong CJ, Cherkasov A, Andersen RJ, McKenna SA, Van Petegem F, Mui ALF. Interleukin-10 and Small Molecule SHIP1 Allosteric Regulators Trigger Anti-inflammatory Effects through SHIP1/STAT3 Complexes. iScience 2020; 23:101433. [PMID: 32823063 PMCID: PMC7452241 DOI: 10.1016/j.isci.2020.101433] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 07/07/2020] [Accepted: 07/31/2020] [Indexed: 12/12/2022] Open
Abstract
The anti-inflammatory actions of interleukin-10 (IL10) are thought to be mediated primarily by the STAT3 transcription factor, but pro-inflammatory cytokines such as interleukin-6 (IL6) also act through STAT3. We now report that IL10, but not IL6 signaling, induces formation of a complex between STAT3 and the inositol polyphosphate-5-phosphatase SHIP1 in macrophages. Both SHIP1 and STAT3 translocate to the nucleus in macrophages. Remarkably, sesquiterpenes of the Pelorol family, which we previously described as allosteric activators of SHIP1 phosphatase activity, could induce SHIP1/STAT3 complex formation in cells and mimic the anti-inflammatory action of IL10 in a mouse model of colitis. Using crystallography and docking studies we identified a drug-binding pocket in SHIP1. Our studies reveal new mechanisms of action for both STAT3 and SHIP1 and provide a rationale for use of allosteric SHIP1-activating compounds, which mimic the beneficial anti-inflammatory actions of IL10. Video Abstract
Loss of normal interleukin-10 (IL10) function results in inflammatory diseases IL10 or SHIP1 agonists induce formation of SHIP1/STAT3 complexes SHIP1 Y190 phosphorylation is required for SHIP1/STAT3 complex formation SHIP1 agonists mimic IL10 anti-inflammatory action in a mouse model of colitis
Collapse
Affiliation(s)
- Thomas C Chamberlain
- Immunity and Infection Research Centre, Vancouver Coastal Health Research Institute, Vancouver, BC V6H 3Z6, Canada; Department of Surgery, University of British Columbia, Vancouver, Canada; Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, Canada
| | - Sylvia T Cheung
- Immunity and Infection Research Centre, Vancouver Coastal Health Research Institute, Vancouver, BC V6H 3Z6, Canada; Department of Surgery, University of British Columbia, Vancouver, Canada; Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, Canada
| | - Jeff S J Yoon
- Immunity and Infection Research Centre, Vancouver Coastal Health Research Institute, Vancouver, BC V6H 3Z6, Canada; Department of Surgery, University of British Columbia, Vancouver, Canada; Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, Canada
| | - Andrew Ming-Lum
- Immunity and Infection Research Centre, Vancouver Coastal Health Research Institute, Vancouver, BC V6H 3Z6, Canada; Department of Surgery, University of British Columbia, Vancouver, Canada
| | - Bernd R Gardill
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, Canada
| | - Soroush Shakibakho
- Immunity and Infection Research Centre, Vancouver Coastal Health Research Institute, Vancouver, BC V6H 3Z6, Canada; Department of Surgery, University of British Columbia, Vancouver, Canada
| | - Edis Dzananovic
- Department of Chemistry, University of Manitoba, Winnipeg, Canada
| | - Fuqiang Ban
- Department of Urological Sciences, University of British Columbia, Vancouver, Canada
| | - Abrar Samiea
- Immunity and Infection Research Centre, Vancouver Coastal Health Research Institute, Vancouver, BC V6H 3Z6, Canada; Department of Surgery, University of British Columbia, Vancouver, Canada
| | - Kamaldeep Jawanda
- Immunity and Infection Research Centre, Vancouver Coastal Health Research Institute, Vancouver, BC V6H 3Z6, Canada; Department of Surgery, University of British Columbia, Vancouver, Canada
| | - John Priatel
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - Gerald Krystal
- British Columbia Cancer Research Centre, Vancouver, BC V5Z 1L3, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - Christopher J Ong
- Immunity and Infection Research Centre, Vancouver Coastal Health Research Institute, Vancouver, BC V6H 3Z6, Canada; Department of Surgery, University of British Columbia, Vancouver, Canada; Department of Urological Sciences, University of British Columbia, Vancouver, Canada
| | - Artem Cherkasov
- Department of Urological Sciences, University of British Columbia, Vancouver, Canada
| | - Raymond J Andersen
- Department of Chemistry, University of British Columbia, Vancouver, Canada
| | - Sean A McKenna
- Department of Chemistry, University of Manitoba, Winnipeg, Canada
| | - Filip Van Petegem
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, Canada
| | - Alice L-F Mui
- Immunity and Infection Research Centre, Vancouver Coastal Health Research Institute, Vancouver, BC V6H 3Z6, Canada; Department of Surgery, University of British Columbia, Vancouver, Canada; Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, Canada.
| |
Collapse
|
36
|
Saraiva M, Vieira P, O'Garra A. Biology and therapeutic potential of interleukin-10. J Exp Med 2020; 217:jem.20190418. [PMID: 31611251 PMCID: PMC7037253 DOI: 10.1084/jem.20190418] [Citation(s) in RCA: 497] [Impact Index Per Article: 124.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 08/05/2019] [Accepted: 09/11/2019] [Indexed: 12/13/2022] Open
Abstract
The authors review the molecular mechanisms regulating IL-10 production and response and describe classic and novel functions of IL-10 in immune and non-immune cells. They further discuss the therapeutic potential of IL-10 in different diseases and the outstanding questions underlying an effective application of IL-10 in clinical settings. The cytokine IL-10 is a key anti-inflammatory mediator ensuring protection of a host from over-exuberant responses to pathogens and microbiota, while playing important roles in other settings as sterile wound healing, autoimmunity, cancer, and homeostasis. Here we discuss our current understanding of the regulation of IL-10 production and of the molecular pathways associated with IL-10 responses. In addition to IL-10’s classic inhibitory effects on myeloid cells, we also describe the nonclassic roles attributed to this pleiotropic cytokine, including how IL-10 regulates basic processes of neural and adipose cells and how it promotes CD8 T cell activation, as well as epithelial repair. We further discuss its therapeutic potential in the context of different diseases and the outstanding questions that may help develop an effective application of IL-10 in diverse clinical settings.
Collapse
Affiliation(s)
- Margarida Saraiva
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Paulo Vieira
- Department of Immunology, Unité Lymphopoièse, Institut Pasteur, Paris, France.,University Paris Diderot, Sorbonne Paris Cité, Cellule Pasteur, Paris, France.,Institut National de la Santé et de la Recherche Médicale U1223, Paris, France
| | - Anne O'Garra
- Laboratory of Immunoregulation and Infection, The Francis Crick Institute, London, UK.,National Heart and Lung Institute, Imperial College London, UK
| |
Collapse
|
37
|
Lee DM, Ecton KE, Trikha SRJ, Wrigley SD, Thomas KN, Battson ML, Wei Y, Johnson SA, Weir TL, Gentile CL. Microbial metabolite indole-3-propionic acid supplementation does not protect mice from the cardiometabolic consequences of a Western diet. Am J Physiol Gastrointest Liver Physiol 2020; 319:G51-G62. [PMID: 32421360 PMCID: PMC7468755 DOI: 10.1152/ajpgi.00375.2019] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Emerging evidence suggests that intestinal microbes regulate host physiology and cardiometabolic health, although the mechanism(s) by which they do so is unclear. Indoles are a group of compounds produced from bacterial metabolism of the amino acid tryptophan. In light of recent data suggesting broad physiological effects of indoles on host physiology, we examined whether indole-3-propionic acid (IPA) would protect mice from the cardiometabolic consequences of a Western diet. Male C57BL/6J mice were fed either a standard diet (SD) or Western diet (WD) for 5 mo and received normal autoclaved drinking water or water supplemented with IPA (0.1 mg/mL; SD + IPA and WD + IPA). WD feeding led to increased liver triglycerides and makers of inflammation, with no effect of IPA. At 5 mo, arterial stiffness was significantly higher in WD and WD + IPA compared with SD (WD: 485.7 ± 6.7 and WD + IPA: 492.8 ± 8.6 vs. SD: 436.9 ± 7.0 cm/s, P < 0.05) but not SD + IPA (SD + IPA: 468.1 ± 6.6 vs. WD groups, P > 0.05). Supplementation with IPA in the SD + IPA group significantly increased glucose AUC compared with SD mice (SD + IPA: 1,763.3 ± 92.0 vs. SD: 1,397.6 ± 64.0, P < 0.05), and no significant differences were observed among either the WD or WD + IPA groups (WD: 1,623.5 ± 77.3 and WD + IPA: 1,658.4 ± 88.4, P > 0.05). Gut microbiota changes were driven by WD feeding, whereas IPA supplementation drove differences in SD-fed mice. In conclusion, supplementation with IPA did not improve cardiometabolic outcomes in WD-fed mice and may have worsened some parameters in SD-fed mice, suggesting that IPA is not a critical signal mediating WD-induced cardiometabolic dysfunction downstream of the gut microbiota.NEW & NOTEWORTHY The gut microbiota has been shown to mediate host health. Emerging data implicate gut microbial metabolites of tryptophan metabolism as potential important mediators. We examined the effects of indole-3-propionic acid in Western diet-fed mice and found no beneficial cardiometabolic effects. Our data do not support the supposition that indole-3-propionic acid (IPA) mediates beneficial metabolic effects downstream of the gut microbiota and may be potentially deleterious in higher circulating levels.
Collapse
Affiliation(s)
- Dustin M. Lee
- 1Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, Colorado
| | - Kayl E. Ecton
- 1Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, Colorado
| | - S. Raj J. Trikha
- 1Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, Colorado
| | - Scott D. Wrigley
- 1Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, Colorado
| | - Keely N. Thomas
- 1Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, Colorado
| | - Micah L. Battson
- 2Department of Nutrition, Metropolitan State University, Denver, Colorado
| | - Yuren Wei
- 1Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, Colorado
| | - Sarah A. Johnson
- 1Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, Colorado
| | - Tiffany L. Weir
- 1Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, Colorado
| | - Christopher L. Gentile
- 1Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, Colorado
| |
Collapse
|
38
|
Chronic Periodontitis and Immunity, Towards the Implementation of a Personalized Medicine: A Translational Research on Gene Single Nucleotide Polymorphisms (SNPs) Linked to Chronic Oral Dysbiosis in 96 Caucasian Patients. Biomedicines 2020; 8:biomedicines8050115. [PMID: 32397555 PMCID: PMC7277173 DOI: 10.3390/biomedicines8050115] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/06/2020] [Accepted: 05/07/2020] [Indexed: 02/06/2023] Open
Abstract
Chronic periodontitis (CP) is a complex pathology with a significant impact worldwide causing bone loss. Oral dysbiosis is a highly inflammatory condition associated to a long-term insulting infection and represents an underestimated CP key factor associated with an imbalance of pro-inflammatory and anti-inflammatory gene responses. The presence of a single nucleotide polymorphisms (SNPs) in the promoter region of interleukin 10 (IL-10) gene-1082, -819, and -592 was a possible determinant cause. This translational research aimed to provide outcomes on the role of IL-10 gene expression in bone loss diseases in patients affected by CP. Caucasian patients (n = 96) affected by CP were recruited from the Italian population. The subgingival samples were collected using the Bacterial Periodontal Assessment by Biomolecular Diagnostic® and the characterization of a set of 15 bacterial DNA responsible of periodontitis was performed by real-time multiplex PCR. In addition, two viruses, Epstein-Barr Virus (EBV) and Herpes Simplex Virus 1 (HSV-1), and a pathogenic fungi (Candida albicans) were included as a part of our panel. Our results confirmed an existing association between IL-10 gene polymorphisms and polymorphism of tumor necrosis factor alpha (TNFα), interleukin 1α-β-RN (IL-1α-β-RN), collagen type-l alpha (COLIA1), and vitamin D receptor (VDRs) genes in CP. Further studies are needed to improve diagnosis and endorse more effective therapeutic procedures for periodontal disease.
Collapse
|
39
|
Clough JN, Omer OS, Tasker S, Lord GM, Irving PM. Regulatory T-cell therapy in Crohn's disease: challenges and advances. Gut 2020; 69:942-952. [PMID: 31980447 PMCID: PMC7229901 DOI: 10.1136/gutjnl-2019-319850] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 11/21/2019] [Accepted: 12/19/2019] [Indexed: 12/12/2022]
Abstract
The prevalence of IBD is rising in the Western world. Despite an increasing repertoire of therapeutic targets, a significant proportion of patients suffer chronic morbidity. Studies in mice and humans have highlighted the critical role of regulatory T cells in immune homeostasis, with defects in number and suppressive function of regulatory T cells seen in patients with Crohn's disease. We review the function of regulatory T cells and the pathways by which they exert immune tolerance in the intestinal mucosa. We explore the principles and challenges of manufacturing a cell therapy, and discuss clinical trial evidence to date for their safety and efficacy in human disease, with particular focus on the development of a regulatory T-cell therapy for Crohn's disease.
Collapse
Affiliation(s)
- Jennie N Clough
- School of Immunology and Microbial Sciences, King's College London, London, UK
- NIHR Biomedical Research Centre at Guy's and Saint Thomas' NHS Foundation Trust and King's College, London, UK
| | - Omer S Omer
- School of Immunology and Microbial Sciences, King's College London, London, UK
- Department of Gastroenterology, Guy's and Saint Thomas' Hospitals NHS Trust, London, UK
| | - Scott Tasker
- Division of Transplantation Immunology and Mucosal Biology, King's College London, London, UK
| | - Graham M Lord
- School of Immunology and Microbial Sciences, King's College London, London, UK
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Peter M Irving
- School of Immunology and Microbial Sciences, King's College London, London, UK
- Department of Gastroenterology, Guy's and Saint Thomas' Hospitals NHS Trust, London, UK
| |
Collapse
|
40
|
Kaur A, Goggolidou P. Ulcerative colitis: understanding its cellular pathology could provide insights into novel therapies. JOURNAL OF INFLAMMATION-LONDON 2020; 17:15. [PMID: 32336953 PMCID: PMC7175540 DOI: 10.1186/s12950-020-00246-4] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 04/07/2020] [Indexed: 12/16/2022]
Abstract
Dynamic interactions between the gastrointestinal epithelium and the mucosal immune system normally contribute to ensuring intestinal homeostasis and optimal immunosurveillance, but destabilisation of these interactions in genetically predisposed individuals can lead to the development of chronic inflammatory diseases. Ulcerative colitis is one of the main types of inflammatory diseases that affect the bowel, but its pathogenesis has yet to be completely defined. Several genetic factors and other inflammation-related genes are implicated in mediating the inflammation and development of the disease. Some susceptibility loci associated with increased risk of ulcerative colitis are found to be implicated in mucosal barrier function. Different biomarkers that cause damage to the colonic mucosa can be detected in patients, including perinuclear ANCA, which is also useful in distinguishing ulcerative colitis from other colitides. The choice of treatment for ulcerative colitis depends on disease severity. Therapeutic strategies include anti-tumour necrosis factor alpha (TNF-α) monoclonal antibodies used to block the production of TNF-α that mediates intestinal tract inflammation, an anti-adhesion drug that prevents lymphocyte infiltration from the blood into the inflamed gut, inhibitors of JAK1 and JAK3 that suppress the innate immune cell signalling and interferons α/β which stimulate the production of anti-inflammatory cytokines, as well as faecal microbiota transplantation. Although further research is still required to fully dissect the pathophysiology of ulcerative colitis, understanding its cellular pathology and molecular mechanisms has already proven beneficial and it has got the potential to identify further novel, effective targets for therapy and reduce the burden of this chronic disease.
Collapse
Affiliation(s)
- Amandip Kaur
- Department of Biomedical Science and Physiology, Faculty of Science and Engineering, University of Wolverhampton, Wulfruna Street, Wolverhampton, WV1 1LY UK
| | - Paraskevi Goggolidou
- Department of Biomedical Science and Physiology, Faculty of Science and Engineering, University of Wolverhampton, Wulfruna Street, Wolverhampton, WV1 1LY UK
| |
Collapse
|
41
|
Samiea A, Yoon JSJ, Cheung ST, Chamberlain TC, Mui ALF. Interleukin-10 contributes to PGE2 signalling through upregulation of EP4 via SHIP1 and STAT3. PLoS One 2020; 15:e0230427. [PMID: 32240179 PMCID: PMC7117666 DOI: 10.1371/journal.pone.0230427] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 02/28/2020] [Indexed: 12/15/2022] Open
Abstract
Macrophage cells form part of our first line defense against pathogens. Macrophages become activated by microbial products such as lipopolysaccharide (LPS) to produce inflammatory mediators, such as TNFα and other cytokines, which orchestrate the host defense against the pathogen. Once the pathogen has been eradicated, the activated macrophage must be appropriately deactivated or inflammatory diseases result. Interleukin-10 (IL10) is a key anti-inflammatory cytokine which deactivates the activated macrophage. The IL10 receptor (IL10R) signals through the Jak1/Tyk2 tyrosine kinases, STAT3 transcription factor and the SHIP1 inositol phosphatase. However, IL10 has also been described to induce the activation of the cyclic adenosine monophosphate (cAMP) regulated protein kinase A (PKA). We now report that IL10R signalling leads to STAT3/SHIP1 dependent expression of the EP4 receptor for prostaglandin E2 (PGE2). In macrophages, EP4 is a Gαs-protein coupled receptor that stimulates adenylate cyclase (AC) production of cAMP, leading to downstream activation of protein kinase A (PKA) and phosphorylation of the CREB transcription factor. IL10 induction of phospho-CREB and inhibition of LPS-induced phosphorylation of p85 PI3K and p70 S6 kinase required the presence of EP4. These data suggest that IL10R activation of STAT3/SHIP1 enhances EP4 expression, and that it is EP4 which activates cAMP-dependent signalling. The coordination between IL10R and EP4 signalling also provides an explanation for why cAMP elevating agents synergize with IL10 to elicit anti-inflammatory responses.
Collapse
MESH Headings
- Animals
- Dinoprostone/metabolism
- Female
- Interleukin-10/pharmacology
- Male
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Oxytocics/metabolism
- Phosphatidylinositol-3,4,5-Trisphosphate 5-Phosphatases/genetics
- Phosphatidylinositol-3,4,5-Trisphosphate 5-Phosphatases/metabolism
- RAW 264.7 Cells
- Receptors, Prostaglandin E, EP4 Subtype/genetics
- Receptors, Prostaglandin E, EP4 Subtype/metabolism
- STAT3 Transcription Factor/genetics
- STAT3 Transcription Factor/metabolism
- Tumor Necrosis Factor-alpha/metabolism
Collapse
Affiliation(s)
- Abrar Samiea
- Immunity and Infection Research Centre, Vancouver Coastal Health Research Institute, Vancouver, Canada
- Department of Surgery, University of British Columbia, Vancouver, Canada
| | - Jeff S. J. Yoon
- Immunity and Infection Research Centre, Vancouver Coastal Health Research Institute, Vancouver, Canada
- Department of Surgery, University of British Columbia, Vancouver, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, Canada
| | - Sylvia T. Cheung
- Immunity and Infection Research Centre, Vancouver Coastal Health Research Institute, Vancouver, Canada
- Department of Surgery, University of British Columbia, Vancouver, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, Canada
| | - Thomas C. Chamberlain
- Immunity and Infection Research Centre, Vancouver Coastal Health Research Institute, Vancouver, Canada
- Department of Surgery, University of British Columbia, Vancouver, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, Canada
| | - Alice L. -F. Mui
- Immunity and Infection Research Centre, Vancouver Coastal Health Research Institute, Vancouver, Canada
- Department of Surgery, University of British Columbia, Vancouver, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, Canada
- * E-mail:
| |
Collapse
|
42
|
Boisson-Dupuis S. The monogenic basis of human tuberculosis. Hum Genet 2020; 139:1001-1009. [PMID: 32055999 DOI: 10.1007/s00439-020-02126-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 02/02/2020] [Indexed: 12/25/2022]
Abstract
The pathogenesis of tuberculosis (TB) remains poorly understood, as no more than 5-10% of individuals infected with Mycobacterium tuberculosis go on developing clinical disease. The contribution of human genetics to TB pathogenesis has been amply documented by means of classic genetics since the turn of the twentieth century. Over the last 20 years, following-up on the study of Mendelian susceptibility to mycobacterial disease (MSMD), monogenic disorders have been found to underlie TB in some patients. Rare inborn errors of immunity, such as autosomal recessive, complete IL-12Rβ1 and TYK2 deficiencies, impairing the IL-12- and IL-23-dependent induction of IFN-γ, were initially identified in a few patients. More recently, homozygosity for a common variant of TYK2 (P1104A) that selectively disrupts cellular responses to IL-23 was found in two cohorts of TB patients. It shows high penetrance in areas endemic for TB and appears to be responsible for about 1% of TB cases in populations of European descent. Both rare and common genetic etiologies of TB affect IFN-γ immunity, providing a rationale for novel preventive and therapeutic approaches for TB control, including the use of recombinant IFN-γ.
Collapse
Affiliation(s)
- Stephanie Boisson-Dupuis
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR1163, Paris, France. .,Paris Descartes University, Imagine Institute, Paris, France. .,St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, New York, USA.
| |
Collapse
|
43
|
Boisson-Dupuis S, Ramirez-Alejo N, Li Z, Patin E, Rao G, Kerner G, Lim CK, Krementsov DN, Hernandez N, Ma CS, Zhang Q, Markle J, Martinez-Barricarte R, Payne K, Fisch R, Deswarte C, Halpern J, Bouaziz M, Mulwa J, Sivanesan D, Lazarov T, Naves R, Garcia P, Itan Y, Boisson B, Checchi A, Jabot-Hanin F, Cobat A, Guennoun A, Jackson CC, Pekcan S, Caliskaner Z, Inostroza J, Costa-Carvalho BT, de Albuquerque JAT, Garcia-Ortiz H, Orozco L, Ozcelik T, Abid A, Rhorfi IA, Souhi H, Amrani HN, Zegmout A, Geissmann F, Michnick SW, Muller-Fleckenstein I, Fleckenstein B, Puel A, Ciancanelli MJ, Marr N, Abolhassani H, Balcells ME, Condino-Neto A, Strickler A, Abarca K, Teuscher C, Ochs HD, Reisli I, Sayar EH, El-Baghdadi J, Bustamante J, Hammarström L, Tangye SG, Pellegrini S, Quintana-Murci L, Abel L, Casanova JL. Tuberculosis and impaired IL-23-dependent IFN-γ immunity in humans homozygous for a common TYK2 missense variant. Sci Immunol 2019; 3:3/30/eaau8714. [PMID: 30578352 DOI: 10.1126/sciimmunol.aau8714] [Citation(s) in RCA: 137] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 11/20/2018] [Indexed: 12/14/2022]
Abstract
Inherited IL-12Rβ1 and TYK2 deficiencies impair both IL-12- and IL-23-dependent IFN-γ immunity and are rare monogenic causes of tuberculosis, each found in less than 1/600,000 individuals. We show that homozygosity for the common TYK2 P1104A allele, which is found in about 1/600 Europeans and between 1/1000 and 1/10,000 individuals in regions other than East Asia, is more frequent in a cohort of patients with tuberculosis from endemic areas than in ethnicity-adjusted controls (P = 8.37 × 10-8; odds ratio, 89.31; 95% CI, 14.7 to 1725). Moreover, the frequency of P1104A in Europeans has decreased, from about 9% to 4.2%, over the past 4000 years, consistent with purging of this variant by endemic tuberculosis. Surprisingly, we also show that TYK2 P1104A impairs cellular responses to IL-23, but not to IFN-α, IL-10, or even IL-12, which, like IL-23, induces IFN-γ via activation of TYK2 and JAK2. Moreover, TYK2 P1104A is properly docked on cytokine receptors and can be phosphorylated by the proximal JAK, but lacks catalytic activity. Last, we show that the catalytic activity of TYK2 is essential for IL-23, but not IL-12, responses in cells expressing wild-type JAK2. In contrast, the catalytic activity of JAK2 is redundant for both IL-12 and IL-23 responses, because the catalytically inactive P1057A JAK2, which is also docked and phosphorylated, rescues signaling in cells expressing wild-type TYK2. In conclusion, homozygosity for the catalytically inactive P1104A missense variant of TYK2 selectively disrupts the induction of IFN-γ by IL-23 and is a common monogenic etiology of tuberculosis.
Collapse
Affiliation(s)
- Stéphanie Boisson-Dupuis
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA. .,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France.,Paris Descartes University, Imagine Institute, Paris, France
| | - Noe Ramirez-Alejo
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Zhi Li
- Cytokine Signaling Unit, Pasteur Institute, Paris, France.,INSERM U1221, Paris, France
| | - Etienne Patin
- Human Evolutionary Genetics Unit, Pasteur Institute, Paris, France.,CNRS UMR2000, Paris, France.,Center of Bioinformatics, Biostatistics and Integrative Biology, Pasteur Institute, Paris, France
| | - Geetha Rao
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
| | - Gaspard Kerner
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France.,Paris Descartes University, Imagine Institute, Paris, France
| | - Che Kang Lim
- Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institute, Karolinska University Hospital Huddinge, Stockholm, Sweden.,Department of Clinical Translational Research, Singapore General Hospital, Singapore, Singapore
| | - Dimitry N Krementsov
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT, USA
| | - Nicholas Hernandez
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Cindy S Ma
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia.,St. Vincent's Clinical School, University of New South Wales, Darlinghurst, New South Wales, Australia
| | - Qian Zhang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA.,Sidra Medicine, Doha, Qatar
| | - Janet Markle
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Ruben Martinez-Barricarte
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Kathryn Payne
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
| | - Robert Fisch
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Caroline Deswarte
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France.,Paris Descartes University, Imagine Institute, Paris, France
| | - Joshua Halpern
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Matthieu Bouaziz
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France.,Paris Descartes University, Imagine Institute, Paris, France
| | - Jeanette Mulwa
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Durga Sivanesan
- Department of Biochemistry, University of Montreal, Montreal, Quebec, Canada.,Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Tomi Lazarov
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Rodrigo Naves
- Institute of Biochemical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Patricia Garcia
- Laboratory of Microbiology, Clinical Laboratory Department School of Medicine, Pontifical Catholic University of Chile, Santiago, Chile
| | - Yuval Itan
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA.,The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Bertrand Boisson
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA.,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France.,Paris Descartes University, Imagine Institute, Paris, France
| | - Alix Checchi
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France.,Paris Descartes University, Imagine Institute, Paris, France
| | - Fabienne Jabot-Hanin
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France.,Paris Descartes University, Imagine Institute, Paris, France
| | - Aurélie Cobat
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France.,Paris Descartes University, Imagine Institute, Paris, France
| | | | - Carolyn C Jackson
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA.,Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sevgi Pekcan
- Department of Pediatric Pulmonology, Necmettin Erbakan University, Meram Medical Faculty, Konya, Turkey
| | - Zafer Caliskaner
- Meram Faculty of Medicine, Department of Internal Medicine, Division of Allergy and Immunology, Necmettin Erbakan University, Konya, Turkey
| | - Jaime Inostroza
- Jeffrey Modell Center for Diagnosis and Research in Primary Immunodeficiencies, Faculty of Medicine University of La Frontera, Temuco, Chile
| | | | | | | | - Lorena Orozco
- National Institute of Genomic Medicine, Mexico City, Mexico
| | - Tayfun Ozcelik
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey
| | - Ahmed Abid
- Department of Pneumology, Military Hospital Mohammed V, Rabat, Morocco
| | - Ismail Abderahmani Rhorfi
- Department of Pneumology, Military Hospital Mohammed V, Rabat, Morocco.,Institute of Clinical and Molecular Virology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Hicham Souhi
- Department of Pneumology, Military Hospital Mohammed V, Rabat, Morocco
| | | | - Adil Zegmout
- Department of Pneumology, Military Hospital Mohammed V, Rabat, Morocco
| | - Frédéric Geissmann
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Stephen W Michnick
- Department of Biochemistry, University of Montreal, Montreal, Quebec, Canada
| | | | - Bernhard Fleckenstein
- Institute of Clinical and Molecular Virology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Anne Puel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA.,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France.,Paris Descartes University, Imagine Institute, Paris, France
| | - Michael J Ciancanelli
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | | | - Hassan Abolhassani
- Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institute, Karolinska University Hospital Huddinge, Stockholm, Sweden.,Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - María Elvira Balcells
- Department of Infectious Diseases, Medical School, Pontifical Catholic University of Chile, Santiago, Chile
| | - Antonio Condino-Neto
- Department of Immunology, Institute of Biomedical Sciences, and Institute of Tropical Medicine, University of São Paulo, São Paulo, Brazil
| | - Alexis Strickler
- Department of Pediatrics, San Sebastián University, Santiago, Chile
| | - Katia Abarca
- Department of Infectious Diseases and Pediatric Immunology, School of Medicine, Pontifical Catholic University of Chile, Santiago, Chile
| | - Cory Teuscher
- Department of Medicine, Immunobiology Program, University of Vermont, Burlington, VT, USA
| | - Hans D Ochs
- Seattle Children's Research Institute and Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Ismail Reisli
- Department of Pediatric Immunology and Allergy, Necmettin Erbakan University, Meram Medical Faculty, Konya, Turkey
| | - Esra H Sayar
- Department of Pediatric Immunology and Allergy, Necmettin Erbakan University, Meram Medical Faculty, Konya, Turkey
| | | | - Jacinta Bustamante
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA.,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France.,Paris Descartes University, Imagine Institute, Paris, France.,Center for the Study of Primary Immunodeficiencies, AP-HP, Necker Hospital for Sick Children, Paris, France
| | - Lennart Hammarström
- Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institute, Karolinska University Hospital Huddinge, Stockholm, Sweden.,Department of Clinical Translational Research, Singapore General Hospital, Singapore, Singapore.,Beijing Genomics Institute BGI-Shenzhen, Shenzhen, China
| | - Stuart G Tangye
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia.,St. Vincent's Clinical School, University of New South Wales, Darlinghurst, New South Wales, Australia
| | - Sandra Pellegrini
- Cytokine Signaling Unit, Pasteur Institute, Paris, France.,INSERM U1221, Paris, France
| | - Lluis Quintana-Murci
- Human Evolutionary Genetics Unit, Pasteur Institute, Paris, France.,CNRS UMR2000, Paris, France.,Center of Bioinformatics, Biostatistics and Integrative Biology, Pasteur Institute, Paris, France
| | - Laurent Abel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA.,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France.,Paris Descartes University, Imagine Institute, Paris, France
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA. .,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France.,Paris Descartes University, Imagine Institute, Paris, France.,Pediatric Hematology-Immunology Unit, Necker Hospital for Sick Children, AP-HP, Paris, France.,Howard Hughes Medical Institute, New York, NY, USA
| |
Collapse
|
44
|
Lampe JW, Kim E, Levy L, Davidson LA, Goldsby JS, Miles FL, Navarro SL, Randolph TW, Zhao N, Ivanov I, Kaz AM, Damman C, Hockenbery DM, Hullar MAJ, Chapkin RS. Colonic mucosal and exfoliome transcriptomic profiling and fecal microbiome response to a flaxseed lignan extract intervention in humans. Am J Clin Nutr 2019; 110:377-390. [PMID: 31175806 PMCID: PMC6669062 DOI: 10.1093/ajcn/nqy325] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 10/17/2018] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Microbial metabolism of lignans from high-fiber plant foods produces bioactive enterolignans, such as enterolactone (ENL) and enterodiol (END). Enterolignan exposure influences cellular pathways important to cancer risk and is associated with reduced colon tumorigenesis in animal models and lower colorectal cancer risk in humans. OBJECTIVES The aim of this study was to test the effects of a flaxseed lignan supplement (50 mg secoisolariciresinol diglucoside/d) compared with placebo on host gene expression in colon biopsies and exfoliated colonocyte RNA in feces and fecal microbial community composition, and to compare responses in relation to ENL excretion. METHODS We conducted a 2-period randomized, crossover intervention in 42 healthy men and women (20-45 y). We used RNA-seq to measure differentially expressed (DE) genes in colonic mucosa and fecal exfoliated cells through the use of edgeR and functional analysis with Ingenuity Pathway Analysis. We used 16S ribosomal RNA gene (V1-V3) analysis to characterize the fecal microbiome, and measured END and ENL in 24-h urine samples by gas chromatography-mass spectrometry. RESULTS We detected 32 DE genes (false discovery rate <0.05) in the exfoliome, but none in the mucosal biopsies, in response to 60 d of lignan supplement compared with placebo. Statistically significant associations were detected between ENL excretion and fecal microbiome measured at baseline and at the end of the intervention periods. Further, we detected DE genes in colonic mucosa and exfoliome between low- and high-ENL excreters. Analysis of biopsy samples indicated that several anti-inflammatory upstream regulators, including transforming growth factor β and interleukin 10 receptor, were suppressed in low-ENL excreters. Complementary analyses in exfoliated cells also suggested that low-ENL excreters may be predisposed to proinflammatory cellular events due to upregulation of nuclear transcription factor κB and NOS2, and an inhibition of the peroxisome proliferator-activated receptor γ network. CONCLUSIONS These results suggest that ENL or other activities of the associated gut microbial consortia may modulate response to a dietary lignan intervention. This has important implications for dietary recommendations and chemoprevention strategies. This study was registered at clinicaltrials.gov as NCT01619020.
Collapse
Affiliation(s)
- Johanna W Lampe
- Public Health Sciences Division
- School of Public Health, University of Washington, Seattle, WA
| | - Eunji Kim
- Department of Electrical & Computer Engineering
| | | | - Laurie A Davidson
- Center for Translational Environmental Health Research
- Program in Integrative Nutrition & Complex Diseases
| | - Jennifer S Goldsby
- Center for Translational Environmental Health Research
- Program in Integrative Nutrition & Complex Diseases
| | | | | | - Timothy W Randolph
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Ni Zhao
- Department of Biostatistics, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD
| | - Ivan Ivanov
- Center for Translational Environmental Health Research
- Department of Veterinary Physiology & Pharmacology, Texas A&M University, College Station, TX
| | - Andrew M Kaz
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
- Gastroenterology Section, VA Puget Sound Medical Center, Seattle, WA
- School of Medicine, University of Washington, Seattle, WA
| | | | - David M Hockenbery
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
- School of Medicine, University of Washington, Seattle, WA
| | | | - Robert S Chapkin
- Center for Translational Environmental Health Research
- Program in Integrative Nutrition & Complex Diseases
| |
Collapse
|
45
|
Xiao P, Zhang H, Zhang Y, Zheng M, Liu R, Zhao Y, Zhang X, Cheng H, Cao Q, Ke Y. Phosphatase Shp2 exacerbates intestinal inflammation by disrupting macrophage responsiveness to interleukin-10. J Exp Med 2019; 216:337-349. [PMID: 30610104 PMCID: PMC6363431 DOI: 10.1084/jem.20181198] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 10/09/2018] [Accepted: 12/17/2018] [Indexed: 12/16/2022] Open
Abstract
Appropriate macrophage responsiveness to IL-10 is crucial for the maintenance of gut immune homeostasis. Xiao et al. demonstrate that phosphatase Shp2 restrains IL-10–mediated deactivation of macrophages and thus supports the progression of intestinal inflammation. Inflammatory cytokines produced by activated macrophages largely contribute to the pathological signs of inflammatory bowel disease (IBD). Interleukin-10 (IL-10) is the predominant anti-inflammatory cytokine in the intestine, and its therapeutic efficacy for IBD has been clinically tested. Nevertheless, how the function of IL-10 is regulated in the intestinal microenvironment remains unknown, which largely hinders the further development of IL-10–based therapeutic strategies. Here, we found that the expression of phosphatase Shp2 was increased in colonic macrophages and blood monocytes from IBD patients compared with those from healthy controls. Shp2 deficiency in macrophages protects mice from colitis and colitis-driven colon cancer. Mechanistically, Shp2 disrupts IL-10–STAT3 signaling and its dependent anti-inflammatory response in human and mouse macrophages. Furthermore, a Shp2-inducing role of TNF-α is unveiled in our study. Collectively, our work identifies Shp2 as a detrimental factor for intestinal immune homeostasis and hopefully will be helpful in the future exploitation of IL-10 immunotherapy for IBD.
Collapse
Affiliation(s)
- Peng Xiao
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Department of Pathology and Pathophysiology, Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou, China.,Inflammatory Bowel Disease Center, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Huilun Zhang
- Department of Pathology and Pathophysiology, Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou, China
| | - Yu Zhang
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Inflammatory Bowel Disease Center, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Mingzhu Zheng
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD.,Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China
| | - Rongbei Liu
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Inflammatory Bowel Disease Center, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuan Zhao
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Inflammatory Bowel Disease Center, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xue Zhang
- Department of Pathology and Pathophysiology, Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou, China
| | - Hongqiang Cheng
- Department of Pathology and Pathophysiology, Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou, China
| | - Qian Cao
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China .,Inflammatory Bowel Disease Center, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuehai Ke
- Department of Pathology and Pathophysiology, Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
46
|
Hegyi P, Maléth J, Walters JR, Hofmann AF, Keely SJ. Guts and Gall: Bile Acids in Regulation of Intestinal Epithelial Function in Health and Disease. Physiol Rev 2019; 98:1983-2023. [PMID: 30067158 DOI: 10.1152/physrev.00054.2017] [Citation(s) in RCA: 175] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Epithelial cells line the entire surface of the gastrointestinal tract and its accessory organs where they primarily function in transporting digestive enzymes, nutrients, electrolytes, and fluid to and from the luminal contents. At the same time, epithelial cells are responsible for forming a physical and biochemical barrier that prevents the entry into the body of harmful agents, such as bacteria and their toxins. Dysregulation of epithelial transport and barrier function is associated with the pathogenesis of a number of conditions throughout the intestine, such as inflammatory bowel disease, chronic diarrhea, pancreatitis, reflux esophagitis, and cancer. Driven by discovery of specific receptors on intestinal epithelial cells, new insights into mechanisms that control their synthesis and enterohepatic circulation, and a growing appreciation of their roles as bioactive bacterial metabolites, bile acids are currently receiving a great deal of interest as critical regulators of epithelial function in health and disease. This review aims to summarize recent advances in this field and to highlight how bile acids are now emerging as exciting new targets for disease intervention.
Collapse
Affiliation(s)
- Peter Hegyi
- Momentum Translational Gastroenterology Research Group, Hungarian Academy of Sciences-University of Szeged , Szeged , Hungary ; Institute for Translational Medicine, Medical School, University of Pécs , Pécs , Hungary ; Momentum Epithelial Cell Signalling and Secretion Research Group and First Department of Medicine, University of Szeged , Szeged , Hungary ; Division of Digestive Diseases, Department of Gastroenterology, Hammersmith Hospital, Imperial College London , London , United Kingdom ; Division of Gastroenterology, Department of Medicine, University of California, San Diego, La Jolla, California ; and Department of Molecular Medicine, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital , Dublin , Ireland
| | - Joszef Maléth
- Momentum Translational Gastroenterology Research Group, Hungarian Academy of Sciences-University of Szeged , Szeged , Hungary ; Institute for Translational Medicine, Medical School, University of Pécs , Pécs , Hungary ; Momentum Epithelial Cell Signalling and Secretion Research Group and First Department of Medicine, University of Szeged , Szeged , Hungary ; Division of Digestive Diseases, Department of Gastroenterology, Hammersmith Hospital, Imperial College London , London , United Kingdom ; Division of Gastroenterology, Department of Medicine, University of California, San Diego, La Jolla, California ; and Department of Molecular Medicine, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital , Dublin , Ireland
| | - Julian R Walters
- Momentum Translational Gastroenterology Research Group, Hungarian Academy of Sciences-University of Szeged , Szeged , Hungary ; Institute for Translational Medicine, Medical School, University of Pécs , Pécs , Hungary ; Momentum Epithelial Cell Signalling and Secretion Research Group and First Department of Medicine, University of Szeged , Szeged , Hungary ; Division of Digestive Diseases, Department of Gastroenterology, Hammersmith Hospital, Imperial College London , London , United Kingdom ; Division of Gastroenterology, Department of Medicine, University of California, San Diego, La Jolla, California ; and Department of Molecular Medicine, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital , Dublin , Ireland
| | - Alan F Hofmann
- Momentum Translational Gastroenterology Research Group, Hungarian Academy of Sciences-University of Szeged , Szeged , Hungary ; Institute for Translational Medicine, Medical School, University of Pécs , Pécs , Hungary ; Momentum Epithelial Cell Signalling and Secretion Research Group and First Department of Medicine, University of Szeged , Szeged , Hungary ; Division of Digestive Diseases, Department of Gastroenterology, Hammersmith Hospital, Imperial College London , London , United Kingdom ; Division of Gastroenterology, Department of Medicine, University of California, San Diego, La Jolla, California ; and Department of Molecular Medicine, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital , Dublin , Ireland
| | - Stephen J Keely
- Momentum Translational Gastroenterology Research Group, Hungarian Academy of Sciences-University of Szeged , Szeged , Hungary ; Institute for Translational Medicine, Medical School, University of Pécs , Pécs , Hungary ; Momentum Epithelial Cell Signalling and Secretion Research Group and First Department of Medicine, University of Szeged , Szeged , Hungary ; Division of Digestive Diseases, Department of Gastroenterology, Hammersmith Hospital, Imperial College London , London , United Kingdom ; Division of Gastroenterology, Department of Medicine, University of California, San Diego, La Jolla, California ; and Department of Molecular Medicine, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital , Dublin , Ireland
| |
Collapse
|
47
|
Savino F, Galliano I, Savino A, Daprà V, Montanari P, Calvi C, Bergallo M. Lactobacillus reuteri DSM 17938 Probiotics May Increase CC-Chemokine Receptor 7 Expression in Infants Treated With for Colic. Front Pediatr 2019; 7:292. [PMID: 31380326 PMCID: PMC6646728 DOI: 10.3389/fped.2019.00292] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 06/28/2019] [Indexed: 12/27/2022] Open
Abstract
Aim: Studies have shown that Lactobacilli reuteri probiotics can affect cells that play a key role in the immune system. This in vivo Italian study investigated how Lactobacillus reuteri DSM 17938 influenced CC-chemokine receptor 7 (CCR7) and interleukin 10 (IL-10) in breastfed colicky infants. Methods: Our University hospital in Turin recruited 50 healthy outpatients, at a median age of approximately 1 month, from September 2017 to August 2018. They were randomized to daily Lactobacillus reuteri DSM17938 (1 × 108 cfu) or a placebo for 28 days from recruitment. We collected peripheral blood and evaluated the expression of CCR7 messenger ribonucleic acid using the real-time TaqMan reverse transcription polymerase chain reaction method at baseline and after the study period. Results: We found increased expression of CC-chemokine receptor 7 in infants treated with the probiotic, but not the controls (p < 0.0026). No differences were observed for interleukin 10 after the study period in either group. At baseline, daily crying time was comparable in the probiotic and control groups: 341 (25) vs. 337 (29) min., respectively (p = 0.450). After 28 days, daily mean crying time decrease statistically in the probiotic group: 78 (23) vs. 232 (31), respectively (p < 0.001). Conclusion: The increase in CC-chemokine receptor 7 might have been a response to probiotic treatment. As a relatively small sample was used to conduct this study, our research needs to be replicated in different settings, and over time, to produce comparable findings.
Collapse
Affiliation(s)
- Francesco Savino
- Department of Paediatrics, Azienda Ospedaliera Universitaria Città della Salute e della Scienza di Torino, Turin, Italy
| | - Ilaria Galliano
- Department of Public Health and Paediatric Sciences, Scuola di Medicina, Università degli Studi di Torino, Turin, Italy
| | - Andrea Savino
- Department of Public Health and Paediatric Sciences, Scuola di Medicina, Università degli Studi di Torino, Turin, Italy
| | - Valentina Daprà
- Department of Public Health and Paediatric Sciences, Scuola di Medicina, Università degli Studi di Torino, Turin, Italy
| | - Paola Montanari
- Department of Public Health and Paediatric Sciences, Scuola di Medicina, Università degli Studi di Torino, Turin, Italy
| | - Cristina Calvi
- Department of Public Health and Paediatric Sciences, Scuola di Medicina, Università degli Studi di Torino, Turin, Italy
| | - Massimiliano Bergallo
- Department of Public Health and Paediatric Sciences, Scuola di Medicina, Università degli Studi di Torino, Turin, Italy
| |
Collapse
|
48
|
Abstract
PURPOSE OF REVIEW Inflammatory bowel disease (IBD) is a multifactorial disease caused by dysregulated immune responses to commensal or pathogenic intestinal microbes, resulting in chronic intestinal inflammation. However, a subset of patients with IBD diagnosed <6 years of age, known as very early-onset (VEO)-IBD, can be phenotypically and genetically distinct from older onset IBD. We aim to review the clinical presentation of children with VEO-IBD and recent discoveries that point to the underlying genomic and immunologic drivers of disease, and the significant impact on our therapeutic decisions. RECENT FINDINGS VEO-IBD is increasing in incidence and is associated with more severe disease, aggressive progression, and poor response to most conventional therapies. This article will review some of the genetic findings in this population and the subsequent impact on therapy, with targeted approaches. SUMMARY Children with VEO-IBD may present with a different phenotype and more severe disease than older children and adults. An integrated approach combining genetics, immunology, and traditional IBD evaluations can lead to the identification of causal defects that directly impact management. These strategies can also be employed in older onset refractory IBD.
Collapse
Affiliation(s)
- Maire A Conrad
- Division of Gastroenterology, Hepatology and Nutrition, Children’s Hospital of Philadelphia Philadelphia, Pennsylvania,Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Judith R Kelsen
- Division of Gastroenterology, Hepatology and Nutrition, Children’s Hospital of Philadelphia Philadelphia, Pennsylvania,Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
49
|
Boulton K, Nolan MJ, Wu Z, Psifidi A, Riggio V, Harman K, Bishop SC, Kaiser P, Abrahamsen MS, Hawken R, Watson KA, Tomley FM, Blake DP, Hume DA. Phenotypic and genetic variation in the response of chickens to Eimeria tenella induced coccidiosis. Genet Sel Evol 2018; 50:63. [PMID: 30463512 PMCID: PMC6249784 DOI: 10.1186/s12711-018-0433-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 11/14/2018] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Coccidiosis is a major contributor to losses in poultry production. With emerging constraints on the use of in-feed prophylactic anticoccidial drugs and the relatively high costs of effective vaccines, there are commercial incentives to breed chickens with greater resistance to this important production disease. To identify phenotypic biomarkers that are associated with the production impacts of coccidiosis, and to assess their covariance and heritability, 942 Cobb500 commercial broilers were subjected to a defined challenge with Eimeria tenella (Houghton). Three traits were measured: weight gain (WG) during the period of infection, caecal lesion score (CLS) post mortem, and the level of a serum biomarker of intestinal inflammation, i.e. circulating interleukin 10 (IL-10), measured at the height of the infection. RESULTS Phenotypic analysis of the challenged chicken cohort revealed a significant positive correlation between CLS and IL-10, with significant negative correlations of both these traits with WG. Eigenanalysis of phenotypic covariances between measured traits revealed three distinct eigenvectors. Trait weightings of the first eigenvector, (EV1, eigenvalue = 59%), were biologically interpreted as representing a response of birds that were susceptible to infection, with low WG, high CLS and high IL-10. Similarly, the second eigenvector represented infection resilience/resistance (EV2, 22%; high WG, low CLS and high IL-10), and the third eigenvector tolerance (EV3, 19%; high WG, high CLS and low IL-10), respectively. Genome-wide association studies (GWAS) identified two SNPs that were associated with WG at the suggestive level. CONCLUSIONS Eigenanalysis separated the phenotypic impact of a defined challenge with E. tenella on WG, caecal inflammation/pathology, and production of IL-10 into three major eigenvectors, indicating that the susceptibility-resistance axis is not a single continuous quantitative trait. The SNPs identified by the GWAS for body weight were located in close proximity to two genes that are involved in innate immunity (FAM96B and RRAD).
Collapse
Affiliation(s)
- Kay Boulton
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, UK
| | - Matthew J. Nolan
- Department of Pathobiology and Population Sciences, Royal Veterinary College, University of London, Hatfield, UK
| | - Zhiguang Wu
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, UK
| | - Androniki Psifidi
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, UK
- Department of Clinical Sciences and Services, Royal Veterinary College, University of London, Hatfield, UK
| | - Valentina Riggio
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, UK
| | - Kimberley Harman
- Department of Pathobiology and Population Sciences, Royal Veterinary College, University of London, Hatfield, UK
| | - Stephen C. Bishop
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, UK
| | - Pete Kaiser
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, UK
| | | | - Rachel Hawken
- Cobb-Vantress Inc., PO Box 1030, Siloam Springs, AR USA
| | - Kellie A. Watson
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, UK
| | - Fiona M. Tomley
- Department of Pathobiology and Population Sciences, Royal Veterinary College, University of London, Hatfield, UK
| | - Damer P. Blake
- Department of Pathobiology and Population Sciences, Royal Veterinary College, University of London, Hatfield, UK
| | - David A. Hume
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, UK
- Mater Research Institute, University of Queensland, Brisbane, St. Lucia, QLD, Brisbane, Australia
| |
Collapse
|
50
|
Yang M, Xu W, Wang Y, Jiang X, Li Y, Yang Y, Yuan H. CD11b-activated Src signal attenuates neuroinflammatory pain by orchestrating inflammatory and anti-inflammatory cytokines in microglia. Mol Pain 2018; 14:1744806918808150. [PMID: 30280656 PMCID: PMC6311569 DOI: 10.1177/1744806918808150] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Neuroinflammation plays an important role in the induction and maintenance of chronic pain. Orchestra of pattern-recognition receptor-induced pro-inflammatory and anti-inflammatory cytokines is critical for inflammation homeostasis. CD11b on macrophages could inhibit toll-like receptor (TLR) activation-induced inflammatory responses. However, the function of CD11b on microglia remains unknown. In the current study, we demonstrated that CD11b-deficient microglia cells produced more inflammatory cytokines, such as interleukin-6 and tumor necrosis factor alpha, while less anti-inflammatory cytokines. Signal transduction assay confirmed that nuclear factor-κB activation was increased in CD11b-deficient microglia cells, which resulted from decreased activation of Src. Inhibition of Src by PP1 increased inflammation in wild-type microglia cells significantly, but not in CD11b-deficient microglia cells. In vivo, CD11b-deficient mice were more susceptible to chronic constrictive injury-induced allodynia and hyperalgesia with significantly more inflammatory cytokines expression. All these results indicated that the regulatory function of CD11b-Src signal pathway on both inflammatory and anti-inflammatory cytokines in microglia cells is a potential target in neuropathic pain treatment.
Collapse
Affiliation(s)
- Mei Yang
- Department of Anesthesiology, Changzheng Hospital, Second Military Medical University, Shanghai, People's Republic of China
| | - Wenyun Xu
- Department of Anesthesiology, Changzheng Hospital, Second Military Medical University, Shanghai, People's Republic of China
| | - Yiru Wang
- Department of Anesthesiology, Changzheng Hospital, Second Military Medical University, Shanghai, People's Republic of China
| | - Xin Jiang
- Department of Anesthesiology, Changzheng Hospital, Second Military Medical University, Shanghai, People's Republic of China
| | - Yingke Li
- Department of Anesthesiology, Changzheng Hospital, Second Military Medical University, Shanghai, People's Republic of China
| | - Yajuan Yang
- Department of Anesthesiology, Changzheng Hospital, Second Military Medical University, Shanghai, People's Republic of China
| | - Hongbin Yuan
- Department of Anesthesiology, Changzheng Hospital, Second Military Medical University, Shanghai, People's Republic of China
| |
Collapse
|