1
|
Shahwar D, Baqai S, Khan F, Khan MI, Javaid S, Hameed A, Raza A, Saleem Uddin S, Hazrat H, Rahman MH, Musharraf SG, Chotani MA. Proteomic Analysis of Rap1A GTPase Signaling-Deficient C57BL/6 Mouse Pancreas and Functional Studies Identify an Essential Role of Rap1A in Pancreas Physiology. Int J Mol Sci 2024; 25:8013. [PMID: 39125590 PMCID: PMC11312117 DOI: 10.3390/ijms25158013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/11/2024] [Accepted: 07/14/2024] [Indexed: 08/12/2024] Open
Abstract
Ras-related Rap1A GTPase is implicated in pancreas β-cell insulin secretion and is stimulated by the cAMP sensor Epac2, a guanine exchange factor and activator of Rap1 GTPase. In this study, we examined the differential proteomic profiles of pancreata from C57BL/6 Rap1A-deficient (Null) and control wild-type (WT) mice with nanoLC-ESI-MS/MS to assess targets of Rap1A potentially involved in insulin regulation. We identified 77 overlapping identifier proteins in both groups, with 8 distinct identifier proteins in Null versus 56 distinct identifier proteins in WT mice pancreata. Functional enrichment analysis showed four of the eight Null unique proteins, ERO1-like protein β (Ero1lβ), triosephosphate isomerase (TP1), 14-3-3 protein γ, and kallikrein-1, were exclusively involved in insulin biogenesis, with roles in insulin metabolism. Specifically, the mRNA expression of Ero1lβ and TP1 was significantly (p < 0.05) increased in Null versus WT pancreata. Rap1A deficiency significantly affected glucose tolerance during the first 15-30 min of glucose challenge but showed no impact on insulin sensitivity. Ex vivo glucose-stimulated insulin secretion (GSIS) studies on isolated Null islets showed significantly impaired GSIS. Furthermore, in GSIS-impaired islets, the cAMP-Epac2-Rap1A pathway was significantly compromised compared to the WT. Altogether, these studies underscore an essential role of Rap1A GTPase in pancreas physiological function.
Collapse
Affiliation(s)
- Durrey Shahwar
- Molecular Signaling Laboratory, Dr. Panjwani Center for Molecular Medicine and Drug Research (PCMD), International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan; (D.S.); (S.B.); (S.J.); (A.R.); (S.S.U.); (H.H.)
| | - Sadaf Baqai
- Molecular Signaling Laboratory, Dr. Panjwani Center for Molecular Medicine and Drug Research (PCMD), International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan; (D.S.); (S.B.); (S.J.); (A.R.); (S.S.U.); (H.H.)
| | - Faisal Khan
- Mass Spectrometry Laboratory, Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan; (F.K.); (S.G.M.)
- Husein Ebrahim Jamal (H.E.J.) Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - M. Israr Khan
- Molecular Diabetology Laboratory, Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan; (M.I.K.); (M.H.R.)
| | - Shafaq Javaid
- Molecular Signaling Laboratory, Dr. Panjwani Center for Molecular Medicine and Drug Research (PCMD), International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan; (D.S.); (S.B.); (S.J.); (A.R.); (S.S.U.); (H.H.)
| | - Abdul Hameed
- Ziauddin College of Molecular Medicine, Ziauddin University, Clifton, Karachi 75600, Pakistan;
| | - Aisha Raza
- Molecular Signaling Laboratory, Dr. Panjwani Center for Molecular Medicine and Drug Research (PCMD), International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan; (D.S.); (S.B.); (S.J.); (A.R.); (S.S.U.); (H.H.)
| | - Sadaf Saleem Uddin
- Molecular Signaling Laboratory, Dr. Panjwani Center for Molecular Medicine and Drug Research (PCMD), International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan; (D.S.); (S.B.); (S.J.); (A.R.); (S.S.U.); (H.H.)
| | - Hina Hazrat
- Molecular Signaling Laboratory, Dr. Panjwani Center for Molecular Medicine and Drug Research (PCMD), International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan; (D.S.); (S.B.); (S.J.); (A.R.); (S.S.U.); (H.H.)
| | - M. Hafizur Rahman
- Molecular Diabetology Laboratory, Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan; (M.I.K.); (M.H.R.)
- Daffodil International University, Birulia, Savar, Dhaka 1216, Bangladesh
- Dhaka International University, Satarkul, Badda, Dhaka 1212, Bangladesh
| | - Syed Ghulam Musharraf
- Mass Spectrometry Laboratory, Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan; (F.K.); (S.G.M.)
- Husein Ebrahim Jamal (H.E.J.) Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Maqsood A. Chotani
- Molecular Signaling Laboratory, Dr. Panjwani Center for Molecular Medicine and Drug Research (PCMD), International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan; (D.S.); (S.B.); (S.J.); (A.R.); (S.S.U.); (H.H.)
| |
Collapse
|
2
|
Lee JH, Ryu H, Lee H, Yu HR, Gao Y, Lee KM, Kim YJ, Lee J. Endoplasmic reticulum stress in pancreatic β cells induces incretin desensitization and β-cell dysfunction via ATF4-mediated PDE4D expression. Am J Physiol Endocrinol Metab 2023; 325:E448-E465. [PMID: 37729023 DOI: 10.1152/ajpendo.00156.2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/18/2023] [Accepted: 09/05/2023] [Indexed: 09/22/2023]
Abstract
Pancreatic β-cell dysfunction and eventual loss are key steps in the progression of type 2 diabetes (T2D). Endoplasmic reticulum (ER) stress responses, especially those mediated by the protein kinase RNA-like ER kinase and activating transcription factor 4 (PERK-ATF4) pathway, have been implicated in promoting these β-cell pathologies. However, the exact molecular events surrounding the role of the PERK-ATF4 pathway in β-cell dysfunction remain unknown. Here, we report our discovery that ATF4 promotes the expression of PDE4D, which disrupts β-cell function via a downregulation of cAMP signaling. We found that β-cell-specific transgenic expression of ATF4 led to early β-cell dysfunction and loss, a phenotype that resembles accelerated T2D. Expression of ATF4, rather than C/EBP homologous protein (CHOP), promoted PDE4D expression, reduced cAMP signaling, and attenuated responses to incretins and elevated glucose. Furthermore, we found that β-cells of leptin receptor-deficient diabetic (db/db) mice had elevated nuclear localization of ATF4 and PDE4D expression, accompanied by impaired β-cell function. Accordingly, pharmacological inhibition of the ATF4 pathway attenuated PDE4D expression in the islets and promoted incretin-simulated glucose tolerance and insulin secretion in db/db mice. Finally, we found that inhibiting PDE4 activity with selective pharmacological inhibitors improved β-cell function in both db/db mice and β-cell-specific ATF4 transgenic mice. In summary, our results indicate that ER stress causes β-cell failure via ATF4-mediated PDE4D production, suggesting the ATF4-PDE4D pathway could be a therapeutic target for protecting β-cell function during the progression of T2D.NEW & NOTEWORTHY Endoplasmic reticulum stress has been implied to cause multiple β-cell pathologies during the progression of type 2 diabetes (T2D). However, the precise molecular events underlying this remain unknown. Here, we discovered that elevated ATF4 activity, which was seen in T2D β cells, attenuated β-cell proliferation and impaired insulin secretion via PDE4D-mediated downregulation of cAMP signaling. Additionally, we demonstrated that pharmacological inhibition of the ATF4 pathway or PDE4D activity alleviated β-cell dysfunction, suggesting its therapeutic usefulness against T2D.
Collapse
Affiliation(s)
- Ji-Hye Lee
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Republic of Korea
- New Biology Research Center, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Republic of Korea
| | - Hanguk Ryu
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Republic of Korea
| | - Hyejin Lee
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Republic of Korea
| | - Hye Ram Yu
- Well Aging Research Center, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Republic of Korea
| | - Yurong Gao
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Republic of Korea
| | - Kyeong-Min Lee
- Division of Biotechnology, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Republic of Korea
| | - Young-Joon Kim
- Department of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Jaemin Lee
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Republic of Korea
- New Biology Research Center, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Republic of Korea
- Well Aging Research Center, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Republic of Korea
| |
Collapse
|
3
|
Ramanadham S, Turk J, Bhatnagar S. Noncanonical Regulation of cAMP-Dependent Insulin Secretion and Its Implications in Type 2 Diabetes. Compr Physiol 2023; 13:5023-5049. [PMID: 37358504 PMCID: PMC10809800 DOI: 10.1002/cphy.c220031] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2023]
Abstract
Impaired glucose tolerance (IGT) and β-cell dysfunction in insulin resistance associated with obesity lead to type 2 diabetes (T2D). Glucose-stimulated insulin secretion (GSIS) from β-cells occurs via a canonical pathway that involves glucose metabolism, ATP generation, inactivation of K ATP channels, plasma membrane depolarization, and increases in cytosolic concentrations of [Ca 2+ ] c . However, optimal insulin secretion requires amplification of GSIS by increases in cyclic adenosine monophosphate (cAMP) signaling. The cAMP effectors protein kinase A (PKA) and exchange factor activated by cyclic-AMP (Epac) regulate membrane depolarization, gene expression, and trafficking and fusion of insulin granules to the plasma membrane for amplifying GSIS. The widely recognized lipid signaling generated within β-cells by the β-isoform of Ca 2+ -independent phospholipase A 2 enzyme (iPLA 2 β) participates in cAMP-stimulated insulin secretion (cSIS). Recent work has identified the role of a G-protein coupled receptor (GPCR) activated signaling by the complement 1q like-3 (C1ql3) secreted protein in inhibiting cSIS. In the IGT state, cSIS is attenuated, and the β-cell function is reduced. Interestingly, while β-cell-specific deletion of iPLA 2 β reduces cAMP-mediated amplification of GSIS, the loss of iPLA 2 β in macrophages (MØ) confers protection against the development of glucose intolerance associated with diet-induced obesity (DIO). In this article, we discuss canonical (glucose and cAMP) and novel noncanonical (iPLA 2 β and C1ql3) pathways and how they may affect β-cell (dys)function in the context of impaired glucose intolerance associated with obesity and T2D. In conclusion, we provide a perspective that in IGT states, targeting noncanonical pathways along with canonical pathways could be a more comprehensive approach for restoring β-cell function in T2D. © 2023 American Physiological Society. Compr Physiol 13:5023-5049, 2023.
Collapse
Affiliation(s)
- Sasanka Ramanadham
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Alabama, USA
- Comprehensive Diabetes Center, University of Alabama at Birmingham, Alabama, USA
| | - John Turk
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Sushant Bhatnagar
- Comprehensive Diabetes Center, University of Alabama at Birmingham, Alabama, USA
- Department of Medicine, University of Alabama at Birmingham, Alabama, USA
| |
Collapse
|
4
|
Mascioli I, Iapadre G, Ingrosso D, Donato GD, Giannini C, Salpietro V, Chiarelli F, Farello G. Brain and eye involvement in McCune-Albright Syndrome: clinical and translational insights. Front Endocrinol (Lausanne) 2023; 14:1092252. [PMID: 37274327 PMCID: PMC10235602 DOI: 10.3389/fendo.2023.1092252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 05/10/2023] [Indexed: 06/06/2023] Open
Abstract
McCune-Albright Syndrome (MAS) is a rare mosaic (post-zygotic) genetic disorder presenting with a broad continuum clinical spectrum. MAS arises from somatic, activating mutations in the GNAS gene, which induces a dysregulated Gsα-protein signaling in several tissues and an increased production of intracellular cyclic adenosine monophosphate (cAMP). Overall, MAS is a rare disorder affecting less than 1/100,000 children and, for this reason, data establishing genotype-phenotype correlations remain limited. Affected individuals clinically present with a variable combination of fibrous dysplasia of bone (FD), extra-skeletal manifestations (including cafeí-au-lait spots) and precocious puberty which might also be associated to broad hyperfunctioning endocrinopathies, and also gastrointestinal and cardiological involvement. Central nervous system (CNS) and eye involvement in MAS are among the less frequently described complications and remain largely uncharacterized. These rare complications mainly include neurodevelopmental abnormalities (e.g., delayed motor development, cognitive and language impairment), CNS anomalies (e.g., Chiari malformation type I) and a wide array of ophthalmological abnormalities often associated with vision loss. The pathophysiological mechanisms underlying abnormal neurological development have not been yet fully elucidated. The proposed mechanisms include a deleterious impact of chronically dysregulated Gsα-protein signaling on neurological function, or a secondary (damaging) effect of (antenatal and/or early postnatal) hypercortisolism on early pre- and post-natal CNS development. In this Review, we summarize the main neurological and ophthalmological features eventually associated with the MAS spectrum, also providing a detailed overview of the potential pathophysiological mechanisms underlying these clinical complications.
Collapse
Affiliation(s)
- Ilaria Mascioli
- Department of Pediatrics, University of Chieti, Chieti, Italy
| | - Giulia Iapadre
- Department of Pediatrics, University of L’Aquila, L’Aquila, Italy
| | | | - Giulio Di Donato
- Department of Pediatrics, University of L’Aquila, L’Aquila, Italy
| | - Cosimo Giannini
- Department of Pediatrics, University of Chieti, Chieti, Italy
| | | | | | - Giovanni Farello
- Department of Pediatrics, University of L’Aquila, L’Aquila, Italy
| |
Collapse
|
5
|
Elumalai S, Karunakaran U, Won KC, Chung SM, Moon JS. Perfluorooctane sulfonate-induced oxidative stress contributes to pancreatic β-cell apoptosis by inhibiting cyclic adenosine monophosphate pathway: Prevention by pentoxifylline. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 320:120959. [PMID: 36621715 DOI: 10.1016/j.envpol.2022.120959] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 12/18/2022] [Accepted: 12/26/2022] [Indexed: 06/17/2023]
Abstract
Endocrine-disrupting chemical perfluorooctane sulfonate (PFOS) acute exposure stimulates insulin secretion from pancreatic β-cells. However, chronic exposure to PFOS on pancreatic β-cells, its role in insulin secretion, and the underlying mechanisms have not been studied. We used rat insulinoma INS-1 and human 1.1b4 islet cells to investigate the chronic effects of PFOS on glucose-stimulated insulin secretion and toxicity implicated in the downregulation of β-cell functionality. Chronic exposure of INS-1 cells or human pancreatic 1.1b4 β-cells to PFOS stimulated the small G-protein RAC1-guanosine triphosphate-dependent nicotinamide adenine dinucleotide phosphate oxidase (NOX2/gp91phox) subunit expression and activation. Upregulated NOX2/gp91phox activation led to elevated reactive oxygen species (ROS) production with a decrease in the cyclic adenosine monophosphate/protein kinase A (cAMP/PKA) pathway in both cell types. Inhibition of cAMP/PKA signaling induces β-cell mitochondrial dysfunction and endoplasmic stress via the loss of PDX1-SERCA2B and glucose-stimulated insulin release. Inhibiting RAC1-NOX2/gp91phox activation or elevating cAMP by pentoxifylline, a Food and Drug Administration-approved phosphodiesterase inhibitor, significantly reduced PFOS-induced ROS production and restored insulin secretory function of pancreatic β-cells. Enhanced secretory function in pentoxifylline-treated cells was associated with increased stability of PDX1-SERCA2B protein levels. Intriguingly, inhibition of cAMP/PKA signaling impaired pentoxifylline-induced insulin secretion caused by the activation of ROS production and mitochondrial dysfunction. Overall, our findings show that PFOS has a new and first-ever direct chronic effect on pancreatic β-cell failure through increased RAC1-NOX2/gp91phox activation and pentoxifylline-induced cAMP/PKA signaling, which inhibits PFOS-mediated mitochondrial dysfunction.
Collapse
Affiliation(s)
- Suma Elumalai
- Innovative Center for Aging Research, Yeungnam University Medical Center, Daegu, Republic of Korea
| | - Udayakumar Karunakaran
- Innovative Center for Aging Research, Yeungnam University Medical Center, Daegu, Republic of Korea
| | - Kyu Chang Won
- Innovative Center for Aging Research, Yeungnam University Medical Center, Daegu, Republic of Korea; Department of Internal Medicine, Yeungnam University College of Medicine, Daegu, Republic of Korea
| | - Seung Min Chung
- Innovative Center for Aging Research, Yeungnam University Medical Center, Daegu, Republic of Korea; Department of Internal Medicine, Yeungnam University College of Medicine, Daegu, Republic of Korea
| | - Jun Sung Moon
- Department of Internal Medicine, Yeungnam University College of Medicine, Daegu, Republic of Korea.
| |
Collapse
|
6
|
Al-Romaiyan A, Masocha W, Oyedemi S, Marafie SK, Huang GC, Jones PM, Persaud SJ. Commiphora myrrha stimulates insulin secretion from β-cells through activation of atypical protein kinase C and mitogen-activated protein kinase. JOURNAL OF ETHNOPHARMACOLOGY 2023; 302:115937. [PMID: 36410575 DOI: 10.1016/j.jep.2022.115937] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 08/22/2022] [Accepted: 11/11/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ayurvedic medicine has been used in the treatment of diabetes mellitus for centuries. In Arabia and some areas of Africa, Commiphora myrrha (CM) has been extensively used as a plant-based remedy. We have previously shown that an aqueous CM resin solution directly stimulates insulin secretion from MIN6 cells, a mouse β-cell line, and isolated mouse and human islets. However, the signaling pathways involved in CM-induced insulin secretion are completely unknown. Insulin secretion is normally triggered by elevations in intracellular Ca2+ ([Ca2+]i) through voltage gated Ca2+ channels (VGCC) and activation of protein kinases. Protein and lipid kinases such as protein kinase A (PKA), Ca2+-calmodulin dependent protein kinase II (CaMKII), phosphoinositide 3-kinases (PI3Ks), protein kinase C (PKC) and mitogen-activated protein kinase (MAPK), specifically extracellular signal-regulated kinases (ERK1/2), may be involved in receptor-operated insulin secretion. Therefore, we hypothesized that CM may induce insulin secretion by modulating the activity of VGCC and/or one or more of the above kinases. AIM OF THE STUDY To investigate the possible molecular mechanism of action of CM-induced insulin secretion. The effects of aqueous CM resin extract on [Ca2+]i and protein kinase activation from β-cells were examined. METHODS The effect of aqueous CM resin solution on [Ca2+]i was assessed using Ca2+ microfluorimetry. The involvement of VGCC in CM-induced insulin secretion was investigated using static and perifusion insulin secretion experiments in the presence of either EGTA, a Ca2+ chelator, or nifedipine, a blocker of VGCC. The involvement of kinase activation in the stimulatory effect of CM on insulin secretion was examined by using static and perifusion insulin secretion experiments in the presence of known pharmacological inhibitors and/or downregulation of specific kinases. The effects of CM on phosphorylation of PKCζ and ERK1/2 were also assessed using the Wes™ capillary-based protein electrophoresis. RESULTS Ca2+ microfluorimetry measurements showed that exposing MIN6 cells to CM (0.5-2 mg/mL) was not associated with changes in [Ca2+]i. Similarly, incubating MIN6 cells and mouse islets with EGTA and nifedipine, respectively, did not attenuate the insulin secretion induced by CM. However, incubating mouse and human islets with CM in the presence of staurosporine, a non-selective protein kinase inhibitor, completely blocked the effect of CM on insulin secretion. Exposing mouse islets to CM in the presence of H89, KN62 and LY294002, inhibitors of PKA, CaMKII and PI3K, respectively, did not reduce CM-induced insulin secretion. However, incubating mouse and human islets with CM in the presence of Ro 31-8220, a pan-PKC inhibitor, diminished insulin secretion stimulated by CM, whereas inhibiting the action of typical PKC (with Go6976) and PLCβ (with U73122) did not affect CM-stimulated insulin secretion. Similarly, downregulating typical and novel PKC by chronic exposure of mouse islets to phorbol 12-myristate 13-acetate (PMA) was also not associated with a decrease in the stimulatory effect of CM on insulin secretion. Interestingly, CM-induced insulin secretion from mouse islets was inhibited in the presence of the PKCζ inhibitor ZIP and a MAPK inhibitor PD 98059. In addition, Wes™ capillary-based protein electrophoresis indicated that expression of the phosphorylated forms of PKCζ and ERK1/2, a MAPK, was significantly increased following exposure of INS-1832/13 cells, a rat insulinoma cell line, to CM. CONCLUSIONS Our data indicate that CM directly stimulates insulin secretion through activating known downstream effectors of insulin-stimulus secretion coupling. Indeed, the increase in insulin secretion seen with CM is independent of changes in [Ca2+]i and does not involve activation of VGCC. Instead, the CM stimulatory effect on insulin secretion is completely dependent on protein kinase activation. Our findings indicate that CM could induce insulin exocytosis by stimulating the phosphorylation and activation of PKCζ, which in turn phosphorylates and activates ERK1/2.
Collapse
Affiliation(s)
- Altaf Al-Romaiyan
- Department of Pharmacology & Therapeutics, Faculty of Pharmacy, Kuwait University, Kuwait.
| | - Willias Masocha
- Department of Pharmacology & Therapeutics, Faculty of Pharmacy, Kuwait University, Kuwait.
| | - Sunday Oyedemi
- School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham, NG11 8NS, UK.
| | - Sulaiman K Marafie
- Biochemistry and Molecular Biology Department, Dasman Diabetes Institute, Kuwait.
| | - Guo-Cai Huang
- Department of Diabetes, School of Cardiovascular Medicine &Sciences, Faculty of Life Sciences and Medicine, King's College London, UK.
| | - Peter M Jones
- Department of Diabetes, School of Cardiovascular Medicine &Sciences, Faculty of Life Sciences and Medicine, King's College London, UK.
| | - Shanta J Persaud
- Department of Diabetes, School of Cardiovascular Medicine &Sciences, Faculty of Life Sciences and Medicine, King's College London, UK.
| |
Collapse
|
7
|
Irelan D, Boyd A, Fiedler E, Lochmaier P, McDonough W, Aragon IV, Rachek L, Abou Saleh L, Richter W. Acute PDE4 Inhibition Induces a Transient Increase in Blood Glucose in Mice. Int J Mol Sci 2023; 24:ijms24043260. [PMID: 36834669 PMCID: PMC9963939 DOI: 10.3390/ijms24043260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/01/2023] [Accepted: 02/03/2023] [Indexed: 02/11/2023] Open
Abstract
cAMP-phosphodiesterase 4 (PDE4) inhibitors are currently approved for the treatment of inflammatory diseases. There is interest in expanding the therapeutic application of PDE4 inhibitors to metabolic disorders, as their chronic application induces weight loss in patients and animals and improves glucose handling in mouse models of obesity and diabetes. Unexpectedly, we have found that acute PDE4 inhibitor treatment induces a temporary increase, rather than a decrease, in blood glucose levels in mice. Blood glucose levels in postprandial mice increase rapidly upon drug injection, reaching a maximum after ~45 min, and returning to baseline within ~4 h. This transient blood glucose spike is replicated by several structurally distinct PDE4 inhibitors, suggesting that it is a class effect of PDE4 inhibitors. PDE4 inhibitor treatment does not reduce serum insulin levels, and the subsequent injection of insulin potently reduces PDE4 inhibitor-induced blood glucose levels, suggesting that the glycemic effects of PDE4 inhibition are independent of changes in insulin secretion and/or sensitivity. Conversely, PDE4 inhibitors induce a rapid reduction in skeletal muscle glycogen levels and potently inhibit the uptake of 2-deoxyglucose into muscle tissues. This suggests that reduced glucose uptake into muscle tissue is a significant contributor to the transient glycemic effects of PDE4 inhibitors in mice.
Collapse
Affiliation(s)
- Daniel Irelan
- Department of Biochemistry & Molecular Biology and Center for Lung Biology, Whiddon College of Medicine, University of South Alabama, Mobile, AL 36688, USA
| | - Abigail Boyd
- Department of Biochemistry & Molecular Biology and Center for Lung Biology, Whiddon College of Medicine, University of South Alabama, Mobile, AL 36688, USA
| | - Edward Fiedler
- Department of Biochemistry & Molecular Biology and Center for Lung Biology, Whiddon College of Medicine, University of South Alabama, Mobile, AL 36688, USA
| | - Peter Lochmaier
- Department of Biochemistry & Molecular Biology and Center for Lung Biology, Whiddon College of Medicine, University of South Alabama, Mobile, AL 36688, USA
| | - Will McDonough
- Department of Biochemistry & Molecular Biology and Center for Lung Biology, Whiddon College of Medicine, University of South Alabama, Mobile, AL 36688, USA
| | - Ileana V. Aragon
- Department of Biochemistry & Molecular Biology and Center for Lung Biology, Whiddon College of Medicine, University of South Alabama, Mobile, AL 36688, USA
| | - Lyudmila Rachek
- Department of Pharmacology, Whiddon College of Medicine, University of South Alabama, Mobile, AL 36688, USA
| | - Lina Abou Saleh
- Department of Biochemistry & Molecular Biology and Center for Lung Biology, Whiddon College of Medicine, University of South Alabama, Mobile, AL 36688, USA
| | - Wito Richter
- Department of Biochemistry & Molecular Biology and Center for Lung Biology, Whiddon College of Medicine, University of South Alabama, Mobile, AL 36688, USA
- Correspondence:
| |
Collapse
|
8
|
Melena I, Hughes JW. Islet cilia and glucose homeostasis. Front Cell Dev Biol 2022; 10:1082193. [PMID: 36531945 PMCID: PMC9751591 DOI: 10.3389/fcell.2022.1082193] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 11/22/2022] [Indexed: 09/05/2023] Open
Abstract
Diabetes is a growing pandemic affecting over ten percent of the U.S. population. Individuals with all types of diabetes exhibit glucose dysregulation due to altered function and coordination of pancreatic islets. Within the critical intercellular space in pancreatic islets, the primary cilium emerges as an important physical structure mediating cell-cell crosstalk and signal transduction. Many events leading to hormone secretion, including GPCR and second-messenger signaling, are spatiotemporally regulated at the level of the cilium. In this review, we summarize current knowledge of cilia action in islet hormone regulation and glucose homeostasis, focusing on newly implicated ciliary pathways that regulate insulin exocytosis and intercellular communication. We present evidence of key signaling proteins on islet cilia and discuss ways in which cilia might functionally connect islet endocrine cells with the non-endocrine compartments. These discussions aim to stimulate conversations regarding the extent of cilia-controlled glucose homeostasis in health and in metabolic diseases.
Collapse
Affiliation(s)
| | - Jing W. Hughes
- Division of Endocrinology, Metabolism and Lipid Research, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, United States
| |
Collapse
|
9
|
Sluga N, Križančić Bombek L, Kerčmar J, Sarikas S, Postić S, Pfabe J, Skelin Klemen M, Korošak D, Stožer A, Slak Rupnik M. Physiological levels of adrenaline fail to stop pancreatic beta cell activity at unphysiologically high glucose levels. Front Endocrinol (Lausanne) 2022; 13:1013697. [PMID: 36387857 PMCID: PMC9640998 DOI: 10.3389/fendo.2022.1013697] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 10/07/2022] [Indexed: 01/11/2023] Open
Abstract
Adrenaline inhibits insulin secretion from pancreatic beta cells to allow an organism to cover immediate energy needs by unlocking internal nutrient reserves. The stimulation of α2-adrenergic receptors on the plasma membrane of beta cells reduces their excitability and insulin secretion mostly through diminished cAMP production and downstream desensitization of late step(s) of exocytotic machinery to cytosolic Ca2+ concentration ([Ca2+]c). In most studies unphysiologically high adrenaline concentrations have been used to evaluate the role of adrenergic stimulation in pancreatic endocrine cells. Here we report the effect of physiological adrenaline levels on [Ca2+]c dynamics in beta cell collectives in mice pancreatic tissue slice preparation. We used confocal microscopy with a high spatial and temporal resolution to evaluate glucose-stimulated [Ca2+]c events and their sensitivity to adrenaline. We investigated glucose concentrations from 8-20 mM to assess the concentration of adrenaline that completely abolishes [Ca2+]c events. We show that 8 mM glucose stimulation of beta cell collectives is readily inhibited by the concentration of adrenaline available under physiological conditions, and that sequent stimulation with 12 mM glucose or forskolin in high nM range overrides this inhibition. Accordingly, 12 mM glucose stimulation required at least an order of magnitude higher adrenaline concentration above the physiological level to inhibit the activity. To conclude, higher glucose concentrations stimulate beta cell activity in a non-linear manner and beyond levels that could be inhibited with physiologically available plasma adrenaline concentration.
Collapse
Affiliation(s)
- Nastja Sluga
- Faculty of Medicine, Institute of Physiology, University of Maribor, Maribor, Slovenia
| | | | - Jasmina Kerčmar
- Faculty of Medicine, Institute of Physiology, University of Maribor, Maribor, Slovenia
| | - Srdjan Sarikas
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Sandra Postić
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Johannes Pfabe
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Maša Skelin Klemen
- Faculty of Medicine, Institute of Physiology, University of Maribor, Maribor, Slovenia
| | - Dean Korošak
- Faculty of Medicine, Institute of Physiology, University of Maribor, Maribor, Slovenia
| | - Andraž Stožer
- Faculty of Medicine, Institute of Physiology, University of Maribor, Maribor, Slovenia
| | - Marjan Slak Rupnik
- Faculty of Medicine, Institute of Physiology, University of Maribor, Maribor, Slovenia
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
- Alma Mater Europaea, European Center Maribor, Maribor, Slovenia
| |
Collapse
|
10
|
Ježek P, Holendová B, Jabůrek M, Dlasková A, Plecitá-Hlavatá L. Contribution of Mitochondria to Insulin Secretion by Various Secretagogues. Antioxid Redox Signal 2022; 36:920-952. [PMID: 34180254 PMCID: PMC9125579 DOI: 10.1089/ars.2021.0113] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Significance: Mitochondria determine glucose-stimulated insulin secretion (GSIS) in pancreatic β-cells by elevating ATP synthesis. As the metabolic and redox hub, mitochondria provide numerous links to the plasma membrane channels, insulin granule vesicles (IGVs), cell redox, NADH, NADPH, and Ca2+ homeostasis, all affecting insulin secretion. Recent Advances: Mitochondrial redox signaling was implicated in several modes of insulin secretion (branched-chain ketoacid [BCKA]-, fatty acid [FA]-stimulated). Mitochondrial Ca2+ influx was found to enhance GSIS, reflecting cytosolic Ca2+ oscillations induced by action potential spikes (intermittent opening of voltage-dependent Ca2+ and K+ channels) or the superimposed Ca2+ release from the endoplasmic reticulum (ER). The ATPase inhibitory factor 1 (IF1) was reported to tune the glucose sensitivity range for GSIS. Mitochondrial protein kinase A was implicated in preventing the IF1-mediated inhibition of the ATP synthase. Critical Issues: It is unknown how the redox signal spreads up to the plasma membrane and what its targets are, what the differences in metabolic, redox, NADH/NADPH, and Ca2+ signaling, and homeostasis are between the first and second GSIS phase, and whether mitochondria can replace ER in the amplification of IGV exocytosis. Future Directions: Metabolomics studies performed to distinguish between the mitochondrial matrix and cytosolic metabolites will elucidate further details. Identifying the targets of cell signaling into mitochondria and of mitochondrial retrograde metabolic and redox signals to the cell will uncover further molecular mechanisms for insulin secretion stimulated by glucose, BCKAs, and FAs, and the amplification of secretion by glucagon-like peptide (GLP-1) and metabotropic receptors. They will identify the distinction between the hub β-cells and their followers in intact and diabetic states. Antioxid. Redox Signal. 36, 920-952.
Collapse
Affiliation(s)
- Petr Ježek
- Department of Mitochondrial Physiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Blanka Holendová
- Department of Mitochondrial Physiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Martin Jabůrek
- Department of Mitochondrial Physiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Andrea Dlasková
- Department of Mitochondrial Physiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Lydie Plecitá-Hlavatá
- Department of Mitochondrial Physiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
11
|
Liu Z, Yang H, Zhi L, Xue H, Lu Z, Zhao Y, Cui L, Liu T, Ren S, He P, Liu Y, Zhang Y. Sphingosine 1-phosphate Stimulates Insulin Secretion and Improves Cell Survival by Blocking Voltage-dependent K + Channels in β Cells. Front Pharmacol 2021; 12:683674. [PMID: 34322019 PMCID: PMC8313013 DOI: 10.3389/fphar.2021.683674] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 06/29/2021] [Indexed: 12/25/2022] Open
Abstract
Recent studies suggest that Sphingosine 1-phosphate (S1P) plays an important role in regulating glucose metabolism in type 2 diabetes. However, its effects and mechanisms of promoting insulin secretion remain largely unknown. Here, we found that S1P treatment decreased blood glucose level and increased insulin secretion in C57BL/6 mice. Our results further showed that S1P promoted insulin secretion in a glucose-dependent manner. This stimulatory effect of S1P appeared to be irrelevant to cyclic adenosine monophosphate signaling. Voltage-clamp recordings showed that S1P did not influence voltage-dependent Ca2+ channels, but significantly blocked voltage-dependent potassium (Kv) channels, which could be reversed by inhibition of phospholipase C (PLC) and protein kinase C (PKC). Calcium imaging revealed that S1P increased intracellular Ca2+ levels, mainly by promoting Ca2+ influx, rather than mobilizing intracellular Ca2+ stores. In addition, inhibition of PLC and PKC suppressed S1P-induced insulin secretion. Collectively, these results suggest that the effects of S1P on glucose-stimulated insulin secretion (GSIS) depend on the inhibition of Kv channels via the PLC/PKC signaling pathway in pancreatic β cells. Further, S1P improved β cell survival; this effect was also associated with Kv channel inhibition. This work thus provides new insights into the mechanisms whereby S1P regulates β cell function in diabetes.
Collapse
Affiliation(s)
- Zhihong Liu
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China.,Department of Respiratory and Critical Care Medicine, First Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan, China.,Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, China
| | - Huanhuan Yang
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China
| | - Linping Zhi
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China
| | - Huan Xue
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China.,Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, China
| | - Zhihong Lu
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China
| | - Yanli Zhao
- Department of Emergency Medicine, First Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan, China
| | - Lijuan Cui
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China.,Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, China
| | - Tao Liu
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China.,Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, China
| | - Shouan Ren
- Department of Respiratory and Critical Care Medicine, First Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan, China
| | - Peifeng He
- School of Management, Shanxi Medical University, Taiyuan, China
| | - Yunfeng Liu
- Department of Endocrinology, First Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan, China
| | - Yi Zhang
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China.,Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, China
| |
Collapse
|
12
|
Jia JD, Jiang WG, Luo X, Li RR, Zhao YC, Tian G, Li YN. Vascular endothelial growth factor B inhibits insulin secretion in MIN6 cells and reduces Ca 2+ and cyclic adenosine monophosphate levels through PI3K/AKT pathway. World J Diabetes 2021; 12:480-498. [PMID: 33889292 PMCID: PMC8040075 DOI: 10.4239/wjd.v12.i4.480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/25/2021] [Accepted: 03/08/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Type 2 diabetes (T2D) is characterized by insufficient insulin secretion caused by defective pancreatic β-cell function or insulin resistance, resulting in an increase in blood glucose. However, the mechanism involved in this lack of insulin secretion is unclear. The level of vascular endothelial growth factor B (VEGF-B) is significantly increased in T2D patients. The inactivation of VEGF-B could restore insulin sensitivity in db/db mice by reducing fatty acid accumulation. It is speculated that VEGF-B is related to pancreatic β-cell dysfunction and is an important factor affecting β-cell secretion of insulin. As an in vitro model of normal pancreatic β-cells, the MIN6 cell line can be used to analyze the mechanism of insulin secretion and related biological effects.
AIM To study the role of VEGF-B in the insulin secretion signaling pathway in MIN6 cells and explore the effect of VEGF-B on blood glucose regulation.
METHODS The MIN6 mouse pancreatic islet β-cell line was used as the model system. By administering exogenous VEGF-B protein or knocking down VEGF-B expression in MIN6 cells, we examined the effects of VEGF-B on insulin secretion, Ca2+ and cyclic adenosine monophosphate (cAMP) levels, and the insulin secretion signaling pathway.
RESULTS Exogenous VEGF-B inhibited the secretion of insulin and simultaneously reduced the levels of Ca2+ and cAMP in MIN6 cells. Exogenous VEGF-B also reduced the expression of phospholipase C gamma 1 (PLCγ1), phosphatidylinositol 3-kinase (PI3K), serine/threonine kinase (AKT), and other proteins in the insulin secretion pathway. Upon knockdown of VEGF-B, MIN6 cells exhibited increased insulin secretion and Ca2+ and cAMP levels and upregulated expression of PLCγ1, PI3K, AKT, and other proteins.
CONCLUSION VEGF-B can regulate insulin secretion by modulating the levels of Ca2+ and cAMP. VEGF-B involvement in insulin secretion is related to the expression of PLCγ1, PI3K, AKT, and other signaling proteins. These results provide theoretical support and an experimental basis for the study of VEGF-B in the pathogenesis of T2D.
Collapse
Affiliation(s)
- Jing-Dan Jia
- Department of Pathophysiology, School of Basic Medicine, Binzhou Medical University, Yantai 264003, Shandong Province, China
| | - Wen-Guo Jiang
- Department of Pharmacy, Binzhou Medical University, Yantai 264003, Shandong Province, China
| | - Xu Luo
- Department of Pathophysiology, School of Basic Medicine, Binzhou Medical University, Yantai 264003, Shandong Province, China
| | - Rong-Rong Li
- Department of Pathophysiology, School of Basic Medicine, Binzhou Medical University, Yantai 264003, Shandong Province, China
| | - Yu-Chi Zhao
- Department of Surgery, Yantaishan Hospital, Yantai 264001, Shandong Province, China
| | - Geng Tian
- Department of Pharmacy, Binzhou Medical University, Yantai 264003, Shandong Province, China
| | - Ya-Na Li
- Department of Pathophysiology, School of Basic Medicine, Binzhou Medical University, Yantai 264003, Shandong Province, China
| |
Collapse
|
13
|
Ježek P, Holendová B, Jabůrek M, Tauber J, Dlasková A, Plecitá-Hlavatá L. The Pancreatic β-Cell: The Perfect Redox System. Antioxidants (Basel) 2021; 10:antiox10020197. [PMID: 33572903 PMCID: PMC7912581 DOI: 10.3390/antiox10020197] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/20/2021] [Accepted: 01/25/2021] [Indexed: 12/12/2022] Open
Abstract
Pancreatic β-cell insulin secretion, which responds to various secretagogues and hormonal regulations, is reviewed here, emphasizing the fundamental redox signaling by NADPH oxidase 4- (NOX4-) mediated H2O2 production for glucose-stimulated insulin secretion (GSIS). There is a logical summation that integrates both metabolic plus redox homeostasis because the ATP-sensitive K+ channel (KATP) can only be closed when both ATP and H2O2 are elevated. Otherwise ATP would block KATP, while H2O2 would activate any of the redox-sensitive nonspecific calcium channels (NSCCs), such as TRPM2. Notably, a 100%-closed KATP ensemble is insufficient to reach the -50 mV threshold plasma membrane depolarization required for the activation of voltage-dependent Ca2+ channels. Open synergic NSCCs or Cl- channels have to act simultaneously to reach this threshold. The resulting intermittent cytosolic Ca2+-increases lead to the pulsatile exocytosis of insulin granule vesicles (IGVs). The incretin (e.g., GLP-1) amplification of GSIS stems from receptor signaling leading to activating the phosphorylation of TRPM channels and effects on other channels to intensify integral Ca2+-influx (fortified by endoplasmic reticulum Ca2+). ATP plus H2O2 are also required for branched-chain ketoacids (BCKAs); and partly for fatty acids (FAs) to secrete insulin, while BCKA or FA β-oxidation provide redox signaling from mitochondria, which proceeds by H2O2 diffusion or hypothetical SH relay via peroxiredoxin "redox kiss" to target proteins.
Collapse
|
14
|
Kilanowska A, Ziółkowska A. Role of Phosphodiesterase in the Biology and Pathology of Diabetes. Int J Mol Sci 2020; 21:E8244. [PMID: 33153226 PMCID: PMC7662747 DOI: 10.3390/ijms21218244] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 10/27/2020] [Accepted: 10/28/2020] [Indexed: 12/12/2022] Open
Abstract
Glucose metabolism is the initiator of a large number of molecular secretory processes in β cells. Cyclic nucleotides as a second messenger are the main physiological regulators of these processes and are functionally divided into compartments in pancreatic cells. Their intracellular concentration is limited by hydrolysis led by one or more phosphodiesterase (PDE) isoenzymes. Literature data confirmed multiple expressions of PDEs subtypes, but the specific roles of each in pancreatic β-cell function, particularly in humans, are still unclear. Isoforms present in the pancreas are also found in various tissues of the body. Normoglycemia and its strict control are supported by the appropriate release of insulin from the pancreas and the action of insulin in peripheral tissues, including processes related to homeostasis, the regulation of which is based on the PDE- cyclic AMP (cAMP) signaling pathway. The challenge in developing a therapeutic solution based on GSIS (glucose-stimulated insulin secretion) enhancers targeted at PDEs is the selective inhibition of their activity only within β cells. Undeniably, PDEs inhibitors have therapeutic potential, but some of them are burdened with certain adverse effects. Therefore, the chance to use knowledge in this field for diabetes treatment has been postulated for a long time.
Collapse
Affiliation(s)
| | - Agnieszka Ziółkowska
- Department of Anatomy and Histology, Collegium Medicum, University of Zielona Gora, Zyty 28, 65-046 Zielona Gora, Poland;
| |
Collapse
|
15
|
Berberine Improves Inflammatory Responses of Diabetes Mellitus in Zucker Diabetic Fatty Rats and Insulin-Resistant HepG2 Cells through the PPM1B Pathway. J Immunol Res 2020; 2020:2141508. [PMID: 32908938 PMCID: PMC7450322 DOI: 10.1155/2020/2141508] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/05/2020] [Accepted: 06/23/2020] [Indexed: 12/30/2022] Open
Abstract
Berberine (BBR), a natural compound extracted from a Chinese herb, has been shown to effectively attenuate insulin resistance (IR) and inflammation in the clinic. However, its ameliorative mechanism against IR is not well defined. This study is aimed at investigating the effect of BBR and protein phosphatase, Mg2+/Mn2+-dependent 1B (PPM1B) on IR. Biochemical measurements and liver histopathology were detected using the biochemical analyzer and HE staining in ZDF rats, respectively. Microarray analysis of liver tissues was performed, and differentially expressed gene (DEG) levels were examined by quantitative real-time PCR (qPCR) and Western blot. Additionally, the effect of BBR was also explored in HepG2-IR cells. The glucose oxidase method and the fluorescent glucose analog were used to detect glucose consumption and uptake, respectively. The PKA inhibitor H89, ELISA, qPCR, Western blot, and immunofluorescence staining were employed to estimate the expression levels of related signaling pathways. To evaluate the roles of PPM1B, HepG2-IR cells were stably infected with lentivirus targeting PPM1B. The administration of BBR drastically decreased the body weight, urine volume, blood glucose, blood urea nitrogen (BUN), CHOL, hepatic index levels, and pathologic changes and improved ALB levels in ZDF rats with PPM1B upregulation. Furthermore, BBR effectively improves glucose consumption, uptake, and inflammation in HepG2-IR cells. The knockdown of PPM1B expression aggravated the inflammatory response and glycometabolism disorder in HepG2-IR cells. Mechanistically, a reversal in the expression of cAMP, PKA, PPM1B, PPARγ, LRP1, GLUT4, NF-κB p65, JNK, pIKKβ Ser181, IKKβ, IRS-1 Ser307, IRS-1, IRS-2 Ser731, IRS-2, PI3K p85, and AKT Ser473 contributes to ameliorate IR in HepG2-IR cells with BBR treatment. Altogether, these results suggest that BBR might regulate IR progression through the regulation of the cAMP, PKA, PPM1B, PPARγ, LRP1, GLUT4, NF-κB p65, JNK, pIKKβ Ser181, IKKβ, IRS-1 Ser307, IRS-1, IRS-2 Ser731, IRS-2, PI3K p85, and AKT Ser473 expression in the liver.
Collapse
|
16
|
Regulated expression and function of the GABA B receptor in human pancreatic beta cell line and islets. Sci Rep 2020; 10:13469. [PMID: 32778664 PMCID: PMC7417582 DOI: 10.1038/s41598-020-69758-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 06/26/2020] [Indexed: 02/06/2023] Open
Abstract
G protein-coupled receptors are seven transmembrane signaling molecules that are involved in a wide variety of physiological processes. They constitute a large protein family of receptors with almost 300 members detected in human pancreatic islet preparations. However, the functional role of these receptors in pancreatic islets is unknown in most cases. We generated a new stable human beta cell line from neonatal pancreas. This cell line, named ECN90 expresses both subunits (GABBR1 and GABBR2) of the metabotropic GABAB receptor compared to human islet. In ECN90 cells, baclofen, a specific GABAB receptor agonist, inhibits cAMP signaling causing decreased expression of beta cell-specific genes such as MAFA and PCSK1, and reduced insulin secretion. We next demonstrated that in primary human islets, GABBR2 mRNA expression is strongly induced under cAMP signaling, while GABBR1 mRNA is constitutively expressed. We also found that induction and activation of the GABAB receptor in human islets modulates insulin secretion.
Collapse
|
17
|
Gupta S, Singhal NK, Ganesh S, Sandhir R. Extending Arms of Insulin Resistance from Diabetes to Alzheimer's Disease: Identification of Potential Therapeutic Targets. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2020; 18:172-184. [PMID: 30430949 DOI: 10.2174/1871527317666181114163515] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 10/08/2018] [Accepted: 11/08/2018] [Indexed: 12/14/2022]
Abstract
BACKGROUND & OBJECTIVE Type 3 diabetes (T3D) is chronic insulin resistant state of brain which shares pathology with sporadic Alzheimer's disease (sAD). Insulin signaling is a highly conserved pathway in the living systems that orchestrate cell growth, repair, maintenance, energy homeostasis and reproduction. Although insulin is primarily studied as a key molecule in diabetes mellitus, its role has recently been implicated in the development of Alzheimer's disease (AD). Severe complications in brain of diabetic patients and metabolically compromised status is evident in brain of AD patients. Underlying shared pathology of two disorders draws a trajectory from peripheral insulin resistance to insulin unresponsiveness in the central nervous system (CNS). As insulin has a pivotal role in AD, it is not an overreach to address diabetic condition in AD brain as T3D. Insulin signaling is indispensable to nervous system and it is vital for neuronal growth, repair, and maintenance of chemical milieu at synapses. Downstream mediators of insulin signaling pathway work as a regulatory hub for aggregation and clearance of unfolded proteins like Aβ and tau. CONCLUSION In this review, we discuss the regulatory roles of insulin as a pivotal molecule in brain with the understanding of defective insulin signaling as a key pathological mechanism in sAD. This article also highlights ongoing trials of targeting insulin signaling as a therapeutic manifestation to treat diabetic condition in brain.
Collapse
Affiliation(s)
- Smriti Gupta
- Department of Biochemistry, Basic Medical Science Block II, Sector 25, Panjab University, Chandigarh 160014, India
| | - Nitin Kumar Singhal
- National Agri-Food Biotechnology Institute, Sector 81, S.A.S. Nagar, Mohali, Punjab 140306, India
| | - Subramaniam Ganesh
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | - Rajat Sandhir
- Department of Biochemistry, Basic Medical Science Block II, Sector 25, Panjab University, Chandigarh 160014, India
| |
Collapse
|
18
|
Wruck W, Adjaye J. Meta-analysis of human prefrontal cortex reveals activation of GFAP and decline of synaptic transmission in the aging brain. Acta Neuropathol Commun 2020; 8:26. [PMID: 32138778 PMCID: PMC7059712 DOI: 10.1186/s40478-020-00907-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 03/01/2020] [Indexed: 12/14/2022] Open
Abstract
Despite ongoing research efforts, mechanisms of brain aging are still enigmatic and need to be elucidated for a better understanding of age-associated cognitive decline. The aim of this study is to investigate aging in the prefrontal cortex region of human brain in a meta-analysis of transcriptome datasets. We analyzed 591 gene expression datasets pertaining to female and male human prefrontal cortex biopsies of distinct ages. We used hierarchical clustering and principal component analysis (PCA) to determine the influence of sex and age on global transcriptome levels. In sex-specific analysis we identified genes correlating with age and differentially expressed between groups of young, middle-aged and aged. Pathways and gene ontologies (GOs) over-represented in the resulting gene sets were calculated. Potential causal relationships between genes and between GOs were explored employing the Granger test of gene expression time series over the range of ages. The most outstanding results were the age-related decline of synaptic transmission and activated expression of glial fibrillary acidic protein (GFAP) in both sexes. We found an antagonistic relationship between calcium/calmodulin dependent protein kinase IV (CAMK4) and GFAP which may include regulatory mechanisms involving cAMP responsive element binding protein (CREB) and mitogen-activated protein kinase (MAPK, alias ERK). Common to both sexes was a decline in synaptic transmission, neurogenesis and an increased base-level of inflammatory and immune-related processes. Furthermore, we detected differences in dendritic spine morphogenesis, catecholamine signaling and cellular responses to external stimuli, particularly to metal (Zinc and cadmium) ions which were higher in female brains.
Collapse
|
19
|
Cyclic nucleotide phosphodiesterases: New targets in the metabolic syndrome? Pharmacol Ther 2020; 208:107475. [PMID: 31926200 DOI: 10.1016/j.pharmthera.2020.107475] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 12/23/2019] [Indexed: 12/11/2022]
Abstract
Metabolic diseases have a tremendous impact on human morbidity and mortality. Numerous targets regulating adenosine monophosphate kinase (AMPK) have been identified for treating the metabolic syndrome (MetS), and many compounds are being used or developed to increase AMPK activity. In parallel, the cyclic nucleotide phosphodiesterase families (PDEs) have emerged as new therapeutic targets in cardiovascular diseases, as well as in non-resolved pathologies. Since some PDE subfamilies inactivate cAMP into 5'-AMP, while the beneficial effects in MetS are related to 5'-AMP-dependent activation of AMPK, an analysis of the various controversial relationships between PDEs and AMPK in MetS appears interesting. The present review will describe the various PDE families, AMPK and molecular mechanisms in the MetS and discuss the PDEs/PDE modulators related to the tissues involved, thus supporting the discovery of original molecules and the design of new therapeutic approaches in MetS.
Collapse
|
20
|
Neuronal cAMP/PKA Signaling and Energy Homeostasis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1090:31-48. [PMID: 30390284 DOI: 10.1007/978-981-13-1286-1_3] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The brain plays a key role in the regulation of body weight and glucose metabolism. Peripheral signals including hormones, metabolites, and neural afferent signals are received and processed by the brain which in turn elicits proper behavioral and metabolic responses for maintaining energy and glucose homeostasis. The cAMP/protein kinase A (PKA) pathway acts downstream G-protein-coupled receptors (GPCR) to mediate the physiological effects of many hormones and neurotransmitters. Activated PKA phosphorylates various proteins including ion channels, enzymes, and transcription factors and regulates their activity. Recent studies have shown that neuronal cAMP/PKA activity in multiple brain regions are involved in the regulation of feeding, energy expenditure, and glucose homeostasis. In this chapter I summarize recent genetic and pharmacological studies concerning the regulation of body weight and glucose homeostasis by cAMP/PKA signaling in the brain.
Collapse
|
21
|
DiNicolantonio JJ, McCarty M. Autophagy-induced degradation of Notch1, achieved through intermittent fasting, may promote beta cell neogenesis: implications for reversal of type 2 diabetes. Open Heart 2019; 6:e001028. [PMID: 31218007 PMCID: PMC6546199 DOI: 10.1136/openhrt-2019-001028] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/06/2019] [Indexed: 02/06/2023] Open
|
22
|
Keyvanloo Shahrestanaki M, Aghaei M. A3 receptor agonist, Cl-IBMECA, potentiate glucose-induced insulin secretion from MIN6 insulinoma cells possibly through transient Ca 2+ entry. Res Pharm Sci 2019; 14:107-114. [PMID: 31620186 PMCID: PMC6791172 DOI: 10.4103/1735-5362.253357] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Diabetes incidence showed ascending trends in recent years indicating urgent need for new therapeutic agents. Extracellular adenosine signaling showed promising results. However, role of its A3 receptor in pancreatic β-cells proliferation and insulin secretion is not well established. Thus, we aimed to determine its main signaling mediators in MIN6 insulinoma cell line. A3 adenosine receptor (A3AR) expression was confirmed using RT-PCR. Receptor functionality was evaluated by measurements of cAMP, using ELISA kit, and intracellular Ca2+ levels, using Fura 2/AM probe in response to the specific A3AR agonist (Cl- IBMECA). Insulin ELISA kit was used to measure insulin release. Herein, we mentioned that MIN6 cells express active form of A3AR, which decreased cAMP levels with the half maximal effective concentration (EC50) value of 5.61. [Ca2+]i Levels transiently (approximately 120 sec) increased in response to the agonist. Cl-IBMECA increase insulin secretion at 0.01-1 μM, but showed an inhibitory effects at higher concentrations (1-10 μM). Altogether, we found that in MIN6 cells, A3AR, possibly through Ca2+ mediated signaling pathways, potentiated glucose-induced insulin secretion.
Collapse
Affiliation(s)
- Mohammad Keyvanloo Shahrestanaki
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - Mahmoud Aghaei
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| |
Collapse
|
23
|
Sengupta S, Mehta G. Natural products as modulators of the cyclic-AMP pathway: evaluation and synthesis of lead compounds. Org Biomol Chem 2019; 16:6372-6390. [PMID: 30140804 DOI: 10.1039/c8ob01388h] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
It is now well recognized that the normal cellular response in mammalian cells is critically regulated by the cyclic-AMP (cAMP) pathway through the appropriate balance of adenylyl cyclase (AC) and phosphodiesterase-4 (PDE4) activities. Dysfunctions in the cAMP pathway have major implications in various diseases like CNS disorders, inflammation and cardiac syndromes and, hence, the modulation of cAMP signalling through appropriate intervention of AC/PDE4 activities has emerged as a promising new drug discovery strategy of current interest. In this context, synthetic small molecules have had limited success so far and therefore parallel efforts on natural product leads have been actively pursued. The early promise of using the diterpene forskolin and its semi-synthetic analogs as AC activators has given way to new leads in the last decade from novel natural products like the marine sesterterpenoids alotaketals and ansellones and the 9,9'-diarylfluorenone cored selaginpulvilins, etc. and their synthesis has drawn much attention. This review captures these contemporary developments, particularly total synthesis campaigns and structure-guided analog design in the context of AC and PDE-4 modulating attributes and the scope for future possibilities.
Collapse
Affiliation(s)
- Saumitra Sengupta
- School of Chemistry, University of Hyderabad, Gachibowli, Hyderabad - 5000 046, Telengana, India.
| | | |
Collapse
|
24
|
Wen Y, Wu K, Xie Y, Dan W, Zhan Y, Shi Q. Inhibitory effects of glucagon-like peptide-1 receptor on epilepsy. Biochem Biophys Res Commun 2019; 511:79-86. [DOI: 10.1016/j.bbrc.2019.02.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 02/06/2019] [Indexed: 12/20/2022]
|
25
|
Brouwer S, Hoffmeister T, Gresch A, Schönhoff L, Düfer M. Resveratrol Influences Pancreatic Islets by Opposing Effects on Electrical Activity and Insulin Release. Mol Nutr Food Res 2019; 62. [PMID: 29341416 DOI: 10.1002/mnfr.201700902] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 12/19/2017] [Indexed: 01/27/2023]
Abstract
SCOPE Resveratrol is suggested to improve glycemic control by activation of sirtuin 1 (SIRT1) and has already been tested clinically. Our investigation characterizes the targets of resveratrol in pancreatic beta cells and their contribution to short- and long-term effects on insulin secretion. METHODS AND RESULTS Islets or beta cells are isolated from C57BL/6N mice. Electrophysiology is performed with microelectrode arrays and patch-clamp technique, insulin secretion and content are determined by radioimmunoassay, cAMP is measured by enzyme-linked immunosorbent assay, and cytosolic Ca2+ concentration by fluorescence methods. Resveratrol (25 μmol L-1 ) elevates [Ca2+ ]c and potentiates glucose-stimulated insulin secretion. These effects are associated with increased intracellular cAMP and are sensitive to the SIRT1 blocker Ex-527. Inhibition of EPAC1 by CE3F4 also abolishes the stimulatory effect of resveratrol. The underlying mechanism does not involve membrane depolarization as resveratrol even reduces electrical activity despite blocking KATP channels. Importantly, after prolonged exposure to resveratrol (14 days), the beneficial influence of the polyphenol on insulin release is lost. CONCLUSION Resveratrol addresses multiple targets in pancreatic islets. Potentiation of insulin secretion is mediated by SIRT1-dependent activation of cAMP/EPAC1. Considering resveratrol as therapeutic supplement for patients with type 2 diabetes mellitus, the inhibitory influence on electrical excitability attenuates positive effects.
Collapse
Affiliation(s)
- Simone Brouwer
- University of Münster, Pharmaceutical and Medicinal Chemistry, Dept. of Pharmacology, Münster, Germany
| | - Theresa Hoffmeister
- University of Münster, Pharmaceutical and Medicinal Chemistry, Dept. of Pharmacology, Münster, Germany
| | - Anne Gresch
- University of Münster, Pharmaceutical and Medicinal Chemistry, Dept. of Pharmacology, Münster, Germany
| | - Lisa Schönhoff
- University of Münster, Pharmaceutical and Medicinal Chemistry, Dept. of Pharmacology, Münster, Germany
| | - Martina Düfer
- University of Münster, Pharmaceutical and Medicinal Chemistry, Dept. of Pharmacology, Münster, Germany
| |
Collapse
|
26
|
Girdhar K, Dehury B, Kumar Singh M, Daniel VP, Choubey A, Dogra S, Kumar S, Mondal P. Novel insights into the dynamics behavior of glucagon-like peptide-1 receptor with its small molecule agonists. J Biomol Struct Dyn 2018; 37:3976-3986. [DOI: 10.1080/07391102.2018.1532818] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Khyati Girdhar
- aSchool of Basic Sciences, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, India
| | - Budheswar Dehury
- bBiomedical Informatics Centre ICMR-Regional Medical Research Centre, Bhubaneswar, Odisha, India
- cDepartment of Chemistry, Technical University of Denmark, Denmark
| | | | - Vineeth P. Daniel
- aSchool of Basic Sciences, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, India
| | - Abhinav Choubey
- aSchool of Basic Sciences, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, India
| | - Surbhi Dogra
- aSchool of Basic Sciences, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, India
| | - Sunil Kumar
- eICAR-National Bureau of Agriculturally Important Microorganism, Kushmaur, Mau Nath Bhanjan, Uttar Pradesh, India
| | - Prosenjit Mondal
- aSchool of Basic Sciences, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, India
| |
Collapse
|
27
|
Gupta R, Nguyen DC, Schaid MD, Lei X, Balamurugan AN, Wong GW, Kim JA, Koltes JE, Kimple ME, Bhatnagar S. Complement 1q-like-3 protein inhibits insulin secretion from pancreatic β-cells via the cell adhesion G protein-coupled receptor BAI3. J Biol Chem 2018; 293:18086-18098. [PMID: 30228187 DOI: 10.1074/jbc.ra118.005403] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 09/06/2018] [Indexed: 01/04/2023] Open
Abstract
Secreted proteins are important metabolic regulators in both healthy and disease states. Here, we sought to investigate the mechanism by which the secreted protein complement 1q-like-3 (C1ql3) regulates insulin secretion from pancreatic β-cells, a key process affecting whole-body glucose metabolism. We found that C1ql3 predominantly inhibits exendin-4- and cAMP-stimulated insulin secretion from mouse and human islets. However, to a lesser extent, C1ql3 also reduced insulin secretion in response to KCl, the potassium channel blocker tolbutamide, and high glucose. Strikingly, C1ql3 did not affect insulin secretion stimulated by fatty acids, amino acids, or mitochondrial metabolites, either at low or submaximal glucose concentrations. Additionally, C1ql3 inhibited glucose-stimulated cAMP levels, and insulin secretion stimulated by exchange protein directly activated by cAMP-2 and protein kinase A. These results suggest that C1ql3 inhibits insulin secretion primarily by regulating cAMP signaling. The cell adhesion G protein-coupled receptor, brain angiogenesis inhibitor-3 (BAI3), is a C1ql3 receptor and is expressed in β-cells and in mouse and human islets, but its function in β-cells remained unknown. We found that siRNA-mediated Bai3 knockdown in INS1(832/13) cells increased glucose-stimulated insulin secretion. Furthermore, incubating the soluble C1ql3-binding fragment of the BAI3 protein completely blocked the inhibitory effects of C1ql3 on insulin secretion in response to cAMP. This suggests that BAI3 mediates the inhibitory effects of C1ql3 on insulin secretion from pancreatic β-cells. These findings demonstrate a novel regulatory mechanism by which C1ql3/BAI3 signaling causes an impairment of insulin secretion from β-cells, possibly contributing to the progression of type 2 diabetes in obesity.
Collapse
Affiliation(s)
- Rajesh Gupta
- From the Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, and Comprehensive Diabetes Center, University of Alabama, Birmingham, Alabama 35294
| | - Dan C Nguyen
- From the Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, and Comprehensive Diabetes Center, University of Alabama, Birmingham, Alabama 35294
| | - Michael D Schaid
- the Interdisciplinary Graduate Program in Nutritional Sciences, University of Wisconsin-Madison, Madison, Wisconsin 53706,; the William S. Middleton Memorial Veterans Hospital, Research Service, Madison, Wisconsin 53705
| | - Xia Lei
- the Department of Physiology and Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | | | - G William Wong
- the Department of Physiology and Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Jeong-A Kim
- From the Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, and Comprehensive Diabetes Center, University of Alabama, Birmingham, Alabama 35294
| | - James E Koltes
- the Department of Animal Science, Iowa State University, Ames, Iowa 50011
| | - Michelle E Kimple
- the Interdisciplinary Graduate Program in Nutritional Sciences, University of Wisconsin-Madison, Madison, Wisconsin 53706,; the William S. Middleton Memorial Veterans Hospital, Research Service, Madison, Wisconsin 53705,; the Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, and the Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin 53705
| | - Sushant Bhatnagar
- From the Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, and Comprehensive Diabetes Center, University of Alabama, Birmingham, Alabama 35294,.
| |
Collapse
|
28
|
Xie W, Ye Y, Feng Y, Xu T, Huang S, Shen J, Leng Y. Linderane Suppresses Hepatic Gluconeogenesis by Inhibiting the cAMP/PKA/CREB Pathway Through Indirect Activation of PDE 3 via ERK/STAT3. Front Pharmacol 2018; 9:476. [PMID: 29867482 PMCID: PMC5962748 DOI: 10.3389/fphar.2018.00476] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 04/23/2018] [Indexed: 12/22/2022] Open
Abstract
The role of phosphodiesterase 3 (PDE3), a cyclic AMP (cAMP)-degrading enzyme, in modulating gluconeogenesis remains unknown. Here, linderane, a natural compound, was found to inhibit gluconeogenesis by activating hepatic PDE3 in rat primary hepatocytes. The underlying molecular mechanism and its effects on whole-body glucose and lipid metabolism were investigated. The effect of linderane on gluconeogenesis, cAMP content, phosphorylation of cAMP-response element-binding protein (CREB) and PDE activity were examined in cultured primary hepatocytes and C57BL/6J mice. The precise mechanism by which linderane activates PDE3 and inhibits the cAMP pathway was explored using pharmacological inhibitors. The amelioration of metabolic disorders was observed in ob/ob mice. Linderane inhibited gluconeogenesis, reduced phosphoenolpyruvate carboxykinase (Pck1) and glucose-6-phosphatase (G6pc) gene expression, and decreased intracellular cAMP concentration and CREB phosphorylation in rat primary hepatocytes under both basal and forskolin-stimulated conditions. In rat primary hepatocytes, it also increased total PDE and PDE3 activity but not PDE4 activity. The suppressive effect of linderane on the cAMP pathway and gluconeogenesis was abolished by the non-specific PDE inhibitor 3-isobutyl-1-methylxanthine (IBMX) and the specific PDE3 inhibitor cilostazol. Linderane indirectly activated PDE3 through extracellular regulated protein kinase 1/2 (ERK1/2) and signal transducer and activator of transcription 3 (STAT3) activation. Linderane improved glucose and lipid metabolism after chronic oral administration in ob/ob mice. Our findings revealed linderane as an indirect PDE3 activator that suppresses gluconeogenesis through cAMP pathway inhibition and has beneficial effects on metabolic syndromes in ob/ob mice. This investigation highlighted the potential for PDE3 activation in the treatment of type 2 diabetes.
Collapse
Affiliation(s)
- Wei Xie
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yangliang Ye
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Ying Feng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Tifei Xu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Suling Huang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Jianhua Shen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Ying Leng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
29
|
Peláez-Jaramillo MJ, Cárdenas-Mojica AA, Gaete PV, Mendivil CO. Post-Liver Transplantation Diabetes Mellitus: A Review of Relevance and Approach to Treatment. Diabetes Ther 2018; 9:521-543. [PMID: 29411291 PMCID: PMC6104273 DOI: 10.1007/s13300-018-0374-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Indexed: 02/08/2023] Open
Abstract
Post-liver transplantation diabetes mellitus (PLTDM) develops in up to 30% of liver transplant recipients and is associated with increased risk of mortality and multiple morbid outcomes. PLTDM is a multicausal disorder, but the main risk factor is the use of immunosuppressive agents of the calcineurin inhibitor (CNI) family (tacrolimus and cyclosporine). Additional factors, such as pre-transplant overweight, nonalcoholic steatohepatitis and hepatitis C virus infection, may further increase risk of developing PLTDM. A diagnosis of PLTDM should be established only after doses of CNI and steroids are stable and the post-operative stress has been overcome. The predominant defect induced by CNI is insulin secretory dysfunction. Plasma glucose control must start immediately after the transplant procedure in order to improve long-term results for both patient and transplant. Among the better known antidiabetics, metformin and DPP-4 inhibitors have a particularly benign profile in the PLTDM context and are the preferred oral agents for long-term management. Insulin therapy is also an effective approach that addresses the prevailing pathophysiological defect of the disorder. There is still insufficient evidence about the impact of newer families of antidiabetics (GLP-1 agonists, SGLT-2 inhibitors) on PLTDM. In this review, we summarize current knowledge on the epidemiology, pathogenesis, course of disease and medical management of PLTDM.
Collapse
Affiliation(s)
| | | | - Paula V Gaete
- Universidad de los Andes School of Medicine, Bogotá, Colombia
| | - Carlos O Mendivil
- Universidad de los Andes School of Medicine, Bogotá, Colombia.
- Endocrinology Section, Department of Internal Medicine, Fundación Santa Fe de Bogotá, Bogotá, Colombia.
| |
Collapse
|
30
|
Bai C, Gao Y, Zhang X, Yang W, Guan W. MicroRNA-34c acts as a bidirectional switch in the maturation of insulin-producing cells derived from mesenchymal stem cells. Oncotarget 2017; 8:106844-106857. [PMID: 29290993 PMCID: PMC5739778 DOI: 10.18632/oncotarget.21883] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 09/21/2017] [Indexed: 01/08/2023] Open
Abstract
miRNAs regulate insulin secretion, pancreatic development, and beta-cell differentiation. However, their function in the differentiation of IPCs from MSCs is poorly understood. In this study, to screen for miRNAs and their targets that function during the formation of IPCs from MSCs, we examined the miRNA expression profiles of MSCs and IPCs using RNA-seq and qPCR to confirm the above results. We found that miR-34c exhibited transient upregulation at an early stage of the formation of IPCs derived from MSCs. Next, we analyzed the biological function of miR-34c by predicting its targets using bioinformatic tools. Combining our data with those from previous reports, we found that miR-34c and its targets play an important role in the formation of IPCs. Therefore, we overexpressed miR-34c and expressed small interfering RNAs of its targets in MSCs to investigate their functions in IPC formation. We found that miR-34c acts as a bidirectional switch in the formation of IPCs derived from MSCs by regulating the expression of targets to affect insulin synthesis and secretion. miR-34c was shown to downregulate its targets, including PDE7B, PDGFRA, and MAP2K1, to increase proinsulin synthesis, but when miR-34c continually dysregulated such expression, it suppressed the expression of other targets, namely ACSL4 and SAR1A, weakening insulin secretion in IPCs. These results suggest that endogenous miRNAs involved in the formation of IPCs from stem cells should be considered in the development of effective cell transplant therapy for diabetes.
Collapse
Affiliation(s)
- Chunyu Bai
- Key Laboratory of Precision Oncology of Shandong Higher Education, Institute of Precision Medicine, Jining Medical University, Jining, 272067, PR China.,Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Yuhua Gao
- College of Basic Medicine, Jining Medical University, Jining, 272067, PR China.,Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Xiangyang Zhang
- College of Basic Medicine, Jining Medical University, Jining, 272067, PR China
| | - Wancai Yang
- Key Laboratory of Precision Oncology of Shandong Higher Education, Institute of Precision Medicine, Jining Medical University, Jining, 272067, PR China.,Department of Pathology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Weijun Guan
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| |
Collapse
|
31
|
Pennington MW, Czerwinski A, Norton RS. Peptide therapeutics from venom: Current status and potential. Bioorg Med Chem 2017; 26:2738-2758. [PMID: 28988749 DOI: 10.1016/j.bmc.2017.09.029] [Citation(s) in RCA: 183] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 09/14/2017] [Accepted: 09/19/2017] [Indexed: 12/19/2022]
Abstract
Peptides are recognized as being highly selective, potent and relatively safe as potential therapeutics. Peptides isolated from the venom of different animals satisfy most of these criteria with the possible exception of safety, but when isolated as single compounds and used at appropriate concentrations, venom-derived peptides can become useful drugs. Although the number of venom-derived peptides that have successfully progressed to the clinic is currently limited, the prospects for venom-derived peptides look very optimistic. As proteomic and transcriptomic approaches continue to identify new sequences, the potential of venom-derived peptides to find applications as therapeutics, cosmetics and insecticides grows accordingly.
Collapse
Affiliation(s)
| | - Andrzej Czerwinski
- Peptides International, Inc., 11621 Electron Drive, Louisville, KY 40299, USA
| | - Raymond S Norton
- Monash Institute of Pharmaceutical Sciences, 381 Royal Parade, Monash University, Parkville, 3052, Australia
| |
Collapse
|
32
|
Tengholm A, Gylfe E. cAMP signalling in insulin and glucagon secretion. Diabetes Obes Metab 2017; 19 Suppl 1:42-53. [PMID: 28466587 DOI: 10.1111/dom.12993] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 04/24/2017] [Accepted: 04/26/2017] [Indexed: 01/24/2023]
Abstract
The "second messenger" archetype cAMP is one of the most important cellular signalling molecules with central functions including the regulation of insulin and glucagon secretion from the pancreatic β- and α-cells, respectively. cAMP is generally considered as an amplifier of insulin secretion triggered by Ca2+ elevation in the β-cells. Both messengers are also positive modulators of glucagon release from α-cells, but in this case cAMP may be the important regulator and Ca2+ have a more permissive role. The actions of cAMP are mediated by protein kinase A (PKA) and the guanine nucleotide exchange factor Epac. The present review focuses on how cAMP is regulated by nutrients, hormones and neural factors in β- and α-cells via adenylyl cyclase-catalysed generation and phosphodiesterase-mediated degradation. We will also discuss how PKA and Epac affect ion fluxes and the secretory machinery to transduce the stimulatory effects on insulin and glucagon secretion. Finally, we will briefly describe disturbances of the cAMP system associated with diabetes and how cAMP signalling can be targeted to normalize hypo- and hypersecretion of insulin and glucagon, respectively, in diabetic patients.
Collapse
Affiliation(s)
- Anders Tengholm
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Erik Gylfe
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
33
|
Kojima I, Medina J, Nakagawa Y. Role of the glucose-sensing receptor in insulin secretion. Diabetes Obes Metab 2017; 19 Suppl 1:54-62. [PMID: 28880472 DOI: 10.1111/dom.13013] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 05/08/2017] [Accepted: 05/16/2017] [Indexed: 11/27/2022]
Abstract
Glucose is a primary stimulator of insulin secretion. It has been thought that glucose exerts its effect by a mechanism solely dependent on glucose metabolism. We show here that glucose induces rapid Ca2+ and cyclic AMP signals in β-cells. These rapid signals are independent of glucose-metabolism and are reproduced by non-metabolizable glucose analogues. These results led us to postulate that glucose activates a cell-surface receptor, namely the glucose-sensing receptor. Rapid signals induced by glucose are blocked by inhibition of a sweet taste receptor subunit T1R3 and a calcium-sensing receptor subunit CaSR. In accordance with these observations, T1R3 and CaSR form a heterodimer. In addition, a heterodimer of T1R3 and CaSR is activated by glucose. These results suggest that a heterodimer of T1R3 and CaSR is a major component of the glucose-sensing receptor. When the glucose-sensing receptor is blocked, glucose-induced insulin secretion is inhibited. Also, ATP production is significantly attenuated by the inhibition of the receptor. Conversely, stimulation of the glucose-sensing receptor by either artificial sweeteners or non-metabolizable glucose analogue increases ATP. Hence, the glucose-sensing receptor signals promote glucose metabolism. Collectively, glucose activates the cell-surface glucose-sensing receptor and promotes its own metabolism. Glucose then enters the cells and is metabolized through already activated metabolic pathways. The glucose-sensing receptor is a key molecule regulating the action of glucose in β-cells.
Collapse
MESH Headings
- Animals
- Calcium Signaling
- Cyclic AMP/metabolism
- Dimerization
- Enzyme Activation
- Gene Expression Regulation
- Glucose/metabolism
- Humans
- Insulin/metabolism
- Insulin Secretion
- Insulin-Secreting Cells/enzymology
- Insulin-Secreting Cells/metabolism
- Models, Biological
- Protein Kinase C/chemistry
- Protein Kinase C/metabolism
- Protein Multimerization
- Receptors, Calcium-Sensing/agonists
- Receptors, Calcium-Sensing/chemistry
- Receptors, Calcium-Sensing/genetics
- Receptors, Calcium-Sensing/metabolism
- Receptors, Cell Surface/agonists
- Receptors, Cell Surface/chemistry
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/metabolism
- Receptors, G-Protein-Coupled/agonists
- Receptors, G-Protein-Coupled/chemistry
- Receptors, G-Protein-Coupled/genetics
- Receptors, G-Protein-Coupled/metabolism
- Second Messenger Systems
Collapse
Affiliation(s)
- Itaru Kojima
- Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| | - Johan Medina
- Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| | - Yuko Nakagawa
- Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| |
Collapse
|
34
|
Zhang F, Tzanakakis ES. Optogenetic regulation of insulin secretion in pancreatic β-cells. Sci Rep 2017; 7:9357. [PMID: 28839233 PMCID: PMC5571193 DOI: 10.1038/s41598-017-09937-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 08/01/2017] [Indexed: 02/06/2023] Open
Abstract
Pancreatic β-cell insulin production is orchestrated by a complex circuitry involving intracellular elements including cyclic AMP (cAMP). Tackling aberrations in glucose-stimulated insulin release such as in diabetes with pharmacological agents, which boost the secretory capacity of β-cells, is linked to adverse side effects. We hypothesized that a photoactivatable adenylyl cyclase (PAC) can be employed to modulate cAMP in β-cells with light thereby enhancing insulin secretion. To that end, the PAC gene from Beggiatoa (bPAC) was delivered to β-cells. A cAMP increase was noted within 5 minutes of photostimulation and a significant drop at 12 minutes post-illumination. The concomitant augmented insulin secretion was comparable to that from β-cells treated with secretagogues. Greater insulin release was also observed over repeated cycles of photoinduction without adverse effects on viability and proliferation. Furthermore, the expression and activation of bPAC increased cAMP and insulin secretion in murine islets and in β-cell pseudoislets, which displayed a more pronounced light-triggered hormone secretion compared to that of β-cell monolayers. Calcium channel blocking curtailed the enhanced insulin response due to bPAC activity. This optogenetic system with modulation of cAMP and insulin release can be employed for the study of β-cell function and for enabling new therapeutic modalities for diabetes.
Collapse
Affiliation(s)
- Fan Zhang
- Department of Chemical and Biological Engineering, Tufts University, Medford, MA, 02155, USA.
| | - Emmanuel S Tzanakakis
- Department of Chemical and Biological Engineering, Tufts University, Medford, MA, 02155, USA. .,Clinical and Translational Science Institute, Tufts Medical Center, Boston, MA, 02111, USA.
| |
Collapse
|
35
|
Trexler AJ, Taraska JW. Regulation of insulin exocytosis by calcium-dependent protein kinase C in beta cells. Cell Calcium 2017; 67:1-10. [PMID: 29029784 DOI: 10.1016/j.ceca.2017.07.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 07/25/2017] [Accepted: 07/27/2017] [Indexed: 12/27/2022]
Abstract
The control of insulin release from pancreatic beta cells helps ensure proper blood glucose level, which is critical for human health. Protein kinase C has been shown to be one key control mechanism for this process. After glucose stimulation, calcium influx into beta cells triggers exocytosis of insulin-containing dense-core granules and activates protein kinase C via calcium-dependent phospholipase C-mediated generation of diacylglycerol. Activated protein kinase C potentiates insulin release by enhancing the calcium sensitivity of exocytosis, likely by affecting two main pathways that could be linked: (1) the reorganization of the cortical actin network, and (2) the direct phosphorylation of critical exocytotic proteins such as munc18, SNAP25, and synaptotagmin. Here, we review what is currently known about the molecular mechanisms of protein kinase C action on each of these pathways and how these effects relate to the control of insulin release by exocytosis. We identify remaining challenges in the field and suggest how these challenges might be addressed to advance our understanding of the regulation of insulin release in health and disease.
Collapse
Affiliation(s)
- Adam J Trexler
- National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, United States
| | - Justin W Taraska
- National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, United States.
| |
Collapse
|
36
|
Abstract
The pancreatic β-cell secretes insulin in response to elevated plasma glucose. This review applies an external bioenergetic critique to the central processes of glucose-stimulated insulin secretion, including glycolytic and mitochondrial metabolism, the cytosolic adenine nucleotide pool, and its interaction with plasma membrane ion channels. The control mechanisms responsible for the unique responsiveness of the cell to glucose availability are discussed from bioenergetic and metabolic control standpoints. The concept of coupling factor facilitation of secretion is critiqued, and an attempt is made to unravel the bioenergetic basis of the oscillatory mechanisms controlling secretion. The need to consider the physiological constraints operating in the intact cell is emphasized throughout. The aim is to provide a coherent pathway through an extensive, complex, and sometimes bewildering literature, particularly for those unfamiliar with the field.
Collapse
Affiliation(s)
- David G Nicholls
- Buck Institute for Research on Aging, Novato, California; and Department of Clinical Sciences, Unit of Molecular Metabolism, Lund University Diabetes Centre, Malmo, Sweden
| |
Collapse
|
37
|
Leech CA, Kopp RF, Nelson HA, Nandi J, Roe MW. Stromal Interaction Molecule 1 (STIM1) Regulates ATP-sensitive Potassium ( KATP) and Store-operated Ca 2+ Channels in MIN6 β-Cells. J Biol Chem 2016; 292:2266-2277. [PMID: 28003364 DOI: 10.1074/jbc.m116.767681] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 12/12/2016] [Indexed: 01/14/2023] Open
Abstract
Stromal interaction molecule 1 (STIM1) regulates store-operated Ca2+ entry (SOCE) and other ion channels either as an endoplasmic reticulum Ca2+-sensing protein or when present in the plasma membrane. However, the role of STIM1 in insulin-secreting β-cells is unresolved. We report that lowering expression of STIM1, the gene that encodes STIM1, in insulin-secreting MIN6 β-cells with RNA interference inhibits SOCE and ATP-sensitive K+ (KATP) channel activation. The effects of STIM1 knockdown were reversed by transduction of MIN6 cells with an adenovirus gene shuttle vector that expressed human STIM1 Immunoprecipitation studies revealed that STIM1 binds to nucleotide binding fold-1 (NBF1) of the sulfonylurea receptor 1 (SUR1) subunit of the KATP channel. Binding of STIM1 to SUR1 was enhanced by poly-lysine. Our data indicate that SOCE and KATP channel activity are regulated by STIM1. This suggests that STIM1 is a multifunctional signaling effector that participates in the control of membrane excitability and Ca2+ signaling events in β-cells.
Collapse
Affiliation(s)
| | | | - Heather A Nelson
- the Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, New York 13210
| | | | - Michael W Roe
- From the Department of Medicine and .,the Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, New York 13210
| |
Collapse
|
38
|
Tramutola A, Arena A, Cini C, Butterfield DA, Barone E. Modulation of GLP-1 signaling as a novel therapeutic approach in the treatment of Alzheimer’s disease pathology. Expert Rev Neurother 2016; 17:59-75. [DOI: 10.1080/14737175.2017.1246183] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Antonella Tramutola
- Department of Biochemical Sciences ‘A. Rossi-Fanelli’, Sapienza University of Rome, Roma, Italy
| | - Andrea Arena
- Department of Biochemical Sciences ‘A. Rossi-Fanelli’, Sapienza University of Rome, Roma, Italy
| | - Chiara Cini
- Department of Biochemical Sciences ‘A. Rossi-Fanelli’, Sapienza University of Rome, Roma, Italy
| | - D. Allan Butterfield
- Department of Chemistry and Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| | - Eugenio Barone
- Department of Biochemical Sciences ‘A. Rossi-Fanelli’, Sapienza University of Rome, Roma, Italy
- Universidad Autónoma de Chile, Instituto de Ciencias Biomédicas, Facultad de Salud, Santiago, Chile
| |
Collapse
|
39
|
Islet-like organoids derived from human pluripotent stem cells efficiently function in the glucose responsiveness in vitro and in vivo. Sci Rep 2016; 6:35145. [PMID: 27731367 PMCID: PMC5059670 DOI: 10.1038/srep35145] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 09/26/2016] [Indexed: 12/30/2022] Open
Abstract
Insulin secretion is elaborately modulated in pancreatic ß cells within islets of three-dimensional (3D) structures. Using human pluripotent stem cells (hPSCs) to develop islet-like structures with insulin-producing ß cells for the treatment of diabetes is challenging. Here, we report that pancreatic islet-like clusters derived from hESCs are functionally capable of glucose-responsive insulin secretion as well as therapeutic effects. Pancreatic hormone-expressing endocrine cells (ECs) were differentiated from hESCs using a step-wise protocol. The hESC-derived ECs expressed pancreatic endocrine hormones, such as insulin, somatostatin, and pancreatic polypeptide. Notably, dissociated ECs autonomously aggregated to form islet-like, 3D structures of consistent sizes (100–150 μm in diameter). These EC clusters (ECCs) enhanced insulin secretion in response to glucose stimulus and potassium channel inhibition in vitro. Furthermore, ß cell-deficient mice transplanted with ECCs survived for more than 40 d while retaining a normal blood glucose level to some extent. The expression of pancreatic endocrine hormones was observed in tissues transplanted with ECCs. In addition, ECCs could be generated from human induced pluripotent stem cells. These results suggest that hPSC-derived, islet-like clusters may be alternative therapeutic cell sources for treating diabetes.
Collapse
|
40
|
Levine JA, Kaihara KA, Layden BT, Wicksteed B. Long-term activation of PKA in β-cells provides sustained improvement to glucose control, insulin sensitivity and body weight. Islets 2016; 8:125-34. [PMID: 27340937 PMCID: PMC5029204 DOI: 10.1080/19382014.2016.1198457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Type 2 diabetes is associated with obesity, insulin resistance and β-cell failure. Therapeutic aims are to reduce adiposity, improve insulin sensitivity and enhance β-cell function. However, it has been proposed that chronically increasing insulin release leads to β-cell exhaustion and failure. We previously developed mice to have increased activity of the cAMP-dependent protein kinase (PKA), specifically in β-cells (β-caPKA mice). β-caPKA mice have enhanced acute phase insulin release, which is the primary determinant of the efficacy of glucose clearance. Here these mice were used to determine the sustainability of enhanced insulin secretion, and to characterize peripheral effects of enhanced β-cell function. Increased PKA activity was induced by tamoxifen administration at 10 weeks of age. Male mice were aged to 12 months of age and female mice to 16 months. Glucose control in both male and female β-caPKA mice was significantly improved relative to littermate controls with ad libitum feeding, upon refeeding after fasting, and in glucose tolerance tests. In female mice insulin release was both greater and more rapid than in controls. Female mice were more insulin sensitive than controls. Male and female β-caPKA mice had lower body weights than controls. DEXA analysis of male mice revealed that this was due to reduced adiposity and not due to changes in lean body mass. This study indicates that targeting β-cells to enhance insulin release is sustainable, maintains insulin sensitivity and reduces body weight. These data identify β-cell PKA activity as a novel target for obesity therapies.
Collapse
Affiliation(s)
- Joshua A. Levine
- Division of Endocrinology, Metabolism and Molecular Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Kelly A. Kaihara
- Committee for Molecular Metabolism and Nutrition, The University of Chicago, Chicago, IL, USA
- Bio-Rad Laboratories, Hercules, CA, USA
| | - Brian T. Layden
- Division of Endocrinology, Metabolism and Molecular Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Jesse Brown Veterans Affairs Medical Center, Chicago, IL, USA
| | - Barton Wicksteed
- Division of Endocrinology, Metabolism and Molecular Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Committee for Molecular Metabolism and Nutrition, The University of Chicago, Chicago, IL, USA
- CONTACT Barton Wicksteed Division of Endocrinology, Metabolism and Molecular Medicine, Tarry Building 15-735 300 East Superior St., Chicago, IL 60611-3008, USA
| |
Collapse
|
41
|
Yang H, Yang L. Targeting cAMP/PKA pathway for glycemic control and type 2 diabetes therapy. J Mol Endocrinol 2016; 57:R93-R108. [PMID: 27194812 DOI: 10.1530/jme-15-0316] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 05/18/2016] [Indexed: 12/11/2022]
Abstract
In mammals, cyclic adenosine monophosphate (cAMP) is an intracellular second messenger that is usually elicited by binding of hormones and neurotransmitters to G protein-coupled receptors (GPCRs). cAMP exerts many of its physiological effects by activating cAMP-dependent protein kinase (PKA), which in turn phosphorylates and regulates the functions of downstream protein targets including ion channels, enzymes, and transcription factors. cAMP/PKA signaling pathway regulates glucose homeostasis at multiple levels including insulin and glucagon secretion, glucose uptake, glycogen synthesis and breakdown, gluconeogenesis, and neural control of glucose homeostasis. This review summarizes recent genetic and pharmacological studies concerning the regulation of glucose homeostasis by cAMP/PKA in pancreas, liver, skeletal muscle, adipose tissues, and brain. We also discuss the strategies for targeting cAMP/PKA pathway for research and potential therapeutic treatment of type 2 diabetes mellitus (T2D).
Collapse
Affiliation(s)
- Haihua Yang
- Division of EndocrinologyZhengzhou Children's Hospital, Zhengzhou, Henan, China
| | - Linghai Yang
- Department of PharmacologyUniversity of Washington, Seattle, Washington, USA
| |
Collapse
|
42
|
Ravnskjaer K, Madiraju A, Montminy M. Role of the cAMP Pathway in Glucose and Lipid Metabolism. Handb Exp Pharmacol 2016; 233:29-49. [PMID: 26721678 DOI: 10.1007/164_2015_32] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
3'-5'-Cyclic adenosine monophosphate (cyclic AMP or cAMP) was first described in 1957 as an intracellular second messenger mediating the effects of glucagon and epinephrine on hepatic glycogenolysis (Berthet et al., J Biol Chem 224(1):463-475, 1957). Since this initial characterization, cAMP has been firmly established as a versatile molecular signal involved in both central and peripheral regulation of energy homeostasis and nutrient partitioning. Many of these effects appear to be mediated at the transcriptional level, in part through the activation of the transcription factor CREB and its coactivators. Here we review current understanding of the mechanisms by which the cAMP signaling pathway triggers metabolic programs in insulin-responsive tissues.
Collapse
|
43
|
Nakagawa Y, Nagasawa M, Medina J, Kojima I. Glucose Evokes Rapid Ca2+ and Cyclic AMP Signals by Activating the Cell-Surface Glucose-Sensing Receptor in Pancreatic β-Cells. PLoS One 2015; 10:e0144053. [PMID: 26630567 PMCID: PMC4667910 DOI: 10.1371/journal.pone.0144053] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 11/12/2015] [Indexed: 12/21/2022] Open
Abstract
Glucose is a primary stimulator of insulin secretion in pancreatic β-cells. High concentration of glucose has been thought to exert its action solely through its metabolism. In this regard, we have recently reported that glucose also activates a cell-surface glucose-sensing receptor and facilitates its own metabolism. In the present study, we investigated whether glucose activates the glucose-sensing receptor and elicits receptor-mediated rapid actions. In MIN6 cells and isolated mouse β-cells, glucose induced triphasic changes in cytoplasmic Ca(2+) concentration ([Ca(2+)]c); glucose evoked an immediate elevation of [Ca(2+)]c, which was followed by a decrease in [Ca(2+)]c, and after a certain lag period it induced large oscillatory elevations of [Ca(2+)]c. Initial rapid peak and subsequent reduction of [Ca(2+)]c were independent of glucose metabolism and reproduced by a nonmetabolizable glucose analogue. These signals were also blocked by an inhibitor of T1R3, a subunit of the glucose-sensing receptor, and by deletion of the T1R3 gene. Besides Ca(2+), glucose also induced an immediate and sustained elevation of intracellular cAMP ([cAMP]c). The elevation of [cAMP]c was blocked by transduction of the dominant-negative Gs, and deletion of the T1R3 gene. These results indicate that glucose induces rapid changes in [Ca(2+)]c and [cAMP]c by activating the cell-surface glucose-sensing receptor. Hence, glucose generates rapid intracellular signals by activating the cell-surface receptor.
Collapse
Affiliation(s)
- Yuko Nakagawa
- Department of Cell Biology, Institute for Molecular & Cellular Regulation, Gunma University, Maebashi, Japan
| | - Masahiro Nagasawa
- Department of Cell Biology, Institute for Molecular & Cellular Regulation, Gunma University, Maebashi, Japan
| | - Johan Medina
- Department of Cell Biology, Institute for Molecular & Cellular Regulation, Gunma University, Maebashi, Japan
| | - Itaru Kojima
- Department of Cell Biology, Institute for Molecular & Cellular Regulation, Gunma University, Maebashi, Japan
- * E-mail:
| |
Collapse
|
44
|
Raab S, Wang H, Uhles S, Cole N, Alvarez-Sanchez R, Künnecke B, Ullmer C, Matile H, Bedoucha M, Norcross RD, Ottaway-Parker N, Perez-Tilve D, Conde Knape K, Tschöp MH, Hoener MC, Sewing S. Incretin-like effects of small molecule trace amine-associated receptor 1 agonists. Mol Metab 2015; 5:47-56. [PMID: 26844206 PMCID: PMC4703809 DOI: 10.1016/j.molmet.2015.09.015] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 09/21/2015] [Accepted: 09/22/2015] [Indexed: 12/05/2022] Open
Abstract
Objective Type 2 diabetes and obesity are emerging pandemics in the 21st century creating worldwide urgency for the development of novel and safe therapies. We investigated trace amine-associated receptor 1 (TAAR1) as a novel target contributing to the control of glucose homeostasis and body weight. Methods We investigated the peripheral human tissue distribution of TAAR1 by immunohistochemistry and tested the effect of a small molecule TAAR1 agonist on insulin secretion in vitro using INS1E cells and human islets and on glucose tolerance in C57Bl6, and db/db mice. Body weight effects were investigated in obese DIO mice. Results TAAR1 activation by a selective small molecule agonist increased glucose-dependent insulin secretion in INS1E cells and human islets and elevated plasma PYY and GLP-1 levels in mice. In diabetic db/db mice, the TAAR1 agonist normalized glucose excursion during an oral glucose tolerance test. Sub-chronic treatment of diet-induced obese (DIO) mice with the TAAR1 agonist resulted in reduced food intake and body weight. Furthermore insulin sensitivity was improved and plasma triglyceride levels and liver triglyceride content were lower than in controls. Conclusions We have identified TAAR1 as a novel integrator of metabolic control, which acts on gastrointestinal and pancreatic islet hormone secretion. Thus TAAR1 qualifies as a novel and promising target for the treatment of type 2 diabetes and obesity. TAAR1 is a novel key player in metabolic control. TAAR1 is expressed in β-cells and intestinal enteroendocrine cells in mice and humans. TAAR1 agonist improved glucose tolerance and reduced body weight in mouse disease models.
Collapse
Affiliation(s)
- Susanne Raab
- Roche Pharma Research & Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, CH-4070 Basel, Switzerland
| | - Haiyan Wang
- Roche Pharma Research & Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, CH-4070 Basel, Switzerland
| | - Sabine Uhles
- Roche Pharma Research & Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, CH-4070 Basel, Switzerland
| | - Nadine Cole
- Roche Pharma Research & Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, CH-4070 Basel, Switzerland
| | - Ruben Alvarez-Sanchez
- Roche Pharma Research & Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, CH-4070 Basel, Switzerland
| | - Basil Künnecke
- Roche Pharma Research & Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, CH-4070 Basel, Switzerland
| | - Christoph Ullmer
- Roche Pharma Research & Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, CH-4070 Basel, Switzerland
| | - Hugues Matile
- Roche Pharma Research & Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, CH-4070 Basel, Switzerland
| | - Marc Bedoucha
- Roche Pharma Research & Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, CH-4070 Basel, Switzerland
| | - Roger D Norcross
- Roche Pharma Research & Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, CH-4070 Basel, Switzerland
| | - Nickki Ottaway-Parker
- Department of Internal Medicine, Metabolic Disease Institute, University of Cincinnati, Cincinnati, OH 45237, USA
| | - Diego Perez-Tilve
- Department of Internal Medicine, Metabolic Disease Institute, University of Cincinnati, Cincinnati, OH 45237, USA
| | - Karin Conde Knape
- Roche Pharma Research & Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, CH-4070 Basel, Switzerland
| | - Matthias H Tschöp
- Helmholtz Diabetes Center, Helmholtz Zentrum München and Division of Metabolic Diseases, Technische Universität München, Germany
| | - Marius C Hoener
- Roche Pharma Research & Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, CH-4070 Basel, Switzerland
| | - Sabine Sewing
- Roche Pharma Research & Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, CH-4070 Basel, Switzerland
| |
Collapse
|
45
|
Jiang X, Yu J, Ma Z, Zhang H, Xie F. Effects of fucoidan on insulin stimulation and pancreatic protection via the cAMP signaling pathway in vivo and in vitro. Mol Med Rep 2015; 12:4501-4507. [PMID: 26130492 DOI: 10.3892/mmr.2015.3989] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 05/28/2015] [Indexed: 11/06/2022] Open
Abstract
Diabetes is a global disease, in which pancreatic dysfunction is an important pathological process. In previous years, interest in the biological activities of seaweed has increased. Fucoidan is an extract of the seaweed Fucus vesiculosus, which has been widely investigated. The present study aimed to determine the effects of fucoidan on insulin stimulation and pancreatic protection in vivo and in vitro. Goto‑Kakizaki (GK) rats were provided with free access to standard food, with or without fucoidan, for 13 weeks, following which the body weights, and blood glucose and serum insulin levels of the rats were measured. Wistar rats were used as a control. In addition, the RIN‑5F rat insulin‑secreting cell line was treated with fucoidan in high glucose conditions, following which the dose‑dependent and time‑dependent effects of fucoidan were determined, and the concentration of insulin was measured. Glybenclamide was used as a positive control. In vivo, the body weight and serum insulin levels decreased, whereas blood glucose levels increased significantly in the GK rats, compared with the Wistar control rats. Although, fucoidan did not improve changes in body weight, the increased blood glucose levels were reduced and the decreased serum insulin levels were increased in the GK rats following oral administration of fucoidan. In vitro, fucoidan did not exhibit significant cytotoxicity towards the RIN‑5F cells, and the insulin secretion increased significantly in a dose‑ and time‑dependent manner. Treatment with amylin, an islet amyloid polypeptide and glybenclamide inhibitor, did not inhibit the stimulatory activity of fucoidan. The results of the present study also demonstrated that the concentration of cyclic adenosine monophosphate (cAMP) was significantly increased in the fucoidan‑treated RIN‑5F cells, and this increase was dose‑ and time‑dependent. In addition, treatment with a phosphodiesterase inhibitor, which decreases the degradation of cAMP, significantly increased fucoidan‑induced insulin secretion, whereas treatment with an adenylyl cyclase inhibitor, which decreases the generation of cAMP, significantly decreased fucoidan‑induced insulin secretion. In conclusion, these data indicated that fucoidan may stimulate insulin secretion and provide pancreatic protection via the cAMP signaling pathway, in vivo and in vitro.
Collapse
Affiliation(s)
- Xiaoming Jiang
- Department of Critical Care Medicine, Hongqi Hospital of Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, P.R. China
| | - Jinfeng Yu
- Department of Pediatric Medicine, Hongqi Hospital of Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, P.R. China
| | - Zhi Ma
- Department of Pediatric Surgery Medicine, Hongqi Hospital of Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, P.R. China
| | - Hong Zhang
- Department of Critical Care Medicine, Hongqi Hospital of Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, P.R. China
| | - Fengjie Xie
- Department of Critical Care Medicine, Hongqi Hospital of Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, P.R. China
| |
Collapse
|
46
|
Coon SD, Rajendran VM, Schwartz JH, Singh SK. Glucose-dependent insulinotropic polypeptide-mediated signaling pathways enhance apical PepT1 expression in intestinal epithelial cells. Am J Physiol Gastrointest Liver Physiol 2015; 308:G56-62. [PMID: 25377315 PMCID: PMC4281688 DOI: 10.1152/ajpgi.00168.2014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We have shown recently that glucose-dependent insulinotropic polypeptide (GIP), but not glucagon-like peptide 1 (GLP-1) augments H(+) peptide cotransporter (PepT1)-mediated peptide absorption in murine jejunum. While we observed that inhibiting cAMP production decreased this augmentation of PepT1 activity by GIP, it was unclear whether PKA and/or other regulators of cAMP signaling pathway(s) were involved. This study utilized tritiated glycyl-sarcosine [(3)H-glycyl-sarcosine (Gly-Sar), a relatively nonhydrolyzable dipeptide] uptake to measure PepT1 activity in CDX2-transfected IEC-6 (IEC-6/CDX2) cells, an absorptive intestinal epithelial cell model. Similar to our earlier observations with mouse jejunum, GIP but not GLP-1 augmented Gly-Sar uptake (control vs. +GIP: 154 ± 22 vs. 454 ± 39 pmol/mg protein; P < 0.001) in IEC-6/CDX2 cells. Rp-cAMP (a PKA inhibitor) and wortmannin [phosophoinositide-3-kinase (PI3K) inhibitor] pretreatment completely blocked, whereas neither calphostin C (a potent PKC inhibitor) nor BAPTA (an intracellular Ca(2+) chelator) pretreatment affected the GIP-augmented Gly-Sar uptake in IEC-6/CDX2 cells. The downstream metabolites Epac (control vs. Epac agonist: 287 ± 22 vs. 711 ± 80 pmol/mg protein) and AKT (control vs. AKT inhibitor: 720 ± 50 vs. 75 ± 19 pmol/mg protein) were shown to be involved in GIP-augmented PepT1 activity as well. Western blot analyses revealed that both GIP and Epac agonist pretreatment enhance the PepT1 expression on the apical membranes, which is completely blocked by wortmannin in IEC-6/CDX2 cells. These observations demonstrate that both cAMP and PI3K signaling pathways augment GIP-induced peptide uptake through Epac and AKT-mediated pathways in intestinal epithelial cells, respectively. In addition, these observations also indicate that both Epac and AKT-mediated signaling pathways increase apical membrane expression of PepT1 in intestinal absorptive epithelial cells.
Collapse
Affiliation(s)
- Steven D. Coon
- 1Department of Medicine, Boston University School of Medicine, Boston, Massachusetts; ,2Department of Medicine, Boston Veterans Affairs Healthcare System, Boston, Massachusetts; ,3Department of Medicine, Boston University Clinical & Translational Science Institute, Boston, Massachusetts; and
| | - Vazhaikkurichi M. Rajendran
- 4Department of Biochemistry and Molecular Biology, West Virginia University School of Medicine, Morgantown, West Virginia
| | - John H. Schwartz
- 1Department of Medicine, Boston University School of Medicine, Boston, Massachusetts;
| | - Satish K. Singh
- 1Department of Medicine, Boston University School of Medicine, Boston, Massachusetts; ,2Department of Medicine, Boston Veterans Affairs Healthcare System, Boston, Massachusetts;
| |
Collapse
|
47
|
Genome-wide association study on susceptibility genes associated with yang-deficiency constitution: A small sample case-control study. Chin J Integr Med 2014; 21:601-9. [DOI: 10.1007/s11655-014-1957-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Indexed: 10/24/2022]
|
48
|
Szkudelski T, Szkudelska K. Regulatory role of adenosine in insulin secretion from pancreatic β-cells--action via adenosine A₁ receptor and beyond. J Physiol Biochem 2014; 71:133-40. [PMID: 25432862 DOI: 10.1007/s13105-014-0371-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 11/17/2014] [Indexed: 01/04/2023]
Abstract
Under physiological conditions, insulin secretion from pancreatic β-cells is tightly regulated by different factors, including nutrients, nervous system, and other hormones. Pancreatic β-cells are also influenced by paracrine and autocrine interactions. The results of rodent studies indicate that adenosine is present within pancreatic islets and is implicated in the regulation of insulin secretion; however, effects depend on adenosine and glucose concentrations. Moreover, species differences in adenosine action were found. In rat islets, low adenosine was demonstrated to decrease glucose-induced insulin secretion and this effect is mediated via adenosine A1 receptor. In the presence of high adenosine concentrations, other mechanisms are activated and glucose-induced insulin secretion is increased. It is also well established that suppression of adenosine action increases insulin-secretory response of β-cells to glucose. In mouse islets, low adenosine concentrations do not significantly affect insulin secretion. However, in the presence of higher adenosine concentrations, potentiation of glucose-induced insulin secretion was demonstrated. It is also known that upon stimulation of insulin secretion, both rat and mouse islets release ATP. In rat islets, ATP undergoes extracellular conversion to adenosine. However, mouse islets are unable to convert extracellularly ATP to adenosine and adenosine arises from intracellular ATP degradation.
Collapse
Affiliation(s)
- Tomasz Szkudelski
- Department of Animal Physiology and Biochemistry, Poznan University of Life Sciences, Wolynska 35, 60-637, Poznan, Poland,
| | | |
Collapse
|
49
|
Jaramillo M, Mathew S, Mamiya H, Goh SK, Banerjee I. Endothelial cells mediate islet-specific maturation of human embryonic stem cell-derived pancreatic progenitor cells. Tissue Eng Part A 2014; 21:14-25. [PMID: 24943736 DOI: 10.1089/ten.tea.2014.0013] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
It is well recognized that in vitro differentiation of embryonic stem cells (ESC) can be best achieved by closely recapitulating the in vivo developmental niche. Thus, implementation of directed differentiation strategies has yielded encouraging results in the area of pancreatic islet differentiation. These strategies have concentrated on direct addition of chemical signals, however, other aspect of the developmental niche are yet to be explored. During development, pancreatic progenitor (PP) cells grow as an epithelial sheet, which aggregates with endothelial cells (ECs) during the final stages of maturation. Several findings suggest that the interactions with EC play a role in pancreatic development. In this study, we recapitulated this phenomenon in an in vitro environment by maturing the human ESC (hESC)-derived PP cells in close contact with ECs. We find that co-culture with different ECs (but not fibroblast) alone results in pancreatic islet-specific differentiation of hESC-derived PP cells even in the absence of additional chemical induction. The differentiated cells responded to exogenous glucose levels by enhanced C-peptide synthesis. The co-culture system aligned well with endocrine development as determined by comprehensive analysis of involved signaling pathways. By recapitulating cell-cell interaction aspects of the developmental niche we achieved a differentiation model that aligns closely with islet organogenesis.
Collapse
Affiliation(s)
- Maria Jaramillo
- 1 Department of Bioengineering, University of Pittsburgh, Pittsburgh , Pennsylvania
| | | | | | | | | |
Collapse
|
50
|
Zhao Z, Low YS, Armstrong NA, Ryu JH, Sun SA, Arvanites AC, Hollister-Lock J, Shah NH, Weir GC, Annes JP. Repurposing cAMP-modulating medications to promote β-cell replication. Mol Endocrinol 2014; 28:1682-97. [PMID: 25083741 DOI: 10.1210/me.2014-1120] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Loss of β-cell mass is a cardinal feature of diabetes. Consequently, developing medications to promote β-cell regeneration is a priority. cAMP is an intracellular second messenger that modulates β-cell replication. We investigated whether medications that increase cAMP stability or synthesis selectively stimulate β-cell growth. To identify cAMP-stabilizing medications that promote β-cell replication, we performed high-content screening of a phosphodiesterase (PDE) inhibitor library. PDE3, -4, and -10 inhibitors, including dipyridamole, were found to promote β-cell replication in an adenosine receptor-dependent manner. Dipyridamole's action is specific for β-cells and not α-cells. Next we demonstrated that norepinephrine (NE), a physiologic suppressor of cAMP synthesis in β-cells, impairs β-cell replication via activation of α(2)-adrenergic receptors. Accordingly, mirtazapine, an α(2)-adrenergic receptor antagonist and antidepressant, prevents NE-dependent suppression of β-cell replication. Interestingly, NE's growth-suppressive effect is modulated by endogenously expressed catecholamine-inactivating enzymes (catechol-O-methyltransferase and l-monoamine oxidase) and is dominant over the growth-promoting effects of PDE inhibitors. Treatment with dipyridamole and/or mirtazapine promote β-cell replication in mice, and treatment with dipyridamole is associated with reduced glucose levels in humans. This work provides new mechanistic insights into cAMP-dependent growth regulation of β-cells and highlights the potential of commonly prescribed medications to influence β-cell growth.
Collapse
Affiliation(s)
- Zhenshan Zhao
- Department of Medicine and Division of Endocrinology, Gerontology, and Metabolism (Z.Z., N.A.A., S.A.S., J.P.A.) and Stanford Center for Biomedical Informatics Research (Y.S.L.), Stanford University School of Medicine, Stanford, California 94306; Department of Stem Cell and Regenerative Biology (J.H.R., A.C.A.), Harvard University, Cambridge, Massachusetts 02138; and Section of Islet Cell and Regenerative Biology (J.H.-L., G.C.W.), Joslin Diabetes Center, Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115
| | | | | | | | | | | | | | | | | | | |
Collapse
|