1
|
Maruyama N, Ogata T, Kasahara T, Hamaoka T, Higuchi Y, Tsuji Y, Tomita S, Sakamoto A, Nakanishi N, Matoba S. Loss of Cavin-2 destabilizes phosphatase and tensin homologue and enhances Akt signalling pathway in cardiomyocytes. Cardiovasc Res 2024; 120:1562-1576. [PMID: 38861679 DOI: 10.1093/cvr/cvae130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 03/19/2024] [Accepted: 05/03/2024] [Indexed: 06/13/2024] Open
Abstract
AIMS Specific cavins and caveolins, known as caveola-related proteins, have been implicated in cardiac hypertrophy and myocardial injury. Cavin-2 forms complexes with other caveola-related proteins, but the role of Cavin-2 in cardiomyocytes (CMs) is poorly understood. Here, we investigated an unknown function of Cavin-2 in CMs. METHODS AND RESULTS Under cardiac stress-free conditions, systemic Cavin-2 knockout (KO) induced mild and significant CM hypertrophy. Cavin-2 KO suppressed phosphatase and tensin homologue (PTEN) associated with Akt signalling, whereas there was no difference in Akt activity between the hearts of the wild-type and the Cavin-2 KO mice under cardiac stress-free conditions. However, after swim training, CM hypertrophy was more facilitated with enhanced phosphoinositide 3-kinase (PI3K)-Akt activity in the hearts of Cavin-2 KO mice. Cavin-2 knockdown neonatal rat CMs (NRCMs) using adenovirus expressing Cavin-2 short hairpin RNA were hypertrophied and resistant to hypoxia and H2O2-induced apoptosis. Cavin-2 knockdown increased Akt phosphorylation in NRCMs, and an Akt inhibitor inhibited Cavin-2 knockdown-induced anti-apoptotic responses in a dose-dependent manner. Cavin-2 knockdown increased phosphatidylinositol-3,4,5-triphosphate production and attenuated PTEN at the membrane fraction of NRCMs. Immunostaining and immunoprecipitation showed that Cavin-2 was associated with PTEN at the plasma membrane of NRCMs. A protein stability assay showed that Cavin-2 knockdown promoted PTEN destabilization in NRCMs. In an Angiotensin II (2-week continuous infusion)-induced pathological cardiac hypertrophy model, CM hypertrophy and CM apoptosis were suppressed in CM-specific Cavin-2 conditional KO (Cavin-2 cKO) mice. Because Cavin-2 cKO mouse hearts showed increased Akt activity but not decreased extracellular signal-regulated kinase activity, suppression of pathological hypertrophy by Cavin-2 loss may be due to increased survival of healthy CMs. CONCLUSION Cavin-2 plays a negative regulator in the PI3K-Akt signalling in CMs through interaction with PTEN. Loss of Cavin-2 enhances Akt activity by promoting PTEN destabilization, which promotes physiological CM hypertrophy and may enhance Akt-mediated cardioprotective effects against pathological CM hypertrophy.
Collapse
Affiliation(s)
- Naoki Maruyama
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Takehiro Ogata
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
- Department of Pathology and Cell Regulation, Graduate School of Medical Sciences, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Takeru Kasahara
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Tetsuro Hamaoka
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Yusuke Higuchi
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Yumika Tsuji
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Shinya Tomita
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Akira Sakamoto
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Naohiko Nakanishi
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Satoaki Matoba
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| |
Collapse
|
2
|
Fitts RH, Wang X, Kwok WM, Camara AKS. Cardiomyocyte Adaptation to Exercise: K+ Channels, Contractility and Ischemic Injury. Int J Sports Med 2024; 45:791-803. [PMID: 38648799 DOI: 10.1055/a-2296-7604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Cardiovascular disease is a leading cause of morbidity and mortality, and exercise-training (TRN) is known to reduce risk factors and protect the heart from ischemia and reperfusion injury. Though the cardioprotective effects of exercise are well-documented, underlying mechanisms are not well understood. This review highlights recent findings and focuses on cardiac factors with emphasis on K+ channel control of the action potential duration (APD), β-adrenergic and adenosine regulation of cardiomyocyte function, and mitochondrial Ca2+ regulation. TRN-induced prolongation and shortening of the APD at low and high activation rates, respectively, is discussed in the context of a reduced response of the sarcolemma delayed rectifier potassium channel (IK) and increased content and activation of the sarcolemma KATP channel. A proposed mechanism underlying the latter is presented, including the phosphatidylinositol-3kinase/protein kinase B pathway. TRN induced increases in cardiomyocyte contractility and the response to adrenergic agonists are discussed. The TRN-induced protection from reperfusion injury is highlighted by the increased content and activation of the sarcolemma KATP channel and the increased phosphorylated glycogen synthase kinase-3β, which aid in preventing mitochondrial Ca2+ overload and mitochondria-triggered apoptosis. Finally, a brief section is presented on the increased incidences of atrial fibrillation associated with age and in life-long exercisers.
Collapse
Affiliation(s)
- Robert H Fitts
- Biological Sciences, Marquette University, Milwaukee, United States
| | - Xinrui Wang
- Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, United States
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, United States
| | - Wai-Meng Kwok
- Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, United States
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, United States
- Anesthesiology, Medical College of Wisconsin, Milwaukee, United States
- Cancer Center, Medical College of Wisconsin, Milwaukee, United States
| | - Amadou K S Camara
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, United States
- Anesthesiology, Medical College of Wisconsin, Milwaukee, United States
- Cancer Center, Medical College of Wisconsin, Milwaukee, United States
- Physiology, Medical College of Wisconsin, Milwaukee, United States
| |
Collapse
|
3
|
Bei Y, Zhu Y, Zhou J, Ai S, Yao J, Yin M, Hu M, Qi W, Spanos M, Li L, Wei M, Huang Z, Gao J, Liu C, van der Kraak PH, Li G, Lei Z, Sluijter JPG, Xiao J. Inhibition of Hmbox1 Promotes Cardiomyocyte Survival and Glucose Metabolism Through Gck Activation in Ischemia/Reperfusion Injury. Circulation 2024; 150:848-866. [PMID: 38708602 DOI: 10.1161/circulationaha.123.067592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 04/11/2024] [Indexed: 05/07/2024]
Abstract
BACKGROUND Exercise-induced physiological cardiac growth regulators may protect the heart from ischemia/reperfusion (I/R) injury. Homeobox-containing 1 (Hmbox1), a homeobox family member, has been identified as a putative transcriptional repressor and is downregulated in the exercised heart. However, its roles in exercise-induced physiological cardiac growth and its potential protective effects against cardiac I/R injury remain largely unexplored. METHODS We studied the function of Hmbox1 in exercise-induced physiological cardiac growth in mice after 4 weeks of swimming exercise. Hmbox1 expression was then evaluated in human heart samples from deceased patients with myocardial infarction and in the animal cardiac I/R injury model. Its role in cardiac I/R injury was examined in mice with adeno-associated virus 9 (AAV9) vector-mediated Hmbox1 knockdown and in those with cardiac myocyte-specific Hmbox1 ablation. We performed RNA sequencing, promoter prediction, and binding assays and identified glucokinase (Gck) as a downstream effector of Hmbox1. The effects of Hmbox1 together with Gck were examined in cardiomyocytes to evaluate their cell size, proliferation, apoptosis, mitochondrial respiration, and glycolysis. The function of upstream regulator of Hmbox1, ETS1, was investigated through ETS1 overexpression in cardiac I/R mice in vivo. RESULTS We demonstrated that Hmbox1 downregulation was required for exercise-induced physiological cardiac growth. Inhibition of Hmbox1 increased cardiomyocyte size in isolated neonatal rat cardiomyocytes and human embryonic stem cell-derived cardiomyocytes but did not affect cardiomyocyte proliferation. Under pathological conditions, Hmbox1 was upregulated in both human and animal postinfarct cardiac tissues. Furthermore, both cardiac myocyte-specific Hmbox1 knockout and AAV9-mediated Hmbox1 knockdown protected against cardiac I/R injury and heart failure. Therapeutic effects were observed when sh-Hmbox1 AAV9 was administered after I/R injury. Inhibition of Hmbox1 activated the Akt/mTOR/P70S6K pathway and transcriptionally upregulated Gck, leading to reduced apoptosis and improved mitochondrial respiration and glycolysis in cardiomyocytes. ETS1 functioned as an upstream negative regulator of Hmbox1 transcription, and its overexpression was protective against cardiac I/R injury. CONCLUSIONS Our studies unravel a new role for the transcriptional repressor Hmbox1 in exercise-induced physiological cardiac growth. They also highlight the therapeutic potential of targeting Hmbox1 to improve myocardial survival and glucose metabolism after I/R injury.
Collapse
Affiliation(s)
- Yihua Bei
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital (Sixth People's Hospital of Nantong) and School of Life Science of Shanghai University, China (Y.B., Y.Z., J.Z., S.A., M.Y., M.H., W.Q., L.L., M.W., Z.H., J.G., C.L., J.X.)
- Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education) (Y.B., Y.Z., J.Z., S.A., M.Y., M.H., W.Q., L.L., M.W., Z.H., J.G., C.L., J.X.), Shanghai University, China
- Cardiac Regeneration and Ageing Laboratory, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Medicine (Y.B., Y.Z., J.Z., S.A., M.Y., M.H., W.Q., L.L., M.W., Z.H., J.G., C.L., J.X.), Shanghai University, China
| | - Yujiao Zhu
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital (Sixth People's Hospital of Nantong) and School of Life Science of Shanghai University, China (Y.B., Y.Z., J.Z., S.A., M.Y., M.H., W.Q., L.L., M.W., Z.H., J.G., C.L., J.X.)
- Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education) (Y.B., Y.Z., J.Z., S.A., M.Y., M.H., W.Q., L.L., M.W., Z.H., J.G., C.L., J.X.), Shanghai University, China
- Cardiac Regeneration and Ageing Laboratory, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Medicine (Y.B., Y.Z., J.Z., S.A., M.Y., M.H., W.Q., L.L., M.W., Z.H., J.G., C.L., J.X.), Shanghai University, China
| | - Jingwen Zhou
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital (Sixth People's Hospital of Nantong) and School of Life Science of Shanghai University, China (Y.B., Y.Z., J.Z., S.A., M.Y., M.H., W.Q., L.L., M.W., Z.H., J.G., C.L., J.X.)
- Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education) (Y.B., Y.Z., J.Z., S.A., M.Y., M.H., W.Q., L.L., M.W., Z.H., J.G., C.L., J.X.), Shanghai University, China
- Cardiac Regeneration and Ageing Laboratory, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Medicine (Y.B., Y.Z., J.Z., S.A., M.Y., M.H., W.Q., L.L., M.W., Z.H., J.G., C.L., J.X.), Shanghai University, China
| | - Songwei Ai
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital (Sixth People's Hospital of Nantong) and School of Life Science of Shanghai University, China (Y.B., Y.Z., J.Z., S.A., M.Y., M.H., W.Q., L.L., M.W., Z.H., J.G., C.L., J.X.)
- Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education) (Y.B., Y.Z., J.Z., S.A., M.Y., M.H., W.Q., L.L., M.W., Z.H., J.G., C.L., J.X.), Shanghai University, China
- Cardiac Regeneration and Ageing Laboratory, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Medicine (Y.B., Y.Z., J.Z., S.A., M.Y., M.H., W.Q., L.L., M.W., Z.H., J.G., C.L., J.X.), Shanghai University, China
| | - Jianhua Yao
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, China (J.Y.)
| | - Mingming Yin
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital (Sixth People's Hospital of Nantong) and School of Life Science of Shanghai University, China (Y.B., Y.Z., J.Z., S.A., M.Y., M.H., W.Q., L.L., M.W., Z.H., J.G., C.L., J.X.)
- Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education) (Y.B., Y.Z., J.Z., S.A., M.Y., M.H., W.Q., L.L., M.W., Z.H., J.G., C.L., J.X.), Shanghai University, China
- Cardiac Regeneration and Ageing Laboratory, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Medicine (Y.B., Y.Z., J.Z., S.A., M.Y., M.H., W.Q., L.L., M.W., Z.H., J.G., C.L., J.X.), Shanghai University, China
| | - Meiyu Hu
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital (Sixth People's Hospital of Nantong) and School of Life Science of Shanghai University, China (Y.B., Y.Z., J.Z., S.A., M.Y., M.H., W.Q., L.L., M.W., Z.H., J.G., C.L., J.X.)
- Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education) (Y.B., Y.Z., J.Z., S.A., M.Y., M.H., W.Q., L.L., M.W., Z.H., J.G., C.L., J.X.), Shanghai University, China
- Cardiac Regeneration and Ageing Laboratory, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Medicine (Y.B., Y.Z., J.Z., S.A., M.Y., M.H., W.Q., L.L., M.W., Z.H., J.G., C.L., J.X.), Shanghai University, China
| | - Weitong Qi
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital (Sixth People's Hospital of Nantong) and School of Life Science of Shanghai University, China (Y.B., Y.Z., J.Z., S.A., M.Y., M.H., W.Q., L.L., M.W., Z.H., J.G., C.L., J.X.)
- Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education) (Y.B., Y.Z., J.Z., S.A., M.Y., M.H., W.Q., L.L., M.W., Z.H., J.G., C.L., J.X.), Shanghai University, China
- Cardiac Regeneration and Ageing Laboratory, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Medicine (Y.B., Y.Z., J.Z., S.A., M.Y., M.H., W.Q., L.L., M.W., Z.H., J.G., C.L., J.X.), Shanghai University, China
| | - Michail Spanos
- Cardiovascular Division of the Massachusetts General Hospital and Harvard Medical School, Boston (M.S., G.L.)
| | - Lin Li
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital (Sixth People's Hospital of Nantong) and School of Life Science of Shanghai University, China (Y.B., Y.Z., J.Z., S.A., M.Y., M.H., W.Q., L.L., M.W., Z.H., J.G., C.L., J.X.)
- Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education) (Y.B., Y.Z., J.Z., S.A., M.Y., M.H., W.Q., L.L., M.W., Z.H., J.G., C.L., J.X.), Shanghai University, China
- Cardiac Regeneration and Ageing Laboratory, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Medicine (Y.B., Y.Z., J.Z., S.A., M.Y., M.H., W.Q., L.L., M.W., Z.H., J.G., C.L., J.X.), Shanghai University, China
| | - Meng Wei
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital (Sixth People's Hospital of Nantong) and School of Life Science of Shanghai University, China (Y.B., Y.Z., J.Z., S.A., M.Y., M.H., W.Q., L.L., M.W., Z.H., J.G., C.L., J.X.)
- Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education) (Y.B., Y.Z., J.Z., S.A., M.Y., M.H., W.Q., L.L., M.W., Z.H., J.G., C.L., J.X.), Shanghai University, China
- Cardiac Regeneration and Ageing Laboratory, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Medicine (Y.B., Y.Z., J.Z., S.A., M.Y., M.H., W.Q., L.L., M.W., Z.H., J.G., C.L., J.X.), Shanghai University, China
| | - Zhenzhen Huang
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital (Sixth People's Hospital of Nantong) and School of Life Science of Shanghai University, China (Y.B., Y.Z., J.Z., S.A., M.Y., M.H., W.Q., L.L., M.W., Z.H., J.G., C.L., J.X.)
- Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education) (Y.B., Y.Z., J.Z., S.A., M.Y., M.H., W.Q., L.L., M.W., Z.H., J.G., C.L., J.X.), Shanghai University, China
- Cardiac Regeneration and Ageing Laboratory, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Medicine (Y.B., Y.Z., J.Z., S.A., M.Y., M.H., W.Q., L.L., M.W., Z.H., J.G., C.L., J.X.), Shanghai University, China
| | - Juan Gao
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital (Sixth People's Hospital of Nantong) and School of Life Science of Shanghai University, China (Y.B., Y.Z., J.Z., S.A., M.Y., M.H., W.Q., L.L., M.W., Z.H., J.G., C.L., J.X.)
- Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education) (Y.B., Y.Z., J.Z., S.A., M.Y., M.H., W.Q., L.L., M.W., Z.H., J.G., C.L., J.X.), Shanghai University, China
- Cardiac Regeneration and Ageing Laboratory, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Medicine (Y.B., Y.Z., J.Z., S.A., M.Y., M.H., W.Q., L.L., M.W., Z.H., J.G., C.L., J.X.), Shanghai University, China
| | - Chang Liu
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital (Sixth People's Hospital of Nantong) and School of Life Science of Shanghai University, China (Y.B., Y.Z., J.Z., S.A., M.Y., M.H., W.Q., L.L., M.W., Z.H., J.G., C.L., J.X.)
- Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education) (Y.B., Y.Z., J.Z., S.A., M.Y., M.H., W.Q., L.L., M.W., Z.H., J.G., C.L., J.X.), Shanghai University, China
- Cardiac Regeneration and Ageing Laboratory, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Medicine (Y.B., Y.Z., J.Z., S.A., M.Y., M.H., W.Q., L.L., M.W., Z.H., J.G., C.L., J.X.), Shanghai University, China
| | - Petra H van der Kraak
- Department of Pathology (P.H.v.d.K.), University Medical Center Utrecht, University Utrecht, The Netherlands
| | - Guoping Li
- Cardiovascular Division of the Massachusetts General Hospital and Harvard Medical School, Boston (M.S., G.L.)
| | - Zhiyong Lei
- Department of Cardiology, Laboratory of Experimental Cardiology (Z.L., J.P.G.S.), University Medical Center Utrecht, University Utrecht, The Netherlands
- Division Laboratory, Central Diagnosis Laboratory Research (Z.L.), University Medical Center Utrecht, University Utrecht, The Netherlands
| | - Joost P G Sluijter
- Department of Cardiology, Laboratory of Experimental Cardiology (Z.L., J.P.G.S.), University Medical Center Utrecht, University Utrecht, The Netherlands
- Utrecht Regenerative Medicine Center (J.P.G.S.), University Medical Center Utrecht, University Utrecht, The Netherlands
| | - Junjie Xiao
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital (Sixth People's Hospital of Nantong) and School of Life Science of Shanghai University, China (Y.B., Y.Z., J.Z., S.A., M.Y., M.H., W.Q., L.L., M.W., Z.H., J.G., C.L., J.X.)
- Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education) (Y.B., Y.Z., J.Z., S.A., M.Y., M.H., W.Q., L.L., M.W., Z.H., J.G., C.L., J.X.), Shanghai University, China
- Cardiac Regeneration and Ageing Laboratory, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Medicine (Y.B., Y.Z., J.Z., S.A., M.Y., M.H., W.Q., L.L., M.W., Z.H., J.G., C.L., J.X.), Shanghai University, China
| |
Collapse
|
4
|
Wan K, Jin Y, Fan R, Xu Q, Li X, Yan H, Wang R. Exploring molecular mechanisms of exercise on metabolic syndrome: a bibliometric and visualization study using CiteSpace. Front Endocrinol (Lausanne) 2024; 15:1408466. [PMID: 39290329 PMCID: PMC11405195 DOI: 10.3389/fendo.2024.1408466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 08/19/2024] [Indexed: 09/19/2024] Open
Abstract
Objective To investigate the molecular mechanisms through which exercise influences metabolic syndrome (MS) and identify key research trends and collaborative networks using bibliometric and visualization techniques. Methods We conducted a systematic literature search using the Web of Science Core Collection for articles published from 2014 to 2023. Using CiteSpace, we performed a bibliometric analysis of 562 eligible papers, generating visual knowledge maps to identify prevailing patterns, popular subjects, and emerging trends in the literature. Results The study reveals that exercise mitigates MS by reversing high-fat diet-induced abdominal obesity, reducing lipid accumulation and inflammation, enhancing insulin sensitivity, and improving cardiovascular function. Key molecular pathways include PPAR-γ/CPT-1/MCAD signaling, AMPK activation, and nitric oxide production. The USA leads in research output, with significant contributions from American institutions. Collaboration among researchers is limited, highlighting the need for more extensive and high-quality research initiatives. Conclusions Regular, moderate-to-high-intensity exercise is crucial for managing MS. Exercise activates beneficial molecular pathways, improving metabolic health and cardiovascular function. Future research should focus on expanding collaborations and exploring novel molecular targets to enhance the therapeutic potential of exercise in metabolic syndrome management.
Collapse
Affiliation(s)
- Kang Wan
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
- Physical Education College, Henan Sport University, Zhengzhou, China
| | - Yue Jin
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Ruobing Fan
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Qizi Xu
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Xiaoshi Li
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Hongmei Yan
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Endocrinology and Metabolism, Wusong Branch of Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ru Wang
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| |
Collapse
|
5
|
Sommerfeld LC, Holmes AP, Yu TY, O'Shea C, Kavanagh DM, Pike JM, Wright T, Syeda F, Aljehani A, Kew T, Cardoso VR, Kabir SN, Hepburn C, Menon PR, Broadway-Stringer S, O'Reilly M, Witten A, Fortmueller L, Lutz S, Kulle A, Gkoutos GV, Pavlovic D, Arlt W, Lavery GG, Steeds R, Gehmlich K, Stoll M, Kirchhof P, Fabritz L. Reduced plakoglobin increases the risk of sodium current defects and atrial conduction abnormalities in response to androgenic anabolic steroid abuse. J Physiol 2024; 602:4409-4436. [PMID: 38345865 DOI: 10.1113/jp284597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 01/16/2024] [Indexed: 03/07/2024] Open
Abstract
Androgenic anabolic steroids (AAS) are commonly abused by young men. Male sex and increased AAS levels are associated with earlier and more severe manifestation of common cardiac conditions, such as atrial fibrillation, and rare ones, such as arrhythmogenic right ventricular cardiomyopathy (ARVC). Clinical observations suggest a potential atrial involvement in ARVC. Arrhythmogenic right ventricular cardiomyopathy is caused by desmosomal gene defects, including reduced plakoglobin expression. Here, we analysed clinical records from 146 ARVC patients to identify that ARVC is more common in males than females. Patients with ARVC also had an increased incidence of atrial arrhythmias and P wave changes. To study desmosomal vulnerability and the effects of AAS on the atria, young adult male mice, heterozygously deficient for plakoglobin (Plako+/-), and wild type (WT) littermates were chronically exposed to 5α-dihydrotestosterone (DHT) or placebo. The DHT increased atrial expression of pro-hypertrophic, fibrotic and inflammatory transcripts. In mice with reduced plakoglobin, DHT exaggerated P wave abnormalities, atrial conduction slowing, sodium current depletion, action potential amplitude reduction and the fall in action potential depolarization rate. Super-resolution microscopy revealed a decrease in NaV1.5 membrane clustering in Plako+/- atrial cardiomyocytes after DHT exposure. In summary, AAS combined with plakoglobin deficiency cause pathological atrial electrical remodelling in young male hearts. Male sex is likely to increase the risk of atrial arrhythmia, particularly in those with desmosomal gene variants. This risk is likely to be exaggerated further by AAS use. KEY POINTS: Androgenic male sex hormones, such as testosterone, might increase the risk of atrial fibrillation in patients with arrhythmogenic right ventricular cardiomyopathy (ARVC), which is often caused by desmosomal gene defects (e.g. reduced plakoglobin expression). In this study, we observed a significantly higher proportion of males who had ARVC compared with females, and atrial arrhythmias and P wave changes represented a common observation in advanced ARVC stages. In mice with reduced plakoglobin expression, chronic administration of 5α-dihydrotestosterone led to P wave abnormalities, atrial conduction slowing, sodium current depletion and a decrease in membrane-localized NaV1.5 clusters. 5α-Dihydrotestosterone, therefore, represents a stimulus aggravating the pro-arrhythmic phenotype in carriers of desmosomal mutations and can affect atrial electrical function.
Collapse
Affiliation(s)
- Laura C Sommerfeld
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
- University Center of Cardiovascular Science, University Heart and Vascular Center, UKE Hamburg, Hamburg, Germany
- German Center for Cardiovascular Research (DZHK), Standort Hamburg/Kiel/Lübeck, Germany
| | - Andrew P Holmes
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
- School of Biomedical Sciences, Institute of Clinical Sciences, University of Birmingham, Birmingham, UK
| | - Ting Y Yu
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
- Research and Training Centre in Physical Sciences for Health, Birmingham, UK
| | - Christopher O'Shea
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
- Research and Training Centre in Physical Sciences for Health, Birmingham, UK
| | - Deirdre M Kavanagh
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
- Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham, UK
| | - Jeremy M Pike
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
- Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham, UK
| | - Thomas Wright
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
| | - Fahima Syeda
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
| | - Areej Aljehani
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
| | - Tania Kew
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
| | - Victor R Cardoso
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - S Nashitha Kabir
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
| | - Claire Hepburn
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
| | - Priyanka R Menon
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
| | | | - Molly O'Reilly
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
| | - Anika Witten
- Genetic Epidemiology, Institute for Human Genetics, University of Münster, Münster, Germany
- Core Facility Genomics of the Medical Faculty, University of Münster, Münster, Germany
| | - Lisa Fortmueller
- University Center of Cardiovascular Science, University Heart and Vascular Center, UKE Hamburg, Hamburg, Germany
- German Center for Cardiovascular Research (DZHK), Standort Hamburg/Kiel/Lübeck, Germany
- Genetic Epidemiology, Institute for Human Genetics, University of Münster, Münster, Germany
| | - Susanne Lutz
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Göttingen, Germany
| | - Alexandra Kulle
- Division of Paediatric Endocrinology and Diabetes, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Georgios V Gkoutos
- University Center of Cardiovascular Science, University Heart and Vascular Center, UKE Hamburg, Hamburg, Germany
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
- Institute of Translational Medicine, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
- MRC Health Data Research UK (HDR), Midlands Site, UK
| | - Davor Pavlovic
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
| | - Wiebke Arlt
- Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Birmingham, UK
- Centre for Endocrinology, Diabetes and Metabolism (CEDAM), Birmingham Health Partners, Birmingham, UK
- Medical Research Council London Institute of Medical Sciences, London UK & Institute of Clinical Sciences, Faculty of Medicine, Imperial College, London, UK
| | - Gareth G Lavery
- Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Birmingham, UK
- Centre for Endocrinology, Diabetes and Metabolism (CEDAM), Birmingham Health Partners, Birmingham, UK
| | - Richard Steeds
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
- Department of Cardiology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Katja Gehmlich
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
| | - Monika Stoll
- Genetic Epidemiology, Institute for Human Genetics, University of Münster, Münster, Germany
- Core Facility Genomics of the Medical Faculty, University of Münster, Münster, Germany
- Cardiovascular Research Institute Maastricht, Department of Biochemistry, Maastricht University, Maastricht, The Netherlands
| | - Paulus Kirchhof
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
- German Center for Cardiovascular Research (DZHK), Standort Hamburg/Kiel/Lübeck, Germany
- Department of Cardiology, University Heart & Vascular Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Larissa Fabritz
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
- University Center of Cardiovascular Science, University Heart and Vascular Center, UKE Hamburg, Hamburg, Germany
- German Center for Cardiovascular Research (DZHK), Standort Hamburg/Kiel/Lübeck, Germany
- Department of Cardiology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
- Department of Cardiology, University Heart & Vascular Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
6
|
Bianchi VE, von Haehling S. The treatment of chronic anemia in heart failure: a global approach. Clin Res Cardiol 2024; 113:1117-1136. [PMID: 37660308 DOI: 10.1007/s00392-023-02275-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 07/24/2023] [Indexed: 09/05/2023]
Abstract
Chronic anemia is an independent risk factor for mortality in patients with heart failure (HF). Restoring physiological hemoglobin (Hb) levels is essential to increase oxygen transport capacity to tissues and improve cell metabolism as well as physical and cardiac performance. Nutritional deficits and iron deficiency are the major causes of chronic anemia, but other etiologies include chronic kidney disease, inflammatory processes, and unexplained anemia. Hormonal therapy, including erythropoietin (EPO) and anabolic treatment in chronic anemia HF patients, may contribute to improving Hb levels and clinical outcomes. Although preliminary studies showed a beneficial effect of EPO therapy on cardiac efficiency and in HF, more recent studies have not confirmed this positive impact of EPO, alluding to its side effect profile. Physical exercise significantly increases Hb levels and the response of anemia to treatment. In malnourished patients and chronic inflammatory processes, low levels of anabolic hormones, such as testosterone and insulin-like growth factor-1, contribute to the development of chronic anemia. This paper aims to review the effect of nutrition, EPO, anabolic hormones, standard HF treatments, and exercise as regulatory mechanisms of chronic anemia and their cardiovascular consequences in patients with HF.
Collapse
Affiliation(s)
- Vittorio Emanuele Bianchi
- Department of Endocrinology and Metabolism, Clinical Center Stella Maris, Strada Rovereta, 42, 47891, Falciano, San Marino.
| | - Stephan von Haehling
- Department of Cardiology and Pneumology, University of Göttingen Medical Center, Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site, Göttingen, Germany
| |
Collapse
|
7
|
Jiwaganont P, Roytrakul S, Thaisakun S, Sukumolanan P, Petchdee S. Investigation of coagulation and proteomics profiles in symptomatic feline hypertrophic cardiomyopathy and healthy control cats. BMC Vet Res 2024; 20:292. [PMID: 38970022 PMCID: PMC11225243 DOI: 10.1186/s12917-024-04170-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 07/01/2024] [Indexed: 07/07/2024] Open
Abstract
BACKGROUND Hypertrophic cardiomyopathy (HCM) is a crucial heart disease in cats. The clinical manifestations of HCM comprise pulmonary edema, dyspnea, syncope, arterial thromboembolism (ATE), and sudden cardiac death. D-dimer and prothrombin time (PT) are powerful biomarkers used to assess coagulation function. Dysregulation in these two biomarkers may be associated with HCM in cats. This study aims to assess D-dimer levels, PT, and proteomic profiling in healthy cats in comparison to cats with symptomatic HCM. RESULTS Twenty-nine client-owned cats with HCM were enrolled, including 15 healthy control and 14 symptomatic HCM cats. The D-dimer concentration and PT were examined. Proteomic analysis was conducted by matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry and liquid chromatography-tandem mass spectrometry (LC-MS/MS). In symptomatic cats, D-dimer levels were statistically significantly higher (mean ± SEM: 372.19 ng/ml ± 58.28) than in healthy cats (mean ± SEM: 208.54 ng/ml ± 10.92) with P-value of less than 0.01, while PT was statistically significantly lower in symptomatic cats (mean ± SEM: 9.8 s ± 0.15) compared to healthy cats (mean ± SEM: 11.08 s ± 0.23) with P-value of less than 0.0001. The proteomics analysis revealed upregulation of integrin subunit alpha M (ITGAM), elongin B (ELOB), and fibrillin 2 (FBN2) and downregulation of zinc finger protein 316 (ZNF316) and ectonucleoside triphosphate diphosphohydrolase 8 (ENTPD8) in symptomatic HCM cats. In addition, protein-drug interaction analysis identified the Ras signaling pathway and PI3K-Akt signaling pathway. CONCLUSIONS Cats with symptomatic HCM have higher D-dimer and lower PT than healthy cats. Proteomic profiles may be used as potential biomarkers for the detection and management of HCM in cats. The use of D-dimer as a biomarker for HCM detection and the use of proteomic profiling for a better understanding of disease mechanisms remain to be further studied in cats.
Collapse
Affiliation(s)
- Palin Jiwaganont
- Graduate School, Veterinary Clinical Studies Program, Faculty of Veterinary Medicine, Kasetsart University, Kamphaeng Saen, Nakorn Pathom, Thailand
| | - Sittiruk Roytrakul
- Functional Proteomics Technology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Siriwan Thaisakun
- Functional Proteomics Technology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Pratch Sukumolanan
- Graduate School, Veterinary Clinical Studies Program, Faculty of Veterinary Medicine, Kasetsart University, Kamphaeng Saen, Nakorn Pathom, Thailand
| | - Soontaree Petchdee
- Department of Large Animal and Wildlife Clinical Sciences, Faculty of Veterinary Medicine, Kasetsart University, Kamphaeng Saen, Nakorn Pathom, Thailand.
| |
Collapse
|
8
|
Godoy Coto J, Pereyra EV, Cavalli FA, Valverde CA, Caldiz CI, Maté SM, Yeves AM, Ennis IL. Exercise-induced cardiac mitochondrial reorganization and enhancement in spontaneously hypertensive rats. Pflugers Arch 2024; 476:1109-1123. [PMID: 38625371 DOI: 10.1007/s00424-024-02956-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/22/2024] [Accepted: 03/28/2024] [Indexed: 04/17/2024]
Abstract
The myocardium is a highly oxidative tissue in which mitochondria are essential to supply the energy required to maintain pump function. When pathological hypertrophy develops, energy consumption augments and jeopardizes mitochondrial capacity. We explored the cardiac consequences of chronic swimming training, focusing on the mitochondrial network, in spontaneously hypertensive rats (SHR). Male adult SHR were randomized to sedentary or trained (T: 8-week swimming protocol). Blood pressure and echocardiograms were recorded, and hearts were removed at the end of the training period to perform molecular, imaging, or isolated mitochondria studies. Swimming improved cardiac midventricular shortening and decreased the pathological hypertrophic marker atrial natriuretic peptide. Oxidative stress was reduced, and even more interesting, mitochondrial spatial distribution, dynamics, function, and ATP were significantly improved in the myocardium of T rats. In the signaling pathway triggered by training, we detected an increase in the phosphorylation level of both AKT and glycogen synthase kinase-3 β, key downstream targets of insulin-like growth factor 1 signaling that are crucially involved in mitochondria biogenesis and integrity. Aerobic exercise training emerges as an effective approach to improve pathological cardiac hypertrophy and bioenergetics in hypertension-induced cardiac hypertrophy.
Collapse
Affiliation(s)
- Joshua Godoy Coto
- Centro de Investigaciones Cardiovasculares "Dr. Horacio E. Cingolani", Facultad de Ciencias Médicas, Universidad Nacional de La Plata (UNLP) - CONICET, La Plata, Argentina
| | - Erica V Pereyra
- Centro de Investigaciones Cardiovasculares "Dr. Horacio E. Cingolani", Facultad de Ciencias Médicas, Universidad Nacional de La Plata (UNLP) - CONICET, La Plata, Argentina
| | - Fiorella A Cavalli
- Centro de Investigaciones Cardiovasculares "Dr. Horacio E. Cingolani", Facultad de Ciencias Médicas, Universidad Nacional de La Plata (UNLP) - CONICET, La Plata, Argentina
| | - Carlos A Valverde
- Centro de Investigaciones Cardiovasculares "Dr. Horacio E. Cingolani", Facultad de Ciencias Médicas, Universidad Nacional de La Plata (UNLP) - CONICET, La Plata, Argentina
| | - Claudia I Caldiz
- Centro de Investigaciones Cardiovasculares "Dr. Horacio E. Cingolani", Facultad de Ciencias Médicas, Universidad Nacional de La Plata (UNLP) - CONICET, La Plata, Argentina
| | - Sabina M Maté
- Instituto de Investigaciones Bioquímicas de La Plata "Prof. Dr. Rodolfo R. Brenner" - Facultad de Ciencias Médicas, Universidad Nacional de La Plata (UNLP) - CONICET, La Plata, Argentina
| | - Alejandra M Yeves
- Centro de Investigaciones Cardiovasculares "Dr. Horacio E. Cingolani", Facultad de Ciencias Médicas, Universidad Nacional de La Plata (UNLP) - CONICET, La Plata, Argentina.
| | - Irene L Ennis
- Centro de Investigaciones Cardiovasculares "Dr. Horacio E. Cingolani", Facultad de Ciencias Médicas, Universidad Nacional de La Plata (UNLP) - CONICET, La Plata, Argentina.
| |
Collapse
|
9
|
Bei Y, Wang H, Liu Y, Su Z, Li X, Zhu Y, Zhang Z, Yin M, Chen C, Li L, Wei M, Meng X, Liang X, Huang Z, Cao RY, Wang L, Li G, Cretoiu D, Xiao J. Exercise-Induced miR-210 Promotes Cardiomyocyte Proliferation and Survival and Mediates Exercise-Induced Cardiac Protection against Ischemia/Reperfusion Injury. RESEARCH (WASHINGTON, D.C.) 2024; 7:0327. [PMID: 38410280 PMCID: PMC10895486 DOI: 10.34133/research.0327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 02/01/2024] [Indexed: 02/28/2024]
Abstract
Exercise can stimulate physiological cardiac growth and provide cardioprotection effect in ischemia/reperfusion (I/R) injury. MiR-210 is regulated in the adaptation process induced by exercise; however, its impact on exercise-induced physiological cardiac growth and its contribution to exercise-driven cardioprotection remain unclear. We investigated the role and mechanism of miR-210 in exercise-induced physiological cardiac growth and explored whether miR-210 contributes to exercise-induced protection in alleviating I/R injury. Here, we first observed that regular swimming exercise can markedly increase miR-210 levels in the heart and blood samples of rats and mice. Circulating miR-210 levels were also elevated after a programmed cardiac rehabilitation in patients that were diagnosed of coronary heart diseases. In 8-week swimming model in wild-type (WT) and miR-210 knockout (KO) rats, we demonstrated that miR-210 was not integral for exercise-induced cardiac hypertrophy but it did influence cardiomyocyte proliferative activity. In neonatal rat cardiomyocytes, miR-210 promoted cell proliferation and suppressed apoptosis while not altering cell size. Additionally, miR-210 promoted cardiomyocyte proliferation and survival in human embryonic stem cell-derived cardiomyocytes (hESC-CMs) and AC16 cell line, indicating its functional roles in human cardiomyocytes. We further identified miR-210 target genes, cyclin-dependent kinase 10 (CDK10) and ephrin-A3 (EFNA3), that regulate cardiomyocyte proliferation and apoptosis. Finally, miR-210 KO and WT rats were subjected to swimming exercise followed by I/R injury. We demonstrated that miR-210 crucially contributed to exercise-driven cardioprotection against I/R injury. In summary, this study elucidates the role of miR-210, an exercise-responsive miRNA, in promoting the proliferative activity of cardiomyocytes during physiological cardiac growth. Furthermore, miR-210 plays an essential role in mediating the protective effects of exercise against cardiac I/R injury. Our findings suggest exercise as a potent nonpharmaceutical intervention for inducing miR-210, which can alleviate I/R injury and promote cardioprotection.
Collapse
Affiliation(s)
- Yihua Bei
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong) and School of Life Science, Shanghai University, Nantong 226011, China
- Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education),
Shanghai University, Shanghai 200444, China
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Medicine,
Shanghai University, Shanghai 200444, China
| | - Hongyun Wang
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong) and School of Life Science, Shanghai University, Nantong 226011, China
- Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education),
Shanghai University, Shanghai 200444, China
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Medicine,
Shanghai University, Shanghai 200444, China
| | - Yang Liu
- Department of Cardiology, Shanghai Tongji Hospital,
Tongji University School of Medicine, Shanghai 200065, China
| | - Zhuhua Su
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong) and School of Life Science, Shanghai University, Nantong 226011, China
- Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education),
Shanghai University, Shanghai 200444, China
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Medicine,
Shanghai University, Shanghai 200444, China
| | - Xinpeng Li
- Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education),
Shanghai University, Shanghai 200444, China
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Medicine,
Shanghai University, Shanghai 200444, China
- School of Environmental and Chemical Engineering,
Shanghai University, Shanghai 200444, China
| | - Yujiao Zhu
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong) and School of Life Science, Shanghai University, Nantong 226011, China
- Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education),
Shanghai University, Shanghai 200444, China
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Medicine,
Shanghai University, Shanghai 200444, China
| | - Ziyi Zhang
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong) and School of Life Science, Shanghai University, Nantong 226011, China
- Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education),
Shanghai University, Shanghai 200444, China
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Medicine,
Shanghai University, Shanghai 200444, China
| | - Mingming Yin
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong) and School of Life Science, Shanghai University, Nantong 226011, China
- Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education),
Shanghai University, Shanghai 200444, China
| | - Chen Chen
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong) and School of Life Science, Shanghai University, Nantong 226011, China
- Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education),
Shanghai University, Shanghai 200444, China
| | - Lin Li
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong) and School of Life Science, Shanghai University, Nantong 226011, China
- Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education),
Shanghai University, Shanghai 200444, China
| | - Meng Wei
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong) and School of Life Science, Shanghai University, Nantong 226011, China
- Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education),
Shanghai University, Shanghai 200444, China
| | - Xiangmin Meng
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong) and School of Life Science, Shanghai University, Nantong 226011, China
| | - Xuchun Liang
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong) and School of Life Science, Shanghai University, Nantong 226011, China
- Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education),
Shanghai University, Shanghai 200444, China
| | - Zhenzhen Huang
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong) and School of Life Science, Shanghai University, Nantong 226011, China
- Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education),
Shanghai University, Shanghai 200444, China
| | - Richard Yang Cao
- Cardiac Rehabilitation Program, Shanghai Xuhui Central Hospital/Zhongshan-Xuhui Hospital,
Fudan University/Shanghai Clinical Research Center, Shanghai 200031, China
| | - Lei Wang
- Department of Rehabilitation Medicine,
Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Guoping Li
- Cardiovascular Division of the Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Dragos Cretoiu
- Department of Medical Genetics,
Carol Davila University of Medicine and Pharmacy, Bucharest 020031, Romania
- Materno-Fetal Assistance Excellence Unit, Alessandrescu-Rusescu National Institute for Mother and Child Health, Bucharest 011062, Romania
| | - Junjie Xiao
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong) and School of Life Science, Shanghai University, Nantong 226011, China
- Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education),
Shanghai University, Shanghai 200444, China
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Medicine,
Shanghai University, Shanghai 200444, China
| |
Collapse
|
10
|
Gamiño-Gutiérrez JA, Terán-Hernández IM, Castellar-Lopez J, Villamizar-Villamizar W, Osorio-Llanes E, Palacios-Cruz M, Rosales W, Chang AY, Díaz-Ariza LA, Ospino MC, Mendoza-Torres E. Novel Insights into the Cardioprotective Effects of the Peptides of the Counter-Regulatory Renin-Angiotensin System. Biomedicines 2024; 12:255. [PMID: 38397857 PMCID: PMC10887066 DOI: 10.3390/biomedicines12020255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/26/2023] [Accepted: 12/27/2023] [Indexed: 02/25/2024] Open
Abstract
Currently, cardiovascular diseases are a major contributor to morbidity and mortality worldwide, having a significant negative impact on both the economy and public health. The renin-angiotensin system contributes to a high spectrum of cardiovascular disorders and is essential for maintaining normal cardiovascular homeostasis. Overactivation of the classical renin-angiotensin system is one of the most important pathophysiological mechanisms in the progression of cardiovascular diseases. The counter-regulatory renin-angiotensin system is an alternate pathway which favors the synthesis of different peptides, including Angiotensin-(1-7), Angiotensin-(1-9), and Alamandine. These peptides, via the angiotensin type 2 receptor (AT2R), MasR, and MrgD, initiate multiple downstream signaling pathways that culminate in the activation of various cardioprotective mechanisms, such as decreased cardiac fibrosis, decreased myocardial hypertrophy, vasodilation, decreased blood pressure, natriuresis, and nitric oxide synthesis. These cardioprotective effects position them as therapeutic alternatives for reducing the progression of cardiovascular diseases. This review aims to show the latest findings on the cardioprotective effects of the main peptides of the counter-regulatory renin-angiotensin system.
Collapse
Affiliation(s)
| | - Ivana María Terán-Hernández
- Grupo de Investigación Avanzada en Biomedicina, Faculty of Health Sciences, Universidad Libre Seccional Barranquilla, Barranquilla 081001, Colombia; (I.M.T.-H.); (W.V.-V.); (L.A.D.-A.); (M.C.O.)
| | - Jairo Castellar-Lopez
- Grupo de Investigación Avanzada en Biomedicina, Faculty of Exact and Natural Sciences, Universidad Libre Seccional Barranquilla, Barranquilla 081001, Colombia; (J.C.-L.); (E.O.-L.); (W.R.)
| | - Wendy Villamizar-Villamizar
- Grupo de Investigación Avanzada en Biomedicina, Faculty of Health Sciences, Universidad Libre Seccional Barranquilla, Barranquilla 081001, Colombia; (I.M.T.-H.); (W.V.-V.); (L.A.D.-A.); (M.C.O.)
| | - Estefanie Osorio-Llanes
- Grupo de Investigación Avanzada en Biomedicina, Faculty of Exact and Natural Sciences, Universidad Libre Seccional Barranquilla, Barranquilla 081001, Colombia; (J.C.-L.); (E.O.-L.); (W.R.)
| | | | - Wendy Rosales
- Grupo de Investigación Avanzada en Biomedicina, Faculty of Exact and Natural Sciences, Universidad Libre Seccional Barranquilla, Barranquilla 081001, Colombia; (J.C.-L.); (E.O.-L.); (W.R.)
| | - Aileen Y. Chang
- School of Medicine and Health Sciences, The George Washington University, Washington, DC 20052, USA;
| | - Luis Antonio Díaz-Ariza
- Grupo de Investigación Avanzada en Biomedicina, Faculty of Health Sciences, Universidad Libre Seccional Barranquilla, Barranquilla 081001, Colombia; (I.M.T.-H.); (W.V.-V.); (L.A.D.-A.); (M.C.O.)
| | - María Clara Ospino
- Grupo de Investigación Avanzada en Biomedicina, Faculty of Health Sciences, Universidad Libre Seccional Barranquilla, Barranquilla 081001, Colombia; (I.M.T.-H.); (W.V.-V.); (L.A.D.-A.); (M.C.O.)
| | - Evelyn Mendoza-Torres
- Grupo de Investigación Avanzada en Biomedicina, Faculty of Health Sciences, Universidad Libre Seccional Barranquilla, Barranquilla 081001, Colombia; (I.M.T.-H.); (W.V.-V.); (L.A.D.-A.); (M.C.O.)
| |
Collapse
|
11
|
Zilio F, Di Fusco SA, Flori M, Malvezzi Caracciolo D'Aquino M, Pollarolo L, Ingianni N, Lucà F, Riccio C, Gulizia MM, Gabrielli D, Oliva F, Colivicchi F. Physical activity and the heart: from well-established cardiovascular benefits to possible adverse effects. Trends Cardiovasc Med 2024; 34:18-25. [PMID: 35738324 DOI: 10.1016/j.tcm.2022.06.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 06/12/2022] [Accepted: 06/17/2022] [Indexed: 12/12/2022]
Abstract
The favorable effects of physical activity on the cardiovascular system have been well described in scientific literature. Physical activity reduces cardiovascular morbidity and mortality in both healthy subjects and in patients with cardiovascular disease. However, different intensity levels of physical activity have a different impact on the cardiovascular system. Some data support the hypothesis of a "physical activity paradox": repetitive exposure to vigorous physical activity may induce biological effects that counteract the benefits of moderate intensity levels of physical activity. In this review, we report the main effects of acute and chronic physical activity on the cardiovascular system and we summarize the biochemical mechanisms that may explain these effects.
Collapse
Affiliation(s)
- Filippo Zilio
- Department of Cardiology, Santa Chiara Hospital, APSS, Trento Italy.
| | | | - Marco Flori
- Cardiology Unit, Presidio Ospedaliero Unico Urbino, Urbino, Italy
| | | | - Luigi Pollarolo
- Cardiology Unit, Santo Spirito Hospital, Casale Monferrato, Italy
| | - Nadia Ingianni
- Cardiologo ASP Trapani Distretti Marsala e Castelvetrano, Marsala, Italy
| | - Fabiana Lucà
- Division of Cardiology, Big Metropolitan Hospital, Bianchi Melacrino Morelli, Reggio Calabria, Italy
| | - Carmine Riccio
- UOSD "Follow up del paziente post acuto", Dipartimento Cardiovascolare, Azienda Ospedaliera Sant'Anna e San Sebastiano, Caserta, Italy
| | - Michele Massimo Gulizia
- Cardiology Division, Garibaldi-Nesima Hospital, Catania, Italy; ANMCO Heart Care Foundation, Florence, Italy
| | - Domenico Gabrielli
- Cardiology/CCU Unit, Cardiovascular Department, San Camillo Hospital, Rome, Italy
| | - Fabrizio Oliva
- De Gasperis Cardio Center, Niguarda Hospital, Milano, Italy
| | - Furio Colivicchi
- Clinical and Rehabilitation Cardiology Unit, San Filippo Neri Hospital, Rome, Italy
| |
Collapse
|
12
|
Teyssier JR, Cozannet P, Greene E, Dridi S, Rochell SJ. Influence of different heat stress models on nutrient digestibility and markers of stress, inflammation, lipid, and protein metabolism in broilers. Poult Sci 2023; 102:103048. [PMID: 37797358 PMCID: PMC10613759 DOI: 10.1016/j.psj.2023.103048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/03/2023] [Accepted: 08/16/2023] [Indexed: 10/07/2023] Open
Abstract
This experiment determined the effects of different HS models and pair-feeding (PF) on nutrient digestibility and markers of stress, inflammation, and metabolism in broilers. Birds (720 total) were allocated into 12 environmentally controlled chambers and reared under thermoneutral conditions until 20 d. Until 41 d birds were exposed to 4 treatments, including: thermoneutral at 24°C (TN-al), daily cyclic HS (12 h at 24 and 12 h at 35°C; cyHS), constant HS at 35°C (coHS), and PF birds maintained at 24°C and fed to equalize FI with coHS birds (TN-coPF). At d 41, ileal digesta were collected to determine nutrient apparent ileal digestibility (AID). Blood, liver, and breast tissues were collected from 8 birds per treatment to determine the mRNA expression of stress, inflammation, and metabolism markers. An additional 8 TN-al birds were sampled after acute HS exposure at 35°C for 4 h (aHS), and 8 cyHS birds were sampled either right before or 4 h after HS initiation. Data were analyzed by 1-way ANOVA and means were separated using Tukey's HSD test. Compared with TN-al birds, AID of nitrogen and ether extract were reduced in coHS birds, and both cyHS and coHS reduced (P < 0.05) AID of total essential amino acids. TNFα and SOD2 expression were increased (P < 0.05) under aHS, coHS, and TN-coPF conditions. IL6 and HSP70 were increased (P < 0.05) under coHS and aHS, respectively. Expression of lipogenic enzymes ACCα and FASN were reduced by coHS and TN-coPF, while coHS increased the lipolytic enzyme ATGL (P < 0.05). IGF1 was lowered in coHS birds, and p70S6K and MyoG were reduced under coHS and TN-coPF (P < 0.05). Interestingly, MuRF1 and MAFbx were increased (P < 0.05) under coHS only. Overall, these results indicate that coHS has a greater impact on nutrient digestibility and metabolism than aHS and cyHS. Interestingly, increased protein degradation during HS appears to be mostly driven by HS per se and not the reduced FI.
Collapse
Affiliation(s)
- J R Teyssier
- Center of Excellence for Poultry Science, University of Arkansas System Division of Agriculture, Fayetteville, AR 72701, USA
| | - P Cozannet
- Adisseo France S.A.S., Center of Expertise in Research and Nutrition, 03600 Malicorne, France
| | - E Greene
- Center of Excellence for Poultry Science, University of Arkansas System Division of Agriculture, Fayetteville, AR 72701, USA
| | - S Dridi
- Center of Excellence for Poultry Science, University of Arkansas System Division of Agriculture, Fayetteville, AR 72701, USA
| | - S J Rochell
- Department of Poultry Science, Auburn University, Auburn, AL 36849, USA.
| |
Collapse
|
13
|
Law D, Magrini MA, Siedlik JA, Eckerson J, Drescher KM, Bredahl EC. Creatine and Resistance Training: A Combined Approach to Attenuate Doxorubicin-Induced Cardiotoxicity. Nutrients 2023; 15:4048. [PMID: 37764831 PMCID: PMC10536171 DOI: 10.3390/nu15184048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/01/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Doxorubicin (DOX), a potent chemotherapy agent, useful in the treatment of solid tumors, lymphomas, and leukemias, is limited by its potentially lethal cardiotoxicity. However, exercise has been consistently shown to mitigate the side effects of DOX, including cardiotoxicity. To date, most studies examining the relationship between exercise and DOX-induced cardiotoxicity have focused on aerobic exercise, with very few examining the role of anerobic activity. Therefore, this investigation explored the potential of creatine (CR) and resistance training (RT) in preserving cardiac health during DOX therapy. Male Sprague-Dawley rats were grouped into RT, RT + CR, sedentary (SED), and SED + CR, with each division further branching into saline (SAL) or DOX-treated subsets post-10 weeks of RT or SED activity. RT comprised progressive training utilizing specialized cages for bipedal stance feeding. CR-treated groups ingested water mixed with 1% CR monohydrate and 5% dextrose, while control animals received 5% dextrose. At week 10, DOX was administered (2 mg/kg/week) over 4-weeks to an 8 mg/kg cumulative dose. Cardiac function post-DOX treatment was assessed via transthoracic echocardiography. Left ventricular diameter during diastole was lower in DOX + CR, RT + DOX, and RT + CR + DOX compared to SED + DOX (p < 0.05). Additionally, cardiac mass was significantly greater in RT + CR + DOX SED + DOX animals (p < 0.05). These results suggest RT and CR supplementation, separately and in combination, could attenuate some measures of DOX-induced cardiotoxicity and may offer a cost-effective way to complement cancer treatments and enhance patient outcomes. More investigations are essential to better understand CR's prolonged effects during DOX therapy and its clinical implications.
Collapse
Affiliation(s)
- David Law
- Department of Exercise Science and Pre-Health Professions, Creighton University, 2500 California Plaza, Omaha, NE 68178, USA
| | - Mitchel A Magrini
- Department of Exercise Science and Pre-Health Professions, Creighton University, 2500 California Plaza, Omaha, NE 68178, USA
| | - Jacob A Siedlik
- Department of Exercise Science and Pre-Health Professions, Creighton University, 2500 California Plaza, Omaha, NE 68178, USA
- Department of Medical Microbiology and Immunology, Creighton University, Omaha NE 68178, USA
| | - Joan Eckerson
- Department of Exercise Science and Pre-Health Professions, Creighton University, 2500 California Plaza, Omaha, NE 68178, USA
| | - Kristen M Drescher
- Department of Medical Microbiology and Immunology, Creighton University, Omaha NE 68178, USA
| | - Eric C Bredahl
- Department of Exercise Science and Pre-Health Professions, Creighton University, 2500 California Plaza, Omaha, NE 68178, USA
- Department of Medical Microbiology and Immunology, Creighton University, Omaha NE 68178, USA
| |
Collapse
|
14
|
Bonilla IM, Baine S, Pokrass A, Mariángelo JIE, Kalyanasundaram A, Bogdanov V, Mezache L, Sakuta G, Beard CM, Belevych A, Tikunova S, Terentyeva R, Terentyev D, Davis J, Veeraraghavan R, Carnes CA, Györke S. STIM1 ablation impairs exercise-induced physiological cardiac hypertrophy and dysregulates autophagy in mouse hearts. J Appl Physiol (1985) 2023; 134:1287-1299. [PMID: 36995910 PMCID: PMC10190841 DOI: 10.1152/japplphysiol.00363.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 03/13/2023] [Accepted: 03/21/2023] [Indexed: 03/31/2023] Open
Abstract
Cardiac stromal interaction molecule 1 (STIM1), a key mediator of store-operated Ca2+ entry (SOCE), is a known determinant of cardiomyocyte pathological growth in hypertrophic cardiomyopathy. We examined the role of STIM1 and SOCE in response to exercise-dependent physiological hypertrophy. Wild-type (WT) mice subjected to exercise training (WT-Ex) showed a significant increase in exercise capacity and heart weight compared with sedentary (WT-Sed) mice. Moreover, myocytes from WT-Ex hearts displayed an increase in length, but not width, compared with WT-Sed myocytes. Conversely, exercised cardiac-specific STIM1 knock-out mice (cSTIM1KO-Ex), although displaying significant increase in heart weight and cardiac dilation, evidenced no changes in myocyte size and displayed a decreased exercise capacity, impaired cardiac function, and premature death compared with sedentary cardiac-specific STIM1 knock-out mice (cSTIM1KO-Sed). Confocal Ca2+ imaging demonstrated enhanced SOCE in WT-Ex myocytes compared with WT-Sed myocytes with no measurable SOCE detected in cSTIM1KO myocytes. Exercise training induced a significant increase in cardiac phospho-Akt Ser473 in WT mice but not in cSTIM1KO mice. No differences were observed in phosphorylation of mammalian target of rapamycin (mTOR) and glycogen synthase kinase (GSK) in exercised versus sedentary cSTIM1KO mice hearts. cSTIM1KO-Sed mice showed increased basal MAPK phosphorylation compared with WT-Sed that was not altered by exercise training. Finally, histological analysis revealed exercise resulted in increased autophagy in cSTIM1KO but not in WT myocytes. Taken together, our results suggest that adaptive cardiac hypertrophy in response to exercise training involves STIM1-mediated SOCE. Our results demonstrate that STIM1 is involved in and essential for the myocyte longitudinal growth and mTOR activation in response to endurance exercise training.NEW & NOTEWORTHY Store-operated Ca2+ entry (SOCE) has been implicated in pathological cardiac hypertrophy; however, its role in physiological hypertrophy is unknown. Here we report that SOCE is also essential for physiological cardiac hypertrophy and functional adaptations in response to endurance exercise. These adaptations were associated with activation of AKT/mTOR pathway and curtailed cardiac autophagy and degeneration. Thus, SOCE is a common mechanism and an important bifurcation point for signaling paths involved in physiological and pathological hypertrophy.
Collapse
Affiliation(s)
- Ingrid M Bonilla
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, Ohio, United States
- Veterans Affairs Caribbean Healthcare System, San Juan, Puerto Rico, United States
- Department of Pharmacology and Toxicology, School of Medicine, University of Puerto Rico, San Juan, Puerto Rico, United States
| | - Stephen Baine
- Department of Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio, United States
| | - Anastasia Pokrass
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, Ohio, United States
| | - Juan Ignacio Elio Mariángelo
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, Ohio, United States
| | - Anuradha Kalyanasundaram
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, Ohio, United States
- Bob and Corrine Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart & Lung Research Institute, Columbus, Ohio, United States
| | - Vladimir Bogdanov
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, Ohio, United States
| | - Louisa Mezache
- Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, Ohio, United States
| | - Galina Sakuta
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, Ohio, United States
| | - Casey M Beard
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, Ohio, United States
| | - Andriy Belevych
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, Ohio, United States
| | - Svetlana Tikunova
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, Ohio, United States
| | - Radmila Terentyeva
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, Ohio, United States
| | - Dmitry Terentyev
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, Ohio, United States
| | - Jonathan Davis
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, Ohio, United States
| | - Rengasayee Veeraraghavan
- Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, Ohio, United States
| | - Cynthia A Carnes
- Department of Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio, United States
| | - Sandor Györke
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, Ohio, United States
| |
Collapse
|
15
|
Balatskyi VV, Sowka A, Dobrzyn P, Piven OO. WNT/β-catenin pathway is a key regulator of cardiac function and energetic metabolism. Acta Physiol (Oxf) 2023; 237:e13912. [PMID: 36599355 DOI: 10.1111/apha.13912] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 10/24/2022] [Accepted: 01/02/2023] [Indexed: 01/06/2023]
Abstract
The WNT/β-catenin pathway is a master regulator of cardiac development and growth, and its activity is low in healthy adult hearts. However, even this low activity is essential for maintaining normal heart function. Acute activation of the WNT/β-catenin signaling cascade is considered to be cardioprotective after infarction through the upregulation of prosurvival genes and reprogramming of metabolism. Chronically high WNT/β-catenin pathway activity causes profibrotic and hypertrophic effects in the adult heart. New data suggest more complex functions of β-catenin in metabolic maturation of the perinatal heart, establishing an adult pattern of glucose and fatty acid utilization. Additionally, low basal activity of the WNT/β-catenin cascade maintains oxidative metabolism in the adult heart, and this pathway is reactivated by physiological or pathological stimuli to meet the higher energy needs of the heart. This review summarizes the current state of knowledge of the organization of canonical WNT signaling and its function in cardiogenesis, heart maturation, adult heart function, and remodeling. We also discuss the role of the WNT/β-catenin pathway in cardiac glucose, lipid metabolism, and mitochondrial physiology.
Collapse
Affiliation(s)
- Volodymyr V Balatskyi
- Laboratory of Molecular Medical Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Adrian Sowka
- Laboratory of Molecular Medical Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Pawel Dobrzyn
- Laboratory of Molecular Medical Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Oksana O Piven
- Laboratory of Molecular Medical Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
- Department of Human Genetics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| |
Collapse
|
16
|
Kemi OJ. Exercise and Calcium in the Heart. CURRENT OPINION IN PHYSIOLOGY 2023. [DOI: 10.1016/j.cophys.2023.100644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
17
|
Khalilimeybodi A, Riaz M, Campbell SG, Omens JH, McCulloch AD, Qyang Y, Saucerman JJ. Signaling network model of cardiomyocyte morphological changes in familial cardiomyopathy. J Mol Cell Cardiol 2023; 174:1-14. [PMID: 36370475 PMCID: PMC10230857 DOI: 10.1016/j.yjmcc.2022.10.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 08/26/2022] [Accepted: 10/20/2022] [Indexed: 11/11/2022]
Abstract
Familial cardiomyopathy is a precursor of heart failure and sudden cardiac death. Over the past several decades, researchers have discovered numerous gene mutations primarily in sarcomeric and cytoskeletal proteins causing two different disease phenotypes: hypertrophic (HCM) and dilated (DCM) cardiomyopathies. However, molecular mechanisms linking genotype to phenotype remain unclear. Here, we employ a systems approach by integrating experimental findings from preclinical studies (e.g., murine data) into a cohesive signaling network to scrutinize genotype to phenotype mechanisms. We developed an HCM/DCM signaling network model utilizing a logic-based differential equations approach and evaluated model performance in predicting experimental data from four contexts (HCM, DCM, pressure overload, and volume overload). The model has an overall prediction accuracy of 83.8%, with higher accuracy in the HCM context (90%) than DCM (75%). Global sensitivity analysis identifies key signaling reactions, with calcium-mediated myofilament force development and calcium-calmodulin kinase signaling ranking the highest. A structural revision analysis indicates potential missing interactions that primarily control calcium regulatory proteins, increasing model prediction accuracy. Combination pharmacotherapy analysis suggests that downregulation of signaling components such as calcium, titin and its associated proteins, growth factor receptors, ERK1/2, and PI3K-AKT could inhibit myocyte growth in HCM. In experiments with patient-specific iPSC-derived cardiomyocytes (MLP-W4R;MYH7-R723C iPSC-CMs), combined inhibition of ERK1/2 and PI3K-AKT rescued the HCM phenotype, as predicted by the model. In DCM, PI3K-AKT-NFAT downregulation combined with upregulation of Ras/ERK1/2 or titin or Gq protein could ameliorate cardiomyocyte morphology. The model results suggest that HCM mutations that increase active force through elevated calcium sensitivity could increase ERK activity and decrease eccentricity through parallel growth factors, Gq-mediated, and titin pathways. Moreover, the model simulated the influence of existing medications on cardiac growth in HCM and DCM contexts. This HCM/DCM signaling model demonstrates utility in investigating genotype to phenotype mechanisms in familial cardiomyopathy.
Collapse
Affiliation(s)
- Ali Khalilimeybodi
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, United States of America
| | - Muhammad Riaz
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Stuart G Campbell
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Jeffrey H Omens
- Departments of Bioengineering and Medicine, University of California, San Diego, La Jolla, CA, United States of America
| | - Andrew D McCulloch
- Departments of Bioengineering and Medicine, University of California, San Diego, La Jolla, CA, United States of America
| | - Yibing Qyang
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA; Yale Stem Cell Center, New Haven, CT, United States of America; Department of Pathology, Yale University, New Haven, CT, United States of America; Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT, United States of America
| | - Jeffrey J Saucerman
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, United States of America; Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA, United States of America.
| |
Collapse
|
18
|
Solís C, Thompson WC, Peña JR, McDermott-Roe C, Langa P, Warren CM, Chrzanowska M, Wolska BM, Solaro RJ, Pieter Detombe, Goldspink PH. Mechano-growth factor E-domain modulates cardiac contractile function through 14-3-3 protein interactomes. Front Physiol 2022; 13:1028345. [PMID: 36467694 PMCID: PMC9709209 DOI: 10.3389/fphys.2022.1028345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/31/2022] [Indexed: 11/18/2022] Open
Abstract
In the heart, alternative splicing of the igf-I gene produces two isoforms: IGF-IEa and IGF-IEc, (Mechano-growth factor, MGF). The sequence divergence between their E-domain regions suggests differential isoform function. To define the biological actions of MGF's E-domain, we performed in silico analysis of the unique C-terminal sequence and identified a phosphorylation consensus site residing within a putative 14-3-3 binding motif. To test the functional significance of Ser 18 phosphorylation, phospho-mimetic (S/E18) and phospho-null (S/A18) peptides were delivered to mice at different doses for 2 weeks. Cardiovascular function was measured using echocardiography and a pressure-volume catheter. At the lowest (2.25 mg/kg/day) and highest (9 mg/kg/day) doses, the peptides produced a depression in systolic and diastolic parameters. However, at 4.5 mg/kg/day the peptides produced opposing effects on cardiac function. Fractional shortening analysis also showed a similar trend, but with no significant change in cardiac geometry. Microarray analysis discovered 21 genes (FDR p < 0.01), that were expressed accordant with the opposing effects on contractile function at 4.5 mg/kg/day, with the nuclear receptor subfamily 4 group A member 2 (Nr4a2) identified as a potential target of peptide regulation. Testing the regulation of the Nr4a family, showed the E-domain peptides modulate Nr4a gene expression following membrane depolarization with KCl in vitro. To determine the potential role of 14-3-3 proteins, we examined 14-3-3 isoform expression and distribution. 14-3-3γ localized to the myofilaments in neonatal cardiac myocytes, the cardiac myocytes and myofilament extracts from the adult heart. Thermal shift analysis of recombinant 14-3-3γ protein showed the S/A18 peptide destabilized 14-3-3γ folding. Also, the S/A18 peptide significantly inhibited 14-3-3γ's ability to interact with myosin binding protein C (MYPC3) and phospholamban (PLN) in heart lysates from dobutamine injected mice. Conversely, the S/E18 peptide showed no effect on 14-3-3γ stability, did not inhibit 14-3-3γ's interaction with PLN but did inhibit the interaction with MYPC3. Replacing the glutamic acid with a phosphate group on Ser 18 (pSer18), significantly increased 14-3-3γ protein stability. We conclude that the state of Ser 18 phosphorylation within the 14-3-3 binding motif of MGF's E-domain, modulates protein-protein interactions within the 14-3-3γ interactome, which includes proteins involved in the regulation of contractile function.
Collapse
Affiliation(s)
- Christopher Solís
- Department of Physiology and Biophysics, University of Illinois Chicago, Chicago, IL, United States
| | - Walter C. Thompson
- Department of Physiology and Biophysics, University of Illinois Chicago, Chicago, IL, United States
| | - James R. Peña
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Christopher McDermott-Roe
- Department of Medicine, and Department of Genetics, Perelman School of Medicine, Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA, United States
| | - Paulina Langa
- Department of Physiology and Biophysics, University of Illinois Chicago, Chicago, IL, United States
- Center for Cardiovascular Research, University of Illinois at Chicago, Chicago, IL, United States
| | - Chad M. Warren
- Department of Physiology and Biophysics, University of Illinois Chicago, Chicago, IL, United States
- Center for Cardiovascular Research, University of Illinois at Chicago, Chicago, IL, United States
| | - Magdalena Chrzanowska
- Blood Research Institute, Versiti, Department of Pharmacology and Toxicology, Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Beata M. Wolska
- Center for Cardiovascular Research, University of Illinois at Chicago, Chicago, IL, United States
- Department of Medicine, Division of Cardiology, University of Illinois at Chicago, Chicago, IL, United States
| | - R. John Solaro
- Department of Physiology and Biophysics, University of Illinois Chicago, Chicago, IL, United States
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Pieter Detombe
- Department of Physiology and Biophysics, University of Illinois Chicago, Chicago, IL, United States
- Phymedexp, Université de Montpellier, Inserm, CNRS, Montpellier, France
| | - Paul H. Goldspink
- Department of Physiology and Biophysics, University of Illinois Chicago, Chicago, IL, United States
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
19
|
Ping Z, Li J, Sun Y, Zhang X, Wang Z, Cao X. Optimization of exercise preconditioning duration in protecting from exhausted exercise-induced cardiac injury in rats. CHINESE J PHYSIOL 2022; 65:290-300. [PMID: 36588355 DOI: 10.4103/0304-4920.365457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The effect of different duration of exercise preconditioning (EP) on protecting from exhaustive exercise-induced cardiac injury (EECI) has been optimized in rats. Male Sprague-Dawley rats were divided into six groups: the control group, exhaustive exercise (EE) group, EP 20-min + EE group, EP 40-min + EE group, EP 60-min + EE group and EP 80-min + EE group. The EP groups were subjected to treadmill running at the intensity of 74.0% V̇O2 max. Changes of exercise capacity, cardiac pathology, myocardial enzymology, electrocardiogram (ECG), cardiac function, and mitochondrial respiratory function were compared. Compared to the C group, the EE group has shown significant decrease of exercise capacity, elevation of serum N-terminal pro B-type natriuretic peptide (NT-proBNP) and cardiac troponin-I (cTn-I) levels, cardiac morphology change, ECG disturbance, cardiac dysfunction and reduction of myocardial mitochondrial respiration function. Compared to the EE group, the EP groups have shown significant elevation of exercise capacity, decrease of serum NT-proBNP and cTn-I, improvement of cardiac function and myocardial mitochondrial electron transfer pathway complex I, II and IV activity. The correlation analyses showed protection of EP was proportional to EP duration from 20-min to 60-min. EE caused cardiac injury. EP could protect from EECI by alleviating myocardial damage, improving cardiac function and mitochondrial ETP complex I, II and IV activity. EP protection was positively correlated to EP duration from 20-min to 60-min with EP intensity fixed at 74.0% V̇O2 max.
Collapse
Affiliation(s)
- Zheng Ping
- Department of Cardiology and Nephrology, The 82nd Group Army Hospital of PLA (252 Hospital of PLA), Baoding, Hebei, China
| | - Jinyu Li
- Department of Cardiology and Nephrology, The 82nd Group Army Hospital of PLA (252 Hospital of PLA), Baoding, Hebei, China
| | - Yawei Sun
- Department of Cardiology and Nephrology, The 82nd Group Army Hospital of PLA (252 Hospital of PLA), Baoding, Hebei, China
| | - Xiaoli Zhang
- Department of Cardiology and Nephrology, The 82nd Group Army Hospital of PLA (252 Hospital of PLA), Baoding, Hebei, China
| | - Ziwen Wang
- Department of Cardiology and Nephrology, The 82nd Group Army Hospital of PLA (252 Hospital of PLA), Baoding, Hebei, China
| | - Xuebin Cao
- Department of Cardiology and Nephrology, The 82nd Group Army Hospital of PLA (252 Hospital of PLA), Baoding, Hebei, China
| |
Collapse
|
20
|
Li Y, Zhang W, Dai Y, Chen K. Identification and verification of IGFBP3 and YTHDC1 as biomarkers associated with immune infiltration and mitophagy in hypertrophic cardiomyopathy. Front Genet 2022; 13:986995. [PMID: 36267414 PMCID: PMC9577180 DOI: 10.3389/fgene.2022.986995] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 09/20/2022] [Indexed: 11/27/2022] Open
Abstract
Background: Hypertrophic cardiomyopathy (HCM) is the main cause of sudden cardiac death among young adults, yet its pathogenesis remains vague. N6-methyladenosine (m6A) methylation modification was involved in various cardiovascular diseases such as coronary heart disease and heart failure, although its influence on HCM remains unclear. This study aimed to explore the potential role of m6A in the diagnosis and pathogenesis of HCM. Methods: GSE36961 including 106 HCM and 39 controls was used in the study. The HCM-related m6A regulators were selected using support vector machine recursive feature elimination and random forest algorithm. A significant gene signature was then established using least absolute shrinkage and selection operator and then verified by GSE130036. Subgroup classification of HCM was performed based on the expression of m6A biomarkers. Gene set variation analysis was employed to explore the functional difference between distinct subgroups. Weighted gene co-expression network analysis was used to determine the m6A-related hub module. Single-sample gene set enrichment analysis was conducted to assess the immune and mitophagy features between subgroups. Besides, transfection of recombinant plasmids with targeted genes into H9c2 cells was performed to further verify the function of the significant biomarkers. Results: Significant difference existed in m6A landscape between HCM and control patients, among which IGFBP3 and YTHDC1 were identified as the independent biomarkers of HCM. Highly infiltrated immune cells (MDSC, macrophages, etc.), more enriched immune-related pathways (TNFα signaling via NFκB and IL6-JAK-STAT3 signaling) and cardiac remodeling-associated pathways (epithelial mesenchymal transition, angiogenesis, etc.) were identified in the subgroup with higher IGFBP3. Consistently, overexpression of IGFBP3 in H9c2 cells led to upregulation of extracellular-matrix-related genes (COL1A2, COL3A1 and MMP9) and inflammation-related genes (TNFα and IL6). Besides, higher YTHDC1 expression seemed to be consistent with less-activated mitophagy (PINK1-PRKN mediated mitophagy) and energy metabolism. Further experiments demonstrated that overexpression of YTHDC1 resulted in up-regulation of PINK and PRKN in cardiomyocytes, which are essential genes mediating mitophagy. Conclusion: Two m6A readers (IGFBP3 and YTHDC1) well distinguished HCM and may facilitate clinical diagnosis. IGFBP3 may play a role in the immune-microenvironments and remodeling of cardiac tissues, while YTHDC1 may influence mitophagy and energy metabolism in HCM.
Collapse
Affiliation(s)
- Yao Li
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wei Zhang
- Department of Urology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Yan Dai
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Yan Dai, ; Keping Chen,
| | - Keping Chen
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Yan Dai, ; Keping Chen,
| |
Collapse
|
21
|
Wang X, He K, Ma L, Wu L, Yang Y, Li Y. Puerarin attenuates isoproterenol‑induced myocardial hypertrophy via inhibition of the Wnt/β‑catenin signaling pathway. Mol Med Rep 2022; 26:306. [PMID: 35946454 PMCID: PMC9437969 DOI: 10.3892/mmr.2022.12822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 07/20/2022] [Indexed: 11/06/2022] Open
Abstract
Myocardial hypertrophy (MH) is an independent risk factor for cardiovascular disease, which in turn lead to arrhythmia or heart failure. Therefore, attention must be paid to formulation of therapeutic strategies for MH. Puerarin is a key bioactive ingredient isolated from Pueraria genera of plants that is beneficial for the treatment of MH. However, its molecular mechanism of action has not been fully determined. In the present study, 40 µM puerarin was demonstrated to be a safe dose for human AC16 cells using Cell Counting Kit‑8 assay. The protective effects of puerarin against MH were demonstrated in AC16 cells stimulated with isoproterenol (ISO). These effects were characterized by a significant decrease in surface area of cells (assessed using fluorescence staining) and mRNA and protein expression levels of MH‑associated biomarkers, including atrial and brain natriuretic peptide, assessed using reverse transcription‑quantitative PCR and western blotting, as well as β‑myosin heavy chain mRNA expression levels. Mechanistically, western blotting demonstrated that puerarin inhibited activation of the Wnt signaling pathway. Puerarin also significantly decreased phosphorylation of p65; this was mediated via crosstalk between the Wnt and NF‑κB signaling pathways. An inhibitor (Dickkopf‑1) and activator (IM‑12) of the Wnt signaling pathway were used to demonstrate that puerarin‑mediated effects alleviated ISO‑induced MH via the Wnt signaling pathway. The results of the present study demonstrated that puerarin pre‑treatment may be a potential therapeutic strategy for preventing ISO‑induced MH and managing MH in the future.
Collapse
Affiliation(s)
- Xiaoying Wang
- Graduate School, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Kai He
- Graduate School, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Linlin Ma
- College of Medical Technology, Shanghai University of Medicine and Health Sciences, Shanghai 201318, P.R. China
| | - Lan Wu
- College of Medical Technology, Shanghai University of Medicine and Health Sciences, Shanghai 201318, P.R. China
| | - Yan Yang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201106, P.R. China
| | - Yanfei Li
- Graduate School, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| |
Collapse
|
22
|
Heidari B, Zolfaghari MR, Khademvatani K, Fattahi A, Zarezadeh R. Interrelation among exercise training, cardiac hypertrophy, and tissue kallikrein-kinin system in athlete and non-athlete women. J Cardiovasc Thorac Res 2022; 14:159-165. [DOI: 10.34172/jcvtr.2022.28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 08/16/2022] [Indexed: 11/06/2022] Open
Abstract
Introduction: The tissue kallikrein-kinin system is an endogenous homeostatic pathway, which its stimulation is associated with cardioprotection. The present study aimed to determine the effect of exercise training on plasma tissue kallikrein (TK) and bradykinin (BK) and their association with cardiac hypertrophy. Methods: 22 non-athlete and 22 athlete women were exposed to acute (Bruce test) and chronic (12-week swimming training) exercises. 2D echocardiography was used to evaluate morphological and functional features of the heart. Plasma concentrations of TK and BK were quantified by ELISA. Results: Athletes had significantly higher values of left ventricle end-diastolic diameter index (LVEDDI) and left ventricle mass index (LVMI) than non-athletes. Exercise intervention affected echocardiographic features in neither of the study groups. Chronic exercise training notably increased plasma levels of TK and BK, which increase was more pronounced in the athletes. Plasma TK negatively correlated with LVEDDI (r=−0.64, P=0.036 and r=−0.58, P=0.027) and LVMI (r=−0.51, P=0.032 and r=−0.63, P=0.028) in the non-athlete and athlete groups. In opposition, there was a positive correlation between plasma TK and left ventricle ejection fraction in non-athletes (r=0.39, P=0.049) and athletes (r=0.53, P=0.019). Conclusion: The upregulation of the tissue kallikrein-kinin system may be a protective mechanism against excessive cardiac hypertrophy induced by chronic exercise training.
Collapse
Affiliation(s)
- Behnam Heidari
- Department of Physical Education, Faculty of Sport Sciences, Urmia University, Urmia, Iran
| | | | - Kamal Khademvatani
- Cardiology Department, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Amir Fattahi
- Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Zarezadeh
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
23
|
Pahlavani HA. Exercise-induced signaling pathways to counteracting cardiac apoptotic processes. Front Cell Dev Biol 2022; 10:950927. [PMID: 36036015 PMCID: PMC9403089 DOI: 10.3389/fcell.2022.950927] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 07/15/2022] [Indexed: 01/15/2023] Open
Abstract
Cardiovascular diseases are the most common cause of death in the world. One of the major causes of cardiac death is excessive apoptosis. However, multiple pathways through moderate exercise can reduce myocardial apoptosis. After moderate exercise, the expression of anti-apoptotic proteins such as IGF-1, IGF-1R, p-PI3K, p-Akt, ERK-1/2, SIRT3, PGC-1α, and Bcl-2 increases in the heart. While apoptotic proteins such as PTEN, PHLPP-1, GSK-3, JNK, P38MAPK, and FOXO are reduced in the heart. Exercise-induced mechanical stress activates the β and α5 integrins and subsequently, focal adhesion kinase phosphorylation activates the Akt/mTORC1 and ERK-1/2 pathways, leading to an anti-apoptotic response. One of the reasons for the decrease in exercise-induced apoptosis is the decrease in Fas-ligand protein, Fas-death receptor, TNF-α receptor, Fas-associated death domain (FADD), caspase-8, and caspase-3. In addition, after exercise mitochondrial-dependent apoptotic factors such as Bid, t-Bid, Bad, p-Bad, Bak, cytochrome c, and caspase-9 are reduced. These changes lead to a reduction in oxidative damage, a reduction in infarct size, a reduction in cardiac apoptosis, and an increase in myocardial function. After exercising in the heart, the levels of RhoA, ROCK1, Rac1, and ROCK2 decrease, while the levels of PKCε, PKCδ, and PKCɑ are activated to regulate calcium and prevent mPTP perforation. Exercise has an anti-apoptotic effect on heart failure by increasing the PKA-Akt-eNOS and FSTL1-USP10-Notch1 pathways, reducing the negative effects of CaMKIIδ, and increasing the calcineurin/NFAT pathway. Exercise plays a protective role in the heart by increasing HSP20, HSP27, HSP40, HSP70, HSP72, and HSP90 along with increasing JAK2 and STAT3 phosphorylation. However, research on exercise and factors such as Pim-1, Notch, and FAK in cardiac apoptosis is scarce, so further research is needed. Future research is recommended to discover more anti-apoptotic pathways. It is also recommended to study the synergistic effect of exercise with gene therapy, dietary supplements, and cell therapy for future research.
Collapse
|
24
|
Park S, Moon HY. Urinary extracellular vesicle as a potential biomarker of exercise-induced fatigue in young adult males. Eur J Appl Physiol 2022; 122:2175-2188. [PMID: 35781843 PMCID: PMC9463341 DOI: 10.1007/s00421-022-04995-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 06/18/2022] [Indexed: 11/30/2022]
Abstract
Purpose Previous studies have suggested that circulating extracellular vesicles (EVs) arise after high intensity exercise and urine could reflect the plasma proteome. Herein, we investigated the characteristic of urinary EVs from healthy young adult males who had completed a maximal effort exercise test. Methods Thirteen healthy men completed a 20 m shuttle run test (20 m SRT). Fresh urine samples were collected at first morning, right after, and 1 h rest after 20 m SRT. Also, blood lactate, heart rate, rating of perceived exertion, and blood pressure were measured before, right after, and 1 h rest after 20 m SRT. Urinary EVs were analyzed using Exoview instrument and microRNAs (miRNAs) sequencing on urinary EVs were performed. Results Urinary EVs increased significantly after exercise and returned to baseline value after 1 h of rest. miRNA sequencing on urinary EV revealed alterations in four miRNAs (1 up and 3 down) and nine miRNAs (2 up and 7 down) in pre- vs. post- and post- vs. post-1 h samples, respectively. Lastly, bioinformatic analysis of urinary EV miRNA suggests that predicted target genes could affect PI3K-Akt, mitogen-activated protein kinase, and insulin pathways by exercise. Conclusions Exercise to voluntary exhaustion increased the number of EVs in urine. Also, miRNAs in urinary EVs were altered after exercise. These findings could indicate the possibility of using the urinary EVs as a novel biomarker of acute exercise-induced fatigue.
Collapse
Affiliation(s)
- Suhong Park
- Department of Physical Education, Seoul National University, Seoul, Republic of Korea
| | - Hyo Youl Moon
- Department of Physical Education, Seoul National University, Seoul, Republic of Korea. .,Institute of Sport Science, Seoul National University, 71-1, 407, Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea.
| |
Collapse
|
25
|
Bei Y, Huang Z, Feng X, Li L, Wei M, Zhu Y, Liu S, Chen C, Yin M, Jiang H, Xiao J. Lymphangiogenesis contributes to exercise-induced physiological cardiac growth. JOURNAL OF SPORT AND HEALTH SCIENCE 2022; 11:466-478. [PMID: 35218948 PMCID: PMC9338339 DOI: 10.1016/j.jshs.2022.02.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 01/28/2022] [Accepted: 02/16/2022] [Indexed: 05/13/2023]
Abstract
BACKGROUND Promoting cardiac lymphangiogenesis exerts beneficial effects for the heart. Exercise can induce physiological cardiac growth with cardiomyocyte hypertrophy and increased proliferation markers in cardiomyocytes. However, it remains unclear whether and how lymphangiogenesis contributes to exercise-induced physiological cardiac growth. We aimed to investigate the role and mechanism of lymphangiogenesis in exercise-induced physiological cardiac growth. METHODS Adult C57BL6/J mice were subjected to 3 weeks of swimming exercise to induce physiological cardiac growth. Oral treatment with vascular endothelial growth factor receptor 3 (VEGFR3) inhibitor SAR131675 was used to investigate whether cardiac lymphangiogenesis was required for exercise-induced physiological cardiac growth by VEGFR3 activation. Furthermore, human dermal lymphatic endothelial cell (LEC)-conditioned medium was collected to culture isolated neonatal rat cardiomyocytes to determine whether and how LECs could influence cardiomyocyte proliferation and hypertrophy. RESULTS Swimming exercise induced physiological cardiac growth accompanied by a remarkable increase of cardiac lymphangiogenesis as evidenced by increased density of lymphatic vessel endothelial hyaluronic acid receptor 1-positive lymphatic vessels in the heart and upregulated LYVE-1 and Podoplanin expressions levels. VEGFR3 was upregulated in the exercised heart, while VEGFR3 inhibitor SAR131675 attenuated exercise-induced physiological cardiac growth as evidenced by blunted myocardial hypertrophy and reduced proliferation marker Ki67 in cardiomyocytes, which was correlated with reduced lymphatic vessel density and downregulated LYVE-1 and Podoplanin in the heart upon exercise. Furthermore, LEC-conditioned medium promoted both hypertrophy and proliferation of cardiomyocytes and contained higher levels of insulin-like growth factor-1 and the extracellular protein Reelin, while LEC-conditioned medium from LECs treated with SAR131675 blocked these effects. Functional rescue assays further demonstrated that protein kinase B (AKT) activation, as well as reduced CCAAT enhancer-binding protein beta (C/EBPβ) and increased CBP/p300-interacting transactivators with E (glutamic acid)/D (aspartic acid)-rich-carboxylterminal domain 4 (CITED4), contributed to the promotive effect of LEC-conditioned medium on cardiomyocyte hypertrophy and proliferation. CONCLUSION Our findings reveal that cardiac lymphangiogenesis is required for exercise-induced physiological cardiac growth by VEGFR3 activation, and they indicate that LEC-conditioned medium promotes both physiological hypertrophy and proliferation of cardiomyocytes through AKT activation and the C/EBPβ-CITED4 axis. These results highlight the essential roles of cardiac lymphangiogenesis in exercise-induced physiological cardiac growth.
Collapse
Affiliation(s)
- Yihua Bei
- Cardiac Regeneration and Ageing Lab, Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China; Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Zhenzhen Huang
- Cardiac Regeneration and Ageing Lab, Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China; Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Xing Feng
- Cardiac Regeneration and Ageing Lab, Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China; Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Lin Li
- Cardiac Regeneration and Ageing Lab, Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China; Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Meng Wei
- Cardiac Regeneration and Ageing Lab, Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China; Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Yujiao Zhu
- Cardiac Regeneration and Ageing Lab, Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China; Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Shuqin Liu
- Cardiac Regeneration and Ageing Lab, Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China; Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Chen Chen
- Cardiac Regeneration and Ageing Lab, Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China; Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Mingming Yin
- Cardiac Regeneration and Ageing Lab, Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China; Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Huimin Jiang
- Clinical Laboratory Center, Beijing Hospital of Traditional Chinese Medicine, Beijing 100010, China
| | - Junjie Xiao
- Cardiac Regeneration and Ageing Lab, Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China; Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
26
|
Dozic S, Janssens JV, Weeks KL. Lymphangiogenesis: A new player in the heart's adaptive response to exercise. JOURNAL OF SPORT AND HEALTH SCIENCE 2022; 11:421-423. [PMID: 35346873 PMCID: PMC9338332 DOI: 10.1016/j.jshs.2022.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 06/14/2023]
Affiliation(s)
- Sanela Dozic
- Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| | - Johannes V Janssens
- Department of Anatomy & Physiology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Kate L Weeks
- Department of Anatomy & Physiology, The University of Melbourne, Parkville, VIC 3010, Australia; Baker Department of Cardiometabolic Health, The University of Melbourne, Parkville, VIC 3010, Australia; Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia.
| |
Collapse
|
27
|
Gao ZW, Zhang X, Zhuo QY, Chen MX, Yang C, Chen ZJ, Chen Y, Liao YQ, Wang LL. Metabolomics and integrated network pharmacology analysis reveal attenuates cardiac hypertrophic mechanisms of HuoXin pill. JOURNAL OF ETHNOPHARMACOLOGY 2022; 292:115150. [PMID: 35304274 DOI: 10.1016/j.jep.2022.115150] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/18/2022] [Accepted: 02/24/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cardiac hypertrophy (CH) is maladaptive and contributes to the pathogenesis of heart failure. Huoxin pill (HXP), a Chinese herbal prescription, is widely applied in the treatment of cardiovascular disease (CAD). Its mechanism, however, is unclear. AIM OF THE STUDY This study investigated the mechanism of action for Huoxin pill in the treatment of CH, an important stage of CAD. MATERIALS AND METHODS A total of 60 rats were injected with isoprenaline (ISO) to establish a model of CH. Echocardiography and histopathologic evaluation were performed to evaluate the disease severity, whereas ELISAs were conducted to determine the expression of oxidative stress. Network pharmacology and metabolomic analyses were conducted to identify the key compounds, core targets and pathways that mediate the effects of HXP against CH. Western blotting and immunohistochemistry were used to test apoptosis protein levels. RESULTS HXP administration in ISO-treated rats decreased hypertrophy indices, alleviated cardiac pathological damage, and downregulated oxidative stress levels when compared to those of rats subjected to ISO treatment only. Moreover, network pharmacology results suggested that the PI3K-Akt pathway is a main mechanism by which HXP inhibits cardiac hypertrophy, and experimental verification showed that HXP inhibited cardiomyocyte apoptosis via activation of the PI3K-Akt pathway. The results of metabolomic analysis identified 21 differential metabolites between the HXPH group and ISO group, which were considered to be metabolic biomarkers of HXP in the treatment of CH. Among them, 6 differential metabolites were significantly upregulated, and 15 were significantly downregulated. CONCLUSIONS The present study presents an integrated strategy for investigating the mechanisms of HXP in the treatment of CH and sheds new light on the application of HXP as a traditional Chinese medicine.
Collapse
Affiliation(s)
- Zhan-Wang Gao
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, No. 232, Waihuandong Road, Guangzhou Higher Education Mega Center, Guangzhou, 510006, PR China.
| | - Xin Zhang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, No. 232, Waihuandong Road, Guangzhou Higher Education Mega Center, Guangzhou, 510006, PR China.
| | - Qing-Yuan Zhuo
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, No. 232, Waihuandong Road, Guangzhou Higher Education Mega Center, Guangzhou, 510006, PR China.
| | - Mei-Xian Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, No. 232, Waihuandong Road, Guangzhou Higher Education Mega Center, Guangzhou, 510006, PR China.
| | - Chong Yang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, No. 232, Waihuandong Road, Guangzhou Higher Education Mega Center, Guangzhou, 510006, PR China.
| | - Zhao-Jie Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, No. 232, Waihuandong Road, Guangzhou Higher Education Mega Center, Guangzhou, 510006, PR China.
| | - Ying Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, No. 232, Waihuandong Road, Guangzhou Higher Education Mega Center, Guangzhou, 510006, PR China.
| | - Yi-Qiu Liao
- Baiyunshan Pharmaceutical General Factory, Guangzhou Baiyunshan Pharmaceutical Holdings Co., Ltd., Guangzhou, 510515, PR China; Key Laboratory of Key Technology Research on Chemical Raw Materials and Preparations of Guangdong Province, Guangzhou, 510515, PR China.
| | - Ling-Li Wang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, No. 232, Waihuandong Road, Guangzhou Higher Education Mega Center, Guangzhou, 510006, PR China.
| |
Collapse
|
28
|
Erdem C, Mutsuddy A, Bensman EM, Dodd WB, Saint-Antoine MM, Bouhaddou M, Blake RC, Gross SM, Heiser LM, Feltus FA, Birtwistle MR. A scalable, open-source implementation of a large-scale mechanistic model for single cell proliferation and death signaling. Nat Commun 2022; 13:3555. [PMID: 35729113 PMCID: PMC9213456 DOI: 10.1038/s41467-022-31138-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 06/07/2022] [Indexed: 02/01/2023] Open
Abstract
Mechanistic models of how single cells respond to different perturbations can help integrate disparate big data sets or predict response to varied drug combinations. However, the construction and simulation of such models have proved challenging. Here, we developed a python-based model creation and simulation pipeline that converts a few structured text files into an SBML standard and is high-performance- and cloud-computing ready. We applied this pipeline to our large-scale, mechanistic pan-cancer signaling model (named SPARCED) and demonstrate it by adding an IFNγ pathway submodel. We then investigated whether a putative crosstalk mechanism could be consistent with experimental observations from the LINCS MCF10A Data Cube that IFNγ acts as an anti-proliferative factor. The analyses suggested this observation can be explained by IFNγ-induced SOCS1 sequestering activated EGF receptors. This work forms a foundational recipe for increased mechanistic model-based data integration on a single-cell level, an important building block for clinically-predictive mechanistic models.
Collapse
Affiliation(s)
- Cemal Erdem
- Department of Chemical & Biomolecular Engineering, Clemson University, Clemson, SC, USA.
| | - Arnab Mutsuddy
- Department of Chemical & Biomolecular Engineering, Clemson University, Clemson, SC, USA
| | - Ethan M Bensman
- Computer Science, School of Computing, Clemson University, Clemson, SC, USA
| | - William B Dodd
- Department of Chemical & Biomolecular Engineering, Clemson University, Clemson, SC, USA
| | - Michael M Saint-Antoine
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE, USA
| | - Mehdi Bouhaddou
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
| | - Robert C Blake
- Center for Applied Scientific Computing, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Sean M Gross
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, USA
| | - Laura M Heiser
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, USA
| | - F Alex Feltus
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC, USA
- Biomedical Data Science and Informatics Program, Clemson University, Clemson, SC, USA
- Center for Human Genetics, Clemson University, Clemson, SC, USA
| | - Marc R Birtwistle
- Department of Chemical & Biomolecular Engineering, Clemson University, Clemson, SC, USA.
- Department of Bioengineering, Clemson University, Clemson, SC, USA.
| |
Collapse
|
29
|
Lv Y, Cheng L, Peng F. Compositions and Functions of Mitochondria-Associated Endoplasmic Reticulum Membranes and Their Contribution to Cardioprotection by Exercise Preconditioning. Front Physiol 2022; 13:910452. [PMID: 35733995 PMCID: PMC9207531 DOI: 10.3389/fphys.2022.910452] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/11/2022] [Indexed: 11/13/2022] Open
Abstract
Mitochondria-associated endoplasmic reticulum membranes (MAMs) are important components of intracellular signaling and contribute to the regulation of intracellular Ca2+/lipid homeostasis, mitochondrial dynamics, autophagy/mitophagy, apoptosis, and inflammation. Multiple studies have shown that proteins located on MAMs mediate cardioprotection. Exercise preconditioning (EP) has been shown to protect the myocardium from adverse stimuli, but these mechanisms are still being explored. Recently, a growing body of evidence points to MAMs, suggesting that exercise or EP may be involved in cardioprotection by modulating proteins on MAMs and subsequently affecting MAMs. In this review, we summarize the latest findings on MAMs, analyzing the structure and function of MAMs and the role of MAM-related proteins in cardioprotection. We focused on the possible mechanisms by which exercise or EP can modulate the involvement of MAMs in cardioprotection. We found that EP may affect MAMs by regulating changes in MFN2, MFN1, AMPK, FUNDC1, BECN1, VDAC1, GRP75, IP3R, CYPD, GSK3β, AKT, NLRP3, GRP78, and LC3, thus playing a cardioprotective role. We also provided direction for future studies that may be of interest so that more in-depth studies can be conducted to elucidate the relationship between EP and cardioprotection.
Collapse
|
30
|
Wang L, Yu P, Wang J, Xu G, Wang T, Feng J, Bei Y, Xu J, Wang H, Das S, Xiao J. Downregulation of circ-ZNF609 Promotes Heart Repair by Modulating RNA N 6-Methyladenosine-Modified Yap Expression. RESEARCH 2022; 2022:9825916. [PMID: 35474903 PMCID: PMC9012977 DOI: 10.34133/2022/9825916] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 01/26/2022] [Indexed: 12/14/2022]
Abstract
Circular RNAs take crucial roles in several pathophysiological processes. The regulatory role and its underlying mechanisms of circ-ZNF609 in the heart remains largely unknown. Here, we report that circ-ZNF609 is upregulated during myocardial ischemia/reperfusion (I/R) remodeling. Knockdown of circ-ZNF609 protects against acute I/R injury and attenuates left ventricle dysfunction after I/R remodeling in vivo. In vitro, circ-ZNF609 regulates cardiomyocyte survival and proliferation via modulating the crosstalk between Hippo-YAP and Akt signaling. Mechanically, N6-methyladenosine-modification is involved in the regulatory role of circ-ZNF609 on YAP. An in-depth study indicates that knockdown of circ-ZNF609 decreases the expression of YTHDF3 and further fine-tuned the accessibility of Yap mRNA to YTHDF1 and YTHDF2 to regulate YAP expression. circ-ZNF609 knockdown represents a promising therapeutic strategy to combat the pathological process of myocardial I/R injury.
Collapse
Affiliation(s)
- Lijun Wang
- Cardiac Regeneration and Ageing Lab, Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People’s Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China
- Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Pujiao Yu
- Department of Cardiology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| | - Jiaqi Wang
- Cardiac Regeneration and Ageing Lab, Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People’s Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China
- Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Guie Xu
- Cardiac Regeneration and Ageing Lab, Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People’s Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China
| | - Tianhui Wang
- Cardiac Regeneration and Ageing Lab, Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People’s Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China
| | - Jingyi Feng
- Cardiac Regeneration and Ageing Lab, Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People’s Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China
| | - Yihua Bei
- Cardiac Regeneration and Ageing Lab, Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People’s Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China
| | - Jiahong Xu
- Department of Cardiology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| | - Hongbao Wang
- Department of Cardiology, Yangpu Hospital, Tongji University School of Medicine, Shanghai 200065, China
| | - Saumya Das
- Cardiovascular Division of the Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Junjie Xiao
- Cardiac Regeneration and Ageing Lab, Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People’s Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China
- Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China
| |
Collapse
|
31
|
Li M, Han B, Zhao H, Xu C, Xu D, Sieniawska E, Lin X, Kai G. Biological active ingredients of Astragali Radix and its mechanisms in treating cardiovascular and cerebrovascular diseases. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 98:153918. [PMID: 35104756 DOI: 10.1016/j.phymed.2021.153918] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 12/12/2021] [Accepted: 12/30/2021] [Indexed: 05/13/2023]
Abstract
BACKGROUND With the rising age of the global population, the incidence rate of cardiovascular and cerebrovascular diseases (CCVDs) is increasing, which causes serious public health burden. The efforts for new therapeutic approaches are still being sought since the treatment effects of existing therapies are not quite satisfactory. Chinese traditional medicine proved to be very efficient in the treatment of CCVDs. Well described and established in Chinese medicine, Astragali Radix, has been commonly administered in the prophylaxis and cure of CCVDs for thousands of years. PURPOSE This review summarized the action mode and mechanisms of Astragali Radix phytochemicals on CCVDs, hoping to provide valuable information for the future application, development and improvement of Astragali Radix as well as CCVDs treatment. METHODS A plenty of literature on biological active ingredients of Astragali Radix used for CCVDs treatment were retrieved from online electronic PubMed and Web of Science databases. RESULTS This review highlighted the effects of five main active components in Astragali Radix including astragaloside Ⅳ, cycloastragenol, astragalus polysaccharide, calycosin-7-O-β-d-glucoside, and calycosin on CCVDs. The mechanisms mainly involved anti-oxidative damage, anti-inflammatory, and antiapoptotic through signaling pathways such as PI3K/Akt, Nrf2/HO-1, and TLR4/NF-κB pathway. In addition, the majority active constituents in AR have no obvious toxic side effects. CONCLUSION The main active components of Astragali Radix, especially AS-IV, have been extensively summarized. It has been proved that Astragali Radix has obvious therapeutic effects on various CCVDs, including myocardial and cerebral ischemia, hypertension, atherosclerosis, cardiac hypertrophy, chronic heart failure. CAG possesses anti-ischemia activity without toxicity, indicating a worthy of further development. However, high-quality clinical and pharmacokinetic studies are required to validate the current studies.
Collapse
Affiliation(s)
- Man Li
- Laboratory for Core Technology of TCM Quality Improvement and Transformation, The Third Affiliated Hospital, School of Pharmaceutical Sciences, Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| | - Bing Han
- Laboratory for Core Technology of TCM Quality Improvement and Transformation, The Third Affiliated Hospital, School of Pharmaceutical Sciences, Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| | - Huan Zhao
- Laboratory for Core Technology of TCM Quality Improvement and Transformation, The Third Affiliated Hospital, School of Pharmaceutical Sciences, Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| | - Chongyi Xu
- Wenling Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Taizhou, Zhejiang, 317500, China
| | - Daokun Xu
- Wenling Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Taizhou, Zhejiang, 317500, China
| | - Elwira Sieniawska
- Department of Natural Products Chemistry, Medical University of Lublin, Chodzki 1, 20-093 Lublin, Poland
| | - Xianming Lin
- Laboratory for Core Technology of TCM Quality Improvement and Transformation, The Third Affiliated Hospital, School of Pharmaceutical Sciences, Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China.
| | - Guoyin Kai
- Laboratory for Core Technology of TCM Quality Improvement and Transformation, The Third Affiliated Hospital, School of Pharmaceutical Sciences, Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China.
| |
Collapse
|
32
|
Ritchie JA, Ng JQ, Kemi OJ. When one says yes and the other says no; does calcineurin participate in physiologic cardiac hypertrophy? ADVANCES IN PHYSIOLOGY EDUCATION 2022; 46:84-95. [PMID: 34762541 DOI: 10.1152/advan.00104.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 11/08/2021] [Indexed: 06/13/2023]
Abstract
Developing engaging activities that build skills for understanding and appreciating research is important for undergraduate and postgraduate science students. Comparing and contrasting opposing research studies does this, and more: it also appropriately for these cohorts challenges higher level cognitive processing. Here, we present and discuss one such scenario, that of calcineurin in the heart and its response to exercise training. This scenario is further accentuated by the existence of only two studies. The background is that regular aerobic endurance exercise training stimulates the heart to physiologically adapt to chronically increase its ability to produce a greater cardiac output to meet the increased demand for oxygenated blood in working muscles, and this happens by two main mechanisms: 1) increased cardiac contractile function and 2) physiologic hypertrophy. The major underlying mechanisms have been delineated over the last decades, but one aspect has not been resolved: the potential role of calcineurin in modulating physiologic hypertrophy. This is partly because the existing research has provided opposing and contrasting findings, one line showing that exercise training does activate cardiac calcineurin in conjunction with myocardial hypertrophy, but another line showing that exercise training does not activate cardiac calcineurin even if myocardial hypertrophy is blatantly occurring. Here, we review and present the current evidence in the field and discuss reasons for this controversy. We present real-life examples from physiology research and discuss how this may enhance student engagement and participation, widen the scope of learning, and thereby also further facilitate higher level cognitive processing.
Collapse
Affiliation(s)
- Jonathan A Ritchie
- School of Medicine, Dentistry and Nursing, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Jun Q Ng
- School of Life Sciences, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Ole J Kemi
- School of Life Sciences, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
33
|
Guo S, Gong M, Tse G, Li G, Chen KY, Liu T. The Value of IGF-1 and IGFBP-1 in Patients With Heart Failure With Reduced, Mid-range, and Preserved Ejection Fraction. Front Cardiovasc Med 2022; 8:772105. [PMID: 35127852 PMCID: PMC8814096 DOI: 10.3389/fcvm.2021.772105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 12/20/2021] [Indexed: 11/30/2022] Open
Abstract
Background Previous studies have reported inconsistent results regarding the implications of deranged insulin-like growth factor 1 (IGF-1)/insulin-like growth factor-binding protein 1 (IGFBP-1) axis in patients with heart failure (HF). This study evaluates the roles of IGF1/IGFBP-1 axis in patients with HF with reduced ejection fraction (HFrEF), mid-range ejection fraction (HFmrEF), or preserved ejection fraction (HFpEF). Methods Consecutive patients with HFrEF, HFmrEF, and HFpEF who underwent comprehensive cardiac assessment were included. The primary endpoint was the composite endpoint of all-cause death and HF rehospitalization at one year. Results A total of 151 patients with HF (HFrEF: n = 51; HFmrEF: n = 30; HFpEF: n = 70) and 50 control subjects were included. The concentrations of IGFBP-1 (p < 0.001) and IGFBP-1/IGF-1 ratio (p < 0.001) were significantly lower in patients with HF compared to controls and can readily distinguish patients with and without HF (IGFBP-1: areas under the curve (AUC): 0.725, p < 0.001; IGFBP-1/IGF-1 ratio: AUC:0.755, p < 0.001; respectively). The concentrations of IGF-1, IGFBP-1, and IGFBP-1/IGF-1 ratio were similar among HFpEF, HFmrEF, and HFrEF patients. IGFBP-1 and IGFBP-1/IGF-1 ratio positively correlated with N-terminal probrain natriuretic peptide (NT-proBNP) levels (r = 0.255, p = 0.002; r = 0.224, p = 0.007, respectively). IGF-1, IGFBP-1, and IGFBP-1/IGF-1 ratio did not predict the primary endpoint at 1 year for the whole patients with HF and HF subtypes on both univariable and multivariable Cox regression. Conclusion The concentrations of plasma IGFBP-1 and IGFBP-1/IGF-1 ratio can distinguish patients with and without HF. In HF, IGFBP-1 and IGFBP-1/IGF-1 ratio positively correlated with NT-proBNP levels.
Collapse
Affiliation(s)
- Shaohua Guo
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China
| | - Mengqi Gong
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China
| | - Gary Tse
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China
- Kent and Medway Medical School, Canterbury, United Kingdom
- Heart Failure and Structural Heart Disease Unit, Cardiovascular Analytics Group, Hong Kong, China
| | - Guangping Li
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China
| | - Kang-Yin Chen
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China
- Kang-Yin Chen
| | - Tong Liu
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China
- *Correspondence: Tong Liu
| |
Collapse
|
34
|
Sergienko NM, Donner DG, Delbridge LMD, McMullen JR, Weeks KL. Protein phosphatase 2A in the healthy and failing heart: New insights and therapeutic opportunities. Cell Signal 2021; 91:110213. [PMID: 34902541 DOI: 10.1016/j.cellsig.2021.110213] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 12/02/2021] [Accepted: 12/07/2021] [Indexed: 02/06/2023]
Abstract
Protein phosphatases have emerged as critical regulators of phosphoprotein homeostasis in settings of health and disease. Protein phosphatase 2A (PP2A) encompasses a large subfamily of enzymes that remove phosphate groups from serine/threonine residues within phosphoproteins. The heterogeneity in PP2A structure, which arises from the grouping of different catalytic, scaffolding and regulatory subunit isoforms, creates distinct populations of catalytically active enzymes (i.e. holoenzymes) that localise to different parts of the cell. This structural complexity, combined with other regulatory mechanisms, such as interaction of PP2A heterotrimers with accessory proteins and post-translational modification of the catalytic and/or regulatory subunits, enables PP2A holoenzymes to target phosphoprotein substrates in a highly specific manner. In this review, we summarise the roles of PP2A in cardiac physiology and disease. PP2A modulates numerous processes that are vital for heart function including calcium handling, contractility, β-adrenergic signalling, metabolism and transcription. Dysregulation of PP2A has been observed in human cardiac disease settings, including heart failure and atrial fibrillation. Efforts are underway, particularly in the cancer field, to develop therapeutics targeting PP2A activity. The development of small molecule activators of PP2A (SMAPs) and other compounds that selectively target specific PP2A holoenzymes (e.g. PP2A/B56α and PP2A/B56ε) will improve understanding of the function of different PP2A species in the heart, and may lead to the development of therapeutics for normalising aberrant protein phosphorylation in settings of cardiac remodelling and dysfunction.
Collapse
Affiliation(s)
- Nicola M Sergienko
- Baker Heart and Diabetes Institute, Melbourne VIC 3004, Australia; Central Clinical School, Monash University, Clayton VIC 3800, Australia
| | - Daniel G Donner
- Baker Heart and Diabetes Institute, Melbourne VIC 3004, Australia; Baker Department of Cardiometabolic Health, The University of Melbourne, Parkville VIC 3010, Australia
| | - Lea M D Delbridge
- Department of Anatomy and Physiology, The University of Melbourne, Parkville VIC 3010, Australia
| | - Julie R McMullen
- Baker Heart and Diabetes Institute, Melbourne VIC 3004, Australia; Baker Department of Cardiometabolic Health, The University of Melbourne, Parkville VIC 3010, Australia; Department of Physiology and Department of Medicine Alfred Hospital, Monash University, Clayton VIC 3800, Australia; Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora VIC 3086, Australia; Department of Diabetes, Central Clinical School, Monash University, Clayton VIC 3800, Australia.
| | - Kate L Weeks
- Baker Heart and Diabetes Institute, Melbourne VIC 3004, Australia; Department of Anatomy and Physiology, The University of Melbourne, Parkville VIC 3010, Australia; Baker Department of Cardiometabolic Health, The University of Melbourne, Parkville VIC 3010, Australia; Department of Diabetes, Central Clinical School, Monash University, Clayton VIC 3800, Australia.
| |
Collapse
|
35
|
Bass-Stringer S, Tai CMK, McMullen JR. IGF1-PI3K-induced physiological cardiac hypertrophy: Implications for new heart failure therapies, biomarkers, and predicting cardiotoxicity. JOURNAL OF SPORT AND HEALTH SCIENCE 2021; 10:637-647. [PMID: 33246162 PMCID: PMC8724616 DOI: 10.1016/j.jshs.2020.11.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 10/28/2020] [Accepted: 11/13/2020] [Indexed: 05/30/2023]
Abstract
Heart failure represents the end point of a variety of cardiovascular diseases. It is a growing health burden and a leading cause of death worldwide. To date, limited treatment options exist for the treatment of heart failure, but exercise has been well-established as one of the few safe and effective interventions, leading to improved outcomes in patients. However, a lack of patient adherence remains a significant barrier in the implementation of exercise-based therapy for the treatment of heart failure. The insulin-like growth factor 1 (IGF1)-phosphoinositide 3-kinase (PI3K) pathway has been recognized as perhaps the most critical pathway for mediating exercised-induced heart growth and protection. Here, we discuss how modulating activity of the IGF1-PI3K pathway may be a valuable approach for the development of therapies that mimic the protective effects of exercise on the heart. We outline some of the promising approaches being investigated that utilize PI3K-based therapy for the treatment of heart failure. We discuss the implications for cardiac pathology and cardiotoxicity that arise in a setting of reduced PI3K activity. Finally, we discuss the use of animal models of cardiac health and disease, and genetic mice with increased or decreased cardiac PI3K activity for the discovery of novel drug targets and biomarkers of cardiovascular disease.
Collapse
Affiliation(s)
- Sebastian Bass-Stringer
- Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia; Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, VIC 3086, Australia
| | - Celeste M K Tai
- Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia
| | - Julie R McMullen
- Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia; Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, VIC 3086, Australia; Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia; Department of Physiology and Department of Medicine Alfred Hospital, Monash University, Melbourne, VIC 3004, Australia.
| |
Collapse
|
36
|
Abstract
Sodium glucose cotransporter 2 (SGLT-2) inhibitors are the latest class of antidiabetic medications. They prevent glucose reabsorption in the proximal convoluted tubule to decrease blood sugar. Several animal studies revealed that SGLT-2 is profoundly involved in the inflammatory response, fibrogenesis, and regulation of numerous intracellular signaling pathways. Likewise, SGLT-2 inhibitors markedly attenuated inflammation and fibrogenesis and improved the function of damaged organ in animal studies, observational studies, and clinical trials. SGLT-2 inhibitors can decrease blood pressure and ameliorate hypertriglyceridemia and obesity. Likewise, they improve the outcome of cardiovascular diseases such as heart failure, arrhythmias, and ischemic heart disease. SGLT-2 inhibitors are associated with lower cardiovascular and all-cause mortality as well. Meanwhile, they protect against nonalcoholic fatty liver disease (NAFLD), chronic kidney disease, acute kidney injury, and improve micro- and macroalbuminuria. SGLT-2 inhibitors can reprogram numerous signaling pathways to improve NAFLD, cardiovascular diseases, and renal diseases. For instance, they enhance lipolysis, ketogenesis, mitochondrial biogenesis, and autophagy while they attenuate the renin-angiotensin-aldosterone system, lipogenesis, endoplasmic reticulum stress, oxidative stress, apoptosis, and fibrogenesis. This review explains the beneficial effects of SGLT-2 inhibitors on NAFLD and cardiovascular and renal diseases and dissects the underlying molecular mechanisms in detail. This narrative review explains the beneficial effects of SGLT-2 inhibitors on NAFLD and cardiovascular and renal diseases using the results of latest observational studies, clinical trials, and meta-analyses. Thereafter, it dissects the underlying molecular mechanisms involved in the clinical effects of SGLT-2 inhibitors on these diseases.
Collapse
Affiliation(s)
- Moein Ala
- School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| |
Collapse
|
37
|
Zhou Q, Deng J, Yao J, Song J, Meng D, Zhu Y, Xu M, Liang Y, Xu J, Sluijter JP, Xiao J. Exercise downregulates HIPK2 and HIPK2 inhibition protects against myocardial infarction. EBioMedicine 2021; 74:103713. [PMID: 34837851 PMCID: PMC8626841 DOI: 10.1016/j.ebiom.2021.103713] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 10/11/2021] [Accepted: 11/09/2021] [Indexed: 12/13/2022] Open
Abstract
Background Exercise can protect myocardial infarction (MI) and downregulate cardiac Homeodomain-Interacting Protein Kinase 2 (HIPK2). However, the role of HIPK2 in MI is unclear. Methods HIPK2–/– mice and miR-222–/– rats, HIPK2 inhibitor (PKI1H) and adeno-associated virus serotype 9 (AAV9) carrying miR-222 were applied in the study. Animals were subjected to running, swimming, acute MI or post-MI remodeling. HIPK2 inhibition and P53 activator were used in neonatal rat cardiomyocytes (NRCMs) and human embryonic stem cell-derived cardiomyocytes (hESC-CMs) subjected to oxygen glucose deprivation/reperfusion (OGD/R). Serum miR-222 levels were analyzed in healthy people and MI patients that were survival or readmitted to the hospital and/or died. Findings Cardiac HIPK2 protein levels were reduced by exercise while increased in MI. In vitro, HIPK2 suppression by lentiviral vectors or inhibitor prevented apoptosis induced by OGD/R in NRCMs and hESC-CMs. HIPK2 inhibitor-treated mice and HIPK2–/– mice reduced infarct size after acute MI, and preserved cardiac function in MI remodeling. Mechanistically, protective effect against apoptosis by HIPK2 suppression was reversed by P53 activators. Furthermore, increasing levels of miR-222, targeting HIPK2, protected post-MI cardiac dysfunction, whereas cardiac dysfunction post-MI was aggravated in miR-222–/– rats. Moreover, serum miR-222 levels were significantly reduced in MI patients, as well as in MI patients that were readmitted to the hospital and/or died compared to those not. Interpretation Exercise-induced HIPK2 suppression attenuates cardiomyocytes apoptosis and protects MI by decreasing P-P53. Inhibition of HIPK2 represents a potential novel therapeutic intervention for MI. Funding This work was supported by the grants from National Key Research and Development Project (2018YFE0113500 to JJ Xiao), National Natural Science Foundation of China (82020108002, 81722008, and 81911540486 to JJ Xiao, 81400647 to MJ Xu, 81800265 to YJ Liang), Innovation Program of Shanghai Municipal Education Commission (2017-01-07-00-09-E00042 to JJ Xiao), the grant from Science and Technology Commission of Shanghai Municipality (18410722200 and 17010500100 to JJ Xiao), the “Dawn” Program of Shanghai Education Commission (19SG34 to JJ Xiao), Shanghai Sailing Program (21YF1413200 to QL Zhou). JS is supported by Horizon2020 ERC-2016-COG EVICARE (725229).
Collapse
Affiliation(s)
- Qiulian Zhou
- Shanghai Engineering Research Center of Organ Repair, Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China; Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Science, Shanghai University, Shanghai, 200444, China
| | - Jiali Deng
- Shanghai Engineering Research Center of Organ Repair, Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China
| | - Jianhua Yao
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Jiaxin Song
- Shanghai Engineering Research Center of Organ Repair, Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China
| | - Danni Meng
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Science, Shanghai University, Shanghai, 200444, China
| | - Yujiao Zhu
- Shanghai Engineering Research Center of Organ Repair, Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China
| | - Minjun Xu
- Shanghai Engineering Research Center of Organ Repair, Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China
| | - Yajun Liang
- Shanghai Engineering Research Center of Organ Repair, Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China
| | - Jiahong Xu
- Department of Cardiology, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Joost Pg Sluijter
- Department of Cardiology, Laboratory of Experimental Cardiology, University Medical Center Utrecht, Utrecht, 3508GA, the Netherlands; UMC Utrecht Regenerative Medicine Center, University Medical Center, Utrecht University, Utrecht, 3508GA, the Netherlands
| | - Junjie Xiao
- Shanghai Engineering Research Center of Organ Repair, Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China; Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Science, Shanghai University, Shanghai, 200444, China.
| |
Collapse
|
38
|
Gao L, Li T, Li S, Song Z, Chang Y, Yuan L. Schisandrin A protects against isoproterenol‑induced chronic heart failure via miR‑155. Mol Med Rep 2021; 25:24. [PMID: 34812475 PMCID: PMC8630813 DOI: 10.3892/mmr.2021.12540] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 09/27/2021] [Indexed: 12/29/2022] Open
Abstract
Schisandrin A (Sch A) has a protective effect on cardiomyocytes. Circulating miR-155 levels are related to chronic heart failure (CHF). The present study aimed to clarify the role and the molecular mechanism of Sch A in CHF. C57BL/6JGpt mice were used for an isoproterenol (ISO)-induced CHF model to collect heart samples. Echocardiography was employed to detect heartbeat indicators. The degree of myocardial hypertrophy was evaluated based on the measurement of heart weight (HW), body weight (BW) and tibia length (TL) and the observation using hematoxylin-eosin staining. Sprague-Dawley rats were purchased for the separation of neonatal rat ventricular myocytes (NRVMs), which were treated with ISO for 24 h. Transfection regulated the level of miR-155. The viability of NRVMs was detected via MTT assay. The mRNA and protein levels were measured via reverse transcription-quantitative PCR and western blotting and immunofluorescence was used to detect the content of α-smooth muscle actin (α-SMA). Treatment with ISO resulted in rising left ventricular posterior wall thickness, intra-ventricular septum diastole, left ventricular end diastolic diameter, left ventricular end systolic diameter, HW/BW, HW/TL and falling ejection fraction and fractional shortening, the trend of which could be reversed by Sch A. Sch A ameliorated myocardial hypertrophy in CHF mice. In addition, Sch A inhibited ISO-induced upregulated expressions of atrial natriuretic peptide, B-type natriuretic peptide, B-myosin heavy chain and miR-155 in myocardial tissue. Based on the results in vitro, Sch A had no significant effect on the viability of NRVMs when its concentration was <24 µmol/l. Sch A inhibited the levels of miR-155, α-SMA and the phosphorylation levels of AKT and cyclic AMP response-element binding protein (CREB) in ISO-induced NRVMs, which was reversed by the upregulation of miR-155. Schisandrin A mediated the AKT/CREB signaling pathway to prevent CHF by regulating the expression of miR-155, which may shed light on a possible therapeutic target for CHF.
Collapse
Affiliation(s)
- Lijing Gao
- Medical College, Changzhi Medical College, Changzhi, Shanxi 046000, P.R. China
| | - Ting Li
- Medical College, Changzhi Medical College, Changzhi, Shanxi 046000, P.R. China
| | - Shufen Li
- Medical College, Changzhi Medical College, Changzhi, Shanxi 046000, P.R. China
| | - Zhuohui Song
- Medical College, Changzhi Medical College, Changzhi, Shanxi 046000, P.R. China
| | - Yongli Chang
- Medical College, Changzhi Medical College, Changzhi, Shanxi 046000, P.R. China
| | - Li Yuan
- Medical College, Changzhi Medical College, Changzhi, Shanxi 046000, P.R. China
| |
Collapse
|
39
|
Chen Z, Zhou Z, Peng X, Sun C, Yang D, Li C, Zhu R, Zhang P, Zheng L, Tang C. Cardioprotective responses to aerobic exercise-induced physiological hypertrophy in zebrafish heart. J Physiol Sci 2021; 71:33. [PMID: 34749643 PMCID: PMC10717721 DOI: 10.1186/s12576-021-00818-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 10/21/2021] [Indexed: 01/01/2023]
Abstract
Herein, we aimed to establish an aerobic exercise-induced physiological myocardial hypertrophy zebrafish (Danio rerio) model and to explore the underlying molecular mechanism. After 4 weeks of aerobic exercise, the AMR and Ucrit of the zebrafish increased and the hearts were enlarged, with thickened myocardium, an increased number of myofilament attachment points in the Z-line, and increased compaction of mitochondrial cristae. We also found that the mTOR signaling pathway, angiogenesis, mitochondrial fusion, and fission event, and mitochondrial autophagy were associated with the adaptive changes in the heart during training. In addition, the increased mRNA expression of genes related to fatty acid oxidation and antioxidation suggested that the switch of energy metabolism and the maintenance of mitochondrial homeostasis induced cardiac physiological changes. Therefore, the zebrafish heart physiological hypertrophy model constructed in this study can be helpful in investigating the cardioprotective mechanisms in response to aerobic exercise.
Collapse
Affiliation(s)
- Zhanglin Chen
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of the Hunan Province, College of Physical Education, Hunan Normal University, No. 529 Lushan South Road, Yuelu District, Changsha, 410012, Hunan, China
| | - Zuoqiong Zhou
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of the Hunan Province, College of Physical Education, Hunan Normal University, No. 529 Lushan South Road, Yuelu District, Changsha, 410012, Hunan, China
| | - Xiyang Peng
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of the Hunan Province, College of Physical Education, Hunan Normal University, No. 529 Lushan South Road, Yuelu District, Changsha, 410012, Hunan, China.
| | - Chenchen Sun
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of the Hunan Province, College of Physical Education, Hunan Normal University, No. 529 Lushan South Road, Yuelu District, Changsha, 410012, Hunan, China
| | - Dong Yang
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of the Hunan Province, College of Physical Education, Hunan Normal University, No. 529 Lushan South Road, Yuelu District, Changsha, 410012, Hunan, China
| | - Chengli Li
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of the Hunan Province, College of Physical Education, Hunan Normal University, No. 529 Lushan South Road, Yuelu District, Changsha, 410012, Hunan, China
| | - Runkang Zhu
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of the Hunan Province, College of Physical Education, Hunan Normal University, No. 529 Lushan South Road, Yuelu District, Changsha, 410012, Hunan, China
| | - Ping Zhang
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of the Hunan Province, College of Physical Education, Hunan Normal University, No. 529 Lushan South Road, Yuelu District, Changsha, 410012, Hunan, China
| | - Lan Zheng
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of the Hunan Province, College of Physical Education, Hunan Normal University, No. 529 Lushan South Road, Yuelu District, Changsha, 410012, Hunan, China.
| | - Changfa Tang
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of the Hunan Province, College of Physical Education, Hunan Normal University, No. 529 Lushan South Road, Yuelu District, Changsha, 410012, Hunan, China.
| |
Collapse
|
40
|
Zhu Z, Zou B, Gao S, Zhang D, Guo J, Chen B, Hou H, Zhu X. CD14 Involvement in Third-degree Skin Burn-induced Myocardial Injury via the MAPK Signaling Pathway. Cell Biochem Biophys 2021; 80:139-150. [PMID: 34297270 DOI: 10.1007/s12013-021-00995-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/11/2021] [Indexed: 10/20/2022]
Abstract
This study investigated the potential genes and related pathways in burn-induced myocardial injury. Rat myocardial injury induced by third-degree burn and the histopathological structures, apoptosis, and cardiac injury markers were then identified using hematoxylin & eosin staining, terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling staining, and enzyme-linked immunosorbent assay. Next, differentially expressed mRNAs were screened through next-generation sequencing (NGS), followed by functional annotation and key gene validation through quantitative reverse transcription-polymerase chain reaction. Subsequently, CD14 was screened out, and small interfering RNAs against CD14 were transfected to H9C2 cells to further verify the role of CD14 in burn-induced injury. The results showed that third-degree burn could markedly damage the structure of myocardial tissue, induce the apoptosis of myocardial cells, and increase the levels of myocardial injury-related markers, suggesting that burns could induce myocardial injury in rats. Besides, NGS data discovered that third-degree burn could result in 416 differentially upregulated mRNAs and 285 differentially downregulated mRNAs in myocardial tissue. It was also disclosed that differentially expressed mRNAs were mainly enriched in the phosphatidylinositol 3-kinase/Akt, mitogen-activated protein kinase (MAPK), and tumor necrosis factor signaling pathways. Furthermore, cell viability was significantly decreased in H9C2 cells treated with 10% rat burn serum. CD14 was significantly differentially expressed and screened out for further studies. Treatment with burn serum can significantly upregulate the phosphorylation level of extracellular signal-regulated kinase, p38, and c-Jun N-terminal kinase and the expression of cleaved caspase-3 and downregulate the expression of Bcl2 when compared with those in negative control of small interfering RNA transfected H9C2 cells, whereas interfering with CD14 expression reversed the effects of burn serum. The study demonstrated that burn serum treatment could activate the MAPK signaling pathway to promote cell apoptosis, and it can be reversed by interfering with the expression of CD14.
Collapse
Affiliation(s)
- Zhensen Zhu
- The Department of Plastic and Burn Surgery, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Ben Zou
- The Department of Plastic and Burn Surgery, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Songying Gao
- The Department of Plastic and Burn Surgery, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Dongmei Zhang
- The Department of Plastic and Burn Surgery, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Jingdong Guo
- The Department of Plastic and Burn Surgery, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Bo Chen
- The Department of Plastic and Burn Surgery, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Haixin Hou
- The Department of Plastic and Burn Surgery, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Xiongxiang Zhu
- The Department of Plastic and Burn Surgery, Shenzhen Hospital, Southern Medical University, Shenzhen, China.
| |
Collapse
|
41
|
Role of PI3K/Akt signaling pathway in cardiac fibrosis. Mol Cell Biochem 2021; 476:4045-4059. [PMID: 34244974 DOI: 10.1007/s11010-021-04219-w] [Citation(s) in RCA: 99] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 06/29/2021] [Indexed: 12/26/2022]
Abstract
Heart failure (HF) is considered as a severe health problem worldwide, while cardiac fibrosis is one of the main driving factors for the progress of HF. Cardiac fibrosis was characterized by changes in cardiomyocytes, cardiac fibroblasts, ratio of collagen (COL) I/III, and the excessive production and deposition of extracellular matrix (ECM), thus forming a scar tissue, which leads to pathological process of cardiac structural changes and systolic as well as diastolic dysfunction. Cardiac fibrosis is a common pathological change of many advanced cardiovascular diseases including ischemic heart disease, hypertension, and HF. Accumulated studies have proven that phosphoinositol-3 kinase (PI3K)/Akt signaling pathway is involved in regulating the occurrence, progression and pathological formation of cardiac fibrosis via regulating cell survival, apoptosis, growth, cardiac contractility and even the transcription of related genes through a series of molecules including mammalian target of rapamycin (mTOR), glycogen synthase kinase 3 (GSK-3), forkhead box proteins O1/3 (FoxO1/3), and nitric oxide synthase (NOS). Thus, the review focuses on the role of PI3K/Akt signaling pathway in the cardiac fibrosis. The information reviewed here should be significant in understanding the role of PI3K/Akt in cardiac fibrosis and contribute to the design of further studies related to PI3K/Akt and the cardiac fibrotic response, as well as sought to shed light on a potential treatment for cardiac fibrosis.
Collapse
|
42
|
Ostojic SM. Hydrogen Gas as an Exotic Performance-Enhancing Agent: Challenges and Opportunities. Curr Pharm Des 2021; 27:723-730. [PMID: 32962610 DOI: 10.2174/1381612826666200922155242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 07/14/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Hydrogen gas (H2) has entered the world of experimental therapeutics approximately four and a half decades ago. Over the years, this simple molecule appears to drive more scientific attention, perhaps due to a dualism of H2 affirmative features demonstrated in numerous in vitro, animal and human studies on one side, and still puzzling mechanism(s) of its biological activity on the other. Up to this point, H2 was scrutinized for more than 170 different disease models and pathologies, and many research groups across the world have lately started to dynamically investigate its conceivable performance-enhancing potential. METHODS We outlined here the studies indexed in leading research databases (PubMed, Web of Science, SCOPUS, JSTORE) that explored the effects of hydrogen on exercise performance, and also addressed important restraints, open questions, and windows of opportunities for forthcoming research and possible H2 enactment in exercise physiology. About two dozen trials have been identified in this domain, with most of the trials published during the past 5 years, while drinking hydrogen-rich water recognized as the most convenient method to deliver H2 in both animal and human studies. RESULTS Either administered as an inhalational gas, enteral hydrogen-rich water, or intravenous hydrogen-rich saline, H2 seems to favorably affect various exercise performance outcomes and biomarkers of exercise-associated fatigue, inflammation, and oxidative stress. Not all studies have shown corroborative effects, and it appears that the gold-standard protocol for applying H2 in the field of exercise science does not exist at the moment, with studies markedly differ in the dose of H2 administered, the duration of treatment, and the source of hydrogen. CONCLUSION H2 is a newfangled and rather effective performance-enhancing agent, yet its promising ergogenic potency has to be further validated and characterized in more well-controlled, appropriately sampled and longterm mechanistic trials. Also, appropriate regulation of hydrogen utilization in sport as an exotic medical gas may require distinctive legislative actions of relevant regulatory agencies in the future.
Collapse
Affiliation(s)
- Sergej M Ostojic
- Applied Bioenergetics Lab, Faculty of Sport and PE, University of Novi Sad, Lovcenska 16, Novi Sad 21000, Serbia
| |
Collapse
|
43
|
Molecular Mechanisms of Nigella sativa- and Nigella sativa Exercise-Induced Cardiac Hypertrophy in Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:5553022. [PMID: 34055008 PMCID: PMC8143887 DOI: 10.1155/2021/5553022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/29/2021] [Accepted: 03/31/2021] [Indexed: 12/31/2022]
Abstract
Background In our lab, we demonstrated cardiac hypertrophy induced by long-term administration of Nigella sativa (Ns) with enhanced function. Therefore, we aim to investigate the molecular mechanisms of Ns-induced cardiac hypertrophy, compare it with that induced by exercise training, and explore any possible synergistic effect of these two interventions. Method Twenty adult Wistar male rats were divided into control (C), Ns-fed (N.s.), exercise-trained (Ex.), Ns-fed exercise-trained (N.s.Ex.) groups. 800 mg/kg of Ns was administered orally to N.s. rats. Ex. rats were trained on a treadmill with speed 18 m/min and grade 32° for two hours daily, and the N.s.Ex. group underwent both interventions. After 8 weeks, Immunohistochemical slides of the left ventricles were prepared using rat growth hormone (GH), insulin-like growth factor I (IGF-I), angiotensin-II receptors 1 (AT-I), endothelin-I (ET-1), Akt-1, and Erk-1. Cell diameter and number of nuclei were measured. Results Cardiomyocyte diameter, number of nuclei, GH, and Akt were significantly higher in N.s, Ex., and N.s.Ex groups compared with the controls. IGF-I, AT-1, and ET-1 were significantly higher in Ex. rats only compared with the controls. Erk-1 was lower in N.s., Ex., and N.s.Ex. compared with the controls. Conclusion We can conclude that Ns-induced cardiac hypertrophy is mediated by the GH-IGF I-PI3P-Akt pathway. Supplementation of Ns to exercise training protocol can block the upregulation of AT-I and ET-1. The combined N.s. exercise-induced cardiac hypertrophy might be a superior model of physiological cardiac hypertrophy and be used as a prophylactic therapy for athletes who are engaged in vigorous exercise activity.
Collapse
|
44
|
Targets identified from exercised heart: killing multiple birds with one stone. NPJ Regen Med 2021; 6:23. [PMID: 33837221 PMCID: PMC8035363 DOI: 10.1038/s41536-021-00128-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 02/26/2021] [Indexed: 02/07/2023] Open
Abstract
Cardiovascular diseases (CVDs) are a major cause of mortality worldwide, which are mainly driven by factors such as aging, sedentary lifestyle, and excess alcohol use. Exercise targets several molecules and protects hearts against many of these physiological and pathological stimuli. Accordingly, it is widely recognized as an effective therapeutic strategy for CVD. To investigate the molecular mechanism of exercise in cardiac protection, we identify and describe several crucial targets identified from exercised hearts. These targets include insulin-like growth factor 1 (IGF1)-phosphatidylinositol 3 phosphate kinase (PI3K)/protein kinase B (AKT), transcription factor CCAAT/enhancer-binding protein β (C/EBPβ), cardiac microRNAs (miRNAs, miR-222 and miR-17-3p etc.), exosomal-miRNAs (miR-342, miR-29, etc.), Sirtuin 1 (SIRT1), and nuclear factor erythroid 2‑related factor/metallothioneins (Nrf2/Mts). Targets identified from exercised hearts can alleviate injury via multiple avenues, including: (1) promoting cardiomyocyte proliferation; (2) facilitating cardiomyocyte growth and physiologic hypertrophy; (3) elevating the anti-apoptotic capacity of cardiomyocytes; (4) improving vascular endothelial function; (5) inhibiting pathological remodeling and fibrosis; (6) promoting extracellular vesicles (EVs) production and exosomal-molecules transfer. Exercise is one treatment (‘stone’), which is cardioprotective via multiple avenues (‘birds’), and is considered ‘killing multiple birds with one stone’ in this review. Further, we discuss the potential application of EV cargos in CVD treatment. We provide an outline of targets identified from the exercised heart and their mechanisms, as well as novel ideas for CVD treatment, which may provide novel direction for preclinical trials in cardiac rehabilitation.
Collapse
|
45
|
Varshney R, Ranjit R, Chiao YA, Kinter M, Ahn B. Myocardial Hypertrophy and Compensatory Increase in Systolic Function in a Mouse Model of Oxidative Stress. Int J Mol Sci 2021; 22:2039. [PMID: 33670798 PMCID: PMC7921997 DOI: 10.3390/ijms22042039] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 01/28/2021] [Accepted: 02/11/2021] [Indexed: 12/12/2022] Open
Abstract
Free radicals, or reactive oxygen species, have been implicated as one of the primary causes of myocardial pathologies elicited by chronic diseases and age. The imbalance between pro-oxidants and antioxidants, termed "oxidative stress", involves several pathological changes in mouse hearts, including hypertrophy and cardiac dysfunction. However, the molecular mechanisms and adaptations of the hearts in mice lacking cytoplasmic superoxide dismutase (Sod1KO) have not been investigated. We used echocardiography to characterize cardiac function and morphology in vivo. Protein expression and enzyme activity of Sod1KO were confirmed by targeted mass spectrometry and activity gel. The heart weights of the Sod1KO mice were significantly increased compared with their wildtype peers. The increase in heart weights was accompanied by concentric hypertrophy, posterior wall thickness of the left ventricles (LV), and reduced LV volume. Activated downstream pathways in Sod1KO hearts included serine-threonine kinase and ribosomal protein synthesis. Notably, the reduction in LV volume was compensated by enhanced systolic function, measured by increased ejection fraction and fractional shortening. A regulatory sarcomeric protein, troponin I, was hyper-phosphorylated in Sod1KO, while the vinculin protein was upregulated. In summary, mice lacking cytoplasmic superoxide dismutase were associated with an increase in heart weights and concentric hypertrophy, exhibiting a pathological adaptation of the hearts to oxidative stress.
Collapse
Affiliation(s)
- Rohan Varshney
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73103, USA; (R.V.); (R.R.); (Y.A.C.); (M.K.)
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
- Harold Hamm Diabetes Center, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
| | - Rojina Ranjit
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73103, USA; (R.V.); (R.R.); (Y.A.C.); (M.K.)
| | - Ying Ann Chiao
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73103, USA; (R.V.); (R.R.); (Y.A.C.); (M.K.)
| | - Michael Kinter
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73103, USA; (R.V.); (R.R.); (Y.A.C.); (M.K.)
| | - Bumsoo Ahn
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73103, USA; (R.V.); (R.R.); (Y.A.C.); (M.K.)
| |
Collapse
|
46
|
Li C, Liu Y, Qin J, Liu Y, Ma L, Zhang S, Wang J, Wang S. Profiles of differentially expressed long noncoding RNAs and messenger RNAs in the myocardium of septic mice. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:199. [PMID: 33708826 PMCID: PMC7940873 DOI: 10.21037/atm-20-3830] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Background Sepsis is the primary cause of mortality in the intensive care unit (ICU), mainly due to sepsis-induced dysfunction of essential organs such as the heart and lungs. This study investigated the myocardium's epigenetic characterization from septic mice to identify potential treatment targets for septic myocardial dysfunction. Methods Cecal ligation and puncture (CLP) was used to induce sepsis in male C57BL/6 mice. Hearts were collected 24 h after surgery to determine the expression profiles of long noncoding RNAs (lncRNAs) and messenger RNAs (mRNAs) by microarray. To validate the reliability of microarray results, we randomly chose six differentially expressed lncRNAs for qRT-PCR. Functional mapping of differentially expressed mRNAs was annotated with gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses; lncRNA-mRNA co-expression network was constructed to reveal connections between lncRNAs and mRNAs. Results Microarray analysis indicated that 1,568 lncRNAs and 2,166 mRNAs were differentially expressed in the myocardium from septic mice, which was further confirmed by qRT-PCR. KEGG pathway analysis showed that numerous differentially expressed mRNAs were relevant to tumor necrosis factor (TNF) and phosphatidylinositol-3-kinase/protein kinase B (PI3K/Akt) signaling pathways. Moreover, according to the lncRNA-mRNA co-expression network constructed by the above six lncRNAs and their interacting mRNAs, the co-expression network profiles had 57 network nodes and 134 connections, including 76 positive interactions and 58 negative interactions. Conclusions In mouse hearts, sepsis resulted in differential expression of lncRNAs and mRNAs related to TNF and PI3K-Akt signaling pathways, suggesting that lncRNAs and their interacting mRNAs may participate in the pathogenesis of septic myocardial dysfunction by regulating TNF and PI3K-Akt signaling pathways.
Collapse
Affiliation(s)
- Chengbao Li
- Department of Critical Care Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Yongchao Liu
- Department of Critical Care Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Jing Qin
- Department of Critical Care Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Yuhao Liu
- Department of Critical Care Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Lijie Ma
- Department of Critical Care Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Shouqin Zhang
- Department of Critical Care Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Junjie Wang
- Department of Critical Care Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Sheng Wang
- Department of Critical Care Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| |
Collapse
|
47
|
RNA interactions in right ventricular dysfunction induced type II cardiorenal syndrome. Aging (Albany NY) 2021; 13:4215-4241. [PMID: 33494070 PMCID: PMC7906202 DOI: 10.18632/aging.202385] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 11/23/2020] [Indexed: 01/08/2023]
Abstract
Right ventricular (RV) dysfunction induced type II cardiorenal syndrome (CRS) has a high mortality rate, but little attention has been paid to this disease, and its unique molecular characteristics remain unclear. This study aims to investigate the transcriptomic expression profile in this disease and identify key RNA pairs that regulate related molecular signaling networks. We established an RV dysfunction-induced type II CRS mouse model by pulmonary artery constriction (PAC). PAC mice developed severe RV hypertrophy and fibrosis; renal atrophy and dysfunction with elevated creatinine were subsequently observed. Expression profiles in RV and kidney tissues were obtained by whole transcriptome sequencing, revealing a total of 741 and 86 differentially expressed (DE) mRNAs, 159 and 29 DEmiRNAs and 233 and 104 DEcircRNAs between RV and kidney tissue, respectively. Competing endogenous RNA (ceRNA) networks were established. A significant alteration in proliferative, fibrotic and metabolic pathways was found based on GO and KEGG analyses, and the network revealed key ceRNA pairs, such as novel_circ_002631/miR-181a-5p/Creb1 and novel_circ_002631/miR-33-y/Kpan6. These findings indicate that significantly dysregulated pathways in RV dysfunction induced type II CRS include Ras, PI3K/Akt, cGMP-PKG pathways, and thyroid metabolic pathways. These ceRNA pairs can be considered potential targets for the treatment of type II CRS.
Collapse
|
48
|
Lambert K, Demion M, Lagacé JC, Hokayem M, Dass M, Virsolvy A, Jover B, bourret A, Bisbal C. Grape polyphenols and exercise training have distinct molecular effects on cardiac hypertrophy in a model of obese insulin-resistant rats. J Nutr Biochem 2021; 87:108522. [DOI: 10.1016/j.jnutbio.2020.108522] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 08/25/2020] [Accepted: 09/30/2020] [Indexed: 01/02/2023]
|
49
|
López-Márquez A, Carrasco-López C, Fernández-Méndez C, Santisteban P. Unraveling the Complex Interplay Between Transcription Factors and Signaling Molecules in Thyroid Differentiation and Function, From Embryos to Adults. Front Endocrinol (Lausanne) 2021; 12:654569. [PMID: 33959098 PMCID: PMC8095082 DOI: 10.3389/fendo.2021.654569] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 03/29/2021] [Indexed: 12/29/2022] Open
Abstract
Thyroid differentiation of progenitor cells occurs during embryonic development and in the adult thyroid gland, and the molecular bases of these complex and finely regulated processes are becoming ever more clear. In this Review, we describe the most recent advances in the study of transcription factors, signaling molecules and regulatory pathways controlling thyroid differentiation and development in the mammalian embryo. We also discuss the maintenance of the adult differentiated phenotype to ensure the biosynthesis of thyroid hormones. We will focus on endoderm-derived thyroid epithelial cells, which are responsible for the formation of the thyroid follicle, the functional unit of the thyroid gland. The use of animal models and pluripotent stem cells has greatly aided in providing clues to the complicated puzzle of thyroid development and function in adults. The so-called thyroid transcription factors - Nkx2-1, Foxe1, Pax8 and Hhex - were the first pieces of the puzzle identified in mice. Other transcription factors, either acting upstream of or directly with the thyroid transcription factors, were subsequently identified to, almost, complete the puzzle. Among them, the transcription factors Glis3, Sox9 and the cofactor of the Hippo pathway Taz, have emerged as important players in thyroid differentiation and development. The involvement of signaling molecules increases the complexity of the puzzle. In this context, the importance of Bmps, Fgfs and Shh signaling at the onset of development, and of TSH, IGF1 and TGFβ both at the end of terminal differentiation in embryos and in the adult thyroid, are well recognized. All of these aspects are covered herein. Thus, readers will be able to visualize the puzzle of thyroid differentiation with most - if not all - of the pieces in place.
Collapse
Affiliation(s)
- Arístides López-Márquez
- Instituto de Investigaciones Biomédicas “Alberto Sols”, Consejo Superior de Investigaciones Científicas (CSIC) y Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Laboratorio de Investigación Aplicada en Enfermedades Neuromusculares, Unidad de Patología Neuromuscular, Servicio de Neuropediatría, Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Spain
| | - Carlos Carrasco-López
- Instituto de Investigaciones Biomédicas “Alberto Sols”, Consejo Superior de Investigaciones Científicas (CSIC) y Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Centro de Investigación Biomédica en Red (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| | - Celia Fernández-Méndez
- Instituto de Investigaciones Biomédicas “Alberto Sols”, Consejo Superior de Investigaciones Científicas (CSIC) y Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Pilar Santisteban
- Instituto de Investigaciones Biomédicas “Alberto Sols”, Consejo Superior de Investigaciones Científicas (CSIC) y Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Centro de Investigación Biomédica en Red (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
- *Correspondence: Pilar Santisteban,
| |
Collapse
|
50
|
Xiao Z, Kong B, Yang H, Dai C, Fang J, Qin T, Huang H. Key Player in Cardiac Hypertrophy, Emphasizing the Role of Toll-Like Receptor 4. Front Cardiovasc Med 2020; 7:579036. [PMID: 33324685 PMCID: PMC7725871 DOI: 10.3389/fcvm.2020.579036] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 11/02/2020] [Indexed: 12/20/2022] Open
Abstract
Toll-like receptor 4 (TLR4), a key pattern recognition receptor, initiates the innate immune response and leads to chronic and acute inflammation. In the past decades, accumulating evidence has implicated TLR4-mediated inflammatory response in regulation of myocardium hypertrophic remodeling, indicating that regulation of the TLR4 signaling pathway may be an effective strategy for managing cardiac hypertrophy's pathophysiology. Given TLR4's significance, it is imperative to review the molecular mechanisms and roles underlying TLR4 signaling in cardiac hypertrophy. Here, we comprehensively review the current knowledge of TLR4-mediated inflammatory response and its interaction ligands and co-receptors, as well as activation of various intracellular signaling. We also describe the associated roles in promoting immune cell infiltration and inflammatory mediator secretion, that ultimately cause cardiac hypertrophy. Finally, we provide examples of some of the most promising drugs and new technologies that have the potential to attenuate TLR4-mediated inflammatory response and prevent or reverse the ominous cardiac hypertrophy outcomes.
Collapse
Affiliation(s)
- Zheng Xiao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Bin Kong
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Hongjie Yang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Chang Dai
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Jin Fang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Tianyou Qin
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - He Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| |
Collapse
|