1
|
Belji Kangarlou M, Khavanin A, Nadri F, Goodarzi Z, Karami E, Rashidy-Pour A, Kiani M, Hashemi Habybabady R. Noise and silver nanoparticles induce hepatotoxicity via CYP450/NF-Kappa B 2 and p53 signaling pathways in a rat model. Toxicol Ind Health 2024; 40:206-219. [PMID: 38358440 DOI: 10.1177/07482337241233317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Co-exposure to noise and nanomaterials, such as silver nanoparticles (Silver-NPs), is a common occurrence in today's industries. This study aimed to investigate the effects of exposure to noise and the administration of silver-NPs on the liver tissue of rats. Thirty-six adult male albino Wistar rats were randomly divided into six groups: a control group (administered saline intraperitoneally), two groups administered different doses of Silver-NPs (50 mg/kg and 100 mg/kg, 5 days a week for 28 days), two groups exposed to noise in addition to Silver-NPs (at the same doses as mentioned before), and a group exposed only to noise (104 dB, 6 hours a day, 5 days a week for 4 weeks). Blood samples were taken to assess hepatic-functional alterations, such as serum ALP, ALT, and AST levels. Additionally, biochemical parameters (MDA, GPX, and CAT) and the silver concentration in the liver were measured. Histopathological analysis, mRNA expression (P53 and NF-κB), protein expression (CYP450), and liver weight changes in rats were also documented. The study found that the administration of Silver-NPs and exposure to noise resulted in elevated levels of ALP, ALT, AST, and MDA (p < .01). Conversely, GPX and CAT levels decreased in all groups compared with the control group (p < .0001). There was a significant increase (p < .05) in liver weight and silver concentration in the liver tissues of groups administered Silver-NPs (50 mg/kg) plus noise exposure, Silver-NPs (100 mg/kg), and Silver-NPs (100 mg/kg) plus noise exposure, respectively. The expression rate of P53, NF-κB, and cytochromes P450 (CYPs-450) was increased in the experimental groups (p < .05). These findings were further confirmed by histopathological changes. In conclusion, this study demonstrated that exposure to noise and the administration of Silver-NPs exacerbated liver damage by increasing protein and gene expression, causing hepatic necrosis, altering biochemical parameters, and affecting liver weight.
Collapse
Affiliation(s)
- Marzieh Belji Kangarlou
- Department of Occupational Health Engineering, Faculty of Medical Sciences, Tarbiat Modarres University, Tehran, Iran
| | - Ali Khavanin
- Department of Occupational Health Engineering, Faculty of Medical Sciences, Tarbiat Modarres University, Tehran, Iran
| | - Farshad Nadri
- Department of Occupational Health Engineering, Faculty of Public Health, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Zahra Goodarzi
- Department of Occupational Health Engineering, Faculty of Medical Sciences, Tarbiat Modarres University, Tehran, Iran
| | - Esmaeil Karami
- Department of Occupational Health Engineering, School of Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Rashidy-Pour
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran
| | - Mehrafarin Kiani
- Department of Anatomical Sciences, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Raheleh Hashemi Habybabady
- Health Promotion Research Centre, Department of Occupational Health Engineering, Zahedan University of Medical Sciences, Zahedan, Iran
| |
Collapse
|
2
|
Li H, Lampe JN. Neonatal cytochrome P450 CYP3A7: A comprehensive review of its role in development, disease, and xenobiotic metabolism. Arch Biochem Biophys 2019; 673:108078. [PMID: 31445893 DOI: 10.1016/j.abb.2019.108078] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 08/17/2019] [Accepted: 08/18/2019] [Indexed: 12/14/2022]
Abstract
The human cytochrome P450 CYP3A7, once thought to be an enzyme exclusive to fetal livers, has more recently been identified in neonates and developing infants as old as 24 months post-gestational age. CYP3A7 has been demonstrated to metabolize two endogenous compounds that are known to be important in the growth and development of the fetus and neonate, namely dehydroepiandrosterone sulfate (DHEA-S) and all-trans retinoic acid (atRA). In addition, it is also known to metabolize a variety of drugs and xenobiotics, albeit generally to a lesser extent relative to CYP3A4/5. CYP3A7 is an important component in the development and protection of the fetal liver and additionally plays a role in certain disease states, such as cancer and adrenal hyperplasia. Ultimately, a full understanding of the expression, regulation, and metabolic properties of CYP3A7 is needed to provide neonates with appropriate individualized pharmacotherapy. This article summarizes the current state of knowledge of CYP3A7, including its discovery, distribution, alleles, RNA splicing, expression and regulation, metabolic properties, substrates, and inhibitors.
Collapse
Affiliation(s)
- Haixing Li
- Sino-German Joint Research Institute Nanchang University, 235 East Nanjing Road, Nanchang, 330047, Jiangxi, PR China
| | - Jed N Lampe
- University of Colorado, Skaggs School of Pharmacy and Pharmaceutical Sciences, Department of Pharmaceutical Sciences, Mail Stop C238, 12850 E. Montview Blvd., Aurora, CO, 80045, USA.
| |
Collapse
|
3
|
van Eijk M, Boosman RJ, Schinkel AH, Huitema ADR, Beijnen JH. Cytochrome P450 3A4, 3A5, and 2C8 expression in breast, prostate, lung, endometrial, and ovarian tumors: relevance for resistance to taxanes. Cancer Chemother Pharmacol 2019; 84:487-499. [PMID: 31309254 PMCID: PMC6682574 DOI: 10.1007/s00280-019-03905-3] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 07/04/2019] [Indexed: 12/19/2022]
Abstract
Enzymes of the cytochrome P450 (CYP) subfamily 3A and 2C play a major role in the metabolism of taxane anticancer agents. While their function in hepatic metabolism of taxanes is well established, expression of these enzymes in solid tumors may play a role in the in situ metabolism of drugs as well, potentially affecting the intrinsic taxane susceptibility of these tumors. This article reviews the available literature on intratumoral expression of docetaxel- and paclitaxel-metabolizing enzymes in mammary, prostate, lung, endometrial, and ovarian tumors. Furthermore, the clinical implications of the intratumoral expression of these enzymes are reviewed and the potential of concomitant treatment with protease inhibitors (PIs) as a method to inhibit CYP3A4-mediated metabolism is discussed.
Collapse
Affiliation(s)
- Maarten van Eijk
- Department of Pharmacy and Pharmacology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands.
| | - René J Boosman
- Department of Pharmacy and Pharmacology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Alfred H Schinkel
- Division of Pharmacology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Alwin D R Huitema
- Department of Pharmacy and Pharmacology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands.,Department of Clinical Pharmacy, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584CX, Utrecht, The Netherlands
| | - Jos H Beijnen
- Department of Pharmacy and Pharmacology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands.,Division of Pharmacology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands.,Science Faculty, Utrecht Institute for Pharmaceutical Sciences (UIPS), Division of Pharmacoepidemiology and Clinical Pharmacology, Utrecht University, P.O. Box 80082, 3508 TB, Utrecht, The Netherlands
| |
Collapse
|
4
|
García-Menaya JM, Cordobés-Durán C, García-Martín E, Agúndez JAG. Pharmacogenetic Factors Affecting Asthma Treatment Response. Potential Implications for Drug Therapy. Front Pharmacol 2019; 10:520. [PMID: 31178722 PMCID: PMC6537658 DOI: 10.3389/fphar.2019.00520] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Accepted: 04/25/2019] [Indexed: 12/27/2022] Open
Abstract
Asthma is a frequent disease, mainly characterized by airway inflammation, in which drug therapy is crucial in its management. The potential of pharmacogenomics testing in asthma therapy has been, to date, little explored. In this review, we discuss pharmacogenetic factors affecting asthma treatment, both related to drugs used as controller medications for regular maintenance, such as inhaled corticosteroids, anti-leukotriene agents, long-acting beta-agonists, and the new biologic agents used to treat severe persistent asthma. In addition, we discuss current pharmacogenomics knowledge for rescue medications provided to all patients for as-needed relief, such as short-acting beta-agonists. Evidence for genetic variations as a factor related to drugs response has been provided for the following genes and groups of drugs: Inhaled corticosteroids: FCER2; anti-leukotriene agents: ABCC1, and LTC4S; beta-agonists: ADRB2. However, the following genes require further studies confirming or rejecting association with the response to asthma therapy: ADCY9, ALOX5, ARG1, ARG2, CRHR1, CRHR2, CYP3A4, CYP3A5, CYSLTR1, CYSLTR2, GLCCI1, IL4RA, LTA4H, ORMDL3, SLCO2B1, SPATS2L, STIP1, T, TBX21, THRA, THRB, and VEGFA. Although only a minority of these genes are, at present, listed as associated with drugs used in asthma therapy, in the Clinical Pharmacogenomics Implementation Consortium gene-drug pair list, this review reveals that sufficient evidence to start testing the potential of clinical pharmacogenomics in asthma therapy already exists. This evidence supports the inclusion in pilot pharmacogenetics tests of at least four genes. Hopefully these tests, if proven useful, will increase the efficiency and the safety of asthma therapy.
Collapse
Affiliation(s)
| | | | - Elena García-Martín
- ARADyAL Instituto de Salud Carlos III, University Institute of Molecular Pathology Biomarkers, Universidad de Extremadura, Cáceres, Spain
| | - José A. G. Agúndez
- ARADyAL Instituto de Salud Carlos III, University Institute of Molecular Pathology Biomarkers, Universidad de Extremadura, Cáceres, Spain
| |
Collapse
|
5
|
Peters SA, Jones CR, Ungell AL, Hatley OJD. Predicting Drug Extraction in the Human Gut Wall: Assessing Contributions from Drug Metabolizing Enzymes and Transporter Proteins using Preclinical Models. Clin Pharmacokinet 2016; 55:673-96. [PMID: 26895020 PMCID: PMC4875961 DOI: 10.1007/s40262-015-0351-6] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Intestinal metabolism can limit oral bioavailability of drugs and increase the risk of drug interactions. It is therefore important to be able to predict and quantify it in drug discovery and early development. In recent years, a plethora of models-in vivo, in situ and in vitro-have been discussed in the literature. The primary objective of this review is to summarize the current knowledge in the quantitative prediction of gut-wall metabolism. As well as discussing the successes of current models for intestinal metabolism, the challenges in the establishment of good preclinical models are highlighted, including species differences in the isoforms; regional abundances and activities of drug metabolizing enzymes; the interplay of enzyme-transporter proteins; and lack of knowledge on enzyme abundances and availability of empirical scaling factors. Due to its broad specificity and high abundance in the intestine, CYP3A is the enzyme that is frequently implicated in human gut metabolism and is therefore the major focus of this review. A strategy to assess the impact of gut wall metabolism on oral bioavailability during drug discovery and early development phases is presented. Current gaps in the mechanistic understanding and the prediction of gut metabolism are highlighted, with suggestions on how they can be overcome in the future.
Collapse
Affiliation(s)
- Sheila Annie Peters
- Translational Quantitative Pharmacology, BioPharma, R&D Global Early Development, Merck KGaA, Frankfurter Str. 250, F130/005, 64293, Darmstadt, Germany.
| | | | - Anna-Lena Ungell
- Investigative ADME, Non-Clinical Development, UCB New Medicines, BioPharma SPRL, Braine l'Alleud, Belgium
| | - Oliver J D Hatley
- Simcyp Limited (A Certara Company), Blades Enterprise Centre, Sheffield, UK
| |
Collapse
|
6
|
Xiao WJ, Ma T, Ge C, Xia WJ, Mao Y, Sun RB, Yu XY, Aa JY, Wang GJ. Modulation of the pentose phosphate pathway alters phase I metabolism of testosterone and dextromethorphan in HepG2 cells. Acta Pharmacol Sin 2015; 36:259-67. [PMID: 25619394 DOI: 10.1038/aps.2014.137] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 10/21/2014] [Indexed: 12/23/2022] Open
Abstract
AIM The pentose phosphate pathway (PPP) is involved in the activity of glucose-6-phosphate dehydrogenase (G6PD) and generation of NADPH, which plays a key role in drug metabolism. The aim of this study was to investigate the effects of modulation of the PPP on drug metabolism capacity in vitro. METHODS A pair of hepatic cell lines, ie, the cancerous HepG2 cells and normal L02 cells, was used. The expression of CYP450 enzymes, p53 and G6PD in the cells were analyzed. The metabolism of testosterone (TEST, 10 μmol/L) and dextromethorphan (DEM, 1 μmol/L), the two typical substrates for CYP3A4 and CYP2D6, in the cells was examined in the presence of different agents. RESULTS Both the expression and metabolic activities of CYP3A4 and CYP2D6 were considerably higher in HepG2 cells than in L02 cells. The metabolism of TEST and DEM in HepG2 cells was dose-dependently inhibited by the specific CYP3A4 inhibitor ketoconazole and CYP2D6 inhibitor quinidine. Addition of the p53 inhibitor cyclic PFT-α (5, 25 μmol/L) in HepG2 cells dose-dependently enhanced the metabolism of DEM and TEST, whereas addition of the p53 activator NSC 66811 (3, 10, 25 μmol/L) dose-dependently inhibited the metabolism. Furthermore, addition of the G6PD inhibitor 6-aminonicotinamide (5, 15 μmol/L) in HepG2 cells dose-dependently inhibited the metabolism of DEM and TEST, whereas addition of the PPP activity stimulator menadione (1, 5, 15 μmol/L) dose-dependently enhanced the metabolism. CONCLUSION Modulation of p53 and the PPP alters the metabolism of DEM and TEST, suggesting that the metabolic flux pattern of PPP may be closely involved in drug metabolism and the individual variance.
Collapse
|
7
|
Lamba JK, Lin YS, Schuetz EG, Thummel KE. Genetic contribution to variable human CYP3A-mediated metabolism. Adv Drug Deliv Rev 2012. [DOI: 10.1016/j.addr.2012.09.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
8
|
Tydén E, Löfgren M, Hakhverdyan M, Tjälve H, Larsson P. The genes of all seven CYP3A isoenzymes identified in the equine genome are expressed in the airways of horses. J Vet Pharmacol Ther 2012; 36:370-5. [PMID: 22966936 DOI: 10.1111/jvp.12012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Accepted: 08/14/2012] [Indexed: 01/07/2023]
Abstract
In the present study, we examined the gene expression of cytochrome P450 3A (CYP3A) isoenzymes in the tracheal and bronchial mucosa and in the lung of equines using TaqMan probes. The results show that all seven CYP3A isoforms identified in the equine genome, that is, CYP3A89, CYP3A93, CYP3A94, CYP3A95, CYP3A96, CYP3A97 and CYP3A129, are expressed in the airways of the investigated horses. Though in previous studies, CYP3A129 was found to be absent in equine intestinal mucosa and liver, this CYP3A isoform is expressed in the airways of horses. The gene expression of the CYP3A isoenzymes varied considerably between the individual horses studied. However, in most of the horses CYP3A89, CYP3A93, CYP3A96, CYP3A97 and CYP3A129 were expressed to a high extent, while CYP3A94 and CYP3A95 were expressed to a low extent in the different parts of the airways. The CYP3A isoenzymes present in the airways may play a role in the metabolic degradation of inhaled xenobiotics. In some instances, the metabolism may, however, result in bioactivation of the xenobiotics and subsequent tissue injury.
Collapse
Affiliation(s)
- E Tydén
- Division of Pathology, Pharmacology and Toxicology, Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden.
| | | | | | | | | |
Collapse
|
9
|
Anttila S, Raunio H, Hakkola J. Cytochrome P450-mediated pulmonary metabolism of carcinogens: regulation and cross-talk in lung carcinogenesis. Am J Respir Cell Mol Biol 2011; 44:583-90. [PMID: 21097654 DOI: 10.1165/rcmb.2010-0189rt] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023] Open
Abstract
Lung cancer is strongly associated with exogenous risk factors, in particular tobacco smoking and asbestos exposure. New research data are accumulating about the regulation of the metabolism of tobacco carcinogens and the metabolic response to oxidative stress. These data provide mechanistic details about why well known risk factors cause lung cancer. The purpose of this review is to evaluate the present knowledge of the role of cytochrome P450 (CYP) enzymes in the metabolism of tobacco carcinogens and associations with tobacco and asbestos carcinogenesis. Major emphasis is placed on human data and regulatory pathways involved in CYP regulation and lung carcinogenesis. The most exciting new research findings concern cross-talk of the CYP-regulating aryl hydrocarbon receptor with other transcription factors, such as nuclear factor-erythroid 2-related factor 2, involved in the regulation of xenobiotic metabolism and antioxidant enzymes. This cross-talk between transcription factors may provide mechanistic evidence for clinically relevant issues, such as differences in lung cancers between men and women and the synergism between tobacco and asbestos as lung carcinogens.
Collapse
Affiliation(s)
- Sisko Anttila
- Dept. of Pathology, HUSLAB and Helsinki University Hospital, Finland.
| | | | | |
Collapse
|
10
|
Leclerc J, Courcot-Ngoubo Ngangue E, Cauffiez C, Allorge D, Pottier N, Lafitte JJ, Debaert M, Jaillard S, Broly F, Lo-Guidice JM. Xenobiotic metabolism and disposition in human lung: transcript profiling in non-tumoral and tumoral tissues. Biochimie 2011; 93:1012-27. [PMID: 21376776 DOI: 10.1016/j.biochi.2011.02.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Accepted: 02/22/2011] [Indexed: 11/30/2022]
Abstract
The lung is directly exposed to a wide variety of inhaled toxicants and carcinogens. In order to improve our knowledge of the cellular processing of these compounds in the respiratory tract, we investigated the mRNA expression level of 380 genes encoding xenobiotic-metabolizing enzymes (XME), transporters, nuclear receptors and transcription factors, in pulmonary parenchyma (PP), bronchial mucosa (BM) and tumoral lung tissues from 12 patients with non-small cell lung cancer (NSCLC). Using a high throughput quantitative real-time RT-PCR method, we found that ADH1B, CYP4B1, CES1 and GSTP1 are the major XME genes expressed both in BM and PP. Our results also documented the predominant role played by the xenosensor AhR in human lung. The gene expression profiles were different for BM and PP, with a tendency toward increased mRNA levels of phase I and phase II XME genes in BM, suggesting major differences in the initial stages of xenobiotic metabolism. Some of the significantly overexpressed genes in BM (i.e. CYP2F1, CYP2A13, CYP2W1, NQO1…) encode proteins involved in the bioactivation of procarcinogens, pointing out distinct susceptibility to xenobiotics and their toxic effects between these two tissue types. Additionally, interindividual differences in transcript levels observed for some genes may be of genetic origin and may contribute to the variability in response to environmental exposure and, consequently, in the risk of developing lung diseases. A global decrease in gene expression was observed in tumoral specimens. Some of the proteins are involved in the metabolism or transport of anti-cancer drugs and their influence in the response of tumors to chemotherapy should be considered. In conclusion, the present study provides an overview of the cellular response to toxicants and drugs in healthy and cancerous human lung tissues, and thus improves our understanding of the mechanisms of chemical carcinogenesis as well as cellular resistance to chemotherapy.
Collapse
Affiliation(s)
- Julie Leclerc
- Equipe d'accueil EA4483, Faculté de Médecine Pôle Recherche, Université Lille Nord de France, 1 Place de Verdun, 59045 Lille, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Murai T, Reilly CA, Ward RM, Yost GS. The inhaled glucocorticoid fluticasone propionate efficiently inactivates cytochrome P450 3A5, a predominant lung P450 enzyme. Chem Res Toxicol 2011; 23:1356-64. [PMID: 20707410 DOI: 10.1021/tx100124k] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Inhaled glucocorticoid (GC) therapy is a vital part of the management of chronic asthma. GCs are metabolized by members of the cytochrome P450 3A family in both liver and lung, but the enzymes are differentially expressed. Selective inhibition of one or more P450 3A enzymes could substantially modify target and systemic concentrations of GCs. In this study, we have evaluated the mechanism-based inactivation of P450 3A4, 3A5, and 3A7 enzymes by GCs. Among the five major inhaled GCs approved for clinical use in the United States, fluticasone propionate (FLT) was the most potent mechanism-based inactivator of P450 3A5, the predominant P450 enzyme in the lung. FLT inactivated P450 3A5 in a time- and concentration-dependent manner with K(I), k(inact), and partition ratio of 16 muM, 0.027 min(-1), and 3, respectively. In contrast, FLT minimally inactivated P450 3A4 and did not inactivate 3A7, even with a concentration of 100 muM. The inactivation of P450 3A5 by FLT was irreversible because dialysis did not restore enzyme activity. In addition, the exogenous nucleophilic scavenger GSH did not attenuate inactivation. The prosthetic heme of P450 3A5 was not modified by FLT. The loss of P450 3A5 activity in lung cells could substantially decrease the metabolism of FLT, which would increase the effective FLT concentration at its target site, the respiratory epithelium. Also, inactivation of lung P450 3A5 could increase the absorption of inhaled FLT, which could lead to high systemic concentrations and adverse effects, such as life-threatening adrenal crises or cataracts that have been documented in children receiving high doses of inhaled GCs.
Collapse
Affiliation(s)
- Takahiro Murai
- Department of Pharmacology and Toxicology, University of Utah, 30 S 2000 E, Salt Lake City, UT 84112, USA
| | | | | | | |
Collapse
|
12
|
Gene expression of P-glycoprotein and cytochrome P450 3A4 in peripheral blood mononuclear cells and correlation with expression in liver. Transplant Proc 2010; 42:834-6. [PMID: 20430184 DOI: 10.1016/j.transproceed.2010.02.048] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Long-term immunosuppression in renal transplant recipients generally includes calcineurin inhibitors (CNIs), which demonstrate marked interindividual diversity and a narrow therapeutic range. In the clinical setting, it is important to reach therapeutic drug concentrations to prevent allograft rejection. The same immunosuppressant dosage leads to different drug concentrations. Therefore, we investigated factors that influence the metabolism of immunosuppressant agents. The CNIs are substrates of cytochrome P450 (CYP450) and P-glycoprotein. The CYP450 3A genotype significantly influences CNI concentration. Differences in expression of these proteins may explain interindividual pharmacokinetic variations. However, it is risky and impractical to obtain specimens from the liver in renal transplant recipients. Therefore, we investigated the correlation of gene expression between peripheral blood mononuclear cells (PBMCs) and liver parenchyma. We observed that the correlation of relative P-glycoprotein gene expression between PBMCs and liver is not significant (r2=0.03; P=.65). In addition, the correlation of CYP450 3A4 gene expression between PBMCs and liver is not strong (r2=0.23; P=.42). The expression level of CYP450 3A5 is too low to be detected in the sample from PBMCs.
Collapse
|
13
|
Rendic S, Guengerich FP. Update information on drug metabolism systems--2009, part II: summary of information on the effects of diseases and environmental factors on human cytochrome P450 (CYP) enzymes and transporters. Curr Drug Metab 2010; 11:4-84. [PMID: 20302566 PMCID: PMC4167379 DOI: 10.2174/138920010791110917] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Accepted: 02/22/2010] [Indexed: 12/14/2022]
Abstract
The present paper is an update of the data on the effects of diseases and environmental factors on the expression and/or activity of human cytochrome P450 (CYP) enzymes and transporters. The data are presented in tabular form (Tables 1 and 2) and are a continuation of previously published summaries on the effects of drugs and other chemicals on CYP enzymes (Rendic, S.; Di Carlo, F. Drug Metab. Rev., 1997, 29(1-2), 413-580., Rendic, S. Drug Metab. Rev., 2002, 34(1-2), 83-448.). The collected information presented here is as stated by the cited author(s), and in cases when several references are cited the latest published information is included. Inconsistent results and conclusions obtained by different authors are highlighted, followed by discussion of the major findings. The searchable database is available as an Excel file, for information about file availability contact the corresponding author.
Collapse
Affiliation(s)
- S Rendic
- University of Zagreb, Zagreb, Croatia.
| | | |
Collapse
|
14
|
Pelkonen O, Kapitulnik J, Gundert-Remy U, Boobis A, Stockis A. Local Kinetics and Dynamics of Xenobiotics. Crit Rev Toxicol 2008; 38:697-720. [DOI: 10.1080/10408440802194931] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
15
|
Carlson GP. Critical appraisal of the expression of cytochrome P450 enzymes in human lung and evaluation of the possibility that such expression provides evidence of potential styrene tumorigenicity in humans. Toxicology 2008; 254:1-10. [PMID: 18951947 DOI: 10.1016/j.tox.2008.09.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2008] [Revised: 09/17/2008] [Accepted: 09/20/2008] [Indexed: 10/21/2022]
Abstract
Styrene is widely used with significant human exposure, particularly in the reinforced plastics industry. In mice it is both hepatotoxic and pneumotoxic, and this toxicity is generally thought to be associated with its metabolism to styrene oxide. Styrene causes lung tumors in mice but not in rats. The question is how the tumorigenic effect in mouse lung may relate to the human. This review examines the comparison of the metabolic activation rates (1) between the liver and lung and (2) for the lung, between the rodent and human. Emphasis is placed on the specific cytochromes P450 present in the lungs of humans and what role they might play in the bioactivation of styrene and other compounds. In general, pulmonary metabolism is very slow compared to hepatic metabolism. Furthermore, metabolic rates in humans are slow compared to those in rats and mice. There is a wide difference in what specific cytochromes P450 investigators have reported as being present in human lung which makes comparisons, both inter-species and inter-organ, difficult. The general low activity for cytochrome P450 activity in the lung, especially for CYP2F1, the human homolog for CYP2F2 which has been identified in mice as being primarily responsible for styrene metabolism, argues against the hypothesis that human lung would produce enough styrene oxide to damage pulmonary epithelial cells leading to cell death, increased cell replication and ultimately tumorigenicity, the presumed mode of action for styrene in the production of the mouse lung tumors.
Collapse
Affiliation(s)
- Gary P Carlson
- School of Health Sciences, Purdue University, 550 Stadium Mall Drive, West Lafayette, IN 47907-2051, United States.
| |
Collapse
|
16
|
Zordoky BNM, El-Kadi AOS. H9c2 cell line is a valuable in vitro model to study the drug metabolizing enzymes in the heart. J Pharmacol Toxicol Methods 2007; 56:317-22. [PMID: 17662623 DOI: 10.1016/j.vascn.2007.06.001] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2007] [Accepted: 06/01/2007] [Indexed: 10/23/2022]
Abstract
INTRODUCTION Recent studies demonstrated that cultured primary cardiomyocytes are a valuable tool for studying the metabolic capacity of the heart. However, a major limitation for isolated cardiomyocytes is that they are rather fragile and difficult to isolate. Therefore, there is an urgent need for an in vitro cell line model. METHODS Expression of different cytochrome P450 (CYP) genes were examined in a rat H9c2 cell line in comparison with that of rat heart. RNAs from H9c2 cells, rat heart as well as rat liver were isolated and CYP mRNA expression was determined by reverse transcription-polymerase chain reaction. RESULTS Our results showed that CYP1A1 and 1B1 are constitutively expressed in both H9c2 cells and the heart. CYP1A1 was induced by beta-naphthoflavone in H9c2 cells and the heart, whereas CYP1B1 was only induced in the heart. CYP2B1, 2B2, 2E1 and 2J3 were expressed in H9c2 cells and the heart at a comparable level but significantly lower than that detected in the liver. Expression of CYP2C11, 2C13, and 2C23 appeared to be greater in the cell line than in heart. On the other hand, CYP2A1, 3A1, and 3A2 were not expressed either in H9c2 cells or in the heart. DISCUSSION Our findings provide the first evidence for the expression of multiple CYPs in H9c2 cells at comparable levels to those expressed in the rat heart. Therefore, this cell line offers a valuable in vitro model to study the metabolic capacity of the heart.
Collapse
Affiliation(s)
- Beshay N M Zordoky
- Faculty of Pharmacy and Pharmaceutical Sciences, 3126 Dentistry/Pharmacy Centre, University of Alberta, Edmonton, Alberta, Canada T6G 2N8
| | | |
Collapse
|
17
|
Bergheim I, Wolfgarten E, Bollschweiler E, Hölscher AH, Bode C, Parlesak A. Cytochrome P450 levels are altered in patients with esophageal squamous-cell carcinoma. World J Gastroenterol 2007; 13:997-1002. [PMID: 17373732 PMCID: PMC4146886 DOI: 10.3748/wjg.v13.i7.997] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the role of cytochrome P450 (CYP) in the carcinogenesis of squamous-cell carcinoma (SCC) in human esophagus by determining expression patterns and protein levels of representative CYPs in esophageal tissue of patients with SCC and controls.
METHODS: mRNA expression of CYP2E1, CYP2C, CYP3A4, and CYP3A5 was determined using RT-PCR in both normal and malignant esophageal tissues of patients with untreated esophageal SCC (n = 21) and in controls (n = 10). Protein levels of CYP2E1, CYP2C8, CYP3A4, and CYP3A5 were measured by Western blot.
RESULTS: Within the group of SCC patients, mRNA expression of CYP 3A4 and CYP2C was significantly lower in malignant tissue (-39% and -74%, respectively, P < 0.05) than in normal tissue. Similar results were found in CYP3A4 protein levels. Between groups, CYP3A4, CYP3A5, and CYP2C8 protein concentration was significantly higher in non-malignant tissue of SCC patients (4.8-, 2.9-, and 1.9-fold elevation, P < 0.05) than in controls. In contrast, CYP2E1 protein levels were significantly higher in controls than in SCC patients (+46%, P < 0.05).
CONCLUSION: Significant differences exist in protein levels of certain CYPs in non-malignant esophageal tissue (e.g. CYP2C8, CYP3A4, CYP3A5, and CYP2E1) between SCC patients and healthy subjects and may contribute to the development of SCC in the esophagus.
Collapse
Affiliation(s)
- I Bergheim
- Hohenheim University (140b), Fruwirthstrasse 12, Stuttgart 70599, Germany.
| | | | | | | | | | | |
Collapse
|
18
|
Lee SJ, van der Heiden IP, Goldstein JA, van Schaik RHN. A new CYP3A5 variant, CYP3A5*11, is shown to be defective in nifedipine metabolism in a recombinant cDNA expression system. Drug Metab Dispos 2007; 35:67-71. [PMID: 17035598 PMCID: PMC3302370 DOI: 10.1124/dmd.106.012310] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
A new CYP3A5 variant, CYP3A5*11, was found in a white European subject by DNA sequencing. The CYP3A5*11 allele contains a single nucleotide polymorphism (SNP) (g.3775A>G) in exon 2, which results in a Tyr53Cys substitution, and a g.6986A>G splice change, the latter SNP previously reported in the defective CYP3A5*3 allele. However, the CYP3A5*3 is not a null allele because this variant is associated with leaky splicing, resulting in small amounts of functional protein still being produced. Therefore, we constructed a cDNA coding for the newly identified CYP3A5.11 protein by site-directed mutagenesis, expressed it in Escherichia coli, and partially purified it. Whereas bacteria transformed with wild-type CYP3A5*1 cDNA expressed predominantly cytochrome P450 (P450), those transfected with CYP3A5*11 expressed a significant amount of denatured cytochrome P420 in addition to P450, suggesting the protein to be unstable. CYP3A5.11 exhibited a 38% decrease in the V(max) for nifedipine metabolism, a 2.7-fold increase in the K(m), and a 4.4-fold decrease in the CL(int) of nifedipine compared with CYP3A5.1. A polymerase chain reaction-restriction fragment length polymorphism genotyping procedure was developed and used to genotype DNA of 500 white individuals for CYP3A5*11. No additional examples of this allele were identified. In summary, individuals carrying the rare CYP3A5*11 allele are predicted to have lower metabolism of CYP3A5 substrates than individuals expressing CYP3A5*3.
Collapse
Affiliation(s)
- Su-Jun Lee
- Department of Clinical Chemistry, Erasmus MC, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands
| | | | | | | |
Collapse
|
19
|
Sissung TM, Price DK, Sparreboom A, Figg WD. Pharmacogenetics and regulation of human cytochrome P450 1B1: implications in hormone-mediated tumor metabolism and a novel target for therapeutic intervention. Mol Cancer Res 2006; 4:135-50. [PMID: 16547151 DOI: 10.1158/1541-7786.mcr-05-0101] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Several of the hormone-mediated cancers (breast, endometrial, ovarian, and prostate) represent major cancers in both incidence and mortality rates. The etiology of these cancers is in large part modulated by the hormones estrogen and testosterone. As advanced disease develops, the common treatment for these cancers is chemotherapy. Thus, genes that can alter tissue response to hormones and alter clinical response to chemotherapy are of major interest. The cytochrome P450 1B1 (CYP1B1) may be involved in disease progression and modulate the treatment in the above hormone-mediated cancers. This review will focus on the pharmacogenetics of CYP1B1 in relation to hormone-mediated cancers and provide an assessment of cancer risk based on CYP1B1 polymorphisms and expression. In addition, it will provide a summary of CYP1B1 gene regulation and expression in normal and neoplastic tissue.
Collapse
Affiliation(s)
- Tristan M Sissung
- Clinical Pharmacology Research Core, National Cancer Institute, 9000 Rockville Pike, Building 10, Room 5A01, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
20
|
Bernauer U, Heinrich-Hirsch B, Tönnies M, Peter-Matthias W, Gundert-Remy U. Characterisation of the xenobiotic-metabolizing Cytochrome P450 expression pattern in human lung tissue by immunochemical and activity determination. Toxicol Lett 2006; 164:278-88. [PMID: 16483733 DOI: 10.1016/j.toxlet.2006.01.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2005] [Revised: 01/13/2006] [Accepted: 01/13/2006] [Indexed: 10/25/2022]
Abstract
The lung represents an important target for the toxic effects of chemicals. Many of the chemicals require enzymatic activation to exert their adverse effects, which is mostly catalysed by Cytochrome P450 (CYP) enzymes. Although there is considerable evidence that individual members of the xenobiotic-metabolizing P450 family are expressed in human lung tissue at the mRNA level, there is conflicting evidence concerning the following issues: (I) the qualitative expression pattern of CYP isoenzymes; (II) CYP expression at the protein and/or activity level; and (III) interindividual variability of CYP enzymes in human lung. The latter can be the basis for individual susceptibility towards the adverse effects of lung toxicants. In preparing for studying factors to explain interindividual variability of CYP expression in lung tissue, we investigated the qualitative pulmonary expression pattern of xenobiotic-metabolizing CYP enzymes and elaborated the optimal conditions for quantification at the protein and activity level. By using either individual human lung samples or pooled microsomes from different individuals, immunoreactive bands specific for the following CYP enzymes could be determined by Western blotting: CYP1A1, CYP1A2, CYP2E1 and CYP3A5. Western blotting experiments were also supportive of the presence of CYP2A, CYP2B6, CYP2D6 and CYP3A4 in human lung. By using antibodies specific for CYP2C enzymes and CYP1B1, respectively, immunoreactive bands, which differed slightly in mobility from corresponding standards, were detectable. In addition, we measured methoxy- and ethoxyresorufin dealkylase activities and chlorzoxazone (CLX)-hydroxylase activity in human lung and confirmed the specifities of the latter two activities by inhibition experiments. In summary, we have established methodologies to quantify a panel of CYP enzymes in human lung samples among which there are CYP enzymes whose expression at the protein and activity level has not been evidenced so far.
Collapse
Affiliation(s)
- Ulrike Bernauer
- Federal Institute for Risk Assessment/Bundesinstitut für Risikobewertung (BfR), Thielallee 88-92, D-14195 Berlin, Germany.
| | | | | | | | | |
Collapse
|
21
|
Bergheim I, Bode C, Parlesak A. Decreased expression of cytochrome P450 protein in non-malignant colonic tissue of patients with colonic adenoma. BMC Gastroenterol 2005; 5:34. [PMID: 16281975 PMCID: PMC1310537 DOI: 10.1186/1471-230x-5-34] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2005] [Accepted: 11/10/2005] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cytochrome P450 (CYP) enzymes in epithelial cells lining the alimentary tract play an important role in both the elimination and activation of (pro-)carcinogens. To estimate the role of cytochrome P450 in carcinogenesis of the colon, expression patterns and protein levels of four representative CYPs (CYP2C, CYP2E1, CYP3A4 and CYP3A5) were determined in colon mucosa of normal and adenomatous colonic tissue of patients with adenomas and disease-free controls. METHODS Expression of CYP2C, CYP2E1, CYP3A4, and CYP3A5 in colon mucosa of normal and adenomatous colonic tissue of patients with adenoma and disease-free controls was determined by RT-PCR. Protein concentration of CYPs was determined using Western blot. RESULTS With the exception of CYP3A5, expression of CYP mRNA was similar among groups and tissues (e.g. normal colon mucosa and adenoma). CYP3A5 mRNA expression was significantly higher in adenoma in comparison to normal tissue of patients with adenoma (approximately 48%). When comparing protein concentrations of CYPs measured in adenomas with neighboring normal colonic mucosa no differences were found. However, in normal tissue of patients with adenomas, protein levels of CYP2C8, CYP3A4 and CYP3A5, but not that of CYP2E1, were significantly lower than in biopsies obtained from disease-free controls. Specifically, in normal colonic mucosa of patients protein concentrations of CYP2C8, CYP3A4, and CYP3A5 were approximately 86%, approximately 69%, and approximately 54%, respectively, lower than in disease-free controls. CONCLUSION In conclusion, among other factors, the altered protein levels of certain CYPs (e.g. CYP2C8, CYP3A4 and CYP3A5) in colon mucosa might contribute to the development of neoplasia in the colon.
Collapse
Affiliation(s)
- Ina Bergheim
- Hohenheim University (140), Department Physiology of Nutrition, Stuttgart, Germany
- Department of Pharmacology and Toxicology, University of Louisville Health Sciences Center, Louisville, KY, USA
| | - Christiane Bode
- Hohenheim University (140), Department Physiology of Nutrition, Stuttgart, Germany
| | - Alexandr Parlesak
- Hohenheim University (140), Department Physiology of Nutrition, Stuttgart, Germany
| |
Collapse
|
22
|
Bergheim I, Bode C, Parlesak A. Distribution of cytochrome P450 2C, 2E1, 3A4, and 3A5 in human colon mucosa. BMC CLINICAL PHARMACOLOGY 2005; 5:4. [PMID: 16253141 PMCID: PMC1291361 DOI: 10.1186/1472-6904-5-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2005] [Accepted: 10/27/2005] [Indexed: 12/16/2022]
Abstract
Background Despite the fact that the alimentary tract is part of the body's first line of defense against orally ingested xenobiotica, little is known about the distribution and expression of cytochrome P450 (CYP) enzymes in human colon. Therefore, expression and protein levels of four representative CYPs (CYP2C(8), CYP2E1, CYP3A4, and CYP3A5) were determined in human colon mucosa biopsies obtained from ascending, descending and sigmoid colon. Methods Expression of CYP2C, CYP2E1, CYP3A4, and CYP3A5 mRNA in colon mucosa was determined by RT-PCR. Protein concentration of CYPs was determined using Western blot methods. Results Extensive interindividual variability was found for the expression of most of the genes. However, expression of CYP2C mRNA levels were significantly higher in the ascending colon than in the sigmoid colon. In contrast, mRNA levels of CYP2E1 and CYP3A5 were significantly lower in the ascending colon in comparison to the descending and sigmoid colon. In sigmoid colon protein levels of CYP2C8 were significantly higher by ~73% than in the descending colon. In contrast, protein concentration of CYP2E1 was significantly lower by ~81% in the sigmoid colon in comparison to the descending colon. Conclusion The current data suggest that the expression of CYP2C, CYP2E1, and CYP3A5 varies in different parts of the colon.
Collapse
Affiliation(s)
- Ina Bergheim
- Hohenheim University (140), Dep. Physiology of Nutrition, Stuttgart, Germany
- Department of Pharmacology and Toxicology, University of Louisville Health Sciences Center, Louisville, KY, USA
| | - Christiane Bode
- Hohenheim University (140), Dep. Physiology of Nutrition, Stuttgart, Germany
| | - Alexandr Parlesak
- Hohenheim University (140), Dep. Physiology of Nutrition, Stuttgart, Germany
| |
Collapse
|
23
|
Raunio H, Hakkola J, Pelkonen O. Regulation of CYP3A genes in the human respiratory tract. Chem Biol Interact 2005; 151:53-62. [PMID: 15698577 DOI: 10.1016/j.cbi.2003.12.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2003] [Indexed: 11/18/2022]
Abstract
The CYP3A gene cluster consists of four members, CYP3A4, CYP3A5, CYP3A7 and CYP3A43. Especially the CYP3A4 and CYP3A5 enzymes play a significant role in the metabolism of numerous exogenous (drugs, pollutants, procarcinogens) and endogenous (steroids, bile acids) compounds. CYP3A5 protein is present in the liver and some extrahepatic tissues, such as the gut wall, kidney, adrenal gland, prostate and many cell types in the lung. In the lung, the highest amounts of CYP3A5 protein are present in bronchial and alveolar epithelial cells, bronchial glands and alveolar macrophages. The same cells types have little or no CYP3A4 expression. Cigarette smoking markedly represses CYP3A5 content in alveolar macrophages. CYP3A5 is upregulated by glucocorticoids via the glucocorticoid receptor (GR) in lung adenocarcinoma derived A549 cells. Tissue selective distribution of CYP3A4 is controlled by tissue enriched transcription factors, such as hepatic nuclear factor 4alpha (HNF4alpha), and ligand dependent nuclear receptors, most notably pregnane X receptor (PXR) and constitutive androstane receptor (CAR). The selective expression of CYP3A5 over CYP3A4 in specific lung cells is likely to be the sum of the effects of tissue-specific upregulating and downregulating transcription factors in these cells. Since the CYP3A4/5 enzymes mediate the metabolism of many exogenous and endogenous compounds with direct relevance to pulmonary physiology and pathology, the functions of these enzymes and factors controlling them should be elucidated in much more detail.
Collapse
Affiliation(s)
- Hannu Raunio
- Department of Pharmacology and Toxicology, University of Kuopio, Box 1627, 70211 Kuopio, Finland.
| | | | | |
Collapse
|
24
|
Yamaori S, Yamazaki H, Iwano S, Kiyotani K, Matsumura K, Honda G, Nakagawa K, Ishizaki T, Kamataki T. CYP3A5 Contributes significantly to CYP3A-mediated drug oxidations in liver microsomes from Japanese subjects. Drug Metab Pharmacokinet 2004; 19:120-9. [PMID: 15499178 DOI: 10.2133/dmpk.19.120] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The purpose of this study was to evaluate a contribution of polymorphic cytochrome P450 (CYP) 3A5 to the oxidation of diltiazem, midazolam and testosterone by liver microsomes from Japanese subjects. Twenty-seven liver samples were classified into three groups according to the CYP3A5 genotypes; CYP3A5(*)1/(*)1 (n=3), (*)1/(*)3 (n=12) and (*)3/(*)3 (n=12). The results of genotyping and immunochemical quantitation of CYP3A5 protein showed a good accordance between the CYP3A5 genotype and CYP3A5 content but not CYP3A4 content in liver microsomes. The expression levels of hepatic CYP3A5 protein ranged from 20 to 60% of the sum of CYP3A4 and CYP3A5 contents in subjects with at least one wild type allele ((*)1). The CYP3A5 contents correlated well with liver microsomal activities of diltiazem N-demethylation, midazolam 1'- and 4-hydroxylations and testosterone 6beta-hydroxylation among subjects carrying at least one (*)1 allele. In addition, the correlation coefficients of CYP3A5 contents with the rates of diltiazem N-demethylation, midazolam 1'-hydroxylation and testosterone 6beta- hydroxylation were higher than those of CYP3A4, although the value of CYP3A5 with the midazolam 4-hydroxylation rate was similar to that of CYP3A4. Kinetic analyses revealed a biphasic diltiazem N-demethylation in liver microsomes from subjects carrying the (*)1 allele. The apparent V(max)/K(m) values for recombinant CYP3A5 indicated the greater contributions to diltiazem N-demethylation and midazolam 1'-hydroxylation as compared with CYP3A4. These results suggest that polymorphic CYP3A5 contributes markedly to the drug oxidations, particularly diltiazem N-demethylation, midazolam 1'- hydroxylation and testosterone 6beta-hydroxylation by liver microsomes from Japanese subjects.
Collapse
Affiliation(s)
- Satoshi Yamaori
- Laboratory of Drug Metabolism, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo.
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Xie HG, Wood AJJ, Kim RB, Stein CM, Wilkinson GR. Genetic variability in CYP3A5 and its possible consequences. Pharmacogenomics 2004; 5:243-72. [PMID: 15102541 DOI: 10.1517/phgs.5.3.243.29833] [Citation(s) in RCA: 208] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The cytochrome P450 3A (CYP3A) subfamily members are the most abundant and important drug-metabolizing enzymes in humans, and wide interindividual variability in CYP3A expression and function is present. CYP3A4 alone cannot fully explain the observed constitutive variability because its genetic variants are relatively uncommon and have limited functional significance, whereas CYP3A5 expression in humans is highly variable and may be contributory. However, it is difficult to delineate the relative contribution of CYP3A4 and CYP3A5, and to differentiate their effects on drug metabolism as their protein structure, function and substrates are so similar. By contrast, molecular biology methods provide the ability to identify CYP3A4 and CYP3A5 genotypes with certainty. This review collates currently available data on CYP3A5 polymorphisms, provides information on the population frequency of each genetic variant in major ethnic groups, and describes in vitro and in vivo studies that have attempted to identify genotype-phenotype associations.
Collapse
Affiliation(s)
- Hong-Guang Xie
- Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| | | | | | | | | |
Collapse
|
26
|
Hukkanen J, Väisänen T, Lassila A, Piipari R, Anttila S, Pelkonen O, Raunio H, Hakkola J. Regulation of CYP3A5 by glucocorticoids and cigarette smoke in human lung-derived cells. J Pharmacol Exp Ther 2003; 304:745-52. [PMID: 12538830 DOI: 10.1124/jpet.102.038208] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
CYP3A5 is the major CYP3A form in the human lung, and it is inducible by dexamethasone in the human A549 lung adenocarcinoma cell line. In the present study, we characterized the nature and mechanism of this induction process. The induction of CYP3A5 mRNA was assessed by quantitative reverse transcriptase-polymerase chain reaction in A549 cells. About 4-fold induction was detected by nanomolar concentrations of dexamethasone and also by budenoside and beclomethasone dipropionate, glucocorticoids used for the inhalation treatment of bronchial asthma, whereas the CYP3A4 inducers mifepristone (RU486), rifampicin, clotrimazole, and nifedipine were without effect. The glucocorticoid induction was blocked by the glucocorticoid receptor (GR) antagonist RU486. In transient transfection assays to A549 cells, CYP3A5 5' regulatory region was activated by the dexamethasone treatment. In contrast, dexamethasone was unable to induce CYP3A5 transcription in GR-deficient COS-1 cells, but the induction could be achieved after GR cotransfection. The CYP3A5 expression was measured in alveolar macrophages from patients with respiratory diseases. The CYP3A5 expression level was decreased by smoking, but glucocorticoid therapy had no statistically significant effect. In conclusion, CYP3A5 is induced in the A549 cells by glucocorticoids through a GR-mediated pathway, whereas smoking may be able to depress CYP3A5 expression.
Collapse
Affiliation(s)
- Janne Hukkanen
- Department of Pharmacology and Toxicology, University of Oulu, Finland
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Finnström N, Ask B, Dahl ML, Gadd M, Rane A. Intra-individual variation and sex differences in gene expression of cytochromes P450 in circulating leukocytes. THE PHARMACOGENOMICS JOURNAL 2002; 2:111-6. [PMID: 12049173 DOI: 10.1038/sj.tpj.6500086] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
To clarify partly inconsistent results in gene expression of cytochromes P450 (CYP) in the circulation, we undertook a systematic study over a long time period in 19 healthy men and women. CYP specific mRNA for 1A2, 1B1, 2E1 and 3A4 was studied in the leukocytes collected repeatedly on 20 occasions over a 10-week period. Our study revealed a varying pattern of CYP expression over time. CYP3A4 specific mRNA exhibited the largest intra-individual variation with an average coefficient of variation between 40 and 250%. CYP1B1 and CYP2E1 did not vary as much (39-110%). CYP1A2 was sporadically detected in only ten individuals, but varied considerably when measurable (61-256%). The expression in CYP1B1 was significantly higher in women than in men (P = 0.02). We conclude that CYP gene expression in blood varies considerably over time. It is conceivable that the variation reflects a hitherto unknown influence of exogenous or endogenous factors such as hormones, cytokines, and other circulating factors on the hematogeneous cytochromes.
Collapse
Affiliation(s)
- N Finnström
- Department of Medical Laboratory Sciences and Technology, Karolinska Institutet at Huddinge University Hospital, Stockholm, Sweden.
| | | | | | | | | |
Collapse
|
28
|
Lamba JK, Lin YS, Schuetz EG, Thummel KE. Genetic contribution to variable human CYP3A-mediated metabolism. Adv Drug Deliv Rev 2002; 54:1271-94. [PMID: 12406645 DOI: 10.1016/s0169-409x(02)00066-2] [Citation(s) in RCA: 712] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The human CYP3A subfamily plays a dominant role in the metabolic elimination of more drugs than any other biotransformation enzyme. CYP3A enzyme is localized in the liver and small intestine and thus contributes to first-pass and systemic metabolism. CYP3A expression varies as much as 40-fold in liver and small intestine donor tissues. CYP3A-dependent in vivo drug clearance appears to be unimodally distributed which suggests multi-genic or complex gene-environment causes of variability. Interindividual differences in enzyme expression may be due to several factors including: variable homeostatic control mechanisms, disease states that alter homeostasis, up- or down-regulation by environmental stimuli (such as smoking, drug intake, or diet), and genetic mutations. This review summarizes the current understanding and implications of genetic variation in the CYP3A enzymes. Unlike other human P450s (CYP2D6, CYP2C19) there is no evidence of a 'null' allele for CYP3A4. More than 30 SNPs (single nucleotide polymorphisms) have been identified in the CYP3A4 gene. Generally, variants in the coding regions of CYP3A4 occur at allele frequencies <5% and appear as heterozygous with the wild-type allele. These coding variants may contribute to but are not likely to be the major cause of inter-individual differences in CYP3A-dependent clearance, because of the low allele frequencies and limited alterations in enzyme expression or catalytic function. The most common variant, CYP3A4*1B, is an A-392G transition in the 5'-flanking region with an allele frequency ranging from 0% (Chinese and Japanese) to 45% (African-Americans). Studies have not linked CYP3A4*1B with alterations in CYP3A substrate metabolism. In contrast, there are several reports about its association with various disease states including prostate cancer, secondary leukemias, and early puberty. Linkage disequilibrium between CYP3A4*1B and another CYP3A allele (CYP3A5*1) may be the true cause of the clinical phenotype. CYP3A5 is polymorphically expressed in adults with readily detectable expression in about 10-20% in Caucasians, 33% in Japanese and 55% in African-Americans. The primary causal mutation for its polymorphic expression (CYP3A5*3) confers low CYP3A5 protein expression as a result of improper mRNA splicing and reduced translation of a functional protein. The CYP3A5*3 allele frequency varies from approximately 50% in African-Americans to 90% in Caucasians. Functionally, microsomes from a CYP3A5*3/*3 liver contain very low CYP3A5 protein and display on average reduced catalytic activity towards midazolam. Additional intronic or exonic mutations (CYP3A5*5, *6, and *7) may alter splicing and result in premature stop codons or exon deletion. Several CYP3A5 coding variants have been described, but occur at relatively low allelic frequencies and their functional significance has not been established. As CYP3A5 is the primary extrahepatic CYP3A isoform, its polymorphic expression may be implicated in disease risk and the metabolism of endogenous steroids or xenobiotics in these tissues (e.g., lung, kidney, prostate, breast, leukocytes). CYP3A7 is considered to be the major fetal liver CYP3A enzyme. Although hepatic CYP3A7 expression appears to be significantly down-regulated after birth, protein and mRNA have been detected in adults. Recently, increased CYP3A7 mRNA expression has been associated with the replacement of a 60-bp segment of the CYP3A7 promoter with a homologous segment in the CYP3A4 promoter (CYP3A7*1C allele). This mutational swap confers increased gene transcription due to an enhanced interaction between activated PXR:RXRalpha complex and its cognate response element (ER-6). The genetic basis for polymorphic expression of CYP3A5 and CYP3A7 has now been established. Moreover, the substrate specificity and product regioselectivity of these isoforms can differ from that of CYP3A4, such that the impact of CYP3A5 and CYP3A7 polymorphic expression on drug disposition will be drug dependent. In addition to genetic variation, other factors that may also affect CYher factors that may also affect CYP3A expression include: tissue-specific splicing (as reported for prostate CYP3A5), variable control of gene transcription by endogenous molecules (circulating hormones) and exogenous molecules (diet or environment), and genetic variations in proteins that may regulate constitutive and inducible CYP3A expression (nuclear hormone receptors). Thus, the complex regulatory pathways, environmentally susceptible milieu of the CYP3A enzymes, and as yet undetermined genetic haplotypes, may confound evaluation of the effect of individual CYP3A genetic variations on drug disposition, efficacy and safety.
Collapse
|
29
|
Abstract
Cytochrome P450 mono-oxygenases (CYP) play an essential role in steroid metabolism, and there is speculation that sex hormones might influence cardiac mass and physiology. As CYP mono-oxygenases activity is frequently altered during disease, we tested our hypothesis that CYP mono-oxygenase expression and testosterone metabolism are altered in cardiac hypertrophy. We investigate major CYP mono-oxygenase isoforms and other steroid-metabolizing enzymes and the androgen receptor in normal, hypertrophic, and assist device-supported human hearts and in spontaneously hypertensive rats (SHR). We show increased and idiosyncratic metabolism of testosterone in hypertrophic heart and link these changes to altered CYP mono-oxygenase expression. We show significant induction of 5-alpha steroid reductase and P450 aromatase gene expression and enhanced production of dihydrotestosterone, which can be inhibited by the 5-alpha reductase inhibitor finasteride. We show increased gene expression of the androgen receptor and increased levels of lipid peroxidation in diseased hearts, the latter being markedly inhibited by CYP mono-oxygenase inactivation. We show alpha-MHC to be significantly repressed in cardiac hypertrophy and restored to normal on testosterone supplementation. We conclude that heart-specific steroid metabolism is of critical importance in cardiac hypertrophy
Collapse
Affiliation(s)
- Thomas Thum
- Center of Drug Research and Medical Biotechnology, Fraunhofer Institute of Toxicology and Aerosol Research, Hannover, Germany
| | | |
Collapse
|
30
|
Hukkanen J, Pelkonen O, Hakkola J, Raunio H. Expression and regulation of xenobiotic-metabolizing cytochrome P450 (CYP) enzymes in human lung. Crit Rev Toxicol 2002; 32:391-411. [PMID: 12389869 DOI: 10.1080/20024091064273] [Citation(s) in RCA: 227] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Pathogenesis of lung diseases, such as lung cancer and chronic obstructive pulmonary disease, is tightly linked to exposure to environmental chemicals, most notably tobacco smoke. Many of the compounds associated with these diseases require an enzymatic activation to exert their deleterious effects on pulmonary cells. These activation reactions are mostly catalyzed by cytochrome P450 (CYP) enzymes. Interindividual differences in the in situ activation and inactivation of chemical toxicants may contribute to the risk of developing lung diseases associated with these compounds. This review summarizes in detail the expression of individual CYP forms in human pulmonary tissue and gives a view on the significance of the pulmonary expression of CYP enzymes. The localization of individual CYP enzymes in various cell types of human lung and the emerging field of regulation of human pulmonary CYP enzymes are discussed. At least CYP1A1 (in smokers), CYP1B1, CYP2B6, CYP2E1, CYP2J2, and CYP3A5 proteins are expressed in human lung, and also other CYP forms are likely to be expressed. Xenobiotic-metabolizing CYP enzymes are mostly expressed in bronchial and bronchiolar epithelium, Clara cells, type II pneumocytes, and alveolar macrophages in human lung, although individual CYP forms have different patterns of localization in pulmonary tissues. Problems in animal to human lung toxicity extrapolation and several specific aspects requiring more detailed assessment are identified.
Collapse
|
31
|
Lin YS, Dowling ALS, Quigley SD, Farin FM, Zhang J, Lamba J, Schuetz EG, Thummel KE. Co-regulation of CYP3A4 and CYP3A5 and contribution to hepatic and intestinal midazolam metabolism. Mol Pharmacol 2002; 62:162-72. [PMID: 12065767 DOI: 10.1124/mol.62.1.162] [Citation(s) in RCA: 339] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We recently demonstrated that a variant allele of CYP3A5 (CYP3A5*3) confers low CYP3A5 expression as a result of improper mRNA splicing. In this study, we further evaluated the regulation of CYP3A5 in liver and jejunal mucosa from white donors. For all tissues, high levels of CYP3A5 protein were strongly concordant with the presence of a wild-type allele of the CYP3A5 gene (CYP3A5*1). CYP3A5 represented greater than 50% of total CYP3A content in nearly all of the livers and jejuna that carried the CYP3A5*1 wild-type allele. Overall, CYP3A5 protein content accounted for 31% of the variability in hepatic midazolam hydroxylation activity. Improperly spliced mRNA (SV1-CYP3A5) was found only in tissues containing a CYP3A5*3 allele. Properly spliced CYP3A5 mRNA (wt-CYP3A5) was detected in all tissues, but the median wt-CYP3A5 mRNA was 4-fold higher in CYP3A5*1/*3 livers compared with CYP3A5*3/*3 livers. Differences in wt-CYP3A5 and CYP3A4 mRNA content explained 53 and 51% of the interliver variability in CYP3A5 and CYP3A4 content, respectively. Hepatic CYP3A4 and CYP3A5 contents were not correlated when all livers were compared. However, for CYP3A5*1/*3 livers, levels of the two proteins were strongly correlated (r = 0.93) as were wt-CYP3A5 and CYP3A4 mRNA (r = 0.76). These findings suggest that CYP3A4 and CYP3A5 genes share a common regulatory pathway for constitutive expression, possibly involving conserved elements in the 5'-flanking region.
Collapse
Affiliation(s)
- Yvonne S Lin
- Department of Pharmaceutics, University of Washington, Seattle, Washington 98195, USA
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Thum T, Borlak J. Cytochrome P450 mono-oxygenase gene expression and protein activity in cultures of adult cardiomyocytes of the rat. Br J Pharmacol 2000; 130:1745-52. [PMID: 10952662 PMCID: PMC1572248 DOI: 10.1038/sj.bjp.0703465] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
There are a substantial number of drugs acting either directly or indirectly on the heart, but surprisingly, little is known about the metabolic capacity of heart muscle cells. We therefore investigated the gene expression and protein activity of cytochrome P450 isozymes in cultures of adult cardiomyocytes of the rat. Semi-quantitative CYP gene expression pattern suggests CYP1A1 and CYP2B1/2 to be key players in cardiomyocytes and upon treatment with Aroclor 1254 approximate 4 fold inductions could be observed for both gene families, when compared with appropriate controls. The mRNA expression of most genes was sustained for prolonged periods of time, e.g. up to 120 h in culture and in the case of the CYP3A1 gene an approximate 10 fold induction was observed at the higher Aroclor 1254 dose level (10 microM) in 24 h old cultures. The constitutively expressed genes, e.g. CYP2C11 and CYP2E1 are expressed throughout the entire culture period (5 days) and did not respond to Aroclor 1254 treatment. CYP4A1 was mainly expressed in freshly isolated cardiomyocytes of control animals and its expression declined rapidly in culture. There was good agreement between gene expression and translated protein activity using 7-ethoxyresorufin and testosterone as substrates. The data reported herein should foster the routine use of freshly isolated and cultivated cardiomyocytes for drug profiling and toxicity studies.
Collapse
Affiliation(s)
- Thomas Thum
- Fraunhofer Institute of Toxicology and Aerosol Research, Department of Molecular Toxicology and Pharmacokinetics, Nicolai-Fuchs-Str 1, D-30659 Hannover, Germany
| | - Jürgen Borlak
- Fraunhofer Institute of Toxicology and Aerosol Research, Department of Molecular Toxicology and Pharmacokinetics, Nicolai-Fuchs-Str 1, D-30659 Hannover, Germany
- Author for correspondence:
| |
Collapse
|
33
|
Abstract
BACKGROUND Cytochrome P450 mono-oxygenases bring about metabolism of many drugs, including verapamil, but no information is available on the metabolism of such drugs in the human heart. METHODS We investigated the gene expression of major human cytochrome P450 mono-oxygenases in the various regions of explanted hearts from six patients with dilated cardiomyopathy and one with transposition of the arterial trunk. For comparison we also studied samples of liver and lung from three patients and two samples of normal heart. The biological significance of tissue-specific cytochrome mono-oxygenase gene expression was further investigated by study of the microsomal metabolism of verapamil in ventricular tissue. FINDINGS mRNA for the cytochromes 1A1, 2B6/7, 2C8-19, 2D6, and 4B1 was predominantly expressed in the right ventricle; the unilateral expression of the 2D6 gene in right-venticular tissue is important because of its key role in the metabolism of beta-blockers. A strong correlation between tissue-specific gene expression and enzyme activity was found; microsomal metabolism of verapamil was confined to the right ventricle. By contrast, cytochrome P450 3A genes (which are the major drug-metabolising enzymes in the liver and the lung) were not expressed in any of the human heart tissues, and mRNA transcripts for epoxide hydrolase, cytochrome P450 2E1, and flavin-containing mono-oxygenases 2 and 5 were detected in all regions of the human heart and the great vessels. INTERPRETATION These findings show that expression of genes for cytochrome P450 mono-oxygenases and verapamil metabolism are found predominantly in the right side of the heart. This finding may explain lack of efficacy of certain cardioselective drugs.
Collapse
Affiliation(s)
- T Thum
- Fraunhofer Institute of Toxicology and Aerosol Research, Department of Molecular Toxicology and Pharmacokinetics, Hannover, Germany
| | | |
Collapse
|
34
|
Hukkanen J, Lassila A, Päivärinta K, Valanne S, Sarpo S, Hakkola J, Pelkonen O, Raunio H. Induction and regulation of xenobiotic-metabolizing cytochrome P450s in the human A549 lung adenocarcinoma cell line. Am J Respir Cell Mol Biol 2000; 22:360-6. [PMID: 10696073 DOI: 10.1165/ajrcmb.22.3.3845] [Citation(s) in RCA: 123] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Several cytochrome P450 (CYP) enzymes are expressed in the human lung, where they participate in metabolic inactivation and activation of numerous exogenous and endogenous compounds. In this study, the expression pattern of all known xenobiotic-metabolizing CYP genes was characterized in the human alveolar type II cell-derived A549 adenocarcinoma cell line using qualitative reverse transcriptase/polymerase chain reaction (RT-PCR). In addition, the mechanisms of induction by chemicals of members in the CYP1 and CYP3A subfamilies were assessed by quantitative RT-PCR. The expression of messenger RNAs (mRNAs) of CYPs 1A1, 1B1, 2B6, 2C, 2E1, 3A5, and 3A7 was detected in the A549 cells. The amounts of mRNAs of CYPs 1A2, 2A6, 2A7, 2A13, 2F1, 3A4, and 4B1 were below the limit of detection. 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) induced CYP1A1 and CYP1B1 mRNAs 56-fold and 2.5-fold, respectively. CYP3A5 was induced 8-fold by dexamethasone and 11-fold by phenobarbital. CYP3A4 was not induced by any of the typical CYP3A4 inducers used. The tyrosine kinase inhibitor genistein and the protein kinase C inhibitor staurosporine blocked TCDD-elicited induction of CYP1A1, but they did not affect CYP1B1 induction. Protein phosphatase inhibitors okadaic acid and calyculin A enhanced TCDD-induction of CYP1B1 slightly, but had negligible effects on CYP1A1 induction. These results suggest that CYP1A1 and CYP1B1 are differentially regulated in human pulmonary epithelial cells and give the first indication of the induction of CYP3A5 by glucocorticoids in human lung cells. These results establish that having retained several characteristics of human lung epithelial cell CYP expression, the A549 lung cell line is a valuable model for mechanistic studies on induction of the pulmonary CYP system.
Collapse
Affiliation(s)
- J Hukkanen
- Department of Pharmacology and Toxicology, University of Oulu, Oulu, Finland
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Raunio H, Hakkola J, Hukkanen J, Lassila A, Päivärinta K, Pelkonen O, Anttila S, Piipari R, Boobis A, Edwards RJ. Expression of xenobiotic-metabolizing CYPs in human pulmonary tissue. EXPERIMENTAL AND TOXICOLOGIC PATHOLOGY : OFFICIAL JOURNAL OF THE GESELLSCHAFT FUR TOXIKOLOGISCHE PATHOLOGIE 1999; 51:412-7. [PMID: 10445407 DOI: 10.1016/s0940-2993(99)80031-1] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The pattern of expression of individual cytochrome P450 (CYP) forms participating in the metabolism of xenobiotics is being increasingly well characterised in the human pulmonary tissue. Recent studies using methods having increased sensitivity and specificity, such as the reverse transcriptase-polymerase chain reaction (RT-PCR) analysis, have revealed constitutive and inducible expression of several CYP forms in different cell types of the human lung. These studies have revealed the presence of mRNA of several procarcinogen-activating CYP forms in whole lung tissue and alveolar macrophages, including CYP1A1, CYP2B6/7, CYP2E1, and CYP3A5. The results of several studies on CYP2D6 expression have yielded contradictory results. Immunohistochemical analysis shows that CYP3A5 protein is present in all lung samples studied, and is localized in the ciliated and mucous cells of the bronchial wall, bronchial glands, bronchiolar ciliated and terminal cuboidal epithelium, type I and type II alveolar epithelium, vascular and capillary endothelium, and alveolar macrophages. Also CYP3A4 protein is found in some cell types in a minority (about 20%) of lung samples. Primary cultures of freshly isolated broncho-alveolar macrophages as well as a continuously growing bronchial carcinoma cell line (A-549) are being used for CYP induction studies in our laboratory. The results indicate that CYP1 family members are inducible in these cells by polycyclic aromatic hydrocarbon (PAH) inducers, and that CYP3A5, but not CYP3A4, is present constitutively. The results of these studies indicate that several different xenobiotic-metabolizing CYPs are present in the human lung and lung-derived cell lines, possibly contributing to in situ activation of pulmonary procarcinogens. Interindividual differences in the expression of these CYPs may contribute to the risk of developing lung cancer and possibly other pulmonary diseases initiated by agents that require metabolic activation.
Collapse
Affiliation(s)
- H Raunio
- Department of Pharmacology and Toxicology, University of Oulu, Finland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Drewe J, Gutmann H, Fricker G, Török M, Beglinger C, Huwyler J. HIV protease inhibitor ritonavir: a more potent inhibitor of P-glycoprotein than the cyclosporine analog SDZ PSC 833. Biochem Pharmacol 1999; 57:1147-52. [PMID: 11230802 DOI: 10.1016/s0006-2952(99)00026-x] [Citation(s) in RCA: 139] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The effect of P-glycoprotein inhibition on the uptake of the HIV type 1 protease inhibitor saquinavir into brain capillary endothelial cells was studied using porcine primary brain capillary endothelial cell monolayers as an in vitro test system. As confirmed by polymerase chain reaction and Western blot analysis, this system functionally expressed class I P-glycoprotein (pgp1A). P-Glycoprotein isoforms pgp1B or pgp1D could not be detected. The uptake of saquinavir into endothelial cells could be described as the result of a diffusional term of uptake and an oppositely directed saturable extrusion process. Net uptake of saquinavir into cultured brain endothelial cells could be increased significantly up to 2-fold by SDZ PSC 833 in a dose-dependent manner, with an IC(50) of 1.13 microM. In addition, the HIV protease inhibitor ritonavir inhibited p-glycoprotein-mediated extrusion of saquinavir with an IC(50) of 0.2 microM, indicating a high affinity of ritonavir for p-glycoprotein. In conclusion, we showed that the HIV protease inhibitor ritonavir is a more potent inhibitor of P-glycoprotein than the multidrug resistance (MDR)-reversing agent SDZ PSC 833. The inclusion of this drug in combination regimens may greatly facilitate brain uptake of HIV protease inhibitors, which is especially important in patients suffering from AIDS dementia complex.
Collapse
Affiliation(s)
- J Drewe
- Department of Research and Department of Clinical Pharmacology, University Hospital, Basel, Switzerland.
| | | | | | | | | | | |
Collapse
|
37
|
Murray GI, McFadyen MC, Mitchell RT, Cheung YL, Kerr AC, Melvin WT. Cytochrome P450 CYP3A in human renal cell cancer. Br J Cancer 1999; 79:1836-42. [PMID: 10206301 PMCID: PMC2362772 DOI: 10.1038/sj.bjc.6690292] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Renal cell cancer is the main malignant tumour of the kidney and has an increasing incidence. This type of tumour has a poor prognosis and shows intrinsic resistance to several anti-cancer drugs. The CYP3A P450 family, which consists of three closely related forms, is involved in the oxidative activation and deactivation of a variety of carcinogens and several anti-cancer drugs. In this study the presence and cellular localization of CYP3A has been investigated using a combination of immunohistochemistry, immunoblotting and reverse transcriptase polymerase chain reaction (RT-PCR) in renal cell cancer and corresponding normal kidney. CYP3A was consistently expressed in both renal call cancer and in normal kidney. In renal cell cancer, CYP3A was localized to tumour cells and in normal kidney the predominant cellular localization of CYP3A was to proximal tubular epithelial cells. RT-PCR showed that both CYP3A5 mRNA and CYP3A7 mRNA were consistently present in both tumour and normal samples, while CYP3A4 mRNA was present in 65% of tumours and 90% of normal samples. This study indicates that individual members of the CYP3A family are expressed in renal cell cancer. The presence of CYP3A in renal cell cancer might be important in the metabolic potentiation as well as the detoxification of chemotherapeutic agents used to renal cancer.
Collapse
Affiliation(s)
- G I Murray
- Department of Pathology, University of Aberdeen, Foresterhill, UK
| | | | | | | | | | | |
Collapse
|
38
|
Hakkola J, Pelkonen O, Pasanen M, Raunio H. Xenobiotic-metabolizing cytochrome P450 enzymes in the human feto-placental unit: role in intrauterine toxicity. Crit Rev Toxicol 1998; 28:35-72. [PMID: 9493761 DOI: 10.1080/10408449891344173] [Citation(s) in RCA: 172] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Practically all lipid-soluble xenobiotics enter the conceptus through placental transfer. Many xenobiotics, including a number of clinically used drugs, are known to cause unwanted effects in the embryo or fetus, including in utero death, initiation of birth defects, and production of functional abnormalities. It is well established that numerous xenobiotics are not necessarily toxic as such, but are enzymatically transformed in the body to reactive and toxic intermediates. The cytochrome P450 (CYP) enzymes are known to catalyze oxidative metabolism of a vast number of compounds, including many proteratogens, procarcinogens, and promutagens. About 20 xenobiotic-metabolizing CYP forms are known to exist in humans. Most of these forms are most abundant in the liver, but examples of exclusively extrahepatic CYP forms also exist. Unlike rodents, the liver of the human fetus and even embryo possesses relatively well-developed metabolism of xenobiotics. There is experimental evidence for the presence of CYP1A1, CYP1B1, CYP2C8, CYP2D6, CYP2E1, CYP3A4, CYP3A5, and CYP3A7 in the fetal liver after the embryonic phase (after 8 to 9 weeks of gestation). Significant xenobiotic metabolism occurs also during organogenesis (before 8 weeks of gestation). Also, some fetal extrahepatic tissues, most notably the adrenal, contain substantial levels of CYP enzymes. The full-term human placenta is devoid of many CYP activities present in liver. Placental CYP1A1 is highly inducible by maternal cigarette smoking. Other forms present in full-term placenta include CYP4B1 and CYP19 (steroid aromatase), which also contribute to the oxidation of some xenobiotics. At earlier stages of pregnancy, the placenta may express a wider array of CYP genes, including CYP2C, CYP2D6, and CYP3A7. Due to the small size of the fetus and low abundance of CYPs in placenta, the contribution of feto-placental metabolism to overall gestational pharmacokinetics of drugs is probably minor. In contrast, several toxic outcomes have been ascribed to altered metabolic patterns in the feto-placental unit, including a putative association between reduced placental oxidative capacity and birth defects. Examples of human teratogens that are substrates for CYP enzymes include thalidomide, phenytoin, ethanol, and several hormonal agents. Recent studies have improved our understanding of the expression and regulation of individual CYP genes in the fetus and placenta, and the stage is set for applying this knowledge with more precision to the role of xenobiotic metabolism in abnormal intrauterine development in humans.
Collapse
Affiliation(s)
- J Hakkola
- Department of Pharmacology and Toxicology, University of Oulu, Finland
| | | | | | | |
Collapse
|
39
|
Hukkanen J, Hakkola J, Anttila S, Piipari R, Karjalainen A, Pelkonen O, Raunio H. Detection of mRNA encoding xenobiotic-metabolizing cytochrome P450s in human bronchoalveolar macrophages and peripheral blood lymphocytes. Mol Carcinog 1997; 20:224-30. [PMID: 9364212 DOI: 10.1002/(sici)1098-2744(199710)20:2<224::aid-mc9>3.0.co;2-m] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Human pulmonary tissue are known to contain enzymes mediating procarcinogen activation. Peripheral blood lymphocytes and bronchoalveolar macrophages (BAMs) have been used as surrogates for the lung in studies involving cytochrome P450 (CYP) parameters, including CYP1A1 inducibility in relation to susceptibility to lung cancer. In this study, a comprehensive view of the expression patterns of xenobiotic-metabolizing CYP forms in human BAMs and peripheral blood lymphocytes was obtained by using gene-specific reverse transcriptase-polymerase chain reaction analysis. These patterns were compared with that in the whole lung. mRNAs of CYP2B6/7, CYP2C, CYP2E1, CYP2F1, CYP3A5, and CYP4B1 were detected in all seven BAM samples studied; however, only the mRNA of CYP2E1 was found consistently in all eight lymphocyte samples. The amounts of amplification products of CYP2B6/7, CYP2C, CYP3A5, and CYP4B1 were low and inconsistent, indicating low levels of expression in lymphocytes. Consistent with previous knowledge, mRNAs of CYP1A1, CYP2B6/7, CYP2E1, CYP2F1, CYP3A5, and CYP4B1 were detected in whole-lung tissue. These results give an overall picture of the expression of CYP genes in the xenobiotic-metabolizing families CYP1, CYP2, and CYP3 in BAMs, peripheral blood lymphocytes, and whole-lung tissue and will aid in directing future studies on the respective protein products. The differences in the CYP gene expression patterns between lung and lymphocytes cast additional doubt on the use of lymphocytes as a surrogate for the lung.
Collapse
Affiliation(s)
- J Hukkanen
- Department of Pharmacology and Toxicology, University of Oulu, Finland
| | | | | | | | | | | | | |
Collapse
|
40
|
Bartsch H, Hietanen E. The role of individual susceptibility in cancer burden related to environmental exposure. ENVIRONMENTAL HEALTH PERSPECTIVES 1996; 104 Suppl 3:569-77. [PMID: 8781385 PMCID: PMC1469659 DOI: 10.1289/ehp.96104s3569] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Individual susceptibility to cancer may result from host factors including differences n metabolism, DNA repair, altered expression of protooncogenes and tumor suppressor genes, and nutritional status. Since most carcinogens require metabolic activation before binding to DNA, variations in an individual's metabolic phenotype that have detected in enzymes involved in activation and detoxification should play an essential role in the development of environmental cancer. This phenotypic metabolic variation has now been related to genetic polymorphisms, and many genes encoding carcinogen-metabolizing enzymes have been identified and cloned. Consequently, allelic variants or genetic defects that give rise to the observed variation and new polymorphisms have been recognized. Development of simple polymerase chain reaction (PCR)-based assays has enabled identification of an individual's genotype for a variety of metabolic polymorphisms. Thus, recent knowledge of the genetic basis for individual metabolic variation has opened new possibilities of studies focusing on increased individual susceptibility to environmentally induced cancer, which are reviewed with special reference to smoking-induced lung cancer. Cancer susceptibility due to chemical exposure is likely to be determined by an individual's phenotype for a number of enzymes (both activating and detoxifying) relevant to that of a single carcinogen or mixtures of carcinogens. Given the number and variability in expression of carcinogen-metabolizing enzymes and the complexity of chemical exposures, assessment of a single polymorphic enzyme (genotype) may not be sufficient. Mutations in the p53 gene are among the most common genetic changes in human cancer. The frequency and type p53 mutations can act as a fingerprint of carcinogen exposure and may therefore provide information about external etiological agents, intensity of exposure, and host factors affecting the tumorigenesis process. In human lung cancer, p53 mutations (both the mutation pattern and frequency) have been linked with tobacco smoking; the type of mutation most frequently observed is G:C to T:A transversion, a mutation preferentially induced by benzo[a]pyrene diol epoxide. An association between the presence of this transversion and the genotype deficient in glutathione S-transferase M1-mediated detoxification has been observed in lung cancer. Taken together, these findings suggest that determination of metabolic at risk genotypes in combination with levels of DNA adducts in target (surrogate) tissues and the p53 mutation pattern should allow the identification of susceptible individuals and subgroups in carcinogen-exposed populations.
Collapse
Affiliation(s)
- H Bartsch
- Deutsches Krebsforschungszentrum, Heidelberg, Germany.
| | | |
Collapse
|