1
|
Sherman SE, Stoutenburg E, Long DL, Juraschek SP, Cushman M, Howard VJ, Tracy RP, Judd SE, Kamin Mukaz D, Zakai NA, Plante TB. The association of leptin and incident hypertension in the reasons for geographic and racial differences in stroke (REGARDS) cohort. J Hum Hypertens 2024; 38:836-843. [PMID: 39354067 DOI: 10.1038/s41371-024-00963-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 09/22/2024] [Accepted: 09/25/2024] [Indexed: 10/03/2024]
Abstract
Leptin is an adipokine associated with obesity and with hypertension in animal models. Whether leptin is associated with hypertension independent of obesity is unclear. Relative to White adults, Black adults have higher circulating leptin concentration. As such, leptin may mediate some of the excess burden of incident hypertension among Black adults. REGARDS enrolled 30,239 adults aged ≥45 years from 48 US states in 2003-07. Baseline leptin was measured in a sex- and race-stratified sample of 4400 participants. Modified Poisson regression estimated relative risk (RR) of incident hypertension (new ≥140/≥90 mmHg threshold or use of antihypertensives) per SD of log-transformed leptin, stratified by obesity (BMI of 30 kg/m2). Inverse odds ratio weighting estimated the % mediation by leptin of the excess hypertension RR among Black relative to White participants. Among the 1821 participants without prevalent hypertension, 35% developed incident hypertension. Obesity modified the relationship between leptin and incident hypertension (P-interaction 0.006) such that higher leptin was associated with greater hypertension risk in the crude model among those with BMI < 30 kg/m2, but not those with BMI ≥ 30 kg/m2. This was fully attenuated when adjusting for anthropometric measures. In the crude model, Black adults had a 52% greater risk of incident hypertension. Leptin did not significantly mediate this disparity. In this national U.S. sample, leptin was associated with incident hypertension among non-obese but not obese adults. Future investigations should focus on the effect of weight modification on incident hypertension among non-obese adults with elevated leptin.
Collapse
Affiliation(s)
- S E Sherman
- Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA.
| | - E Stoutenburg
- University of Vermont Larner College of Medicine, Burlington, VT, USA
| | - D L Long
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - S P Juraschek
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - M Cushman
- Department of Medicine, University of Vermont Larner College of Medicine, Burlington, VT, USA
- Department of Pathology and Laboratory Medicine, University of Vermont Larner College of Medicine, Burlington, VT, USA
| | - V J Howard
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - R P Tracy
- Department of Biochemistry, University of Vermont Larner College of Medicine, Burlington, VT, USA
| | - S E Judd
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - D Kamin Mukaz
- Department of Medicine, University of Vermont Larner College of Medicine, Burlington, VT, USA
| | - N A Zakai
- Department of Medicine, University of Vermont Larner College of Medicine, Burlington, VT, USA
| | - T B Plante
- Department of Medicine, University of Vermont Larner College of Medicine, Burlington, VT, USA
| |
Collapse
|
2
|
Tavast IM, Solismaa A, Lyytikäinen LP, Mononen N, Moilanen E, Hämäläinen M, Lehtimäki T, Kampman O. Leptin and leptin receptor gene polymorphisms and depression treatment response. Acta Neuropsychiatr 2024:1-8. [PMID: 39529327 DOI: 10.1017/neu.2024.43] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
OBJECTIVE Associations between leptin (LEP) and leptin receptor (LEPR) gene polymorphisms and mood disorders have been found but not yet confirmed in multiple studies. The aim of our study was to study the associations between LEP and LEPR single nucleotide polymorphisms (SNPs) and treatment response of depression. Associations between leptin levels and depression severity were also investigated. METHODS The data included 242 depressed patients in secondary psychiatric care. Symptoms of depression were assessed with the Montgomery–Åsberg Depression Rating Scale (MADRS). Previously found LEP and LEPR SNPs associated with depression and other mood disorders were studied. Furthermore, all available LEP and LEPR SNPs were clumped using proxy SNPs to represent gene areas in r2 > 0.2 linkage disequilibrium and their association with treatment response was analysed with logistic regression. RESULTS Two proxy SNPs of LEPR gene, rs12564738 and rs12029311, were associated with MADRS response at 6 weeks (p adjusted = 0.024, p adjusted = 0.024). SNPs from previous studies were not associated with MADRS response, but LEPR rs12145690 from a previous study was strongly associated with rs12564738 (r2 = 0.94). The positive association between leptin levels and MADRS score at baseline after adjusting with age, sex, body mass index (BMI), Alcohol Use Disorders Identification Test score, and smoking was found (p = 0.011). CONCLUSION Our findings suggest that LEPR polymorphisms are associated with depression treatment response. We also found associations between leptin levels and depression independently of BMI. Further studies and meta-analyses are needed to confirm the significance of found SNPs and the role of leptin in depression.
Collapse
Affiliation(s)
- Ida-Maria Tavast
- Department of Psychiatry, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Anssi Solismaa
- Department of Psychiatry, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Department of Psychiatry, The Pirkanmaa Wellbeing Services County, Tampere, Finland
| | - Leo-Pekka Lyytikäinen
- Department of Clinical Chemistry, Tampere University Hospital and Fimlab Laboratories and Finnish Cardiovascular Research Center-Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Nina Mononen
- Department of Clinical Chemistry, Tampere University Hospital and Fimlab Laboratories and Finnish Cardiovascular Research Center-Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Eeva Moilanen
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, Tampere, Finland
| | - Mari Hämäläinen
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, Tampere, Finland
| | - Terho Lehtimäki
- Department of Clinical Chemistry, Tampere University Hospital and Fimlab Laboratories and Finnish Cardiovascular Research Center-Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Olli Kampman
- Department of Psychiatry, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Department of Psychiatry, The Pirkanmaa Wellbeing Services County, Tampere, Finland
- Department of Psychiatry, Department of Clinical Sciences (Psychiatry), Faculty of Medicine, University Hospital of Umeå, Umeå University, Umeå, Sweden
- Department of Clinical Medicine (Psychiatry), Faculty of Medicine, University of Turku, Turku, Finland
- Department of Psychiatry, The Wellbeing Services County of Ostrobothnia, Vaasa, Finland
| |
Collapse
|
3
|
Ghosh P, Fontanella RA, Scisciola L, Taktaz F, Pesapane A, Basilicata MG, Tortorella G, Matacchione G, Capuano A, Vietri MT, Selvaggi F, Paolisso G, Barbieri M. Obesity-induced neuronal senescence: Unraveling the pathophysiological links. Ageing Res Rev 2024; 101:102533. [PMID: 39368666 DOI: 10.1016/j.arr.2024.102533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/24/2024] [Accepted: 09/30/2024] [Indexed: 10/07/2024]
Abstract
Obesity is one of the most prevalent and increasing metabolic disorders and is considered one of the twelve risk factors for dementia. Numerous studies have demonstrated that obesity induces pathophysiological changes leading to cognitive decline; however, the underlying molecular mechanisms are yet to be fully elucidated. Various biochemical processes, including chronic inflammation, oxidative stress, insulin resistance, dysregulation of lipid metabolism, disruption of the blood-brain barrier, and the release of adipokines have been reported to contribute to the accumulation of senescent neurons during obesity. These senescent cells dysregulate neuronal health and function by exhibiting a senescence-associated secretory phenotype, inducing neuronal inflammation, deregulating cellular homeostasis, causing mitochondrial dysfunction, and promoting microglial infiltration. These factors act as major risks for the occurrence of neurodegenerative diseases and cognitive decline. This review aims to focus on how obesity upregulates neuronal senescence and explores both pharmacological and non-pharmacological interventions for preventing cognitive impairments, thus offering new insights into potential therapeutic strategies.
Collapse
Affiliation(s)
- Puja Ghosh
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Rosaria Anna Fontanella
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Lucia Scisciola
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Fatemeh Taktaz
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Ada Pesapane
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Manuela Giovanna Basilicata
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Giovanni Tortorella
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | | | - Annalisa Capuano
- Department of Experimental Medicine - Section of Pharmacology "L. Donatelli", University of Campania "Luigi Vanvitelli", Naples 80138, Italy
| | - Maria Teresa Vietri
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Via L. De Crecchio, Naples 80138, Italy; UOC Clinical and Molecular Pathology, AOU University of Campania "Luigi Vanvitelli", Naple 80138, Italy
| | - Francesco Selvaggi
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Giuseppe Paolisso
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy; UniCamillus, International Medical University, Rome, Italy
| | - Michelangela Barbieri
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy.
| |
Collapse
|
4
|
Yan XY, Luo YY, Chen HJ, Hu XQ, Zheng P, Fang HT, Ding F, Zhang L, Li Z, Yan YE. IRX3 promotes adipose tissue browning and inhibits fibrosis in obesity-resistant mice. Int J Biochem Cell Biol 2024; 175:106638. [PMID: 39173825 DOI: 10.1016/j.biocel.2024.106638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 08/05/2024] [Accepted: 08/17/2024] [Indexed: 08/24/2024]
Abstract
Obesity is one of the threats to human health and survival. High fat diet (HFD)-induced obesity leads to adipose tissue fibrosis and a series of metabolic diseases. There are some people still thin under HFD, a phenomenon known as the "obesity resistance (OR) phenotype". It was found that Iroquois homeobox 3 (IRX3) is considered as a regulator in obesity, but the regulatory mechanism between OR and IRX3 is still unclear. In this study, we investigated OR on a HFD and the role of the IRX3 gene. Using mice, we observed that OR mice had lower body weights, reduced liver lipid synthesis, and increased white adipose tissue (WAT) lipolysis compared to obesity-prone (OP) mice. Additionally, OR mice exhibited spontaneous WAT browning and less fibrosis, correlating with higher Irx3 expression. Utilizing 3T3-L1 differentiated adipocytes, our study demonstrated that overexpression of Irx3 promoted thermogenesis-related gene expression and reduced adipocyte fibrosis. Therefore, Irx3 promotes WAT browning and inhibits fibrosis in OR mice. These results provide insight into the differences between obesity and OR, new perspectives on obesity treatment, and guidance for lessening adipose tissue fibrosis.
Collapse
Affiliation(s)
- Xi-Yue Yan
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Yuan-Yuan Luo
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Hui-Jian Chen
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Xiao-Qin Hu
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Peng Zheng
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Hong-Ting Fang
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Fei Ding
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Li Zhang
- Demonstration Center for Experimental Basic Medicine Education, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Zhen Li
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital, Wuhan University, Wuhan, China.
| | - You-E Yan
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China.
| |
Collapse
|
5
|
Mitoiu BI, Nartea R, Miclaus RS. Impact of Resistance and Endurance Training on Ghrelin and Plasma Leptin Levels in Overweight and Obese Subjects. Int J Mol Sci 2024; 25:8067. [PMID: 39125635 PMCID: PMC11311634 DOI: 10.3390/ijms25158067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/21/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
Exercise training is a valuable tool for improving body weight and composition in overweight or obese adults, which leads to a negative energy balance. It is relevant to consider whether exercise can help people lose weight or prevent weight gain because any energy expended in exercise increases the severity of hunger and promotes food consumption. Over the past decade, the identification of the circulating peptide ghrelin, which alerts the brain to the body's nutritional state, has significantly expanded our understanding of this homeostatic mechanism that controls appetite and body weight. To shed more light on this issue, we decided to investigate the effects of resistance and endurance training on plasma ghrelin and leptin levels. In addition, we sought to understand the mechanisms by which acute and chronic exercise can regulate hunger. This review analyzes studies published in the last fifteen years that focused on changes suffered by ghrelin, leptin, or both after physical exercise in overweight or obese individuals. Most studies have shown a decrease in leptin levels and an increase in ghrelin levels in these cases. Exercise regimens that support weight maintenance need further investigation.
Collapse
Affiliation(s)
- Brindusa Ilinca Mitoiu
- Clinical Department 9, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Prof. Dr. Agrippa Ionescu Clinical Emergency Hospital, 077016 Bucharest, Romania
| | - Roxana Nartea
- Clinical Department 9, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
- National Institute for Rehabilitation, Physical Medicine and Balneoclimatology, 030079 Bucharest, Romania
| | - Roxana Steliana Miclaus
- Department of Fundamental, Preventive, and Clinical Disciplines, Faculty of Medicine, Transilvania University of Brasov, 500036 Brasov, Romania
- Neurorehabilitation Department, Clinical Hospital of Psychiatry and Neurology, 500036 Brasov, Romania
| |
Collapse
|
6
|
Lang X, Tong C, Yu Y, Li H. Effect of body mass index on survival in patients with metastatic colorectal cancer receiving chemotherapy plus bevacizumab: a systematic review and meta-analysis. Front Nutr 2024; 11:1399569. [PMID: 39081675 PMCID: PMC11288195 DOI: 10.3389/fnut.2024.1399569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/24/2024] [Indexed: 08/02/2024] Open
Abstract
Aim This systematic review and meta-analysis was to evaluate the relationship between body mass index (BMI) and the clinical outcomes in patients with metastatic colorectal cancer (mCRC) undergoing treatment with bevacizumab plus chemotherapy. Methods The search for relevant literature was conducted across PubMed, Embase, Cochrane Library, and Web of Science, with the final search date being October 4, 2023. We utilized the weighted mean differences (WMDs), risk ratios (RRs), or Hazard ratios (HRs) as the metric for effect sizes, which were accompanied by 95% confidence intervals (CIs). Results A total of 9 studies were included for analysis. The results indicated that non-obese patients with mCRC undergoing treatment with bevacizumab experienced a reduced overall survival (OS) at the six-month compared to their obese counterparts (RR: 0.97, 95% CI: 0.94 to 1.00, p = 0.047). Furthermore, no significant differences in one-year, two-year, and five-year OS, as well as PFS and median OS, were observed between obese and non-obese mCRC patients undergoing treatment with bevacizumab plus chemotherapy. Conclusion These findings suggest that obesity may play a role in the short-term OS of patients with mCRC undergoing bevacizumab treatment. The clinical implications of these findings underscore the importance of considering patients' BMI in the context of mCRC care. This study may also help guide personalized treatment strategies and further research into the interplay between obesity, treatment efficacy, and patient survival in mCRC. However, further investigation is warranted to substantiate the findings of this study.
Collapse
Affiliation(s)
- Xiaohui Lang
- Department of Gastrointestinal Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Chengliang Tong
- Department of Gastrointestinal Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Yang Yu
- Department of Gastrointestinal Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Huiyan Li
- Department of Nursing, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| |
Collapse
|
7
|
Cannarella R, Crafa A, Curto R, Condorelli RA, La Vignera S, Calogero AE. Obesity and male fertility disorders. Mol Aspects Med 2024; 97:101273. [PMID: 38593513 DOI: 10.1016/j.mam.2024.101273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 04/03/2024] [Indexed: 04/11/2024]
Abstract
Often associated with obesity, male infertility represents a widespread condition that challenges the wellbeing of the couple. In this article, we provide a comprehensive and critical analysis of studies exploring the association between obesity and male reproductive function, to evaluate the frequency of this association, and establish the effects of increased body weight on conventional and biofunctional sperm parameters and infertility. In an attempt to find possible molecular markers of infertility in obese male patients, the numerous mechanisms responsible for infertility in overweight/obese patients are reviewed in depth. These include obesity-related functional hypogonadism, insulin resistance, hyperinsulinemia, chronic inflammation, adipokines, irisin, gut hormones, gut microbiome, and sperm transcriptome. According to meta-analytic evidence, excessive body weight negatively influences male reproductive health. This can occurr through a broad array of molecular mechanisms. Some of these are not yet fully understood and need to be further elucidated in the future. A better understanding of the effects of metabolic disorders on spermatogenesis and sperm fertilizing capacity is very useful for identifying new diagnostic markers and designing therapeutic strategies for better clinical management of male infertility.
Collapse
Affiliation(s)
- Rossella Cannarella
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy; Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Andrea Crafa
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Roberto Curto
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Rosita A Condorelli
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Sandro La Vignera
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Aldo E Calogero
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy.
| |
Collapse
|
8
|
Manglani K, Anika NN, Patel D, Jhaveri S, Avanthika C, Sudan S, Alimohamed Z, Tiwari K. Correlation of Leptin in Patients With Type 2 Diabetes Mellitus. Cureus 2024; 16:e57667. [PMID: 38707092 PMCID: PMC11070180 DOI: 10.7759/cureus.57667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/05/2024] [Indexed: 05/07/2024] Open
Abstract
The exponential increase in diabetes mellitus (DM) poses serious public health concerns. In this review, we focus on the role of leptin in type 2 DM. The peripheral actions of leptin consist of upregulating proinflammatory cytokines which play an important role in the pathogenesis of type 2 DM and insulin resistance. Moreover, leptin is known to inhibit insulin secretion and plays a significant role in insulin resistance in obesity and type 2 DM. A literature search was conducted on Medline, Cochrane, Embase, and Google Scholar for relevant articles published until December 2023. The following search strings and Medical Subject Headings (MeSH terms) were used: "Diabetes Mellitus," "Leptin," "NPY," and "Biomarker." This article aims to discuss the physiology of leptin in type 2 DM, its glucoregulatory actions, its relationship with appetite, the impact that various lifestyle modifications can have on leptin levels, and, finally, explore leptin as a potential target for various treatment strategies.
Collapse
Affiliation(s)
- Kajol Manglani
- Internal Medicine, MedStar Washington Hospital Center, Washington, USA
| | | | - Dhriti Patel
- Medicine and Surgery, B.J. Medical College and Civil Hospital, Ahmedabad, IND
| | - Sharan Jhaveri
- Medicine and Surgery, Smt. Nathiba Hargovandas Lakhmichand Municipal Medical College, Gujarat University, Ahmedabad, IND
| | - Chaithanya Avanthika
- Pediatrics, Icahn School of Medicine at Mount Sinai, Elmhurst Hospital Center, New York, USA
- Medicine and Surgery, Karnataka Institute of Medical Sciences, Hubballi, IND
| | - Sourav Sudan
- Internal Medicine, Government Medical College, Rajouri, Rajouri, IND
| | - Zainab Alimohamed
- Division of Research & Academic Affairs, Larkin Health System, South Miami, USA
| | - Kripa Tiwari
- Internal Medicine, Maimonides Medical Center, New York, USA
| |
Collapse
|
9
|
Niebrzydowska-Tatus M, Pełech A, Rekowska AK, Satora M, Masiarz A, Kabała Z, Kimber-Trojnar Ż, Trojnar M. Recent Insights and Recommendations for Preventing Excessive Gestational Weight Gain. J Clin Med 2024; 13:1461. [PMID: 38592297 PMCID: PMC10932422 DOI: 10.3390/jcm13051461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/13/2024] [Accepted: 02/28/2024] [Indexed: 04/10/2024] Open
Abstract
Recommendations for weight gain during pregnancy are based on pre-pregnancy body mass index (BMI). Pregnancy is a risk factor for excessive weight gain and many endocrine problems, making it difficult to return to pre-pregnancy weight and increasing the risk of postpartum obesity and, consequently, type 2 diabetes and metabolic syndrome. Both excessive gestational weight gain (EGWG) and obesity are associated with an increased risk of gestational hypertension, pre-eclampsia, gestational diabetes, cesarean section, shoulder dystocia, and neonatal macrosomia. In the long term, EGWG is associated with increased morbidity and mortality, particularly from diabetes, cardiovascular disorders, and some cancers. This study aims to present recommendations from various societies regarding weight gain during pregnancy, dietary guidance, and physical activity. In addition, we discuss the pathophysiology of this complication and the differential diagnosis in pregnant women with EGWG. According to our research, inadequate nutrition might contribute more significantly to the development of EGWG than insufficient physical activity levels in pregnant women. Telehealth systems seem to be a promising direction for future EGWG prevention by motivating women to exercise. Although the importance of adequate pre-pregnancy weight and weight gain during pregnancy is well known, an increasing number of women gain excessive weight during pregnancy.
Collapse
Affiliation(s)
| | - Aleksandra Pełech
- Department of Obstetrics and Perinatology, Medical University of Lublin, 20-090 Lublin, Poland; (M.N.-T.); (A.P.)
| | - Anna K. Rekowska
- Student’s Scientific Association and Department of Obstetrics and Perinatology, Medical University of Lublin, 20-090 Lublin, Poland; (A.K.R.); (M.S.); (A.M.); (Z.K.)
| | - Małgorzata Satora
- Student’s Scientific Association and Department of Obstetrics and Perinatology, Medical University of Lublin, 20-090 Lublin, Poland; (A.K.R.); (M.S.); (A.M.); (Z.K.)
| | - Angelika Masiarz
- Student’s Scientific Association and Department of Obstetrics and Perinatology, Medical University of Lublin, 20-090 Lublin, Poland; (A.K.R.); (M.S.); (A.M.); (Z.K.)
| | - Zuzanna Kabała
- Student’s Scientific Association and Department of Obstetrics and Perinatology, Medical University of Lublin, 20-090 Lublin, Poland; (A.K.R.); (M.S.); (A.M.); (Z.K.)
| | - Żaneta Kimber-Trojnar
- Department of Obstetrics and Perinatology, Medical University of Lublin, 20-090 Lublin, Poland; (M.N.-T.); (A.P.)
| | - Marcin Trojnar
- Department of Internal Diseases, Medical University of Lublin, 20-059 Lublin, Poland;
| |
Collapse
|
10
|
Vargas-Antillón AB, Porchas-Quijada M, Zepeda-Carrillo EA, Torres-Valadez R, Muñoz-Valle JF, Vázquez-Solórzano R, Valdés-Miramontes E, Hernández-Palma LA, Reyes-Castillo Z. Antibodies Reactive to Leptin in Adults with Type 2 Diabetes and Its Relationship with Clinical, Metabolic and Cardiovascular Risk Parameters. Endocr Res 2024; 49:12-21. [PMID: 37864464 DOI: 10.1080/07435800.2023.2270763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 10/09/2023] [Indexed: 10/22/2023]
Abstract
BACKGROUND AND AIMS Patients with obesity and type 2 diabetes (T2D) have shown alterations in the affinity of IgG anti-leptin antibodies which are possibly related to metabolic alterations. In the present exploratory study, we analyzed serum samples from adults with T2D classified by body mass index (BMI) and evaluated the relationship of IgG anti-leptin antibodies with body composition, metabolic and cardiovascular risk parameters. METHODS Serum IgG anti-leptin antibodies (total, free and immune complexes fractions) were measured by in-house ELISA. Body composition, metabolic biomarkers (glucose, glycated hemoglobin, lipid profile, insulin, leptin) and cardiometabolic risk indexes (AIP, HOMA-IR, HOMA-ß) were evaluated in one hundred T2D patients. RESULTS Patients with T2D and obesity presented a decrease in the percentage of IgG anti-leptin immune complexes compared to patients with T2D and overweight (p < 0.0053). Negative correlations of IgG anti-leptin immune complexes with triglycerides (TG) (r=-0.412, p = 0.023) and VLDL-C (r=-0.611, p = 0.017) were found in normal weight T2D patients. Free IgG anti-leptin antibodies correlated positively with TC (r = 0.390, p = 0.032) and LDL-C (r = 0.458, p = 0.011) in overweight individuals with T2D. Finally, total IgG anti-leptin antibodies correlated positively with leptin hormone levels (r = 0.409, p = 0.024) and negatively with HOMA-IR (r =-0.459, p = 0.012) in T2D patients with obesity. CONCLUSIONS The decrease of IgG anti-leptin immune complexes observed in patients with T2D and obesity suggests a reduction in antibody affinity to the hormone that may impact its transport and signaling, lipid, lipoprotein and insulin metabolism.
Collapse
Affiliation(s)
- Ana B Vargas-Antillón
- Instituto de Investigaciones en Comportamiento Alimentario y Nutrición, Centro Universitario del Sur, Universidad de Guadalajara, Mexico
| | - Mildren Porchas-Quijada
- Instituto de Investigaciones en Comportamiento Alimentario y Nutrición, Centro Universitario del Sur, Universidad de Guadalajara, Mexico
| | - Eloy A Zepeda-Carrillo
- Unidad Especializada en Investigación, Desarrollo e Innovación en Medicina Genómica, Centro Nayarita de Innovación y Transferencia de Tecnología, Universidad Autónoma de Nayarit, Mexico
- Hospital Civil Dr. Antonio González Guevara, Servicios de Salud de Nayarit, Mexico
| | - Rafael Torres-Valadez
- Unidad Especializada en Investigación, Desarrollo e Innovación en Medicina Genómica, Centro Nayarita de Innovación y Transferencia de Tecnología, Universidad Autónoma de Nayarit, Mexico
- Unidad Académica de Salud Integral, Universidad Autónoma de Nayarit, Mexico
| | - José F Muñoz-Valle
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Mexico
| | - Rafael Vázquez-Solórzano
- Laboratorio de Biomedicina y Biotecnología para la Salud, Departamento de Ciencias Clínicas, Centro Universitario del Sur, Universidad de Guadalajara, Mexico
| | - Elia Valdés-Miramontes
- Instituto de Investigaciones en Comportamiento Alimentario y Nutrición, Centro Universitario del Sur, Universidad de Guadalajara, Mexico
| | - Luis A Hernández-Palma
- Instituto de Investigaciones en Comportamiento Alimentario y Nutrición, Centro Universitario del Sur, Universidad de Guadalajara, Mexico
| | - Zyanya Reyes-Castillo
- Instituto de Investigaciones en Comportamiento Alimentario y Nutrición, Centro Universitario del Sur, Universidad de Guadalajara, Mexico
- Laboratorio de Biomedicina y Biotecnología para la Salud, Departamento de Ciencias Clínicas, Centro Universitario del Sur, Universidad de Guadalajara, Mexico
| |
Collapse
|
11
|
Fang Y, Wang J, Cao Y, Liu W, Duan L, Hu J, Peng J. The Antiobesity Effects and Potential Mechanisms of Theaflavins. J Med Food 2024; 27:1-11. [PMID: 38060708 DOI: 10.1089/jmf.2023.k.0180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024] Open
Abstract
Theaflavins are the characteristic polyphenols in black tea which can be enzymatically synthesized. In this review, the effects and molecular mechanisms of theaflavins on obesity and its comorbidities, including dyslipidemia, insulin resistance, hepatic steatosis, and atherosclerosis, were summarized. Theaflavins ameliorate obesity potentially via reducing food intake, inhibiting pancreatic lipase to reduce lipid absorption, activating the adenosine monophosphate-activated protein kinase (AMPK), and regulating the gut microbiota. As to the comorbidities, theaflavins ameliorate hypercholesterolemia by inhibiting micelle formation to reduce cholesterol absorption. Theaflavins improve insulin sensitivity by increasing the signaling of protein kinase B, eliminating glucose toxicity, and inhibiting inflammation. Theaflavins ameliorate hepatic steatosis via activating AMPK. Theaflavins reduce atherosclerosis by upregulating nuclear factor erythropoietin-2-related factor 2 signaling and inhibiting plasminogen activator inhibitor 1. In randomized controlled trails, black tea extracts containing theaflavins reduced body weight in overweight people and improved glucose tolerance in healthy adults. The amelioration on the hyperlipidemia and the prevention of coronary artery disease by black tea extracts were supported by meta-analysis.
Collapse
Affiliation(s)
- Yi Fang
- Department of Nephropathy, The Seventh People's Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Liver diseases, Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jun Wang
- Institute of Liver diseases, Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yu Cao
- Department of Nephropathy, The Seventh People's Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wenrui Liu
- Department of Nephropathy, The Seventh People's Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lianxiang Duan
- Department of Nephropathy, The Seventh People's Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jing Hu
- Department of Nephropathy, The Seventh People's Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jinghua Peng
- Institute of Liver diseases, Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Liver and Kidney Diseases (Shanghai University of Traditional Chinese Medicine), Ministry of Education of China, Shanghai, China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai, China
| |
Collapse
|
12
|
Tucker JAL, Bornath DPD, McCarthy SF, Hazell TJ. Leptin and energy balance: exploring Leptin's role in the regulation of energy intake and energy expenditure. Nutr Neurosci 2024; 27:87-95. [PMID: 36583502 DOI: 10.1080/1028415x.2022.2161135] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Leptin is a tonic appetite-regulating hormone, which is integral for the long-term regulation of energy balance. The current evidence suggests that the typical orexigenic or anorexigenic response of many of these appetite-regulating hormones, most notably ghrelin and cholecystokinin (CCK), require leptin to function whereas glucagon-like peptide-1 (GLP-1) is required for leptin to function, and these responses are altered when leptin injection or gene therapy is administered in combination with these same hormones or respective agonists. The appetite-regulatory pathway is complex, thus peptide tyrosine tyrosine (PYY), brain-derived neurotrophic factor (BDNF), orexin-A (OXA), and amylin also maintain ties to leptin, however these are less well understood. While reviews to date have focused on the existing relationships between leptin and the various neuropeptide modulators of appetite within the central nervous system (CNS) or it's role in thermogenesis, no review paper has synthesised the information regarding the interactions between appetite-regulating hormones and how leptin as a chronic regulator of energy balance can influence the acute appetite-regulatory response. Current evidence suggests that potential relationships exist between leptin and the circulating peripheral appetite hormones ghrelin, GLP-1, CCK, OXA and amylin to exhibit either synergistic or opposing effects on appetite inhibition. Though more research is warranted, leptin appears to be integral in both energy intake and energy expenditure. More specifically, functional leptin receptors appear to play an essential role in these processes.
Collapse
Affiliation(s)
- Jessica A L Tucker
- Department of Kinesiology and Physical Education, Wilfrid Laurier University, Waterloo, Canada
| | - Derek P D Bornath
- Department of Kinesiology and Physical Education, Wilfrid Laurier University, Waterloo, Canada
| | - Seth F McCarthy
- Department of Kinesiology and Physical Education, Wilfrid Laurier University, Waterloo, Canada
| | - Tom J Hazell
- Department of Kinesiology and Physical Education, Wilfrid Laurier University, Waterloo, Canada
| |
Collapse
|
13
|
Garrido N, Albuquerque A, Charneca R, Costa F, Marmelo C, Ramos A, Martin L, Martins JM. Transcriptomic Profiling of Subcutaneous Backfat in Castrated and Intact Alentejano Pigs Finished Outdoors with Commercial and Fiber-Rich Diets. Genes (Basel) 2023; 14:1722. [PMID: 37761862 PMCID: PMC10531178 DOI: 10.3390/genes14091722] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/25/2023] [Accepted: 08/27/2023] [Indexed: 09/29/2023] Open
Abstract
In this work, we studied the backfat transcriptome of surgically castrated (C), intact (I) and intact fed an experimental diet (IE) outdoor-reared male Alentejano (AL) pigs. The experimental diet was a high-fiber diet with locally produced legumes and by-products associated with a boar taint reduction effect. At slaughter (~160 kg), backfat samples were collected for total RNA sequencing. Intact pigs presented leaner carcasses, more total collagen, and more unsaturated intramuscular fat content than C animals. A total of 2726 differentially expressed genes (DEGs, |log2 FC|> 0.58, q < 0.05) were identified between C and I with overexpressed genes related to muscular activity (MYH1, ACTA1) or collagen metabolism (COL1A1, COL1A2) in I pigs. Between C and IE, 1639 DEGs of genes involved in lipidic metabolism (LEP, ME1, FABP4, ELOVL6) were overexpressed in C. Finally, only 28 DEGs were determined between I and IE. Clustering results indicated a drastic influence of the testis in the transcriptome of subcutaneous fat of AL pigs, while the diet had a marginal effect. Diet can reduce stress by increasing satiety in animals, and could have induced an increase of skatole degradation due to the higher expression of the CYP2A19 gene in the IE group.
Collapse
Affiliation(s)
- Nicolás Garrido
- ECO-PIG Consortium, Z.I. Catraia, Ap. 50, 3441-131 Santa Comba Dão, Portugal; (N.G.); (A.A.); (R.C.); (F.C.); (C.M.); (A.R.); (L.M.)
- MED—Mediterranean Institute for Agriculture, Environment and Development & CHANGE—Global Change and Sustainability Institute, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal
| | - André Albuquerque
- ECO-PIG Consortium, Z.I. Catraia, Ap. 50, 3441-131 Santa Comba Dão, Portugal; (N.G.); (A.A.); (R.C.); (F.C.); (C.M.); (A.R.); (L.M.)
- MED—Mediterranean Institute for Agriculture, Environment and Development & CHANGE—Global Change and Sustainability Institute, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal
| | - Rui Charneca
- ECO-PIG Consortium, Z.I. Catraia, Ap. 50, 3441-131 Santa Comba Dão, Portugal; (N.G.); (A.A.); (R.C.); (F.C.); (C.M.); (A.R.); (L.M.)
- MED & CHANGE, Departamento de Zootecnia, ECT, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal
| | - Filipa Costa
- ECO-PIG Consortium, Z.I. Catraia, Ap. 50, 3441-131 Santa Comba Dão, Portugal; (N.G.); (A.A.); (R.C.); (F.C.); (C.M.); (A.R.); (L.M.)
| | - Carla Marmelo
- ECO-PIG Consortium, Z.I. Catraia, Ap. 50, 3441-131 Santa Comba Dão, Portugal; (N.G.); (A.A.); (R.C.); (F.C.); (C.M.); (A.R.); (L.M.)
- MED—Mediterranean Institute for Agriculture, Environment and Development & CHANGE—Global Change and Sustainability Institute, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal
| | - Amélia Ramos
- ECO-PIG Consortium, Z.I. Catraia, Ap. 50, 3441-131 Santa Comba Dão, Portugal; (N.G.); (A.A.); (R.C.); (F.C.); (C.M.); (A.R.); (L.M.)
- Departamento de Ciências Agrárias e Tecnologias, Escola Superior Agrária de Coimbra, Bencanta, 3045-601 Coimbra, Portugal
| | - Luísa Martin
- ECO-PIG Consortium, Z.I. Catraia, Ap. 50, 3441-131 Santa Comba Dão, Portugal; (N.G.); (A.A.); (R.C.); (F.C.); (C.M.); (A.R.); (L.M.)
- Departamento de Ciências Agrárias e Tecnologias, Escola Superior Agrária de Coimbra, Bencanta, 3045-601 Coimbra, Portugal
| | - José Manuel Martins
- ECO-PIG Consortium, Z.I. Catraia, Ap. 50, 3441-131 Santa Comba Dão, Portugal; (N.G.); (A.A.); (R.C.); (F.C.); (C.M.); (A.R.); (L.M.)
- MED & CHANGE, Departamento de Zootecnia, ECT, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal
| |
Collapse
|
14
|
Xiao X, Hu H, Zhong Y, Chen Y, Tang K, Pan Z, Huang J, Yang X, Wang Q, Gao Y. Microglia Sirt6 modulates the transcriptional activity of NRF2 to ameliorate high-fat diet-induced obesity. Mol Med 2023; 29:108. [PMID: 37582706 PMCID: PMC10428617 DOI: 10.1186/s10020-023-00676-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 05/31/2023] [Indexed: 08/17/2023] Open
Abstract
BACKGROUND Microglia play a pivotal role in neuroinflammation, while obesity triggers hypothalamic microglia activation and inflammation. Sirt6 is an important regulator of energy metabolism in many peripheral tissues and hypothalamic anorexic neurons. However, the exact mechanism for microglia Sirt6 in controlling high-fat diet-induced obesity remain unknown. METHODS Microglia Sirt6 expression levels under various nutritional conditions were measured in the hypothalamus of mice. Also, microglia Sirt6-deficient mice were provided various diets to monitor metabolic changes and hypothalamic inflammatory response. Besides, RNA-seq and Co-IP of microglia with Sirt6 alterations were conducted to further investigate the detailed mechanism by which Sirt6 modulated microglia activity. RESULTS We found that Sirt6 was downregulated in hypothalamic microglia in mice given a high-fat diet (HFD). Additionally, knockout of microglia Sirt6 exacerbated high-fat diet-induced hypothalamic microglial activation and inflammation. As a result, mice were more prone to obesity, exhibiting a decrease in energy expenditure, impaired glucose tolerance, insulin and leptin resistance, and increased food intake. In vitro, Sirt6 overexpression in BV2 cells displayed protective effects against oleic acid and palmitic acid treatment-derived inflammatory response. Mechanically, Sirt6 deacetylated and stabilised NRF2 to increase the expression of anti-oxidative genes and defend against reactive oxygen species overload. Pharmacological inhibition of NRF2 eliminated the beneficial modulating effects of Sirt6 on microglial activity. CONCLUSION Collectively, our results revealed that microglial Sirt6 was a primary contributor of microglial activation in the central regulation of obesity. Thus, microglial Sirt6 may be an important therapeutic target for obesity.
Collapse
Affiliation(s)
- Xiaoxia Xiao
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Huiling Hu
- Department of Clinical Laboratory, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510289, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510289, China
| | - Yadi Zhong
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Yingjian Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Kaijia Tang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Zhisen Pan
- First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Jiawen Huang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Xiaoying Yang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China.
| | - Qi Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Yong Gao
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| |
Collapse
|
15
|
Hamamah S, Amin A, Al-Kassir AL, Chuang J, Covasa M. Dietary Fat Modulation of Gut Microbiota and Impact on Regulatory Pathways Controlling Food Intake. Nutrients 2023; 15:3365. [PMID: 37571301 PMCID: PMC10421457 DOI: 10.3390/nu15153365] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
Obesity is a multifactorial disease that continues to increase in prevalence worldwide. Emerging evidence has shown that the development of obesity may be influenced by taxonomic shifts in gut microbiota in response to the consumption of dietary fats. Further, these alterations in gut microbiota have been shown to promote important changes in satiation signals including gut hormones (leptin, ghrelin, GLP-1, peptide YY and CCK) and orexigenic and anorexigenic neuropeptides (AgRP, NPY, POMC, CART) that influence hyperphagia and therefore obesity. In this review, we highlight mechanisms by which gut microbiota can influence these satiation signals both locally in the gastrointestinal tract and via microbiota-gut-brain communication. Then, we describe the effects of dietary interventions and associated changes in gut microbiota on satiety signals through microbiota-dependent mechanisms. Lastly, we present microbiota optimizing therapies including prebiotics, probiotics, synbiotics and weight loss surgery that can help restore beneficial gut microbiota by enhancing satiety signals to reduce hyperphagia and subsequent obesity. Overall, a better understanding of the mechanisms by which dietary fats induce taxonomical shifts in gut microbiota and their impact on satiation signaling pathways will help develop more targeted therapeutic interventions in delaying the onset of obesity and in furthering its treatment.
Collapse
Affiliation(s)
- Sevag Hamamah
- Department of Basic Medical Sciences, Western University of Health Sciences, College of Osteopathic Medicine, Pomona, CA 91766, USA; (S.H.); (A.A.); (A.L.A.-K.); (J.C.)
| | - Arman Amin
- Department of Basic Medical Sciences, Western University of Health Sciences, College of Osteopathic Medicine, Pomona, CA 91766, USA; (S.H.); (A.A.); (A.L.A.-K.); (J.C.)
| | - Abdul Latif Al-Kassir
- Department of Basic Medical Sciences, Western University of Health Sciences, College of Osteopathic Medicine, Pomona, CA 91766, USA; (S.H.); (A.A.); (A.L.A.-K.); (J.C.)
| | - Judith Chuang
- Department of Basic Medical Sciences, Western University of Health Sciences, College of Osteopathic Medicine, Pomona, CA 91766, USA; (S.H.); (A.A.); (A.L.A.-K.); (J.C.)
| | - Mihai Covasa
- Department of Basic Medical Sciences, Western University of Health Sciences, College of Osteopathic Medicine, Pomona, CA 91766, USA; (S.H.); (A.A.); (A.L.A.-K.); (J.C.)
- Department of Biomedical Sciences, College of Medicine and Biological Science, University of Suceava, 720229 Suceava, Romania
| |
Collapse
|
16
|
Rejeki PS, Pranoto A, Rahmanto I, Izzatunnisa N, Yosika GF, Hernaningsih Y, Wungu CDK, Halim S. The Positive Effect of Four-Week Combined Aerobic-Resistance Training on Body Composition and Adipokine Levels in Obese Females. Sports (Basel) 2023; 11:sports11040090. [PMID: 37104164 PMCID: PMC10145427 DOI: 10.3390/sports11040090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 04/07/2023] [Accepted: 04/13/2023] [Indexed: 04/28/2023] Open
Abstract
Obesity is a metabolic disease that is caused by a lack of physical activity and is associated with an increased risk of chronic inflammation. A total of 40 obese adolescent females with an average age of 21.93 ± 1.35 years and average body mass index (BMI) of 30.81 ± 3.54 kg/m2 were enrolled in this study, randomized, and divided into four groups, i.e., control (CTL; n = 10), moderate intensity aerobic training (MAT; n = 10), moderate intensity resistance training (MRT; n = 10), and moderate intensity combined aerobic-resistance training (MCT; n = 10). The enzyme-linked immunosorbent assay (ELISA) kits method was used to analyze the adiponectin and leptin levels between pre-intervention and post-intervention. Statistical analysis was conducted using a paired sample t-test, while correlation analysis between variables used the Pearson product-moment correlation test. Research data showed that MAT, MRT, and MCT significantly increased adiponectin levels and decreased leptin levels compared to the CTL (p ≤ 0.05). The results of the correlation analysis of delta (∆) data showed that an increase in adiponectin levels was significantly negatively correlated with a decrease in body weight (BW) (r = -0.671, p ≤ 0.001), BMI (r = -0.665, p ≤ 0.001), and fat mass (FM) (r = -0.694, p ≤ 0.001) and positively correlated with an increase in skeletal muscle mass (SMM) (r = 0.693, p ≤ 0.001). Whereas, a decrease in leptin levels was significantly positively correlated with a decrease in BW (r = 0.744, p ≤ 0.001), BMI (r = 0.744, p ≤ 0.001), and FM (r = 0.718, p ≤ 0.001) and negatively correlated with an increase in SMM (r = -0.743, p ≤ 0.001). In summary, it can be concluded that our data show that adiponectin levels increased and leptin levels decreased after the intervention of aerobic, resistance, and combined aerobic-resistance training.
Collapse
Affiliation(s)
- Purwo Sri Rejeki
- Physiology Division, Department of Medical Physiology and Biochemistry, Faculty of Medicine, Universitas Airlangga, Surabaya 60132, East Java, Indonesia
| | - Adi Pranoto
- Doctoral Program of Medical Science, Faculty of Medicine, Universitas Airlangga, Surabaya 60132, East Java, Indonesia
| | - Ilham Rahmanto
- Medical Program, Faculty of Medicine, Universitas Airlangga, Surabaya 60132, East Java, Indonesia
| | - Nabilah Izzatunnisa
- Medical Program, Faculty of Medicine, Universitas Airlangga, Surabaya 60132, East Java, Indonesia
| | - Ghana Firsta Yosika
- Study Program of Sports Coaching Education, Faculty of Teacher Training and Education Universitas Tanjungpura, Pontianak 78124, West Kalimantan, Indonesia
| | - Yetti Hernaningsih
- Department of Clinical Pathology, Faculty of Medicine, Universitas Airlangga, Surabaya 60132, East Java, Indonesia
| | - Citrawati Dyah Kencono Wungu
- Biochemistry Division, Department of Medical Physiology and Biochemistry, Faculty of Medicine, Universitas Airlangga, Surabaya 60132, East Java, Indonesia
| | - Shariff Halim
- Clinical Research Centre, Management and Science University, Shah Alam 40100, Selangor, Malaysia
| |
Collapse
|
17
|
Molina-Tijeras JA, Ruiz-Malagón AJ, Hidalgo-García L, Diez-Echave P, Rodríguez-Sojo MJ, Cádiz-Gurrea MDLL, Segura-Carretero A, del Palacio JP, González-Tejero MR, Rodríguez-Cabezas ME, Gálvez J, Rodríguez-Nogales A, Vezza T, Algieri F. The Antioxidant Properties of Lavandula multifida Extract Contribute to Its Beneficial Effects in High-Fat Diet-Induced Obesity in Mice. Antioxidants (Basel) 2023; 12:antiox12040832. [PMID: 37107207 PMCID: PMC10135096 DOI: 10.3390/antiox12040832] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/23/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023] Open
Abstract
Obesity is a worldwide public health problem whose prevalence rate has increased steadily over the last few years. Therefore, it is urgent to improve the management of obesity and its comorbidities, and plant-based treatments are receiving increasing attention worldwide. In this regard, the present study aimed to investigate a well-characterized extract of Lavandula multifida (LME) in an experimental model of obesity in mice and explore the underlying mechanisms. Interestingly, the daily administration of LME reduced weight gain as well as improved insulin sensitivity and glucose tolerance. Additionally, LME ameliorated the inflammatory state in both liver and adipose tissue by decreasing the expression of various proinflammatory mediators (Il-6, Tnf-α, Il-1β, Jnk-1, Pparα, Pparγ, and Ampk) and prevented increased gut permeability by regulating the expression of mucins (Muc-1, Muc-2, and Muc-3) and proteins implicated in epithelial barrier integrity maintenance (Ocln, Tjp1, and Tff-3). In addition, LME showed the ability to reduce oxidative stress by inhibiting nitrite production on macrophages and lipid peroxidation. These results suggest that LME may represent a promising complementary approach for the management of obesity and its comorbidities.
Collapse
Affiliation(s)
- Jose Alberto Molina-Tijeras
- Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs. GRANADA), 18012 Granada, Spain
| | - Antonio Jesús Ruiz-Malagón
- Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs. GRANADA), 18012 Granada, Spain
| | - Laura Hidalgo-García
- Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs. GRANADA), 18012 Granada, Spain
- Correspondence: (L.H.-G.); (A.R.-N.); Tel.: +34-958241519 (A.R.-N.)
| | - Patricia Diez-Echave
- Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs. GRANADA), 18012 Granada, Spain
| | - María Jesús Rodríguez-Sojo
- Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs. GRANADA), 18012 Granada, Spain
| | | | - Antonio Segura-Carretero
- Department of Analytical Chemistry, Faculty of Science, University of Granada, 18071 Granada, Spain
| | - José Pérez del Palacio
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, 18016 Granada, Spain
| | | | - María Elena Rodríguez-Cabezas
- Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs. GRANADA), 18012 Granada, Spain
| | - Julio Gálvez
- Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs. GRANADA), 18012 Granada, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto Salud Carlos III, 28029 Madrid, Spain
| | - Alba Rodríguez-Nogales
- Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs. GRANADA), 18012 Granada, Spain
- Correspondence: (L.H.-G.); (A.R.-N.); Tel.: +34-958241519 (A.R.-N.)
| | - Teresa Vezza
- Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs. GRANADA), 18012 Granada, Spain
- Servicio de Digestivo, Hospital Universitario Virgen de las Nieves, 18014 Granada, Spain
| | - Francesca Algieri
- Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs. GRANADA), 18012 Granada, Spain
| |
Collapse
|
18
|
Sharma Y, Galvão AM. Maternal obesity and ovarian failure: is leptin the culprit? Anim Reprod 2023; 19:e20230007. [PMID: 36855701 PMCID: PMC9968511 DOI: 10.1590/1984-3143-ar2023-0007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 01/24/2023] [Indexed: 02/22/2023] Open
Abstract
At the time of its discovery and characterization in 1994, leptin was mostly considered a metabolic hormone able to regulate body weight and energy homeostasis. However, in recent years, a great deal of literature has revealed leptin's pleiotropic nature, through its involvement in numerous physiological contexts including the regulation of the female reproductive tract and ovarian function. Obesity has been largely associated with infertility, and leptin signalling is known to be dysregulated in the ovaries of obese females. Hence, the disruption of ovarian leptin signalling was shown to contribute to the pathophysiology of ovarian failure in obese females, affecting transcriptional programmes in the gamete and somatic cells. This review attempts to uncover the underlying mechanisms contributing to female infertility associated with obesity, as well as to shed light on the role of leptin in the metabolic dysregulation within the follicle, the effects on the oocyte epigenome, and the potential long-term consequence to embryo programming.
Collapse
Affiliation(s)
- Yashaswi Sharma
- Institute of Animal Reproduction and Food Research of PAS, Department of Reproductive Immunology and Pathology, Olsztyn, Poland
| | - António Miguel Galvão
- Institute of Animal Reproduction and Food Research of PAS, Department of Reproductive Immunology and Pathology, Olsztyn, Poland,Babraham Institute, Epigenetics Programme, Cambridge, United Kingdom UK,Centre for Trophoblast Research, University of Cambridge, Cambridge, United Kingdom UK,Corresponding author: ;
| |
Collapse
|
19
|
Gao Y, Zhao S, Zhang W, Tang H, Yan M, Yong F, Bai X, Wu X, Zhang Y, Zhang Q. Localization of FGF21 Protein and Lipid Metabolism-Related Genes in Camels. Life (Basel) 2023; 13:life13020432. [PMID: 36836789 PMCID: PMC9959858 DOI: 10.3390/life13020432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/01/2023] [Accepted: 01/28/2023] [Indexed: 02/05/2023] Open
Abstract
With the ability to survive under drought and chronic hunger, camels display a unique regulation characteristic of lipid metabolism. Fibroblast growth factor (FGF) 21 is a peptide hormone that regulates metabolic pathways, especially lipid metabolism, which was considered as a promising therapeutic target for metabolic diseases. To understand the FGF21 expression pattern and its potential relationship with lipid metabolism in camels, this study investigated the distribution and expression of FGF21, receptor FGFR1, and two lipid metabolism markers, leptin and hormone-sensitive lipase (HSL), using an immunohistochemistry (IHC) assay. The results showed that FGF21 was widely expressed in camel central nerve tissue and peripheral organs but absent in lung and gametogenic tissue, including the testis, epididymis, and ovary. In striated muscle, FGF21 is only present at the fiber junction. FGFR1 is expressed in almost all tissues and cells, indicating that all tissues are responsive to FGF21 and other FGF-mediated signals. Leptin and HSL are mainly located in metabolic and energy-consuming organs. In the CNS, leptin and HSL showed a similar expression pattern with FGFR1. In addition, leptin expression is extremely high in the bronchial epithelium, which may be due to its role in the immune responses of respiratory mucosa, in addition to fat stores and energy balance. This study found that FGF21 showed active expression in the nervous system of camels, which may be related to the adaptability of camels to arid environments and the specific regulation of lipid metabolism. This study showed a special FGF21-mediated fat conversion pattern in camels and provides a reference for developing a potential therapeutic method for fat metabolism disease.
Collapse
Affiliation(s)
- Yuan Gao
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
- Correspondence: (Y.G.); (Q.Z.)
| | - Shuqin Zhao
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Wangdong Zhang
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Huaping Tang
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Meilin Yan
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Fang Yong
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Xu Bai
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Xiaochun Wu
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Yong Zhang
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Quanwei Zhang
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
- Correspondence: (Y.G.); (Q.Z.)
| |
Collapse
|
20
|
Miao ZH, Wang JN, Shen X, Zhou QQ, Luo YT, Liang HJ, Wang SJ, Qi SH, Cheng RY, He F. Long-term use of Lacticaseibacillus paracasei N1115 from early life alleviates high-fat-diet-induced obesity and dysmetabolism in mice. Benef Microbes 2022; 13:407-416. [PMID: 36239668 DOI: 10.3920/bm2021.0171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Obesity has become one of the most serious public health problems worldwide, and an increasing number of studies indicate that the gut microbiota can affect host metabolism. Therefore, the present study was conducted to evaluate whether long-term use of probiotics can alleviate host obesity and metabolism by altering gut microbiota. The high-fat diet (HFD) starting from weaned period led to higher levels of visceral fat and a significantly heavier liver in male mice. Moreover, HFD resulted in disorders of glucose and lipid metabolism, changes in insulin-resistance indices (IR), and an increase in serum insulin and leptin in mice. Of note, 15 weeks use of Lacticaseibacillus paracasei N1115 decreased visceral fat, liver weight, serum levels of insulin and leptin, and IR and alleviated lipid dysmetabolism. HFD resulted in a significant increase in the relative abundance of Bilophila, Lachnoclostridium, and Blautia and may decrease the faecal short-chain fatty acid (SCFA) levels in mice; in turn, treatment with the potential probiotic strain L. paracasei N1115 protected mice from these negative effects. HFD significant impaired the physiology of the host especially in male mice and dramatically changed the composition of host gut microbiota. However, the use of potential probiotic strain, such as L. paracasei N1115, may prevent these impairments due to HFD via effecting the host gut microbiota and SCFA.
Collapse
Affiliation(s)
- Z H Miao
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, No. 16, 3section, South Renmin Road, 610041 Chengdu, Sichuan, China P.R
| | - J N Wang
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, No. 16, 3section, South Renmin Road, 610041 Chengdu, Sichuan, China P.R
| | - X Shen
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, No. 16, 3section, South Renmin Road, 610041 Chengdu, Sichuan, China P.R
| | - Q Q Zhou
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, No. 16, 3section, South Renmin Road, 610041 Chengdu, Sichuan, China P.R
| | - Y T Luo
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, No. 16, 3section, South Renmin Road, 610041 Chengdu, Sichuan, China P.R
| | - H J Liang
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, No. 16, 3section, South Renmin Road, 610041 Chengdu, Sichuan, China P.R
| | - S J Wang
- College of Food and Biology Hebei University of Science and Technology, 36Shitong Road, 050221 Shijiazhuang, Hebei, China P.R
| | - S H Qi
- Basic Research and Development Center, Hebei Inatrual Bio-tech Co. Ltd., Shijiazhuang, Hebei, China P.R
| | - R Y Cheng
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, No. 16, 3section, South Renmin Road, 610041 Chengdu, Sichuan, China P.R
| | - F He
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, No. 16, 3section, South Renmin Road, 610041 Chengdu, Sichuan, China P.R
| |
Collapse
|
21
|
Werlinger P, Nguyen HT, Gu M, Cho JH, Cheng J, Suh JW. Lactobacillus reuteri MJM60668 Prevent Progression of Non-Alcoholic Fatty Liver Disease through Anti-Adipogenesis and Anti-inflammatory Pathway. Microorganisms 2022; 10:2203. [PMID: 36363795 PMCID: PMC9696116 DOI: 10.3390/microorganisms10112203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/18/2022] [Accepted: 11/04/2022] [Indexed: 08/26/2023] Open
Abstract
Non-alcoholic fatty liver disease (NALFD) is a disease characterized by liver steatosis. The liver is a key organ involved in the metabolism of fat, protein, and carbohydrate, enzyme activation, and storage of glycogen, which is closely related to the intestine by the bidirectional relation of the gut-liver axis. Abnormal intestinal microbiota composition can affect energy metabolism and lipogenesis. In this experiment, we investigated the beneficial effect of Lactobacillus reuteri MJM60668 on lipid metabolism and lipogenesis. C57BL/6 mice were fed a high-fat diet (HFD) and orally administrated with MJM60668. Our results showed that mice treated with MJM60668 significantly decreased liver weight and liver/body weight ratio, without affecting food intake. Serum levels of ALT, AST, TG, TCHO, and IL-1β in mice fed with MJM60668 were decreased compared to the HFD group. Investigation of gene and protein expression on the lipogenesis and lipid metabolism showed that the expression of ACC, FAS, and SREBP was decreased, and PPARα and CPT was increased. Furthermore, an increase of adiponectin in serum was shown in our experiment. Moreover, serum IL-1β level was also significantly decreased in the treated mice. These results suggested that MJM60668 can strongly inhibit lipogenesis, enhance fatty acid oxidation, and suppress inflammation. Additionally, supplementation of MJM60668 increased the proportion of Akkermansiaceae and Lachnospiracea, confirming a potential improvement of gut microbiota, which is related to mucus barrier and decrease of triglycerides levels.
Collapse
Affiliation(s)
- Pia Werlinger
- Interdisciplinary Program of Biomodulation, Myongji University, Yongin 17058, Korea
| | - Huong Thi Nguyen
- Interdisciplinary Program of Biomodulation, Myongji University, Yongin 17058, Korea
| | - Mingkun Gu
- Interdisciplinary Program of Biomodulation, Myongji University, Yongin 17058, Korea
| | - Joo-Hyung Cho
- Myongji Bioefficacy Research Center, Myongji University, Yongin 17058, Korea
| | - Jinhua Cheng
- Interdisciplinary Program of Biomodulation, Myongji University, Yongin 17058, Korea
- Myongji Bioefficacy Research Center, Myongji University, Yongin 17058, Korea
| | - Joo-Won Suh
- Interdisciplinary Program of Biomodulation, Myongji University, Yongin 17058, Korea
- Myongji Bioefficacy Research Center, Myongji University, Yongin 17058, Korea
| |
Collapse
|
22
|
Tunçel ÖK, Altunkaynak Z, Bilgici B, Karaustaoğlu A, Gümrükçüoğlu Tİ. Increased growth hormone secretagogue receptor-1a (GHSR-1a) in hypothalamus during olanzapine treatment in rats. Psychoneuroendocrinology 2022; 144:105862. [PMID: 35835020 DOI: 10.1016/j.psyneuen.2022.105862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 01/07/2022] [Accepted: 07/05/2022] [Indexed: 11/24/2022]
Abstract
Weight gain is the one of the most important factors which increases global burden of psychiatric disorder. Second-generation antipsychotics, olanzapine (Olz) and valproic acid (Vpa) in particular, are held responsible for weight gain. However, it is still uncertain how these drugs cause this. Thus, the rats selected for the experiment were randomly divided into 3 groups. The 1st group received only 0.5 ml saline solution intraperitoneally (n = 20, control group); the second group was given 200 mg / kg Vpa intraperitoneally (n = 20, Vpa group) and 2 mg / kg Olz was given intraperitoneally to the 3rd group (n = 20, Olz group) between 8 and 10 am for 30 days. We examined serum leptin, adiponectin, resistin, TNF-α, IL-6, ghrelin level and, the amount of ghrelin secreting cells in the stomach and growth hormone secretagogue receptor-1a (GHSR-1a, ghrelin receptor) expression in the hypothalamus. The hypothalamic GHS-1a receptor index was significantly higher in the Olz group compared with the control group and Vpa group (p = 0.036 and p = 0.016 respectively). Ghrelin immune positive cell index in stomach was statistically significantly lower in the Vpa group compared with the control and Olz groups (p = 0.028 and p = 0.013 respectively) There was no difference between the groups in terms of serum leptin, resistin, IL-6 and ghrelin levels. In the Vpa group, a statistically significant increase was found in serum adiponectin level compared with both the control group and the Olz group (p = 0009 and p = 0024 respectively) and, significant decrease was found in serum TNF-α level compared to Olz group (p = 0007). In conclusion, we found that the main cause of weight gain in Olz use was the increase in the number of hypothalamic ghrelin receptors. Investigating the mechanism by which Olz increases the number of ghrelin receptors may help to develop effective treatment strategies in preventing obesity in psychiatric patients.
Collapse
Affiliation(s)
- Özgür Korhan Tunçel
- Medical Biochemistry Department, Faculty of Medicine, Ondokuz Mayıs University, 55139 Samsun, Turkey.
| | - Zuhal Altunkaynak
- Histology and Embryology Department, Faculty of Medicine, Ondokuz Mayıs University, 55139 Samsun, Turkey
| | - Birşen Bilgici
- Medical Biochemistry Department, Faculty of Medicine, Ondokuz Mayıs University, 55139 Samsun, Turkey
| | - Arzu Karaustaoğlu
- Medical Biochemistry Department, Faculty of Medicine, Ondokuz Mayıs University, 55139 Samsun, Turkey
| | - Taner İlker Gümrükçüoğlu
- Medical Biochemistry Department, Faculty of Medicine, Ondokuz Mayıs University, 55139 Samsun, Turkey
| |
Collapse
|
23
|
Shih YL, Huang TC, Shih CC, Chen JY. Relationship between Leptin and Insulin Resistance among Community-Dwelling Middle-Aged and Elderly Populations in Taiwan. J Clin Med 2022; 11:jcm11185357. [PMID: 36143007 PMCID: PMC9505128 DOI: 10.3390/jcm11185357] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/06/2022] [Accepted: 09/08/2022] [Indexed: 12/04/2022] Open
Abstract
The relationship between leptin and insulin resistance among middle-aged and elderly populations in Asia is seldom reported. Our research included 398 middle-aged and elderly Taiwanese individuals. First, we divided participants into three groups according to the tertiles of the homeostasis model assessment of insulin resistance (HOMA-IR) to analyze the parameters between each group. Pearson’s correlation was then applied to calculate the correlation between HOMA-IR and cardiometabolic risk factors after adjusting for age. A scatter plot indicated a relationship between serum leptin levels and the HOMA-IR index. Finally, the coefficients of the serum leptin level and HOMA-IR were assessed by multivariate linear regression. The participants in the high HOMA-IR index group were more likely to have higher serum leptin levels. Meanwhile, the HOMA-IR index was positively correlated with serum leptin levels, even after adjusting for age. Serum leptin levels were positively correlated with the HOMA-IR index (β = 0.226, p < 0.01) in the multivariate linear regression after adjusting for age, sex, smoking, drinking, BMI, triglycerides, systolic blood pressure, fasting plasma glucose, uric acid, ALT, and creatinine. Furthermore, the leptin−creatinine ratio also showed a significantly positive relationship with HOMA-IR in the same multivariate linear regression model. In conclusion, serum leptin levels showed a positive relationship with insulin resistance in middle-aged and elderly people in Taiwan. Furthermore, serum leptin levels may be an independent risk factor for insulin resistance according to our study.
Collapse
Affiliation(s)
- Yu-Lin Shih
- Department of Family Medicine, Chang-Gung Memorial Hospital, Linkou Branch, Taoyuan 333, Taiwan
| | - Tzu-Cheng Huang
- Department of Family Medicine, Chang-Gung Memorial Hospital, Linkou Branch, Taoyuan 333, Taiwan
| | - Chin-Chuan Shih
- United Safety Medical Group, General Administrative Department, New Taipei City 242, Taiwan
| | - Jau-Yuan Chen
- Department of Family Medicine, Chang-Gung Memorial Hospital, Linkou Branch, Taoyuan 333, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
- Correspondence:
| |
Collapse
|
24
|
Ogura Y, Koyama T, Ozaki E, Omichi C, Uehara R. Subjective irregular sleep is associated with metabolic syndrome: A cross-sectional study. Prev Med Rep 2022; 28:101844. [PMID: 35637895 PMCID: PMC9144007 DOI: 10.1016/j.pmedr.2022.101844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 12/09/2022] Open
Abstract
Several studies have been reported that sleep duration and circadian rhythms are associated with metabolic syndrome (MetS). However, there are few studies of a relationship between sleep and MetS based on subjective evaluation of sleep regularity. The aim of this study is to examine the relationship between subjective sleep irregularity and metabolic syndrome. This cross-sectional study included 3,880 participants (1,383 males, 2,497 females) from 2013 to 2017, and we use a self-administered questionnaire to acquire information about sleep (sleep regularity, duration and bedtime). Odds ratios (ORs) and 95% confidence intervals (CIs) were calculated using logistic regression analyses to evaluate the associations between sleep regularity and the prevalence of MetS. The irregularity of sleep was significantly associated with MetS (OR 1.231, 95% CI 1.101–1.375) adjusted for age, sex, METs, sleep duration, bedtime, drinking and smoking statuses, and a history of using sleeping pills. We examined the interaction of MetS with sleep regularity and sleep duration/bedtime, stratified by multiplying the two groups of sleep regularity/irregularity and the three groups of sleep duration/bedtime. Each group of sleep duration/bedtime showed no relationship in the sleep regularity group with MetS, but a significant relationship in the sleep irregularity group. Leptin was significantly elevated in the irregular sleep group regardless of sleep duration and bedtime. Although many studies have shown a link between sleep and MetS especially in terms of sleep duration, this study showed that irregular sleep is more strongly associated with MetS than sleep duration or bedtime.
Collapse
|
25
|
Zheng Z, Wu L, Li Z, Jaspers RT, Huang H, Zhang Q, Li Z, Pathak JL, Wu G, Li H. Local administration of low doses of exogenous BMP2 and leptin promotes ectopic bone regeneration in leptin-deficient mice. Biomed Mater Eng 2022; 33:303-313. [PMID: 35147528 DOI: 10.3233/bme-211323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Obesity and leptin deficiency are associated with compromised bone regeneration. OBJECTIVE This study aims to investigate the role of locally administrated low-dose BMP2+leptin on bone regeneration in leptin-deficient obese (ob/ob) mice. METHODS Wildtype (WT) and ob/ob mice were divided into 3 groups (4 mice/group): BMP2 (5 μg) group, BMP2+low-dose leptin (1 μg) group, and BMP2+high-dose leptin (2.5 μg) group. WT mice were used as control mice. An equal size absorbable collagen sponge was prepared by loading the BMP2 or/and leptin and implanted subcutaneously. After 19 days, samples were collected and analyzed by micro-CT and H&E staining. RESULTS No significant difference in bone regeneration among the three groups in WT mice. Quantification of newly formed bone parameters from micro-CT and H&E staining showed that low-dose BMP2 treatment formed less new bone in ob/ob mice compared to WT. BMP2+low-dose leptin treatment substantially rescued the compromised bone regeneration in ob/ob mice up to the level in WT mice. However, the BMP2 and high dose of leptin failed to rescue the compromised bone regeneration in ob/ob mice. CONCLUSION Our findings suggest that a combination of the low-dose BMP2 and leptin could be a strategy to promote osteogenesis in obese populations with leptin deficiency.
Collapse
Affiliation(s)
- Zhichao Zheng
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China.,Laboratory for Myology, Faculty of Behavioral and Movement Sciences, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Lihong Wu
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| | - Zhicong Li
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| | - Richard T Jaspers
- Laboratory for Myology, Faculty of Behavioral and Movement Sciences, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Hairong Huang
- Department of Oral Implantology and Prosthetic Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Qing Zhang
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| | - Zhengmao Li
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| | - Janak L Pathak
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| | - Gang Wu
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China.,Department of Oral Implantology and Prosthetic Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Hongtao Li
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
26
|
Abstract
Leptin is a hormone primarily produced by the adipose tissue in proportion to the size of fat stores, with a primary function in the control of lipid reserves. Besides adipose tissue, leptin is also produced by other tissues, such as the stomach, placenta, and mammary gland. Altogether, leptin exerts a broad spectrum of short, medium, and long-term regulatory actions at the central and peripheral levels, including metabolic programming effects that condition the proper development and function of the adipose organ, which are relevant for its main role in energy homeostasis. Comprehending how leptin regulates adipose tissue may provide important clues to understand the pathophysiology of obesity and related diseases, such as type 2 diabetes, as well as its prevention and treatment. This review focuses on the physiological and long-lasting regulatory effects of leptin on adipose tissue, the mechanisms and pathways involved, its main outcomes on whole-body physiological homeostasis, and its consequences on chronic diseases.
Collapse
Affiliation(s)
- Catalina Picó
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Nutrigenomics, Biomarkers and Risk Evaluation), University of the Balearic Islands. CIBER de Fisiopatología de La Obesidad Y Nutrición (CIBEROBN). Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
| | - Mariona Palou
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Nutrigenomics, Biomarkers and Risk Evaluation), University of the Balearic Islands. CIBER de Fisiopatología de La Obesidad Y Nutrición (CIBEROBN). Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
| | - Catalina Amadora Pomar
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Nutrigenomics, Biomarkers and Risk Evaluation), University of the Balearic Islands. CIBER de Fisiopatología de La Obesidad Y Nutrición (CIBEROBN). Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
| | - Ana María Rodríguez
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Nutrigenomics, Biomarkers and Risk Evaluation), University of the Balearic Islands. CIBER de Fisiopatología de La Obesidad Y Nutrición (CIBEROBN). Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain.
| | - Andreu Palou
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Nutrigenomics, Biomarkers and Risk Evaluation), University of the Balearic Islands. CIBER de Fisiopatología de La Obesidad Y Nutrición (CIBEROBN). Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
| |
Collapse
|
27
|
Del Prato S, Gallwitz B, Holst JJ, Meier JJ. The incretin/glucagon system as a target for pharmacotherapy of obesity. Obes Rev 2022; 23:e13372. [PMID: 34713962 PMCID: PMC9286339 DOI: 10.1111/obr.13372] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 09/08/2021] [Accepted: 09/08/2021] [Indexed: 12/14/2022]
Abstract
Obesity is a chronic, multifactorial, relapsing disease. Despite multicomponent lifestyle interventions, including pharmacotherapy, maintaining bodyweight loss is challenging for many people. The pathophysiology of obesity is complex, and currently approved pharmacotherapies only target a few of the many pathways involved; thus, single-targeting agents have limited efficacy. Proglucagon-derived peptides, glucagon, and the incretin hormones glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP), represent attractive targets for managing obesity and metabolic disorders because they may have direct roles in multiple mechanisms including satiety, energy homeostasis, and lipolytic activity. Unimolecular dual and triple agonists targeting glucagon and incretin hormone receptors have been shown to promote bodyweight loss, lower glucose levels, and reduce food intake in animal models of obesity. Multiple dual receptor agonists are in clinical development for the treatment of obesity, including GLP-1/GIP and GLP-1/glucagon receptor agonists. The extent to which glucagon contributes to treatment effects remains to be understood, but it may promote bodyweight loss by reducing food intake, while concomitant GLP-1 receptor agonism ensures normal glucose control. Further research is required to fully understand the molecular mechanisms of action and metabolic effects of both dual and triple receptor agonists.
Collapse
Affiliation(s)
- Stefano Del Prato
- Department of Clinical and Experimental MedicineUniversity of PisaPisaItaly
| | - Baptist Gallwitz
- Department of Internal Medicine IVEberhard Karls UniversityTübingenGermany
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center MunichUniversity of TübingenTübingenGermany
| | - Jens Juul Holst
- Department of Biomedical Sciences, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Juris J. Meier
- Division of Diabetology, Katholisches Klinikum Bochum, St. Josef HospitalRuhr UniversityBochumGermany
| |
Collapse
|
28
|
Ciriello J, Moreau JM, Caverson MM, Moranis R. Leptin: A Potential Link Between Obstructive Sleep Apnea and Obesity. Front Physiol 2022; 12:767318. [PMID: 35153807 PMCID: PMC8829507 DOI: 10.3389/fphys.2021.767318] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 12/17/2021] [Indexed: 12/02/2022] Open
Abstract
Chronic intermittent hypoxia (CIH), a pathophysiological manifestation of obstructive sleep apnea (OSA), is strongly correlated with obesity, as patients with the disease experience weight gain while exhibiting elevated plasma levels of leptin. This study was done to determine whether a relationship may exist between CIH and obesity, and body energy balance and leptin signaling during CIH. Sprague-Dawley rats were exposed to 96 days of CIH or normoxic control conditions, and were assessed for measures of body weight, food and water intake, and food conversion efficiency. At the completion of the study leptin sensitivity, locomotor activity, fat pad mass and plasma leptin levels were determined within each group. Additionally, the hypothalamic arcuate nucleus (ARC) was isolated and assessed for changes in the expression of proteins associated with leptin receptor signaling. CIH animals were found to have reduced locomotor activity and food conversion efficiency. Additionally, the CIH group had increased food and water intake over the study period and had a higher body weight compared to normoxic controls at the end of the study. Basal plasma concentrations of leptin were significantly elevated in CIH exposed animals. To test whether a resistance to leptin may have occurred in the CIH animals due to the elevated plasma levels of leptin, an acute exogenous (ip) leptin (0.04 mg/kg carrier-free recombinant rat leptin) injection was administered to the normoxic and CIH exposed animals. Leptin injections into the normoxic controls reduced their food intake, whereas CIH animals did not alter their food intake compared to vehicle injected CIH animals. Within ARC, CIH animals had reduced protein expression of the short form of the obese (leptin) receptor (isoform OBR100) and showed a trend toward an elevated protein expression of the long form of obese (leptin) receptor (OBRb). In addition, pro-opiomelanocortin (POMC) protein expression was reduced, but increased expression of the phosphorylated extracellular-signal-regulated kinase 1/2 (pERK1/2) and of the suppressor of cytokine signaling 3 (SOCS3) proteins was observed in the CIH group, with little change in phosphorylated signal transducer and activator of transcription 3 (pSTAT3). Taken together, these data suggest that long-term exposure to CIH, as seen in obstructive sleep apnea, may contribute to a state of leptin resistance promoting an increase in body weight.
Collapse
|
29
|
Suriagandhi V, Nachiappan V. Protective Effects of Melatonin against Obesity-Induced by Leptin Resistance. Behav Brain Res 2022; 417:113598. [PMID: 34563600 DOI: 10.1016/j.bbr.2021.113598] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 09/01/2021] [Accepted: 09/21/2021] [Indexed: 12/20/2022]
Abstract
Consumption of an exceedingly high-fat diet with irregular eating and sleeping habits is typical in the current sedentary lifestyle, leading to chronic diseases like obesity and diabetes mellitus. Leptin is a primary appetite-regulating hormone that binds to its receptors in the hypothalamic cell membrane and regulates downstream appetite-regulating neurons NPY/AgRp and POMC in the hypothalamus. Based on the fat content of the adipose tissue, leptin is secreted, and excess accumulation of fat in adipose tissue stimulates the abnormal secretion of leptin. The secreted leptin circulating in the bloodstream uses its transporters to cross the blood-brain barrier (BBB) and reach the CSF. There is a saturation limit for leptin bound to its transporters to cross the BBB, and increased leptin secretion in adipose tissue has a defect in its transport across the BBB. Leptin resistance is due to excess leptin, a saturation of its transporters, and deficiency in either the receptor level or signalling in the hypothalamus. Leptin resistance leads to obesity due to excess food intake and less energy expenditure. Normal leptin secretion follows a rhythm, and alteration in the lifestyle leads to hormonal imbalances and increases ROS generation leading to oxidative stress. The sleep disturbance causes obesity with increased lipid accumulation in adipose tissue. Melatonin is the master regulator of the sleep-wake cycle secreted by the pineal gland during the night. It is a potent antioxidant with anti-inflammatory properties. Melatonin is secreted in a pattern called the circadian rhythm in humans as well. Research indicates that melatonin plays a vital role in hormonal regulation and energy metabolism, including leptin signalling and secretion. Studying the role of melatonin in leptin regulation will help us combat the pathologies of obesity caused by leptin resistance.
Collapse
Affiliation(s)
- Vennila Suriagandhi
- Biomembrane Lab, Department of Biochemistry, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620024, Tamilnadu, India
| | - Vasanthi Nachiappan
- Biomembrane Lab, Department of Biochemistry, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620024, Tamilnadu, India.
| |
Collapse
|
30
|
Londraville RL, Tuttle M, Liu Q, Andronowski JM. Endospanin Is a Candidate for Regulating Leptin Sensitivity. Front Physiol 2022; 12:786299. [PMID: 35069248 PMCID: PMC8777038 DOI: 10.3389/fphys.2021.786299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/25/2021] [Indexed: 11/13/2022] Open
Abstract
The hypothesis advanced is that endospanin, a highly conserved vesicle traffic protein in vertebrates, regulates leptin sensitivity in bone signaling. The effects of leptin on bones are well-studied but without consensus on whether the increases in leptin signaling stimulate bone gain or loss. The bone response may depend on leptin sensitivity, and endospanin is an established modulator of leptin sensitivity. An argument is advanced to develop zebrafish models for specific leptin signaling pathways. Zebrafish have well-developed molecular tools (e.g., CRISPR) and the advantage of non-destructive sampling of bones in the form of scales. Using these tools, experiments are described to substantiate the role of endospanin in zebrafish bone dynamics.
Collapse
Affiliation(s)
- Richard L. Londraville
- Program in Integrated Bioscience, Department of Biology, University of Akron, Akron, OH, United States
| | - Matthew Tuttle
- Program in Integrated Bioscience, Department of Biology, University of Akron, Akron, OH, United States
| | - Qin Liu
- Program in Integrated Bioscience, Department of Biology, University of Akron, Akron, OH, United States
| | - Janna M. Andronowski
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. Johns, NL, Canada
| |
Collapse
|
31
|
|
32
|
Micioni Di Bonaventura MV, Coman MM, Tomassoni D, Micioni Di Bonaventura E, Botticelli L, Gabrielli MG, Rossolini GM, Di Pilato V, Cecchini C, Amedei A, Silvi S, Verdenelli MC, Cifani C. Supplementation with Lactiplantibacillus plantarum IMC 510 Modifies Microbiota Composition and Prevents Body Weight Gain Induced by Cafeteria Diet in Rats. Int J Mol Sci 2021; 22:ijms222011171. [PMID: 34681831 PMCID: PMC8540549 DOI: 10.3390/ijms222011171] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 12/19/2022] Open
Abstract
Changes in functionality and composition of gut microbiota (GM) have been associated and may contribute to the development and maintenance of obesity and related diseases. The aim of our study was to investigate for the first time the impact of Lactiplantibacillus (L.) plantarum IMC 510 in a rat model of diet-induced obesity, specifically in the cafeteria (CAF) diet. This diet provides a strong motivation to voluntary overeat, due to the palatability and variety of selected energy-dense foods. The oral administration for 84 days of this probiotic strain, added to the CAF diet, decreased food intake and body weight gain. Accordingly, it ameliorated body mass index, liver and white adipose tissue weight, hepatic lipid accumulation, adipocyte size, serum parameters, including glycemia and low-density lipoprotein levels, in CAF fed rats, potentially through leptin control. In this scenario, L. plantarum IMC 510 showed also beneficial effects on GM, limiting the microbial imbalance established by long exposure to CAF diet and preserving the proportion of different bacterial taxa. Further research is necessary to better elucidate the relationship between GM and overweight and then the mechanism of action by which L. plantarum IMC 510 modifies weight. However, these promising results prompt a clear advantage of probiotic supplementation and identify a new potential probiotic as a novel and safe therapeutic approach in obesity prevention and management.
Collapse
Affiliation(s)
| | - Maria Magdalena Coman
- Synbiotec S.r.l., Spin-off of UNICAM, Via Gentile III Da Varano, 62032 Camerino, Italy; (M.M.C.); (C.C.); (M.C.V.)
| | - Daniele Tomassoni
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy; (D.T.); (M.G.G.)
| | - Emanuela Micioni Di Bonaventura
- Pharmacology Unit, School of Pharmacy, University of Camerino, 62032 Camerino, Italy; (M.V.M.D.B.); (E.M.D.B.); (L.B.); (C.C.)
| | - Luca Botticelli
- Pharmacology Unit, School of Pharmacy, University of Camerino, 62032 Camerino, Italy; (M.V.M.D.B.); (E.M.D.B.); (L.B.); (C.C.)
| | - Maria Gabriella Gabrielli
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy; (D.T.); (M.G.G.)
| | - Gian Maria Rossolini
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy; (G.M.R.); (A.A.)
- Microbiology and Virology Unit, Florence Careggi University Hospital, 50134 Florence, Italy
| | - Vincenzo Di Pilato
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, 16132 Genova, Italy;
| | - Cinzia Cecchini
- Synbiotec S.r.l., Spin-off of UNICAM, Via Gentile III Da Varano, 62032 Camerino, Italy; (M.M.C.); (C.C.); (M.C.V.)
| | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy; (G.M.R.); (A.A.)
| | - Stefania Silvi
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy; (D.T.); (M.G.G.)
- Correspondence:
| | - Maria Cristina Verdenelli
- Synbiotec S.r.l., Spin-off of UNICAM, Via Gentile III Da Varano, 62032 Camerino, Italy; (M.M.C.); (C.C.); (M.C.V.)
| | - Carlo Cifani
- Pharmacology Unit, School of Pharmacy, University of Camerino, 62032 Camerino, Italy; (M.V.M.D.B.); (E.M.D.B.); (L.B.); (C.C.)
| |
Collapse
|
33
|
Higher Physical Activity Level Improves Leptin Concentrations in Spinal Cord Injury Subjects. BIOMED RESEARCH INTERNATIONAL 2021; 2021:9415253. [PMID: 34621899 PMCID: PMC8492252 DOI: 10.1155/2021/9415253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 08/10/2021] [Accepted: 09/09/2021] [Indexed: 11/26/2022]
Abstract
The present study was designed to compare the body composition and indicators of chronic inflammatory grade, such as leptin, adiponectin, and resistin concentrations in irregularly active and active SCI subjects. Thirty-two male subjects participated in this study. They were divided into three groups: able-bodied control irregularly active (control, n = 11), irregularly active with SCI (SCI-IA, n = 8), and physically active with SCI (SCI-PA, n = 13). The enzyme-linked immunosorbent assay (ELISA) assessed serum concentrations of leptin, adiponectin, and resistin. All volunteers performed the maximum oxygen uptake (VO2max) test, 24 h total energy expenditure (TEE), and body composition by skinfold thicknesses. Leptin concentrations were higher in the SCI-IA group when compared to the other groups, while no significant differences were found between the SCI-PA and control cohorts. In addition, no significant differences were found among groups for serum adiponectin and resistin concentrations either. The SCI-PA group showed significantly higher values for TEE and VO2max when compared to the other groups. Percentages of body fat and circumference were decreased in the control and SCI-PA groups when compared to the SCI-IA cohort. Associations between leptin and cardiorespiratory capacity and anthropometric markers were also observed. Our findings highlight that the lack of physical activity in the SCI subjects leads to poor general physical fitness and higher levels of body adiposity, which may induce hyperleptinemia, an essential marker for cardiometabolic disorders.
Collapse
|
34
|
Mueller A, Palilla S, Carter J. Optimal Surgical Treatment for Type 2 Diabetes: Sleeve Gastrectomy or Gastric Bypass? Adv Surg 2021; 55:1-8. [PMID: 34389085 DOI: 10.1016/j.yasu.2021.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Amanda Mueller
- Department of Surgery, University of California - San Francisco, 513 Parnassus Avenue, HSW1601, San Francisco, CA 94143, USA
| | - Sarah Palilla
- Department of Surgery, University of California - San Francisco, 513 Parnassus Avenue, HSW1601, San Francisco, CA 94143, USA
| | - Jonathan Carter
- Department of Surgery, University of California - San Francisco, 513 Parnassus Avenue, HSW1601, San Francisco, CA 94143, USA.
| |
Collapse
|
35
|
Butiaeva LI, Slutzki T, Swick HE, Bourguignon C, Robins SC, Liu X, Storch KF, Kokoeva MV. Leptin receptor-expressing pericytes mediate access of hypothalamic feeding centers to circulating leptin. Cell Metab 2021; 33:1433-1448.e5. [PMID: 34129812 DOI: 10.1016/j.cmet.2021.05.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 02/19/2021] [Accepted: 05/21/2021] [Indexed: 12/18/2022]
Abstract
Knowledge of how leptin receptor (LepR) neurons of the mediobasal hypothalamus (MBH) access circulating leptin is still rudimentary. Employing intravital microscopy, we found that almost half of the blood-vessel-enwrapping pericytes in the MBH express LepR. Selective disruption of pericytic LepR led to increased food intake, increased fat mass, and loss of leptin-dependent signaling in nearby LepR neurons. When delivered intravenously, fluorescently tagged leptin accumulated at hypothalamic LepR pericytes, which was attenuated upon pericyte-specific LepR loss. Because a paracellular tracer was also preferentially retained at LepR pericytes, we pharmacologically targeted regulators of inter-endothelial junction tightness and found that they affect LepR neuronal signaling and food intake. Optical imaging in MBH slices revealed a long-lasting, tonic calcium increase in LepR pericytes in response to leptin, suggesting pericytic contraction and vessel constriction. Together, our data indicate that LepR pericytes facilitate localized, paracellular blood-brain barrier leaks, enabling MBH LepR neurons to access circulating leptin.
Collapse
Affiliation(s)
- Liliia I Butiaeva
- Division of Endocrinology, Department of Medicine, McGill University Health Center Research Institute, McGill University, Montreal QC H4A 3J1, Canada; Integrated Program in Neuroscience, McGill University, Montreal QC H3A 2B4, Canada
| | - Tal Slutzki
- Division of Endocrinology, Department of Medicine, McGill University Health Center Research Institute, McGill University, Montreal QC H4A 3J1, Canada; Integrated Program in Neuroscience, McGill University, Montreal QC H3A 2B4, Canada
| | - Hannah E Swick
- Division of Endocrinology, Department of Medicine, McGill University Health Center Research Institute, McGill University, Montreal QC H4A 3J1, Canada; Integrated Program in Neuroscience, McGill University, Montreal QC H3A 2B4, Canada
| | - Clément Bourguignon
- Department of Psychiatry, Douglas Mental Health University Institute, McGill University, Montreal QC H4H 1R3, Canada; Integrated Program in Neuroscience, McGill University, Montreal QC H3A 2B4, Canada
| | - Sarah C Robins
- Division of Endocrinology, Department of Medicine, McGill University Health Center Research Institute, McGill University, Montreal QC H4A 3J1, Canada
| | - Xiaohong Liu
- Division of Endocrinology, Department of Medicine, McGill University Health Center Research Institute, McGill University, Montreal QC H4A 3J1, Canada
| | - Kai-Florian Storch
- Department of Psychiatry, Douglas Mental Health University Institute, McGill University, Montreal QC H4H 1R3, Canada
| | - Maia V Kokoeva
- Division of Endocrinology, Department of Medicine, McGill University Health Center Research Institute, McGill University, Montreal QC H4A 3J1, Canada.
| |
Collapse
|
36
|
Obesity and Multiple Sclerosis-A Multifaceted Association. J Clin Med 2021; 10:jcm10122689. [PMID: 34207197 PMCID: PMC8234028 DOI: 10.3390/jcm10122689] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 05/30/2021] [Accepted: 06/15/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Given the common elements in the pathophysiological theories that try to explain the appearance and evolution of obesity and multiple sclerosis, the association between the two pathologies has become an increasingly researched topic in recent years. On the one hand, there is the chronic demyelinating inflammation caused by the autoimmune cascade of multiple sclerosis, while on the other hand, according to the latest research, it has been shown that obesity shares an inflammatory component with most chronic diseases. METHODS The authors performed independent research of the available literature in the most important electronic databases (PubMed, Google Scholar, Embase, and Science Direct) in February 2021. After applying the exclusion criteria, the reviewers focused on the most relevant articles published during the last 10 years with respect to epidemiology and pathophysiology. RESULTS The data presented are a step forward in trying to elucidate the intricate relationship between obesity and MS, especially the causal relationship between childhood and adolescent obesity and MS, focusing on the epidemiological associations observed in the most relevant observational studies conducted in recent years. In the second part, the authors comment on the latest findings related to the pathophysiological mechanisms that may explain the correlations between obesity and multiple sclerosis, focusing also on the role of adipokines. CONCLUSIONS Based on available epidemiological data, obesity in early life appears to be strongly associated with a higher risk of MS development, independent of other risk factors. Although much research has been done on the pathophysiology of obesity, MS, their possible common mechanism, and the role of adipokines, further studies are needed in order to explain what remains unknown. No relevant data were found regarding the association between obesity, disability (high EDSS score), and mortality risk in MS patients. Thus, we consider that this topic should be elucidated in future research.
Collapse
|
37
|
Lei MM, Dai ZC, Zhu HX, Chen R, Chen Z, Shao CR, Shi ZD. Impairment of testes development in Yangzhou ganders by augmentation of leptin receptor signaling. Theriogenology 2021; 171:94-103. [PMID: 34051590 DOI: 10.1016/j.theriogenology.2021.05.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 05/11/2021] [Accepted: 05/16/2021] [Indexed: 10/21/2022]
Abstract
The aim of this study was to determine the cellular and molecular mechanisms of leptin (LEP) and the leptin receptor (LEPR) in testicular development of prepubertal ganders. In an in vivo animal experiment, active immunization against LEPR severely depressed prepubertal testicular development by significantly reducing testicular weights at 200 and 227 days of age. The number of elongated spermatids in the seminiferous tubules was also significantly decreased by immunization with LEPR at ages of 200 and 227 days. Inhibition of testicular development by LEPR immunization was associated with decreases in LHR, StAR, 3β-HSD, CYP11A1, CYP17A1, and PRLR mRNA expression levels in testicular tissue, which resulted in a significant decrease in testosterone synthesis. In the in vitro experiments, the addition of LEP combined with anti-LEPR antibodies strengthened LEPR signal transduction, and inhibited significantly testosterone production in cultured Leydig cells isolated from prepubertal gander testes. The mRNA expression of LHR, StAR, 3β-HSD, CYP11A1, CYP17A1 also decreased significantly after treatment with LEP combined with anti-LEPR antibodies in cultured Leydig cells. These results suggest that anti-LEPR antibodies strengthen LEPR signaling transduction in the presence of LEP, and immunization against LEPR inhibited testes development and testosterone secretion in prepubertal ganders.
Collapse
Affiliation(s)
- M M Lei
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, 210014, China
| | - Z C Dai
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, 210014, China
| | - H X Zhu
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, 210014, China
| | - R Chen
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, 210014, China
| | - Z Chen
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, 210014, China
| | - C R Shao
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, 210014, China
| | - Z D Shi
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, 210014, China.
| |
Collapse
|
38
|
Liu H, Du T, Li C, Yang G. STAT3 phosphorylation in central leptin resistance. Nutr Metab (Lond) 2021; 18:39. [PMID: 33849593 PMCID: PMC8045279 DOI: 10.1186/s12986-021-00569-w] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 04/03/2021] [Indexed: 12/20/2022] Open
Abstract
Mechanism exploitation of energy homeostasis is urgently required because of the worldwide prevailing of obesity-related metabolic disorders in human being. Although it is well known that leptin plays a central role in regulating energy balance by suppressing food intake and promoting energy expenditure, the existence of leptin resistance in majority of obese individuals hampers the utilization of leptin therapy against these disorders. However, the mechanism of leptin resistance is largely unknown in spite of the globally enormous endeavors. Current theories to interpret leptin resistance include the impairment of leptin transport, attenuation of leptin signaling, chronic inflammation, ER tress, deficiency of autophagy, as well as leptin itself. Leptin-activated leptin receptor (LepRb) signals in hypothalamus via several pathways, in which JAK2-STAT3 pathway, the most extensively investigated one, is considered to mediate the major action of leptin in energy regulation. Upon leptin stimulation the phosphorylation of STAT3 is one of the key events in JAK2-STAT3 pathway, followed by the dimerization and nuclear translocation of this molecule. Phosphorylated STAT3 (p-STAT3), as a transcription factor, binds to and regulates its target gene such as POMC gene, playing the physiological function of leptin. Regarding POMC gene in hypothalamus however little is known about the detail of its interaction with STAT3. Moreover the status of p-STAT3 and its significance in hypothalamus of DIO mice needs to be well elucidated. This review comprehends literatures on leptin and leptin resistance and especially discusses what STAT3 phosphorylation would contribute to central leptin resistance.
Collapse
Affiliation(s)
- Huimin Liu
- College of Life Science, Henan Agricultural University, 95 Wen Hua Road, Zhengzhou, 450002, China
| | - Tianxin Du
- College of Life Science, Henan Agricultural University, 95 Wen Hua Road, Zhengzhou, 450002, China
| | - Chen Li
- College of Life Science, Henan Agricultural University, 95 Wen Hua Road, Zhengzhou, 450002, China
| | - Guoqing Yang
- College of Life Science, Henan Agricultural University, 95 Wen Hua Road, Zhengzhou, 450002, China.
| |
Collapse
|
39
|
Chen L, Liu R, He X, Pei S, Li D. Effects of brown seaweed polyphenols, a class of phlorotannins, on metabolic disorders via regulation of fat function. Food Funct 2021; 12:2378-2388. [PMID: 33645609 DOI: 10.1039/d0fo02886j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
It is well known that fat dysfunction is the main driver of development of metabolic disorders. Changes in diet and lifestyle are particularly important to reverse the current global rise in obesity-related metabolic disorders. Seaweed has been consumed for thousands of years, and it is rich in bioactive compounds, especially unique polyphenols. The aim of the present review is to summarize the effects of different seaweed polyphenols on fat function in metabolic disorders and the related mechanisms. Seaweed polyphenols activate white adipose tissue to "brown" or "beige" adipose tissue to enhance energy consumption. In addition, the amelioration of fat factor imbalance and inflammatory response is also considered as an important reason for the regulation of lipid function with seaweed polyphenols. The present review provides an important basis for using seaweed polyphenols as potential dietary supplements to prevent metabolic disorders.
Collapse
Affiliation(s)
- Lei Chen
- Institute of Nutrition & Health, Qingdao University, Qingdao, China.
| | | | | | | | | |
Collapse
|
40
|
Baczewska M, Bojczuk K, Kołakowski A, Dobroch J, Guzik P, Knapp P. Obesity and Energy Substrate Transporters in Ovarian Cancer-Review. Molecules 2021; 26:1659. [PMID: 33809784 PMCID: PMC8002293 DOI: 10.3390/molecules26061659] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/09/2021] [Accepted: 03/12/2021] [Indexed: 01/12/2023] Open
Abstract
Ovarian cancer is the seventh most common cancer in women. It is characterized by a high mortality rate because of its aggressiveness and advanced stage at the time of diagnosis. It is a nonhomogenous group of neoplasms and, of which the molecular basics are still being investigated. Nowadays, the golden standard in the treatment is debulking cytoreductive surgery combined with platinum-based chemotherapy. We have presented the interactions and the resulting perspectives between fatty acid transporters, glucose transporters and ovarian cancer cells. Studies have shown the association between a lipid-rich environment and cancer progression, which suggests the use of correspondent transporter inhibitors as promising chemotherapeutic agents. This review summarizes preclinical and clinical studies highlighting the role of fatty acid transport proteins and glucose transporters in development, growth, metastasizing and its potential use in targeted therapies of ovarian cancer.
Collapse
Affiliation(s)
- Marta Baczewska
- Department of Gynecology and Gynecological Oncology, Medical University of Białystok, 15-089 Bialystok, Poland; (K.B.); (A.K.); (J.D.); (P.K.)
| | - Klaudia Bojczuk
- Department of Gynecology and Gynecological Oncology, Medical University of Białystok, 15-089 Bialystok, Poland; (K.B.); (A.K.); (J.D.); (P.K.)
| | - Adrian Kołakowski
- Department of Gynecology and Gynecological Oncology, Medical University of Białystok, 15-089 Bialystok, Poland; (K.B.); (A.K.); (J.D.); (P.K.)
| | - Jakub Dobroch
- Department of Gynecology and Gynecological Oncology, Medical University of Białystok, 15-089 Bialystok, Poland; (K.B.); (A.K.); (J.D.); (P.K.)
| | - Paweł Guzik
- Clinical Department of Gynecology and Obstetrics, City Hospital, 35-241 Rzeszów, Poland;
| | - Paweł Knapp
- Department of Gynecology and Gynecological Oncology, Medical University of Białystok, 15-089 Bialystok, Poland; (K.B.); (A.K.); (J.D.); (P.K.)
- University Oncology Center, University Clinical Hospital in Białystok, 15-276 Białystok, Poland
| |
Collapse
|
41
|
Mohammad S, Aziz R, Al Mahri S, Malik SS, Haji E, Khan AH, Khatlani TS, Bouchama A. Obesity and COVID-19: what makes obese host so vulnerable? IMMUNITY & AGEING 2021; 18:1. [PMID: 33390183 PMCID: PMC7779330 DOI: 10.1186/s12979-020-00212-x] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 12/03/2020] [Indexed: 12/13/2022]
Abstract
The disease (COVID-19) novel coronavirus pandemic has so far infected millions resulting in the death of over a million people as of Oct 2020. More than 90% of those infected with COVID-19 show mild or no symptoms but the rest of the infected cases show severe symptoms resulting in significant mortality. Age has emerged as a major factor to predict the severity of the disease and mortality rates are significantly higher in elderly patients. Besides, patients with underlying conditions like Type 2 diabetes, cardiovascular diseases, hypertension, and cancer have an increased risk of severe disease and death due to COVID-19 infection. Obesity has emerged as a novel risk factor for hospitalization and death due to COVID-19. Several independent studies have observed that people with obesity are at a greater risk of severe disease and death due to COVID-19. Here we review the published data related to obesity and overweight to assess the possible risk and outcome in Covid-19 patients based on their body weight. Besides, we explore how the obese host provides a unique microenvironment for disease pathogenesis, resulting in increased severity of the disease and poor outcome.
Collapse
Affiliation(s)
- Sameer Mohammad
- Experimental Medicine Department, King Abdullah International Medical Research Center/King Saud bin Abdulaziz University for Health Sciences-MNGHA, Riyadh, 11426, Saudi Arabia.
| | - Rafia Aziz
- Government Medical College Baramulla, Baramulla, Kashmir, India
| | - Saeed Al Mahri
- Experimental Medicine Department, King Abdullah International Medical Research Center/King Saud bin Abdulaziz University for Health Sciences-MNGHA, Riyadh, 11426, Saudi Arabia
| | - Shuja Shafi Malik
- Experimental Medicine Department, King Abdullah International Medical Research Center/King Saud bin Abdulaziz University for Health Sciences-MNGHA, Riyadh, 11426, Saudi Arabia
| | - Esraa Haji
- Experimental Medicine Department, King Abdullah International Medical Research Center/King Saud bin Abdulaziz University for Health Sciences-MNGHA, Riyadh, 11426, Saudi Arabia
| | - Altaf Husain Khan
- Biostatistics and Bioinformatics Department, King Abdullah International Medical Research Center/King Saud bin Abdulaziz University for Health Sciences-MNGHA, Riyadh, 11426, Saudi Arabia
| | - Tanvir Saleem Khatlani
- Department of Cellular Therapy, Stem Cells Unit, King Abdullah International Medical Research Center/King Saud bin Abdulaziz University for Health Sciences--MNGHA, Riyadh, 11426, Saudi Arabia
| | - Abderrezak Bouchama
- Experimental Medicine Department, King Abdullah International Medical Research Center/King Saud bin Abdulaziz University for Health Sciences-MNGHA, Riyadh, 11426, Saudi Arabia
| |
Collapse
|
42
|
Huang J, Peng X, Dong K, Tao J, Yang Y. The Association Between Insulin Resistance, Leptin, and Resistin and Diabetic Nephropathy in Type 2 Diabetes Mellitus Patients with Different Body Mass Indexes. Diabetes Metab Syndr Obes 2021; 14:2357-2365. [PMID: 34079314 PMCID: PMC8163637 DOI: 10.2147/dmso.s305054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 04/15/2021] [Indexed: 02/01/2023] Open
Abstract
AIM This study aimed to compare HOMA-IR, leptin, and resistin as the risk factors for diabetic nephropathy in the type 2 diabetes mellitus (T2DM) patients with different BMI classifications. MATERIALS AND METHODS A total of 309 patients with T2DM were enrolled in this cross-sectional study. All participants were divided into three groups according to BMI: the normal weight group (18.5 kg/m2≤BMI<24 kg/m2), the overweight group (24kg/m2≤BMI<28 kg/m2) and the obesity group (BMI≥28 kg/m2). The clinical information and laboratory examinations were recorded in detail. Leptin and resistin levels were measured using enzyme-linked immunosorbent assay (ELISA). RESULTS Higher HOMA-IR, leptin and resistin levels were found to be the risk factors for diabetic nephropathy when we made comparisons in the total population (P<0.05). In the normal weight group, logistic regression analysis showed that T2DM patients with higher HOMA-IR (OR=4.210, P=0.001), leptin (OR=2.474, P=0.031) and resistin levels (OR=8.299, P<0.001) had nearly 4-fold, 2-fold and 8-fold risk for diabetic nephropathy, respectively, after adjustments. The receiver operating characteristic (ROC) curves indicated that the area under the curves (AUCs) of HOMA-IR and resistin were 0.699 (95% CI 0.617-0.772) and 0.790 (95% CI 0.715-0.854), respectively, which were significantly larger than the AUC of 0.5 (all P<0.001). However, no significant association was observed between HOMA-IR, leptin, and resistin and renal complications (all P>0.05) in the overweight and obesity groups in both logistic regression and AUC analysis. CONCLUSION Higher insulin resistance, leptin and resistin levels were observed as risk factors for diabetic nephropathy in T2DM patients with lower BMI. These were not obvious in the overweight and obese patients.
Collapse
Affiliation(s)
- Jiaojiao Huang
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People’s Republic of China
| | - Xuemin Peng
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People’s Republic of China
| | - Kun Dong
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People’s Republic of China
| | - Jing Tao
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People’s Republic of China
| | - Yan Yang
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People’s Republic of China
- Correspondence: Yan Yang Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430030, People’s Republic of ChinaTel +86-27-83663331Fax +86-27-83662883 Email
| |
Collapse
|
43
|
Rivera-Yañez N, Rivera-Yañez CR, Pozo-Molina G, Méndez-Catalá CF, Méndez-Cruz AR, Nieto-Yañez O. Biomedical Properties of Propolis on Diverse Chronic Diseases and Its Potential Applications and Health Benefits. Nutrients 2020; 13:E78. [PMID: 33383693 PMCID: PMC7823938 DOI: 10.3390/nu13010078] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/24/2020] [Accepted: 12/24/2020] [Indexed: 02/06/2023] Open
Abstract
The use of alternative medicine products has increased tremendously in recent decades and it is estimated that approximately 80% of patients globally depend on them for some part of their primary health care. Propolis is a beekeeping product widely used in alternative medicine. It is a natural resinous product that bees collect from various plants and mix with beeswax and salivary enzymes and comprises a complex mixture of compounds. Various biomedical properties of propolis have been studied and reported in infectious and non-infectious diseases. However, the pharmacological activity and chemical composition of propolis is highly variable depending on its geographical origin, so it is important to describe and study the biomedical properties of propolis from different geographic regions. A number of chronic diseases, such as diabetes, obesity, and cancer, are the leading causes of global mortality, generating significant economic losses in many countries. In this review, we focus on compiling relevant information about propolis research related to diabetes, obesity, and cancer. The study of propolis could generate both new and accessible alternatives for the treatment of various diseases and will help to effectively evaluate the safety of its use.
Collapse
Affiliation(s)
- Nelly Rivera-Yañez
- Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Estado de México 54090, Mexico; (N.R.-Y.); (C.R.R.-Y.)
| | - C. Rebeca Rivera-Yañez
- Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Estado de México 54090, Mexico; (N.R.-Y.); (C.R.R.-Y.)
| | - Glustein Pozo-Molina
- Laboratorio de Genética y Oncología Molecular, Laboratorio 5, Edificio A4, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Estado de México 54090, Mexico; (G.P.-M.); (C.F.M.-C.)
| | - Claudia F. Méndez-Catalá
- Laboratorio de Genética y Oncología Molecular, Laboratorio 5, Edificio A4, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Estado de México 54090, Mexico; (G.P.-M.); (C.F.M.-C.)
| | - Adolfo R. Méndez-Cruz
- Laboratorio de Inmunología, Unidad de Morfofisiología y Función, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Estado de México 54090, Mexico;
| | - Oscar Nieto-Yañez
- Carrera de Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Estado de México 54090, Mexico
| |
Collapse
|
44
|
Kumar R, Mal K, Razaq MK, Magsi M, Memon MK, Memon S, Afroz MN, Siddiqui HF, Rizwan A. Association of Leptin With Obesity and Insulin Resistance. Cureus 2020; 12:e12178. [PMID: 33489589 PMCID: PMC7815269 DOI: 10.7759/cureus.12178] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Introduction Leptin, a hormone released by the body to regulate energy balance by inhibiting hunger, decreases fat storage in adipocytes. Leptin is thought to play some role in obesity and insulin resistance. In this study, our aim is to see the association of leptin with obesity and insulin resistance. Methods This case-control study was conducted in a tertiary care hospital in Pakistan from January 2020 to April 2020. Ninety-two participants with BMI greater than 25 kg/m2, with no known comorbidities were enrolled in the study after informed consent. Ninety-two participants, who came to the outpatient department without a history of chronic disease, with BMI less than 25 kg/m2 were enrolled as a control group. Data were collected via self-structured questionnaires. Their blood was drawn and sent to the laboratory for cholesterol levels, insulin resistance and leptin levels. Results Serum leptin levels (51.24 ± 18.12 vs. 9.10 ± 2.99: p-value, < 0.0001), serum cholesterol levels (198.2 ± 32.1 vs. 151.2 ± 21.2, p-value < 0.0001) and insulin resistance (7.9 ± 2.1 vs. 6.3 ± 1.9, p-value < 0.0001) were higher in obese patients. Conclusion As per the results of this study, obesity was associated with increase serum leptin levels and insulin resistance. Further multi-centric studies are required to prove the possible relationship, which might help devise plans to manage obesity.
Collapse
Affiliation(s)
- Ratan Kumar
- Cardiology, Khairpur Medical College, Khairpur, PAK
| | - Kheraj Mal
- Cardiology, National Institute of Cardiovascular Diseases, Karachi, PAK
| | | | - Mansoor Magsi
- Internal Medicine, Taluka Hospital Kandhkot, Kandhkot, PAK
| | | | - Sidra Memon
- Internal Medicine, Jinnah Sindh Medical University, Karachi, PAK
| | - Maham Noor Afroz
- Medicine and Surgery, Jinnah Sindh Medical University, Karachi, PAK
| | | | - Amber Rizwan
- Family Medicine, Jinnah Post Graduate Medical Center, Karachi, PAK
| |
Collapse
|
45
|
Taheri E, Hosseini S, Qorbani M, Mirmiran P. Association of adipocytokines with lipid and glycemic profiles in women with normal weight obesity. BMC Endocr Disord 2020; 20:171. [PMID: 33198735 PMCID: PMC7670687 DOI: 10.1186/s12902-020-00648-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 10/31/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Individuals with normal weight obesity (NWO) are predisposed to having cardiometabolic disorders. This study aims to investigate the circulating levels of vaspin, leptin and their association with glycemic and lipid profiles in women with NWO. METHODS Forty women with body mass index (BMI) = 18.5-24.9 kg/m2 and fat mass (FM) ≥ 30% were assigned in the NWO group. Thirty age-matched women with identical BMI range, and FM < 30% (normal weight non-obese; NWNO) were considered as a control group. In addition to anthropometric measurements, glycemic and lipid profiles and circulating levels of leptin and vaspin were measured. RESULTS The mean ± standard deviation (SD) age of participants was 28.76 ± 4.76 years in the NWO group and 29.23 ± 4.50 years in the control group. The NWO group had the higher mean serum levels of insulin (9.02 ± 4.75 vs. 6.24 ± 2.51, P = 0.009), leptin (17.31 ± 8.10 vs. 9.94 ± 4.30, P < 0.001) and homeostatic model assessment of insulin resistance (HOMA-IR) (33.77 ± 20.71 vs. 23.48 ± 10.03, P = 0.009) compared to the NWNO group. The serum level of vaspin was higher in the NWO group compared to the control group (34.82 pg/ml vs. 27.72 pg/ml, respectively, P = 0.12). In NWO group, the serum levels of leptin had positive correlation with FBS (r = 0.45, P = 0.02), insulin (r = 0.51, P = 0.008), and HOMA-IR (r = 0.46, P = 0.02) and vaspin concentration was associated with insulin (r = 0.36, P = 0.02) and HOMA-IR (r = 0.30, P = 0.06), positively. CONCLUSION It is concluded that the concentration of insulin and HOMA-IR index were significantly higher in women with NWO compared to NWNO. Higher concentrations of leptin and vaspin in the NWO group were associated with glycemic profile.
Collapse
Affiliation(s)
- Ehsaneh Taheri
- Student Research Committee, Shahid Beheshti University of Medical Sciences, Arabi Ave, Daneshjoo Blvd, Velenjak, Tehran, 19839-63113, Iran.
| | - Saeed Hosseini
- Department of Clinical Nutrition, School of Nutritional Scientists and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Mostafa Qorbani
- Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Parvin Mirmiran
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
46
|
Zhang HY, Tian JX, Lian FM, Li M, Liu WK, Zhen Z, Liao JQ, Tong XL. Therapeutic mechanisms of traditional Chinese medicine to improve metabolic diseases via the gut microbiota. Biomed Pharmacother 2020; 133:110857. [PMID: 33197760 DOI: 10.1016/j.biopha.2020.110857] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 09/01/2020] [Accepted: 09/10/2020] [Indexed: 12/18/2022] Open
Abstract
Metabolic diseases such as obesity, type 2 diabetes mellitus, and hyperlipidemia are associated with the dysfunction of gut microbiota. Traditional Chinese medicines (TCMs) have shown considerable effects in the treatment of metabolic disorders by regulating the gut microbiota. However, the underlying mechanisms are unclear. Studies have shown that TCMs significantly affect glucose and lipid metabolism by modulating the gut microbiota, particularly mucin-degrading bacteria, bacteria with anti-inflammatory properties, lipopolysaccharide- and short-chain fatty acid (SCFA)-producing bacteria, and bacteria with bile-salt hydrolase activity. In this review, we explored potential mechanisms by which TCM improved metabolic disorders via regulating gut microbiota composition and functional structure. In particular, we focused on the protection of the intestinal barrier function, modulation of metabolic endotoxemia and inflammatory responses, regulation of the effects of SCFAs, modulation of the gut-brain axis, and regulation of bile acid metabolism and tryptophan metabolism as therapeutic mechanisms of TCMs in metabolic diseases.
Collapse
Affiliation(s)
- Hai-Yu Zhang
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China; Graduate College, Beijing University of Traditional Chinese Medicine, Beijing, 100029, China
| | - Jia-Xing Tian
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China.
| | - Feng-Mei Lian
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Min Li
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Wen-Ke Liu
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Zhong Zhen
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Jiang-Quan Liao
- Department of National Integrated Traditional and Western Medicine Center for Cardiovascular Disease, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Xiao-Lin Tong
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China.
| |
Collapse
|
47
|
Zhang P, Konja D, Wang Y. Adipose tissue secretory profile and cardiometabolic risk in obesity. ENDOCRINE AND METABOLIC SCIENCE 2020. [DOI: 10.1016/j.endmts.2020.100061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
48
|
Rufino AT, Costa VM, Carvalho F, Fernandes E. Flavonoids as antiobesity agents: A review. Med Res Rev 2020; 41:556-585. [PMID: 33084093 DOI: 10.1002/med.21740] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 09/02/2020] [Accepted: 09/30/2020] [Indexed: 12/11/2022]
Abstract
Obesity is a global health problem that affects all age groups in both developing and developed countries. In recent years, the prevalence of overweight and obesity has reached pandemic levels, resulting in a dramatic increase in the incidence of various comorbidities, such as cardiovascular diseases, type 2 diabetes, and cancer, consequently leading to massive health and socioeconomic burdens. Together with lifestyle changes, antiobesity pharmacotherapy is gaining momentum as an adjunctive treatment. However, the available pharmacological approaches have limited use owing to either significant adverse effects or low efficacy. Over the years, natural products have been an important source of lead compounds for drug discovery. Among these, flavonoids are associated with important biological effects and health-promoting activities. In this review, we discuss the modulatory effects of flavonoids on obesity and their potential mechanisms of action. The literature strongly suggests that most common flavonoids demonstrate a pronounced effect on obesity as shown by their ability to lower body weight, fat mass, and plasma triglycerides/cholesterol, both in in vitro and in vivo models. The impact of flavonoids on obesity can be observed through different mechanisms: reducing food intake and fat absorption, increasing energy expenditure, modulating lipid metabolism, or regulating gut microbiota profile. A better understanding of the known antiobesity mechanisms of flavonoids will enable their potential use to treat this medical condition. Therefore, this review focuses on the putative biological mechanisms through which flavonoids may prevent or treat obesity and highlights new perspectives on future pharmacological use.
Collapse
Affiliation(s)
- Ana T Rufino
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Vera M Costa
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Félix Carvalho
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Eduarda Fernandes
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| |
Collapse
|
49
|
Using proximity extension proteomics assay to discover novel biomarkers associated with circulating leptin levels in patients with type 2 diabetes. Sci Rep 2020; 10:13097. [PMID: 32753620 PMCID: PMC7403414 DOI: 10.1038/s41598-020-69473-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 07/07/2020] [Indexed: 01/17/2023] Open
Abstract
We aimed to discover novel associations between leptin and circulating proteins which could link leptin to the development of cardiovascular disease in patients with type 2 diabetes (T2DM). In a discovery phase, we investigated associations between 88 plasma proteins, assessed with a proximity extension assay, and plasma leptin in a cohort of middle-aged patients with T2DM. Associations passing the significance threshold of a False discovery rate of 5% (corresponding to p < 0.0017) were replicated in patients with T2DM in an independent cohort. We also investigated if proteins mediated the longitudinal association between plasma leptin and the incidence of major cardiovascular events (MACE). One protein, adipocyte fatty acid binding protein (A-FABP), was significantly associated with leptin in both the discovery phase [95% CI (0.06, 0.17) p = 0.00002] and the replication cohort [95% CI (0.12, 0.39) p = 0.0003]. Multiplicative interaction analyses in the two cohorts suggest a stronger association between A-FABP and leptin in men than in women. In longitudinal analyses, the association between leptin and MACE was slightly attenuated after adding A-FABP to the multivariate model. Our analysis identified a consistent association between leptin and A-FABP in two independent cohorts of patients with T2DM, particularly in men.Trial registration: ClinicalTrials.gov identifier NCT01049737.
Collapse
|
50
|
Cheng Y, Buchan M, Vitanova K, Aitken L, Gunn-Moore FJ, Ramsay RR, Doherty G. Neuroprotective actions of leptin facilitated through balancing mitochondrial morphology and improving mitochondrial function. J Neurochem 2020; 155:191-206. [PMID: 32157699 DOI: 10.1111/jnc.15003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 03/02/2020] [Accepted: 03/03/2020] [Indexed: 12/12/2022]
Abstract
Mitochondrial dysfunction has a recognised role in the progression of Alzheimer's disease (AD) pathophysiology. Cerebral perfusion becomes increasingly inefficient throughout ageing, leading to unbalanced mitochondrial dynamics. This effect is exaggerated by amyloid β (Aβ) and phosphorylated tau, two hallmark proteins of AD pathology. A neuroprotective role for the adipose-derived hormone, leptin, has been demonstrated in neuronal cells. However, its effects with relation to mitochondrial function in AD remain largely unknown. To address this question, we have used both a glucose-serum-deprived (CGSD) model of ischaemic stroke in SH-SY5Y cells and a Aβ1-42 -treatment model of AD in differentiated hippocampal cells. Using a combination of 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazolylcarbocyanine iodide (JC-1) and MitoRed staining techniques, we show that leptin prevents depolarisation of the mitochondrial membrane and excessive mitochondrial fragmentation induced by both CGSD and Aβ1-42 . Thereafter, we used ELISAs and a number of activity assays to reveal the biochemical underpinnings of these processes. Specifically, leptin was seen to inhibit up-regulation of the mitochondrial fission protein Fis1 and down-regulation of the mitochondrial fusion protein, Mfn2. Furthermore, leptin was seen to up-regulate the expression and activity of the antioxidant enzyme, monoamine oxidase B. Herein we provide the first demonstration that leptin is sufficient to protect against aberrant mitochondrial dynamics and resulting loss of function induced by both CGSD and Aβ1-42 . We conclude that the established neuroprotective actions of leptin may be facilitated through regulation of mitochondrial dynamics.
Collapse
Affiliation(s)
- Ying Cheng
- School of Psychology and Neuroscience, University of St Andrews, St Andrews, UK
| | - Matthew Buchan
- School of Psychology and Neuroscience, University of St Andrews, St Andrews, UK
| | - Karina Vitanova
- School of Psychology and Neuroscience, University of St Andrews, St Andrews, UK
| | - Laura Aitken
- School of Biology, University of St Andrews, St Andrews, UK
| | | | - Rona R Ramsay
- School of Biology, University of St Andrews, St Andrews, UK
| | - Gayle Doherty
- School of Psychology and Neuroscience, University of St Andrews, St Andrews, UK
| |
Collapse
|