1
|
Ho ST, Nai YS, Chang ZT, Chang JC, Hsu WC, Ko CY, Chen YW, Yang YL. Dimethyl sulfoxide, an alternative for control of Nosema ceranae infection in honey bees (Apis mellifera). ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2024; 116:e22099. [PMID: 39137216 DOI: 10.1002/arch.22099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 03/05/2024] [Accepted: 03/06/2024] [Indexed: 08/15/2024]
Abstract
Nosema ceranae is a microsporidian parasite that threatens current apiculture. N. ceranae-infected honey bees (Apis mellifera) exhibit morbid physiological impairments and reduced honey production, malnutrition, shorter life span, and higher mortality than healthy honey bees. In this study, we found that dimethyl sulfoxide (DMSO) could enhance the survival rate of N. ceranae-infected honey bees. Therefore, we investigated the effect of DMSO on N. ceranae-infected honey bees using comparative RNA sequencing analysis. Our results revealed that DMSO was able to affect several biochemical pathways, especially the metabolic-related pathways in N. ceranae-infected honey bees. Based on these findings, we conclude that DMSO may be a useful alternative for treating N. ceranae infection in apiculture.
Collapse
Affiliation(s)
- Shang-Tse Ho
- Department of Wood Based Materials and Design, National Chiayi University, Chiayi, Taiwan
| | - Yu-Shin Nai
- Department of Entomology, National Chung Hsing University, Taichung, Taiwan
| | - Zih-Ting Chang
- Department of Biotechnology and Animal Science, National Ilan University, Yilan, Taiwan
| | - Ju-Chun Chang
- Department of Entomology, National Chung Hsing University, Taichung, Taiwan
| | - Wei-Chen Hsu
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan, Taiwan
| | - Chung-Yu Ko
- Department of Biotechnology and Animal Science, National Ilan University, Yilan, Taiwan
| | - Yue-Wen Chen
- Department of Biotechnology and Animal Science, National Ilan University, Yilan, Taiwan
| | - Yu-Liang Yang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan, Taiwan
| |
Collapse
|
2
|
Nakata K, Hatakeyama Y, Erra-Balsells R, Nonami H, Wada H. Dynamics and stabilization mechanism of mitochondrial cristae morphofunction associated with turgor-driven cardiolipin biosynthesis under salt stress conditions. Sci Rep 2022; 12:9727. [PMID: 35778427 PMCID: PMC9249792 DOI: 10.1038/s41598-022-14164-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 06/02/2022] [Indexed: 12/03/2022] Open
Abstract
Maintaining energy production efficiency is of vital importance to plants growing under changing environments. Cardiolipin localized in the inner mitochondrial membrane plays various important roles in mitochondrial function and its activity, although the regulation of mitochondrial morphology to various stress conditions remains obscure, particularly in the context of changes in cellular water relations and metabolisms. By combining single-cell metabolomics with transmission electron microscopy, we have investigated the adaptation mechanism in tomato trichome stalk cells at moderate salt stress to determine the kinetics of cellular parameters and metabolisms. We have found that turgor loss occurred just after the stress conditions, followed by the contrasting volumetric changes in mitochondria and cells, the accumulation of TCA cycle-related metabolites at osmotic adjustment, and a temporal increase in cardiolipin concentration, resulting in a reversible topological modification in the tubulo-vesicular cristae. Because all of these cellular events were dynamically observed in the same single-cells without causing any disturbance for redox states and cytoplasmic streaming, we conclude that turgor pressure might play a regulatory role in the mitochondrial morphological switch throughout the temporal activation of cardiolipin biosynthesis, which sustains mitochondrial respiration and energy conversion even under the salt stress conditions.
Collapse
Affiliation(s)
- Keisuke Nakata
- The United Graduate School of Agricultural Science, Ehime University, Matsuyama, Ehime, Japan
| | - Yuto Hatakeyama
- Graduate School of Agriculture, Ehime University, Matsuyama, Ehime, Japan
| | - Rosa Erra-Balsells
- Department of Organic Chemistry and CIHIDECAR-CONICET, University of Buenos Aires, Buenos Aires, Argentina
| | - Hiroshi Nonami
- Graduate School of Agriculture, Ehime University, Matsuyama, Ehime, Japan
| | - Hiroshi Wada
- The United Graduate School of Agricultural Science, Ehime University, Matsuyama, Ehime, Japan.
- Graduate School of Agriculture, Ehime University, Matsuyama, Ehime, Japan.
| |
Collapse
|
3
|
Hou Q, Zhang T, Zhao W, Wang L, Lu L, Qi Y, Bartels D. Genetic background and cis-organization regulate ALDH7B4 gene expression in Eutrema salsugineum: a promoter analysis case study. PLANTA 2022; 255:52. [PMID: 35091839 DOI: 10.1007/s00425-022-03836-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 01/19/2022] [Indexed: 06/14/2023]
Abstract
ALDH7B4 promoter analysis in A. thaliana and E. salsugineum reveals that both genetic background and promoter architecture contribute to gene expression in response to stress in different species. Many genes are differentially regulated in a comparison of salinity-sensitive and salinity-tolerant plant species. The aldehyde dehydrogenase 7B4 (ALDH7B4) gene is turgor-responsive in A. thaliana and encodes a highly conserved detoxification enzyme in plants. This study compared the ALDH7B4 gene in A. thaliana (salinity-sensitive) and in the salinity-tolerant close relative Eutrema salsugineum. EsALDH7B4 in E. salsugineum is the ortholog of AtALDH7B4 and the expression is also salinity, drought, and wound responsive. However, E. salsugineum requires higher salinity stress to induce the EsALDH7B4 transcriptional response. The GUS expression driven either by the promoter AtALDH7B4 or EsALDH7B4 was induced under 300 mM NaCl treatment in A. thaliana while 600 mM NaCl treatment was required in E. salsugineum, suggesting that the genetic background plays a crucial role in regulation of gene expression. Promoter sequences of ALDH7B4 are less conserved than the protein coding region. A series of EsALDH7B4 promoter deletion fragments were fused to the GUS reporter gene and promoter activity was determined in A. thaliana. The promoter region that contains two conserved ACGT-containing motifs was identified to be essential for stress induction. Furthermore, a 38 bp "TC" rich motif in the EsALDH7B4 promoter, absent from the AtALDH7B4 promoter, negatively affects EsALDH7B4 expression. A MYB-like transcription factor was identified to bind the "TC" motif and to repress the EsALDH7B4 promoter activity. This study reveals that genetic background and cis-acting elements coordinately regulate gene expression.
Collapse
Affiliation(s)
- Quancan Hou
- Zhongzhi International Institute of Agricultural Biosciences, Shunde Graduate School, Research Center of Biology and Agriculture, University of Science and Technology Beijing (USTB), Beijing, 100024, China.
- Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing, 100192, China.
- Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, Kirschallee 1, 53115, Bonn, Germany.
| | - Tianye Zhang
- Zhongzhi International Institute of Agricultural Biosciences, Shunde Graduate School, Research Center of Biology and Agriculture, University of Science and Technology Beijing (USTB), Beijing, 100024, China
| | - Wei Zhao
- Zhongzhi International Institute of Agricultural Biosciences, Shunde Graduate School, Research Center of Biology and Agriculture, University of Science and Technology Beijing (USTB), Beijing, 100024, China
| | - Linlin Wang
- Zhongzhi International Institute of Agricultural Biosciences, Shunde Graduate School, Research Center of Biology and Agriculture, University of Science and Technology Beijing (USTB), Beijing, 100024, China
| | - Lu Lu
- Zhongzhi International Institute of Agricultural Biosciences, Shunde Graduate School, Research Center of Biology and Agriculture, University of Science and Technology Beijing (USTB), Beijing, 100024, China
| | - Yuchen Qi
- Zhongzhi International Institute of Agricultural Biosciences, Shunde Graduate School, Research Center of Biology and Agriculture, University of Science and Technology Beijing (USTB), Beijing, 100024, China
| | - Dorothea Bartels
- Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, Kirschallee 1, 53115, Bonn, Germany.
| |
Collapse
|
4
|
Wada H, Nakata K, Nonami H, Erra-Balsells R, Tatsuki M, Hatakeyama Y, Tanaka F. Direct evidence for dynamics of cell heterogeneity in watercored apples: turgor-associated metabolic modifications and within-fruit water potential gradient unveiled by single-cell analyses. HORTICULTURE RESEARCH 2021; 8:187. [PMID: 34344866 PMCID: PMC8333330 DOI: 10.1038/s41438-021-00603-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/30/2021] [Accepted: 06/07/2021] [Indexed: 06/13/2023]
Abstract
Watercore is a physiological disorder in apple (Malus × domestica Borkh.) fruits that appears as water-soaked tissues adjacent to the vascular core, although there is little information on what exactly occurs at cell level in the watercored apples, particularly from the viewpoint of cell water relations. By combining picolitre pressure-probe electrospray-ionization mass spectrometry (picoPPESI-MS) with freezing point osmometry and vapor pressure osmometry, changes in cell water status and metabolisms were spatially assayed in the same fruit. In the watercored fruit, total soluble solid was lower in the watercore region than the normal outer parenchyma region, but there was no spatial difference in the osmotic potentials determined with freezing point osmometry. Importantly, a disagreement between the osmotic potentials determined with two methods has been observed in the watercore region, indicating the presence of significant volatile compounds in the cellular fluids collected. In the watercored fruit, cell turgor varied across flesh, and a steeper water potential gradient has been established from the normal outer parenchyma region to the watercore region, retaining the potential to transport water to the watercore region. Site-specific analysis using picoPPESI-MS revealed that together with a reduction in turgor, remarkable metabolic modifications through fermentation have occurred at the border, inducing greater production of watercore-related volatile compounds, such as alcohols and esters, compared with other regions. Because alcohols including ethanol have low reflection coefficients, it is very likely that these molecules would have rapidly penetrated membranes to accumulate in apoplast to fill. In addition to the water potential gradient detected here, this would physically contribute to the appearance with high tissue transparency and changes in colour differences. Therefore, it is concluded that these spatial changes in cell water relations are closely associated with watercore symptoms as well as with metabolic alterations.
Collapse
Affiliation(s)
- Hiroshi Wada
- Graduate School of Agriculture, Ehime University, Matsuyama, Ehime, Japan.
- The United Graduate School of Agricultural Sciences, Ehime University, Matsuyama, Ehime, Japan.
| | - Keisuke Nakata
- The United Graduate School of Agricultural Sciences, Ehime University, Matsuyama, Ehime, Japan
| | - Hiroshi Nonami
- Graduate School of Agriculture, Ehime University, Matsuyama, Ehime, Japan
| | - Rosa Erra-Balsells
- Department of Organic Chemistry and CIHIDECAR (CONICET), University of Buenos Aires, Buenos Aires, Argentina
| | - Miho Tatsuki
- Institute of Fruit Tree and Tea Science, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
| | - Yuto Hatakeyama
- Graduate School of Agriculture, Ehime University, Matsuyama, Ehime, Japan
| | - Fukuyo Tanaka
- Research Center for Advanced Analysis, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan.
| |
Collapse
|
5
|
Esposito S, Cardi T, Campanelli G, Sestili S, Díez MJ, Soler S, Prohens J, Tripodi P. ddRAD sequencing-based genotyping for population structure analysis in cultivated tomato provides new insights into the genomic diversity of Mediterranean 'da serbo' type long shelf-life germplasm. HORTICULTURE RESEARCH 2020; 7:134. [PMID: 32922806 PMCID: PMC7459340 DOI: 10.1038/s41438-020-00353-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/10/2020] [Accepted: 06/19/2020] [Indexed: 05/26/2023]
Abstract
Double digest restriction-site associated sequencing (ddRAD-seq) is a flexible and cost-effective strategy for providing in-depth insights into the genetic architecture of germplasm collections. Using this methodology, we investigated the genomic diversity of a panel of 288 diverse tomato (Solanum lycopersicum L.) accessions enriched in 'da serbo' (called 'de penjar' in Spain) long shelf life (LSL) materials (152 accessions) mostly originating from Italy and Spain. The rest of the materials originate from different countries and include landraces for fresh consumption, elite cultivars, heirlooms, and breeding lines. Apart from their LSL trait, 'da serbo' landraces are of remarkable interest for their resilience. We identified 32,799 high-quality SNPs, which were used for model ancestry population structure and non-parametric hierarchical clustering. Six genetic subgroups were revealed, clearly separating most 'da serbo' landraces, but also the Spanish germplasm, suggesting a subdivision of the population based on type and geographical provenance. Linkage disequilibrium (LD) in the collection decayed very rapidly within <5 kb. We then investigated SNPs showing contrasted minor frequency allele (MAF) in 'da serbo' materials, resulting in the identification of high frequencies in this germplasm of several mutations in genes related to stress tolerance and fruit maturation such as CTR1 and JAR1. Finally, a mini-core collection of 58 accessions encompassing most of the diversity was selected for further exploitation of key traits. Our findings suggest the presence of a genetic footprint of the 'da serbo' germplasm selected in the Mediterranean basin. Moreover, we provide novel insights on LSL 'da serbo' germplasm as a promising source of alleles for tolerance to stresses.
Collapse
Affiliation(s)
- Salvatore Esposito
- CREA Research Centre for Vegetable and Ornamental Crops, Pontecagnano, (SA) Italy
| | - Teodoro Cardi
- CREA Research Centre for Vegetable and Ornamental Crops, Pontecagnano, (SA) Italy
| | - Gabriele Campanelli
- CREA Research Centre for Vegetable and Ornamental Crops, Monsampolo del Tronto (AP), Tronto, Italy
| | - Sara Sestili
- CREA Research Centre for Vegetable and Ornamental Crops, Monsampolo del Tronto (AP), Tronto, Italy
| | - María José Díez
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, 46022 Valencia, Spain
| | - Salvador Soler
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, 46022 Valencia, Spain
| | - Jaime Prohens
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, 46022 Valencia, Spain
| | - Pasquale Tripodi
- CREA Research Centre for Vegetable and Ornamental Crops, Pontecagnano, (SA) Italy
| |
Collapse
|
6
|
Marondedze C, Thomas L, Gehring C, Lilley KS. Changes in the Arabidopsis RNA-binding proteome reveal novel stress response mechanisms. BMC PLANT BIOLOGY 2019; 19:139. [PMID: 30975080 PMCID: PMC6460520 DOI: 10.1186/s12870-019-1750-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 03/31/2019] [Indexed: 05/24/2023]
Abstract
BACKGROUND RNA-binding proteins (RBPs) are increasingly recognized as regulatory component of post-transcriptional gene expression. RBPs interact with mRNAs via RNA-binding domains and these interactions affect RNA availability for translation, RNA stability and turn-over thus affecting both RNA and protein expression essential for developmental and stimulus specific responses. Here we investigate the effect of severe drought stress on the RNA-binding proteome to gain insights into the mechanisms that govern drought stress responses at the systems level. RESULTS Label-free mass spectrometry enabled the identification 567 proteins of which 150 significantly responded to the drought-induced treatment. A gene ontology analysis revealed enrichment in the "RNA binding" and "RNA processing" categories as well as biological processes such as "response to abscisic acid" and "response to water deprivation". Importantly, a large number of the stress responsive proteins have not previously been identified as RBPs and include proteins in carbohydrate metabolism and in the glycolytic and citric acid pathways in particular. This suggests that RBPs have hitherto unknown roles in processes that govern metabolic changes during stress responses. Furthermore, a comparative analysis of RBP domain architectures shows both, plant specific and common domain architectures between plants and animals. The latter could be an indication that RBPs are part of an ancient stress response. CONCLUSION This study establishes mRNA interactome capture technique as an approach to study stress signal responses implicated in environmental changes. Our findings denote RBP changes in the proteome as critical components in plant adaptation to changing environments and in particular drought stress protein-dependent changes in RNA metabolism.
Collapse
Affiliation(s)
- Claudius Marondedze
- Cambridge Centre for Proteomics, Cambridge Systems Biology Centre, and Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1GA, UK.
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, 23955-6900, Thuwal, Kingdom of Saudi Arabia.
- Present Address: Laboratoire de Physiologie Cellulaire et Végétale, Université Grenoble Alpes, CEA/DRF/BIG, INRA UMR1417, CNRS UMR5168, 38054, Grenoble Cedex 9, France.
| | - Ludivine Thomas
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, 23955-6900, Thuwal, Kingdom of Saudi Arabia
- Present Address: HM.Clause, rue Louis Saillant, 26802, Portes-lès-Valence, France
| | - Chris Gehring
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, 23955-6900, Thuwal, Kingdom of Saudi Arabia
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 74 Borgo XX Giugno, 06121, Perugia, Italy
| | - Kathryn S Lilley
- Cambridge Centre for Proteomics, Cambridge Systems Biology Centre, and Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1GA, UK
| |
Collapse
|
7
|
Plant Desiccation Tolerance and its Regulation in the Foliage of Resurrection “Flowering-Plant” Species. AGRONOMY-BASEL 2018. [DOI: 10.3390/agronomy8080146] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The majority of flowering-plant species can survive complete air-dryness in their seed and/or pollen. Relatively few species (‘resurrection plants’) express this desiccation tolerance in their foliage. Knowledge of the regulation of desiccation tolerance in resurrection plant foliage is reviewed. Elucidation of the regulatory mechanism in resurrection grasses may lead to identification of genes that can improve stress tolerance and yield of major crop species. Well-hydrated leaves of resurrection plants are desiccation-sensitive and the leaves become desiccation tolerant as they are drying. Such drought-induction of desiccation tolerance involves changes in gene-expression causing extensive changes in the complement of proteins and the transition to a highly-stable quiescent state lasting months to years. These changes in gene-expression are regulated by several interacting phytohormones, of which drought-induced abscisic acid (ABA) is particularly important in some species. Treatment with only ABA induces desiccation tolerance in vegetative tissue of Borya constricta Churchill. and Craterostigma plantagineum Hochstetter. but not in the resurrection grass Sporobolus stapfianus Gandoger. Suppression of drought-induced senescence is also important for survival of drying. Further research is needed on the triggering of the induction of desiccation tolerance, on the transition between phases of protein synthesis and on the role of the phytohormone, strigolactone and other potential xylem-messengers during drying and rehydration.
Collapse
|
8
|
Peña PA, Quach T, Sato S, Ge Z, Nersesian N, Dweikat IM, Soundararajan M, Clemente T. Molecular and phenotypic characterization of transgenic wheat and sorghum events expressing the barley alanine aminotransferase. PLANTA 2017; 246:1097-1107. [PMID: 28801748 DOI: 10.1007/s00425-017-2753-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 08/02/2017] [Indexed: 05/03/2023]
Abstract
The expression of a barley alanine aminotransferase gene impacts agronomic outcomes in a C3 crop, wheat. The use of nitrogen-based fertilizers has become one of the major agronomic inputs in crop production systems. Strategies to enhance nitrogen assimilation and flux in planta are being pursued through the introduction of novel genetic alleles. Here an Agrobacterium-mediated approach was employed to introduce the alanine aminotransferase from barley (Hordeum vulgare), HvAlaAT, into wheat (Triticum aestivum) and sorghum (Sorghum bicolor), regulated by either constitutive or root preferred promoter elements. Plants harboring the transgenic HvAlaAT alleles displayed increased alanine aminotransferase (alt) activity. The enhanced alt activity impacted height, tillering and significantly boosted vegetative biomass relative to controls in wheat evaluated under hydroponic conditions, where the phenotypic outcome across these parameters varied relative to time of year study was conducted. Constitutive expression of HvAlaAT translated to elevation in wheat grain yield under field conditions. In sorghum, expression of HvAlaAT enhanced enzymatic activity, but no changes in phenotypic outcomes were observed. Taken together these results suggest that positive agronomic outcomes can be achieved through enhanced alt activity in a C3 crop, wheat. However, the variability observed across experiments under greenhouse conditions implies the phenotypic outcomes imparted by the HvAlaAT allele in wheat may be impacted by environment.
Collapse
Affiliation(s)
- Pamela A Peña
- Department of Agronomy and Horticulture, Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Truyen Quach
- Center for Biotechnology, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Shirley Sato
- Center for Biotechnology, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Zhengxiang Ge
- Center for Biotechnology, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Natalya Nersesian
- Center for Biotechnology, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Ismail M Dweikat
- Department of Agronomy and Horticulture, Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | | | - Tom Clemente
- Department of Agronomy and Horticulture, Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA.
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA.
| |
Collapse
|
9
|
Wada H, Masumoto-Kubo C, Tsutsumi K, Nonami H, Tanaka F, Okada H, Erra-Balsells R, Hiraoka K, Nakashima T, Hakata M, Morita S. Turgor-responsive starch phosphorylation in Oryza sativa stems: A primary event of starch degradation associated with grain-filling ability. PLoS One 2017; 12:e0181272. [PMID: 28727805 PMCID: PMC5519062 DOI: 10.1371/journal.pone.0181272] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 06/28/2017] [Indexed: 11/19/2022] Open
Abstract
Grain filling ability is mainly affected by the translocation of carbohydrates generated from temporarily stored stem starch in most field crops including rice (Oryza sativa L.). The partitioning of non-structural stem carbohydrates has been recognized as an important trait for raising the yield ceiling, yet we still do not fully understand how carbohydrate partitioning occurs in the stems. In this study, two rice subspecies that exhibit different patterns of non-structural stem carbohydrates partitioning, a japonica-dominant cultivar, Momiroman, and an indica-dominant cultivar, Hokuriku 193, were used as the model system to study the relationship between turgor pressure and metabolic regulation of non-structural stem carbohydrates, by combining the water status measurement with gene expression analysis and a dynamic prefixed 13C tracer analysis using a mass spectrometer. Here, we report a clear varietal difference in turgor-associated starch phosphorylation occurred at the initiation of non-structural carbohydrate partitioning. The data indicated that starch degradation in Hokuriku 193 stems occurred at full-heading, 5 days earlier than in Momiroman, contributing to greater sink filling. Gene expression analysis revealed that expression pattern of the gene encoding α-glucan, water dikinase (GWD1) was similar between two varieties, and the maximum expression level in Hokuriku 193, reached at full heading (4 DAH), was greater than in Momiroman, leading to an earlier increase in a series of amylase-related gene expression in Hokuriku 193. In both varieties, peaks in turgor pressure preceded the increases in GWD1 expression, and changes in GWD1 expression was correlated with turgor pressure. Additionally, a threshold is likely to exist for GWD1 expression to facilitate starch degradation. Taken together, these results raise the possibility that turgor-associated starch phosphorylation in cells is responsible for the metabolism that leads to starch degradation. Because the two cultivars exhibited remarkable varietal differences in the pattern of non-structural carbohydrate partitioning, our findings propose that the observed difference in grain-filling ability originated from turgor-associated regulation of starch phosphorylation in stem parenchyma cells. Further understanding of the molecular mechanism of turgor-regulation may provide a new selection criterion for breaking the yield barriers in crop production.
Collapse
Affiliation(s)
- Hiroshi Wada
- Kyushu Okinawa Agricultural Research Center, National Agriculture and Food Research Organization, Chikugo, Fukuoka, Japan
| | - Chisato Masumoto-Kubo
- Kyushu Okinawa Agricultural Research Center, National Agriculture and Food Research Organization, Chikugo, Fukuoka, Japan
| | - Koichi Tsutsumi
- Kyushu Okinawa Agricultural Research Center, National Agriculture and Food Research Organization, Chikugo, Fukuoka, Japan
| | - Hiroshi Nonami
- Department of Biomechanical Systems, Faculty of Agriculture, Ehime University, Matsuyama, Ehime, Japan
| | - Fukuyo Tanaka
- Central Region Agricultural Research Center, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
| | - Haruka Okada
- Department of Biomechanical Systems, Faculty of Agriculture, Ehime University, Matsuyama, Ehime, Japan
| | - Rosa Erra-Balsells
- Department of Organic Chemistry-CIHIDECAR, Faculty of Exact and Natural Sciences, University of Buenos Aires, Buenos Aires, Argentina
| | - Kenzo Hiraoka
- Clean Energy Research Center, The University of Yamanashi, Kofu, Yamanashi, Japan
| | - Taiken Nakashima
- Department of Biomechanical Systems, Faculty of Agriculture, Ehime University, Matsuyama, Ehime, Japan
| | - Makoto Hakata
- Kyushu Okinawa Agricultural Research Center, National Agriculture and Food Research Organization, Chikugo, Fukuoka, Japan
| | - Satoshi Morita
- Kyushu Okinawa Agricultural Research Center, National Agriculture and Food Research Organization, Chikugo, Fukuoka, Japan
| |
Collapse
|
10
|
Molecular responses of genetically modified maize to abiotic stresses as determined through proteomic and metabolomic analyses. PLoS One 2017; 12:e0173069. [PMID: 28245233 PMCID: PMC5330488 DOI: 10.1371/journal.pone.0173069] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 02/14/2017] [Indexed: 01/08/2023] Open
Abstract
Some genetically modified (GM) plants have transgenes that confer tolerance to abiotic stressors. Meanwhile, other transgenes may interact with abiotic stressors, causing pleiotropic effects that will affect the plant physiology. Thus, physiological alteration might have an impact on the product safety. However, routine risk assessment (RA) analyses do not evaluate the response of GM plants exposed to different environmental conditions. Therefore, we here present a proteome profile of herbicide-tolerant maize, including the levels of phytohormones and related compounds, compared to its near-isogenic non-GM variety under drought and herbicide stresses. Twenty differentially abundant proteins were detected between GM and non-GM hybrids under different water deficiency conditions and herbicide sprays. Pathway enrichment analysis showed that most of these proteins are assigned to energetic/carbohydrate metabolic processes. Among phytohormones and related compounds, different levels of ABA, CA, JA, MeJA and SA were detected in the maize varieties and stress conditions analysed. In pathway and proteome analyses, environment was found to be the major source of variation followed by the genetic transformation factor. Nonetheless, differences were detected in the levels of JA, MeJA and CA and in the abundance of 11 proteins when comparing the GM plant and its non-GM near-isogenic variety under the same environmental conditions. Thus, these findings do support molecular studies in GM plants Risk Assessment analyses.
Collapse
|
11
|
Kiyota E, Pena IA, Arruda P. The saccharopine pathway in seed development and stress response of maize. PLANT, CELL & ENVIRONMENT 2015; 38:2450-61. [PMID: 25929294 DOI: 10.1111/pce.12563] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 04/17/2015] [Accepted: 04/21/2015] [Indexed: 05/10/2023]
Abstract
Lysine is catabolized in developing plant tissues through the saccharopine pathway. In this pathway, lysine is converted into α-aminoadipic semialdehyde (AASA) by the bifunctional enzyme lysine-ketoglutarate reductase/saccharopine dehydrogenase (LKR/SDH). AASA is then converted into aminoadipic acid (AAA) by aminoadipic semialdehyde dehydrogenase (AASADH). Here, we show that LKR/SDH and AASADH are co-expressed in the sub-aleurone cell layers of the developing endosperm; however, although AASADH protein is produced in reproductive and vegetative tissues, the LKR/SDH protein is detectable only in the developing endosperm. AASADH showed an optimum pH of 7.4 and Kms for AASA and NAD(+) in the micromolar range. In the developing endosperm, the saccharopine pathway is induced by exogenous lysine and repressed by salt stress, whereas proline and pipecolic acid synthesis are significantly repressed by lysine. In young coleoptiles, the LKR/SDH and AASADH transcriptions are induced by abiotic stress, but while the AASADH protein accumulates in the stressed tissues, the LKR/SDH protein is not produced. In the developing seeds, the saccharopine pathway is used for pipecolic acid synthesis although proline may play a major role in abiotic stress response. The results indicate that the saccharopine pathway in maize seed development and stress responses significantly differ from that observed for dicot plants.
Collapse
Affiliation(s)
- Eduardo Kiyota
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, 13083-875, Campinas, Sao Paulo, Brazil
| | - Izabella Agostinho Pena
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, 13083-875, Campinas, Sao Paulo, Brazil
| | - Paulo Arruda
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, 13083-875, Campinas, Sao Paulo, Brazil
- Departamento de Genética e Evolução, Instituto de Biologia, Universidade Estadual de Campinas, 13083-875, Campinas, Sao Paulo, Brazil
| |
Collapse
|
12
|
Zhang T, Yu LX, Zheng P, Li Y, Rivera M, Main D, Greene SL. Identification of Loci Associated with Drought Resistance Traits in Heterozygous Autotetraploid Alfalfa (Medicago sativa L.) Using Genome-Wide Association Studies with Genotyping by Sequencing. PLoS One 2015; 10:e0138931. [PMID: 26406473 PMCID: PMC4583413 DOI: 10.1371/journal.pone.0138931] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Accepted: 09/05/2015] [Indexed: 01/31/2023] Open
Abstract
Drought resistance is an important breeding target for enhancing alfalfa productivity in arid and semi-arid regions. Identification of genes involved in drought tolerance will facilitate breeding for improving drought resistance and water use efficiency in alfalfa. Our objective was to use a diversity panel of alfalfa accessions comprised of 198 cultivars and landraces to identify genes involved in drought tolerance. The panel was selected from the USDA-ARS National Plant Germplasm System alfalfa collection and genotyped using genotyping by sequencing. A greenhouse procedure was used for phenotyping two important traits associated with drought tolerance: drought resistance index (DRI) and relative leaf water content (RWC). Marker-trait association identified nineteen and fifteen loci associated with DRI and RWC, respectively. Alignments of target sequences flanking to the resistance loci against the reference genome of M. truncatula revealed multiple chromosomal locations. Markers associated with DRI are located on all chromosomes while markers associated with RWC are located on chromosomes 1, 2, 3, 4, 5, 6 and 7. Co-localizations of significant markers between DRI and RWC were found on chromosomes 3, 5 and 7. Most loci associated with DRI in this work overlap with the reported QTLs associated with biomass under drought in alfalfa. Additional significant markers were targeted to several contigs with unknown chromosomal locations. BLAST search using their flanking sequences revealed homology to several annotated genes with functions in stress tolerance. With further validation, these markers may be used for marker-assisted breeding new alfalfa varieties with drought resistance and enhanced water use efficiency.
Collapse
Affiliation(s)
- Tiejun Zhang
- Plant and Germplasm Introduction and Testing Research, United States Department of Agriculture-Agricultural Research Service, Prosser, Washington, United States of America
| | - Long-Xi Yu
- Plant and Germplasm Introduction and Testing Research, United States Department of Agriculture-Agricultural Research Service, Prosser, Washington, United States of America
| | - Ping Zheng
- Department of Horticulture, Washington State University, Pullman, Washington, United States of America
| | - Yajun Li
- Plant and Germplasm Introduction and Testing Research, United States Department of Agriculture-Agricultural Research Service, Prosser, Washington, United States of America
| | - Martha Rivera
- Plant and Germplasm Introduction and Testing Research, United States Department of Agriculture-Agricultural Research Service, Prosser, Washington, United States of America
| | - Dorrie Main
- Department of Horticulture, Washington State University, Pullman, Washington, United States of America
| | - Stephanie L. Greene
- National Center for Genetic Resource Preservation, United States Department of Agriculture-Agricultural Research Service, Fort Collins, Colorado, United States of America
| |
Collapse
|
13
|
Končitíková R, Vigouroux A, Kopečná M, Andree T, Bartoš J, Šebela M, Moréra S, Kopečný D. Role and structural characterization of plant aldehyde dehydrogenases from family 2 and family 7. Biochem J 2015; 468:109-23. [PMID: 25734422 DOI: 10.1042/bj20150009] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Aldehyde dehydrogenases (ALDHs) are responsible for oxidation of biogenic aldehyde intermediates as well as for cell detoxification of aldehydes generated during lipid peroxidation. So far, 13 ALDH families have been described in plants. In the present study, we provide a detailed biochemical characterization of plant ALDH2 and ALDH7 families by analysing maize and pea ALDH7 (ZmALDH7 and PsALDH7) and four maize cytosolic ALDH(cALDH)2 isoforms RF2C, RF2D, RF2E and RF2F [the first maize ALDH2 was discovered as a fertility restorer (RF2A)]. We report the crystal structures of ZmALDH7, RF2C and RF2F at high resolution. The ZmALDH7 structure shows that the three conserved residues Glu(120), Arg(300) and Thr(302) in the ALDH7 family are located in the substrate-binding site and are specific to this family. Our kinetic analysis demonstrates that α-aminoadipic semialdehyde, a lysine catabolism intermediate, is the preferred substrate for plant ALDH7. In contrast, aromatic aldehydes including benzaldehyde, anisaldehyde, cinnamaldehyde, coniferaldehyde and sinapaldehyde are the best substrates for cALDH2. In line with these results, the crystal structures of RF2C and RF2F reveal that their substrate-binding sites are similar and are formed by an aromatic cluster mainly composed of phenylalanine residues and several nonpolar residues. Gene expression studies indicate that the RF2C gene, which is strongly expressed in all organs, appears essential, suggesting that the crucial role of the enzyme would certainly be linked to the cell wall formation using aldehydes from phenylpropanoid pathway as substrates. Finally, plant ALDH7 may significantly contribute to osmoprotection because it oxidizes several aminoaldehydes leading to products known as osmolytes.
Collapse
Affiliation(s)
- Radka Končitíková
- *Department of Protein Biochemistry and Proteomics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 11, Olomouc CZ-783 71, Czech Republic
| | - Armelle Vigouroux
- ‡Laboratoire d'Enzymologie et Biochimie Structurales, CNRS, Avenue de la Terrasse, Gif-sur-Yvette 91198, France
| | - Martina Kopečná
- *Department of Protein Biochemistry and Proteomics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 11, Olomouc CZ-783 71, Czech Republic
| | - Tomáš Andree
- †Department of Biochemistry, Faculty of Science, Palacký University, Šlechtitelů 11, Olomouc CZ-783 71, Czech Republic
| | - Jan Bartoš
- §Centre of Plant Structural and Functional Genomics, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany, Šlechtitelů 31, Olomouc CZ-78371, Czech Republic
| | - Marek Šebela
- *Department of Protein Biochemistry and Proteomics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 11, Olomouc CZ-783 71, Czech Republic
| | - Solange Moréra
- ‡Laboratoire d'Enzymologie et Biochimie Structurales, CNRS, Avenue de la Terrasse, Gif-sur-Yvette 91198, France
| | - David Kopečný
- *Department of Protein Biochemistry and Proteomics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 11, Olomouc CZ-783 71, Czech Republic
| |
Collapse
|
14
|
Missihoun TD, Hou Q, Mertens D, Bartels D. Sequence and functional analyses of the aldehyde dehydrogenase 7B4 gene promoter in Arabidopsis thaliana and selected Brassicaceae: regulation patterns in response to wounding and osmotic stress. PLANTA 2014; 239:1281-98. [PMID: 24619504 DOI: 10.1007/s00425-014-2051-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 02/20/2014] [Indexed: 05/11/2023]
Abstract
Aldehyde dehydrogenases metabolise a wide range of aliphatic and aromatic aldehydes, which become cytotoxic at high levels. Family 7 aldehyde dehydrogenase genes, often described as antiquitins or turgor-responsive genes in plants, are broadly conserved across all domains. Despite the high conservation of the plant ALDH7 proteins and their importance in stress responses, their regulation has not been investigated. Here, we compared ALDH7 genes of different Brassicaceae and found that, in contrast to the gene organisation and protein coding sequences, similarities in the promoter sequences were limited to the first few hundred nucleotides upstream of the translation start codon. The function of this region was studied by isolating the core promoter of the Arabidopsis thaliana ALDH7B4 gene, taken as model. The promoter was found to be responsive to wounding in addition to salt and dehydration stress. Cis-acting elements involved in stress responsiveness were analysed and two conserved ACGT-containing motifs proximal to the translation start codon were found to be essential for the responsiveness to osmotic stress in leaves and in seeds. The integrity of an upstream ACGT motif and a dehydration-responsive element/C-repeat-low temperature-responsive element was found to be necessary for ALDH7B4 expression in seeds and induction by salt, dehydration and ABA in leaves. The comparison of the gene expression in selected Arabidopsis mutants demonstrated that osmotic stress-induced ALDH7B4 expression in leaves and seeds involves both ABA- and lipid-signalling components.
Collapse
Affiliation(s)
- Tagnon D Missihoun
- Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn, Kirschallee 1, 53115, Bonn, Germany
| | | | | | | |
Collapse
|
15
|
Hollenbach B, Dietz KJ. Molecular Cloning ofemip, a Member of theMajor Intrinsic Protein(MIP) Gene Family, Preferentially Expressed in Epidermal Cells of Barley Leaves. ACTA ACUST UNITED AC 2014. [DOI: 10.1111/j.1438-8677.1995.tb00516.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
16
|
Griffiths CA, Gaff DF, Neale AD. Drying without senescence in resurrection plants. FRONTIERS IN PLANT SCIENCE 2014; 5:36. [PMID: 24575108 PMCID: PMC3922084 DOI: 10.3389/fpls.2014.00036] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Accepted: 01/27/2014] [Indexed: 05/16/2023]
Abstract
Research into extreme drought tolerance in resurrection plants using species such as Craterostigma plantagineum, C. wilmsii, Xerophyta humilis, Tortula ruralis, and Sporobolus stapfianus has provided some insight into the desiccation tolerance mechanisms utilized by these plants to allow them to persist under extremely adverse environmental conditions. Some of the mechanisms used to ensure cellular preservation during severe dehydration appear to be peculiar to resurrection plants. Apart from the ability to preserve vital cellular components during drying and rehydration, such mechanisms include the ability to down-regulate growth-related metabolism rapidly in response to changes in water availability, and the ability to inhibit dehydration-induced senescence programs enabling reconstitution of photosynthetic capacity quickly following a rainfall event. Extensive research on the molecular mechanism of leaf senescence in non-resurrection plants has revealed a multi-layered regulatory network operates to control programed cell death pathways. However, very little is known about the molecular mechanisms that resurrection plants employ to avoid undergoing drought-related senescence during the desiccation process. To survive desiccation, dehydration in the perennial resurrection grass S. stapfianus must proceed slowly over a period of 7 days or more. Leaves detached from the plant before 60% relative water content (RWC) is attained are desiccation-sensitive indicating that desiccation tolerance is conferred in vegetative tissue of S. stapfianus when the leaf RWC has declined to 60%. Whilst some older leaves remaining attached to the plant during dehydration will senesce, suggesting dehydration-induced senescence may be influenced by leaf age or the rate of dehydration in individual leaves, the majority of leaves do not senesce. Rather these leaves dehydrate to air-dryness and revive fully following rehydration. Hence it seems likely that there are genes expressed in younger leaf tissues of resurrection plants that enable suppression of drought-related senescence pathways. As very few studies have directly addressed this phenomenon, this review aims to discuss current literature surrounding the activation and suppression of senescence pathways and how these pathways may differ in resurrection plants.
Collapse
Affiliation(s)
| | | | - Alan D. Neale
- School of Biological Sciences, Monash UniversityClayton, VIC, Australia
| |
Collapse
|
17
|
Battelli R, Lombardi L, Picciarelli P, Lorenzi R, Frigerio L, Rogers HJ. Expression and localisation of a senescence-associated KDEL-cysteine protease from Lilium longiflorum tepals. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2014; 214:38-46. [PMID: 24268162 DOI: 10.1016/j.plantsci.2013.09.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 09/18/2013] [Accepted: 09/21/2013] [Indexed: 06/02/2023]
Abstract
Senescence is a tightly regulated process and both compartmentalisation and regulated activation of degradative enzymes is critical to avoid premature cellular destruction. Proteolysis is a key process in senescent tissues, linked to disassembly of cellular contents and nutrient remobilisation. Cysteine proteases are responsible for most proteolytic activity in senescent petals, encoded by a gene family comprising both senescence-specific and senescence up-regulated genes. KDEL cysteine proteases are present in senescent petals of several species. Isoforms from endosperm tissue localise to ricinosomes: cytosol acidification following vacuole rupture results in ricinosome rupture and activation of the KDEL proteases from an inactive proform. Here data show that a Lilium longiflorum KDEL protease gene (LlCYP) is transcriptionally up-regulated, and a KDEL cysteine protease antibody reveals post-translational processing in senescent petals. Plants over-expressing LlCYP lacking the KDEL sequence show reduced growth and early senescence. Immunogold staining and confocal analyses indicate that in young tissues the protein is retained in the ER, while during floral senescence it is localised to the vacuole. Our data therefore suggest that the vacuole may be the site of action for at least this KDEL cysteine protease during tepal senescence.
Collapse
Affiliation(s)
- Riccardo Battelli
- Department of Agricolture, food and environment, University of Pisa, Via del Borghetto 80, 56124, Italy.
| | | | | | | | | | | |
Collapse
|
18
|
Neshich IAP, Kiyota E, Arruda P. Genome-wide analysis of lysine catabolism in bacteria reveals new connections with osmotic stress resistance. THE ISME JOURNAL 2013; 7:2400-10. [PMID: 23887172 PMCID: PMC3834855 DOI: 10.1038/ismej.2013.123] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 06/20/2013] [Accepted: 06/21/2013] [Indexed: 11/09/2022]
Abstract
Lysine is catabolized via the saccharopine pathway in plants and mammals. In this pathway, lysine is converted to α-aminoadipic-δ-semialdehyde (AASA) by lysine-ketoglutarate reductase/saccharopine dehydrogenase (LKR/SDH); thereafter, AASA is converted to aminoadipic acid (AAA) by α-aminoadipic-δ-semialdehyde dehydrogenase (AASADH). Here, we investigate the occurrence, genomic organization and functional role of lysine catabolic pathways among prokaryotes. Surprisingly, only 27 species of the 1478 analyzed contain the lkr and sdh genes, whereas 323 species contain aasadh orthologs. A sdh-related gene, identified in 159 organisms, was frequently found contiguously to an aasadh gene. This gene, annotated as lysine dehydrogenase (lysdh), encodes LYSDH an enzyme that directly converts lysine to AASA. Pipecolate oxidase (PIPOX) and lysine-6-aminotransferase (LAT), that converts lysine to AASA, were also found associated with aasadh. Interestingly, many lysdh-aasadh-containing organisms live under hyperosmotic stress. To test the role of the lysine-to-AASA pathways in the bacterial stress response, we subjected Silicibacter pomeroyi to salt stress. All but lkr, sdh, lysdh and aasadh were upregulated under salt stress conditions. In addition, lysine-supplemented culture medium increased the growth rate of S. pomeroyi under high-salt conditions and induced high-level expression of the lysdh-aasadh operon. Finally, transformation of Escherichia coli with the S. pomeroyi lysdh-aasadh operon resulted in increased salt tolerance. The transformed E. coli accumulated high levels of the compatible solute pipecolate, which may account for the salt resistance. These findings suggest that the lysine-to-AASA pathways identified in this work may have a broad evolutionary importance in osmotic stress resistance.
Collapse
Affiliation(s)
- Izabella AP Neshich
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | - Eduardo Kiyota
- Departamento de Genética e Evolução, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | - Paulo Arruda
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
- Departamento de Genética e Evolução, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| |
Collapse
|
19
|
VOESENEK LACJ, VAN DER VEEN R. The role of phytohormones in plant stress: too much or too little water. ACTA ACUST UNITED AC 2013. [DOI: 10.1111/j.1438-8677.1994.tb00739.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
20
|
Wacker SJ, Aponte-Santamaría C, Kjellbom P, Nielsen S, de Groot BL, Rützler M. The identification of novel, high affinity AQP9 inhibitors in an intracellular binding site. Mol Membr Biol 2013; 30:246-60. [PMID: 23448163 DOI: 10.3109/09687688.2013.773095] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND The involvement of aquaporin (AQP) water and small solute channels in the etiology of several diseases, including cancer, neuromyelitis optica and body fluid imbalance disorders, has been suggested previously. Furthermore, results obtained in a mouse model suggested that AQP9 function contributes to hyperglycemia in type-2 diabetes. In addition, the physiological role of several AQP family members remains poorly understood. Small molecule inhibitors of AQPs are therefore desirable to further study AQP physiological and pathophysiological functions. METHODS The binding of recently established AQP9 inhibitors to a homology model of AQP9 was investigated by molecular dynamics simulations and molecular docking. Putative inhibitor binding sites identified with this procedure were modified by site-directed mutagenesis. Active compounds were measured in a mammalian cell water permeability assay of mutated AQP9 isoforms and tested for changes in inhibitory effects. CONTROLS Three independent cell lines were established for each mutated AQP9 isoform and functionality of mutant isoforms was established. PRINCIPAL FINDINGS We have identified putative binding sites of recently established AQP9 inhibitors. This information facilitated successful identification of novel AQP9 inhibitors with low micromolar IC50 values in a cell based assay by in silico screening of a compound library targeting specifically this binding site. SIGNIFICANCE We have established a successful strategy for AQP small molecule inhibitor identification. AQP inhibitors may be relevant as experimental tools, to enhance our understanding of AQP function, and in the treatment of various diseases.
Collapse
Affiliation(s)
- Sören J Wacker
- The Max Planck Institute for Biophysical Chemistry, Computational Biomolecular Dynamics Group, Göttingen, Germany
| | | | | | | | | | | |
Collapse
|
21
|
Arruda P, Neshich IP. Nutritional‐rich and stress‐tolerant crops by saccharopine pathway manipulation. Food Energy Secur 2012. [DOI: 10.1002/fes3.9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Paulo Arruda
- Centro de Biologia Molecular e Engenharia Genética Universidade Estadual de Campinas Campinas Sao Paulo Brazil
- Departamento de Genética e Evolução, IB Universidade Estadual de Campinas Campinas Sao Paulo Brazil
| | - Izabella Pena Neshich
- Centro de Biologia Molecular e Engenharia Genética Universidade Estadual de Campinas Campinas Sao Paulo Brazil
| |
Collapse
|
22
|
Wen Y, Wang X, Xiao S, Wang Y. Ectopic expression of VpALDH2B4, a novel aldehyde dehydrogenase gene from Chinese wild grapevine (Vitis pseudoreticulata), enhances resistance to mildew pathogens and salt stress in Arabidopsis. PLANTA 2012; 236:525-39. [PMID: 22437646 DOI: 10.1007/s00425-012-1624-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Accepted: 02/29/2012] [Indexed: 05/10/2023]
Abstract
Aldehyde dehydrogenases (ALDHs) catalyze the irreversible oxidation of a broad spectrum of reactive aldehydes to their corresponding carboxylic acids. Although the proteins have been studied from various organisms and at different growth stages in plants, their potential roles in pathogen infection have not been examined. Here we isolated and functionally characterized a pathogen-inducible ALDH gene (VpALDH2B4) from Chinese wild grapevine Vitis pseudoreticulata accession Baihe-35-1. When transiently expressed in Arabidopsis leaves, VpALDH2B4 was found to be localized in mitochondria. Escherichia coli expressed GST-VpALDH2B4 exhibited ALDH activity in vitro and was capable of utilizing malondialdehyde (MDA), acetaldehyde and glyceraldehydes as its substrate. Over-expression of VpALDH2B4 in Arabidopsis resulted in hypersensitive response-like cell death, enhanced resistance to downy mildew and powdery mildew presumably via the SA-signaling pathway. The same Arabidopsis transgenic plants also showed enhanced tolerance to salt stress, which is accompanied by less MDA accumulation and upregulation of the stress-responsive superoxide dismutase activity. Taken together, our results suggest that VpALDH2B4 and perhaps its orthologous genes may be involved in responses of plants to stresses imposed by both biotrophic pathogens and high salinity conditions.
Collapse
Affiliation(s)
- Yingqiang Wen
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China.
| | | | | | | |
Collapse
|
23
|
Shen Y, Zhang Y, Yang C, Lan Y, Liu L, Liu S, Chen Z, Ren G, Wan J. Mutation of OsALDH7 causes a yellow-colored endosperm associated with accumulation of oryzamutaic acid A in rice. PLANTA 2012; 235:433-441. [PMID: 21960163 DOI: 10.1007/s00425-011-1477-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2011] [Accepted: 06/24/2011] [Indexed: 05/31/2023]
Abstract
Aldehyde dehydrogenase proteins consist of a superfamily and the family 7 (ALDH7) is a typical group with highly conserved proteins across species. It catalyzes oxidation of α-aminoadipic semialdehyde (AASA) in lysine degradation, participates in protection against hyperosmotic stress, and detoxifies aldehydes in human; however, its function in plants has been much less documented. Here we reported a mutant with yellow-colored endosperm in rice, and showed that the yellow endosperm was caused by mutation of OsALDH7. OsALDH7 is expressed in all tissues detected, with the highest level in mature seeds. We found that oryzamutaic acid A accumulated during late seed development and after a year-long storage in the colored endosperm, whereas it was undetectable in the wild type endosperm. Moreover, lysine degradation was enhanced in yeast over-expressing OsALDH7 and as a result, content of lysine, glutamate and saccharopine was changed, suggesting a role of OsALDH7 in lysine catabolism.
Collapse
Affiliation(s)
- Yi Shen
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Battelli R, Lombardi L, Rogers HJ, Picciarelli P, Lorenzi R, Ceccarelli N. Changes in ultrastructure, protease and caspase-like activities during flower senescence in Lilium longiflorum. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2011; 180:716-725. [PMID: 21421423 DOI: 10.1016/j.plantsci.2011.01.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Revised: 01/27/2011] [Accepted: 01/31/2011] [Indexed: 05/28/2023]
Abstract
The last phase of flower development is senescence during which nutrients are recycled to developing tissues. The ultimate fate of petal cells is cell death. In this study we used the ethylene-insensitive Lilium longiflorum as a model system to characterize Lily flower senescence from the physiological, biochemical and ultrastructural point of view. Lily flower senescence is highly predictable: it starts three days after flower opening, before visible signs of wilting, and ends with the complete wilting of the corolla within 10 days. The earliest events in L. longiflorum senescence include a fall in fresh and dry weight, fragmentation of nuclear DNA and cellular disruption. Mesophyll cell degradation is associated with vacuole permeabilization and rupture. Protein degradation starts later, coincident with the first visible signs of tepal senescence. A fall in total protein is accompanied by a rise in total proteases, and also by a rise of three classes of caspase-like activity with activities against YVAD, DEVD and VEID. The timing of the appearance of these caspase-like activities argues against their involvement in the regulation of the early stages of senescence, but their possible role in the regulation of the final stages of senescence and cell death is discussed.
Collapse
Affiliation(s)
- Riccardo Battelli
- Department of Crop Plant Biology, University of Pisa, Via Mariscoglio 34, 56124 Pisa, Italy
| | | | | | | | | | | |
Collapse
|
25
|
Bona E, Marsano F, Massa N, Cattaneo C, Cesaro P, Argese E, Sanità di Toppi L, Cavaletto M, Berta G. Proteomic analysis as a tool for investigating arsenic stress in Pteris vittata roots colonized or not by arbuscular mycorrhizal symbiosis. J Proteomics 2011; 74:1338-50. [PMID: 21457805 DOI: 10.1016/j.jprot.2011.03.027] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Revised: 03/22/2011] [Accepted: 03/23/2011] [Indexed: 12/23/2022]
Abstract
Pteris vittata can tolerate very high soil arsenic concentration and rapidly accumulates the metalloid in its fronds. However, its tolerance to arsenic has not been completely explored. Arbuscular mycorrhizal (AM) fungi colonize the root of most terrestrial plants, including ferns. Mycorrhizae are known to affect plant responses in many ways: improving plant nutrition, promoting plant tolerance or resistance to pathogens, drought, salinity and heavy metal stresses. It has been observed that plants growing on arsenic polluted soils are usually mycorrhizal and that AM fungi enhance arsenic tolerance in a number of plant species. The aim of the present work was to study the effects of the AM fungus Glomus mosseae on P. vittata plants treated with arsenic using a proteomic approach. Image analysis showed that 37 spots were differently affected (21 identified). Arsenic treatment affected the expression of 14 spots (12 up-regulated and 2 down-regulated), while in presence of G. mosseae modulated 3 spots (1 up-regulated and 2 down-regulated). G. mosseae, in absence of arsenic, modulated 17 spots (13 up-regulated and 4 down-regulated). Arsenic stress was observed even in an arsenic tolerant plant as P. vittata and a protective effect of AM symbiosis toward arsenic stress was observed.
Collapse
Affiliation(s)
- Elisa Bona
- Dipartimento di Scienze dell'Ambiente e della Vita, Università del Piemonte Orientale A. Avogadro, Alessandria, Novara, Vercelli, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Brocker C, Cantore M, Failli P, Vasiliou V. Aldehyde dehydrogenase 7A1 (ALDH7A1) attenuates reactive aldehyde and oxidative stress induced cytotoxicity. Chem Biol Interact 2011; 191:269-77. [PMID: 21338592 DOI: 10.1016/j.cbi.2011.02.016] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Revised: 02/12/2011] [Accepted: 02/13/2011] [Indexed: 11/20/2022]
Abstract
Mammalian aldehyde dehydrogenase 7A1 (ALDH7A1) is homologous to plant ALDH7B1 which protects against various forms of stress such as increased salinity, dehydration and treatment with oxidants or pesticides. Deleterious mutations in human ALDH7A1 are responsible for pyridoxine-dependent and folinic acid-responsive seizures. In previous studies, we have shown that human ALDH7A1 protects against hyperosmotic stress presumably through the generation of betaine, an important cellular osmolyte, formed from betaine aldehyde. Hyperosmotic stress is coupled to an increase in oxidative stress and lipid peroxidation (LPO). In this study, cell viability assays revealed that stable expression of mitochondrial ALDH7A1 in Chinese hamster ovary (CHO) cells provides significant protection against treatment with the LPO-derived aldehydes hexanal and 4-hydroxy-2-nonenal (4HNE) implicating a protective function for the enzyme during oxidative stress. A significant increase in cell survival was also observed in CHO cells expressing either mitochondrial or cytosolic ALDH7A1 treated with increasing concentrations of hydrogen peroxide (H(2)O(2)) or 4HNE, providing further evidence for anti-oxidant activity. In vitro enzyme activity assays indicate that human ALDH7A1 is sensitive to oxidation and that efficiency can be at least partially restored by incubating recombinant protein with the thiol reducing agent β-mercaptoethanol (BME). We also show that after reactivation with BME, recombinant ALDH7A1 is capable of metabolizing the reactive aldehyde 4HNE. In conclusion, ALDH7A1 mechanistically appears to provide cells protection through multiple pathways including the removal of toxic LPO-derived aldehydes in addition to osmolyte generation.
Collapse
Affiliation(s)
- Chad Brocker
- Department of Pharmaceutical Sciences, University of Colorado Denver, Aurora, CO 80045, USA
| | | | | | | |
Collapse
|
27
|
Zang QW, Wang CX, Li XY, Guo ZA, Jing RL, Zhao J, Chang XP. Isolation and characterization of a gene encoding a polyethylene glycol-induced cysteine protease in common wheat. J Biosci 2011; 35:379-88. [PMID: 20826947 DOI: 10.1007/s12038-010-0043-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Plant cysteine protease (CP) genes are induced by abiotic stresses such as drought, yet their functions remain largely unknown. We isolated the full-length cDNA encoding a Triticum aestivum CP gene, designated TaCP, from wheat by the rapid amplification of cDNA ends (RACE) method. Sequence analysis revealed that TaCP contains an open reading frame encoding a protein of 362 amino acids, which is 96% identical to barley cysteine protease HvSF42. The TaCP transcript level in wheat seedlings was upregulated during polyethylene glycol (PEG) stress, with a peak appearing around 12 h after treatment. TaCP expression level increased rapidly with NaCl treatment at 48 h. TaCP responded strongly to low temperature (4 degree C) treatment from 1 h post-treatment and reached a peak of about 40-fold at 72 h. However, it showed only a very slight response to abscisic acid (ABA). More than one copy of TaCP was present in each of the three genomes of hexaploid wheat and its diploid donors. TaCP fused with green fluorescent protein (GFP) was located in the plasma membrane of onion epidermis cells. Transgenic Arabidopsis plants overexpressing TaCP showed stronger drought tolerance and higher CP activity under water-stressed conditions than wild-type Arabidopsis plants. The results suggest that TaCP plays a role in tolerance to water deficit.
Collapse
Affiliation(s)
- Qing-Wei Zang
- The National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Crop Germplasm and Biotechnology, Ministry of Agriculture, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | | | | | | | | | | | | |
Collapse
|
28
|
Human antiquitin: structural and functional studies. Chem Biol Interact 2010; 191:165-70. [PMID: 21185811 DOI: 10.1016/j.cbi.2010.12.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Revised: 12/17/2010] [Accepted: 12/18/2010] [Indexed: 11/21/2022]
Abstract
Antiquitin (ALDH7) is a member of the aldehyde dehydrogenase superfamily which oxidizes various aldehydes to form the corresponding carboxylic acids. Human antiquitin (ALDH7A1) is believed to play a role in detoxification, osmoregulation and more specifically, in lysine metabolism in which alpha-aminoadipic semialdehyde is identified as the specific, physiological substrate of the enzyme. In the present study, the structural basis for the substrate specificity was studied by site-directed mutagenesis. Kinetic analysis on wild-type human antiquitin and its mutants E121A and R301A demonstrated the importance of Glu121 and Arg301 in the binding as well as the turnover of alpha-aminoadipic semialdehyde. On the functional aspect, in addition to the already diversified physiological functions of antiquitin, the recent demonstration of its presence in the nucleus suggests that it may also play a role in cell growth and cell cycle progression. In this investigation, the expression level of antiquitin was monitored in synchronized WRL68 and HEK293 cell culture systems. It was found that the protein was up-regulated during G(1)-S phase transition. Immunofluorescence staining of the synchronized cells demonstrated an increased expression and accumulation of antiquitin in the nucleus during the G(1)-S phase transition. Knockdown of antiquitin using shRNA transfection also resulted in changes in the levels of several key cell cycle-regulating proteins.
Collapse
|
29
|
Brocker C, Lassen N, Estey T, Pappa A, Cantore M, Orlova VV, Chavakis T, Kavanagh KL, Oppermann U, Vasiliou V. Aldehyde dehydrogenase 7A1 (ALDH7A1) is a novel enzyme involved in cellular defense against hyperosmotic stress. J Biol Chem 2010; 285:18452-63. [PMID: 20207735 DOI: 10.1074/jbc.m109.077925] [Citation(s) in RCA: 150] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Mammalian ALDH7A1 is homologous to plant ALDH7B1, an enzyme that protects against various forms of stress, such as salinity, dehydration, and osmotic stress. It is known that mutations in the human ALDH7A1 gene cause pyridoxine-dependent and folic acid-responsive seizures. Herein, we show for the first time that human ALDH7A1 protects against hyperosmotic stress by generating osmolytes and metabolizing toxic aldehydes. Human ALDH7A1 expression in Chinese hamster ovary cells attenuated osmotic stress-induced apoptosis caused by increased extracellular concentrations of sucrose or sodium chloride. Purified recombinant ALDH7A1 efficiently metabolized a number of aldehyde substrates, including the osmolyte precursor, betaine aldehyde, lipid peroxidation-derived aldehydes, and the intermediate lysine degradation product, alpha-aminoadipic semialdehyde. The crystal structure for ALDH7A1 supports the enzyme's substrate specificities. Tissue distribution studies in mice showed the highest expression of ALDH7A1 protein in liver, kidney, and brain, followed by pancreas and testes. ALDH7A1 protein was found in the cytosol, nucleus, and mitochondria, making it unique among the aldehyde dehydrogenase enzymes. Analysis of human and mouse cDNA sequences revealed mitochondrial and cytosolic transcripts that are differentially expressed in a tissue-specific manner in mice. In conclusion, ALDH7A1 is a novel aldehyde dehydrogenase expressed in multiple subcellular compartments that protects against hyperosmotic stress by generating osmolytes and metabolizing toxic aldehydes.
Collapse
Affiliation(s)
- Chad Brocker
- Department of Pharmaceutical Sciences, University of Colorado Denver, Aurora, Colorado 80045, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Wong JWY, Chan CL, Tang WK, Cheng CHK, Fong WP. Is antiquitin a mitochondrial Enzyme? J Cell Biochem 2010; 109:74-81. [PMID: 19885858 DOI: 10.1002/jcb.22381] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Antiquitin is an aldehyde dehydrogenase involved in the catabolism of lysine. Mutations of antiquitin have been linked with the disease pyridoxine-dependent seizures. While it is well established that lysine metabolism takes place in the mitochondrial matrix, evidence for the mitochondrial localization of antiquitin has been lacking. In the present study, the subcellular localization of antiquitin was investigated using human embryonic kidney HEK293 cells. Three different approaches were used. First, confocal microscopic analysis was carried out on cells transiently transfected with fusion constructs containing enhanced green fluorescent protein with different lengths of antiquitin based on the different potential start codons of translation. Second, immunofluorescence staining was used to detect the localization of antiquitin directly in the cells. Third, subcellular fractionation was carried out and the individual fraction was analyzed for the presence of antiquitin by Western blot and flow cytometric analyses. All the results showed that antiquitin was present not only in the cytosol but also in the mitochondria.
Collapse
Affiliation(s)
- Judy Wei-Yan Wong
- Department of Biochemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | | | | | | | | |
Collapse
|
31
|
Alexandersson E, Danielson JAH, Råde J, Moparthi VK, Fontes M, Kjellbom P, Johanson U. Transcriptional regulation of aquaporins in accessions of Arabidopsis in response to drought stress. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 61:650-60. [PMID: 19947979 DOI: 10.1111/j.1365-313x.2009.04087.x] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Aquaporins facilitate water transport over cellular membranes, and are therefore believed to play an important role in water homeostasis. In higher plants aquaporin-like proteins, also called major intrinsic proteins (MIPs), are divided into five subfamilies. We have previously shown that MIP transcription in Arabidopsis thaliana is generally downregulated in leaves upon drought stress, apart from two members of the plasma membrane intrinsic protein (PIP) subfamily, AtPIP1;4 and AtPIP2;5, which are upregulated. In order to assess whether this regulation is general or accession-specific we monitored the gene expression of all PIPs in five Arabidopsis accessions. The overall drought regulation of PIPs was well conserved for all five accessions tested, suggesting a general and fundamental physiological role of this drought response. In addition, significant differences among accessions were identified for transcripts of three PIP genes. Principal component analysis showed that most of the PIP transcriptional variation during drought stress could be explained by one variable linked to leaf water content. Promoter-GUS constructs of AtPIP1;4, AtPIP2;5 and also AtPIP2;6, which is unresponsive to drought stress, had distinct expression patterns concentrated in the base of the leaf petioles and parts of the flowers. The presence of drought stress response elements within the 1.6-kb promoter regions of AtPIP1;4 and AtPIP2;5 was demonstrated by comparing transcription of the promoter reporter construct and the endogenous gene upon drought stress. Analysis by ATTED-II and other web-based bioinformatical tools showed that several of the MIPs downregulated upon drought are strongly co-expressed, whereas AtPIP1;4, AtPIP2;5 and AtPIP2;6 are not co-expressed.
Collapse
Affiliation(s)
- Erik Alexandersson
- Department of Biochemistry, Center for Molecular Protein Science, Lund University, PO Box 124, SE-221 00, Lund, Sweden
| | | | | | | | | | | | | |
Collapse
|
32
|
|
33
|
WU WZ, PENG XL, WANG D. Isolation of a Plasmalemma Aquaporin Encoding Gene StPIP1 from Solanum tuberosum L. and Its Expression in Transgenic Tobacco. ACTA ACUST UNITED AC 2009. [DOI: 10.1016/s1671-2927(08)60326-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
34
|
Tungngoen K, Kongsawadworakul P, Viboonjun U, Katsuhara M, Brunel N, Sakr S, Narangajavana J, Chrestin H. Involvement of HbPIP2;1 and HbTIP1;1 aquaporins in ethylene stimulation of latex yield through regulation of water exchanges between inner liber and latex cells in Hevea brasiliensis. PLANT PHYSIOLOGY 2009; 151:843-56. [PMID: 19656906 PMCID: PMC2754619 DOI: 10.1104/pp.109.140228] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2009] [Accepted: 07/24/2009] [Indexed: 05/18/2023]
Abstract
Natural rubber is synthesized in specialized articulated cells (laticifers) located in the inner liber of Hevea brasiliensis. Upon bark tapping, the laticifer cytoplasm (latex) is expelled due to liber tissue turgor pressure. In mature virgin (untapped) trees, short-term kinetic studies confirmed that ethylene, the rubber yield stimulant used worldwide, increased latex yield, with a concomitant decrease in latex total solid content, probably through water influx in the laticifers. As the mature laticifers are devoid of plasmodesmata, the rapid water exchanges with surrounding liber cells probably occur via the aquaporin pathway. Two full-length aquaporin cDNAs (HbPIP2;1 and HbTIP1;1, for plasma membrane intrinsic protein and tonoplast intrinsic protein, respectively) were cloned and characterized. The higher efficiency of HbPIP2;1 than HbTIP1;1 in increasing plasmalemma water conductance was verified in Xenopus laevis oocytes. HbPIP2;1 was insensitive to HgCl(2). In situ hybridization demonstrated that HbPIP2;1 was expressed in all liber tissues in the young stem, including the laticifers. HbPIP2;1 was up-regulated in both liber tissues and laticifers, whereas HbTIP1;1 was down-regulated in liber tissues but up-regulated in laticifers in response to bark Ethrel treatment. Ethylene-induced HbPIP2;1 up-regulation was confirmed by western-blot analysis. The promoter sequences of both genes were cloned and found to harbor, among many others, ethylene-responsive and other chemical-responsive (auxin, copper, and sulfur) elements known to increase latex yield. Increase in latex yield in response to ethylene was emphasized to be linked with water circulation between the laticifers and their surrounding tissues as well as with the probable maintenance of liber tissue turgor, which together favor prolongation of latex flow.
Collapse
Affiliation(s)
- Kessarin Tungngoen
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Shin JH, Kim SR, An G. Rice aldehyde dehydrogenase7 is needed for seed maturation and viability. PLANT PHYSIOLOGY 2009; 149:905-15. [PMID: 19052152 PMCID: PMC2633853 DOI: 10.1104/pp.108.130716] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2008] [Accepted: 11/22/2008] [Indexed: 05/18/2023]
Abstract
Aldehyde dehydrogenases (ALDHs) catalyze the irreversible oxidation of a wide range of reactive aldehydes to their corresponding carboxylic acids. Although the proteins have been studied from various organisms and at different growth stages, their roles in seed development have not been well elucidated. We obtained T-DNA insertional mutants in OsALDH7, which is remarkably inducible by oxidative and abiotic stresses. Interestingly, endosperms from the osaldh7 null mutants accumulated brown pigments during desiccation and storage. Extracts from the mutant seeds showed a maximum absorbance peak at 360 nm, the wavelength that melanoidin absorbs. Under UV light, those extracts also exhibited much stronger fluorescence than the wild type, suggesting that the pigments are melanoidin. These pigments started to accumulate in the late seed developmental stage, the time when OsALDH7 expression began to increase significantly. Purified OsALDH7 protein showed enzyme activities to malondialdehyde, acetaldehyde, and glyceraldehyde. These results suggest that OsALDH7 is involved in removing various aldehydes formed by oxidative stress during seed desiccation. The mutant seeds were more sensitive to our accelerated aging treatment and accumulated more malondialdehyde than the wild type. These data imply that OsALDH7 plays an important role in maintaining seed viability by detoxifying the aldehydes generated by lipid peroxidation.
Collapse
Affiliation(s)
- Jun-Hye Shin
- National Research Laboratory, Department of Integrative Bioscience and Biotechnology, and Center for Functional Genomics, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
| | | | | |
Collapse
|
36
|
Weigelt K, Küster H, Rutten T, Fait A, Fernie AR, Miersch O, Wasternack C, Emery RJN, Desel C, Hosein F, Müller M, Saalbach I, Weber H. ADP-glucose pyrophosphorylase-deficient pea embryos reveal specific transcriptional and metabolic changes of carbon-nitrogen metabolism and stress responses. PLANT PHYSIOLOGY 2009; 149:395-411. [PMID: 18987213 PMCID: PMC2613696 DOI: 10.1104/pp.108.129940] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2008] [Accepted: 11/04/2008] [Indexed: 05/19/2023]
Abstract
We present a comprehensive analysis of ADP-glucose pyrophosphorylase (AGP)-repressed pea (Pisum sativum) seeds using transcript and metabolite profiling to monitor the effects that reduced carbon flow into starch has on carbon-nitrogen metabolism and related pathways. Changed patterns of transcripts and metabolites suggest that AGP repression causes sugar accumulation and stimulates carbohydrate oxidation via glycolysis, tricarboxylic acid cycle, and mitochondrial respiration. Enhanced provision of precursors such as acetyl-coenzyme A and organic acids apparently support other pathways and activate amino acid and storage protein biosynthesis as well as pathways fed by cytosolic acetyl-coenzyme A, such as cysteine biosynthesis and fatty acid elongation/metabolism. As a consequence, the resulting higher nitrogen (N) demand depletes transient N storage pools, specifically asparagine and arginine, and leads to N limitation. Moreover, increased sugar accumulation appears to stimulate cytokinin-mediated cell proliferation pathways. In addition, the deregulation of starch biosynthesis resulted in indirect changes, such as increased mitochondrial metabolism and osmotic stress. The combined effect of these changes is an enhanced generation of reactive oxygen species coupled with an up-regulation of energy-dissipating, reactive oxygen species protection, and defense genes. Transcriptional activation of mitogen-activated protein kinase pathways and oxylipin synthesis indicates an additional activation of stress signaling pathways. AGP-repressed embryos contain higher levels of jasmonate derivatives; however, this increase is preferentially in nonactive forms. The results suggest that, although metabolic/osmotic alterations in iAGP pea seeds result in multiple stress responses, pea seeds have effective mechanisms to circumvent stress signaling under conditions in which excessive stress responses and/or cellular damage could prematurely initiate senescence or apoptosis.
Collapse
Affiliation(s)
- Kathleen Weigelt
- Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung, D-06466 Gatersleben, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Isolation of Cysteine Proteinase Gene (PgCysP1) from Panax ginseng and Response of This Gene to Abiotic Stresses. J Ginseng Res 2008. [DOI: 10.5142/jgr.2008.32.4.300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
38
|
Huang W, Ma X, Wang Q, Gao Y, Xue Y, Niu X, Yu G, Liu Y. Significant improvement of stress tolerance in tobacco plants by overexpressing a stress-responsive aldehyde dehydrogenase gene from maize (Zea mays). PLANT MOLECULAR BIOLOGY 2008; 68:451-63. [PMID: 18688729 DOI: 10.1007/s11103-008-9382-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2008] [Accepted: 07/23/2008] [Indexed: 05/11/2023]
Abstract
Aldehyde dehydrogenases (ALDHs) play a central role in detoxification processes of aldehydes generated in plants when exposed to the stressed conditions. In order to identify genes required for the stresses responses in the grass crop Zea mays, an ALDH (ZmALDH22A1) gene was isolated and characterized. ZmALDH22A1 belongs to the family ALDH22 that is currently known only in plants. The ZmALDH22A1 encodes a protein of 593 amino acids that shares high identity with the orthologs from Saccharum officinarum (95%), Oryza sativa (89%), Triticum aestivum (87%) and Arabidopsis thaliana (77%), respectively. Real-time PCR analysis indicates that ZmALDH22A1 is expressed differentially in different tissues. Various elevated levels of ZmALDH22A1 expression have been detected when the seedling roots exposed to abiotic stresses including dehydration, high salinity and abscisic acid (ABA). Tomato stable transformation of construct expressing the ZmALDH22A1 signal peptide fused with yellow fluorescent protein (YFP) driven by the CaMV35S-promoter reveals that the fusion protein is targeted to plastid. Transgenic tobacco plants overexpressing ZmALDH22A1 shows elevated stresses tolerance. Stresses tolerance in transgenic plants is accompanied by a reduction of malondialdehyde (MDA) derived from cellular lipid peroxidation.
Collapse
Affiliation(s)
- Weizao Huang
- Ministry of Education Key Laboratory for Southwest Bio-resource and Ecoenvironment, College of Life Science and State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064, China
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Khurana P, Vishnudasan D, Chhibbar AK. Genetic approaches towards overcoming water deficit in plants - special emphasis on LEAs. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2008; 14:277-98. [PMID: 23572894 PMCID: PMC3550640 DOI: 10.1007/s12298-008-0026-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Water deficit arises as a result of low temperature, salinity and dehydration, thereby affecting plant growth adversely and making it imperative for plants to surmount such situations by acclimatizing/adapting at various levels. Water deficit stress results in significant changes in gene expression, mediated by interconnected signal transduction pathways that may be triggered by calcium, and regulated via ABA dependent and/or independent pathways. Hence, adaptation of plants to such stresses involves maintaining cellular homeostasis, detoxification of harmful elements and also growth alterations. Stress in general cause excess production of reactive oxygen species (ROS) and the plants overcome the same by either preventing the accumulation of ROS or by eliminating the ROS formed. Ion homeostasis includes processes such as cellular uptake, sequestration and export in conjunction with long distance transport. Requisite amounts of osmolytes are hence synthesized under stress to maintain turgor along with maintaining the macromolecular structures and also for scavenging ROS. Another noteworthy response is the accumulation of novel proteins, including enzymes involved in the biosynthesis of osmoprotectants, heat-shock proteins (HSPs), late embryogenesis abundant (LEA) proteins, antifreeze proteins, chaperones, detoxification enzymes, transcription factors, kinases and phosphatases. The LEAs belong to a redundant protein family and are highly hydrophilic, boiling-soluble, non-globular and therefore have been defined and classified accordingly. The precise function of LEAs is still unknown, but substantial evidence indicates their involvement in dessication tolerance as the expression of LEAs confers increased resistance to stress in heterologous yeast system and also significantly improves water deficit tolerance in transgenic plants. Genetic manipulation of plants towards conferring abiotic stress tolerance is a daunting task, as the abiotic stress tolerance mechanism is highly complex and various strategies have been exploited to address and evaluate the stress tolerance mechanism, and the molecular responses to water deficit via complex signaling networks. Genomic technologies have recently been useful in integrating the multigenicity of the plant stress responses through, transcriptomics, proteomics and metabolite profilling and their interactions. This review deals with the recent developments on genetic approaches for water stress tolerance in plants, with special emphasis on LEAs.
Collapse
Affiliation(s)
- Paramjit Khurana
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110 021 India
| | - Dalia Vishnudasan
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110 021 India
| | - Anju K. Chhibbar
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110 021 India
| |
Collapse
|
40
|
The crystal structure of seabream antiquitin reveals the structural basis of its substrate specificity. FEBS Lett 2008; 582:3090-6. [PMID: 18694748 DOI: 10.1016/j.febslet.2008.07.059] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2008] [Revised: 07/22/2008] [Accepted: 07/31/2008] [Indexed: 11/23/2022]
Abstract
The crystal structure of seabream antiquitin in complex with the cofactor NAD(+) was solved at 2.8A resolution. The mouth of the substrate-binding pocket is guarded by two conserved residues, Glu120 and Arg300. To test the role of these two residues, we have prepared the two mutants E120A and R300A. Our model and kinetics data suggest that antiquitin's specificity towards the substrate alpha-aminoadipic semialdehyde is contributed mainly by Glu120 which interacts with the alpha-amino group of the substrate. On the other hand, Arg300 does not have any specific interaction with the alpha-carboxylate group of the substrate, but is important in maintaining the active site conformation.
Collapse
|
41
|
Price AM, Aros Orellana DF, Salleh FM, Stevens R, Acock R, Buchanan-Wollaston V, Stead AD, Rogers HJ. A comparison of leaf and petal senescence in wallflower reveals common and distinct patterns of gene expression and physiology. PLANT PHYSIOLOGY 2008; 147:1898-912. [PMID: 18539778 PMCID: PMC2492645 DOI: 10.1104/pp.108.120402] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2008] [Accepted: 06/02/2008] [Indexed: 05/21/2023]
Abstract
Petals and leaves share common evolutionary origins but perform very different functions. However, few studies have compared leaf and petal senescence within the same species. Wallflower (Erysimum linifolium), an ornamental species closely related to Arabidopsis (Arabidopsis thaliana), provide a good species in which to study these processes. Physiological parameters were used to define stages of development and senescence in leaves and petals and to align these stages in the two organs. Treatment with silver thiosulfate confirmed that petal senescence in wallflower is ethylene dependent, and treatment with exogenous cytokinin and 6-methyl purine, an inhibitor of cytokinin oxidase, suggests a role for cytokinins in this process. Subtractive libraries were created, enriched for wallflower genes whose expression is up-regulated during leaf or petal senescence, and used to create a microarray, together with 91 senescence-related Arabidopsis probes. Several microarray hybridization classes were observed demonstrating similarities and differences in gene expression profiles of these two organs. Putative functions were ascribed to 170 sequenced DNA fragments from the libraries. Notable similarities between leaf and petal senescence include a large proportion of remobilization-related genes, such as the cysteine protease gene SENESCENCE-ASSOCIATED GENE12 that was up-regulated in both tissues with age. Interesting differences included the up-regulation of chitinase and glutathione S-transferase genes in senescing petals while their expression remained constant or fell with age in leaves. Semiquantitative reverse transcription-polymerase chain reaction of selected genes from the suppression subtractive hybridization libraries revealed more complex patterns of expression compared with the array data.
Collapse
|
42
|
Molecular cloning and differential expression of an aldehyde dehydrogenase gene in rice leaves in response to infection by blast fungus. Biologia (Bratisl) 2007. [DOI: 10.2478/s11756-007-0103-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
43
|
Liu Y, Zhang A, Jia J, Li A. Cloning of salt stress responsive cDNA from wheat and resistant analysis of differential fragment SR07 in transgenic tobacco. J Genet Genomics 2007; 34:842-9. [PMID: 17884694 DOI: 10.1016/s1673-8527(07)60095-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2006] [Accepted: 05/24/2007] [Indexed: 11/16/2022]
Abstract
Analysis of the gene expression differentiation in leaves of wheat (Triticum aestivum L.) cultivar Baofeng 7228, under salt stress, was carried out by Differential-Display Reverse Transcription-polymerase Chain Reaction (DDRT-PCR.) Twenty-seven differential cDNA fragments were obtained. The expression of the SR07 fragment was induced noticeably by salt treatment, and the nucleotide sequence homology of 87% between the SR07 fragment and PIPs (water channel proteins) was observed. Further research showed that a 561 bp open read frame was present in the SR07 fragment. Plant expression vector of pCAMBIA-SR07 was constructed and three transformants of tobacco (Nicotiana tobacum) mediated by Agrobacterium tumefaciens plasmid were obtained. Resistance to salt, PEG, and mannitol stresses of the three transformants were examined. No significant difference (P > 0.05) was observed between the control and the transformants in resistance to salt stress, but there was significant difference (P < 0.05) between the control and the transformants in resistance to PEG and mannitol stresses. Therefore, the expression of the SR07 fragment may play an important role in the water regulation of the plant.
Collapse
Affiliation(s)
- YongJun Liu
- College of Environmental and Municipal Engineering, Xi'an University of Architecture & Technology, Xi'an 710055, China.
| | | | | | | |
Collapse
|
44
|
Deng Z, Wang Y, Jiang K, Liu X, Wu W, Gao S, Lin J, Sun X, Tang K. Molecular cloning and characterization of a novel dehydrin gene from Ginkgo biloba. Biosci Rep 2007; 26:203-15. [PMID: 16850253 DOI: 10.1007/s10540-006-9016-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
A full-length cDNA encoding a dehydrin was cloned from the living fossil plant Ginkgo biloba by rapid amplification of cDNA ends (RACE). The cDNA, designated as GbDHN, was 813 bp long containing an open reading frame of 489 bp. The deduced GbDHN protein had 163 amino acid residues, which formed a 17 kDa polypeptide with a predicted isoelectric point (pI) of 5.75. GbDHN had an S-segment and a K-segment, indicative of dehydrins, but no Y-segments. Homology analysis indicated that the S-segment and K-segment of GbDHN shared identity with those of other reported dehydrins, indicating that GbDHN belonged to dehydrin superfamily. Genomic sequence of GbDHN was also cloned using genomic walker technology. By comparing genomic DNA with the cDNA, it was found that there was a 257-bp intron in this gene. Promoter analysis indicated that it contained six CAAT boxes, one TATA box, one ABRE box and one GC-motif in the 5'-flanking region. Southern blot analysis revealed that GbDHN belonged to a single copy gene family. RT-PCR analysis revealed that GbDHN constitutively expressed in stems and roots. The increased expression of GbDHN was detected when G. biloba seedlings were treated with exogenous abscisic acid (ABA), salt stress and drought stress. These results indicate that the GbDHN has the potential to play a role in response to ABA and environmental stresses that can cause plant dehydration.
Collapse
Affiliation(s)
- Zhongxiang Deng
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Morgan-Tan International Center for Life Sciences, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, Fudan University, Shanghai, 200433, China
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Wang JP, Bughrara SS. Monitoring of gene expression profiles and identification of candidate genes involved in drought responses in Festuca mairei. Mol Genet Genomics 2007; 277:571-87. [PMID: 17323082 DOI: 10.1007/s00438-007-0208-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2006] [Accepted: 01/09/2007] [Indexed: 10/23/2022]
Abstract
To understand the molecular genetic basis underlying drought tolerance in grasses, the cDNA-amplified fragment length polymorphism (cDNA-AFLP) technique was applied for identification of genes responding to drought stress in a xerophytic adapted plant, Festuca mairei. A total of 11,346 transcript derived fragments (TDFs) were detected, and 464 (4.1%) TDFs were identified as differentially expressed fragments (DEFs) during the drought treatment of the plant. The expression patterns of these DEFs included up-regulated ( approximately 30%), down-regulated ( approximately 54.3%), and the remainder ( approximately 16.7%) showing transient changes. The differential expression patterns of 171 DEFs were further confirmed by macroarray hybridization analysis. Sequences had been obtained for 163 DEFs, and 62 sequences had no significant hits to sequences currently in public databases. Predicted functions of remaining 101 sequences were subdivided into 17 categories. Down-regulated genes were highly represented by metabolism and cellular biogenesis. Up-regulated DEFs were enriched in genes involved in transcription, defense, cell cycle and DNA processing. Analysis of the 163 DEFs provides a first glimpse into the transcripts of F. mairei during drought stress treatment. The combination of data from studies on genetic model plants and on diverse plant species will enhance understanding of the drought tolerance mechanisms in plants.
Collapse
Affiliation(s)
- Jianping P Wang
- Department of Crop and Soil Sciences, Michigan State University, East Lansing, MI, 48824, USA
| | | |
Collapse
|
46
|
Chan CB, Tang WK, Cheng CHK, Fong WP. Cloning of the black seabream (Acanthopagrus schlegeli) antiquitin gene and functional characterization of its promoter region. Mol Cell Biochem 2006; 297:151-60. [PMID: 17075685 DOI: 10.1007/s11010-006-9340-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2006] [Accepted: 09/28/2006] [Indexed: 11/28/2022]
Abstract
Antiquitin (ALDH7) is a member of the aldehyde dehydrogenase superfamily. In plants, ALDH7 is inducible upon dehydration and is thus believed to possess an osmoregulatory role. On the other hand, however, its exact physiological function in animals remains elusive. We herein report the isolation of the black seabream (Acanthopagrus schlegeli) antiquitin gene (sbALDH7) and the functional characterization of its promoter region. The 1.6 kb 5'-flanking region of sbALDH7 exhibits an intense promoter activity (30-170 fold of the basal) in five mammalian and fish cell lines of different origins. Progressive 5'-deletion analysis suggests that the core promoter is located within the region -297/+41 whereas a cis-acting repressor of basal transcription is present in the region -878/-297. In silico analysis of this sbALDH7 promoter region does not reveal any osmotic response element. Instead, it contains potential binding sites for cell cycle related cis-elements such as CCAAT displacement protein and cell cycle-dependent element/cell cycle genes homology region.
Collapse
Affiliation(s)
- Chi-Bun Chan
- Department of Biochemistry, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | | | | | | |
Collapse
|
47
|
Lu B, Ding R, Zhang L, Yu X, Huang B, Chen W. Molecular Cloning and Characterization of a Novel Calcium-dependent Protein Kinase Gene IiCPK2 Responsive to Polyploidy from Tetraploid Isatis indigotica. BMB Rep 2006; 39:607-17. [PMID: 17002882 DOI: 10.5483/bmbrep.2006.39.5.607] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A novel calcium-dependent protein kinase gene (designated as IiCPK2) was cloned from tetraploid Isatis indigotica. The full-length cDNA of IiCPK2 was 2585 bp long with an open reading frame (ORF) of 1878 bp encoding a polypeptide of 625 amino acid residues. The predicted IiCPK2 polypeptide included three domains: a kinase domain, a junction domain (or autoinhibitory region), and a C-terminal calmodulin-like domain (or calcium-binding domain), which presented a typical structure of plant CDPKs. Further analysis of IiCPK2 genomic DNA revealed that it contained 7 exons, 6 introns and the length of most exons was highly conserved. Semi-quantitative RTPCR revealed that the expression of IiCPK2 in root, stem and leaf were much higher in tetraploid sample than that in diploid progenitor. Further expression analysis revealed that gibberellin (GA3), NaCl and cold treatments could upregulate the IiCPK2 transcription. All our findings suggest that IiCPK2 might participate in the cold, high salinity and GA3 responsive pathways.
Collapse
Affiliation(s)
- Beibei Lu
- Department of pharmacognosy, School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | | | | | | | | | | |
Collapse
|
48
|
Kobae Y, Mizutani M, Segami S, Maeshima M. Immunochemical analysis of aquaporin isoforms in Arabidopsis suspension-cultured cells. Biosci Biotechnol Biochem 2006; 70:980-7. [PMID: 16636467 DOI: 10.1271/bbb.70.980] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Aquaporins mediate the movement of water across biomembranes. Arabidopsis thaliana contains 35 aquaporins that belong to four subfamilies (PIP, TIP, SIP, and NIP). We investigated their expression profiles immunochemically in suspension-cultured Arabidopsis thaliana cells during growth and in response to salt and osmotic stresses. Protein amounts of all aquaporins were much lower in cultured cells than in the plant tissues. This is consistent with the low water permeability of protoplasts from cultured cells. After treatment with NaCl, the protein amounts of PIP2;1, PIP2;2, and PIP2;3 in the cells increased several-fold, and those of TIP1;1 and TIP1;2, 15- and 3-fold respectively. PIP1 did not change under the stress. Cell death began after 19 d in culture, accompanied by marked accumulation of PIPs and TIPs and a gradual decrease in SIPs. Our results suggest the followings: (i) Accumulation of aquaporin isoforms was individually regulated at low levels in single cells. (ii) At least PIP2;2, PIP2;3, TIP1;1, and TIP1;2 are stress-responsive aquaporins in suspension cells. (iii) A sudden increment of several members of PIP2 and TIP1 subfamilies might be related to cell death.
Collapse
Affiliation(s)
- Yoshihiro Kobae
- Laboratory of Cell Dynamics, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | | | | | | |
Collapse
|
49
|
Kotchoni SO, Kuhns C, Ditzer A, Kirch HH, Bartels D. Over-expression of different aldehyde dehydrogenase genes in Arabidopsis thaliana confers tolerance to abiotic stress and protects plants against lipid peroxidation and oxidative stress. PLANT, CELL & ENVIRONMENT 2006; 29:1033-48. [PMID: 17080931 DOI: 10.1111/j.1365-3040.2005.01458.x] [Citation(s) in RCA: 214] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Aldehyde dehydrogenases (ALDHs) play a major role in the detoxification processes of aldehydes generated in plants when exposed to abiotic stress. In previous studies, we have shown that the Arabidopsis thaliana ALDH3I1 gene is transcriptionally activated by abiotic stress, and over-expression of the ALDH3I1 gene confers stress tolerance in transgenic plants. The A. thaliana genome contains 14 ALDH genes expressed in different sub-cellular compartments and are presumably involved in different reactions. The purpose of this study was to compare the potential of a cytoplasmic and a chloroplastic stress-inducible ALDH in conferring stress tolerance under different conditions. We demonstrated that constitutive or stress-inducible expression of both the chloroplastic ALDH3I1 and the cytoplasmic ALDH7B4 confers tolerance to osmotic and oxidative stress. Stress tolerance in transgenic plants is accompanied by a reduction of H2O2 and malondialdehyde (MDA) derived from cellular lipid peroxidation. Involvement of ALDHs in stress tolerance was corroborated by the analysis of ALDH3I1 and ALDH7B4 T-DNA knockout (KO) mutants. Both mutant lines exhibited higher sensitivity to dehydration and salt than wild-type (WT) plants. The results indicate that ALDH3I1 and ALDH7B4 not only function as aldehyde-detoxifying enzymes, but also as efficient reactive oxygen species (ROS) scavengers and lipid peroxidation-inhibiting enzymes. The potential of ALDHs to interfere with H2O2 was also shown for recombinant bacterial proteins.
Collapse
Affiliation(s)
- Simeon O Kotchoni
- Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn, Kirschallee 1, D-53115 Bonn, Germany
| | | | | | | | | |
Collapse
|
50
|
Trobacher CP, Senatore A, Greenwood JS. Masterminds or minions? Cysteine proteinases in plant programmed cell deathThis review is one of a selection of papers published in the Special Issue on Plant Cell Biology. ACTA ACUST UNITED AC 2006. [DOI: 10.1139/b06-038] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Cysteine proteinases are ubiquitously involved in programmed cell death (PCD) in multicellular organisms. In animals, one group of cysteine proteinases, the cysteine-dependent aspartate-specific proteinases (caspases), are involved in a proteolytic signalling cascade that controls apoptosis, the most studied form of PCD. The enzymes act as both masterminds and executioners in apoptotic cell death. In plants, members of the metacaspase family, as well as those of the papain-like and legumain families, of cysteine proteinases have all been implicated in PCD. These enzymes often belong to sizeable gene families, with Arabidopsis having 9 metacaspase, 32 papain-like, and 4 legumain genes. This redundancy has made it difficult to ascertain the functional importance of any particular enzyme in plant PCD, as many are often expressed in a given tissue undergoing PCD. As yet, mechanisms similar to the apoptotic caspase cascade in animals have not been uncovered in plants and, indeed, may not exist. Are the various cysteine proteinases, so often implicated in plant PCD, merely acting as minions in the process? This review will outline reports of cysteine proteinases associated with plant PCD, discuss problems in determining the function of specific proteases, and suggest avenues for determining how these enzymes might be regulated and how PCD pathways upstream of protease expression and activation might operate.
Collapse
Affiliation(s)
| | - Adriano Senatore
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - John S. Greenwood
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|