1
|
Lambert J, Kovilakath A, Jamil M, Valentine Y, Anderson A, Montefusco D, Cowart LA. Sphingosine kinase 1 is induced by glucocorticoids in adipose derived stem cells and enhances glucocorticoid mediated signaling in adipose expansion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.13.612482. [PMID: 39314417 PMCID: PMC11419133 DOI: 10.1101/2024.09.13.612482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Academic Contribution Register] [Indexed: 09/25/2024]
Abstract
Sphingosine kinase 1 (SphK1) plays a crucial role in regulating metabolic pathways within adipocytes and is elevated in the adipose tissue of obese mice. While previous studies have reported both pro- and inhibitory effects of SphK1 and its product, sphingosine-1-phosphate (S1P), on adipogenesis, the precise mechanisms remain unclear. This study explores the timing and downstream effects of SphK1/S1P expression and activation during in vitro adipogenesis. We demonstrate that the synthetic glucocorticoid dexamethasone robustly induces SphK1 expression, suggesting its involvement in glucocorticoid-dependent signaling during adipogenesis. Notably, the activation of C/EBPδ, a key gene in early adipogenesis and a target of glucocorticoids, is diminished in SphK1-/- adipose-derived stem cells (ADSCs). Furthermore, glucocorticoid administration promotes adipose tissue expansion via SphK1 in a depot-specific manner. Although adipose expansion still occurs in SphK1-/- mice, it is significantly reduced. These findings indicate that while SphK1 is not essential for adipogenesis, it enhances early gene activation, thereby facilitating adipose tissue expansion.
Collapse
Affiliation(s)
- Johana Lambert
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, USA
- Departments of Biochemistry and Molecular Biology Medical University of South Carolina, Charleston, SC, USA
| | - Anna Kovilakath
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, USA
| | - Maryam Jamil
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, USA
| | - Yolander Valentine
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, USA
| | - Andrea Anderson
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, USA
- Departments of Biochemistry and Molecular Biology Medical University of South Carolina, Charleston, SC, USA
| | - David Montefusco
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, USA
| | - L Ashley Cowart
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, USA
- Hunter Holmes McGuire Veterans Affairs Medical Center, Richmond, VA, USA
| |
Collapse
|
2
|
Overbeek MF, Rutters F, Nieuwdorp M, Davids M, van Valkengoed I, Galenkamp H, van den Born BJ, Beulens JWJ, Muilwijk M. Plasma sphingolipids mediate the association between gut microbiome composition and type 2 diabetes risk in the HELIUS cohort: a case-cohort study. BMJ Open Diabetes Res Care 2024; 12:e004180. [PMID: 39025794 PMCID: PMC11261679 DOI: 10.1136/bmjdrc-2024-004180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 03/11/2024] [Accepted: 07/05/2024] [Indexed: 07/20/2024] Open
Abstract
INTRODUCTION The association between the gut microbiome and incident type 2 diabetes (T2D) is potentially partly mediated through sphingolipids, however these possible mediating mechanisms have not been investigated. We examined whether sphingolipids mediate the association between gut microbiome and T2D, using data from the Healthy Life in an Urban Setting study. RESEARCH DESIGN AND METHODS Participants were of Dutch or South-Asian Surinamese ethnicity, aged 18-70 years, and without T2D at baseline. A case-cohort design (subcohort n=176, cases incident T2D n=36) was used. The exposure was measured by 16S rRNA sequencing (gut microbiome) and mediator by targeted metabolomics (sphingolipids). Dimensionality reduction was achieved by principle component analysis and Shannon diversity. Cox regression and procrustes analyses were used to assess the association between gut microbiome and T2D and sphingolipids and T2D, and between gut microbiome and sphingolipids, respectively. Mediation was tested familywise using mediation analysis with permutation testing and Bonferroni correction. RESULTS Our study confirmed associations between gut microbiome and T2D and sphingolipids and T2D. Additionally, we showed that the gut microbiome was associated with sphingolipids. The association between gut microbiome and T2D was partly mediated by a sphingolipid principal component, which represents a dominance of ceramide species over more complex sphingolipids (HR 1.17; 95% CI 1.08 to 1.28; proportional explained 48%), and by Shannon diversity (HR 0.97; 95% CI 0.95 to 0.99; proportional explained 24.8%). CONCLUSIONS These data suggest that sphingolipids mediate the association between microbiome and T2D risk. Future research is needed to confirm observed findings and elucidate causality on a molecular level.
Collapse
Affiliation(s)
- Martin F Overbeek
- Epidemiology and Data Science, Amsterdam UMC Locatie VUmc, Amsterdam, The Netherlands
| | - Femke Rutters
- Department of Epidemiology and Data Science, Amsterdam Public Health Research Institute, Amsterdam UMC Location AMC, Amsterdam, The Netherlands
| | - Max Nieuwdorp
- Vascular Medicine, Amsterdam UMC Locatie AMC, Amsterdam, The Netherlands
| | - Mark Davids
- Internal Medicine, Amsterdam UMC Locatie AMC, Amsterdam, The Netherlands
| | | | - Henrike Galenkamp
- Public Health, Amsterdam UMC Locatie AMC, Amsterdam, The Netherlands
| | | | - Joline W J Beulens
- Epidemiology & Data Science, Amsterdam UMC Locatie VUMC, Amsterdam, The Netherlands
| | - Mirthe Muilwijk
- Epidemiology and Data Science, Amsterdam UMC, Amsterdam, The Netherlands
| |
Collapse
|
3
|
Singh S, Kriti M, K.S. A, Sarma DK, Verma V, Nagpal R, Mohania D, Tiwari R, Kumar M. Deciphering the complex interplay of risk factors in type 2 diabetes mellitus: A comprehensive review. Metabol Open 2024; 22:100287. [PMID: 38818227 PMCID: PMC11137529 DOI: 10.1016/j.metop.2024.100287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/27/2024] [Revised: 05/15/2024] [Accepted: 05/18/2024] [Indexed: 06/01/2024] Open
Abstract
The complex and multidimensional landscape of type 2 diabetes mellitus (T2D) is a major global concern. Despite several years of extensive research, the precise underlying causes of T2D remain elusive, but evidence suggests that it is influenced by a myriad of interconnected risk factors such as epigenetics, genetics, gut microbiome, environmental factors, organelle stress, and dietary habits. The number of factors influencing the pathogenesis is increasing day by day which worsens the scenario; meanwhile, the interconnections shoot up the frame. By gaining deeper insights into the contributing factors, we may pave the way for the development of personalized medicine, which could unlock more precise and impactful treatment pathways for individuals with T2D. This review summarizes the state of knowledge about T2D pathogenesis, focusing on the interplay between various risk factors and their implications for future therapeutic strategies. Understanding these factors could lead to tailored treatments targeting specific risk factors and inform prevention efforts on a population level, ultimately improving outcomes for individuals with T2D and reducing its burden globally.
Collapse
Affiliation(s)
- Samradhi Singh
- ICMR- National Institute for Research in Environmental Health, Bhopal Bypass Road, Bhauri, Bhopal, 462030, Madhya Pradesh, India
| | - Mona Kriti
- ICMR- National Institute for Research in Environmental Health, Bhopal Bypass Road, Bhauri, Bhopal, 462030, Madhya Pradesh, India
| | - Anamika K.S.
- Christ Deemed to Be University Bangalore, Karnataka, India
| | - Devojit Kumar Sarma
- ICMR- National Institute for Research in Environmental Health, Bhopal Bypass Road, Bhauri, Bhopal, 462030, Madhya Pradesh, India
| | - Vinod Verma
- Stem Cell Research Centre, Department of Hematology, Sanjay Gandhi Post-Graduate Institute of Medical Sciences, Lucknow, 226014, Uttar Pradesh, India
| | - Ravinder Nagpal
- Department of Nutrition & Integrative Physiology, College of Health & Human Sciences, Florida State University, Tallahassee, FL, 32306, USA
| | - Dheeraj Mohania
- Dr. R. P. Centre, All India Institute of Medical Sciences, New Delhi, India
| | - Rajnarayan Tiwari
- ICMR- National Institute for Research in Environmental Health, Bhopal Bypass Road, Bhauri, Bhopal, 462030, Madhya Pradesh, India
| | - Manoj Kumar
- ICMR- National Institute for Research in Environmental Health, Bhopal Bypass Road, Bhauri, Bhopal, 462030, Madhya Pradesh, India
| |
Collapse
|
4
|
Nehus EJ, Sheanon NM, Zhang W, Marcovina SM, Setchell KDR, Mitsnefes MM. Urinary sphingolipids in adolescents and young adults with youth-onset diabetes. Pediatr Nephrol 2024; 39:1875-1883. [PMID: 38172468 DOI: 10.1007/s00467-023-06257-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 08/17/2023] [Revised: 11/17/2023] [Accepted: 12/07/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND This study evaluated urinary sphingolipids as a marker of diabetic kidney disease (DKD) in adolescents and young adults with youth-onset type 1 and type 2 diabetes. METHODS A comprehensive panel of urinary sphingolipids, including sphingomyelin (SM), glucosylceramide (GC), ceramide (Cer), and lactosylceramide (LC) species, was performed in patients with youth-onset diabetes from the SEARCH for Diabetes in Youth cohort. Sphingolipid levels, normalized to urine creatinine, were compared in 57 adolescents and young adults with type 1 diabetes, 59 with type 2 diabetes, and 44 healthy controls. The association of sphingolipids with albumin-to-creatinine (ACR) ratio and estimated glomerular filtration rate (eGFR) was evaluated. RESULTS The median age (interquartile range [IQR]) of participants was 23.1 years (20.9, 24.9) and the median duration of diabetes was 9.3 (8.5, 10.2) years. Urinary sphingolipid concentrations in patients with and without DKD (ACR ≥ 30 mg/g) were significantly elevated compared to healthy controls. There were no significant differences in sphingolipid levels between participants with type 1 and type 2 diabetes. In multivariable analysis, many sphingolipid species were positively correlated with ACR. Most significant associations were evident for the following species: C18 SM, C24:1 SM, C24:1 GC, and C24:1 Cer (all p < 0.001). Sphingolipid levels were not associated with eGFR. However, several interaction terms (diabetes type*sphingolipid) were significant, indicating diabetes type may modify the association of sphingolipids with eGFR. CONCLUSION Urinary sphingolipids are elevated in adolescents and young adults with youth-onset diabetes and correlate with ACR. Urinary sphingolipids may therefore represent an early biomarker of DKD.
Collapse
Affiliation(s)
- Edward J Nehus
- Department of Pediatrics, West Virginia University School of Medicine Charleston Campus, Charleston, WV, USA.
| | - Nicole M Sheanon
- Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Wujuan Zhang
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Clinical Mass Spectroscopy Facility, Division of Pathology and Laboratory Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | | | - Kenneth D R Setchell
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Clinical Mass Spectroscopy Facility, Division of Pathology and Laboratory Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Mark M Mitsnefes
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Division of Nephrology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| |
Collapse
|
5
|
Zhang Y, Yu B, Qi Q, Azarbarzin A, Chen H, Shah NA, Ramos AR, Zee PC, Cai J, Daviglus ML, Boerwinkle E, Kaplan R, Liu PY, Redline S, Sofer T. Metabolomic profiles of sleep-disordered breathing are associated with hypertension and diabetes mellitus development. Nat Commun 2024; 15:1845. [PMID: 38418471 PMCID: PMC10902315 DOI: 10.1038/s41467-024-46019-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/14/2023] [Accepted: 02/12/2024] [Indexed: 03/01/2024] Open
Abstract
Sleep-disordered breathing (SDB) is a prevalent disorder characterized by recurrent episodic upper airway obstruction. Using data from the Hispanic Community Health Study/Study of Latinos (HCHS/SOL), we apply principal component analysis (PCA) to seven SDB-related measures. We estimate the associations of the top two SDB PCs with serum levels of 617 metabolites, in both single-metabolite analysis, and a joint penalized regression analysis. The discovery analysis includes 3299 individuals, with validation in a separate dataset of 1522 individuals. Five metabolite associations with SDB PCs are discovered and replicated. SDB PC1, characterized by frequent respiratory events common in older and male adults, is associated with pregnanolone and progesterone-related sulfated metabolites. SDB PC2, characterized by short respiratory event length and self-reported restless sleep, enriched in young adults, is associated with sphingomyelins. Metabolite risk scores (MRSs), representing metabolite signatures associated with the two SDB PCs, are associated with 6-year incident hypertension and diabetes. These MRSs have the potential to serve as biomarkers for SDB, guiding risk stratification and treatment decisions.
Collapse
Affiliation(s)
- Ying Zhang
- Division of Sleep Medicine and Circadian Disorders, Department of Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Bing Yu
- Department of Epidemiology, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Qibin Qi
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York, NY, USA
| | - Ali Azarbarzin
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham & Women's Hospital & Harvard Medical School, Boston, MA, 02115, USA
| | - Han Chen
- Human Genetics Center, Department of Epidemiology, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Neomi A Shah
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Alberto R Ramos
- Sleep Medicine Program, Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Phyllis C Zee
- Division of Sleep Medicine, Department of Neurology, Northwestern University, Chicago, IL, 60611, USA
| | - Jianwen Cai
- Collaborative Studies Coordinating Center, Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Martha L Daviglus
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, 60612, USA
| | - Eric Boerwinkle
- Department of Epidemiology, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Robert Kaplan
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York, NY, USA
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| | - Peter Y Liu
- The Institute for Translational Genomics and Population Sciences, The Lundquist Institute at Harbor-UCLA Medical Center, Torrance, CA, 90502, USA
| | - Susan Redline
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham & Women's Hospital & Harvard Medical School, Boston, MA, 02115, USA
| | - Tamar Sofer
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham & Women's Hospital & Harvard Medical School, Boston, MA, 02115, USA.
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA.
- CardioVascular Institute, Beth Israel Deaconess Medical Center, Boston, MA, 02115, USA.
| |
Collapse
|
6
|
Sood A, Fernandes V, Preeti K, Rajan S, Khatri DK, Singh SB. S1PR2 inhibition mitigates cognitive deficit in diabetic mice by modulating microglial activation via Akt-p53-TIGAR pathway. Int Immunopharmacol 2024; 126:111278. [PMID: 38011768 DOI: 10.1016/j.intimp.2023.111278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/21/2023] [Revised: 11/07/2023] [Accepted: 11/20/2023] [Indexed: 11/29/2023]
Abstract
Cognitive deficit is one of the challenging complications of type 2 diabetes. Sphingosine 1- phosphate receptors (S1PRs) have been implicated in various neurodegenerative and metabolic disorders. The association of S1PRs and cognition in type 2 diabetes remains elusive. Microglia-mediated neuronal damage could be the thread propagating cognitive deficit. The effects of S1PR2 inhibition on cognition in high-fat diet and streptozotocin-induced diabetic mice were examined in this work. We further assessed microglial activation and putative microglial polarisation routes. Cognitive function loss was observed after four months of diabetes induction in Type 2 diabetes animal model. JTE013, an S1PR2 inhibitor, was used to assess neuroprotection against cognitive decline and neuroinflammation in vitro and in vivo diabetes model. JTE013 (10 mg/kg) improved synaptic plasticity by upregulating psd95 and synaptophysin while reducing cognitive decline and neuroinflammation. It further enhanced anti-inflammatory microglia in the hippocampus and prefrontal cortex (PFC), as evidenced by increased Arg-1, CD206, and YM-1 levels and decreased iNOS, CD16, and MHCII levels. TIGAR, TP53-induced glycolysis and apoptosis regulator, might facilitate the anti-inflammatory microglial phenotype by promoting oxidative phosphorylation and decreasing apoptosis. However, since p53 is a TIGAR suppressor, inhibiting p53 could be beneficial. S1PR2 inhibition increased p-Akt and TIGAR levels and reduced the levels of p53 in the PFC and hippocampus of type 2 diabetic mice, thereby decreasing apoptosis. In vitro, palmitate was used to imitate sphingolipid dysregulation in BV2 cells, followed by conditioned media exposure to Neuro2A cells. JTE013 rescued the palmitate-induced neuronal apoptosis by promoting the anti-inflammatory microglia. In the present study, we demonstrate that the inhibition of S1PR2 improves cognitive function and skews microglia toward anti-inflammatory phenotype in type 2 diabetic mice, thereby promising to be a potential therapy for neuroinflammation.
Collapse
Affiliation(s)
- Anika Sood
- Department of Pharmacology and Toxicology, NIPER Hyderabad, Hyderabad, Telangana 500037, India
| | - Valencia Fernandes
- Department of Pharmacology and Toxicology, NIPER Hyderabad, Hyderabad, Telangana 500037, India
| | - Kumari Preeti
- Department of Pharmacology and Toxicology, NIPER Hyderabad, Hyderabad, Telangana 500037, India
| | - Shruti Rajan
- Department of Pharmacology and Toxicology, NIPER Hyderabad, Hyderabad, Telangana 500037, India
| | - Dharmendra Kumar Khatri
- Department of Pharmacology and Toxicology, NIPER Hyderabad, Hyderabad, Telangana 500037, India.
| | - Shashi Bala Singh
- Department of Pharmacology and Toxicology, NIPER Hyderabad, Hyderabad, Telangana 500037, India.
| |
Collapse
|
7
|
Han Y, Choi JY, Kwon EY. Mentha canadensis attenuates adiposity and hepatic steatosis in high-fat diet-induced obese mice. Nutr Res Pract 2023; 17:870-882. [PMID: 37780219 PMCID: PMC10522806 DOI: 10.4162/nrp.2023.17.5.870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/12/2023] [Revised: 08/07/2023] [Accepted: 08/14/2023] [Indexed: 10/03/2023] Open
Abstract
BACKGROUND/OBJECTIVES Obesity is a major risk factor for metabolic syndrome, a global public health problem. Mentha canadensis (MA), a traditional phytomedicine and dietary herb used for centuries, was the focus of this study to investigate its effects on obesity. MATERIALS/METHODS Thirty-five male C57BL/6J mice were randomly divided into 2 groups and fed either a normal diet (ND, n = 10) or a high-fat diet (HFD, n = 25) for 4 weeks to induce obesity. After the obesity induction period, the HFD-fed mice were randomly separated into 2 groups: one group continued to be fed HFD (n = 15, HFD group), while the other group was fed HFD with 1.5% (w/w) MA ethanol extract (n = 10, MA group) for 13 weeks. RESULTS The results showed that body and white adipose tissue (WAT) weights were significantly decreased in the MA-supplemented group compared to the HFD group. Additionally, MA supplementation enhanced energy expenditure, leading to improvements in plasma lipids, cytokines, hepatic steatosis, and fecal lipids. Furthermore, MA supplementation regulated lipid-metabolism-related enzyme activity and gene expression, thereby suppressing lipid accumulation in the WAT and liver. CONCLUSIONS These findings indicate that MA has the potential to improve diet-induced obesity and its associated complications, including adiposity, dyslipidemia, hepatic steatosis, and inflammation.
Collapse
Affiliation(s)
- Youngji Han
- Biological Clock-based Anti-aging Convergence Regional Leading Research Center of National Research Foundation of Korea, Korea University, Sejong 30019, Korea
| | - Ji-Young Choi
- Department of Food and Nutrition, Chosun University, Gwangju 61452, Korea
| | - Eun-Young Kwon
- Department of Food Science and Nutrition, Kyungpook National University, Daegu 41566, Korea
- Center for Food and Nutritional Genomics Research, Kyungpook National University, Daegu 41566, Korea
- Center for Beautiful Aging, Kyungpook National University, Daegu 41566, Korea
| |
Collapse
|
8
|
Hammad SM, Lopes-Virella MF. Circulating Sphingolipids in Insulin Resistance, Diabetes and Associated Complications. Int J Mol Sci 2023; 24:14015. [PMID: 37762318 PMCID: PMC10531201 DOI: 10.3390/ijms241814015] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/10/2023] [Revised: 09/05/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
Sphingolipids play an important role in the development of diabetes, both type 1 and type 2 diabetes, as well as in the development of both micro- and macro-vascular complications. Several reviews have been published concerning the role of sphingolipids in diabetes but most of the emphasis has been on the possible mechanisms by which sphingolipids, mainly ceramides, contribute to the development of diabetes. Research on circulating levels of the different classes of sphingolipids in serum and in lipoproteins and their importance as biomarkers to predict not only the development of diabetes but also of its complications has only recently emerged and it is still in its infancy. This review summarizes the previously published literature concerning sphingolipid-mediated mechanisms involved in the development of diabetes and its complications, focusing on how circulating plasma sphingolipid levels and the relative content carried by the different lipoproteins may impact their role as possible biomarkers both in the development of diabetes and mainly in the development of diabetic complications. Further studies in this field may open new therapeutic avenues to prevent or arrest/reduce both the development of diabetes and progression of its complications.
Collapse
Affiliation(s)
- Samar M. Hammad
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Maria F. Lopes-Virella
- Division of Endocrinology, Diabetes and Medical Genetics, Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
- Ralph H. Johnson VA Medical Center, Charleston, SC 29425, USA
| |
Collapse
|
9
|
Ruisanchez É, Janovicz A, Panta RC, Kiss L, Párkányi A, Straky Z, Korda D, Liliom K, Tigyi G, Benyó Z. Enhancement of Sphingomyelinase-Induced Endothelial Nitric Oxide Synthase-Mediated Vasorelaxation in a Murine Model of Type 2 Diabetes. Int J Mol Sci 2023; 24:ijms24098375. [PMID: 37176081 PMCID: PMC10179569 DOI: 10.3390/ijms24098375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/28/2023] [Revised: 04/30/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023] Open
Abstract
Sphingolipids are important biological mediators both in health and disease. We investigated the vascular effects of enhanced sphingomyelinase (SMase) activity in a mouse model of type 2 diabetes mellitus (T2DM) to gain an understanding of the signaling pathways involved. Myography was used to measure changes in the tone of the thoracic aorta after administration of 0.2 U/mL neutral SMase in the presence or absence of the thromboxane prostanoid (TP) receptor antagonist SQ 29,548 and the nitric oxide synthase (NOS) inhibitor L-NAME. In precontracted aortic segments of non-diabetic mice, SMase induced transient contraction and subsequent weak relaxation, whereas vessels of diabetic (Leprdb/Leprdb, referred to as db/db) mice showed marked relaxation. In the presence of the TP receptor antagonist, SMase induced enhanced relaxation in both groups, which was 3-fold stronger in the vessels of db/db mice as compared to controls and could not be abolished by ceramidase or sphingosine-kinase inhibitors. Co-administration of the NOS inhibitor L-NAME abolished vasorelaxation in both groups. Our results indicate dual vasoactive effects of SMase: TP-mediated vasoconstriction and NO-mediated vasorelaxation. Surprisingly, in spite of the general endothelial dysfunction in T2DM, the endothelial NOS-mediated vasorelaxant effect of SMase was markedly enhanced.
Collapse
Affiliation(s)
- Éva Ruisanchez
- Institute of Translational Medicine, Semmelweis University, H-1094 Budapest, Hungary
- Eötvös Loránd Research Network and Semmelweis University (ELKH-SE) Cerebrovascular and Neurocognitive Disorders Research Group, H-1052 Budapest, Hungary
| | - Anna Janovicz
- Institute of Translational Medicine, Semmelweis University, H-1094 Budapest, Hungary
- Eötvös Loránd Research Network and Semmelweis University (ELKH-SE) Cerebrovascular and Neurocognitive Disorders Research Group, H-1052 Budapest, Hungary
| | - Rita Cecília Panta
- Institute of Translational Medicine, Semmelweis University, H-1094 Budapest, Hungary
| | - Levente Kiss
- Department of Physiology, Semmelweis University, H-1094 Budapest, Hungary
| | - Adrienn Párkányi
- Institute of Translational Medicine, Semmelweis University, H-1094 Budapest, Hungary
| | - Zsuzsa Straky
- Institute of Translational Medicine, Semmelweis University, H-1094 Budapest, Hungary
| | - Dávid Korda
- Institute of Translational Medicine, Semmelweis University, H-1094 Budapest, Hungary
| | - Károly Liliom
- Institute of Biophysics and Radiation Biology, Semmelweis University, H-1094 Budapest, Hungary
| | - Gábor Tigyi
- Institute of Translational Medicine, Semmelweis University, H-1094 Budapest, Hungary
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Zoltán Benyó
- Institute of Translational Medicine, Semmelweis University, H-1094 Budapest, Hungary
- Eötvös Loránd Research Network and Semmelweis University (ELKH-SE) Cerebrovascular and Neurocognitive Disorders Research Group, H-1052 Budapest, Hungary
| |
Collapse
|
10
|
Brown RDR, Spiegel S. ORMDL in metabolic health and disease. Pharmacol Ther 2023; 245:108401. [PMID: 37003301 PMCID: PMC10148913 DOI: 10.1016/j.pharmthera.2023.108401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/09/2023] [Revised: 03/24/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023]
Abstract
Obesity is a key risk factor for the development of metabolic disease. Bioactive sphingolipid metabolites are among the lipids increased in obesity. Obesogenic saturated fatty acids are substrates for serine palmitoyltransferase (SPT) the rate-limiting step in de novo sphingolipid biosynthesis. The mammalian orosomucoid-like protein isoforms ORMDL1-3 negatively regulate SPT activity. Here we summarize evidence that dysregulation of sphingolipid metabolism and SPT activity correlates with pathogenesis of obesity. This review also discusses the current understanding of the function of SPT and ORMDL in obesity and metabolic disease. Gaps and limitations in current knowledge are highlighted together with the need to further understand how ORMDL3, which has been identified as an obesity-related gene, contributes to the pathogenesis of obesity and development of metabolic disease related to its physiological functions. Finally, we point out the needs to move this young field of research forward.
Collapse
Affiliation(s)
- Ryan D R Brown
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Sarah Spiegel
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA.
| |
Collapse
|
11
|
Ağagündüz D, Icer MA, Yesildemir O, Koçak T, Kocyigit E, Capasso R. The roles of dietary lipids and lipidomics in gut-brain axis in type 2 diabetes mellitus. J Transl Med 2023; 21:240. [PMID: 37009872 PMCID: PMC10068184 DOI: 10.1186/s12967-023-04088-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/20/2023] [Accepted: 03/25/2023] [Indexed: 04/04/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM), one of the main types of Noncommunicable diseases (NCDs), is a systemic inflammatory disease characterized by dysfunctional pancreatic β-cells and/or peripheral insulin resistance, resulting in impaired glucose and lipid metabolism. Genetic, metabolic, multiple lifestyle, and sociodemographic factors are known as related to high T2DM risk. Dietary lipids and lipid metabolism are significant metabolic modulators in T2DM and T2DM-related complications. Besides, accumulated evidence suggests that altered gut microbiota which plays an important role in the metabolic health of the host contributes significantly to T2DM involving impaired or improved glucose and lipid metabolism. At this point, dietary lipids may affect host physiology and health via interaction with the gut microbiota. Besides, increasing evidence in the literature suggests that lipidomics as novel parameters detected with holistic analytical techniques have important roles in the pathogenesis and progression of T2DM, through various mechanisms of action including gut-brain axis modulation. A better understanding of the roles of some nutrients and lipidomics in T2DM through gut microbiota interactions will help develop new strategies for the prevention and treatment of T2DM. However, this issue has not yet been entirely discussed in the literature. The present review provides up-to-date knowledge on the roles of dietary lipids and lipidomics in gut-brain axis in T2DM and some nutritional strategies in T2DM considering lipids- lipidomics and gut microbiota interactions are given.
Collapse
Affiliation(s)
- Duygu Ağagündüz
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Gazi University, 06490, Ankara, Turkey.
| | - Mehmet Arif Icer
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Amasya University, 05100, Amasya, Turkey
| | - Ozge Yesildemir
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Bursa Uludag University, 16059, Bursa, Turkey
| | - Tevfik Koçak
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Gazi University, 06490, Ankara, Turkey
| | - Emine Kocyigit
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Ordu University, 52200, Ordu, Turkey
| | - Raffaele Capasso
- Department of Agricultural Sciences, University of Naples Federico II, Portici, 80055, Naples, Italy.
| |
Collapse
|
12
|
Pan X, Dutta D, Lu S, Bellen HJ. Sphingolipids in neurodegenerative diseases. Front Neurosci 2023; 17:1137893. [PMID: 36875645 PMCID: PMC9978793 DOI: 10.3389/fnins.2023.1137893] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/05/2023] [Accepted: 01/27/2023] [Indexed: 02/18/2023] Open
Abstract
Neurodegenerative Diseases (NDDs) are a group of disorders that cause progressive deficits of neuronal function. Recent evidence argues that sphingolipid metabolism is affected in a surprisingly broad set of NDDs. These include some lysosomal storage diseases (LSDs), hereditary sensory and autonomous neuropathy (HSAN), hereditary spastic paraplegia (HSP), infantile neuroaxonal dystrophy (INAD), Friedreich's ataxia (FRDA), as well as some forms of amyotrophic lateral sclerosis (ALS) and Parkinson's disease (PD). Many of these diseases have been modeled in Drosophila melanogaster and are associated with elevated levels of ceramides. Similar changes have also been reported in vertebrate cells and mouse models. Here, we summarize studies using fly models and/or patient samples which demonstrate the nature of the defects in sphingolipid metabolism, the organelles that are implicated, the cell types that are initially affected, and potential therapeutics for these diseases.
Collapse
Affiliation(s)
- Xueyang Pan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, United States
| | - Debdeep Dutta
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, United States
| | - Shenzhao Lu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, United States
| | - Hugo J. Bellen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, United States
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
13
|
Dong Q, Sidra S, Gieger C, Wang-Sattler R, Rathmann W, Prehn C, Adamski J, Koenig W, Peters A, Grallert H, Sharma S. Metabolic Signatures Elucidate the Effect of Body Mass Index on Type 2 Diabetes. Metabolites 2023; 13:metabo13020227. [PMID: 36837846 PMCID: PMC9965667 DOI: 10.3390/metabo13020227] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/01/2022] [Revised: 01/26/2023] [Accepted: 01/31/2023] [Indexed: 02/09/2023] Open
Abstract
Obesity plays an important role in the development of insulin resistance and diabetes, but the molecular mechanism that links obesity and diabetes is still not completely understood. Here, we used 146 targeted metabolomic profiles from the German KORA FF4 cohort consisting of 1715 participants and associated them with obesity and type 2 diabetes. In the basic model, 83 and 51 metabolites were significantly associated with body mass index (BMI) and T2D, respectively. Those metabolites are branched-chain amino acids, acylcarnitines, lysophospholipids, or phosphatidylcholines. In the full model, 42 and 3 metabolites were significantly associated with BMI and T2D, respectively, and replicate findings in the previous studies. Sobel mediation testing suggests that the effect of BMI on T2D might be mediated via lipids such as sphingomyelin (SM) C16:1, SM C18:1 and diacylphosphatidylcholine (PC aa) C38:3. Moreover, mendelian randomization suggests a causal relationship that BMI causes the change of SM C16:1 and PC aa C38:3, and the change of SM C16:1, SM C18:1, and PC aa C38:3 contribute to T2D incident. Biological pathway analysis in combination with genetics and mice experiments indicate that downregulation of sphingolipid or upregulation of phosphatidylcholine metabolism is a causal factor in early-stage T2D pathophysiology. Our findings indicate that metabolites like SM C16:1, SM C18:1, and PC aa C38:3 mediate the effect of BMI on T2D and elucidate their role in obesity related T2D pathologies.
Collapse
Affiliation(s)
- Qiuling Dong
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, 85764 Neuherberg, Germany
- Institute of Epidemiology, Helmholtz Zentrum München, 85764 Neuherberg, Germany
- Faculty of Medicine, Ludwig-Maximilians-University München, 81377 Munich, Germany
| | - Sidra Sidra
- Institute for Medical Information Processing, Biometry and Epidemiology (IBE), Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Christian Gieger
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, 85764 Neuherberg, Germany
- Institute of Epidemiology, Helmholtz Zentrum München, 85764 Neuherberg, Germany
- German Center for Diabetes Research (DZD), 85764 München-Neuherberg, Germany
| | - Rui Wang-Sattler
- Institute of Translational Genomics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Wolfgang Rathmann
- Institute for Biometrics and Epidemiology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Cornelia Prehn
- Metabolomics and Proteomics Core Facility, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Jerzy Adamski
- Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, Singapore 117597, Singapore
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia
| | - Wolfgang Koenig
- German Research Center for Cardiovascular Disease (DZHK), Partner site Munich Heart Alliance, 81377 Munich, Germany
- Deutsches Herzzentrum München, Technische Universität München, 81377 Munich, Germany
- Institute of Epidemiology and Medical Biometry, University of Ulm, 89069 Ulm, Germany
| | - Annette Peters
- Institute of Epidemiology, Helmholtz Zentrum München, 85764 Neuherberg, Germany
- German Center for Diabetes Research (DZD), 85764 München-Neuherberg, Germany
- Chair of Epidemiology, Faculty of Medicine, Ludwig-Maximilians-University München, 81377 Munich, Germany
| | - Harald Grallert
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, 85764 Neuherberg, Germany
- Institute of Epidemiology, Helmholtz Zentrum München, 85764 Neuherberg, Germany
- German Center for Diabetes Research (DZD), 85764 München-Neuherberg, Germany
- Correspondence: (H.G.); (S.S.)
| | - Sapna Sharma
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, 85764 Neuherberg, Germany
- Institute of Epidemiology, Helmholtz Zentrum München, 85764 Neuherberg, Germany
- Chair of Food Chemistry and Molecular Sensory Science, Technical University of Munich, 85354 Freising-Weihenstephan, Germany
- Correspondence: (H.G.); (S.S.)
| |
Collapse
|
14
|
Raza Y, Atallah J, Luberto C. Advancements on the Multifaceted Roles of Sphingolipids in Hematological Malignancies. Int J Mol Sci 2022; 23:12745. [PMID: 36361536 PMCID: PMC9654982 DOI: 10.3390/ijms232112745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/01/2022] [Revised: 10/07/2022] [Accepted: 10/17/2022] [Indexed: 09/19/2023] Open
Abstract
Dysregulation of sphingolipid metabolism plays a complex role in hematological malignancies, beginning with the first historical link between sphingolipids and apoptosis discovered in HL-60 leukemic cells. Numerous manuscripts have reviewed the field including the early discoveries that jumpstarted the studies. Many studies discussed here support a role for sphingolipids, such as ceramide, in combinatorial therapeutic regimens to enhance anti-leukemic effects and reduce resistance to standard therapies. Additionally, inhibitors of specific nodes of the sphingolipid pathway, such as sphingosine kinase inhibitors, significantly reduce leukemic cell survival in various types of leukemias. Acid ceramidase inhibitors have also shown promising results in acute myeloid leukemia. As the field moves rapidly, here we aim to expand the body of literature discussed in previously published reviews by focusing on advances reported in the latter part of the last decade.
Collapse
Affiliation(s)
- Yasharah Raza
- Department of Pharmacological Sciences, Molecular and Cellular Pharmacology, Stony Brook University, Stony Brook, NY 11794, USA
- Stony Brook Cancer Center, Stony Brook University Hospital, Stony Brook, NY 11794, USA
| | - Jane Atallah
- Stony Brook Cancer Center, Stony Brook University Hospital, Stony Brook, NY 11794, USA
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, NY 11794, USA
| | - Chiara Luberto
- Stony Brook Cancer Center, Stony Brook University Hospital, Stony Brook, NY 11794, USA
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|
15
|
Chen L, Xu R, McDonald JD, Bruno RS, Choueiry F, Zhu J. Dairy Milk Casein and Whey Proteins Differentially Alter the Postprandial Lipidome in Persons with Prediabetes: A Comparative Lipidomics Study. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:10209-10220. [PMID: 35948437 PMCID: PMC10352119 DOI: 10.1021/acs.jafc.2c03662] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 06/14/2023]
Abstract
Dairy milk, likely through its bioactive proteins, has been reported to attenuate postprandial hyperglycemia-induced oxidative stress responses implicated in cardiovascular diseases (CVDs). However, how its major proteins, whey and casein, alter metabolic excursions of the lipidome in persons with prediabetes is unclear. Therefore, the objective of this study was to examine whey or casein protein ingestion on glucose-induced alternations in lipidomic responses in adults (17 males and 6 females) with prediabetes. In this clinical study, participants consumed glucose alone, glucose + nonfat milk (NFM), or glucose with either whey (WHEY) or casein (CASEIN) protein, and plasma samples were collected at multiple time points. Lipidomics data from plasma samples was acquired using an ultra-high-performance liquid chromatography-high-resolution mass spectrometry-based platform. Our results indicated that glucose ingestion alone induced the largest number of changes in plasma lipids. WHEY showed an earlier and stronger impact to maintain the stability of the lipidome compared with CASEIN. WHEY protected against glucose-induced changes in glycerophospholipid and sphingolipid (SP) metabolism, while ether lipid metabolism and SP metabolism were the pathways most greatly impacted in CASEIN. Meanwhile, the decreased acyl carnitines and fatty acid (FA) 16:0 levels could attenuate lipid peroxidation after protein intervention to protect insulin secretory capacity. Diabetes-associated lipids, the increased phosphatidylethanolamine (PE) 34:2 and decreased phosphatidylcholine (PC) 34:3 in the NFM-T90 min, elevated PC 35:4 and decreased CE 18:1 to a CE 18:2 ratio in the WHEY-T180 min, decreased lysophosphatidylcholine (LPC) 22:6 and LPC 22:0/0:0 in the CASEIN-T90 min, and decreased PE 36:1 in the CASEIN-T180 min, indicating a decreased risk for prediabetes. Collectively, our study suggested that dairy milk proteins are responsible for the protective effect of non-fat milk on glucose-induced changes in the lipidome, which may potentially influence long-term CVD risk.
Collapse
Affiliation(s)
- Li Chen
- Human Nutrition Program, Department of Human Sciences, The Ohio State University, Columbus, OH 43210, USA
- James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Rui Xu
- Human Nutrition Program, Department of Human Sciences, The Ohio State University, Columbus, OH 43210, USA
| | - Joshua D. McDonald
- Human Nutrition Program, Department of Human Sciences, The Ohio State University, Columbus, OH 43210, USA
| | - Richard S. Bruno
- Human Nutrition Program, Department of Human Sciences, The Ohio State University, Columbus, OH 43210, USA
| | - Fouad Choueiry
- Human Nutrition Program, Department of Human Sciences, The Ohio State University, Columbus, OH 43210, USA
| | - Jiangjiang Zhu
- Human Nutrition Program, Department of Human Sciences, The Ohio State University, Columbus, OH 43210, USA
- James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
16
|
Lv B, Yang X, An T, Wu Y, He Z, Li B, Wang Y, Tan F, Wang T, Zhu J, Hu Y, Liu X, Jiang G. Combined analysis of whole-exome sequencing and RNA sequencing in type 2 diabetes mellitus patients with thirst and fatigue. Diabetol Metab Syndr 2022; 14:111. [PMID: 35941691 PMCID: PMC9358875 DOI: 10.1186/s13098-022-00884-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 02/26/2022] [Accepted: 07/28/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The principal objective of this study was to gain a better understanding of the mechanisms of type 2 diabetes mellitus (T2DM) patients with fatigue (D-T2DM) through exome and transcriptome sequencing. METHODS After whole-exome sequencing on peripheral blood of 6 D-T2DM patients, the consensus mutations were screen out and analyzed by a series of bioinformatics analyses. Then, we combined whole-exome sequencing and transcriptome sequencing results to find the important genes that changed at both the DNA and RNA levels. RESULTS The results showed that a total of 265,393 mutation sites were found in D-T2DM patients compared with normal individuals, 235 of which were consensus mutations shared with D-T2DM patients. These genes significantly enriched in HIF-1 signaling pathway and sphingolipid signaling pathway. At the RNA level, a total of 375 genes were identified to be differentially expressed. After the DNA-RNA joint analysis, eight genes were screened that changed at both DNA and RNA levels. Among these genes, FUS and LMNA were related to carbohydrate metabolism, energy metabolism, and mitochondrial function. Subsequently, we predicted the herbs, including Qin Pi and Hei Zhi Ma, that might play a therapeutic role in D-T2DM through the SymMap database. CONCLUSION These findings have significant implications for understanding the mechanisms of D-T2DM and provide potential targets for D-T2DM diagnosis and treatment.
Collapse
Affiliation(s)
- Bohan Lv
- Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, China
| | - Xiuyan Yang
- Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, China
| | - Tian An
- Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, China
| | - Yanxiang Wu
- Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, China
| | - Zhongchen He
- Department of Endocrinology, Beijing He Ping li Hospital, Beijing, China
| | - Bowu Li
- Department of Endocrinology, Beijing He Ping li Hospital, Beijing, China
| | - Yijiao Wang
- Department of Endocrinology, Beijing He Ping li Hospital, Beijing, China
| | - Fang Tan
- Department of Endocrinology, Beijing He Ping li Hospital, Beijing, China
| | - Tingye Wang
- Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, China
| | - Jiajian Zhu
- Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, China
| | - Yuanyuan Hu
- Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaokun Liu
- Department of Cardiology, Gongren Hospital of Tangshan City, Tangshan, China
| | - Guangjian Jiang
- Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
17
|
Vasishta S, Ganesh K, Umakanth S, Joshi MB. Ethnic disparities attributed to the manifestation in and response to type 2 diabetes: insights from metabolomics. Metabolomics 2022; 18:45. [PMID: 35763080 PMCID: PMC9239976 DOI: 10.1007/s11306-022-01905-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 09/22/2021] [Accepted: 04/13/2022] [Indexed: 11/21/2022]
Abstract
Type 2 diabetes (T2D) associated health disparities among different ethnicities have long been known. Ethnic variations also exist in T2D related comorbidities including insulin resistance, vascular complications and drug response. Genetic heterogeneity, dietary patterns, nutrient metabolism and gut microbiome composition attribute to ethnic disparities in both manifestation and progression of T2D. These factors differentially regulate the rate of metabolism and metabolic health. Metabolomics studies have indicated significant differences in carbohydrate, lipid and amino acid metabolism among ethnicities. Interestingly, genetic variations regulating lipid and amino acid metabolism might also contribute to inter-ethnic differences in T2D. Comprehensive and comparative metabolomics analysis between ethnicities might help to design personalized dietary regimen and newer therapeutic strategies. In the present review, we explore population based metabolomics data to identify inter-ethnic differences in metabolites and discuss how (a) genetic variations, (b) dietary patterns and (c) microbiome composition may attribute for such differences in T2D.
Collapse
Affiliation(s)
- Sampara Vasishta
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, 576104, Manipal, India
| | - Kailash Ganesh
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, 576104, Manipal, India
| | | | - Manjunath B Joshi
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, 576104, Manipal, India.
- Manipal School of Life Sciences, Planetarium Complex Manipal Academy of Higher Education Manipal, 576104, Manipal, India.
| |
Collapse
|
18
|
Hammad SM, Hunt KJ, Baker NL, Klein RL, Lopes-Virella MF. Diabetes and kidney dysfunction markedly alter the content of sphingolipids carried by circulating lipoproteins. J Clin Lipidol 2022; 16:173-183. [DOI: 10.1016/j.jacl.2021.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/04/2021] [Revised: 11/18/2021] [Accepted: 12/28/2021] [Indexed: 10/19/2022]
|
19
|
Choi RH, Tatum SM, Symons JD, Summers SA, Holland WL. Ceramides and other sphingolipids as drivers of cardiovascular disease. Nat Rev Cardiol 2021; 18:701-711. [PMID: 33772258 PMCID: PMC8978615 DOI: 10.1038/s41569-021-00536-1] [Citation(s) in RCA: 186] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Accepted: 02/22/2021] [Indexed: 02/03/2023]
Abstract
Increases in calorie consumption and sedentary lifestyles are fuelling a global pandemic of cardiometabolic diseases, including coronary artery disease, diabetes mellitus, cardiomyopathy and heart failure. These lifestyle factors, when combined with genetic predispositions, increase the levels of circulating lipids, which can accumulate in non-adipose tissues, including blood vessel walls and the heart. The metabolism of these lipids produces bioactive intermediates that disrupt cellular function and survival. A compelling body of evidence suggests that sphingolipids, such as ceramides, account for much of the tissue damage in these cardiometabolic diseases. In humans, serum ceramide levels are proving to be accurate biomarkers of adverse cardiovascular disease outcomes. In mice and rats, pharmacological inhibition or depletion of enzymes driving de novo ceramide synthesis prevents the development of diabetes, atherosclerosis, hypertension and heart failure. In cultured cells and isolated tissues, ceramides perturb mitochondrial function, block fuel usage, disrupt vasodilatation and promote apoptosis. In this Review, we discuss the body of literature suggesting that ceramides are drivers - and not merely passengers - on the road to cardiovascular disease. Moreover, we explore the feasibility of therapeutic strategies to lower ceramide levels to improve cardiovascular health.
Collapse
Affiliation(s)
- Ran Hee Choi
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, USA
| | - Sean M Tatum
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, USA
| | - J David Symons
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, USA
| | - Scott A Summers
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, USA.
| | - William L Holland
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
20
|
Sindhu S, Leung YH, Arefanian H, Madiraju SRM, Al‐Mulla F, Ahmad R, Prentki M. Neutral sphingomyelinase-2 and cardiometabolic diseases. Obes Rev 2021; 22:e13248. [PMID: 33738905 PMCID: PMC8365731 DOI: 10.1111/obr.13248] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 12/30/2020] [Revised: 02/18/2021] [Accepted: 02/26/2021] [Indexed: 12/13/2022]
Abstract
Sphingolipids, in particular ceramides, play vital role in pathophysiological processes linked to metabolic syndrome, with implications in the development of insulin resistance, pancreatic ß-cell dysfunction, type 2 diabetes, atherosclerosis, inflammation, nonalcoholic steatohepatitis, and cancer. Ceramides are produced by the hydrolysis of sphingomyelin, catalyzed by different sphingomyelinases, including neutral sphingomyelinase 2 (nSMase2), whose dysregulation appears to underlie many of the inflammation-related pathologies. In this review, we discuss the current knowledge on the biochemistry of nSMase2 and ceramide production and its regulation by inflammatory cytokines, with particular reference to cardiometabolic diseases. nSMase2 contribution to pathogenic processes appears to involve cyclical feed-forward interaction with proinflammatory cytokines, such as TNF-α and IL-1ß, which activate nSMase2 and the production of ceramides, that in turn triggers the synthesis and release of inflammatory cytokines. We elaborate these pathogenic interactions at the molecular level and discuss the potential therapeutic benefits of inhibiting nSMase2 against inflammation-driven cardiometabolic diseases.
Collapse
Affiliation(s)
- Sardar Sindhu
- Animal and Imaging core facilityDasman Diabetes InstituteDasmanKuwait
| | - Yat Hei Leung
- Departments of Nutrition, Biochemistry and Molecular MedicineUniversity of MontrealMontréalQuebecCanada
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM)Montreal Diabetes Research CenterMontréalQuebecCanada
| | - Hossein Arefanian
- Immunology and Microbiology DepartmentDasman Diabetes InstituteDasmanKuwait
| | - S. R. Murthy Madiraju
- Departments of Nutrition, Biochemistry and Molecular MedicineUniversity of MontrealMontréalQuebecCanada
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM)Montreal Diabetes Research CenterMontréalQuebecCanada
| | - Fahd Al‐Mulla
- Department of Genetics and BioinformaticsDasman Diabetes InstituteDasmanKuwait
| | - Rasheed Ahmad
- Immunology and Microbiology DepartmentDasman Diabetes InstituteDasmanKuwait
| | - Marc Prentki
- Departments of Nutrition, Biochemistry and Molecular MedicineUniversity of MontrealMontréalQuebecCanada
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM)Montreal Diabetes Research CenterMontréalQuebecCanada
| |
Collapse
|
21
|
Haslam DE, Liang L, Wang DD, Kelly RS, Wittenbecher C, Pérez CM, Martínez M, Lee CH, Clish CB, Wong DTW, Parnell LD, Lai CQ, Ordovás JM, Manson JE, Hu FB, Stampfer MJ, Tucker KL, Joshipura KJ, Bhupathiraju SN. Associations of network-derived metabolite clusters with prevalent type 2 diabetes among adults of Puerto Rican descent. BMJ Open Diabetes Res Care 2021; 9:e002298. [PMID: 34413117 PMCID: PMC8378385 DOI: 10.1136/bmjdrc-2021-002298] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 03/29/2021] [Accepted: 07/25/2021] [Indexed: 01/14/2023] Open
Abstract
INTRODUCTION We investigated whether network analysis revealed clusters of coregulated metabolites associated with prevalent type 2 diabetes (T2D) among Puerto Rican adults. RESEARCH DESIGN AND METHODS We used liquid chromatography-mass spectrometry to measure fasting plasma metabolites (>600) among participants aged 40-75 years in the Boston Puerto Rican Health Study (BPRHS; discovery) and San Juan Overweight Adult Longitudinal Study (SOALS; replication), with (n=357; n=77) and without (n=322; n=934) T2D, respectively. Among BPRHS participants, we used unsupervised partial correlation network-based methods to identify and calculate metabolite cluster scores. Logistic regression was used to assess cross-sectional associations between metabolite clusters and prevalent T2D at the baseline blood draw in the BPRHS, and significant associations were replicated in SOALS. Inverse-variance weighted random-effect meta-analysis was used to combine cohort-specific estimates. RESULTS Six metabolite clusters were significantly associated with prevalent T2D in the BPRHS and replicated in SOALS (false discovery rate (FDR) <0.05). In a meta-analysis of the two cohorts, the OR and 95% CI (per 1 SD increase in cluster score) for prevalent T2D were as follows for clusters characterized primarily by glucose transport (0.21 (0.16 to 0.30); FDR <0.0001), sphingolipids (0.40 (0.29 to 0.53); FDR <0.0001), acyl cholines (0.35 (0.22 to 0.56); FDR <0.0001), sugar metabolism (2.28 (1.68 to 3.09); FDR <0.0001), branched-chain and aromatic amino acids (2.22 (1.60 to 3.08); FDR <0.0001), and fatty acid biosynthesis (1.54 (1.29 to 1.85); FDR <0.0001). Three additional clusters characterized by amino acid metabolism, cell membrane components, and aromatic amino acid metabolism displayed significant associations with prevalent T2D in the BPRHS, but these associations were not replicated in SOALS. CONCLUSIONS Among Puerto Rican adults, we identified several known and novel metabolite clusters that associated with prevalent T2D.
Collapse
Affiliation(s)
- Danielle E Haslam
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Nutrition, Harvard T H Chan School of Public Health, Boston, Massachusetts, USA
| | - Liming Liang
- Biostatistics, Harvard T H Chan School of Public Health, Boston, Massachusetts, USA
- Epidemiology, Harvard T H Chan School of Public Health, Boston, Massachusetts, USA
| | - Dong D Wang
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Nutrition, Harvard T H Chan School of Public Health, Boston, Massachusetts, USA
| | - Rachel S Kelly
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Cynthia M Pérez
- Department of Biostatistics and Epidemiology, Graduate School of Public Health, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico
| | - Marijulie Martínez
- Center for Clinical Research and Health Promotion, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico
| | - Chih-Hao Lee
- Molecular Metabolism, Harvard T H Chan School of Public Health, Boston, Massachusetts, USA
| | - Clary B Clish
- Metabolomics Platform, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - David T W Wong
- Center for Oral/Head and Neck Oncology Research, School of Dentistry, University of California Los Angeles, Los Angeles, California, USA
| | - Laurence D Parnell
- Agricultural Research Service, Jean Mayer US Department of Agriculture Human Nutrition Research Center on Aging at Tufts University, Boston, Massachusetts, USA
| | - Chao-Qiang Lai
- Agricultural Research Service, Jean Mayer US Department of Agriculture Human Nutrition Research Center on Aging at Tufts University, Boston, Massachusetts, USA
| | - José M Ordovás
- IMDEA-Food Institute, CEI UAM+CSIC, Madrid, Spain
- Nutrition and Genomics, Jean Mayer US Department of Agriculture Human Nutrition Research Center on Aging at Tufts University, Boston, Massachusetts, USA
| | - JoAnn E Manson
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Epidemiology, Harvard T H Chan School of Public Health, Boston, Massachusetts, USA
- Division of Preventive Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Frank B Hu
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Nutrition, Harvard T H Chan School of Public Health, Boston, Massachusetts, USA
- Epidemiology, Harvard T H Chan School of Public Health, Boston, Massachusetts, USA
| | - Meir J Stampfer
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Nutrition, Harvard T H Chan School of Public Health, Boston, Massachusetts, USA
- Epidemiology, Harvard T H Chan School of Public Health, Boston, Massachusetts, USA
| | - Katherine L Tucker
- Department of Biomedical and Nutritional Sciences and Center for Population Health, University of Massachusetts Lowell, Lowell, Massachusetts, USA
| | - Kaumudi J Joshipura
- Epidemiology, Harvard T H Chan School of Public Health, Boston, Massachusetts, USA
- Center for Clinical Research and Health Promotion, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico
| | - Shilpa N Bhupathiraju
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Nutrition, Harvard T H Chan School of Public Health, Boston, Massachusetts, USA
| |
Collapse
|
22
|
Muralidharan S, Shimobayashi M, Ji S, Burla B, Hall MN, Wenk MR, Torta F. A reference map of sphingolipids in murine tissues. Cell Rep 2021; 35:109250. [PMID: 34133933 DOI: 10.1016/j.celrep.2021.109250] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/07/2021] [Revised: 04/21/2021] [Accepted: 05/24/2021] [Indexed: 12/12/2022] Open
Abstract
Sphingolipids (SPs) have both a structural role in the cell membranes and a signaling function that regulates many cellular processes. The enormous structural diversity and low abundance of many SPs pose a challenge for their identification and quantification. Recent advances in lipidomics, in particular liquid chromatography (LC) coupled with mass spectrometry (MS), provide methods to detect and quantify many low-abundant SP species reliably. Here we use LC-MS to compile a "murine sphingolipid atlas," containing the qualitative and quantitative distribution of 114 SPs in 21 tissues of a widely utilized wild-type laboratory mouse strain (C57BL/6). We report tissue-specific SP fingerprints, as well as sex-specific differences in the same tissue. This is a comprehensive, quantitative sphingolipidomic map of mammalian tissues collected in a systematic fashion. It will complement other tissue compendia for interrogation into the role of SP in mammalian health and disease.
Collapse
Affiliation(s)
- Sneha Muralidharan
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore 117558, Singapore; Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, Singapore 117456, Singapore
| | - Mitsugu Shimobayashi
- Biozentrum - Center for Molecular Life Sciences, University of Basel, 4056 Basel, Switzerland
| | - Shanshan Ji
- Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, Singapore 117456, Singapore
| | - Bo Burla
- Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, Singapore 117456, Singapore
| | - Michael N Hall
- Biozentrum - Center for Molecular Life Sciences, University of Basel, 4056 Basel, Switzerland
| | - Markus R Wenk
- Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, Singapore 117456, Singapore; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 28 Medical Drive, Singapore 117456, Singapore.
| | - Federico Torta
- Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, Singapore 117456, Singapore; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 28 Medical Drive, Singapore 117456, Singapore.
| |
Collapse
|
23
|
Shoily SS, Ahsan T, Fatema K, Sajib AA. Common genetic variants and pathways in diabetes and associated complications and vulnerability of populations with different ethnic origins. Sci Rep 2021; 11:7504. [PMID: 33820928 PMCID: PMC8021559 DOI: 10.1038/s41598-021-86801-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/17/2020] [Accepted: 03/15/2021] [Indexed: 01/04/2023] Open
Abstract
Diabetes mellitus is a complex and heterogeneous metabolic disorder which is often pre- or post-existent with complications such as cardiovascular disease, hypertension, inflammation, chronic kidney disease, diabetic retino- and nephropathies. However, the frequencies of these co-morbidities vary among individuals and across populations. It is, therefore, not unlikely that certain genetic variants might commonly contribute to these conditions. Here, we identified four single nucleotide polymorphisms (rs5186, rs1800795, rs1799983 and rs1800629 in AGTR1, IL6, NOS3 and TNFA genes, respectively) to be commonly associated with each of these conditions. We explored their possible interplay in diabetes and associated complications. The variant allele and haplotype frequencies at these polymorphic loci vary among different super-populations (African, European, admixed Americans, South and East Asians). The variant alleles are particularly highly prevalent in different European and admixed American populations. Differential distribution of these variants in different ethnic groups suggests that certain drugs might be more effective in selective populations rather than all. Therefore, population specific genetic architectures should be considered before considering a drug for these conditions.
Collapse
Affiliation(s)
- Sabrina Samad Shoily
- Department of Genetic Engineering and Biotechnology, University of Dhaka, Dhaka, Bangladesh
| | - Tamim Ahsan
- Department of Genetic Engineering & Biotechnology, Bangabandhu Sheikh Mujibur Rahman Maritime University, Dhaka, Bangladesh
| | - Kaniz Fatema
- Department of Genetic Engineering and Biotechnology, University of Dhaka, Dhaka, Bangladesh
| | - Abu Ashfaqur Sajib
- Department of Genetic Engineering and Biotechnology, University of Dhaka, Dhaka, Bangladesh.
| |
Collapse
|
24
|
Jiang YH, Zhang P, Tao Y, Liu Y, Cao G, Zhou L, Yang CH. Banxia Baizhu Tianma decoction attenuates obesity-related hypertension. JOURNAL OF ETHNOPHARMACOLOGY 2021; 266:113453. [PMID: 33039628 DOI: 10.1016/j.jep.2020.113453] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 07/10/2020] [Revised: 09/18/2020] [Accepted: 10/03/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Banxia Baizhu Tianma decoction (BBTD) is a classical representative prescription for expelling phlegm, extinguishing wind, strengthening the spleen and dissipating excessive fluid in traditional Chinese medicine (TCM). According to both TCM theory and about 300 years of clinical practice, BBTD is especially suitable for hypertensive patients of abdominal obesity and lacking physical activity. AIM OF THE STUDY The present study tried to interpret the pharmacology of the ancient formula of BBTD. Herein, we focused on the plasma metabonomics of BBTD and evaluated the effect and targets of BBTD on endothelial protective effect. METHODS Obesity-related hypertensive mice were induced by high-fat diet for 20 weeks. BBTD (17.8 g/kg) was administered intragastrically for 8 weeks, and telmisartan group (12.5 mg/kg) was used as positive drug. Body weight, blood pressure, triglyceride and cholesterol were recorded to evaluate the efficacy of BBTD in vivo. Lipid deposition in aortic roots was assessed by oil red O staining, while morphology of aortas was observed by HE staining. Ultra performance liquid chromatography/tandem mass spectrometry (UPLC-MS/MS) was performed to study the plasma non-targeted metabonomics. According to the data of metabonomics, human aortic endothelial cells (HAECs) were treated by oxidized low-density lipoprotein (ox-LDL, 50 μg/mL) with/without BBTD (2, 1 or 0.5 mg/mL). Apoptosis rate (Annexin V-FITC/PI), migration (Transwell), cytoskeleton (Phalloidin) and density of VE-cadherin (Immunofluorescence staining) were used to investigate the effect of BBTD in vitro. Transcriptome sequencing was performed (2 mg/mL BBTD vs ox-LDL) to screen the possible targets of BBTD in endothelial protection against ox-LDL. RESULTS BBTD effectively reduced the body weight and total cholesterol, and decreased 12.1 mmHg in SBP and 10.5 mmHg in DBP of obesity-related hypertensive mice (P < 0.05). BBTD attenuated lipid deposition in arterial roots and improved the morphology of aortas in vivo. Plasma metabolite profiles identified 94 differential metabolites and suggested BBTD mainly affected glycerophospholipids and fatty acyls. Bioinformatics analysis indicated sphingolipid metabolism and fluid shear stress and atherosclerosis were main pathways. Therefore, we focused on endothelial protective effect of BBTD against ox-LDL. In vitro, BBTD demonstrated endothelial protective effects, decreasing apoptosis rate, improving cell migration in dose-dependent manner and maintaining cell morphology. Transcriptome sequencing identified 251 downregulated and 603 upregulated mRNAs after 24h-BBTD treatment, which reversed 51.8% change in mRNAs (393 DE mRNAs) induced by ox-LDL. Bioinformatics analysis supported the potential of BBTD in hypertension and suggested that BBTD improved endothelial cells by targeting mainly on p53 and PPAR signaling pathways. CONCLUSIONS BBTD attenuates obesity-related hypertension by regulating metabolism of glycerophospholipids and endothelial protection.
Collapse
Affiliation(s)
- Yue-Hua Jiang
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; Central Laboratory, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China.
| | - Peng Zhang
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - Yannan Tao
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - Yang Liu
- Department of Cardiovascular, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China.
| | - Guangshang Cao
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; Pharmaceutical Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China.
| | - Le Zhou
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; Department of Nephrology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China.
| | - Chuan-Hua Yang
- Department of Cardiovascular, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China.
| |
Collapse
|
25
|
Huang J, Covic M, Huth C, Rommel M, Adam J, Zukunft S, Prehn C, Wang L, Nano J, Scheerer MF, Neschen S, Kastenmüller G, Gieger C, Laxy M, Schliess F, Adamski J, Suhre K, de Angelis MH, Peters A, Wang-Sattler R. Validation of Candidate Phospholipid Biomarkers of Chronic Kidney Disease in Hyperglycemic Individuals and Their Organ-Specific Exploration in Leptin Receptor-Deficient db/db Mouse. Metabolites 2021; 11:metabo11020089. [PMID: 33546276 PMCID: PMC7913334 DOI: 10.3390/metabo11020089] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/15/2020] [Revised: 01/27/2021] [Accepted: 01/29/2021] [Indexed: 12/03/2022] Open
Abstract
Biological exploration of early biomarkers for chronic kidney disease (CKD) in (pre)diabetic individuals is crucial for personalized management of diabetes. Here, we evaluated two candidate biomarkers of incident CKD (sphingomyelin (SM) C18:1 and phosphatidylcholine diacyl (PC aa) C38:0) concerning kidney function in hyperglycemic participants of the Cooperative Health Research in the Region of Augsburg (KORA) cohort, and in two biofluids and six organs of leptin receptor-deficient (db/db) mice and wild type controls. Higher serum concentrations of SM C18:1 and PC aa C38:0 in hyperglycemic individuals were found to be associated with lower estimated glomerular filtration rate (eGFR) and higher odds of CKD. In db/db mice, both metabolites had a significantly lower concentration in urine and adipose tissue, but higher in the lungs. Additionally, db/db mice had significantly higher SM C18:1 levels in plasma and liver, and PC aa C38:0 in adrenal glands. This cross-sectional human study confirms that SM C18:1 and PC aa C38:0 associate with kidney dysfunction in pre(diabetic) individuals, and the animal study suggests a potential implication of liver, lungs, adrenal glands, and visceral fat in their systemic regulation. Our results support further validation of the two phospholipids as early biomarkers of renal disease in patients with (pre)diabetes.
Collapse
Affiliation(s)
- Jialing Huang
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, 85764 Neuherberg, Germany; (J.H.); (M.C.); (M.R.); (J.A.); (L.W.); (C.G.)
- Institute of Epidemiology, Helmholtz Zentrum München, 85764 Neuherberg, Germany; (C.H.); (J.N.); (A.P.)
- German Center for Diabetes Research (DZD), 85764 München-Neuherberg, Germany;
| | - Marcela Covic
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, 85764 Neuherberg, Germany; (J.H.); (M.C.); (M.R.); (J.A.); (L.W.); (C.G.)
- Institute of Epidemiology, Helmholtz Zentrum München, 85764 Neuherberg, Germany; (C.H.); (J.N.); (A.P.)
- German Center for Diabetes Research (DZD), 85764 München-Neuherberg, Germany;
| | - Cornelia Huth
- Institute of Epidemiology, Helmholtz Zentrum München, 85764 Neuherberg, Germany; (C.H.); (J.N.); (A.P.)
| | - Martina Rommel
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, 85764 Neuherberg, Germany; (J.H.); (M.C.); (M.R.); (J.A.); (L.W.); (C.G.)
- Institute of Epidemiology, Helmholtz Zentrum München, 85764 Neuherberg, Germany; (C.H.); (J.N.); (A.P.)
| | - Jonathan Adam
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, 85764 Neuherberg, Germany; (J.H.); (M.C.); (M.R.); (J.A.); (L.W.); (C.G.)
- Institute of Epidemiology, Helmholtz Zentrum München, 85764 Neuherberg, Germany; (C.H.); (J.N.); (A.P.)
| | - Sven Zukunft
- Research Unit of Molecular Endocrinology and Metabolism, Helmholtz Zentrum München, 85764 Neuherberg, Germany; (S.Z.); (J.A.)
- Centre for Molecular Medicine, Institute for Vascular Signaling, Goethe University, 60323 Frankfurt am Main, Germany
| | - Cornelia Prehn
- Metabolomics and Proteomics Core Facility, Helmholtz Zentrum München, 85764 Neuherberg, Germany;
| | - Li Wang
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, 85764 Neuherberg, Germany; (J.H.); (M.C.); (M.R.); (J.A.); (L.W.); (C.G.)
- Institute of Epidemiology, Helmholtz Zentrum München, 85764 Neuherberg, Germany; (C.H.); (J.N.); (A.P.)
- Liaocheng People’s Hospital—Department of Scientific Research, Shandong University Postdoctoral Work Station, Liaocheng 252000, China
| | - Jana Nano
- Institute of Epidemiology, Helmholtz Zentrum München, 85764 Neuherberg, Germany; (C.H.); (J.N.); (A.P.)
- German Center for Diabetes Research (DZD), 85764 München-Neuherberg, Germany;
| | - Markus F. Scheerer
- Institute of Experimental Genetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany; (M.F.S.); (S.N.)
- Bayer AG, Medical Affairs & Pharmacovigilance, 13353 Berlin, Germany
| | - Susanne Neschen
- Institute of Experimental Genetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany; (M.F.S.); (S.N.)
- Sanofi Aventis Deutschland GmbH, Industriepark Hoechst, 65929 Frankfurt am Main, Germany
| | - Gabi Kastenmüller
- Institute of Computational Biology, Helmholtz Zentrum München, 85764 Neuherberg, Germany;
| | - Christian Gieger
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, 85764 Neuherberg, Germany; (J.H.); (M.C.); (M.R.); (J.A.); (L.W.); (C.G.)
- Institute of Epidemiology, Helmholtz Zentrum München, 85764 Neuherberg, Germany; (C.H.); (J.N.); (A.P.)
- German Center for Diabetes Research (DZD), 85764 München-Neuherberg, Germany;
| | - Michael Laxy
- Institute of Health Economics and Health Care Management, Helmholtz Zentrum München, 85764 Neuherberg, Germany;
| | | | - Jerzy Adamski
- Research Unit of Molecular Endocrinology and Metabolism, Helmholtz Zentrum München, 85764 Neuherberg, Germany; (S.Z.); (J.A.)
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- Chair of Experimental Genetics, Center of Life and Food Sciences Weihenstephan, Technische Universität München, 85353 Freising, Germany
| | - Karsten Suhre
- Department of Physiology and Biophysics, Weill Cornell Medical College in Qatar (WCMC-Q), Education City, Qatar Foundation, Doha P.O. Box 24144, Qatar;
| | - Martin Hrabe de Angelis
- German Center for Diabetes Research (DZD), 85764 München-Neuherberg, Germany;
- Institute of Experimental Genetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany; (M.F.S.); (S.N.)
- Chair of Experimental Genetics, Center of Life and Food Sciences Weihenstephan, Technische Universität München, 85353 Freising, Germany
| | - Annette Peters
- Institute of Epidemiology, Helmholtz Zentrum München, 85764 Neuherberg, Germany; (C.H.); (J.N.); (A.P.)
- German Center for Diabetes Research (DZD), 85764 München-Neuherberg, Germany;
| | - Rui Wang-Sattler
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, 85764 Neuherberg, Germany; (J.H.); (M.C.); (M.R.); (J.A.); (L.W.); (C.G.)
- Institute of Epidemiology, Helmholtz Zentrum München, 85764 Neuherberg, Germany; (C.H.); (J.N.); (A.P.)
- German Center for Diabetes Research (DZD), 85764 München-Neuherberg, Germany;
- Correspondence: ; Tel.: +49-89-3187-3978; Fax: + 49-89-3187-2428
| |
Collapse
|
26
|
Xie J, Shao Y, Liu J, Cui M, Xiao X, Gong J, Xue B, Zhang Q, Hu X, Duan H. K27Q/K29Q mutations in sphingosine kinase 1 attenuate high-fat diet induced obesity and altered glucose homeostasis in mice. Sci Rep 2020; 10:20038. [PMID: 33208918 PMCID: PMC7676274 DOI: 10.1038/s41598-020-77096-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/27/2020] [Accepted: 11/02/2020] [Indexed: 02/07/2023] Open
Abstract
Obesity and its associated metabolic disorders are increasingly impacting public health worldwide. Sphingosine kinase 1 (Sphk1) is a critical enzyme in sphingolipid metabolism that has been implicated in various metabolic syndromes. In this study, we developed a mouse model constitutively expressing pseudoacetylated mouse Sphk1 (QSPHK1) to study its role in regulating glucose and lipid metabolism. The results showed that QSPHK1 mice gained less body weight than wide type (WT) mice on a high-fat diet, and QSPHK1 mice had improved glucolipid metabolism and insulin. Moreover, QSPHK1 mice had alleviated hepatic triglyceride accumulation and had high-fat-diet-induced hepatic steatosis that occurred as a result of reduced lipogenesis and enhanced fatty acid oxidation, which were mediated by the AMPK/ACC axis and the FGF21/adiponectin axis. Collectively, this study provided evidence that the K27Q/K29Q mutations of Sphk1 could have a protective role in preventing obesity and the related metabolic diseases. Hence, our results contribute to further understanding of the biological functions of Sphk1, which has great pharmaceutical implications.
Collapse
Affiliation(s)
- Jing Xie
- Key Laboratory of Experimental Hematology, Beijing Institute of Radiation Medicine (BIRM), No. 27, Taiping Road, Haidian District, Beijing, 100850, China
| | - Yong Shao
- Laboratory of Cell Engineering, Beijing Institute of Biotechnology (BIB), No. 20, Dongdajie Street, Fengtai District, Beijing, 100071, China
| | - Jin Liu
- Key Laboratory of Experimental Hematology, Beijing Institute of Radiation Medicine (BIRM), No. 27, Taiping Road, Haidian District, Beijing, 100850, China
| | - Meilan Cui
- Key Laboratory of Experimental Hematology, Beijing Institute of Radiation Medicine (BIRM), No. 27, Taiping Road, Haidian District, Beijing, 100850, China
| | - Xiuxiao Xiao
- Key Laboratory of Experimental Hematology, Beijing Institute of Radiation Medicine (BIRM), No. 27, Taiping Road, Haidian District, Beijing, 100850, China
| | - Jingbo Gong
- Key Laboratory of Experimental Hematology, Beijing Institute of Radiation Medicine (BIRM), No. 27, Taiping Road, Haidian District, Beijing, 100850, China
| | - Binghua Xue
- Key Laboratory of Experimental Hematology, Beijing Institute of Radiation Medicine (BIRM), No. 27, Taiping Road, Haidian District, Beijing, 100850, China
| | - Qunwei Zhang
- Key Laboratory of Experimental Hematology, Beijing Institute of Radiation Medicine (BIRM), No. 27, Taiping Road, Haidian District, Beijing, 100850, China
| | - Xianwen Hu
- Laboratory of Cell Engineering, Beijing Institute of Biotechnology (BIB), No. 20, Dongdajie Street, Fengtai District, Beijing, 100071, China.
| | - Haifeng Duan
- Key Laboratory of Experimental Hematology, Beijing Institute of Radiation Medicine (BIRM), No. 27, Taiping Road, Haidian District, Beijing, 100850, China.
| |
Collapse
|
27
|
Li M, Xu J, Zhang Y, Chu S, Sun S, Huo Y, Zhao J, Hu X, Wan C, Li L. Comparative analysis of fecal metabolite profiles in HFD-induced obese mice after oral administration of huangjinya green tea extract. Food Chem Toxicol 2020; 145:111744. [PMID: 32918987 DOI: 10.1016/j.fct.2020.111744] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/05/2020] [Revised: 09/02/2020] [Accepted: 09/06/2020] [Indexed: 02/07/2023]
Abstract
To explore the impact of Huangjinya on metabolic disorders and host endogenous metabolite profiles, high-fat diet (HFD)-fed mice were administrated with Huangjinya green tea extract (HGT) at the dose of 150 or 300 mg/kg for 9 weeks. Epigallocatechin gallate was the main catechin derivative, followed by epigallocatechin and catechin presented in HGT, which contained high levels of free amino acids (50.30 ± 0.60 mg/g). HGT significantly alleviated glucose and insulin intolerance, reduced hepatic lipid accumulation and liver steatosis, and prevented white adipose tissue expansion in HFD-fed mice. Untargeted mass spectrometry-based metabolomics analysis revealed that HGT reduced the abundance of fecal branched-chain amino acids, aromatic amino acids, sphingolipids, and most acyl cholines, modulated bile acid metabolism by increasing chenodeoxycholate and reducing cholic acid content, and increased unsaturated fatty acids content. Fatherly, HGT activated insulin/PI3K/Akt and AMPK signaling pathways in the liver, reduced adipogenic and lipogenic genes expression, and promoted the genes expression related to lipolysis and adipocyte browning in white adipose tissue, contributed to improving metabolic syndrome in HFD-fed mice. The current study reported the impact of HGT supplementation on endogenous metabolite profiles, and highlights the positive roles of HGT in preventing diet-induced obesity and the related metabolic disorders.
Collapse
Affiliation(s)
- Mingxi Li
- Research Center of Tea and Tea Culture, College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, PR China
| | - Jialin Xu
- Institute of Biochemistry and Molecular Biology, College of Life and Health Sciences, Northeastern University, Shenyang, 110819, PR China
| | - Yi Zhang
- Institute of Biochemistry and Molecular Biology, College of Life and Health Sciences, Northeastern University, Shenyang, 110819, PR China
| | - Suo Chu
- Institute of Biochemistry and Molecular Biology, College of Life and Health Sciences, Northeastern University, Shenyang, 110819, PR China
| | - Shizhuo Sun
- Institute of Biochemistry and Molecular Biology, College of Life and Health Sciences, Northeastern University, Shenyang, 110819, PR China
| | - Yan Huo
- Institute of Biochemistry and Molecular Biology, College of Life and Health Sciences, Northeastern University, Shenyang, 110819, PR China
| | - Jie Zhao
- Institute of Biochemistry and Molecular Biology, College of Life and Health Sciences, Northeastern University, Shenyang, 110819, PR China
| | - Xiaodi Hu
- Institute of Biochemistry and Molecular Biology, College of Life and Health Sciences, Northeastern University, Shenyang, 110819, PR China
| | - Chunpeng Wan
- Research Center of Tea and Tea Culture, College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, PR China.
| | - Liya Li
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University, Shenyang, 110819, PR China.
| |
Collapse
|
28
|
Fat taste signal transduction and its possible negative modulator components. Prog Lipid Res 2020; 79:101035. [DOI: 10.1016/j.plipres.2020.101035] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/27/2020] [Revised: 04/26/2020] [Accepted: 04/29/2020] [Indexed: 02/07/2023]
|
29
|
Abstract
Bariatric surgery, an emerging treatment for severely obese youth with and without T2D, provides marked improvement in insulin resistance, beta-cell function, and central adiposity. Further, preliminary data suggest that bariatric surgery also results in significant improvement in markers of obesity-related nephropathy and DKD, beyond that which can be achieved with current medical interventions. Yet, the mechanisms whereby bariatric surgery attenuates kidney disease remain unclear. This review summarizes the data on the effects of bariatric surgery on obesity-related nephropathy and DKD in youth with and without T2D, in addition to potential mechanisms underlying the nephroprotective effects of weight loss surgery and how these may differ in Roux-en-Y gastric bypass vs. vertical sleeve gastrectomy. Finally, we discuss potential future non-surgical therapies to mitigate kidney disease.
Collapse
Affiliation(s)
- Petter Bjornstad
- Section of Endocrinology, Department of Pediatrics, Division of Renal Diseases and Hypertension, Department of Medicine, University of Colorado School of Medicine, United States.
| | - Edward Nehus
- Section of Nephrology, Department of Pediatrics, University of Cincinnati College of Medicine
| | - Daniel van Raalte
- Diabetes Center, Department of Internal Medicine, Amsterdam University Medical Center, location VUMC, Amsterdam, the Netherlands
| |
Collapse
|
30
|
Zhang G, Zhang J, DeHoog RJ, Pennathur S, Anderton CR, Venkatachalam MA, Alexandrov T, Eberlin LS, Sharma K. DESI-MSI and METASPACE indicates lipid abnormalities and altered mitochondrial membrane components in diabetic renal proximal tubules. Metabolomics 2020; 16:11. [PMID: 31925564 PMCID: PMC7301343 DOI: 10.1007/s11306-020-1637-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 09/29/2019] [Accepted: 01/04/2020] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Diabetic kidney disease (DKD) is the most prevalent complication in diabetic patients, which contributes to high morbidity and mortality. Urine and plasma metabolomics studies have been demonstrated to provide valuable insights for DKD. However, limited information on spatial distributions of metabolites in kidney tissues have been reported. OBJECTIVES In this work, we employed an ambient desorption electrospray ionization-mass spectrometry imaging (DESI-MSI) coupled to a novel bioinformatics platform (METASPACE) to characterize the metabolome in a mouse model of DKD. METHODS DESI-MSI was performed for spatial untargeted metabolomics analysis in kidneys of mouse models (F1 C57BL/6J-Ins2Akita male mice at 17 weeks of age) of type 1 diabetes (T1D, n = 5) and heathy controls (n = 6). RESULTS Multivariate analyses (i.e., PCA and PLS-DA (a 2000 permutation test: P < 0.001)) showed clearly separated clusters for the two groups of mice on the basis of 878 measured m/z's in kidney cortical tissues. Specifically, mice with T1D had increased relative abundances of pseudouridine, accumulation of free polyunsaturated fatty acids (PUFAs), and decreased relative abundances of cardiolipins in cortical proximal tubules when compared with healthy controls. CONCLUSION Results from the current study support potential key roles of pseudouridine and cardiolipins for maintaining normal RNA structure and normal mitochondrial function, respectively, in cortical proximal tubules with DKD. DESI-MSI technology coupled with METASPACE could serve as powerful new tools to provide insight on fundamental pathways in DKD.
Collapse
Affiliation(s)
- Guanshi Zhang
- Center for Renal Precision Medicine, Division of Nephrology, Department of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Audie L. Murphy Memorial VA Hospital, South Texas Veterans Health Care System, San Antonio, TX, USA
| | - Jialing Zhang
- Department of Chemistry, The University of Texas at Austin, Austin, TX, USA
| | - Rachel J DeHoog
- Department of Chemistry, The University of Texas at Austin, Austin, TX, USA
| | - Subramaniam Pennathur
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Christopher R Anderton
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA
| | | | - Theodore Alexandrov
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Livia S Eberlin
- Department of Chemistry, The University of Texas at Austin, Austin, TX, USA
| | - Kumar Sharma
- Center for Renal Precision Medicine, Division of Nephrology, Department of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
- Audie L. Murphy Memorial VA Hospital, South Texas Veterans Health Care System, San Antonio, TX, USA.
| |
Collapse
|
31
|
Kovilakath A, Cowart LA. Sphingolipid Mediators of Myocardial Pathology. J Lipid Atheroscler 2020; 9:23-49. [PMID: 32821720 PMCID: PMC7379069 DOI: 10.12997/jla.2020.9.1.23] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/28/2019] [Revised: 09/25/2019] [Accepted: 10/09/2019] [Indexed: 12/15/2022] Open
Abstract
Cardiomyopathy is the leading cause of mortality worldwide. While the causes of cardiomyopathy continue to be elucidated, current evidence suggests that aberrant bioactive lipid signaling plays a crucial role as a component of cardiac pathophysiology. Sphingolipids have been implicated in the pathophysiology of cardiovascular disease, as they regulate numerous cellular processes that occur in primary and secondary cardiomyopathies. Experimental evidence gathered over the last few decades from both in vitro and in vivo model systems indicates that inhibitors of sphingolipid synthesis attenuate a variety of cardiomyopathic symptoms. In this review, we focus on various cardiomyopathies in which sphingolipids have been implicated and the potential therapeutic benefits that could be gained by targeting sphingolipid metabolism.
Collapse
Affiliation(s)
- Anna Kovilakath
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA, USA
| | - L. Ashley Cowart
- Department of Biochemistry and Molecular Biology and the Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
- Hunter Holmes McGuire Veteran's Affairs Medical Center, Richmond, VA, USA
| |
Collapse
|
32
|
Diarte-Añazco EMG, Méndez-Lara KA, Pérez A, Alonso N, Blanco-Vaca F, Julve J. Novel Insights into the Role of HDL-Associated Sphingosine-1-Phosphate in Cardiometabolic Diseases. Int J Mol Sci 2019; 20:ijms20246273. [PMID: 31842389 PMCID: PMC6940915 DOI: 10.3390/ijms20246273] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/06/2019] [Revised: 12/09/2019] [Accepted: 12/10/2019] [Indexed: 02/07/2023] Open
Abstract
Sphingolipids are key signaling molecules involved in the regulation of cell physiology. These species are found in tissues and in circulation. Although they only constitute a small fraction in lipid composition of circulating lipoproteins, their concentration in plasma and distribution among plasma lipoproteins appears distorted under adverse cardiometabolic conditions such as diabetes mellitus. Sphingosine-1-phosphate (S1P), one of their main representatives, is involved in regulating cardiomyocyte homeostasis in different models of experimental cardiomyopathy. Cardiomyopathy is a common complication of diabetes mellitus and represents a main risk factor for heart failure. Notably, plasma concentration of S1P, particularly high-density lipoprotein (HDL)-bound S1P, may be decreased in patients with diabetes mellitus, and hence, inversely related to cardiac alterations. Despite this, little attention has been given to the circulating levels of either total S1P or HDL-bound S1P as potential biomarkers of diabetic cardiomyopathy. Thus, this review will focus on the potential role of HDL-bound S1P as a circulating biomarker in the diagnosis of main cardiometabolic complications frequently associated with systemic metabolic syndromes with impaired insulin signaling. Given the bioactive nature of these molecules, we also evaluated its potential of HDL-bound S1P-raising strategies for the treatment of cardiometabolic disease.
Collapse
Affiliation(s)
- Elena M. G. Diarte-Añazco
- Institut de Recerca de l’Hospital de la Santa Creu i Sant Pau, and Institut d’Investigació Biomèdica Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain;
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Bellaterra (Barcelona), Spain;
| | - Karen Alejandra Méndez-Lara
- Institut de Recerca de l’Hospital de la Santa Creu i Sant Pau, and Institut d’Investigació Biomèdica Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain;
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Bellaterra (Barcelona), Spain;
- Correspondence: (K.A.M.-L.); (F.B.-V.); (J.J.)
| | - Antonio Pérez
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Bellaterra (Barcelona), Spain;
- Centro de Investigación Biomédica en Red (CIBER) de Diabetes y Enfermedades Metabólicas Asociadas, CIBERDEM, 28029 Madrid, Spain;
- Servei d’Endocrinologia, Hospital de la Santa Creu i Sant Pau, IIB Sant Pau, 08041 Barcelona, Spain
| | - Núria Alonso
- Centro de Investigación Biomédica en Red (CIBER) de Diabetes y Enfermedades Metabólicas Asociadas, CIBERDEM, 28029 Madrid, Spain;
- Servei d’Endocrinologia, Hospital Universitari Germans Trias i Pujol, Badalona, 08916 Barcelona, Spain
| | - Francisco Blanco-Vaca
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Bellaterra (Barcelona), Spain;
- Centro de Investigación Biomédica en Red (CIBER) de Diabetes y Enfermedades Metabólicas Asociadas, CIBERDEM, 28029 Madrid, Spain;
- Servei de Bioquímica, Hospital de la Santa Creu i Sant Pau, IIB Sant Pau, 08041 Barcelona, Spain
- Correspondence: (K.A.M.-L.); (F.B.-V.); (J.J.)
| | - Josep Julve
- Institut de Recerca de l’Hospital de la Santa Creu i Sant Pau, and Institut d’Investigació Biomèdica Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain;
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Bellaterra (Barcelona), Spain;
- Centro de Investigación Biomédica en Red (CIBER) de Diabetes y Enfermedades Metabólicas Asociadas, CIBERDEM, 28029 Madrid, Spain;
- Correspondence: (K.A.M.-L.); (F.B.-V.); (J.J.)
| |
Collapse
|
33
|
Ruuth M, Janssen LG, Äikäs L, Tigistu-Sahle F, Nahon KJ, Ritvos O, Ruhanen H, Käkelä R, Boon MR, Öörni K, Rensen PC. LDL aggregation susceptibility is higher in healthy South Asian compared with white Caucasian men. J Clin Lipidol 2019; 13:910-919.e2. [DOI: 10.1016/j.jacl.2019.09.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/16/2019] [Revised: 08/20/2019] [Accepted: 09/22/2019] [Indexed: 12/13/2022]
|
34
|
Menni C, McCallum L, Pietzner M, Zierer J, Aman A, Suhre K, Mohney RP, Mangino M, Friedrich N, Spector TD, Padmanabhan S. Metabolomic profiling identifies novel associations with Electrolyte and Acid-Base Homeostatic patterns. Sci Rep 2019; 9:15088. [PMID: 31636301 PMCID: PMC6803625 DOI: 10.1038/s41598-019-51492-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/25/2019] [Accepted: 10/01/2019] [Indexed: 12/17/2022] Open
Abstract
Electrolytes have a crucial role in maintaining health and their serum levels are homeostatically maintained within a narrow range by multiple pathways involving the kidneys. Here we use metabolomics profiling (592 fasting serum metabolites) to identify molecular markers and pathways associated with serum electrolyte levels in two independent population-based cohorts. We included 1523 adults from TwinsUK not on blood pressure-lowering therapy and without renal impairment to look for metabolites associated with chloride, sodium, potassium and bicarbonate by running linear mixed models adjusting for covariates and multiple comparisons. For each electrolyte, we further performed pathway enrichment analysis (PAGE algorithm). Results were replicated in an independent cohort. Chloride, potassium, bicarbonate and sodium associated with 10, 58, 36 and 17 metabolites respectively (each P < 2.1 × 10-5), mainly lipids. Of all the electrolytes, serum potassium showed the most significant associations with individual fatty acid metabolites and specific enrichment of fatty acid pathways. In contrast, serum sodium and bicarbonate showed associations predominantly with amino-acid related species. In the first study to examine systematically associations between serum electrolytes and small circulating molecules, we identified novel metabolites and metabolic pathways associated with serum electrolyte levels. The role of these metabolic pathways on electrolyte homeostasis merits further studies.
Collapse
Affiliation(s)
- Cristina Menni
- Department of Twin Research & Genetic Epidemiology, King's College London, London, UK.
| | - Linsay McCallum
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Maik Pietzner
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, Germany
- DZHK (German Center for Cardiovascular Research), partner site Greifswald, Greifswald, Germany
| | - Jonas Zierer
- Department of Twin Research & Genetic Epidemiology, King's College London, London, UK
- Department of Physiology and Biophysics, Weill Cornell Medical College in Qatar, Education City, Qatar Foundation, Doha, Qatar
| | - Alisha Aman
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | | | | | - Massimo Mangino
- Department of Twin Research & Genetic Epidemiology, King's College London, London, UK
| | - Nele Friedrich
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Tim D Spector
- Department of Twin Research & Genetic Epidemiology, King's College London, London, UK
| | - Sandosh Padmanabhan
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.
| |
Collapse
|
35
|
Pino MF, Stephens NA, Eroshkin AM, Yi F, Hodges A, Cornnell HH, Pratley RE, Smith SR, Wang M, Han X, Coen PM, Goodpaster BH, Sparks LM. Endurance training remodels skeletal muscle phospholipid composition and increases intrinsic mitochondrial respiration in men with Type 2 diabetes. Physiol Genomics 2019; 51:586-595. [PMID: 31588872 DOI: 10.1152/physiolgenomics.00014.2019] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/24/2022] Open
Abstract
The effects of exercise training on the skeletal muscle (SKM) lipidome and mitochondrial function have not been thoroughly explored in individuals with Type 2 diabetes (T2D). We hypothesize that 10 wk of supervised endurance training improves SKM mitochondrial function and insulin sensitivity that are related to alterations in lipid signatures within SKM of T2D (males n = 8). We employed integrated multi-omics data analyses including ex vivo lipidomics (MS/MS-shotgun) and transcriptomics (RNA-Seq). From biopsies of SKM, tissue and primary myotubes mitochondrial respiration were quantified by high-resolution respirometry. We also performed hyperinsulinemic-euglycemic clamps and blood draws before and after the training. The lipidomics analysis revealed that endurance training (>95% compliance) increased monolysocardiolipin by 68.2% (P ≤ 0.03), a putative marker of mitochondrial remodeling, and reduced total sphingomyelin by 44.8% (P ≤ 0.05) and phosphatidylserine by 39.7% (P ≤ 0.04) and tended to reduce ceramide lipid content by 19.8%. Endurance training also improved intrinsic mitochondrial respiration in SKM of T2D without alterations in mitochondrial DNA copy number or cardiolipin content. RNA-Seq revealed 71 transcripts in SKM of T2D that were differentially regulated. Insulin sensitivity was unaffected, and HbA1c levels moderately increased by 7.3% despite an improvement in cardiorespiratory fitness (V̇o2peak) following the training intervention. In summary, endurance training improves intrinsic and cell-autonomous SKM mitochondrial function and modifies lipid composition in men with T2D independently of alterations in insulin sensitivity and glycemic control.
Collapse
Affiliation(s)
- Maria F Pino
- Translational Research Institute for Metabolism and Diabetes, Adventhealth, Orlando, Florida
| | - Natalie A Stephens
- Translational Research Institute for Metabolism and Diabetes, Adventhealth, Orlando, Florida
| | - Alexey M Eroshkin
- Sanford Burnham Prebys Medical Discovery Institute, Torrey Pines, California
| | - Fanchao Yi
- Translational Research Institute for Metabolism and Diabetes, Adventhealth, Orlando, Florida
| | - Andrew Hodges
- Sanford Burnham Prebys Medical Discovery Institute, Torrey Pines, California
| | - Heather H Cornnell
- Translational Research Institute for Metabolism and Diabetes, Adventhealth, Orlando, Florida
| | - Richard E Pratley
- Translational Research Institute for Metabolism and Diabetes, Adventhealth, Orlando, Florida
| | - Steven R Smith
- Translational Research Institute for Metabolism and Diabetes, Adventhealth, Orlando, Florida
| | - Miao Wang
- University of Texas Health Sciences Center San Antonio, San Antonio, Texas
| | - Xianlin Han
- University of Texas Health Sciences Center San Antonio, San Antonio, Texas
| | - Paul M Coen
- Translational Research Institute for Metabolism and Diabetes, Adventhealth, Orlando, Florida
| | - Bret H Goodpaster
- Translational Research Institute for Metabolism and Diabetes, Adventhealth, Orlando, Florida
| | - Lauren M Sparks
- Translational Research Institute for Metabolism and Diabetes, Adventhealth, Orlando, Florida
| |
Collapse
|
36
|
Mehta HH, Xiao J, Ramirez R, Miller B, Kim SJ, Cohen P, Yen K. Metabolomic profile of diet-induced obesity mice in response to humanin and small humanin-like peptide 2 treatment. Metabolomics 2019; 15:88. [PMID: 31172328 PMCID: PMC6554247 DOI: 10.1007/s11306-019-1549-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 12/20/2018] [Accepted: 05/24/2019] [Indexed: 01/10/2023]
Abstract
INTRODUCTION The mitochondrial-derived peptides (MDPs) are a novel group of natural occurring peptides that have important signaling functions and biological activity. Both humanin and small-humanin-like peptide 2 (SHLP2) have been reported to act as insulin sensitizers and modulate metabolism. OBJECTIVES By using a metabolomic approach, this study explores how the plasma metabolite profile is regulated in response to humanin and SHLP2 treatment in a diet-induced obesity (DIO) mouse model. The results also shed light on the potential mechanism underlying MDPs' insulin sensitization effects. METHODS Plasma samples were obtained from DIO mice subjected to vehicle (water) treatment, or peptide treatment with either humanin analog S14G (HNG) or SHLP2 (n = 6 per group). Vehicle or peptides were given as intraperitoneal (IP) injections twice a day at dose of 2.5 mg/kg/injection for 3 days. Metabolites in plasma samples were comprehensively identified and quantified using UPLC-MS/MS. RESULTS HNG and SHLP2 administration significantly altered the concentrations of amino acid and lipid metabolites in plasma. Among all the metabolic pathways, the glutathione and sphingolipid metabolism responded most strongly to the peptide treatment. CONCLUSIONS The present study indicates that humanin and SHLP2 can lower several markers associated with age-related metabolic disorders. With the previous understanding of the effects of humanin and SHLP2 on cardiovascular function, insulin sensitization, and anti-inflammation, this metabolomic discovery provides a more comprehensive molecular explanation of the mechanism of action for humanin and SHLP2 treatment.
Collapse
Affiliation(s)
- Hemal H Mehta
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Jialin Xiao
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Ricardo Ramirez
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Brendan Miller
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Su-Jeong Kim
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Pinchas Cohen
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Kelvin Yen
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
37
|
Prentice BM, Hart NJ, Phillips N, Haliyur R, Judd A, Armandala R, Spraggins JM, Lowe CL, Boyd KL, Stein RW, Wright CV, Norris JL, Powers AC, Brissova M, Caprioli RM. Imaging mass spectrometry enables molecular profiling of mouse and human pancreatic tissue. Diabetologia 2019; 62:1036-1047. [PMID: 30955045 PMCID: PMC6553460 DOI: 10.1007/s00125-019-4855-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 06/22/2018] [Accepted: 02/20/2019] [Indexed: 12/20/2022]
Abstract
AIMS/HYPOTHESIS The molecular response and function of pancreatic islet cells during metabolic stress is a complex process. The anatomical location and small size of pancreatic islets coupled with current methodological limitations have prevented the achievement of a complete, coherent picture of the role that lipids and proteins play in cellular processes under normal conditions and in diseased states. Herein, we describe the development of untargeted tissue imaging mass spectrometry (IMS) technologies for the study of in situ protein and, more specifically, lipid distributions in murine and human pancreases. METHODS We developed matrix-assisted laser desorption/ionisation (MALDI) IMS protocols to study metabolite, lipid and protein distributions in mouse (wild-type and ob/ob mouse models) and human pancreases. IMS allows for the facile discrimination of chemically similar lipid and metabolite isoforms that cannot be distinguished using standard immunohistochemical techniques. Co-registration of MS images with immunofluorescence images acquired from serial tissue sections allowed accurate cross-registration of cell types. By acquiring immunofluorescence images first, this serial section approach guides targeted high spatial resolution IMS analyses (down to 15 μm) of regions of interest and leads to reduced time requirements for data acquisition. RESULTS MALDI IMS enabled the molecular identification of specific phospholipid and glycolipid isoforms in pancreatic islets with intra-islet spatial resolution. This technology shows that subtle differences in the chemical structure of phospholipids can dramatically affect their distribution patterns and, presumably, cellular function within the islet and exocrine compartments of the pancreas (e.g. 18:1 vs 18:2 fatty acyl groups in phosphatidylcholine lipids). We also observed the localisation of specific GM3 ganglioside lipids [GM3(d34:1), GM3(d36:1), GM3(d38:1) and GM3(d40:1)] within murine islet cells that were correlated with a higher level of GM3 synthase as verified by immunostaining. However, in human pancreas, GM3 gangliosides were equally distributed in both the endocrine and exocrine tissue, with only one GM3 isoform showing islet-specific localisation. CONCLUSIONS/INTERPRETATION The development of more complete molecular profiles of pancreatic tissue will provide important insight into the molecular state of the pancreas during islet development, normal function, and diseased states. For example, this study demonstrates that these results can provide novel insight into the potential signalling mechanisms involving phospholipids and glycolipids that would be difficult to detect by targeted methods, and can help raise new hypotheses about the types of physiological control exerted on endocrine hormone-producing cells in islets. Importantly, the in situ measurements afforded by IMS do not require a priori knowledge of molecules of interest and are not susceptible to the limitations of immunohistochemistry, providing the opportunity for novel biomarker discovery. Notably, the presence of multiple GM3 isoforms in mouse islets and the differential localisation of lipids in human tissue underscore the important role these molecules play in regulating insulin modulation and suggest species, organ, and cell specificity. This approach demonstrates the importance of both high spatial resolution and high molecular specificity to accurately survey the molecular composition of complex, multi-functional tissues such as the pancreas.
Collapse
Affiliation(s)
- Boone M Prentice
- 9160 MRB III, Department of Biochemistry, Vanderbilt University, Nashville, TN, 37232, USA
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, TN, USA
| | - Nathaniel J Hart
- Division of Diabetes, Endocrinology and Metabolism, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Neil Phillips
- Division of Diabetes, Endocrinology and Metabolism, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Rachana Haliyur
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Audra Judd
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, TN, USA
| | - Radhika Armandala
- Division of Diabetes, Endocrinology and Metabolism, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jeffrey M Spraggins
- 9160 MRB III, Department of Biochemistry, Vanderbilt University, Nashville, TN, 37232, USA
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, TN, USA
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA
| | - Cindy L Lowe
- Translational Pathology Shared Resource, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Kelli L Boyd
- Translational Pathology Shared Resource, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Roland W Stein
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Christopher V Wright
- Department of Cell & Developmental Biology, Vanderbilt University, Nashville, TN, USA
| | - Jeremy L Norris
- 9160 MRB III, Department of Biochemistry, Vanderbilt University, Nashville, TN, 37232, USA
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, TN, USA
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA
| | - Alvin C Powers
- Division of Diabetes, Endocrinology and Metabolism, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN, USA
| | - Marcela Brissova
- Division of Diabetes, Endocrinology and Metabolism, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Richard M Caprioli
- 9160 MRB III, Department of Biochemistry, Vanderbilt University, Nashville, TN, 37232, USA.
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, TN, USA.
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA.
- Department of Pharmacology and Medicine, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
38
|
Adamska-Patruno E, Samczuk P, Ciborowski M, Godzien J, Pietrowska K, Bauer W, Gorska M, Barbas C, Kretowski A. Metabolomics Reveal Altered Postprandial Lipid Metabolism After a High-Carbohydrate Meal in Men at High Genetic Risk of Diabetes. J Nutr 2019; 149:915-922. [PMID: 31049566 DOI: 10.1093/jn/nxz024] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/22/2018] [Revised: 12/17/2018] [Accepted: 01/30/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The transcription factor 7-like 2 (TCF7L2) gene confers one of the strongest genetic predispositions to type 2 diabetes, but diabetes development can be modified by diet. OBJECTIVE The aim of our study was to evaluate postprandial metabolic alterations in healthy men with a high genetic risk of diabetes, after two meals with varying macronutrient content. METHODS The study was conducted in 21 homozygous nondiabetic men carrying the high-risk (HR, n = 8, age: 31.2 ± 6.3 y, body mass index (BMI, kg/m2) 28.5 ± 8.1) or low-risk (LR, n = 13, age: 35.2 ± 10.3 y, BMI: 28.1 ± 6.4) genotypes at the rs7901695 locus. During two meal challenge test visits subjects received standardized isocaloric (450 kcal) liquid meals: high-carbohydrate (HC, carbohydrates: 89% of energy) and normo-carbohydrate (NC, carbohydrates: 45% of energy). Fasting (0 min) and postprandial (30, 60, 120, 180 min) plasma samples were analyzed for metabolite profiles through untargeted metabolomics. Metabolic fingerprinting was performed on an ultra-high-performance liquid chromatography (UHPLC) system connected to an iFunnel quadrupole-time-of-flight (Q-TOF) mass spectrometer. RESULTS In HR-genotype men, after the intake of an HC-meal, we noted a significantly lower area under the curves (AUCs) of postprandial plasma concentrations of most of the phospholipids (-37% to -53%, variable importance in the projection (VIP) = 1.2-1.5), lysophospholipids (-29% to -86%, VIP = 1.1-2.6), sphingolipids (-32% to -47%, VIP = 1.1-1.3), as well as arachidonic (-36%, VIP = 1.4) and oleic (-63%, VIP = 1.3) acids, their metabolites: keto- and hydoxy-fatty acids (-38% to -78%, VIP = 1.3-2.5), leukotrienes (-65% to -83%, VIP = 1.4-2.2), uric acid (-59%, VIP = 1.5), and pyroglutamic acid (-65%, VIP = 1.8). The AUCs of postprandial sphingosine concentrations were higher (125-832%, VIP = 1.9-3.2) after the NC-meal, AUCs of acylcarnitines were lower (-21% to -61%, VIP = 1.1-2.4), and AUCs of fatty acid amides were higher (51-508%, VIP = 1.7-3.1) after the intake of both meals. CONCLUSIONS In nondiabetic men carrying the TCF7L2 HR genotype, subtle but detectable modifications in intermediate lipid metabolism are induced by an HC-meal. This trial was registered at www.clinicaltrials.gov as NCT03792685.
Collapse
Affiliation(s)
| | - Paulina Samczuk
- Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Michal Ciborowski
- Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Joanna Godzien
- Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland.,Center for Metabolomics and Bioanalysis (CEMBIO), Universidad CEU San Pablo, Madrid, Spain
| | - Karolina Pietrowska
- Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Witold Bauer
- Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Maria Gorska
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, Bialystok, Poland
| | - Coral Barbas
- Center for Metabolomics and Bioanalysis (CEMBIO), Universidad CEU San Pablo, Madrid, Spain
| | - Adam Kretowski
- Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland.,Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
39
|
Li C, He J, Li S, Chen W, Bazzano L, Sun X, Shen L, Liang L, Shen Y, Gu X, Kelly TN. Novel Metabolites Are Associated With Augmentation Index and Pulse Wave Velocity: Findings From the Bogalusa Heart Study. Am J Hypertens 2019; 32:547-556. [PMID: 30953049 DOI: 10.1093/ajh/hpz046] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/05/2019] [Revised: 03/21/2019] [Accepted: 03/25/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Metabolomics study may help identify novel mechanisms underlying arterial stiffening. METHODS We performed untargeted metabolomics profiling among 1,239 participants of the Bogalusa Heart Study. After quality control, 1,202 metabolites were evaluated for associations with augmentation index (AI) and pulse wave velocity (PWV), using multivariate linear regression adjusting for age, sex, race, education, smoking, drinking, body weight, body height, physical activity, and estimated glomerular filtration rate. Heart rate, blood pressure and antihypertensive medication usage, lipids, and fasting glucose were sequentially adjusted in the sensitivity analyses for significant metabolites. Weighted correlation network analysis was applied to build metabolite networks. RESULTS Six novel metabolites were negatively associated with AI, of which, 3-methyl-2-oxobutyrate had the lowest P value and the largest effect size (β = -6.67, P = 5.99 × 10-6). Heart rate contributed to a large proportion (25%-58%) of the association for each metabolite. Twenty-one novel metabolites were identified for PWV, of which, fructose (β = 0.61, P = 6.18 × 10-10) was most significant, and histidine had the largest effect size (β = -1.09, P = 2.51 × 10-7). Blood pressure played a major contribution (9%-54%) to the association for each metabolite. Furthermore, 16 metabolites were associated with arterial stiffness independent of traditional risk factors. Network analysis identified 2 modules associated with both AI and PWV (P < 8.00 × 10-4). One was composed of metabolites from the glycerolipids synthesis and recycling pathway, and the other was involved in valine, leucine, and isoleucine metabolism. One module related to sphingomyelin metabolism was associated with PWV only (P = 0.002). CONCLUSIONS This study has identified novel and important metabolites and metabolic networks associated with arterial stiffness.
Collapse
Affiliation(s)
- Changwei Li
- Department of Epidemiology and Biostatistics, University of Georgia College of Public Health, Athens, Georgia, USA
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, Louisiana, USA
| | - Jiang He
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, Louisiana, USA
- Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Shengxu Li
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, Louisiana, USA
| | - Wei Chen
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, Louisiana, USA
| | - Lydia Bazzano
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, Louisiana, USA
| | - Xiao Sun
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, Louisiana, USA
| | - Luqi Shen
- Department of Epidemiology and Biostatistics, University of Georgia College of Public Health, Athens, Georgia, USA
| | - Lirong Liang
- Clinical Epidemiology and Tobacco Dependence Treatment Research Department, Beijing Institute of Respiratory Medicine, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Ye Shen
- Department of Epidemiology and Biostatistics, University of Georgia College of Public Health, Athens, Georgia, USA
| | - Xiaoying Gu
- Institute of Clinical Medical Science, China-Japan Friendship Hospital, Beijing, China
| | - Tanika N Kelly
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, Louisiana, USA
| |
Collapse
|
40
|
Hammoudeh S, Gadelhak W, Janahi IA. Asthma and obesity in the Middle East region: An overview. Ann Thorac Med 2019; 14:116-121. [PMID: 31007762 PMCID: PMC6467016 DOI: 10.4103/atm.atm_115_18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 04/18/2018] [Accepted: 08/07/2018] [Indexed: 01/03/2023] Open
Abstract
This paper aims to cover the current status of asthma and obesity in the Middle East, as well as to introduce the various studies tying the two diseases; further expanding on the proposed mechanisms. Finally, the paper covers recent literature related to sphingolipids and its role in asthma, followed by recommendations and future directions. In preparation of this paper, we searched PubMed and Google Scholar, with no restrictions, using the following terms; asthma, obesity, Middle East, sphingolipids. We also used the reference list of retrieved articles to further expand on the pool of articles that were used for this review.
Collapse
Affiliation(s)
- Samer Hammoudeh
- Medical Research Center, Research Affairs, Hamad Medical Corporation, Doha, Qatar
| | - Wessam Gadelhak
- Medical Research Center, Research Affairs, Hamad Medical Corporation, Doha, Qatar
| | - Ibrahim A. Janahi
- Medical Research Center, Research Affairs, Hamad Medical Corporation, Doha, Qatar
- Pediatric Pulmonology, Hamad Medical Corporation, Doha, Qatar
| |
Collapse
|
41
|
Ferdouse J, Miyagawa M, Hirano M, Kitajima Y, Inaba S, Kitagaki H. A new method for determining the mycelial weight of the koji-mold Aspergillus oryzae by measuring its glycosylceramide content. J GEN APPL MICROBIOL 2019; 65:34-38. [PMID: 29925746 DOI: 10.2323/jgam.2018.04.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/03/2022]
Abstract
At present, the quantitation of the mycelial weight of the industrially important non-pathogenic fungus Aspergillus oryzae, which is used for manufacturing koji, is performed by quantitating N-acetylglucosamine. However, since N-acetylglucosamine is a cell wall component, the extraction procedure is costly and tedious, and its quantitative performance is poor. Here, we report a novel method for the quantitation of A. oryzae mycelial weight. The amount of glycosylceramide significantly correlated with both the mycelial weight of A. oryzae and the amount of N-acetylglucosamine, an established index of the mycelial weight of A. oryzae in koji. This new method is simple and efficient and can be used in the brewing and food industries to determine the mycelial weight of A. oryzae.
Collapse
Affiliation(s)
- Jannatul Ferdouse
- Department of Environmental Science, Faculty of Agriculture, Saga University.,Department of Biochemistry and Applied Biosciences, United Graduate School of Agricultural Sciences, Kagoshima University
| | - Miyuki Miyagawa
- Department of Environmental Science, Faculty of Agriculture, Saga University
| | - Mikako Hirano
- Department of Environmental Science, Faculty of Agriculture, Saga University
| | - Yuka Kitajima
- Department of Environmental Science, Faculty of Agriculture, Saga University
| | - Shigeki Inaba
- Department of Environmental Science, Faculty of Agriculture, Saga University
| | - Hiroshi Kitagaki
- Department of Environmental Science, Faculty of Agriculture, Saga University.,Department of Biochemistry and Applied Biosciences, United Graduate School of Agricultural Sciences, Kagoshima University
| |
Collapse
|
42
|
Magaye RR, Savira F, Hua Y, Kelly DJ, Reid C, Flynn B, Liew D, Wang BH. The role of dihydrosphingolipids in disease. Cell Mol Life Sci 2019; 76:1107-1134. [PMID: 30523364 PMCID: PMC11105797 DOI: 10.1007/s00018-018-2984-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/19/2018] [Revised: 11/06/2018] [Accepted: 11/26/2018] [Indexed: 12/29/2022]
Abstract
Dihydrosphingolipids refer to sphingolipids early in the biosynthetic pathway that do not contain a C4-trans-double bond in the sphingoid backbone: 3-ketosphinganine (3-ketoSph), dihydrosphingosine (dhSph), dihydrosphingosine-1-phosphate (dhS1P) and dihydroceramide (dhCer). Recent advances in research related to sphingolipid biochemistry have shed light on the importance of sphingolipids in terms of cellular signalling in health and disease. However, dihydrosphingolipids have received less attention and research is lacking especially in terms of their molecular mechanisms of action. This is despite studies implicating them in the pathophysiology of disease, for example dhCer in predicting type 2 diabetes in obese individuals, dhS1P in cardiovascular diseases and dhSph in hepato-renal toxicity. This review gives a comprehensive summary of research in the last 10-15 years on the dihydrosphingolipids, 3-ketoSph, dhSph, dhS1P and dhCer, and their relevant roles in different diseases. It also highlights gaps in research that could be of future interest.
Collapse
Affiliation(s)
- Ruth R Magaye
- Monash Centre of Cardiovascular Research and Education in Therapeutics, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Feby Savira
- Monash Centre of Cardiovascular Research and Education in Therapeutics, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Yue Hua
- Monash Centre of Cardiovascular Research and Education in Therapeutics, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Darren J Kelly
- Department of Medicine, St Vincent's Hospital, University of Melbourne, Fitzroy, VIC, Australia
| | - Christopher Reid
- Monash Centre of Cardiovascular Research and Education in Therapeutics, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Bernard Flynn
- Australian Translational Medicinal Chemistry Facility, Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Australia
| | - Danny Liew
- Monash Centre of Cardiovascular Research and Education in Therapeutics, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Bing H Wang
- Monash Centre of Cardiovascular Research and Education in Therapeutics, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia.
| |
Collapse
|
43
|
Del Puerto-Nevado L, Minguez P, Corton M, Solanes-Casado S, Prieto I, Mas S, Sanz AB, Gonzalez-Alonso P, Villaverde C, Portal-Nuñez S, Aguilera O, Gomez-Guerrero C, Esbrit P, Vivanco F, Gonzalez N, Ayuso C, Ortiz A, Rojo F, Egido J, Alvarez-Llamas G, Garcia-Foncillas J. Molecular evidence of field cancerization initiated by diabetes in colon cancer patients. Mol Oncol 2019; 13:857-872. [PMID: 30628165 PMCID: PMC6441931 DOI: 10.1002/1878-0261.12438] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/06/2018] [Revised: 12/01/2018] [Accepted: 12/27/2018] [Indexed: 12/20/2022] Open
Abstract
The potential involvement of type 2 diabetes mellitus (T2DM) as a risk factor for colon cancer (CC) has been previously reported. While several clinical studies show a higher incidence of CC and a lower survival rate in diabetics, others report no association. Our own experience indicates that diabetes does not seem to worsen the prognosis once the tumor is present. Despite this controversy, there are no wide‐spectrum molecular studies that delve into the impact of T2DM‐related mechanisms in colon carcinogenesis. Here, we present a transcriptomic and proteomic profiling of paired tumor and normal colon mucosa samples in a cohort of 42 CC patients, 23 of which have T2DM. We used gene set enrichment and network approaches to extract relevant pathways in diabetics, referenced them to current knowledge, and tested them using in vitro techniques. Through our transcriptomics approach, we identified an unexpected overlap of pathways overrepresented in diabetics compared to nondiabetics, in both tumor and normal mucosa, including diabetes‐related metabolic and signaling processes. Proteomic approaches highlighted several cancer‐related signaling routes in diabetics found only in normal mucosa, not in tumors. An integration of the transcriptome and proteome analyses suggested the deregulation of key pathways related to colon carcinogenesis which converged on tumor initiation axis TEAD/YAP‐TAZ as a potential initiator of the process. In vitro studies confirmed upregulation of this pathway in nontumor colon cells under high‐glucose conditions. In conclusion, T2DM associates with deregulation of cancer‐related processes in normal colon mucosa adjacent to tissue which has undergone a malignant transformation. These data support that in diabetic patients, the local microenvironment in normal colon mucosa may be a factor driving field cancerization promoting carcinogenesis. Our results set a new framework to study links between diabetes and colon cancer, including a new role of the TEAD/YAP‐TAZ complex as a potential driver.
Collapse
Affiliation(s)
- Laura Del Puerto-Nevado
- Translational Oncology Division, Oncohealth Institute, IIS-Fundacion Jimenez Diaz-UAM, Madrid, Spain
| | - Pablo Minguez
- Genetics Department, IIS-Fundacion Jimenez Diaz-UAM, Madrid, Spain
| | - Marta Corton
- Genetics Department, IIS-Fundacion Jimenez Diaz-UAM, Madrid, Spain.,Center for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
| | - Sonia Solanes-Casado
- Translational Oncology Division, Oncohealth Institute, IIS-Fundacion Jimenez Diaz-UAM, Madrid, Spain
| | - Isabel Prieto
- Radiation Oncology, Oncohealth Institute, IIS-Fundacion Jimenez Diaz-UAM, Madrid, Spain
| | - Sebastian Mas
- Renal, Vascular and Diabetes Research Laboratory, IIS-Fundacion Jimenez Diaz-UAM, Spanish Biomedical Research Network in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
| | - Ana Belen Sanz
- Nephrology and Hypertension Department, IIS-Fundacion Jimenez Diaz-UAM, Madrid, Spain.,REDINREN, Madrid, Spain
| | | | - Cristina Villaverde
- Genetics Department, IIS-Fundacion Jimenez Diaz-UAM, Madrid, Spain.,Center for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
| | - Sergio Portal-Nuñez
- Bone and Mineral Metabolism Laboratory, IIS-Fundacion Jimenez Diaz-UAM, Madrid, Spain.,Applied Molecular Medicine Institute, School of Medicine, Universidad San Pablo CEU, CEU Universities, Madrid, Spain
| | - Oscar Aguilera
- Translational Oncology Division, Oncohealth Institute, IIS-Fundacion Jimenez Diaz-UAM, Madrid, Spain
| | - Carmen Gomez-Guerrero
- Renal, Vascular and Diabetes Research Laboratory, IIS-Fundacion Jimenez Diaz-UAM, Spanish Biomedical Research Network in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
| | - Pedro Esbrit
- Bone and Mineral Metabolism Laboratory, IIS-Fundacion Jimenez Diaz-UAM, Madrid, Spain
| | - Fernando Vivanco
- Immunoallergy and Proteomics Laboratory, Immunology Department, IIS-Fundacion Jimenez Diaz-UAM, Madrid, Spain
| | - Nieves Gonzalez
- Renal, Vascular and Diabetes Research Laboratory, IIS-Fundacion Jimenez Diaz-UAM, Spanish Biomedical Research Network in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
| | - Carmen Ayuso
- Genetics Department, IIS-Fundacion Jimenez Diaz-UAM, Madrid, Spain.,Center for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
| | - Alberto Ortiz
- Nephrology and Hypertension Department, IIS-Fundacion Jimenez Diaz-UAM, Madrid, Spain.,REDINREN, Madrid, Spain
| | - Federico Rojo
- Pathology Department, IIS-Fundacion Jimenez Diaz-UAM, Madrid, Spain
| | - Jesus Egido
- Renal, Vascular and Diabetes Research Laboratory, IIS-Fundacion Jimenez Diaz-UAM, Spanish Biomedical Research Network in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
| | - Gloria Alvarez-Llamas
- REDINREN, Madrid, Spain.,Immunoallergy and Proteomics Laboratory, Immunology Department, IIS-Fundacion Jimenez Diaz-UAM, Madrid, Spain
| | - Jesus Garcia-Foncillas
- Translational Oncology Division, Oncohealth Institute, IIS-Fundacion Jimenez Diaz-UAM, Madrid, Spain
| | -
- Translational Oncology Division, Oncohealth Institute, IIS-Fundacion Jimenez Diaz-UAM, Madrid, Spain
| |
Collapse
|
44
|
Matanes F, Twal WO, Hammad SM. Sphingolipids as Biomarkers of Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1159:109-138. [DOI: 10.1007/978-3-030-21162-2_7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 12/13/2022]
|
45
|
Charytoniuk T, Iłowska N, Berk K, Drygalski K, Chabowski A, Konstantynowicz-Nowicka K. The effect of enterolactone on sphingolipid pathway and hepatic insulin resistance development in HepG2 cells. Life Sci 2018; 217:1-7. [PMID: 30468835 DOI: 10.1016/j.lfs.2018.11.044] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/19/2018] [Revised: 11/16/2018] [Accepted: 11/19/2018] [Indexed: 11/25/2022]
Abstract
AIMS Obesity and type 2 diabetes mellitus, correlate with increased tissue concentration of sphingolipids, which directly interfere with insulin signaling pathway. Phytoestrogens are a group of plant-derived compounds that have been studied in the case of metabolic disorders treatment. Therefore, the aim of this study was to ascertain whether enterolactone (ENL), a commonly known phytoestrogen, may affect sphingolipid metabolism and decrease hepatic insulin resistance development in a lipid overload state. MAIN METHODS The study was conducted on HepG2 cells incubated with ENL and/or palmitic acid (PA) for 16 h. Intra- and extracellular sphingolipid concentrations were assessed by high performance liquid chromatography. The expression of sphingolipid pathway enzymes, apoptosis and insulin signaling pathway proteins and glucose metabolism regulators were evaluated by Western Blot. KEY FINDINGS In HepG2 cells, a considerable augmentation of intracellular ceramide and sphingosine concentration in ENL with PA group were indicated with simultaneous increase in extracellular ceramide concentration. The ENL treatment increased expression of selected enzymes from de novo ceramide synthesis pathway with lower expression of ceramide transfer protein. We also observed a decreased expression of insulin-stimulated phosphorylation of AKT and AMPK after exposure to ENL with PA. Our research demonstrated that ENL with PA resulted in an increased expression of caspase-3. SIGNIFICANCE Enterolactone, in a higher fatty acids availability, led to the development of hepatic IR in HepG2 cells. This phenomenon may be the result of elevated intracellular ceramide accumulation caused by increased de novo synthesis pathway what led to enhanced apoptosis of HepG2 cells.
Collapse
Affiliation(s)
- Tomasz Charytoniuk
- Department of Physiology, Medical University of Bialystok, Mickiewicza St. 2C, 15-222 Bialystok, Poland
| | - Nicoletta Iłowska
- Department of Physiology, Medical University of Bialystok, Mickiewicza St. 2C, 15-222 Bialystok, Poland
| | - Klaudia Berk
- Department of Physiology, Medical University of Bialystok, Mickiewicza St. 2C, 15-222 Bialystok, Poland
| | - Krzysztof Drygalski
- Department of Physiology, Medical University of Bialystok, Mickiewicza St. 2C, 15-222 Bialystok, Poland
| | - Adrian Chabowski
- Department of Physiology, Medical University of Bialystok, Mickiewicza St. 2C, 15-222 Bialystok, Poland
| | | |
Collapse
|
46
|
Zhou M, Ford B, Lee D, Tindula G, Huen K, Tran V, Bradman A, Gunier R, Eskenazi B, Nomura DK, Holland N. Metabolomic Markers of Phthalate Exposure in Plasma and Urine of Pregnant Women. Front Public Health 2018; 6:298. [PMID: 30406068 PMCID: PMC6204535 DOI: 10.3389/fpubh.2018.00298] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/12/2018] [Accepted: 09/28/2018] [Indexed: 12/18/2022] Open
Abstract
Phthalates are known endocrine disruptors and found in almost all people with several associated adverse health outcomes reported in humans and animal models. Limited data are available on the relationship between exposure to endocrine disrupting chemicals and the human metabolome. We examined the relationship of metabolomic profiles in plasma and urine of 115 pregnant women with eleven urine phthalate metabolites measured at 26 weeks of gestation to identify potential biomarkers and relevant pathways. Targeted metabolomics was performed by selected reaction monitoring liquid chromatography and triple quadrupole mass spectrometry to measure 415 metabolites in plasma and 151 metabolites in urine samples. We have chosen metabolites with the best defined peaks for more detailed analysis (138 in plasma and 40 in urine). Relationship between urine phthalate metabolites and concurrent metabolomic markers in plasma and urine suggested potential involvement of diverse pathways including lipid, steroid, and nucleic acid metabolism and enhanced inflammatory response. Most of the correlations were positive for both urine and plasma, and further confirmed by regression and PCA analysis. However, after the FDR adjustment for multiple comparisons, only 9 urine associations remained statistically significant (q-values 0.0001–0.0451), including Nicotinamide mononucleotide, Cysteine T2, Cystine, and L-Aspartic acid. Additionally, we found negative associations of maternal pre-pregnancy body mass index (BMI) with more than 20 metabolomic markers related to lipid and amino-acid metabolism and inflammation pathways in plasma (p = 0.01–0.0004), while Mevalonic acid was positively associated (p = 0.009). Nicotinic acid, the only significant metabolite in urine, had a positive association with maternal BMI (p = 0.002). In summary, when evaluated in the context of metabolic pathways, the findings suggest enhanced lipid biogenesis, inflammation and altered nucleic acid metabolism in association with higher phthalate levels. These results provide new insights into the relationship between phthalates, common in most human populations, and metabolomics, a novel approach to exposure and health biomonitoring.
Collapse
Affiliation(s)
- Michael Zhou
- School of Public Health, Center for Environmental Research and Children's Health, University of California, Berkeley, Berkeley, CA, United States
| | - Breanna Ford
- Departments of Chemistry, Molecular and Cell Biology, and Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA, United States
| | - Douglas Lee
- Omic Insight, LLC, Durham, NC, United States
| | - Gwen Tindula
- School of Public Health, Center for Environmental Research and Children's Health, University of California, Berkeley, Berkeley, CA, United States
| | - Karen Huen
- School of Public Health, Center for Environmental Research and Children's Health, University of California, Berkeley, Berkeley, CA, United States
| | - Vy Tran
- School of Public Health, Center for Environmental Research and Children's Health, University of California, Berkeley, Berkeley, CA, United States
| | - Asa Bradman
- School of Public Health, Center for Environmental Research and Children's Health, University of California, Berkeley, Berkeley, CA, United States
| | - Robert Gunier
- School of Public Health, Center for Environmental Research and Children's Health, University of California, Berkeley, Berkeley, CA, United States
| | - Brenda Eskenazi
- School of Public Health, Center for Environmental Research and Children's Health, University of California, Berkeley, Berkeley, CA, United States
| | - Daniel K Nomura
- Departments of Chemistry, Molecular and Cell Biology, and Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA, United States
| | - Nina Holland
- School of Public Health, Center for Environmental Research and Children's Health, University of California, Berkeley, Berkeley, CA, United States
| |
Collapse
|
47
|
Shi W, Zhai C, Feng W, Wang J, Zhu Y, Li S, Wang Q, Zhang Q, Yan X, Chai L, Liu P, Chen Y, Li M. Resveratrol inhibits monocrotaline-induced pulmonary arterial remodeling by suppression of SphK1-mediated NF-κB activation. Life Sci 2018; 210:140-149. [PMID: 30179628 DOI: 10.1016/j.lfs.2018.08.071] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/28/2018] [Revised: 08/23/2018] [Accepted: 08/31/2018] [Indexed: 12/21/2022]
Abstract
AIMS This study aims to explore the molecular mechanisms underlying sphingosine kinase 1 (SphK1) inducing pulmonary vascular remodeling and resveratrol suppressing pulmonary arterial hypertension (PAH). MATERIAL AND METHODS monocrotaline (MCT) was used to induce PAH in rats. The right ventricular systolic pressure (RVSP), right ventricle hypertrophy index (RVHI) and histological analyses including hematoxylin and eosin staining, the percentage of medial wall thickness (%MT), α-SMA staining and Ki67 staining were performed to evaluate the development of PAH. Protein levels of SphK1, nuclear factor-kappaB (NF-κB)-p65 and cyclin D1 were determined using immunoblotting. Sphingosine-1-phosphate (S1P) concentration was measured using enzyme-linked immunosorbent assay. KEY FINDINGS SphK1 protein level, S1P production, NF-κB activation and cyclin D1 expression were significantly increased in MCT-induced PAH rats. Inhibition of SphK1 by PF543 suppressed S1P synthesis and NF-κB activation and down-regulated cyclin D1 expression in PAH rats. Suppression of NF-κB by pyrrolidine dithiocarbamate (PDTC) also reduced cyclin D1 expression in PAH model. Treatment of PAH rats with either PF543 or PDTC dramatically decreased RVSP, RVHI and %MT and reduced pulmonary arterial smooth muscle cells proliferation and pulmonary vessel muscularization. In addition, resveratrol effectively inhibited the development of PAH by suppression of SphK1/S1P-mediated NF-κB activation and subsequent cyclin D1 expression. SIGNIFICANCE SphK1/S1P signaling induces the development of PAH by activation of NF-κB and subsequent up-regulation of cyclin D1 expression. Resveratrol inhibits the MCT-induced PAH by targeting on SphK1 and reverses the downstream changes of SphK1, indicating that resveratrol might be a therapeutic agent for the prevention of PAH.
Collapse
Affiliation(s)
- Wenhua Shi
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Xi'an, Shaanxi 710061, China; Shaanxi Province Center for Regenerative Medicine and Surgery Engineering Research, Xi'an, Shaanxi 710061, China
| | - Cui Zhai
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Wei Feng
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Xi'an, Shaanxi 710061, China; Shaanxi Province Center for Regenerative Medicine and Surgery Engineering Research, Xi'an, Shaanxi 710061, China
| | - Jian Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Xi'an, Shaanxi 710061, China; Shaanxi Province Center for Regenerative Medicine and Surgery Engineering Research, Xi'an, Shaanxi 710061, China
| | - Yanting Zhu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Shaojun Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Qingting Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Qianqian Zhang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Xin Yan
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Limin Chai
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Pengtao Liu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Yuqian Chen
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Manxiang Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China.
| |
Collapse
|
48
|
Serum metabonomics study on antidiabetic effects of fenugreek flavonoids in streptozotocin-induced rats. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1092:466-472. [PMID: 30008302 DOI: 10.1016/j.jchromb.2018.06.041] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/31/2017] [Revised: 06/16/2018] [Accepted: 06/18/2018] [Indexed: 12/23/2022]
Abstract
Fenugreek is a well-known medicinal plant used for treatment of diabetes. In this study, the antidiabetic effect of fenugreek flavonoids was investigated by metabonomics based on ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS). Fenugreek flavonoids were purified using polyamide resin and D101 macroporous adsorption resin, characterized by UPLC-Q-TOF-MS, and administered to streptozotocin (STZ)-induced diabetic rats for 28 days. Pharmacological study results indicated that fenugreek flavonoids exerted a strong antidiabetic effect characterized by significant reduction of fasting blood glucose (P < 0.01), increase in serum insulin level (P < 0.01) and liver glycogen content (P < 0.01), attenuation of weight loss, and improvement of pancreatic islet and kidney conditions. The antidiabetic effect of fenugreek flavonoids was further analyzed by metabonomics. Serum samples of health and diabetic rats treated or not with fenugreek flavonoids were evaluated by UPLC-Q-TOF-MS, followed by principal component analysis (PCA) and orthogonal projection to latent structures squares-discriminant analysis (OPLS-DA). The PCA model revealed significant differences among the animal groups, and OPLS-DA identified fenugreek flavonoids-induced changes of 11 potential biomarkers involved in lipid metabolism (docosahexaenoic acid, arachidonic acid, sphinganine, sphingosine‑1‑phosphate, and lysophosphatidylcholines 20:4, 18:2, 16:0, and 20:2), amino acid metabolism (hippuric acid and tryptophan), and kidney function-related metabolism (2‑phenylethanol glucuronide). Our study demonstrates that flavonoids are bioactive components of fenugreek with potent antidiabetic activity, which exert their therapeutic effects by multiple mechanisms, including reducing insulin resistance, improving gluconeogenesis, and protecting islet cells and kidneys from damage.
Collapse
|
49
|
Chong JR, Xiang P, Wang W, Hind T, Chew WS, Ong WY, Lai MKP, Herr DR. Sphingolipidomics analysis of large clinical cohorts. Part 2: Potential impact and applications. Biochem Biophys Res Commun 2018; 504:602-607. [PMID: 29654757 DOI: 10.1016/j.bbrc.2018.04.075] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/27/2018] [Accepted: 04/10/2018] [Indexed: 11/18/2022]
Abstract
It has been known for decades that the regulation of sphingolipids (SLs) is essential for the proper function of many cellular processes. However, a complete understanding of these processes has been complicated by the structural diversity of these lipids. A well-characterized metabolic pathway is responsible for homeostatic maintenance of hundreds of distinct SL species. This pathway is perturbed in a number of pathological processes, resulting in derangement of the "sphingolipidome." Recently, advances in mass spectrometry (MS) techniques have made it possible to characterize the sphingolipidome in large-scale clinical studies, allowing for the identification of specific SL molecules that mediate pathological processes and/or may serve as biomarkers. This manuscript provides an overview of the functions of SLs, and reviews previous studies that have used MS techniques to identify changes to the sphingolipidome in non-metabolic diseases.
Collapse
Affiliation(s)
- Joyce R Chong
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117597, Singapore
| | - Ping Xiang
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117597, Singapore
| | - Wei Wang
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117597, Singapore
| | - Tatsuma Hind
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117597, Singapore; Department of Pharmacology, University of British Columbia, Vancouver, BC, Canada
| | - Wee Siong Chew
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117597, Singapore
| | - Wei-Yi Ong
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, 119260, Singapore; Neurobiology and Ageing Research Programme, Life Sciences Institute, National University of Singapore, 119260, Singapore
| | - Mitchell K P Lai
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117597, Singapore; Neurobiology and Ageing Research Programme, Life Sciences Institute, National University of Singapore, 119260, Singapore
| | - Deron R Herr
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117597, Singapore; Department of Biology, San Diego State University, San Diego, CA, USA.
| |
Collapse
|
50
|
Integration of human adipocyte chromosomal interactions with adipose gene expression prioritizes obesity-related genes from GWAS. Nat Commun 2018; 9:1512. [PMID: 29666371 PMCID: PMC5904163 DOI: 10.1038/s41467-018-03554-9] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/12/2017] [Accepted: 02/22/2018] [Indexed: 12/13/2022] Open
Abstract
Increased adiposity is a hallmark of obesity and overweight, which affect 2.2 billion people world-wide. Understanding the genetic and molecular mechanisms that underlie obesity-related phenotypes can help to improve treatment options and drug development. Here we perform promoter Capture Hi-C in human adipocytes to investigate interactions between gene promoters and distal elements as a transcription-regulating mechanism contributing to these phenotypes. We find that promoter-interacting elements in human adipocytes are enriched for adipose-related transcription factor motifs, such as PPARG and CEBPB, and contribute to heritability of cis-regulated gene expression. We further intersect these data with published genome-wide association studies for BMI and BMI-related metabolic traits to identify the genes that are under genetic cis regulation in human adipocytes via chromosomal interactions. This integrative genomics approach identifies four cis-eQTL-eGene relationships associated with BMI or obesity-related traits, including rs4776984 and MAP2K5, which we further confirm by EMSA, and highlights 38 additional candidate genes.
Collapse
|