1
|
Müller L, Di Benedetto S. The impact of COVID-19 on accelerating of immunosenescence and brain aging. Front Cell Neurosci 2024; 18:1471192. [PMID: 39720706 PMCID: PMC11666534 DOI: 10.3389/fncel.2024.1471192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 11/29/2024] [Indexed: 12/26/2024] Open
Abstract
The COVID-19 pandemic, caused by the novel coronavirus SARS-CoV-2, has profoundly impacted global health, affecting not only the immediate morbidity and mortality rates but also long-term health outcomes across various populations. Although the acute effects of COVID-19 on the respiratory system have initially been the primary focus, it is increasingly evident that the virus can have significant impacts on multiple physiological systems, including the nervous and immune systems. The pandemic has highlighted the complex interplay between viral infection, immune aging, and brain health, that can potentially accelerate neuroimmune aging and contribute to the persistence of long COVID conditions. By inducing chronic inflammation, immunosenescence, and neuroinflammation, COVID-19 may exacerbate the processes of neuroimmune aging, leading to increased risks of cognitive decline, neurodegenerative diseases, and impaired immune function. Key factors include chronic immune dysregulation, oxidative stress, neuroinflammation, and the disruption of cellular processes. These overlapping mechanisms between aging and COVID-19 illustrate how the virus can induce and accelerate aging-related processes, leading to an increased risk of neurodegenerative diseases and other age-related conditions. This mini-review examines key features and possible mechanisms of COVID-19-induced neuroimmune aging that may contribute to the persistence and severity of long COVID. Understanding these interactions is crucial for developing effective interventions. Anti-inflammatory therapies, neuroprotective agents, immunomodulatory treatments, and lifestyle interventions all hold potential for mitigating the long-term effects of the virus. By addressing these challenges, we can improve health outcomes and quality of life for millions affected by the pandemic.
Collapse
Affiliation(s)
- Ludmila Müller
- Max Planck Institute for Human Development Center for Lifespan Psychology, Berlin, Germany
| | | |
Collapse
|
2
|
Francavilla F, Intranuovo F, La Spada G, Lacivita E, Catto M, Graps EA, Altomare CD. Inflammaging and Immunosenescence in the Post-COVID Era: Small Molecules, Big Challenges. ChemMedChem 2024:e202400672. [PMID: 39651728 DOI: 10.1002/cmdc.202400672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 12/02/2024] [Accepted: 12/05/2024] [Indexed: 12/11/2024]
Abstract
Aging naturally involves a decline in biological functions, often triggering a disequilibrium of physiological processes. A common outcome is the altered response exerted by the immune system to counteract infections, known as immunosenescence, which has been recognized as a primary cause, among others, of the so-called long-COVID syndrome. Moreover, the uncontrolled immunoreaction leads to a state of subacute, chronic inflammatory state known as inflammaging, responsible in turn for the chronicization of concomitant pathologies in a self-sustaining process. Anti-inflammatory and immunosuppressant drugs are the current choice for the therapy of inflammaging in post-COVID complications, with contrasting results. The increasing knowledge of the biochemical pathways of inflammaging led to disclose new small molecules-based therapies directed toward different biological targets involved in inflammation, immunological response, and oxidative stress. Herein, paying particular attention to recent clinical data and preclinical literature, we focus on the role of endocannabinoid system in inflammaging, and the promising therapeutic option represented by the CB2R agonists, the role of novel ligands of the formyl peptide receptor 2 and ultimately the potential of newly discovered monoamine oxidase (MAO) inhibitors with neuroprotective activity in the treatment of immunosenescence.
Collapse
Affiliation(s)
- Fabio Francavilla
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125, Bari, Italy
| | - Francesca Intranuovo
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125, Bari, Italy
| | - Gabriella La Spada
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125, Bari, Italy
| | - Enza Lacivita
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125, Bari, Italy
| | - Marco Catto
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125, Bari, Italy
| | - Elisabetta Anna Graps
- ARESS Puglia - Agenzia Regionale strategica per la Salute ed il Sociale, Lungomare Nazario Sauro 33, 70121, Bari, Italy
| | - Cosimo Damiano Altomare
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125, Bari, Italy
| |
Collapse
|
3
|
Escalante J, Artaiz O, Diwakarla S, McQuade RM. Leaky gut in systemic inflammation: exploring the link between gastrointestinal disorders and age-related diseases. GeroScience 2024:10.1007/s11357-024-01451-2. [PMID: 39638978 DOI: 10.1007/s11357-024-01451-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 11/20/2024] [Indexed: 12/07/2024] Open
Abstract
Global average life expectancy has steadily increased over the last several decades and is projected to reach ~ 77 years by 2050. As it stands, the number of people > 60 years currently outnumbers children younger than 5 years, and by 2050, it is anticipated that the global population of people aged > 60 years will double, surpassing 2.1 billion. This demographic shift in our population is expected to have substantial consequences on health services globally due to the disease burden associated with aging. Osteoarthritis, chronic obstructive pulmonary disease, diabetes, cardiovascular disease, and cognitive decline associated with dementia are among the most common age-related diseases and contribute significantly to morbidity and mortality in the aged population. Many of these age-related diseases have been linked to chronic low-grade systemic inflammation which often accompanies aging. Gastrointestinal barrier dysfunction, also known as "leaky gut," has been shown to contribute to systemic inflammation in several diseases including inflammatory bowel disease and irritable bowel syndrome, but its role in the development and/or progression of chronic low-grade systemic inflammation during aging is unclear. This review outlines current literature on the leaky gut in aging, how leaky gut might contribute to systemic inflammation, and the links between gastrointestinal inflammatory diseases and common age-related diseases to provide insight into a potential relationship between the intestinal barrier and inflammation.
Collapse
Affiliation(s)
- Jonathan Escalante
- Gut-Barrier and Disease Laboratory, Department of Anatomy and Physiology, The University of Melbourne, Melbourne, VIC, 3021, Australia
| | - Olivia Artaiz
- Gut-Barrier and Disease Laboratory, Department of Anatomy and Physiology, The University of Melbourne, Melbourne, VIC, 3021, Australia
| | - Shanti Diwakarla
- Gut-Barrier and Disease Laboratory, Department of Anatomy and Physiology, The University of Melbourne, Melbourne, VIC, 3021, Australia
- The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, 3010, Australia
| | - Rachel M McQuade
- Gut-Barrier and Disease Laboratory, Department of Anatomy and Physiology, The University of Melbourne, Melbourne, VIC, 3021, Australia.
- The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, 3010, Australia.
- Australian Institute for Musculoskeletal Science (AIMSS), The Melbourne University and Western Health, Melbourne, VIC, 3021, Australia.
| |
Collapse
|
4
|
Ullrich F, Bröckelmann PJ, Turki AT, Khan AM, Chiru ED, Vetter M, von Tresckow B, Wirth R, Cordoba R, Ortiz-Maldonado V, Fülöp T, Neuendorff NR. Impact of immunological aging on T cell-mediated therapies in older adults with multiple myeloma and lymphoma. J Immunother Cancer 2024; 12:e009462. [PMID: 39622581 PMCID: PMC11624774 DOI: 10.1136/jitc-2024-009462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 10/24/2024] [Indexed: 12/09/2024] Open
Abstract
The treatment landscape for lymphoma and multiple myeloma, which disproportionally affect older adults, has been transformed by the advent of T cell-mediated immunotherapies, including immune checkpoint inhibition, T cell-engaging bispecific antibodies, and chimeric antigen receptor (CAR) T cell therapy, during the last decade. These treatment modalities re-enable the patient's own immune system to combat malignant cells and offer the potential for sustained remissions and cure for various diseases.Age profoundly affects the physiological function of the immune system. The process of biological aging is largely driven by inflammatory signaling, which is reciprocally fueled by aging-related alterations of physiology and metabolism. In the T cell compartment, aging contributes to T cell senescence and exhaustion, increased abundance of terminally differentiated cells, a corresponding attrition in naïve T cell numbers, and a decrease in the breadth of the receptor repertoire. Furthermore, inflammatory signaling drives aging-related pathologies and contributes to frailty in older individuals. Thus, there is growing evidence of biological aging modulating the efficacy and toxicity of T cell-mediated immunotherapies.Here, we review the available evidence from biological and clinical studies focusing on the relationship between T cell-mediated treatment of hematologic malignancies and age. We discuss biological features potentially impacting clinical outcomes in various scenarios, and potential strategies to improve the safety and efficacy of immune checkpoint inhibitors, T cell-engaging bispecific antibodies, and CAR-T cell therapy in older patients.
Collapse
Affiliation(s)
- Fabian Ullrich
- Department of Hematology and Stem Cell Transplantation, West German Cancer Center and German Cancer Consortium (DKTK partner site Essen), University Duisburg-Essen, University Hospital Essen, Essen, Nordrhein-Westfalen, Germany
| | - Paul J Bröckelmann
- Faculty of Medicine and University Hospital of Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD) and German Hodgkin Study Group (GHSG), University of Cologne, Cologne, Germany
- Max Planck Institute for Biology of Ageing, Cologne, Nordrhein-Westfalen, Germany
| | - Amin T Turki
- Department of Hematology and Oncology, University Hospital Marien Hospital Herne, Herne, Nordrhein-Westfalen, Germany
- Institute for Artificial Intelligence in Medicine, University Duisburg-Essen, University Hospital Essen, Essen, Nordrhein-Westfalen, Germany
| | - Abdullah M Khan
- Division of Hematology, The Ohio State University Comprehensive Cancer Center Arthur G James Cancer Hospital and Richard J Solove Research Institute, Columbus, Ohio, USA
| | - Elena-Diana Chiru
- Cancer Center Baselland, University of Basel Faculty of Medicine, Basel, Liestal, Switzerland
| | - Marcus Vetter
- Cancer Center Baselland, University of Basel Faculty of Medicine, Basel, Liestal, Switzerland
| | - Bastian von Tresckow
- Department of Hematology and Stem Cell Transplantation, West German Cancer Center and German Cancer Consortium (DKTK partner site Essen), University Duisburg-Essen, University Hospital Essen, Essen, Nordrhein-Westfalen, Germany
| | - Rainer Wirth
- Department of Geriatrics, Ruhr University Bochum, University Hospital Marien Hospital Herne, Herne, Germany
| | - Raul Cordoba
- Department of Hematology, Lymphoma Unit, Hospital Universitario Fundacion Jimenez Diaz, Madrid, Spain
| | - Valentín Ortiz-Maldonado
- Department of Hematology, Oncoimmunotherapy Unit, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Tamas Fülöp
- Department of Medicine, Division of Geriatrics, Research Center on Aging, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Nina Rosa Neuendorff
- Department of Geriatrics, Ruhr University Bochum, University Hospital Marien Hospital Herne, Herne, Germany
| |
Collapse
|
5
|
Zhang Y, Dai J, Hang R, Yao X, Bai L, Wang H, Huang D, Hang R. Tailoring surface stiffness to modulate senescent macrophage immunomodulation: Implications for osteo-/angio-genesis in aged bone regeneration. BIOMATERIALS ADVANCES 2024; 165:214010. [PMID: 39222592 DOI: 10.1016/j.bioadv.2024.214010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/09/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
The application of biomaterials in bone regeneration is a prevalent clinical practice. However, its efficacy in elderly patients remains suboptimal, necessitating further advancements. While biomaterial properties are known to orchestrate macrophage (MΦ) polarization and local immune responses, the role of biomaterial cues, specifically stiffness, in directing the senescent macrophage (S-MΦ) is still poorly understood. This study aimed to elucidate the role of substrate stiffness in modulating the immunomodulatory properties of S-MΦ and their role in osteo-immunomodulation. Our results demonstrated that employing collagen-coated polyacrylamide hydrogels with varying stiffness values (18, 76, and 295 kPa) as model materials, the high-stiffness hydrogel (295 kPa) steered S-MΦs towards a pro-inflammatory M1 phenotype, while hydrogels with lower stiffness (18 and 76 kPa) promoted an anti-inflammatory M2 phenotype. The immune microenvironment created by S-MΦs promoted the bioactivities of senescent endothelial cells (S-ECs) and senescent bone marrow mesenchymal stem cells BMSCs (S-BMSCs). Furthermore, the M2 S-MΦs, particularly incubated on the 76 kPa hydrogel matrices, significantly enhanced the ability of angiogenesis of S-ECs and osteogenic differentiation of S-BMSCs, which are crucial and interrelated processes in bone healing. This modulation aided in reducing the accumulation of reactive oxygen species in S-ECs and S-BMSCs, thereby significantly contributing to the repair and regeneration of aged bone tissue.
Collapse
Affiliation(s)
- Yi Zhang
- Shanxi Key Laboratory of Biomedical Metal Materials, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Jinjun Dai
- Shanxi Key Laboratory of Biomedical Metal Materials, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Ruiyue Hang
- Shanxi Key Laboratory of Biomedical Metal Materials, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Xiaohong Yao
- Shanxi Key Laboratory of Biomedical Metal Materials, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China.
| | - Long Bai
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China.
| | - Huaiyu Wang
- Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology Chinese Academy of Sciences, Shenzhen 518055, China
| | - Di Huang
- Research Center for Nano-Biomaterials & Regenerative Medicine, Department of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, China; Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030060, China
| | - Ruiqiang Hang
- Shanxi Key Laboratory of Biomedical Metal Materials, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China.
| |
Collapse
|
6
|
Vijaya AK, Kuras S, Šimoliūnas E, Mingaila J, Makovskytė K, Buišas R, Daliri EBM, Meškys R, Baltriukienė D, Burokas A. Prebiotics Mitigate the Detrimental Effects of High-Fat Diet on memory, anxiety and microglia functionality in Ageing Mice. Brain Behav Immun 2024; 122:167-184. [PMID: 39142421 DOI: 10.1016/j.bbi.2024.08.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 08/07/2024] [Accepted: 08/10/2024] [Indexed: 08/16/2024] Open
Abstract
Ageing is characterised by a progressive increase in systemic inflammation and especially neuroinflammation. Neuroinflammation is associated with altered brain states that affect behaviour, such as an increased level of anxiety with a concomitant decline in cognitive abilities. Although multiple factors play a role in the development of neuroinflammation, microglia have emerged as a crucial target. Microglia are the only macrophage population in the CNS parenchyma that plays a crucial role in maintaining homeostasis and in the immune response, which depends on the activation and subsequent deactivation of microglia. Therefore, microglial dysfunction has a major impact on neuroinflammation. The gut microbiota has been shown to significantly influence microglia from birth to adulthood in terms of development, proliferation, and function. Diet is a key modulating factor that influences the composition of the gut microbiota, along with prebiotics that support the growth of beneficial gut bacteria. Although the role of diet in neuroinflammation and behaviour has been well established, its relationship with microglia functionality is less explored. This article establishes a link between diet, animal behaviour and the functionality of microglia. The results of this research stem from experiments on mouse behaviour, i.e., memory, anxiety, and studies on microglia functionality, i.e., cytochemistry (phagocytosis, cellular senescence, and ROS assays), gene expression and protein quantification. In addition, shotgun sequencing was performed to identify specific bacterial families that may play a crucial role in the brain function. The results showed negative effects of long-term consumption of a high fat diet on ageing mice, epitomised by increased body weight, glucose intolerance, anxiety, cognitive impairment and microglia dysfunction compared to ageing mice on a control diet. These effects were a consequence of the changes in gut microbiota modulated by the diet. However, by adding the prebiotics fructo- and galacto-oligosaccharides, we were able to mitigate the deleterious effects of a long-term high-fat diet.
Collapse
Affiliation(s)
- Akshay Kumar Vijaya
- Department of Biological Models, Institute of Biochemistry, Life Sciences Center, Vilnius University, Sauletekio Ave. 7, LT-10257 Vilnius, Lithuania
| | - Simonas Kuras
- Department of Biological Models, Institute of Biochemistry, Life Sciences Center, Vilnius University, Sauletekio Ave. 7, LT-10257 Vilnius, Lithuania
| | - Egidijus Šimoliūnas
- Department of Biological Models, Institute of Biochemistry, Life Sciences Center, Vilnius University, Sauletekio Ave. 7, LT-10257 Vilnius, Lithuania
| | - Jonas Mingaila
- Department of Biological Models, Institute of Biochemistry, Life Sciences Center, Vilnius University, Sauletekio Ave. 7, LT-10257 Vilnius, Lithuania
| | - Karolina Makovskytė
- Department of Biological Models, Institute of Biochemistry, Life Sciences Center, Vilnius University, Sauletekio Ave. 7, LT-10257 Vilnius, Lithuania
| | - Rokas Buišas
- Department of Neurobiology and Biophysics, Institute of Bioscience, Life Sciences Center, Vilnius University, Sauletekio Ave. 7, LT-10257 Vilnius, Lithuania
| | - Eric Banan-Mwine Daliri
- Department of Biological Models, Institute of Biochemistry, Life Sciences Center, Vilnius University, Sauletekio Ave. 7, LT-10257 Vilnius, Lithuania
| | - Rolandas Meškys
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Sauletekio Ave. 7, LT-10257 Vilnius, Lithuania
| | - Daiva Baltriukienė
- Department of Biological Models, Institute of Biochemistry, Life Sciences Center, Vilnius University, Sauletekio Ave. 7, LT-10257 Vilnius, Lithuania.
| | - Aurelijus Burokas
- Department of Biological Models, Institute of Biochemistry, Life Sciences Center, Vilnius University, Sauletekio Ave. 7, LT-10257 Vilnius, Lithuania.
| |
Collapse
|
7
|
Xie H, Halimulati M, Dou Y, Zhang H, Jiang X, Peng L. Systemic immune-inflammation states in US adults with seropositivity to infectious pathogens: A nutrient-wide association study. JPEN J Parenter Enteral Nutr 2024. [PMID: 39380423 DOI: 10.1002/jpen.2695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/19/2024] [Accepted: 09/21/2024] [Indexed: 10/10/2024]
Abstract
BACKGROUND Limited understanding exists regarding the association between daily total dietary nutrient intakes and immune-inflammation states in US adults exposed to various pathogens. This study sought to examine the correlation between nutrient intakes and immune-inflammation indicators and to assess their performance in distinguishing immune-inflammation states. METHODS This study was derived from the National Health and Nutrition Examination Survey (NHANES), which included 33,804 participants aged 20 years or older between 2005 and 2018. Multivariable linear regression and restricted cubic spline regression were conducted to evaluate the association between nutrient intakes and immune-inflammation indicators. Receiver operating characteristic curve analysis was performed to evaluate the discriminatory performance of identified nutrients for various immune-inflammation states measured by the systemic immune-inflammation index (SII). RESULTS Ten key nutrients were significantly associated with immune-inflammation responses, including calcium, saturated fatty acid (SFA) 4:0, SFA 6:0, SFA 12:0, SFA 14:0, SFA 16:0, vitamin B2, total SFAs, retinol, and lutein + zeaxanthin, which show potential as dietary indicators. The area under the curve for discriminating various immune-inflammation states was improved by at least 0.03 compared with a model that included only covariates, with all P values <0.05 in the Delong tests, indicating a significant enhancement in model performance. CONCLUSIONS Ten nutrients, including calcium, various SFAs, vitamin B2, retinol, and lutein + zeaxanthin, exhibit significant association with SII and potential as dietary indicators for distinguishing between different immune-inflammation states in US adults with seropositivity to various viruses.
Collapse
Affiliation(s)
- He Xie
- Department of Preventive Health Care, Bazhong Central Hospital, Bazhong, Sichuan, China
| | - Mairepaiti Halimulati
- Department of Nutrition Science, the University of Texas at Austin, Austin, Texas, USA
| | - Yuqi Dou
- Health Systems and Equity, Eastern Health Clinical School, Monash University, Boxhill, Victoria, Australia
| | - Hanyue Zhang
- Research Unit for Dietary Studies, The Parker Institute, Bispebjerg and Frederiksberg Hospital, Frederiksberg, Denmark
- Section for General Practice, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Xiaowen Jiang
- Department of Epidemiology, School of Clinical Oncology, Peking University, Beijing, China
| | - Lei Peng
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center, Heidelberg, Germany
- Faculty of Medicine, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
8
|
Chen C, You Y, Du Y, Zhou W, Jiang D, Cao K, Yang M, Wu X, Chen M, Qi J, Chen D, Yan R, Yang S, Ji M, Yan D. Global epidemiological trends in the incidence and deaths of acute respiratory infections from 1990 to 2021. Heliyon 2024; 10:e35841. [PMID: 39224281 PMCID: PMC11367038 DOI: 10.1016/j.heliyon.2024.e35841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/04/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
The aim of this study was to investigate the global epidemiological trends in the incidence and deaths of acute respiratory infections (ARIs), encompassing both upper respiratory infections (URIs) and lower respiratory infections (LRIs), from 1990 to 2021. Using data from the Global Burden of Disease study 2021 (GBD 2021), we utilized the average annual percentage change (AAPC) to examine the trends in the age-standardized incidence rate and deaths rate (ASIR and ASDRs) of URIs and LRIs. In 2021, the global ASIR of URIs and LRIs were 166,770.73 (95 % UI: 148,098.16-189,487.93) per 100,000 and 4283.61 (95 % UI: 4057.03-4524.89) per 100,000, respectively. The highest ASIR of URIs occurred in high-sociodemographic index (SDI) regions (232744.64, 95 % UI: 206887.07-261694.81) per 100,000, whereas LRIs occurred in low-SDI regions (9261.1, 95 % UI: 8741.61-9820.86) per 100,000. In 2021, the global ASDRs of URIs and LRIs were 0.28 (95 % UI: 0.09-0.61) per 100,000 and 28.67 (95 % UI: 25.92-31.07) per 100,000, respectively. The highest ASDRs of both URIs and LRIs were observed in low-SDI regions, with 1.1 (95 % UI: 0.08-2.78) per 100,000 and 70.68 (95 % UI: 62.56-78.62) per 100,000, respectively. From 1990 to 2021, the global ASIR for URIs and LRIs decreased, with AAPCs of -0.17 % (95 % CI: 0.17 % to -0.16 %) and -1.28 % (95 % CI: -1.37 % to -1.22 %), respectively. The global ASDRs also decreased (-3.39 % for URIs; -2.46 % for LRIs). However, during the COVID-19 pandemic, the ASIR of URIs increased in many countries, especially in high-SDI regions (rate difference before and during the COVID-19 pandemic in ASIR was 2210.19 per 100,000.) and low-SDI regions (rate difference in ASIR: 111.26 per 100,000). The global incidence and deaths related to ARIs have decreased over the past 32 years. However, it remains a significant public health concern, particularly due to the notable incidence of URIs in high SDI regions and the deaths associated with both URIs and LRIs in low SDI regions. Furthermore, an increase in the incidence of URIs was observed in both high- and low-SDI regions during the COVID-19 pandemic, highlighting the need for increased attention.
Collapse
Affiliation(s)
- Can Chen
- Department of Emergency Medicine, Second Affiliated Hospital, Department of Epidemiology and Biostatistics, School of Public Health, The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Yue You
- Department of Emergency Medicine, Second Affiliated Hospital, Department of Epidemiology and Biostatistics, School of Public Health, The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Ganzhou Key Laboratory of Respiratory Diseases, Ganzhou Institute of Respiratory Diseases, The Fifth People's Hospital of Ganzhou, Ganzhou, Jiangxi Province, China
| | - Yuxia Du
- Department of Emergency Medicine, Second Affiliated Hospital, Department of Epidemiology and Biostatistics, School of Public Health, The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Wenkai Zhou
- Department of Emergency Medicine, Second Affiliated Hospital, Department of Epidemiology and Biostatistics, School of Public Health, The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Daixi Jiang
- Department of Emergency Medicine, Second Affiliated Hospital, Department of Epidemiology and Biostatistics, School of Public Health, The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Kexin Cao
- Department of Emergency Medicine, Second Affiliated Hospital, Department of Epidemiology and Biostatistics, School of Public Health, The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Mengya Yang
- Department of Emergency Medicine, Second Affiliated Hospital, Department of Epidemiology and Biostatistics, School of Public Health, The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Xiaoyue Wu
- Department of Emergency Medicine, Second Affiliated Hospital, Department of Epidemiology and Biostatistics, School of Public Health, The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Mengsha Chen
- Department of Emergency Medicine, Second Affiliated Hospital, Department of Epidemiology and Biostatistics, School of Public Health, The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Jiaxing Qi
- Department of Emergency Medicine, Second Affiliated Hospital, Department of Epidemiology and Biostatistics, School of Public Health, The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Dingmo Chen
- Department of Emergency Medicine, Second Affiliated Hospital, Department of Epidemiology and Biostatistics, School of Public Health, The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Rui Yan
- Department of Emergency Medicine, Second Affiliated Hospital, Department of Epidemiology and Biostatistics, School of Public Health, The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Shigui Yang
- Department of Emergency Medicine, Second Affiliated Hospital, Department of Epidemiology and Biostatistics, School of Public Health, The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Mingxia Ji
- Department of Critical Care Medicine, Yiwu Central Hospital, Zhejiang Province, China
| | - Dong Yan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| |
Collapse
|
9
|
Müller L, Di Benedetto S. Inflammaging, immunosenescence, and cardiovascular aging: insights into long COVID implications. Front Cardiovasc Med 2024; 11:1384996. [PMID: 38988667 PMCID: PMC11233824 DOI: 10.3389/fcvm.2024.1384996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 06/14/2024] [Indexed: 07/12/2024] Open
Abstract
Aging leads to physiological changes, including inflammaging-a chronic low-grade inflammatory state with significant implications for various physiological systems, particularly for cardiovascular health. Concurrently, immunosenescence-the age-related decline in immune function, exacerbates vulnerabilities to cardiovascular pathologies in older individuals. Examining the dynamic connections between immunosenescence, inflammation, and cardiovascular aging, this mini-review aims to disentangle some of these interactions for a better understanding of their complex interplay. In the context of cardiovascular aging, the chronic inflammatory state associated with inflammaging compromises vascular integrity and function, contributing to atherosclerosis, endothelial dysfunction, arterial stiffening, and hypertension. The aging immune system's decline amplifies oxidative stress, fostering an environment conducive to atherosclerotic plaque formation. Noteworthy inflammatory markers, such as the high-sensitivity C-reactive protein, interleukin-6, interleukin-1β, interleukin-18, and tumor necrosis factor-alpha emerge as key players in cardiovascular aging, triggering inflammatory signaling pathways and intensifying inflammaging and immunosenescence. In this review we aim to explore the molecular and cellular mechanisms underlying inflammaging and immunosenescence, shedding light on their nuanced contributions to cardiovascular diseases. Furthermore, we explore the reciprocal relationship between immunosenescence and inflammaging, revealing a self-reinforcing cycle that intensifies cardiovascular risks. This understanding opens avenues for potential therapeutic targets to break this cycle and mitigate cardiovascular dysfunction in aging individuals. Furthermore, we address the implications of Long COVID, introducing an additional layer of complexity to the relationship between aging, immunosenescence, inflammaging, and cardiovascular health. Our review aims to stimulate continued exploration and advance our understanding within the realm of aging and cardiovascular health.
Collapse
Affiliation(s)
- Ludmila Müller
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| | | |
Collapse
|
10
|
Cornish SM, Cordingley DM. Inflammatory pathway communication with skeletal muscle-Does aging play a role? A topical review of the current evidence. Physiol Rep 2024; 12:e16098. [PMID: 38872451 PMCID: PMC11176593 DOI: 10.14814/phy2.16098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/15/2024] [Accepted: 05/22/2024] [Indexed: 06/15/2024] Open
Abstract
Skeletal muscle plays an integral role in locomotion, but also as part of the integrative physiological system. Recent progress has identified crosstalk between skeletal muscle and various physiological systems, including the immune system. Both the musculoskeletal and immune systems are impacted by aging. Increased age is associated with decreased muscle mass and function, while the immune system undergoes "inflammaging" and immunosenescence. Exercise is identified as a preventative medicine that can mitigate loss of function for both systems. This review summarizes: (1) the inflammatory pathways active in skeletal muscle; and (2) the inflammatory and skeletal muscle response to unaccustomed exercise in younger and older adults. Compared to younger adults, it appears older individuals have a muted pro-inflammatory response and elevated anti-inflammatory response to exercise. This important difference could contribute to decreased regeneration and recovery following unaccustomed exercise in older adults, as well as in chronic disease. The current research provides specific information on the role inflammation plays in altering skeletal muscle form and function, and adaptation to exercise; however, the pursuit of more knowledge in this area will delineate specific interventions that may enhance skeletal muscle recovery and promote resiliency in this tissue particularly with aging.
Collapse
Affiliation(s)
- Stephen M Cornish
- Faculty of Kinesiology and Recreation Management, University of Manitoba, Winnipeg, Manitoba, Canada
- Applied Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Centre for Aging, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Dean M Cordingley
- Applied Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Pan Am Clinic Foundation, Winnipeg, Manitoba, Canada
| |
Collapse
|
11
|
Zhao J, Luo X, Yang C, Yang X, Deng M, Sun B, Zhu J, Dong Z, Wang Y, Li J, Yang X, Li B, Wang X, Zheng J. Chemokine receptor 7 contributes to T- and B-cell filtering in ageing bladder, cystitis and bladder cancer. Immun Ageing 2024; 21:33. [PMID: 38762550 PMCID: PMC11102276 DOI: 10.1186/s12979-024-00432-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 04/23/2024] [Indexed: 05/20/2024]
Abstract
BACKGROUND Research has suggested significant correlations among ageing, immune microenvironment, inflammation and tumours. However, the relationships among ageing, immune microenvironment, cystitis and bladder urothelial carcinoma (BLCA) in the bladder have rarely been reported. METHODS Bladder single-cell and transcriptomic data from young and old mice were used for immune landscape analysis. Transcriptome, single-cell and The Cancer Genome Atlas Program datasets of BLCA and interstitial cystitis/bladder pain syndrome (IC/BPS) were used to analyse immune cell infiltration and molecular expression. Bladder tissues from mice, IC/BPS and BLCA were collected to validate the results. RESULTS Eight types of immune cells (macrophages, B-cells, dendritic cells, T-cells, monocytes, natural killer cells, γδ T-cells and ILC2) were identified in the bladder of mice. Aged mice bladder tissues had a significantly higher number of T-cells, γδ T-cells, ILC2 and B-cells than those in the young group (P < 0.05). Three types of T-cells (NK T-cells, γδ T-cells and naïve T-cells) and three types of B-cells (follicular B-cells, plasma and memory B-cells) were identified in aged mice bladder. Chemokine receptor 7 (CCR7) is highly expressed in aged bladder, IC/BPS and BLCA (P < 0.05). CCR7 is likely to be involved in T- and B-cell infiltration in aged bladder, IC/BPS and BLCA. Interestingly, the high CCR7 expression on BLCA cell membranes was a prognostic protective factor. CONCLUSIONS In this study, we characterised the expression profiles of immune cells in bladder tissues of aged and young mice and demonstrated that CCR7-mediated T- and B-cell filtration contributes to the development of bladder ageing, IC/BPS and BLCA.
Collapse
Affiliation(s)
- Jiang Zhao
- Department of Urology, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, PR China.
- Department of Urology, The Second Affiliated Hospital, Army Military Medical University, Chongqing, 400037, China.
- Department of Urology, The University of Kansas Medical Center, Kansas City, KS, 66160, USA.
| | - Xing Luo
- Department of Urology, The Second Affiliated Hospital, Army Military Medical University, Chongqing, 400037, China
| | - Chengfei Yang
- Department of Thoracic Surgery, The Second Affiliated Hospital, Army Military Medical University, Chongqing, 400037, China
| | - Xiao Yang
- Institute of Life Sciences, Chongqing Medical University, Chongqing, 400037, China
| | - Min Deng
- Department of Urology, The Second Affiliated Hospital, Army Military Medical University, Chongqing, 400037, China
| | - Bishao Sun
- Department of Urology, The Second Affiliated Hospital, Army Military Medical University, Chongqing, 400037, China
| | - Jingzhen Zhu
- Department of Urology, The Second Affiliated Hospital, Army Military Medical University, Chongqing, 400037, China
| | - Zongming Dong
- Department of Urology, The Second Affiliated Hospital, Army Military Medical University, Chongqing, 400037, China
| | - Yangcai Wang
- Department of Urology, The Second Affiliated Hospital, Army Military Medical University, Chongqing, 400037, China
| | - Jia Li
- Department of Urology, The Second Affiliated Hospital, Army Military Medical University, Chongqing, 400037, China
| | - Xingliang Yang
- Department of Urology, The Second Affiliated Hospital, Army Military Medical University, Chongqing, 400037, China
| | - Benyi Li
- Department of Urology, The University of Kansas Medical Center, Kansas City, KS, 66160, USA.
| | - Xiangwei Wang
- Department of Urology, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, PR China.
| | - Ji Zheng
- Department of Urology, The Second Affiliated Hospital, Army Military Medical University, Chongqing, 400037, China.
| |
Collapse
|
12
|
Chatziparasidis G, Chatziparasidi MR, Kantar A, Bush A. Time-dependent gene-environment interactions are essential drivers of asthma initiation and persistence. Pediatr Pulmonol 2024; 59:1143-1152. [PMID: 38380964 DOI: 10.1002/ppul.26935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/27/2024] [Accepted: 02/12/2024] [Indexed: 02/22/2024]
Abstract
Asthma is a clinical syndrome caused by heterogeneous underlying mechanisms with some of them having a strong genetic component. It is known that up to 82% of atopic asthma has a genetic background with the rest being influenced by environmental factors that cause epigenetic modification(s) of gene expression. The interaction between the gene(s) and the environment has long been regarded as the most likely explanation of asthma initiation and persistence. Lately, much attention has been given to the time frame the interaction occurs since the host response (immune or biological) to environmental triggers, differs at different developmental ages. The integration of the time variant into asthma pathogenesis is appearing to be equally important as the gene(s)-environment interaction. It seems that, all three factors should be present to trigger the asthma initiation and persistence cascade. Herein, we introduce the importance of the time variant in asthma pathogenesis and emphasize the long-term clinical significance of the time-dependent gene-environment interactions in childhood.
Collapse
Affiliation(s)
- Grigorios Chatziparasidis
- Faculty of Nursing, University of Thessaly, Volos, Greece
- School of Physical Education, Sport Science & Dietetics, University of Thessaly, Volos, Greece
| | | | - Ahmad Kantar
- Pediatric Asthma and Cough Centre, Instituti Ospedalieri Bergamashi, Bergamo, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Andrew Bush
- Departments of Paediatrics and Paediatric Respiratory Medicine, Royal Brompton Harefield NHS Foundation Trust and Imperial College, London, UK
| |
Collapse
|
13
|
Buruiană A, Gheban BA, Gheban-Roșca IA, Georgiu C, Crișan D, Crișan M. The Tumor Stroma of Squamous Cell Carcinoma: A Complex Environment That Fuels Cancer Progression. Cancers (Basel) 2024; 16:1727. [PMID: 38730679 PMCID: PMC11083853 DOI: 10.3390/cancers16091727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 04/25/2024] [Accepted: 04/27/2024] [Indexed: 05/13/2024] Open
Abstract
The tumor microenvironment (TME), a complex assembly of cellular and extracellular matrix (ECM) components, plays a crucial role in driving tumor progression, shaping treatment responses, and influencing metastasis. This narrative review focuses on the cutaneous squamous cell carcinoma (cSCC) tumor stroma, highlighting its key constituents and their dynamic contributions. We examine how significant changes within the cSCC ECM-specifically, alterations in fibronectin, hyaluronic acid, laminins, proteoglycans, and collagens-promote cancer progression, metastasis, and drug resistance. The cellular composition of the cSCC TME is also explored, detailing the intricate interplay of cancer-associated fibroblasts (CAFs), mesenchymal stem cells (MSCs), endothelial cells, pericytes, adipocytes, and various immune cell populations. These diverse players modulate tumor development, angiogenesis, and immune responses. Finally, we emphasize the TME's potential as a therapeutic target. Emerging strategies discussed in this review include harnessing the immune system (adoptive cell transfer, checkpoint blockade), hindering tumor angiogenesis, disrupting CAF activity, and manipulating ECM components. These approaches underscore the vital role that deciphering TME interactions plays in advancing cSCC therapy. Further research illuminating these complex relationships will uncover new avenues for developing more effective treatments for cSCC.
Collapse
Affiliation(s)
- Alexandra Buruiană
- Department of Pathology, Iuliu Haţieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (A.B.); (C.G.); (D.C.)
| | - Bogdan-Alexandru Gheban
- Department of Histology, Iuliu Haţieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
- Emergency Clinical County Hospital, 400347 Cluj-Napoca, Romania
| | - Ioana-Andreea Gheban-Roșca
- Department of Medical Informatics and Biostatistics, Iuliu Hațieganu University of Medicine and Pharmacy, 400129 Cluj-Napoca, Romania;
| | - Carmen Georgiu
- Department of Pathology, Iuliu Haţieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (A.B.); (C.G.); (D.C.)
| | - Doința Crișan
- Department of Pathology, Iuliu Haţieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (A.B.); (C.G.); (D.C.)
| | - Maria Crișan
- Department of Histology, Iuliu Haţieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
| |
Collapse
|
14
|
Gaultier GN, McMillan B, Poloni C, Lo M, Cai B, Zheng JJ, Baer HM, Shulha HP, Simmons K, Márquez AC, Bartlett SR, Cook L, Levings MK, Steiner T, Sekirov I, Zlosnik JEA, Morshed M, Skowronski DM, Krajden M, Jassem AN, Sadarangani M. Adaptive immune responses to two-dose COVID-19 vaccine series in healthy Canadian adults ≥ 50 years: a prospective, observational cohort study. Sci Rep 2024; 14:8926. [PMID: 38637558 PMCID: PMC11026432 DOI: 10.1038/s41598-024-59535-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 04/11/2024] [Indexed: 04/20/2024] Open
Abstract
To evaluate immune responses to COVID-19 vaccines in adults aged 50 years and older, spike protein (S)-specific antibody concentration, avidity, and function (via angiotensin-converting enzyme 2 (ACE2) inhibition surrogate neutralization and antibody dependent cellular phagocytosis (ADCP)), as well as S-specific T cells were quantified via activation induced marker (AIM) assay in response to two-dose series. Eighty-four adults were vaccinated with either: mRNA/mRNA (mRNA-1273 and/or BNT162b2); ChAdOx1-S/mRNA; or ChAdOx1-S/ChAdOx1-S. Anti-S IgG concentrations, ADCP scores and ACE2 inhibiting antibody concentrations were highest at one-month post-second dose and declined by four-months post-second dose for all groups. mRNA/mRNA and ChAdOx1-S/mRNA schedules had significantly higher antibody responses than ChAdOx1-S/ChAdOx1-S. CD8+ T-cell responses one-month post-second dose were associated with increased ACE2 surrogate neutralization. Antibody avidity (total relative avidity index) did not change between one-month and four-months post-second dose and did not significantly differ between groups by four-months post-second dose. In determining COVID-19 correlates of protection, a measure that considers both antibody concentration and avidity should be considered.
Collapse
Affiliation(s)
- Gabrielle N Gaultier
- Department of Pediatrics, University of British Columbia, 950 West 28th Avenue, Vancouver, BC, V5Z 4H4, Canada.
- Vaccine Evaluation Center, British Columbia Children's Hospital Research Institute, Vancouver, BC, Canada.
| | - Brynn McMillan
- Vaccine Evaluation Center, British Columbia Children's Hospital Research Institute, Vancouver, BC, Canada
- Experimental Medicine Program, University of British Columbia, Vancouver, BC, Canada
| | - Chad Poloni
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
- British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Mandy Lo
- Department of Pediatrics, University of British Columbia, 950 West 28th Avenue, Vancouver, BC, V5Z 4H4, Canada
- Vaccine Evaluation Center, British Columbia Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Bing Cai
- Department of Pediatrics, University of British Columbia, 950 West 28th Avenue, Vancouver, BC, V5Z 4H4, Canada
- Vaccine Evaluation Center, British Columbia Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Jean J Zheng
- Vaccine Evaluation Center, British Columbia Children's Hospital Research Institute, Vancouver, BC, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Hannah M Baer
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
- British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
- Institute of Infection, Inflammation & Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Hennady P Shulha
- Department of Pediatrics, University of British Columbia, 950 West 28th Avenue, Vancouver, BC, V5Z 4H4, Canada
- Vaccine Evaluation Center, British Columbia Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Karen Simmons
- Department of Pediatrics, University of British Columbia, 950 West 28th Avenue, Vancouver, BC, V5Z 4H4, Canada
- Vaccine Evaluation Center, British Columbia Children's Hospital Research Institute, Vancouver, BC, Canada
| | | | - Sofia R Bartlett
- British Columbia Centre for Disease Control, Vancouver, BC, Canada
- School of Population and Public Health, University of British Columbia, Vancouver, BC, Canada
| | - Laura Cook
- British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada
- Department of Microbiology & Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Megan K Levings
- British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
- Department of Surgery, University of British Columbia, Vancouver, BC, Canada
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
| | - Theodore Steiner
- British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Inna Sekirov
- British Columbia Centre for Disease Control, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | | | - Muhammad Morshed
- British Columbia Centre for Disease Control, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Danuta M Skowronski
- British Columbia Centre for Disease Control, Vancouver, BC, Canada
- School of Population and Public Health, University of British Columbia, Vancouver, BC, Canada
| | - Mel Krajden
- British Columbia Centre for Disease Control, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Agatha N Jassem
- British Columbia Centre for Disease Control, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Manish Sadarangani
- Department of Pediatrics, University of British Columbia, 950 West 28th Avenue, Vancouver, BC, V5Z 4H4, Canada
- Vaccine Evaluation Center, British Columbia Children's Hospital Research Institute, Vancouver, BC, Canada
| |
Collapse
|
15
|
Müller L, Di Benedetto S. Aging brain: exploring the interplay between bone marrow aging, immunosenescence, and neuroinflammation. Front Immunol 2024; 15:1393324. [PMID: 38638424 PMCID: PMC11024322 DOI: 10.3389/fimmu.2024.1393324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 03/25/2024] [Indexed: 04/20/2024] Open
Abstract
Aging is a complex process characterized by a myriad of physiological changes, including alterations in the immune system termed immunosenescence. It exerts profound effects on both the bone marrow and the central nervous system, with significant implications for immunosenescence in neurological contexts. Our mini-review explores the complex relationship between bone marrow aging and its impact on immunosenescence, specifically within the context of neurological diseases. The bone marrow serves as a crucial hub for hematopoiesis and immune cell production, yet with age, it undergoes significant alterations, including alterations in hematopoietic stem cell function, niche composition, and inflammatory signaling. These age-related shifts in the bone marrow microenvironment contribute to dysregulation of immune cell homeostasis and function, impacting neuroinflammatory processes and neuronal health. In our review, we aim to explore the complex cellular and molecular mechanisms that link bone marrow aging to immunosenescence, inflammaging, and neuroinflammation, with a specific focus on their relevance to the pathophysiology of age-related neurological disorders. By exploring this interplay, we strive to provide a comprehensive understanding of how bone marrow aging impacts immune function and contributes to the progression of neurological diseases in aging individuals. Ultimately, this knowledge can hold substantial promise for the development of innovative therapeutic interventions aimed at preserving immune function and mitigating the progression of neurological disorders in the elderly population.
Collapse
Affiliation(s)
- Ludmila Müller
- Max Planck Institute for Human Development, Center for Lifespan Psychology, Berlin, Germany
| | | |
Collapse
|
16
|
Barros RDS, Queiroz LAD, de Assis JB, Pantoja KC, Bustia SX, de Sousa ESA, Rodrigues SF, Akamine EH, Sá-Nunes A, Martins JO. Effects of low-dose rapamycin on lymphoid organs of mice prone and resistant to accelerated senescence. Front Immunol 2024; 15:1310505. [PMID: 38515742 PMCID: PMC10954823 DOI: 10.3389/fimmu.2024.1310505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 02/15/2024] [Indexed: 03/23/2024] Open
Abstract
Aging is a complex, natural, and irreversible phenomenon that subjects the body to numerous changes in the physiological process, characterized by a gradual decline in the organism's homeostatic mechanisms, closely related to immunosenescence. Here, we evaluated the regulation of immunosenescence in lymphoid organs of senescence-accelerated prone 8 (SAM-P8) and senescence-accelerated resistant 1 (SAM-R1) mice treated with a low dose of rapamycin (RAPA). Mice were treated with a dose of 7.1 µg/kg RAPA for 2 months and had body mass and hematological parameters analyzed prior and during treatment. Cellular and humoral parameters of serum, bone marrow, thymus, and spleen samples were evaluated by ELISA, histology, and flow cytometry. Changes in body mass, hematological parameters, cell number, and in the secretion of IL-1β, IL-6, TNF-α, IL-7, and IL-15 cytokines were different between the 2 models used. In histological analyses, we observed that SAM-P8 mice showed faster thymic involution than SAM-R1 mice. Regarding the T lymphocyte subpopulations in the spleen, CD4+ and CD8+ T cell numbers were higher and lower, respectively, in SAM-P8 mice treated with RAPA, with the opposite observed in SAM-R1. Additionally, we found that the low dose of RAPA used did not trigger changes that could compromise the immune response of these mice and the administered dose may have contributed to changes in important lymphocyte populations in the adaptive immune response and the secretion of cytokines that directly collaborate with the maturation and proliferation of these cells.
Collapse
Affiliation(s)
- Rafael dos Santos Barros
- Laboratory of Immunoendocrinology, School of Pharmaceutical Sciences, Department of Clinical and Toxicological Analyses, University of São Paulo, São Paulo, Brazil
| | - Luiz Adriano Damasceno Queiroz
- Laboratory of Immunoendocrinology, School of Pharmaceutical Sciences, Department of Clinical and Toxicological Analyses, University of São Paulo, São Paulo, Brazil
| | - Josiane Betim de Assis
- Laboratory of Experimental Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Kamilla Costa Pantoja
- Laboratory of Immunoendocrinology, School of Pharmaceutical Sciences, Department of Clinical and Toxicological Analyses, University of São Paulo, São Paulo, Brazil
| | - Sofia Xavier Bustia
- Laboratory of Immunoendocrinology, School of Pharmaceutical Sciences, Department of Clinical and Toxicological Analyses, University of São Paulo, São Paulo, Brazil
| | - Emanuella Sarmento Alho de Sousa
- Laboratory of Immunoendocrinology, School of Pharmaceutical Sciences, Department of Clinical and Toxicological Analyses, University of São Paulo, São Paulo, Brazil
| | - Stephen Fernandes Rodrigues
- Laboratory of Vascular Nanopharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Eliana Hiromi Akamine
- Laboratory of Vascular Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Anderson Sá-Nunes
- Laboratory of Experimental Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Joilson O. Martins
- Laboratory of Immunoendocrinology, School of Pharmaceutical Sciences, Department of Clinical and Toxicological Analyses, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
17
|
Stastna D, Elberling F, Pontieri L, Framke E, Horakova D, Drahota J, Nytrova P, Magyari M. COVID-19 vaccination and relapse activity: A nationwide cohort study of patients with multiple sclerosis in Denmark. Eur J Neurol 2024; 31:e16163. [PMID: 38015454 PMCID: PMC11235886 DOI: 10.1111/ene.16163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 10/03/2023] [Accepted: 11/08/2023] [Indexed: 11/29/2023]
Abstract
BACKGROUND AND PURPOSE We evaluated whether there was a difference in the occurrence of relapses pre- and post-COVID-19 vaccination in a nationwide cohort of Danish patients with relapsing multiple sclerosis. METHODS We conducted a population-based, nationwide cohort study with a cutoff date of 1 October 2022. We used McNemar tests to assess changes in the proportion of patients with recorded relapses within 90 days and 180 days before and after first vaccine dose, and a negative binomial regression model to compare the 90 and 180 days postvaccination annualized relapse rate (ARR) to the 360 days prevaccination ARR. Multivariate Cox regression was used to estimate relapse risk factors. RESULTS We identified 8169 vaccinated (87.3% Comirnaty) patients without a recorded history of a positive COVID-19 test. We did not find statistically significant changes in the proportion of patients with relapses in the 90 days (1.3% vs. 1.4% of patients, p = 0.627) and 180 days (2.7% vs. 2.6% of patients, p = 0.918) pre- and postvaccination. Also, a comparison of the ARR 360 days before (0.064, 95% confidence interval [CI] = 0.058-0.070) with the ARR 90 (0.057, 95% CI = 0.047-0.069, p = 0.285) and 180 (0.055, 95% CI = 0.048-0.063, p = 0.060) days after vaccination did not show statistically significant differences. Lower age, higher Expanded Disability Status Scale score, and relapse within 360 days before vaccination were associated with a higher risk of relapse. CONCLUSIONS We did not find evidence of increased relapse activity following the administration of the first dose of the COVID-19 vaccine.
Collapse
Affiliation(s)
- Dominika Stastna
- Department of Neurology and Centre of Clinical Neuroscience, First Faculty of MedicineCharles University and General University Hospital in PraguePragueCzechia
- Danish Multiple Sclerosis Registry, Department of NeurologyCopenhagen University Hospital–RigshospitaletGlostrupDenmark
| | - Frederik Elberling
- Danish Multiple Sclerosis Registry, Department of NeurologyCopenhagen University Hospital–RigshospitaletGlostrupDenmark
| | - Luigi Pontieri
- Danish Multiple Sclerosis Registry, Department of NeurologyCopenhagen University Hospital–RigshospitaletGlostrupDenmark
| | - Elisabeth Framke
- Danish Multiple Sclerosis Registry, Department of NeurologyCopenhagen University Hospital–RigshospitaletGlostrupDenmark
| | - Dana Horakova
- Department of Neurology and Centre of Clinical Neuroscience, First Faculty of MedicineCharles University and General University Hospital in PraguePragueCzechia
| | - Jiri Drahota
- Department of Neurology and Centre of Clinical Neuroscience, First Faculty of MedicineCharles University and General University Hospital in PraguePragueCzechia
- Endowment Fund IMPULSPragueCzechia
| | - Petra Nytrova
- Department of Neurology and Centre of Clinical Neuroscience, First Faculty of MedicineCharles University and General University Hospital in PraguePragueCzechia
| | - Melinda Magyari
- Danish Multiple Sclerosis Registry, Department of NeurologyCopenhagen University Hospital–RigshospitaletGlostrupDenmark
- Danish Multiple Sclerosis Centre, Department of NeurologyCopenhagen University Hospital–RigshospitaletGlostrupDenmark
- Department of Clinical Medicine, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| |
Collapse
|
18
|
Zayoud K, Chikhaoui A, Kraoua I, Tebourbi A, Najjar D, Ayari S, Safra I, Kraiem I, Turki I, Menif S, Yacoub-Youssef H. Immunity in the Progeroid Model of Cockayne Syndrome: Biomarkers of Pathological Aging. Cells 2024; 13:402. [PMID: 38474366 DOI: 10.3390/cells13050402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 03/14/2024] Open
Abstract
Cockayne syndrome (CS) is a rare autosomal recessive disorder that affects the DNA repair process. It is a progeroid syndrome predisposing patients to accelerated aging and to increased susceptibility to respiratory infections. Here, we studied the immune status of CS patients to determine potential biomarkers associated with pathological aging. CS patients, as well as elderly and young, healthy donors, were enrolled in this study. Complete blood counts for patients and donors were assessed, immune cell subsets were analyzed using flow cytometry, and candidate cytokines were analyzed via multi-analyte ELISArray kits. In CS patients, we noticed a high percentage of lymphocytes, an increased rate of intermediate and non-classical monocytes, and a high level of pro-inflammatory cytokine IL-8. In addition, we identified an increased rate of particular subtypes of T Lymphocyte CD8+ CD28- CD27-, which are senescent T cells. Thus, an inflammatory state was found in CS patients that is similar to that observed in the elderly donors and is associated with an immunosenescence status in both groups. This could explain the CS patients' increased susceptibility to infections, which is partly due to an aging-associated inflammation process.
Collapse
Affiliation(s)
- Khouloud Zayoud
- Laboratory of Biomedical Genomics and Oncogenetics (LR16IPT05), Institut Pasteur de Tunis, Université Tunis El Manar, El Manar I, Tunis 1002, Tunisia
- Faculty of Sciences of Bizerte, Bizerte 7021, Tunisia
| | - Asma Chikhaoui
- Laboratory of Biomedical Genomics and Oncogenetics (LR16IPT05), Institut Pasteur de Tunis, Université Tunis El Manar, El Manar I, Tunis 1002, Tunisia
| | - Ichraf Kraoua
- Department of Neuropediatrics, National Institute of Neurology Mongi Ben Hamida, Tunis 1007, Tunisia
| | - Anis Tebourbi
- Orthopedic and Trauma Surgery Department, Mongi Slim Hospital, La Marsa 2070, Tunisia
| | - Dorra Najjar
- Laboratory of Biomedical Genomics and Oncogenetics (LR16IPT05), Institut Pasteur de Tunis, Université Tunis El Manar, El Manar I, Tunis 1002, Tunisia
| | - Saker Ayari
- Orthopedic and Trauma Surgery Department, Mongi Slim Hospital, La Marsa 2070, Tunisia
| | - Ines Safra
- Laboratory of Molecular and Cellular Hematology (LR16IPT07), Institut Pasteur de Tunis, Université Tunis El Manar, El Manar I, Tunis 1002, Tunisia
| | - Imen Kraiem
- Laboratory of Molecular and Cellular Hematology (LR16IPT07), Institut Pasteur de Tunis, Université Tunis El Manar, El Manar I, Tunis 1002, Tunisia
| | - Ilhem Turki
- Department of Neuropediatrics, National Institute of Neurology Mongi Ben Hamida, Tunis 1007, Tunisia
| | - Samia Menif
- Laboratory of Molecular and Cellular Hematology (LR16IPT07), Institut Pasteur de Tunis, Université Tunis El Manar, El Manar I, Tunis 1002, Tunisia
| | - Houda Yacoub-Youssef
- Laboratory of Biomedical Genomics and Oncogenetics (LR16IPT05), Institut Pasteur de Tunis, Université Tunis El Manar, El Manar I, Tunis 1002, Tunisia
| |
Collapse
|
19
|
Müller L, Di Benedetto S. Immunosenescence and Cytomegalovirus: Exploring Their Connection in the Context of Aging, Health, and Disease. Int J Mol Sci 2024; 25:753. [PMID: 38255826 PMCID: PMC10815036 DOI: 10.3390/ijms25020753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/29/2023] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
Aging induces numerous physiological alterations, with immunosenescence emerging as a pivotal factor. This phenomenon has attracted both researchers and clinicians, prompting profound questions about its implications for health and disease. Among the contributing factors, one intriguing actor in this complex interplay is human cytomegalovirus (CMV), a member of the herpesvirus family. Latent CMV infection exerts a profound influence on the aging immune system, potentially contributing to age-related diseases. This review delves into the intricate relationship between immunosenescence and CMV, revealing how chronic viral infection impacts the aging immune landscape. We explore the mechanisms through which CMV can impact both the composition and functionality of immune cell populations and induce shifts in inflammatory profiles with aging. Moreover, we examine the potential role of CMV in pathologies such as cardiovascular diseases, cancer, neurodegenerative disorders, COVID-19, and Long COVID. This review underlines the importance of understanding the complex interplay between immunosenescence and CMV. It offers insights into the pathophysiology of aging and age-associated diseases, as well as COVID-19 outcomes among the elderly. By unraveling the connections between immunosenescence and CMV, we gain a deeper understanding of aging's remarkable journey and the profound role that viral infections play in transforming the human immune system.
Collapse
Affiliation(s)
- Ludmila Müller
- Max Planck Institute for Human Development, Lentzeallee 94, 14195 Berlin, Germany
| | | |
Collapse
|
20
|
Huang K, Liu X, Zhang Z, Wang T, Xu H, Li Q, Jia Y, Huang L, Kim P, Zhou X. AgeAnnoMO: a knowledgebase of multi-omics annotation for animal aging. Nucleic Acids Res 2024; 52:D822-D834. [PMID: 37850649 PMCID: PMC10767957 DOI: 10.1093/nar/gkad884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/16/2023] [Accepted: 10/02/2023] [Indexed: 10/19/2023] Open
Abstract
Aging entails gradual functional decline influenced by interconnected factors. Multiple hallmarks proposed as common and conserved underlying denominators of aging on the molecular, cellular and systemic levels across multiple species. Thus, understanding the function of aging hallmarks and their relationships across species can facilitate the translation of anti-aging drug development from model organisms to humans. Here, we built AgeAnnoMO (https://relab.xidian.edu.cn/AgeAnnoMO/#/), a knowledgebase of multi-omics annotation for animal aging. AgeAnnoMO encompasses an extensive collection of 136 datasets from eight modalities, encompassing 8596 samples from 50 representative species, making it a comprehensive resource for aging and longevity research. AgeAnnoMO characterizes multiple aging regulators across species via multi-omics data, comprehensively annotating aging-related genes, proteins, metabolites, mitochondrial genes, microbiotas and age-specific TCR and BCR sequences tied to aging hallmarks for these species and tissues. AgeAnnoMO not only facilitates a deeper and more generalizable understanding of aging mechanisms, but also provides potential insights of the specificity across tissues and species in aging process, which is important to develop the effective anti-aging interventions for diverse populations. We anticipate that AgeAnnoMO will provide a valuable resource for comprehending and integrating the conserved driving hallmarks in aging biology and identifying the targetable biomarkers for aging research.
Collapse
Affiliation(s)
- Kexin Huang
- The Center of Gerontology and Geriatrics and West China Biomedical Big Data Centre, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
- Center for Computational Systems Medicine, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- Med-X Center for Informatics, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Xi Liu
- School of Life Science and Technology, Xidian University, Xi’an, Shaanxi 710071, PR China
| | - Zhaocan Zhang
- School of Life Science and Technology, Xidian University, Xi’an, Shaanxi 710071, PR China
| | - Tiangang Wang
- School of Life Science and Technology, Xidian University, Xi’an, Shaanxi 710071, PR China
| | - Haixia Xu
- The Center of Gerontology and Geriatrics and West China Biomedical Big Data Centre, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Qingxuan Li
- School of Life Science and Technology, Xidian University, Xi’an, Shaanxi 710071, PR China
| | - Yuhao Jia
- School of Life Science and Technology, Xidian University, Xi’an, Shaanxi 710071, PR China
| | - Liyu Huang
- School of Life Science and Technology, Xidian University, Xi’an, Shaanxi 710071, PR China
| | - Pora Kim
- Center for Computational Systems Medicine, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Xiaobo Zhou
- Center for Computational Systems Medicine, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
- School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| |
Collapse
|
21
|
Ufongene C, Van Hyfte G, Agarwal P, Goldstein J, Mathew B, Navis A, McCarthy L, Kwon CS, Gururangan K, Balchandani P, Marcuse L, Naasan G, Singh A, Young J, Charney A, Nadkarni G, Jette N, Blank LJ. Older adults with epilepsy and COVID-19: Outcomes in a multi-hospital health system. Seizure 2024; 114:33-39. [PMID: 38039805 PMCID: PMC10841585 DOI: 10.1016/j.seizure.2023.11.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/26/2023] [Accepted: 11/24/2023] [Indexed: 12/03/2023] Open
Abstract
BACKGROUND Coronavirus disease 2019 (COVID-19) is associated with high rates of mortality and morbidity in older adults, especially those with pre-existing conditions. There is little work investigating how neurological conditions affect older adults with COVID-19. We aimed to compare in-hospital outcomes, including mortality, in older adults with and without epilepsy. METHODS This retrospective study in a large multicenter New York health system included consecutive older patients (age ≥65 years) either with or without epilepsy who were admitted with COVID-19 between 3/2020-5/2021. Epilepsy was identified using a validated International Classification of Disease (ICD) and antiseizure medicationbased case definition. Univariate comparisons were calculated using Chi-square, Fisher's exact, Mann-Whitney U, or Student's t-tests. Multivariable logistic regression models were generated to examine factors associated with mortality, discharge disposition and length of stay (LOS). RESULTS We identified 5384 older adults admitted with COVID-19 of whom 173 (3.21 %) had epilepsy. Mean age was significantly lower in those with (75.44, standard deviation (SD): 7.23) compared to those without epilepsy (77.98, SD: 8.68, p = 0.007). Older adults with epilepsy were more likely to be ventilated (35.84 % vs. 16.18 %, p < 0.001), less likely to be discharged home (21.39 % vs. 43.12 %, p < 0.001), had longer median LOS (13 days vs. 8 days, p < 0.001), and had higher in-hospital death (35.84 % vs. 28.29 %, p = 0.030) compared to those without epilepsy. Epilepsy in older adults was associated with increased odds of in-hospital death (adjusted odds ratio (aOR), 1.55; 95 % CI 1.12-2.14, p = 0.032), non-routine discharge disposition (aOR, 3.34; 95 % CI 2.21-5.03, p < 0.001), and longer LOS (46.46 % 95 % CI 34 %-59 %, p < 0.001). CONCLUSIONS In models that adjusted for multiple confounders including comorbidity and age, our study found that epilepsy was still associated with higher in-hospital mortality, longer LOS and worse discharge dispositions in older adults with COVID-19 higher in-hospital mortality, longer LOS and worse discharge dispositions in older adults with COVID-19. This work reinforces that epilepsy is a risk factor for worse outcomes in older adults admitted with COVID-19. Timely identification and treatment of COVID-19 in epilepsy may improve outcomes in older people with epilepsy.
Collapse
Affiliation(s)
- Claire Ufongene
- Icahn School of Medicine at Mount Sinai (ISMMS), New York, NY, United States
| | - Grace Van Hyfte
- Department of Neurology, ISMMS, New York, NY, United States; Institute for HealthCare Delivery Science, Department of Population Health Science and Policy, ISMMS, New York, NY, United States
| | - Parul Agarwal
- Department of Neurology, ISMMS, New York, NY, United States; Institute for HealthCare Delivery Science, Department of Population Health Science and Policy, ISMMS, New York, NY, United States
| | - Jonathan Goldstein
- Icahn School of Medicine at Mount Sinai (ISMMS), New York, NY, United States
| | - Brian Mathew
- Department of Neurology, ISMMS, New York, NY, United States
| | - Allison Navis
- Department of Neurology, ISMMS, New York, NY, United States
| | | | - Churl-Su Kwon
- Department of Neurology, Epidemiology, Neurosurgery and the Gertrude H. Sergievsky Center, Columbia University, New York, NY, United States
| | | | - Priti Balchandani
- BioMedical Engineering and Imaging Institute, ISMMS, New York, NY, United States
| | - Lara Marcuse
- Department of Neurology, ISMMS, New York, NY, United States
| | - Georges Naasan
- Department of Neurology, ISMMS, New York, NY, United States
| | - Anuradha Singh
- Department of Neurology, ISMMS, New York, NY, United States
| | - James Young
- Department of Neurology, ISMMS, New York, NY, United States
| | | | | | - Nathalie Jette
- Department of Neurology, ISMMS, New York, NY, United States; Institute for HealthCare Delivery Science, Department of Population Health Science and Policy, ISMMS, New York, NY, United States; Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
| | - Leah J Blank
- Department of Neurology, ISMMS, New York, NY, United States; Institute for HealthCare Delivery Science, Department of Population Health Science and Policy, ISMMS, New York, NY, United States.
| |
Collapse
|
22
|
Chen Z, Li YY, Liu X. Copper homeostasis and copper-induced cell death: Novel targeting for intervention in the pathogenesis of vascular aging. Biomed Pharmacother 2023; 169:115839. [PMID: 37976889 DOI: 10.1016/j.biopha.2023.115839] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 10/25/2023] [Accepted: 11/01/2023] [Indexed: 11/19/2023] Open
Abstract
Copper-induced cell death, also known as cuproptosis, is distinct from other types of cell death such as apoptosis, necrosis, and ferroptosis. It can trigger the accumulation of lethal reactive oxygen species, leading to the onset and progression of aging. The significant increases in copper ion levels in the aging populations confirm a close relationship between copper homeostasis and vascular aging. On the other hand, vascular aging is also closely related to the occurrence of various cardiovascular diseases throughout the aging process. However, the specific causes of vascular aging are not clear, and different living environments and stress patterns can lead to individualized vascular aging. By exploring the correlations between copper-induced cell death and vascular aging, we can gain a novel perspective on the pathogenesis of vascular aging and enhance the prognosis of atherosclerosis. This article aims to provide a comprehensive review of the impacts of copper homeostasis on vascular aging, including their effects on endothelial cells, smooth muscle cells, oxidative stress, ferroptosis, intestinal flora, and other related factors. Furthermore, we intend to discuss potential strategies involving cuproptosis and provide new insights for copper-related vascular aging.
Collapse
Affiliation(s)
- Zhuoying Chen
- Department of Geriatrics, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430077, China
| | - Yuan-Yuan Li
- Department of Nursing, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430077, China.
| | - Xiangjie Liu
- Department of Geriatrics, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430077, China.
| |
Collapse
|
23
|
Fang YD, Liu JY, Xie F, Liu LP, Zeng WW, Wang WH. Antibody preparation and age-dependent distribution of TLR8 in Bactrian camel spleens. BMC Vet Res 2023; 19:276. [PMID: 38104080 PMCID: PMC10725000 DOI: 10.1186/s12917-023-03812-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 11/10/2023] [Indexed: 12/19/2023] Open
Abstract
BACKGROUND Toll-like receptor 8 (TLR8) can recognize specific pathogen-associated molecular patterns and exert multiple immunological functions through activation of signaling cascades. However, the precise distribution and age-related alterations of TLR8 in the spleens of Bactrian camels have not yet been investigated. This study aimed to prepare a rabbit anti-Bactrian camel TLR8 polyclonal antibody and elucidate the distribution of TLR8 in the spleens of Bactrian camels at different age groups. The methodology involved the construction of the pET-28a-TLR8 recombinant plasmid, followed by the expression of TLR8 recombinant protein via prokaryotic expression. Subsequently, rabbits were immunized with the purified protein to prepare the TLR8 polyclonal antibody. Finally, twelve Alashan Bactrian camels were categorized into four groups: young (1-2 years), pubertal (3-5 years), middle-aged (6-16 years) and old (17-20 years). These camels received intravenous sodium pentobarbital (20 mg/kg) anesthesia and were exsanguinated to collect spleen samples. Immunohistochemical techniques were employed to observe and analyze the distribution patterns and age-related changes of TLR8 in the spleen. RESULTS The results showed that the TLR8 recombinant protein was expressed in the form of inclusion body with a molecular weight of 52 kDa, and the optimal induction condition involved 0.3 mmol/L IPTG induction for 8 h. The prepared antibody yielded a titer of 1:32 000, and the antibody demonstrated specific binding to TLR8 recombinant protein. TLR8 positive cells exhibited a consistent distribution pattern in the spleen across different age groups of Bactrian camels, primarily scattered within the periarterial lymphatic sheath of the white pulp, marginal zone, and red pulp. The predominant cell type expressing TLR8 was macrophages, with expression also observed in neutrophils and dendritic cells. Statistical analysis revealed that there were significant differences in the distribution density of TLR8 positive cells among different spleen regions at the same age, with the red pulp, marginal zone, and white pulp showing a descending order (P<0.05). Age-related changes indicated that the distribution density in the marginal zone and red pulp exhibited a similar trend of initially increasing and subsequently decreasing from young to old camels. As camels age, there was a significant decrease in the distribution density across all spleen regions (P<0.05). CONCLUSIONS The results confirmed that this study successfully prepared a rabbit anti-Bactrian camel TLR8 polyclonal antibody with good specificity. TLR8 positive cells were predominantly located in the red pulp and marginal zone of the spleen, signifying their pivotal role in the innate immune response of the spleen. Aging was found to significantly reduce the density of TLR8 positive cells, while leaving their scattered distribution characteristics unaffected. These findings provide valuable support for further investigations into the immunomorphology and immunosenescence of the spleen in Bactrian camels.
Collapse
Affiliation(s)
- Ying-Dong Fang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China
| | - Jing-Yu Liu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China
| | - Fei Xie
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China
| | - Li-Ping Liu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China
| | - Wei-Wei Zeng
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China
| | - Wen-Hui Wang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China.
| |
Collapse
|
24
|
Young JJ, Park HJ, Kim M, Par-Young J, Bartlett H, Kim HS, Unlu S, Osmani L, Shin MS, Bucala R, van Dyck CH, Allore H, Mecca AP, You S, Kang I. Aging gene signature of memory CD8 + T cells is associated with neurocognitive functioning in Alzheimer's disease. Immun Ageing 2023; 20:71. [PMID: 38042785 PMCID: PMC10693128 DOI: 10.1186/s12979-023-00396-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 11/20/2023] [Indexed: 12/04/2023]
Abstract
BACKGROUND Memory CD8+ T cells expand with age. We previously demonstrated an age-associated expansion of effector memory (EM) CD8+ T cells expressing low levels of IL-7 receptor alpha (IL-7Rαlow) and the presence of its gene signature (i.e., IL-7Rαlow aging genes) in peripheral blood of older adults without Alzheimer's disease (AD). Considering age as the strongest risk factor for AD and the recent finding of EM CD8+ T cell expansion, mostly IL-7Rαlow cells, in AD, we investigated whether subjects with AD have alterations in IL-7Rαlow aging gene signature, especially in relation to genes possibly associated with AD and disease severity. RESULTS We identified a set of 29 candidate genes (i.e., putative AD genes) which could be differentially expressed in peripheral blood of patients with AD through the systematic search of publicly available datasets. Of the 29 putative AD genes, 9 genes (31%) were IL-7Rαlow aging genes (P < 0.001), suggesting the possible implication of IL-7Rαlow aging genes in AD. These findings were validated by RT-qPCR analysis of 40 genes, including 29 putative AD genes, additional 9 top IL-7R⍺low aging but not the putative AD genes, and 2 inflammatory control genes in peripheral blood of cognitively normal persons (CN, 38 subjects) and patients with AD (40 mild cognitive impairment and 43 dementia subjects). The RT-qPCR results showed 8 differentially expressed genes between AD and CN groups; five (62.5%) of which were top IL-7Rαlow aging genes (FGFBP2, GZMH, NUAK1, PRSS23, TGFBR3) not previously reported to be altered in AD. Unbiased clustering analysis revealed 3 clusters of dementia patients with distinct expression levels of the 40 analyzed genes, including IL-7Rαlow aging genes, which were associated with neurocognitive function as determined by MoCA, CDRsob and neuropsychological testing. CONCLUSIONS We report differential expression of "normal" aging genes associated with IL-7Rαlow EM CD8+ T cells in peripheral blood of patients with AD, and the significance of such gene expression in clustering subjects with dementia due to AD into groups with different levels of cognitive functioning. These results provide a platform for studies investigating the possible implications of age-related immune changes, including those associated with CD8+ T cells, in AD.
Collapse
Affiliation(s)
- Juan Joseph Young
- Department of Psychiatry, Yale School of Medicine, 300 Cedar Street, New Haven, CT, 06520, USA
| | - Hong-Jai Park
- Department of Psychiatry, Yale School of Medicine, 300 Cedar Street, New Haven, CT, 06520, USA
| | - Minhyung Kim
- Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Jennefer Par-Young
- Department of Psychiatry, Yale School of Medicine, 300 Cedar Street, New Haven, CT, 06520, USA
| | - Hugh Bartlett
- Department of Psychiatry, Yale School of Medicine, 300 Cedar Street, New Haven, CT, 06520, USA
- Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Hye Sun Kim
- Yale School of Public Health, New Haven, CT, USA
| | - Serhan Unlu
- Department of Psychiatry, Yale School of Medicine, 300 Cedar Street, New Haven, CT, 06520, USA
- Cleveland Clinic Fairview Hospital, Cleveland, OH, USA
| | - Lais Osmani
- Department of Psychiatry, Yale School of Medicine, 300 Cedar Street, New Haven, CT, 06520, USA
| | - Min Sun Shin
- Department of Psychiatry, Yale School of Medicine, 300 Cedar Street, New Haven, CT, 06520, USA
| | - Richard Bucala
- Department of Psychiatry, Yale School of Medicine, 300 Cedar Street, New Haven, CT, 06520, USA
| | - Christopher H van Dyck
- Department of Psychiatry, Yale School of Medicine, 300 Cedar Street, New Haven, CT, 06520, USA
| | - Heather Allore
- Department of Psychiatry, Yale School of Medicine, 300 Cedar Street, New Haven, CT, 06520, USA
- Yale School of Public Health, New Haven, CT, USA
| | - Adam P Mecca
- Department of Psychiatry, Yale School of Medicine, 300 Cedar Street, New Haven, CT, 06520, USA
| | - Sungyong You
- Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Insoo Kang
- Department of Psychiatry, Yale School of Medicine, 300 Cedar Street, New Haven, CT, 06520, USA.
| |
Collapse
|
25
|
Chen Y, Deng X, Lin D, Yang P, Wu S, Wang X, Zhou H, Chen X, Wang X, Wu W, Ke K, Huang W, Tan X. Predicting 1-, 3-, 5-, and 8-year all-cause mortality in a community-dwelling older adult cohort: relevance for predictive, preventive, and personalized medicine. EPMA J 2023; 14:713-726. [PMID: 38094581 PMCID: PMC10713970 DOI: 10.1007/s13167-023-00342-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 10/14/2023] [Indexed: 02/29/2024]
Abstract
BACKGROUND Population aging is a global public health issue involving increased prevalence of age-related diseases, and concomitant burden on medical resources and the economy. Ninety-two diseases have been identified as age-related, accounting for 51.3% of the global adult disease burden. The economic cost per capita for older people over 60 years is 10 times that of the younger population. From the aspects of predictive, preventive, and personalized medicine (PPPM), developing a risk-prediction model can help identify individuals at high risk for all-cause mortality and provide an opportunity for targeted prevention through personalized intervention at an early stage. However, there is still a lack of predictive models to help community-dwelling older adults do well in healthcare. OBJECTIVES This study aims to develop an accurate 1-, 3-, 5-, and 8-year all-cause mortality risk-prediction model by using clinical multidimensional variables, and investigate risk factors for 1-, 3-, 5-, and 8-year all-cause mortality in community-dwelling older adults to guide primary prevention. METHODS This is a two-center cohort study. Inclusion criteria: (1) community-dwelling adult, (2) resided in the districts of Chaonan or Haojiang for more than 6 months in the past 12 months, and (3) completed a health examination. Exclusion criteria: (1) age less than 60 years, (2) more than 30 incomplete variables, (3) no signed informed consent. The primary outcome of the study was all-cause mortality obtained from face-to-face interviews, telephone interviews, and the medical death database from 2012 to 2021. Finally, we enrolled 5085 community-dwelling adults, 60 years and older, who underwent routine health screening in the Chaonan and Haojiang districts, southern China, from 2012 to 2021. Of them, 3091 participants from Chaonan were recruited as the primary training and internal validation study cohort, while 1994 participants from Haojiang were recruited as the external validation cohort. A total of 95 clinical multidimensional variables, including demographics, lifestyle behaviors, symptoms, medical history, family history, physical examination, laboratory tests, and electrocardiogram (ECG) data were collected to identify candidate risk factors and characteristics. Risk factors were identified using least absolute shrinkage and selection operator (LASSO) models and multivariable Cox proportional hazards regression analysis. A nomogram predictive model for 1-, 3-, 5- and 8-year all-cause mortality was constructed. The accuracy and calibration of the nomogram prediction model were assessed using the concordance index (C-index), integrated Brier score (IBS), receiver operating characteristic (ROC), and calibration curves. The clinical validity of the model was assessed using decision curve analysis (DCA). RESULTS Nine independent risk factors for 1-, 3-, 5-, and 8-year all-cause mortality were identified, including increased age, male, alcohol status, higher daily liquor consumption, history of cancer, elevated fasting glucose, lower hemoglobin, higher heart rate, and the occurrence of heart block. The acquisition of risk factor criteria is low cost, easily obtained, convenient for clinical application, and provides new insights and targets for the development of personalized prevention and interventions for high-risk individuals. The areas under the curve (AUC) of the nomogram model were 0.767, 0.776, and 0.806, and the C-indexes were 0.765, 0.775, and 0.797, in the training, internal validation, and external validation sets, respectively. The IBS was less than 0.25, which indicates good calibration. Calibration and decision curves showed that the predicted probabilities were in good agreement with the actual probabilities and had good clinical predictive value for PPPM. CONCLUSION The personalized risk prediction model can identify individuals at high risk of all-cause mortality, help offer primary care to prevent all-cause mortality, and provide personalized medical treatment for these high-risk individuals from the PPPM perspective. Strict control of daily liquor consumption, lowering fasting glucose, raising hemoglobin, controlling heart rate, and treatment of heart block could be beneficial for improving survival in elderly populations. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13167-023-00342-4.
Collapse
Affiliation(s)
- Yequn Chen
- Department of Community Monitoring, First Affiliated Hospital of Shantou University Medical College, Shantou, 515041 Guangdong China
| | - Xiulian Deng
- Department of Community Monitoring, First Affiliated Hospital of Shantou University Medical College, Shantou, 515041 Guangdong China
| | - Dong Lin
- Department of Community Monitoring, First Affiliated Hospital of Shantou University Medical College, Shantou, 515041 Guangdong China
- Centre for Precision Health, Edith Cowan University, Perth, WA 6027 Australia
| | - Peixuan Yang
- Department of Health Management Centre, First Affiliated Hospital of Shantou University Medical College, Shantou, 515041 Guangdong China
| | - Shiwan Wu
- Department of Community Monitoring, First Affiliated Hospital of Shantou University Medical College, Shantou, 515041 Guangdong China
| | - Xidong Wang
- Department of Community Monitoring, First Affiliated Hospital of Shantou University Medical College, Shantou, 515041 Guangdong China
| | - Hui Zhou
- Department of Community Monitoring, First Affiliated Hospital of Shantou University Medical College, Shantou, 515041 Guangdong China
| | - Ximin Chen
- Department of Community Monitoring, First Affiliated Hospital of Shantou University Medical College, Shantou, 515041 Guangdong China
| | - Xiaochun Wang
- Department of Community Monitoring, First Affiliated Hospital of Shantou University Medical College, Shantou, 515041 Guangdong China
| | - Weichai Wu
- Department of Community Monitoring, First Affiliated Hospital of Shantou University Medical College, Shantou, 515041 Guangdong China
| | - Kaibing Ke
- Department of Community Monitoring, First Affiliated Hospital of Shantou University Medical College, Shantou, 515041 Guangdong China
| | - Wenjia Huang
- Department of Community Monitoring, First Affiliated Hospital of Shantou University Medical College, Shantou, 515041 Guangdong China
| | - Xuerui Tan
- Clinical Research Centre, First Affiliated Hospital of Shantou University Medical College, No. 22 Xinling Road, Jinping District, Shantou, 515041 Guangdong China
| |
Collapse
|
26
|
de Sousa ARS, Ottestad I, Gjevestad GO, Holven KB, Ulven SM, Christensen JJ. Associations between PBMC whole genome transcriptome, muscle strength, muscle mass, and physical performance in healthy home-dwelling older women. GeroScience 2023; 45:3175-3186. [PMID: 37204640 PMCID: PMC10643614 DOI: 10.1007/s11357-023-00819-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 05/07/2023] [Indexed: 05/20/2023] Open
Abstract
Increasing age is accompanied by many changes, including declining functional skeletal muscle health and immune dysfunction. Peripheral blood mononuclear cells (PBMCs) are circulating cells that assemble an immune response, but their whole genome transcriptome has not been studied in the context of age-related muscle health. Consequently, this article explored associations between three muscle variables indicative of functional muscle health - maximum handgrip strength (muscle strength), appendicular skeletal muscle mass index (ASMI, muscle mass), and gait speed (physical performance) - and two groups of bioinformatics-generated PBMC gene expression features (gene expression-estimated leukocyte subset proportions and gene clusters). We analyzed cross-sectional data from 95 home-dwelling healthy women ≥ 70 years, using "cell-type identification by estimating relative subsets of RNA transcripts" (CIBERSORT) to estimate leukocyte subset proportions and "weighted correlation network analysis" (WGCNA) to generate gene clusters. Associations were studied using linear regression models and relevant gene clusters were subjected to gene set enrichment analysis using gene ontology. Gait speed and ASMI associated with CIBERSORT-estimated monocyte proportions (β = - 0.090, 95% CI = (- 0.146, - 0.034), p-value = 0.002 for gait speed, and β = - 0.206, 95% CI = (- 0.385, - 0.028), p-value = 0.024 for ASMI), and gait speed associated with CIBERSORT-estimated M2 macrophage proportions (β = - 0.026, 95% CI = (- 0.043, - 0.008), p-value = 0.004). Furthermore, maximum handgrip strength associated with nine WGCNA gene clusters, enriched in processes related to immune function and skeletal muscle cells (β in the range - 0.007 to 0.008, p-values < 0.05). These results illustrate interactions between skeletal muscle and the immune system, supporting the notion that age-related functional muscle health and the immune system are closely linked.
Collapse
Affiliation(s)
- Ana R S de Sousa
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Sognsvannsveien 9, 0372, Oslo, Norway
| | - Inger Ottestad
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Sognsvannsveien 9, 0372, Oslo, Norway
- The Clinical Nutrition Outpatient Clinic, Section of Clinical Nutrition, Department of Clinical Service, Division of Cancer Medicine, Oslo University Hospital, Sognsvannsveien 20, 0372, Oslo, Norway
| | - Gyrd O Gjevestad
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Sognsvannsveien 9, 0372, Oslo, Norway
- TINE SA, Innovation and Marketing, Postboks 113 Kalbakken, 0902, Oslo, Norway
| | - Kirsten B Holven
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Sognsvannsveien 9, 0372, Oslo, Norway
- Norwegian National Advisory Unit On Familial Hypercholesterolemia, Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, Forskningsveien 2B, 0373, Oslo, Norway
| | - Stine M Ulven
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Sognsvannsveien 9, 0372, Oslo, Norway
| | - Jacob J Christensen
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Sognsvannsveien 9, 0372, Oslo, Norway.
- Norwegian National Advisory Unit On Familial Hypercholesterolemia, Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, Forskningsveien 2B, 0373, Oslo, Norway.
| |
Collapse
|
27
|
Kim HJ, Kim H, Lee JH, Hwangbo C. Toll-like receptor 4 (TLR4): new insight immune and aging. Immun Ageing 2023; 20:67. [PMID: 38001481 PMCID: PMC10668412 DOI: 10.1186/s12979-023-00383-3] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 10/23/2023] [Indexed: 11/26/2023]
Abstract
TLR4, a transmembrane receptor, plays a central role in the innate immune response. TLR4 not only engages with exogenous ligands at the cellular membrane's surface but also interacts with intracellular ligands, initiating intricate intracellular signaling cascades. Through MyD88, an adaptor protein, TLR4 activates transcription factors NF-κB and AP-1, thereby facilitating the upregulation of pro-inflammatory cytokines. Another adapter protein linked to TLR4, known as TRIF, autonomously propagates signaling pathways, resulting in heightened interferon expression. Recently, TLR4 has garnered attention as a significant factor in the regulation of symptoms in aging-related disorders. The persistent inflammatory response triggered by TLR4 contributes to the onset and exacerbation of these disorders. In addition, alterations in TLR4 expression levels play a pivotal role in modifying the manifestations of age-related diseases. In this review, we aim to consolidate the impact of TLR4 on cellular senescence and aging-related ailments, highlighting the potential of TLR4 as a novel therapeutic target that extends beyond immune responses.
Collapse
Affiliation(s)
- Hyo-Jin Kim
- Division of Life Science, College of Natural Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea
- Division of Applied Life Science (BK21 Four), Research Institute of Life Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Hyemin Kim
- Division of Applied Life Science (BK21 Four), Research Institute of Life Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Jeong-Hyung Lee
- Department of Biochemistry (BK21 Four), College of Natural Sciences, Kangwon National University, Chuncheon, 24414, Republic of Korea
| | - Cheol Hwangbo
- Division of Life Science, College of Natural Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea.
- Division of Applied Life Science (BK21 Four), Research Institute of Life Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea.
| |
Collapse
|
28
|
Yang H, Meng L, Xin S, Chang C, Zhao X, Guo B. Non-linear association between aspartate aminotransferase to alanine aminotransferase ratio and mortality in critically ill older patients: A retrospective cohort study. PLoS One 2023; 18:e0293749. [PMID: 37917784 PMCID: PMC10621830 DOI: 10.1371/journal.pone.0293749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 10/18/2023] [Indexed: 11/04/2023] Open
Abstract
BACKGROUND The aspartate aminotransferase to alanine aminotransferase (AST/ALT) ratio has been shown to be associated with poor clinical outcomes across various patient groups. However, little is unclear about the association between the two in critically ill older patients. Therefore, we aim to investigate the association of the AST/ALT ratio with hospital mortality in this special population. METHODS In this retrospective cohort study, we extracted elderly patients (age ≥ 65 years) from the Medical Information Mart for Intensive Care IV (MIMIC-IV) database. The primary outcome was in-hospital mortality. The association between the AST/ALT ratio and hospital mortality was studied using univariable and multivariable Cox regression analysis, as well as restricted cubic splines (RCS). Survival analysis was performed using the Kaplan-Meier (KM) method according to the AST/ALT ratio. RESULTS Among the 13,358 eligible patients, the mean age was 77.6 years, 7,077 patients (52.9%) were male, and 2,511 patients (18.8%) died in hospital. The AST/ALT ratio was found to be independently associated with in-hospital mortality (HR = 1.05, 95% CI: 1.01-1.09, P = 0.022) after adjusting for potential confounders. Furthermore, a non-linear relationship and saturation effect were observed between them, with the inflection point being 1.80. When the AST/ALT ratio was less than 1.80, we found that every 1 unit increase in the AST/ALT ratio resulted in a 39% increased risk of in-hospital mortality (HR = 1.39, 95% CI: 1.18-1.64, P < 0.001). However, when the AST/ALT ratio was greater than 1.80, the association became saturated (HR = 1.01, 95% CI: 0.96-1.07, P = 0.609). Sensitivity and subgroup analyses showed the results were robust. CONCLUSION In critically ill older patients, the association between the AST/ALT ratio and in-hospital mortality was non-linear and showed a saturation effect. An elevated AST/ALT ratio was significantly associated with increased in-hospital mortality when the AST/ALT ratio was less than 1.80.
Collapse
Affiliation(s)
- Hua Yang
- Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Department of Cardiology, Handan First Hospital, Handan, Hebei, China
| | - Limin Meng
- Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Department of Cardiology, Handan First Hospital, Handan, Hebei, China
| | - Shuanli Xin
- Department of Cardiology, Handan First Hospital, Handan, Hebei, China
| | - Chao Chang
- Department of Cardiology, Handan First Hospital, Handan, Hebei, China
| | - Xiufeng Zhao
- Department of Cardiology, Handan First Hospital, Handan, Hebei, China
| | - Bingyan Guo
- Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| |
Collapse
|
29
|
Lai F, Li B, Mei J, Zhou Q, Long J, Liang R, Mo R, Peng S, Liu Y, Xiao H. The Impact of Vaccination Time on the Antibody Response to an Inactivated Vaccine against SARS-CoV-2 (IMPROVE-2): A Randomized Controlled Trial. Adv Biol (Weinh) 2023; 7:e2300028. [PMID: 37300345 DOI: 10.1002/adbi.202300028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 05/22/2023] [Indexed: 06/12/2023]
Abstract
There is still controversy about whether severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccination at different times of day will induce a stronger immune response. Therefore, a randomized controlled trial (ChiCTR2100045109) is conducted to investigate the impact of vaccination time on the antibody response to the inactivated vaccine against SARS-CoV-2 from April 15 to 28, 2021. Participants are randomly assigned in a 1:1 ratio to receive inactivated SARS-CoV-2 vaccine in the morning or afternoon. The primary endpoint is the change of neutralizing antibody between baseline and 28 days after the second dose. In total, 503 participants are randomized, and 469 participants (238 in the morning group and 231 in the afternoon group) complete the follow-up. There is no significant difference in the change of neutralizing antibody between baseline and 28 days after the second dose between the morning and afternoon groups (22.2 [13.2, 45.0] AU mL-1 vs 22.0 [14.4, 40.7] AU mL-1 , P = 0.873). In prespecified age and sex subgroup analyses, there is also no significant difference in the morning and afternoon group (all P > 0.05). This study demonstrates that the vaccination time does not affect the antibody response of two doses of inactivated SARS-CoV-2 vaccine.
Collapse
Affiliation(s)
- Fenghua Lai
- Department of Endocrinology, The First Affiliated Hospital of Sun Yat-Sen University, No. 58, Zhongshan Road 2, Guangzhou, Guangdong, 510080, China
| | - Bin Li
- Clinical Trials Unit, The First Affiliated Hospital of Sun Yat-Sen University, No. 58, Zhongshan Road 2, Guangzhou, Guangdong, 510080, China
| | - Jie Mei
- Clinical Trials Unit, The First Affiliated Hospital of Sun Yat-Sen University, No. 58, Zhongshan Road 2, Guangzhou, Guangdong, 510080, China
| | - Qian Zhou
- Clinical Trials Unit, The First Affiliated Hospital of Sun Yat-Sen University, No. 58, Zhongshan Road 2, Guangzhou, Guangdong, 510080, China
| | - Jianyan Long
- Clinical Trials Unit, The First Affiliated Hospital of Sun Yat-Sen University, No. 58, Zhongshan Road 2, Guangzhou, Guangdong, 510080, China
| | - Ruiming Liang
- Clinical Trials Unit, The First Affiliated Hospital of Sun Yat-Sen University, No. 58, Zhongshan Road 2, Guangzhou, Guangdong, 510080, China
| | - Ruohui Mo
- Clinical Trials Unit, The First Affiliated Hospital of Sun Yat-Sen University, No. 58, Zhongshan Road 2, Guangzhou, Guangdong, 510080, China
| | - Sui Peng
- Clinical Trials Unit, The First Affiliated Hospital of Sun Yat-Sen University, No. 58, Zhongshan Road 2, Guangzhou, Guangdong, 510080, China
| | - Yihao Liu
- Clinical Trials Unit, The First Affiliated Hospital of Sun Yat-Sen University, No. 58, Zhongshan Road 2, Guangzhou, Guangdong, 510080, China
| | - Haipeng Xiao
- Department of Endocrinology, The First Affiliated Hospital of Sun Yat-Sen University, No. 58, Zhongshan Road 2, Guangzhou, Guangdong, 510080, China
| |
Collapse
|
30
|
Müller L, Di Benedetto S. From aging to long COVID: exploring the convergence of immunosenescence, inflammaging, and autoimmunity. Front Immunol 2023; 14:1298004. [PMID: 37942323 PMCID: PMC10628127 DOI: 10.3389/fimmu.2023.1298004] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 10/12/2023] [Indexed: 11/10/2023] Open
Abstract
The process of aging is accompanied by a dynamic restructuring of the immune response, a phenomenon known as immunosenescence. This mini-review navigates through the complex landscape of age-associated immune changes, chronic inflammation, age-related autoimmune tendencies, and their potential links with immunopathology of Long COVID. Immunosenescence serves as an introductory departure point, elucidating alterations in immune cell profiles and their functional dynamics, changes in T-cell receptor signaling, cytokine network dysregulation, and compromised regulatory T-cell function. Subsequent scrutiny of chronic inflammation, or "inflammaging," highlights its roles in age-related autoimmune susceptibilities and its potential as a mediator of the immune perturbations observed in Long COVID patients. The introduction of epigenetic facets further amplifies the potential interconnections. In this compact review, we consider the dynamic interactions between immunosenescence, inflammation, and autoimmunity. We aim to explore the multifaceted relationships that link these processes and shed light on the underlying mechanisms that drive their interconnectedness. With a focus on understanding the immunological changes in the context of aging, we seek to provide insights into how immunosenescence and inflammation contribute to the emergence and progression of autoimmune disorders in the elderly and may serve as potential mediator for Long COVID disturbances.
Collapse
Affiliation(s)
- Ludmila Müller
- Max Planck Institute for Human Development, Center for Lifespan Psychology, Berlin, Germany
| | | |
Collapse
|
31
|
Zhao J, Zhang Y, Wang J, Wei B, Liu Y. Potential Role and Prognostic Value of Interleukin-15 for Mortality Among Elderly Patients with Sepsis. J Inflamm Res 2023; 16:4481-4488. [PMID: 37849644 PMCID: PMC10577253 DOI: 10.2147/jir.s429080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 10/03/2023] [Indexed: 10/19/2023] Open
Abstract
Background To investigate the potential role and prognostic value of interleukin-15 (IL-15) in predicting 28-day mortality in elderly patients with sepsis. Methods According to the Sepsis-3.0 diagnostic criteria for sepsis, elderly patients with sepsis who were admitted to the emergency department of the Shi jingshan branch of Beijing Chaoyang Hospital between October 2021 and June 2022 were enrolled in this retrospective cohort study. After observation for 28 days, patients were divided into a survival group and a nonsurvival group. Samples for laboratory tests, baseline characteristic data, and SOFA and Acute Physiology and Chronic Health Evaluation (APACHE II) scores were collected or recorded within 24 h after admission to the emergency department. Quantitative detection of IL-15 was performed with a Luminex assay. Logistic regression analysis and receiver operating characteristic curve (ROC) analysis were conducted for comparison. Results In total, 220 elderly patients with sepsis were enrolled, 69 of whom were in the survival group and 151 of whom were in the nonsurvival group at the 28-day interval. Systolic pressure, high-density lipoprotein (HDL), platelets (PLT) and albumin (ALB) were significantly higher in the survival group (P<0.05), while IL-15, SOFA, and APACHE II were significantly higher in the nonsurvival group (P<0.05). IL-15 was an independent risk factor associated with 28-day mortality (OR=1.842, 95% CI [1.323, 2.565]). The area under the receiver operating characteristic curve (AUROC) of IL-15 alone was 0.691 (95% CI [0.618, 0.764]), with a sensitivity of 46.67% and a specificity of 85.81%. The AUROC of the combined IL-15 and SOFA reached 0.880 (95% CI [0.672, 0.812]), for which the sensitivity and specificity were 80.95% and 85.08%, respectively. Conclusion IL-15 possesses the prognostic value for predicting 28-day mortality in elderly patients with sepsis.
Collapse
Affiliation(s)
- Jingjing Zhao
- Department of Infectious Disease and Clinical Microbiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100043, People’s Republic of China
| | - Ye Zhang
- Emergency Medicine Clinical Research Center, Beijing Chaoyang Hospital & Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Clinical Center for Medicine in Acute Infection, Capital Medical University, Beijing, 100043, People’s Republic of China
| | - Junyu Wang
- Emergency Medicine Clinical Research Center, Beijing Chaoyang Hospital & Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Clinical Center for Medicine in Acute Infection, Capital Medical University, Beijing, 100043, People’s Republic of China
| | - Bing Wei
- Emergency Medicine Clinical Research Center, Beijing Chaoyang Hospital & Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Clinical Center for Medicine in Acute Infection, Capital Medical University, Beijing, 100043, People’s Republic of China
| | - Yugeng Liu
- Department of Infectious Disease and Clinical Microbiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100043, People’s Republic of China
- Emergency Medicine Clinical Research Center, Beijing Chaoyang Hospital & Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Clinical Center for Medicine in Acute Infection, Capital Medical University, Beijing, 100043, People’s Republic of China
| |
Collapse
|
32
|
Zheng X, Zhao D, Jin Y, Liu Y, Liu D. Role of the NLRP3 inflammasome in gynecological disease. Biomed Pharmacother 2023; 166:115393. [PMID: 37660654 DOI: 10.1016/j.biopha.2023.115393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/20/2023] [Accepted: 08/26/2023] [Indexed: 09/05/2023] Open
Abstract
The NLR family pyrin domain containing 3 (NLRP3) inflammasome is involved in the innate immune system and is a three-part macromolecular complex comprising the NLRP3 protein, apoptosis-associated speck-like protein containing a CARD (ASC) and the cysteine protease pro-caspase-1. When the NLRP3 inflammasome is activated, it can produce interleukin (IL)- 1β and IL-18 and eventually lead to inflammatory cell pyroptosis. Related studies have demonstrated that the NLRP3 inflammasome can induce an immune response and is related to the occurrence and development of gynecological diseases, such as endometriosis, polycystic ovary syndrome and breast cancer. NLRP3 inflammasome inhibitors are beneficial for maintaining cellular homeostasis and tissue health and have been found effective in targeting some gynecological diseases. However, excessive inhibitor concentrations have been found to cause adverse effects. Therefore, proper control of NLRP3 inflammasome activity is critical. This paper summarizes the structure and function of the NLRP3 inflammasome and highlights the therapeutic potential of targeting it in gynecological diseases, such as endometriosis, polycystic ovary syndrome and breast cancer The application of NLRP3 inflammasome inhibitors is also discussed.
Collapse
Affiliation(s)
- Xu Zheng
- College of Acupuncture and Massage, Changchun University of Chinese Medicine, Changchun 130117, Jilin, China
| | - Dan Zhao
- College of Acupuncture and Massage, Changchun University of Chinese Medicine, Changchun 130117, Jilin, China
| | - Ye Jin
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, Jilin, China.
| | - Yang Liu
- Acupuncture department,Affiliated Hospital of Changchun University of Chinese Medicine, Changchun 130117, Jilin, China.
| | - Da Liu
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, Jilin, China.
| |
Collapse
|
33
|
Chen Y, Liu J, Zhang Q, Wang Q, Chai L, Chen H, Li D, Qiu Y, Wang Y, Shen N, Wang J, Xie X, Li S, Li M. Epidemiological features and temporal trends of HIV-negative tuberculosis burden from 1990 to 2019: a retrospective analysis based on the Global Burden of Disease Study 2019. BMJ Open 2023; 13:e074134. [PMID: 37770275 PMCID: PMC10546119 DOI: 10.1136/bmjopen-2023-074134] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 09/01/2023] [Indexed: 09/30/2023] Open
Abstract
OBJECTIVE This study aimed to analyse the burden and temporal trends of tuberculosis (TB) incidence and mortality globally, as well as the association between mortality-to-incidence ratio (MIR) and Socio-Demographic Index (SDI). DESIGN A retrospective analysis of TB data from 1990 to 2019 was conducted using the Global Burden of Disease Study database. RESULTS Between 1990 and 2019, there was a declining trend in the global incidence and mortality of TB. High SDI regions experienced a higher declining rate than in low SDI regions during the same period. Nearly half of the new patients occurred in South Asia. In addition, there is a sex-age imbalance in the overall burden of TB, with young males having higher incidence and mortality than females. In terms of the three subtypes of TB, drug-sensitive (DS)-TB accounted for more than 90% of the incidents and deaths and experienced a decline over the past 30 years. However, drug-resistant TB (multidrug-resistant (MDR)-TB and extensively drug-resistant (XDR)-TB) showed an overall increasing trend in age-standardised incidence rates and age-standardised mortality rates, with an inflection point after the year 2000. At the regional level, South Asia and Eastern Europe remained a high burden of drug-resistant TB incidence and mortality. Interestingly, a negative correlation was found between the MIR and SDI for TB, including DS-TB, MDR-TB and XDR-TB. Notably, central sub-Saharan Africa had the highest MIR, which indicated a higher-than-expected burden given its level of sociodemographic development. CONCLUSION This study provides comprehensive insights into the global burden and temporal trends of TB incidence and mortality, as well as the relationship between MIR and SDI. These findings contribute to our understanding of TB epidemiology and can inform public health strategies for prevention and management.
Collapse
Affiliation(s)
- Yuqian Chen
- Department of Respiratory and Critical Care Medicine, Xi'an Jiaotong University Medical College First Affiliated Hospital, Xi'an, Shaanxi, China
| | - Jin Liu
- Department of Respiratory and Critical Care Medicine, Xi'an Jiaotong University Medical College First Affiliated Hospital, Xi'an, Shaanxi, China
| | - Qianqian Zhang
- Department of Respiratory and Critical Care Medicine, Xi'an Jiaotong University Medical College First Affiliated Hospital, Xi'an, Shaanxi, China
| | - Qingting Wang
- Department of Respiratory and Critical Care Medicine, Xi'an Jiaotong University Medical College First Affiliated Hospital, Xi'an, Shaanxi, China
| | - Limin Chai
- Department of Respiratory and Critical Care Medicine, Xi'an Jiaotong University Medical College First Affiliated Hospital, Xi'an, Shaanxi, China
| | - Huan Chen
- Department of Respiratory and Critical Care Medicine, Xi'an Jiaotong University Medical College First Affiliated Hospital, Xi'an, Shaanxi, China
| | - Danyang Li
- Department of Respiratory and Critical Care Medicine, Xi'an Jiaotong University Medical College First Affiliated Hospital, Xi'an, Shaanxi, China
| | - Yuanjie Qiu
- Department of Respiratory and Critical Care Medicine, Xi'an Jiaotong University Medical College First Affiliated Hospital, Xi'an, Shaanxi, China
| | - Yan Wang
- Department of Respiratory and Critical Care Medicine, Xi'an Jiaotong University Medical College First Affiliated Hospital, Xi'an, Shaanxi, China
| | - Nirui Shen
- Department of Respiratory and Critical Care Medicine, Xi'an Jiaotong University Medical College First Affiliated Hospital, Xi'an, Shaanxi, China
| | - Jian Wang
- Department of Respiratory and Critical Care Medicine, Xi'an Jiaotong University Medical College First Affiliated Hospital, Xi'an, Shaanxi, China
| | - Xinming Xie
- Department of Respiratory and Critical Care Medicine, Xi'an Jiaotong University Medical College First Affiliated Hospital, Xi'an, Shaanxi, China
| | - Shaojun Li
- Department of Respiratory and Critical Care Medicine, Xi'an Jiaotong University Medical College First Affiliated Hospital, Xi'an, Shaanxi, China
| | - Manxiang Li
- Department of Respiratory and Critical Care Medicine, Xi'an Jiaotong University Medical College First Affiliated Hospital, Xi'an, Shaanxi, China
| |
Collapse
|
34
|
Arovah NI, Thu DTA, Kurniawaty J, Haroen H. Physical activity and immunity in obese older adults: A systematic bibliographic analysis. SPORTS MEDICINE AND HEALTH SCIENCE 2023; 5:181-189. [PMID: 37753429 PMCID: PMC10518798 DOI: 10.1016/j.smhs.2023.07.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 05/22/2023] [Accepted: 07/05/2023] [Indexed: 09/28/2023] Open
Abstract
Extensive research has been conducted on the roles of physical activity in immune functioning. However, reviews on the effect of physical activity on immune function among obese older adults are scarce. This study aimed to map the trend and development of the key terms and prominent sources to identify potential research opportunities through a systematic bibliographic analysis. A systematic search was conducted in the Scopus database on the following query: (sport∗ OR "physical activity" OR exercise) AND (elderly OR "older adult∗" OR aging) AND (immun∗) AND (obes∗) AND NOT (animal), in March 2023. Publication timing and citation were descriptively analyzed, followed by the bibliographic coupling and the term co-occurrence analyses for generating network and overlay visualization mapping using the VOSviewers software. The search resulted in 426 articles dating back from 1991 to the present and were dominated by authors from Western countries. Three thematic clusters of this research area were generated, covering (1) the impact of physical activity or inactivity on health, (2) physical activity assessments and the use of association and cross-sectional study as the primary type of research, and (3) the physical activity impacts at the population level. For future research, more intervention studies are needed to understand how exercise affects immune response in older obese adults and to explore optimal duration, type, and intensity of the exercise, using a multi-omics approach. Studies in non-Western populations and systematic reviews are recommended to complement this bibliographic analysis.
Collapse
Affiliation(s)
- Novita Intan Arovah
- Department of Sports Science, Faculty of Sports Science, Universitas Negeri Yogyakarta, Jalan Colombo No 1 Karangmalang, Yogyakarta, 55228, Indonesia
| | - Dang Thi Anh Thu
- School of Science, Faculty of Public Health, Hue University of Medicine and Pharmacy, 06 Ngo Quyen, Vinh Ninh Ward, Hue City, Viet Nam
| | - Juni Kurniawaty
- Department of Anaesthesiology, Faculty of Medicine, Universitas Gadjah Mada, Departemen Anestesiologi dan Terapi Intensif RSUP Dr. Sardjito, Jln. Kesehatan No.1, Sekip, Yogyakarta, 55231, Indonesia
| | - Hartiah Haroen
- Department of Nursing, Faculty of Nursing, Universitas Padjajaran, Hegarmanah, Kec. Jatinangor, Kabupaten Sumedang, Bandung, Jawa Barat, 45363, Indonesia
| |
Collapse
|
35
|
Arbeev KG, Ukraintseva S, Bagley O, Duan H, Wu D, Akushevich I, Stallard E, Kulminski A, Christensen K, Feitosa MF, O’Connell JR, Parker D, Whitson H, Yashin AI. Interactions between genes involved in physiological dysregulation and axon guidance: role in Alzheimer's disease. Front Genet 2023; 14:1236509. [PMID: 37719713 PMCID: PMC10500346 DOI: 10.3389/fgene.2023.1236509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/17/2023] [Indexed: 09/19/2023] Open
Abstract
Dysregulation of physiological processes may contribute to Alzheimer's disease (AD) development. We previously found that an increase in the level of physiological dysregulation (PD) in the aging body is associated with declining resilience and robustness to major diseases. Also, our genome-wide association study found that genes associated with the age-related increase in PD frequently represented pathways implicated in axon guidance and synaptic function, which in turn were linked to AD and related traits (e.g., amyloid, tau, neurodegeneration) in the literature. Here, we tested the hypothesis that genes involved in PD and axon guidance/synapse function may jointly influence onset of AD. We assessed the impact of interactions between SNPs in such genes on AD onset in the Long Life Family Study and sought to replicate the findings in the Health and Retirement Study. We found significant interactions between SNPs in the UNC5C and CNTN6, and PLXNA4 and EPHB2 genes that influenced AD onset in both datasets. Associations with individual SNPs were not statistically significant. Our findings, thus, support a major role of genetic interactions in the heterogeneity of AD and suggest the joint contribution of genes involved in PD and axon guidance/synapse function (essential for the maintenance of complex neural networks) to AD development.
Collapse
Affiliation(s)
- Konstantin G. Arbeev
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC, United States
| | - Svetlana Ukraintseva
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC, United States
| | - Olivia Bagley
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC, United States
| | - Hongzhe Duan
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC, United States
| | - Deqing Wu
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC, United States
| | - Igor Akushevich
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC, United States
| | - Eric Stallard
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC, United States
| | - Alexander Kulminski
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC, United States
| | - Kaare Christensen
- Danish Aging Research Center, Department of Public Health, University of Southern Denmark, Odense, Denmark
| | - Mary F. Feitosa
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, MO, United States
| | - Jeffrey R. O’Connell
- Division of Endocrinology, Diabetes and Nutrition and Program for Personalized and Genomic Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Daniel Parker
- Duke Center for the Study of Aging and Human Development, Duke University, Durham, NC, United States
| | - Heather Whitson
- Duke Center for the Study of Aging and Human Development, Duke University, Durham, NC, United States
- Durham VA Geriatrics Research Education and Clinical Center, Durham, NC, United States
| | - Anatoliy I. Yashin
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC, United States
| |
Collapse
|
36
|
Aghamohamadi N, Shahba F, Zarezadeh Mehrabadi A, Khorramdelazad H, Karimi M, Falak R, Emameh RZ. Age-dependent immune responses in COVID-19-mediated liver injury: focus on cytokines. Front Endocrinol (Lausanne) 2023; 14:1139692. [PMID: 37654571 PMCID: PMC10465349 DOI: 10.3389/fendo.2023.1139692] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 07/21/2023] [Indexed: 09/02/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is potentially pathogenic and causes severe symptoms; in addition to respiratory syndromes, patients might experience other severe conditions such as digestive complications and liver complications injury. The abnormality in the liver is manifested by hepatobiliary dysfunction and enzymatic elevation, which is associated with morbidity and mortality. The direct cytopathic effect, immune dysfunction, cytokine storm, and adverse effects of therapeutic regimens have a crucial role in the severity of liver injury. According to aging and immune system alterations, cytokine patterns may also change in the elderly. Moreover, hyperproduction of cytokines in the inflammatory response to SARS-CoV-2 can lead to multi-organ dysfunction. The mortality rate in elderly patients, particularly those with other comorbidities, is also higher than in adults. Although the pathogenic effect of SARS-CoV-2 on the liver has been widely studied, the impact of age and immune-mediated responses at different ages remain unclear. This review discusses the association between immune system responses in coronavirus disease 2019 (COVID-19) patients of different ages and liver injury, focusing on cytokine alterations.
Collapse
Affiliation(s)
- Nazanin Aghamohamadi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Faezeh Shahba
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Zarezadeh Mehrabadi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hossein Khorramdelazad
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Milad Karimi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Reza Falak
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Reza Zolfaghari Emameh
- Department of Energy and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| |
Collapse
|
37
|
Li X, Wang Y, Zhai Z, Mao Q, Chen D, Xiao L, Xu S, Wu Q, Chen K, Hou Q, He Q, Shen Y, Yang M, Peng Z, He S, Zhou X, Tan H, Luo S, Fang C, Li G, Chen T. Predicting response to immunotherapy in gastric cancer via assessing perineural invasion-mediated inflammation in tumor microenvironment. J Exp Clin Cancer Res 2023; 42:206. [PMID: 37563649 PMCID: PMC10416472 DOI: 10.1186/s13046-023-02730-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 06/06/2023] [Indexed: 08/12/2023] Open
Abstract
BACKGROUND The perineural invasion (PNI)-mediated inflammation of the tumor microenvironment (TME) varies among gastric cancer (GC) patients and exhibits a close relationship with prognosis and immunotherapy. Assessing the neuroinflammation of TME is important in predicting the response to immunotherapy in GC patients. METHODS Fifteen independent cohorts were enrolled in this study. An inflammatory score was developed and validated in GC. Based on PNI-related prognostic inflammatory signatures, patients were divided into Clusters A and B using unsupervised clustering. The characteristics of clusters and the potential regulatory mechanism of key genes were verified by RT-PCR, western-blot, immunohistochemistry and immunofluorescence in cell and tumor tissue samples.The neuroinflammation infiltration (NII) scoring system was developed based on principal component analysis (PCA) and visualized in a nomogram together with other clinical characteristics. RESULTS Inflammatory scores were higher in GC patients with PNI compared with those without PNI (P < 0.001). NII.clusterB patients with PNI had abundant immune cell infiltration in the TME but worse prognosis compared with patients in the NII.clusterA patients with PNI and non-PNI subgroups. Higher immune checkpoint expression was noted in NII.clusterB-PNI. VCAM1 is a specific signature of NII.clusterB-PNI, which regulates PD-L1 expression by affecting the phosphorylation of STAT3 in GC cells. Patients with PNI and high NII scores may benefit from immunotherapy. Patients with low nomogram scores had a better prognosis than those with high nomogram scores. CONCLUSIONS Inflammation mediated by PNI is one of the results of tumor-nerve crosstalk, but its impact on the tumor immune microenvironment is complex. Assessing the inflammation features of PNI is a potential method in predicting the response of immunotherapy effectively.
Collapse
Affiliation(s)
- Xunjun Li
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangdong Provincial Engineering Technology Research Center of Minimally Invasive Surgery, No. 1838, North Guangzhou Avenue, Guangzhou, 510515, Guangdong Province, China
| | - Yiyun Wang
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangdong Provincial Engineering Technology Research Center of Minimally Invasive Surgery, No. 1838, North Guangzhou Avenue, Guangzhou, 510515, Guangdong Province, China
| | - ZhongYa Zhai
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangdong Provincial Engineering Technology Research Center of Minimally Invasive Surgery, No. 1838, North Guangzhou Avenue, Guangzhou, 510515, Guangdong Province, China
| | - Qingyi Mao
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, Guangdong Province, China
| | - Dianjie Chen
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangdong Provincial Engineering Technology Research Center of Minimally Invasive Surgery, No. 1838, North Guangzhou Avenue, Guangzhou, 510515, Guangdong Province, China
| | - Luxi Xiao
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangdong Provincial Engineering Technology Research Center of Minimally Invasive Surgery, No. 1838, North Guangzhou Avenue, Guangzhou, 510515, Guangdong Province, China
| | - Shuai Xu
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangdong Provincial Engineering Technology Research Center of Minimally Invasive Surgery, No. 1838, North Guangzhou Avenue, Guangzhou, 510515, Guangdong Province, China
| | - Qilin Wu
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangdong Provincial Engineering Technology Research Center of Minimally Invasive Surgery, No. 1838, North Guangzhou Avenue, Guangzhou, 510515, Guangdong Province, China
| | - Keming Chen
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangdong Provincial Engineering Technology Research Center of Minimally Invasive Surgery, No. 1838, North Guangzhou Avenue, Guangzhou, 510515, Guangdong Province, China
| | - Qiantong Hou
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangdong Provincial Engineering Technology Research Center of Minimally Invasive Surgery, No. 1838, North Guangzhou Avenue, Guangzhou, 510515, Guangdong Province, China
| | - Qinglie He
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangdong Provincial Engineering Technology Research Center of Minimally Invasive Surgery, No. 1838, North Guangzhou Avenue, Guangzhou, 510515, Guangdong Province, China
| | - Yuyang Shen
- Medical Image Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, China
| | - Manchun Yang
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangdong Provincial Engineering Technology Research Center of Minimally Invasive Surgery, No. 1838, North Guangzhou Avenue, Guangzhou, 510515, Guangdong Province, China
| | - Zishan Peng
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, Guangdong Province, China
| | - Siqing He
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangdong Provincial Engineering Technology Research Center of Minimally Invasive Surgery, No. 1838, North Guangzhou Avenue, Guangzhou, 510515, Guangdong Province, China
| | - Xuanhui Zhou
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangdong Provincial Engineering Technology Research Center of Minimally Invasive Surgery, No. 1838, North Guangzhou Avenue, Guangzhou, 510515, Guangdong Province, China
| | - Haoyang Tan
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangdong Provincial Engineering Technology Research Center of Minimally Invasive Surgery, No. 1838, North Guangzhou Avenue, Guangzhou, 510515, Guangdong Province, China
| | - Shengwei Luo
- School of Public Health, Southern Medical University, Guangzhou, 510515, Guangdong Province, China
| | - Chuanfa Fang
- Department of Gastrointestinal and Hernia Surgery, Ganzhou Hospital-Nanfang Hospital, Southern Medical University, Ganzhou, 341000, Jiangxi, China.
| | - Guoxin Li
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangdong Provincial Engineering Technology Research Center of Minimally Invasive Surgery, No. 1838, North Guangzhou Avenue, Guangzhou, 510515, Guangdong Province, China.
| | - Tao Chen
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangdong Provincial Engineering Technology Research Center of Minimally Invasive Surgery, No. 1838, North Guangzhou Avenue, Guangzhou, 510515, Guangdong Province, China.
- Department of Gastrointestinal and Hernia Surgery, Ganzhou Hospital-Nanfang Hospital, Southern Medical University, Ganzhou, 341000, Jiangxi, China.
| |
Collapse
|
38
|
Badrkhahan SZ, Ala M, Fakhrzadeh H, Yaghoobi A, Mirzamohamadi S, Arzaghi SM, Shahabi S, Sharifi F, Ostovar A, Fahimfar N, Nabipour I, Larijani B, Shafiee G, Heshmat R. The prevalence and predictors of geriatric giants in community-dwelling older adults: a cross-sectional study from the Middle East. Sci Rep 2023; 13:12401. [PMID: 37524849 PMCID: PMC10390524 DOI: 10.1038/s41598-023-39614-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 07/27/2023] [Indexed: 08/02/2023] Open
Abstract
The term "geriatric giants" refers to the chronic disabilities of senescence leading to adverse health outcomes. This study aimed to investigate the prevalence and predictors of geriatric giants in Southern Iran. The participants were selected from Bushehr city using a multistage cluster random sampling method. Demographic data were collected through interviews. Frailty, incontinence, immobility, depression, cognitive impairment, and malnutrition were measured by questionnaires and instruments. Finally, data from 2392 participants were analyzed. The prevalence of fecal incontinence was less than 1% among all participants and similar in men and women. In contrast, compared with men, women had higher prevalence of urinary incontinence (36.44% vs. 17.65%), depression (39.05% vs. 12.89%), anorexia and malnutrition (2.35% vs. 0.82%), immobility (8.00% vs. 2.5%), frailty (16.84 vs. 7.34), and pre-frailty (54.19 vs. 38.63%). The prevalence of dependence and cognitive impairment was also higher in women and considerably increased with the age of participants. In total, 12.07% of subjects were frail, and 46.76% were pre-frail. The prevalence of frailty exponentially increased in older age, ranging from 4.18% among those aged 60-64 years to 57.35% in those aged ≥ 80 years. Considering 95% confidence interval (CI), multivariate logistic regression revealed that low physical activity [odds ratio (OR) 31.73 (18.44-54.60)], cancer (OR 3.28 (1.27-8.44)), depression [OR 2.42 (1.97-2.98)], age [OR 1.11 (1.08-1.14)], waist circumference [OR 1.03 (1.01-1.06)], BMI [OR 1.07 (1.01-1.14)], MNA score [OR 0.85 (0.79-0.92)], polypharmacy [OR 2.26 (1.30-3.95)] and male gender [OR 0.63 (0.42-0.93)] were independently associated with frailty. White blood cell count (WBC), smoking, marital status, and number of comorbidities were not independently associated with frailty. Low physical activity was the strongest predictor of frailty, which may need more attention in geriatric care. Frailty, its predictors, and other components of geriatric giants were considerably more common among women and older ages.
Collapse
Affiliation(s)
- Seyedeh Zahra Badrkhahan
- Department of Geriatric Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
- Cardiac Primary Prevention Research Center, Cardiovascular Disease Research Institute, Tehran Heart Center (THC), Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Moein Ala
- Experimental Medicine Research Center, Tehran University of Medical Sciences (TUMS), Tehran, Iran
- Elderly Health Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Hossein Fakhrzadeh
- Elderly Health Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Arash Yaghoobi
- Elderly Health Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Sara Mirzamohamadi
- Experimental Medicine Research Center, Tehran University of Medical Sciences (TUMS), Tehran, Iran
- School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Seyed Masoud Arzaghi
- Elderly Health Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Sina Shahabi
- Elderly Health Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Farshad Sharifi
- Elderly Health Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Afshin Ostovar
- Non-Commutable Disease Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences (TUMS), Tehran, Iran.
| | - Noushin Fahimfar
- Osteoporosis Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Iraj Nabipour
- The Persian Gulf Marine, Biotechnology Research Center, The Persian Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Gita Shafiee
- Chronic Disease Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Ramin Heshmat
- Chronic Disease Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| |
Collapse
|
39
|
Hieber C, Grabbe S, Bros M. Counteracting Immunosenescence-Which Therapeutic Strategies Are Promising? Biomolecules 2023; 13:1085. [PMID: 37509121 PMCID: PMC10377144 DOI: 10.3390/biom13071085] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/03/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023] Open
Abstract
Aging attenuates the overall responsiveness of the immune system to eradicate pathogens. The increased production of pro-inflammatory cytokines by innate immune cells under basal conditions, termed inflammaging, contributes to impaired innate immune responsiveness towards pathogen-mediated stimulation and limits antigen-presenting activity. Adaptive immune responses are attenuated as well due to lowered numbers of naïve lymphocytes and their impaired responsiveness towards antigen-specific stimulation. Additionally, the numbers of immunoregulatory cell types, comprising regulatory T cells and myeloid-derived suppressor cells, that inhibit the activity of innate and adaptive immune cells are elevated. This review aims to summarize our knowledge on the cellular and molecular causes of immunosenescence while also taking into account senescence effects that constitute immune evasion mechanisms in the case of chronic viral infections and cancer. For tumor therapy numerous nanoformulated drugs have been developed to overcome poor solubility of compounds and to enable cell-directed delivery in order to restore immune functions, e.g., by addressing dysregulated signaling pathways. Further, nanovaccines which efficiently address antigen-presenting cells to mount sustained anti-tumor immune responses have been clinically evaluated. Further, senolytics that selectively deplete senescent cells are being tested in a number of clinical trials. Here we discuss the potential use of such drugs to improve anti-aging therapy.
Collapse
Affiliation(s)
- Christoph Hieber
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
- Institute of Molecular Biology (IMB), Ackermannweg 4, 55128 Mainz, Germany
| | - Stephan Grabbe
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
- Institute of Molecular Biology (IMB), Ackermannweg 4, 55128 Mainz, Germany
| | - Matthias Bros
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| |
Collapse
|
40
|
Nagai M, Shityakov S, Smetak M, Hunkler HJ, Bär C, Schlegel N, Thum T, Förster CY. Blood Biomarkers in Takotsubo Syndrome Point to an Emerging Role for Inflammaging in Endothelial Pathophysiology. Biomolecules 2023; 13:995. [PMID: 37371575 DOI: 10.3390/biom13060995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/11/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Takotsubo syndrome (TTS), an acute cardiac condition characterized by transient wall motion abnormalities mostly of the left ventricle, results in difficulties in diagnosing patients. We set out to present a detailed blood analysis of TTS patients analyzing novel markers to understand the development of TTS. Significant differences in proinflammatory cytokine expression patterns and sex steroid and glucocorticoid receptor (GR) expression levels were observed in the TTS patient collected. Remarkably, the measured catecholamine serum concentrations determined from TTS patient blood could be shown to be two orders of magnitude lower than the levels determined from experimentally induced TTS in laboratory animals. Consequently, the exposure of endothelial cells and cardiomyocytes in vitro to such catecholamine concentrations did not damage the cellular integrity or function of either endothelial cells forming the blood-brain barrier, endothelial cells derived from myocardium, or cardiomyocytes in vitro. Computational analysis was able to link the identified blood markers, specifically, the proinflammatory cytokines and glucocorticoid receptor GR to microRNA (miR) relevant in the ontogeny of TTS (miR-15) and inflammation (miR-21, miR-146a), respectively. Amongst the well-described risk factors of TTS (older age, female sex), inflammaging-related pathways were identified to add to these relevant risk factors or prediagnostic markers of TTS.
Collapse
Affiliation(s)
- Michiaki Nagai
- Department of Cardiology, 2-1-1, Kabeminami, Aaskita-ku, Hiroshima City Asa, Hiroshima 731-0293, Japan
| | - Sergey Shityakov
- Infochemistry Scientific Center, Laboratory of Chemoinformatics, ITMO University, Lomonosova Str. 9, 191002 Saint-Petersburg, Russia
| | - Manuel Smetak
- Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine, University of Würzburg, 97080 Würzburg, Germany
| | - Hannah Jill Hunkler
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, 30625 Hannover, Germany
| | - Christian Bär
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, 30625 Hannover, Germany
- REBIRTH-Centre for Translational Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), 30625 Hannover, Germany
| | - Nicolas Schlegel
- Department of General, Visceral, Transplant, Vascular and Pediatric Surgery, University of Würzburg, 97080 Würzburg, Germany
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, 30625 Hannover, Germany
- REBIRTH-Centre for Translational Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), 30625 Hannover, Germany
| | - Carola Yvette Förster
- Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine, University of Würzburg, 97080 Würzburg, Germany
| |
Collapse
|
41
|
Wong-Guerra M, Calfio C, Maccioni RB, Rojo LE. Revisiting the neuroinflammation hypothesis in Alzheimer's disease: a focus on the druggability of current targets. Front Pharmacol 2023; 14:1161850. [PMID: 37361208 PMCID: PMC10288808 DOI: 10.3389/fphar.2023.1161850] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 05/15/2023] [Indexed: 06/28/2023] Open
Abstract
Alzheimer's disease (AD) is the most common form of neurodegenerative disease and disability in the elderly; it is estimated to account for 60%-70% of all cases of dementia worldwide. The most relevant mechanistic hypothesis to explain AD symptoms is neurotoxicity induced by aggregated amyloid-β peptide (Aβ) and misfolded tau protein. These molecular entities are seemingly insufficient to explain AD as a multifactorial disease characterized by synaptic dysfunction, cognitive decline, psychotic symptoms, chronic inflammatory environment within the central nervous system (CNS), activated microglial cells, and dysfunctional gut microbiota. The discovery that AD is a neuroinflammatory disease linked to innate immunity phenomena started in the early nineties by several authors, including the ICC´s group that described, in 2004, the role IL-6 in AD-type phosphorylation of tau protein in deregulating the cdk5/p35 pathway. The "Theory of Neuroimmunomodulation", published in 2008, proposed the onset and progression of degenerative diseases as a multi-component "damage signals" phenomena, suggesting the feasibility of "multitarget" therapies in AD. This theory explains in detail the cascade of molecular events stemming from microglial disorder through the overactivation of the Cdk5/p35 pathway. All these knowledge have led to the rational search for inflammatory druggable targets against AD. The accumulated evidence on increased levels of inflammatory markers in the cerebrospinal fluid (CSF) of AD patients, along with reports describing CNS alterations caused by senescent immune cells in neuro-degenerative diseases, set out a conceptual framework in which the neuroinflammation hypothesis is being challenged from different angles towards developing new therapies against AD. The current evidence points to controversial findings in the search for therapeutic candidates to treat neuroinflammation in AD. In this article, we discuss a neuroimmune-modulatory perspective for pharmacological exploration of molecular targets against AD, as well as potential deleterious effects of modifying neuroinflammation in the brain parenchyma. We specifically focus on the role of B and T cells, immuno-senescence, the brain lymphatic system (BLS), gut-brain axis alterations, and dysfunctional interactions between neurons, microglia and astrocytes. We also outline a rational framework for identifying "druggable" targets for multi-mechanistic small molecules with therapeutic potential against AD.
Collapse
Affiliation(s)
- Maylin Wong-Guerra
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
- Centro de Biotecnología Acuícola, Facultad de Química y Biología, Universidad de Santiago de Chile (CBA-USACH), Santiago, Chile
- International Center for Biomedicine (ICC), Santiago, Chile
| | - Camila Calfio
- International Center for Biomedicine (ICC), Santiago, Chile
- Laboratory of Cellular and Molecular Neurosciences, Faculty of Sciences, University of Chile, Santiago, Chile
| | - Ricardo B. Maccioni
- International Center for Biomedicine (ICC), Santiago, Chile
- Laboratory of Cellular and Molecular Neurosciences, Faculty of Sciences, University of Chile, Santiago, Chile
| | - Leonel E. Rojo
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
- Centro de Biotecnología Acuícola, Facultad de Química y Biología, Universidad de Santiago de Chile (CBA-USACH), Santiago, Chile
- International Center for Biomedicine (ICC), Santiago, Chile
| |
Collapse
|
42
|
Pan Y, Gao J, Lin J, Ma Y, Hou Z, Lin Y, Wen S, Pan M, Lu F, Huang H. High-dimensional single-cell analysis unveils distinct immune signatures of peripheral blood in patients with pancreatic ductal adenocarcinoma. Front Endocrinol (Lausanne) 2023; 14:1181538. [PMID: 37347110 PMCID: PMC10281055 DOI: 10.3389/fendo.2023.1181538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/09/2023] [Indexed: 06/23/2023] Open
Abstract
Introduction Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal malignancies with poor response to immune checkpoint inhibitors. The mechanism of such poor response is not completely understood. Methods We assessed T-cell receptor (TCR) repertoire and RNA expression at the single-cell level using high-dimensional sequencing of peripheral blood immune cells isolated from PDAC patients and from healthy human controls. We validated RNA-sequencing data by performing mass cytometry (CyTOF) and by measuring serum levels of multiple immune checkpoint proteins. Results We found that proportions of T cells (CD45+CD3+) were decreased in PDAC patients compared to healthy controls, while proportion of myeloid cells was increased. The proportion of cytotoxic CD8+ T cells and the level of cytotoxicity per cell were increased in PDAC patients, with reduced TCR clonal diversity. We also found a significantly enriched S100A9+ monocyte population and an increased level of TIM-3 expression in immune cells of peripheral blood in PDAC patients. In addition, the serum level of soluble TIM-3 (sTIM-3) was significantly higher in PDAC patients compared to the non-PDAC participants and correlated with worse survival in two independent PDAC cohorts. Moreover, sTIM-3 exhibited a valuable role in diagnosis of PDAC, with sensitivity and specificity of about 80% in the training and validation groups, respectively. We further established an integrated model by combining sTIM-3 and carbohydrate antigen 19- 9 (CA19-9), which had an area under the curve of 0.974 and 0.992 in training and validation cohorts, respectively. Conclusion Our RNA-seq and proteomic results provide valuable insight for understanding the immune cell composition of peripheral blood of patients with PDAC.
Collapse
Affiliation(s)
- Yu Pan
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Jianfeng Gao
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Jiajing Lin
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Yuan Ma
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Zelin Hou
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Yali Lin
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Shi Wen
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Minggui Pan
- Department of Oncology and Hematology and Division of Research, Kaiser Permanente, Santa Clara, CA, United States
| | - Fengchun Lu
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Heguang Huang
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| |
Collapse
|
43
|
Schwambergová D, Kaňková Š, Třebická Fialová J, Hlaváčová J, Havlíček J. Pandemic elevates sensitivity to moral disgust but not pathogen disgust. Sci Rep 2023; 13:8206. [PMID: 37217674 DOI: 10.1038/s41598-023-35375-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 05/17/2023] [Indexed: 05/24/2023] Open
Abstract
The behavioral immune system, with disgust as its motivational part, serves as the first line of defense in organisms' protection against pathogens. Laboratory studies indicate that disgust sensitivity adaptively adjusts to simulated environmental threat, but whether disgust levels similarly change in response to real-life threats, such as a pandemic, remains largely unknown. In a preregistered within-subject study, we tested whether the threat posed by the Covid-19 pandemic would lead to increased perceived disgust. The perception of threat was induced by testing during two phases of the Covid-19 pandemic (periods of high vs. low pathogen threat). We found heightened levels of moral disgust during a "wave" of the pandemic, but the effect was not observed in the domain of pathogen or sexual disgust. Moreover, the age of respondents and levels of trait anxiety were positively associated with pathogen and moral disgust, suggesting that variation in disgust sensitivity may be based chiefly on stable characteristics.
Collapse
Affiliation(s)
- Dagmar Schwambergová
- Department of Zoology, Faculty of Science, Charles University, Viničná 7, 128 44, Prague 2, Czech Republic.
- National Institute of Mental Health, Topolová 748, 250 67, Klecany, Czech Republic.
| | - Šárka Kaňková
- Department of Philosophy and History of Science, Faculty of Science, Charles University, Viničná 7, 128 44, Prague 2, Czech Republic
| | - Jitka Třebická Fialová
- Department of Zoology, Faculty of Science, Charles University, Viničná 7, 128 44, Prague 2, Czech Republic
| | - Jana Hlaváčová
- Department of Philosophy and History of Science, Faculty of Science, Charles University, Viničná 7, 128 44, Prague 2, Czech Republic
| | - Jan Havlíček
- Department of Zoology, Faculty of Science, Charles University, Viničná 7, 128 44, Prague 2, Czech Republic
- National Institute of Mental Health, Topolová 748, 250 67, Klecany, Czech Republic
| |
Collapse
|
44
|
Chen Y, Zhu Z, Ma T, Zhang L, Chen J, Jiang J, Lu C, Ding Y, Guan W, Yi N, Ren H. TP53 mutation-related senescence is an indicator of hepatocellular carcinoma patient outcomes from multiomics profiles. SMART MEDICINE 2023; 2:e20230005. [PMID: 39188277 PMCID: PMC11235654 DOI: 10.1002/smmd.20230005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 03/13/2023] [Indexed: 08/28/2024]
Abstract
TP53 mutation frequently occurs in hepatocellular carcinoma (HCC). Senescence also plays a vital role in the ongoing process of HCC. P53 is believed to regulate the advancement of senescence in HCC. However, the exact mechanism of TP53 mutation-related senescence remains unclear. In this study, we found the TP53 mutation was positively correlated with senescence in HCC, and the differential expressed genes were primarily located in macrophages. Our results proved that the risk score could have an independent and vital role in predicting the prognosis of HCC patients. In addition, HCC patients with a high risk score may most probably benefit from immune checkpoint block therapy. We also found the risk score is elevated in chemotherapy-treated HCC samples, with a high level of senescence-associated secretory phenotype. Finally, we validated the risk-score genes in the protein level and noticed the risk score is positively related with M2 polarization. Of note, we considered that the risk score under the TP53 mutation and senescence is a promising biomarker with the potential to aid in predicting prognosis, defining tumor environment characteristics, and assessing the benefits of immunotherapy for HCC patients.
Collapse
Affiliation(s)
- Yu‐Yan Chen
- Department of Hepatobiliary SurgeryAffiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjingChina
| | - Zheng‐Yi Zhu
- Department of Hepatobiliary SurgeryAffiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjingChina
| | - Tao Ma
- Department of GastroenterologyAffiliated Hospital of Nantong UniversityNantongChina
| | - Lu Zhang
- Nanjing Drum Tower Hospital Clinical College of Jiangsu UniversityNanjingChina
| | - Jing Chen
- Department of GastroenterologyAffiliated Hospital of Nantong UniversityNantongChina
| | - Jia‐Wei Jiang
- Department of GastroenterologyAffiliated Hospital of Nantong UniversityNantongChina
| | - Cui‐Hua Lu
- Department of GastroenterologyAffiliated Hospital of Nantong UniversityNantongChina
| | - Yi‐Tao Ding
- Department of Hepatobiliary SurgeryAffiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjingChina
- Department of General SurgeryAffiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjingChina
| | - Wen‐Xian Guan
- Department of General SurgeryAffiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjingChina
| | - Nan Yi
- Department of GastroenterologyAffiliated Hospital of Nantong UniversityNantongChina
| | - Hao‐Zhen Ren
- Department of Hepatobiliary SurgeryAffiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjingChina
- Department of General SurgeryAffiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjingChina
| |
Collapse
|
45
|
Müller L, Di Benedetto S. Aged brain and neuroimmune responses to COVID-19: post-acute sequelae and modulatory effects of behavioral and nutritional interventions. Immun Ageing 2023; 20:17. [PMID: 37046272 PMCID: PMC10090758 DOI: 10.1186/s12979-023-00341-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 04/03/2023] [Indexed: 04/14/2023]
Abstract
Advanced age is one of the significant risk determinants for coronavirus disease 2019 (COVID-19)-related mortality and for long COVID complications. The contributing factors may include the age-related dynamical remodeling of the immune system, known as immunosenescence and chronic low-grade systemic inflammation. Both of these factors may induce an inflammatory milieu in the aged brain and drive the changes in the microenvironment of neurons and microglia, which are characterized by a general condition of chronic inflammation, so-called neuroinflammation. Emerging evidence reveals that the immune privilege in the aging brain may be compromised. Resident brain cells, such as astrocytes, neurons, oligodendrocytes and microglia, but also infiltrating immune cells, such as monocytes, T cells and macrophages participate in the complex intercellular networks and multiple reciprocal interactions. Especially changes in microglia playing a regulatory role in inflammation, contribute to disturbing of the brain homeostasis and to impairments of the neuroimmune responses. Neuroinflammation may trigger structural damage, diminish regeneration, induce neuronal cell death, modulate synaptic remodeling and in this manner negatively interfere with the brain functions.In this review article, we give insights into neuroimmune interactions in the aged brain and highlight the impact of COVID-19 on the functional systems already modulated by immunosenescence and neuroinflammation. We discuss the potential ways of these interactions with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and review proposed neuroimmune mechanisms and biological factors that may contribute to the development of persisting long COVID conditions. We summarize the potential mechanisms responsible for long COVID, including inflammation, autoimmunity, direct virus-mediated cytotoxicity, hypercoagulation, mitochondrial failure, dysbiosis, and the reactivation of other persisting viruses, such as the Cytomegalovirus (CMV). Finally, we discuss the effects of various interventional options that can decrease the propagation of biological, physiological, and psychosocial stressors that are responsible for neuroimmune activation and which may inhibit the triggering of unbalanced inflammatory responses. We highlight the modulatory effects of bioactive nutritional compounds along with the multimodal benefits of behavioral interventions and moderate exercise, which can be applied as postinfectious interventions in order to improve brain health.
Collapse
Affiliation(s)
- Ludmila Müller
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Lentzeallee 94, 14195 Berlin, Germany
| | - Svetlana Di Benedetto
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Lentzeallee 94, 14195 Berlin, Germany
| |
Collapse
|
46
|
Abstract
The inflammaging concept was introduced in 2000 by Prof. Franceschi. This was an evolutionary or rather a revolutionary conceptualization of the immune changes in response to a lifelong stress. This conceptualization permitted to consider the lifelong proinflammatory process as an adaptation which could eventually lead to either beneficial or detrimental consequences. This dichotomy is influenced by both the genetics and the environment. Depending on which way prevails in an individual, the outcome may be healthy longevity or pathological aging burdened with aging-related diseases. The concept of inflammaging has also revealed the complex, systemic nature of aging. Thus, this conceptualization opens the way to consider age-related processes in their complexity, meaning that not only the process but also all counter-processes should be considered. It has also opened the way to add new concepts to the original one, leading to better understanding of the nature of inflammaging and of aging itself. Finally, it showed the way towards potential multimodal interventions involving a holistic approach to optimize the aging process towards a healthy longevity.
Collapse
|
47
|
He K, Nie L, Ali T, Liu Z, Li W, Gao R, Zhang Z, Liu J, Dai Z, Xie Y, Zhang Z, Liu G, Dong M, Yu ZJ, Li S, Yang X. Adiponectin deficiency accelerates brain aging via mitochondria-associated neuroinflammation. Immun Ageing 2023; 20:15. [PMID: 37005686 PMCID: PMC10067304 DOI: 10.1186/s12979-023-00339-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 03/10/2023] [Indexed: 04/04/2023]
Abstract
BACKGROUND A wide spectrum of changes occurs in the brain with age, from molecular to morphological aspects, and inflammation accompanied by mitochondria dysfunction is one of the significant factors associated with age. Adiponectin (APN), an essential adipokine in glucose and lipid metabolism, is involved in the aging; however, its role in brain aging has not been adequately explored. Here, we aimed to explore the relationship between APN deficiency and brain aging using multiple biochemical and pharmacological methods to probe APN in humans, KO mice, primary microglia, and BV2 cells. RESULTS We found that declining APN levels in aged human subjects correlated with dysregulated cytokine levels, while APN KO mice exhibited accelerated aging accompanied by learning and memory deficits, anxiety-like behaviors, neuroinflammation, and immunosenescence. APN-deficient mice displayed aggravated mitochondrial dysfunction and HDAC1 upregulation. In BV2 cells, the APN receptor agonist AdipoRon alleviated the mitochondrial deficits and aging markers induced by rotenone or antimycin A. HDAC1 antagonism by Compound 60 (Cpd 60) improved mitochondrial dysfunction and age-related inflammation, as validated in D-galactose-treated APN KO mice. CONCLUSION These findings indicate that APN is a critical regulator of brain aging by preventing neuroinflammation associated with mitochondrial impairment via HDAC1 signaling.
Collapse
Affiliation(s)
- Kaiwu He
- State Key Laboratory of Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Lulin Nie
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Tahir Ali
- State Key Laboratory of Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Zizhen Liu
- State Key Laboratory of Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Weifen Li
- State Key Laboratory of Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Ruyan Gao
- State Key Laboratory of Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Zena Zhang
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Jianjun Liu
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Zhongliang Dai
- Department of Anesthesiology, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, Shenzhen, 518020, Guangdong, China
- Department of Anesthesiology, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, 518020, Guangdong, China
- Shenzhen Engineering Research Center of Anesthesiology, Shenzhen, 518020, Guangdong, China
| | - Yongmei Xie
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China
| | - Zaijun Zhang
- Institute of New Drug Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Gongping Liu
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Ministry of Education of China and Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ming Dong
- Guangzhou International Bio Island, Guangzhou, 510005, Guangdong Province, China
| | - Zhi-Jian Yu
- Department of Infectious Diseases and Shenzhen Key Laboratory for Endogenous Infections, The 6Th Affiliated Hospital of Shenzhen University Health Science, Center. No 89, Taoyuan Road, Nanshan District, Shenzhen, 518052, China.
| | - Shupeng Li
- State Key Laboratory of Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China.
- Campbell Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada.
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
| | - Xifei Yang
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China.
| |
Collapse
|
48
|
A cross-talk between sestrins, chronic inflammation and cellular senescence governs the development of age-associated sarcopenia and obesity. Ageing Res Rev 2023; 86:101852. [PMID: 36642190 DOI: 10.1016/j.arr.2023.101852] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/20/2022] [Accepted: 01/10/2023] [Indexed: 01/15/2023]
Abstract
The rapid increase in both the lifespan and proportion of older adults is accompanied by the unprecedented rise in age-associated chronic diseases, including sarcopenia and obesity. Aging is also manifested by increased susceptibility to multiple endogenous and exogenous stresses enabling such chronic conditions to develop. Among the main physiological regulators of cellular adaption to various stress stimuli, such as DNA damage, hypoxia, and oxidative stress, are sestrins (Sesns), a family of three evolutionarily conserved proteins, Sesn1, 2, and 3. Age-associated sarcopenia and obesity are characterized by two key processes: (i) accumulation of senescent cells in the skeletal muscle and adipose tissue and (ii) creation of a systemic, chronic, low-grade inflammation (SCLGI). Presumably, failed SCLGI resolution governs the development of these chronic conditions. Noteworthy, Sesns activate senolytics, which are agents that selectively eliminate senescent cells, as well as specialized pro-resolving mediators, which are factors that physiologically provide inflammation resolution. Sesns reveal clear beneficial effects in pre-clinical models of sarcopenia and obesity. Based on these observations, we propose a novel treatment strategy for age-associated sarcopenia and obesity, complementary to the conventional therapeutic modalities: Sesn activation, SCLGI resolution, and senescent cell elimination.
Collapse
|
49
|
Cruz-Reyes N, Radisky DC. Inflammation, Infiltration, and Evasion-Tumor Promotion in the Aging Breast. Cancers (Basel) 2023; 15:1836. [PMID: 36980723 PMCID: PMC10046531 DOI: 10.3390/cancers15061836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
Breast cancer is a significant cause of morbidity and mortality in women, with over two million new cases reported worldwide each year, the majority of which occur in post-menopausal women. Despite advances in early detection and treatment, approximately one-third of patients diagnosed with breast cancer will develop metastatic disease. The pathogenesis and progression of breast cancer are influenced by a variety of biological and social risk factors, including age, ethnicity, pregnancy status, diet, and genomic alterations. Recent advancements in breast cancer research have focused on harnessing the power of the patient's adaptive and innate immune systems for diagnostic and therapeutic purposes. The breast immune microenvironment plays a critical role in regulating tissue homeostasis and resistance to tumorigenesis. In this review, we explore the dynamic changes in the breast immune microenvironment that occur with age, how these changes impact breast cancer development and progression, and how targeted therapeutic interventions that leverage the immune system can be used to improve patient outcomes. Our review emphasizes the importance of understanding the complex interplay between aging, the immune system, and breast cancer, and highlights the potential of immune-based therapies in the fight against this devastating disease.
Collapse
Affiliation(s)
| | - Derek C. Radisky
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL 32224, USA
| |
Collapse
|
50
|
Dickstein DR, Powers AE, Vujovic D, Roof S, Bakst RL. Clinical and Therapeutic Considerations for Older Adults with Head and Neck Cancer. Clin Interv Aging 2023; 18:409-422. [PMID: 36959837 PMCID: PMC10029371 DOI: 10.2147/cia.s366155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 03/04/2023] [Indexed: 03/18/2023] Open
Abstract
Approximately 30% of patients with head and neck squamous cell carcinoma (HNSCC) are at least 70 years of age, and this percentage is expected to increase as the population increases and lives longer. Elderly patients are underrepresented in head and neck oncology clinical trials, and there is minimal evidence on the management of HNSCC for this population. Subsequently, despite their best intentions, physicians may unknowingly recommend an ill-suited course of therapy, which may result in suboptimal oncological or functional outcomes or adverse events. Surgical approaches have the potential to carry a higher risk of morbidity and mortality in older adults, especially in patients with multiple comorbidities. Definitive radiation therapy treatment in patients with HNSCC frequently involves 7 weeks of daily radiation, sometimes with concurrent chemotherapy, and this demanding treatment can be difficult for older adult patients, which may lead to treatment interruptions, potential removal of concurrent systemic therapy, compromised outcomes, and diminished quality of life. There are clinical trials currently underway investigating altered fractionation regimens and novel, less toxic systemic treatments in this population. This review provides an overview of how best to approach an older adult with HNSCC, from initial work-up to treatment selection.
Collapse
Affiliation(s)
- Daniel R Dickstein
- Department of Radiation Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ann E Powers
- Department of Otolaryngology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Dragan Vujovic
- Department of Radiation Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Scott Roof
- Department of Otolaryngology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Richard L Bakst
- Department of Radiation Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|