1
|
Mekonnen Z, Petito G, Shitaye G, D’Abrosca G, Legesse BA, Addisu S, Ragni M, Lanni A, Fattorusso R, Isernia C, Comune L, Piccolella S, Pacifico S, Senese R, Malgieri G, Gizaw ST. Insulin-Sensitizing Properties of Decoctions from Leaves, Stems, and Roots of Cucumis prophetarum L. Molecules 2024; 30:98. [PMID: 39795155 PMCID: PMC11722063 DOI: 10.3390/molecules30010098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/25/2024] [Accepted: 12/26/2024] [Indexed: 01/13/2025] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a chronic disease characterized by insulin resistance and impaired beta-cell secretory function. Since existing treatments often present side effects based on different mechanisms, alternative therapeutic options are needed. In this scenario, the present study first evaluates the cytotoxicity of decoctions from the leaves, stems, and roots of Cucumis prophetarum L. on HepG2 and L6C5 cells. The extracts were chemically investigated by UV-Vis and ATR-FTIR spectroscopic techniques and by ultra high-performance chromatographic techniques, coupled with high-resolution mass spectrometry. Briefly, decoctions from the leaves and stems were mainly composed of apigenin C-glycosides, while the root decoction was rich in raffinose and cucumegastigmane II. To evaluate the insulin-sensitizing properties of the extracts in insulin-resistant L6 myoblasts, an evaluation by Western blot analysis of the proteins in the insulin signaling pathway was then performed. Particularly, key proteins of insulin signaling were investigated, i.e., insulin receptor substrate (IRS-1), protein kinase B (PKB/AKT), and glycogen synthase kinase-3 (GSK-3β), which have gained considerable attention from scientists for the treatment of diabetes. Under all conditions tested, the three decoctions showed low cytotoxicity. The stem and root decoction (300 μg/mL) resulted in a significant increase in the levels of p-IRS-1 (Tyr612), GSK3β (Ser9), and p-AMPK (Thr172) compared to those of the palmitic acid-treated group, and the leaf decoction resulted an increase in the level of p-IRS-1 (Tyr612) and p-AMPK (Thr172) and a decrease in p-GSK3β (Ser9) compared to the levels for the palmitic acid-treated group. The root decoction also reduced the level of p-mToR (Ser2448). Overall, the acquired data demonstrate the effect of reducing insulin resistance induced by the investigated decoctions, opening new scenarios for the evaluation of these effects aimed at counteracting diabetes and related diseases in animal models.
Collapse
Affiliation(s)
- Zewdie Mekonnen
- Department of Biochemistry, School of Medicine, College of Health Sciences, Addis Ababa University, Addis Ababa P. O. Box 9086, Ethiopia; (Z.M.); (S.T.G.)
- Department of Biomedical Sciences, College of Medicine and Health Sciences, Bahir Dar University, Bahir Dar P. O. Box 79, Ethiopia;
| | - Giuseppe Petito
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania, 81100 Caserta, Italy; (G.P.); (A.L.)
| | - Getasew Shitaye
- Department of Biomedical Sciences, College of Medicine and Health Sciences, Bahir Dar University, Bahir Dar P. O. Box 79, Ethiopia;
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania, 81100 Caserta, Italy; (G.P.); (A.L.)
| | - Gianluca D’Abrosca
- Department of Clinical and Experimental Medicine, University of Foggia, Viale Pinto 1, 71100 Foggia, Italy
| | - Belete Adefris Legesse
- Center for Innovative Drug Development and Therapeutic Trials for Africa (CDT-Africa), College of Health Sciences, Addis Ababa University, Addis Ababa P. O. Box 9086, Ethiopia
| | - Sisay Addisu
- Department of Biochemistry, School of Medicine, College of Health Sciences, Addis Ababa University, Addis Ababa P. O. Box 9086, Ethiopia; (Z.M.); (S.T.G.)
| | - Maurizio Ragni
- Center for Study and Research on Obesity, Department of Medical Biotechnology and Translational Medicine, University of Milan, 20133 Milan, Italy;
| | - Antonia Lanni
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania, 81100 Caserta, Italy; (G.P.); (A.L.)
| | - Roberto Fattorusso
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania, 81100 Caserta, Italy; (G.P.); (A.L.)
| | - Carla Isernia
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania, 81100 Caserta, Italy; (G.P.); (A.L.)
| | - Lara Comune
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania, 81100 Caserta, Italy; (G.P.); (A.L.)
| | - Simona Piccolella
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania, 81100 Caserta, Italy; (G.P.); (A.L.)
| | - Severina Pacifico
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania, 81100 Caserta, Italy; (G.P.); (A.L.)
| | - Rosalba Senese
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania, 81100 Caserta, Italy; (G.P.); (A.L.)
| | - Gaetano Malgieri
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania, 81100 Caserta, Italy; (G.P.); (A.L.)
| | - Solomon Tebeje Gizaw
- Department of Biochemistry, School of Medicine, College of Health Sciences, Addis Ababa University, Addis Ababa P. O. Box 9086, Ethiopia; (Z.M.); (S.T.G.)
| |
Collapse
|
2
|
Morin S, Atkinson PW, Walling LL. Whitefly-Plant Interactions: An Integrated Molecular Perspective. ANNUAL REVIEW OF ENTOMOLOGY 2024; 69:503-525. [PMID: 37816261 DOI: 10.1146/annurev-ento-120120-093940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2023]
Abstract
The rapid advances in available transcriptomic and genomic data and our understanding of the physiology and biochemistry of whitefly-plant interactions have allowed us to gain new and significant insights into the biology of whiteflies and their successful adaptation to host plants. In this review, we provide a comprehensive overview of the mechanisms that whiteflies have evolved to overcome the challenges of feeding on phloem sap. We also highlight the evolution and functions of gene families involved in host perception, evaluation, and manipulation; primary metabolism; and metabolite detoxification. We discuss the emerging themes in plant immunity to whiteflies, focusing on whitefly effectors and their sites of action in plant defense-signaling pathways. We conclude with a discussion of advances in the genetic manipulation of whiteflies and the potential that they hold for exploring the interactions between whiteflies and their host plants, as well as the development of novel strategies for the genetic control of whiteflies.
Collapse
Affiliation(s)
- Shai Morin
- Department of Entomology, Hebrew University of Jerusalem, Rehovot, Israel;
| | - Peter W Atkinson
- Department of Entomology, University of California, Riverside, California, USA;
| | - Linda L Walling
- Department of Botany and Plant Sciences, University of California, Riverside, California, USA;
| |
Collapse
|
3
|
Aidlin Harari O, Dekel A, Wintraube D, Vainer Y, Mozes-Koch R, Yakir E, Malka O, Morin S, Bohbot JD. A sucrose-specific receptor in Bemisia tabaci and its putative role in phloem feeding. iScience 2023; 26:106752. [PMID: 37234092 PMCID: PMC10206433 DOI: 10.1016/j.isci.2023.106752] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/22/2022] [Accepted: 04/22/2023] [Indexed: 05/27/2023] Open
Abstract
In insects, specialized feeding on the phloem sap (containing mainly the sugar sucrose) has evolved only in some hemipteran lineages. This feeding behavior requires an ability to locate feeding sites buried deeply within the plant tissue. To determine the molecular mechanism involved, we hypothesized that the phloem-feeding whitefly Bemisia tabaci relies on gustatory receptor (GR)-mediated sugar sensing. We first conducted choice assays, which indicated that B. tabaci adults consistently choose diets containing higher sucrose concentrations. Next, we identified four GR genes in the B. tabaci genome. One of them, BtabGR1, displayed significant sucrose specificity when expressed in Xenopus oocytes. Silencing of BtabGR1 significantly interfered with the ability of B. tabaci adults to discriminate between non-phloem and phloem concentrations of sucrose. These findings suggest that in phloem feeders, sugar sensing by sugar receptors might allow tracking an increasing gradient of sucrose concentrations in the leaf, leading eventually to the location of the feeding site.
Collapse
Affiliation(s)
- Ofer Aidlin Harari
- Department of Entomology, The Hebrew University of Jerusalem, The Robert H. Smith Faculty of Agriculture, Food and Environment, Rehovot 76100, Israel
| | - Amir Dekel
- Department of Entomology, The Hebrew University of Jerusalem, The Robert H. Smith Faculty of Agriculture, Food and Environment, Rehovot 76100, Israel
| | - Dor Wintraube
- Department of Entomology, The Hebrew University of Jerusalem, The Robert H. Smith Faculty of Agriculture, Food and Environment, Rehovot 76100, Israel
| | - Yuri Vainer
- Department of Entomology, The Hebrew University of Jerusalem, The Robert H. Smith Faculty of Agriculture, Food and Environment, Rehovot 76100, Israel
| | - Rita Mozes-Koch
- Department of Entomology, The Hebrew University of Jerusalem, The Robert H. Smith Faculty of Agriculture, Food and Environment, Rehovot 76100, Israel
| | - Esther Yakir
- Department of Entomology, The Hebrew University of Jerusalem, The Robert H. Smith Faculty of Agriculture, Food and Environment, Rehovot 76100, Israel
| | - Osnat Malka
- Department of Entomology, The Hebrew University of Jerusalem, The Robert H. Smith Faculty of Agriculture, Food and Environment, Rehovot 76100, Israel
| | - Shai Morin
- Department of Entomology, The Hebrew University of Jerusalem, The Robert H. Smith Faculty of Agriculture, Food and Environment, Rehovot 76100, Israel
| | - Jonathan D. Bohbot
- Department of Entomology, The Hebrew University of Jerusalem, The Robert H. Smith Faculty of Agriculture, Food and Environment, Rehovot 76100, Israel
| |
Collapse
|
4
|
Sanyal R, Kumar S, Pattanayak A, Kar A, Bishi SK. Optimizing raffinose family oligosaccharides content in plants: A tightrope walk. FRONTIERS IN PLANT SCIENCE 2023; 14:1134754. [PMID: 37056499 PMCID: PMC10088399 DOI: 10.3389/fpls.2023.1134754] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 03/08/2023] [Indexed: 06/19/2023]
Abstract
Plants synthesize various compounds for their growth, metabolism, and stress mitigation, and one such group of compounds is the raffinose family of oligosaccharides (RFOs). RFOs are non-reducing oligosaccharides having galactose residues attached to a sucrose moiety. They act as carbohydrate reserves in plants, assisting in seed germination, desiccation tolerance, and biotic/abiotic stress tolerance. Although legumes are among the richest sources of dietary proteins, the direct consumption of legumes is hindered by an excess of RFOs in the edible parts of the plant, which causes flatulence in humans and monogastric animals. These opposing characteristics make RFOs manipulation a complicated tradeoff. An in-depth knowledge of the chemical composition, distribution pattern, tissue mobilization, and metabolism is required to optimize the levels of RFOs. The most recent developments in our understanding of RFOs distribution, physiological function, genetic regulation of their biosynthesis, transport, and degradation in food crops have been covered in this review. Additionally, we have suggested a few strategies that can sustainably reduce RFOs in order to solve the flatulence issue in animals. The comprehensive information in this review can be a tool for researchers to precisely control the level of RFOs in crops and create low antinutrient, nutritious food with wider consumer acceptability.
Collapse
Affiliation(s)
- Rajarshi Sanyal
- School of Genomics and Molecular Breeding, ICAR-Indian Institute of Agricultural Biotechnology, Ranchi, Jharkhand, India
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, Pusa, New Delhi, India
| | - Sandeep Kumar
- Automation & Plant Engineering Division, ICAR-National Institute of Secondary Agriculture, Ranchi, Jharkhand, India
| | - Arunava Pattanayak
- School of Genomics and Molecular Breeding, ICAR-Indian Institute of Agricultural Biotechnology, Ranchi, Jharkhand, India
| | - Abhijit Kar
- Automation & Plant Engineering Division, ICAR-National Institute of Secondary Agriculture, Ranchi, Jharkhand, India
| | - Sujit K. Bishi
- School of Genomics and Molecular Breeding, ICAR-Indian Institute of Agricultural Biotechnology, Ranchi, Jharkhand, India
| |
Collapse
|
5
|
Lohaus G. Review primary and secondary metabolites in phloem sap collected with aphid stylectomy. JOURNAL OF PLANT PHYSIOLOGY 2022; 271:153645. [PMID: 35217406 DOI: 10.1016/j.jplph.2022.153645] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 02/11/2022] [Accepted: 02/11/2022] [Indexed: 06/14/2023]
Abstract
Phloem plays a central role in assimilate transport as well as in the transport of several secondary compounds. In order to study the chemical composition of phloem sap, different methods have been used for its collection, including stem incisions, EDTA-facilitated exudation or aphid stylectomy. Each collection method has several advantages and disadvantages and, unfortunately, the reported metabolite profiles and concentrations depend on the method used for exudate collection. This review therefore primarily focusses on sugars, amino acids, inorganic ions and further transported compounds like organic acids, nucleotides, phytohormons, defense signals, and lipophilic substances in the phloem sap obtained by aphid stylectomy to facilitate comparability of the data.
Collapse
Affiliation(s)
- Gertrud Lohaus
- Molecular Plant Science/Plant Biochemistry, University of Wuppertal, Gaußstr. 20, 42119, Wuppertal, Germany.
| |
Collapse
|
6
|
Yadav UP, Evers JF, Shaikh MA, Ayre BG. Cotton phloem loads from the apoplast using a single member of its nine-member sucrose transporter gene family. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:848-859. [PMID: 34687198 DOI: 10.1093/jxb/erab461] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 10/21/2021] [Indexed: 06/13/2023]
Abstract
Phloem loading and transport are fundamental processes for allocating carbon from source organs to sink tissues. Cotton (Gossypium spp.) has a high sink demand for the cellulosic fibers that grow on the seed coat and for the storage reserves in the developing embryo, along with the demands of new growth in the shoots and roots. Addressing how cotton mobilizes resources from source leaves to sink organs provides insight into processes contributing to fiber and seed yield. Plasmodesmata frequencies between companion cells and flanking parenchyma in minor veins are higher than expected for an apoplastic loader, and cotton's close relatedness to Tilia spp. hints at passive loading. Suc was the only canonical transport sugar in leaves and constituted 87% of 14C-labeled photoassimilate being actively transported. [14C]Suc uptake coupled with autoradiography indicated active [14C]Suc accumulation in minor veins, suggesting Suc loading from the apoplast; esculin, a fluorescent Suc analog, did not accumulate in minor veins. Of the nine sucrose transporter (SUT) genes identified per diploid genome, only GhSUT1-L2 showed appreciable expression in mature leaves, and silencing GhSUT1-L2 yielded phenotypes characteristic of blocked phloem transport. Furthermore, only GhSUT1-L2 cDNA stimulated esculin and [14C]Suc uptake into yeast, and only the GhSUT1-L2 promoter caused uidA (β-glucuronidase) reporter gene expression in minor vein phloem of Arabidopsis thaliana. Collectively, these results argue that apoplastic phloem loading mediated by GhSUT1-L2 is the dominant mode of phloem loading in cotton.
Collapse
Affiliation(s)
- Umesh P Yadav
- BioDiscovery Institute, Department of Biological Sciences, University of North Texas, 1155 Union Circle 305220, Denton, TX 76203-5017, USA
| | - John F Evers
- BioDiscovery Institute, Department of Biological Sciences, University of North Texas, 1155 Union Circle 305220, Denton, TX 76203-5017, USA
| | - Mearaj A Shaikh
- BioDiscovery Institute, Department of Biological Sciences, University of North Texas, 1155 Union Circle 305220, Denton, TX 76203-5017, USA
| | - Brian G Ayre
- BioDiscovery Institute, Department of Biological Sciences, University of North Texas, 1155 Union Circle 305220, Denton, TX 76203-5017, USA
| |
Collapse
|
7
|
de Koning R, Kiekens R, Toili MEM, Angenon G. Identification and Expression Analysis of the Genes Involved in the Raffinose Family Oligosaccharides Pathway of Phaseolus vulgaris and Glycine max. PLANTS (BASEL, SWITZERLAND) 2021; 10:1465. [PMID: 34371668 PMCID: PMC8309293 DOI: 10.3390/plants10071465] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/12/2021] [Accepted: 07/13/2021] [Indexed: 11/17/2022]
Abstract
Raffinose family oligosaccharides (RFO) play an important role in plants but are also considered to be antinutritional factors. A profound understanding of the galactinol and RFO biosynthetic gene families and the expression patterns of the individual genes is a prerequisite for the sustainable reduction of the RFO content in the seeds, without compromising normal plant development and functioning. In this paper, an overview of the annotation and genetic structure of all galactinol- and RFO biosynthesis genes is given for soybean and common bean. In common bean, three galactinol synthase genes, two raffinose synthase genes and one stachyose synthase gene were identified for the first time. To discover the expression patterns of these genes in different tissues, two expression atlases have been created through re-analysis of publicly available RNA-seq data. De novo expression analysis through an RNA-seq study during seed development of three varieties of common bean gave more insight into the expression patterns of these genes during the seed development. The results of the expression analysis suggest that different classes of galactinol- and RFO synthase genes have tissue-specific expression patterns in soybean and common bean. With the obtained knowledge, important galactinol- and RFO synthase genes that specifically play a key role in the accumulation of RFOs in the seeds are identified. These candidate genes may play a pivotal role in reducing the RFO content in the seeds of important legumes which could improve the nutritional quality of these beans and would solve the discomforts associated with their consumption.
Collapse
Affiliation(s)
- Ramon de Koning
- Research Group Plant Genetics, Vrije Universiteit Brussel, 1050 Brussels, Belgium; (R.d.K.); (R.K.); (M.E.M.T.)
| | - Raphaël Kiekens
- Research Group Plant Genetics, Vrije Universiteit Brussel, 1050 Brussels, Belgium; (R.d.K.); (R.K.); (M.E.M.T.)
| | - Mary Esther Muyoka Toili
- Research Group Plant Genetics, Vrije Universiteit Brussel, 1050 Brussels, Belgium; (R.d.K.); (R.K.); (M.E.M.T.)
- Department of Horticulture, Jomo Kenyatta University of Agriculture and Technology, Juja 01001, Kiambu County, Kenya
| | - Geert Angenon
- Research Group Plant Genetics, Vrije Universiteit Brussel, 1050 Brussels, Belgium; (R.d.K.); (R.K.); (M.E.M.T.)
| |
Collapse
|
8
|
Figueroa CM, Lunn JE, Iglesias AA. Nucleotide-sugar metabolism in plants: the legacy of Luis F. Leloir. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:4053-4067. [PMID: 33948638 DOI: 10.1093/jxb/erab109] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 04/09/2021] [Indexed: 06/12/2023]
Abstract
This review commemorates the 50th anniversary of the Nobel Prize in Chemistry awarded to Luis F. Leloir 'for his discovery of sugar-nucleotides and their role in the biosynthesis of carbohydrates'. He and his co-workers discovered that activated forms of simple sugars, such as UDP-glucose and UDP-galactose, are essential intermediates in the interconversion of sugars. They elucidated the biosynthetic pathways for sucrose and starch, which are the major end-products of photosynthesis, and for trehalose. Trehalose 6-phosphate, the intermediate of trehalose biosynthesis that they discovered, is now a molecule of great interest due to its function as a sugar signalling metabolite that regulates many aspects of plant metabolism and development. The work of the Leloir group also opened the doors to an understanding of the biosynthesis of cellulose and other structural cell wall polysaccharides (hemicelluloses and pectins), and ascorbic acid (vitamin C). Nucleotide-sugars also serve as sugar donors for a myriad of glycosyltransferases that conjugate sugars to other molecules, including lipids, phytohormones, secondary metabolites, and proteins, thereby modifying their biological activity. In this review, we highlight the diversity of nucleotide-sugars and their functions in plants, in recognition of Leloir's rich and enduring legacy to plant science.
Collapse
Affiliation(s)
- Carlos M Figueroa
- Instituto de Agrobiotecnología del Litoral, UNL, CONICET, FBCB, Colectora Ruta Nacional 168 km 0, 3000 Santa Fe,Argentina
| | - John E Lunn
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Alberto A Iglesias
- Instituto de Agrobiotecnología del Litoral, UNL, CONICET, FBCB, Colectora Ruta Nacional 168 km 0, 3000 Santa Fe,Argentina
| |
Collapse
|
9
|
Malka O, Easson MLAE, Paetz C, Götz M, Reichelt M, Stein B, Luck K, Stanišić A, Juravel K, Santos-Garcia D, Mondaca LL, Springate S, Colvin J, Winter S, Gershenzon J, Morin S, Vassão DG. Glucosylation prevents plant defense activation in phloem-feeding insects. Nat Chem Biol 2020; 16:1420-1426. [PMID: 32989301 DOI: 10.1038/s41589-020-00658-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 08/21/2020] [Indexed: 12/13/2022]
Abstract
The metabolic adaptations by which phloem-feeding insects counteract plant defense compounds are poorly known. Two-component plant defenses, such as glucosinolates, consist of a glucosylated protoxin that is activated by a glycoside hydrolase upon plant damage. Phloem-feeding herbivores are not generally believed to be negatively impacted by two-component defenses due to their slender piercing-sucking mouthparts, which minimize plant damage. However, here we document that glucosinolates are indeed activated during feeding by the whitefly Bemisia tabaci. This phloem feeder was also found to detoxify the majority of the glucosinolates it ingests by the stereoselective addition of glucose moieties, which prevents hydrolytic activation of these defense compounds. Glucosylation of glucosinolates in B. tabaci was accomplished via a transglucosidation mechanism, and two glycoside hydrolase family 13 (GH13) enzymes were shown to catalyze these reactions. This detoxification reaction was also found in a range of other phloem-feeding herbivores.
Collapse
Affiliation(s)
- Osnat Malka
- The Hebrew University of Jerusalem, Rehovot, Israel.
| | | | | | - Monika Götz
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | | | - Beate Stein
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Katrin Luck
- Max Planck Institute for Chemical Ecology, Jena, Germany
| | | | - Ksenia Juravel
- The Hebrew University of Jerusalem, Rehovot, Israel
- Ludwig Maximilian University, Munich, Germany
| | | | | | - Simon Springate
- Natural Resources Institute, University of Greenwich, Chatham Maritime, Kent, UK
| | - John Colvin
- Natural Resources Institute, University of Greenwich, Chatham Maritime, Kent, UK
| | - Stephan Winter
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | | | - Shai Morin
- The Hebrew University of Jerusalem, Rehovot, Israel
| | | |
Collapse
|
10
|
Minen RI, Martinez MP, Iglesias AA, Figueroa CM. Biochemical characterization of recombinant UDP-sugar pyrophosphorylase and galactinol synthase from Brachypodium distachyon. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 155:780-788. [PMID: 32866791 DOI: 10.1016/j.plaphy.2020.08.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/13/2020] [Accepted: 08/13/2020] [Indexed: 06/11/2023]
Abstract
Raffinose (Raf) protects plant cells during seed desiccation and under different abiotic stress conditions. The biosynthesis of Raf starts with the production of UDP-galactose by UDP-sugar pyrophosphorylase (USPPase) and continues with the synthesis of galactinol by galactinol synthase (GolSase). Galactinol is then used by Raf synthase to produce Raf. In this work, we report the biochemical characterization of USPPase (BdiUSPPase) and GolSase 1 (BdiGolSase1) from Brachypodium distachyon. The catalytic efficiency of BdiUSPPase was similar with galactose 1-phosphate and glucose 1-phosphate, but 5- to 17-fold lower with other sugar 1-phosphates. The catalytic efficiency of BdiGolSase1 with UDP-galactose was three orders of magnitude higher than with UDP-glucose. A structural model of BdiGolSase1 allowed us to determine the residues putatively involved in the binding of substrates. Among these, we found that Cys261 lies within the putative catalytic pocket. BdiGolSase1 was inactivated by oxidation with diamide and H2O2. The activity of the diamide-oxidized enzyme was recovered by reduction with dithiothreitol or E. coli thioredoxin, suggesting that BdiGolSase1 is redox-regulated.
Collapse
Affiliation(s)
- Romina I Minen
- Instituto de Agrobiotecnología del Litoral, UNL, CONICET, FBCB, Santa Fe, Argentina
| | - María P Martinez
- Instituto de Agrobiotecnología del Litoral, UNL, CONICET, FBCB, Santa Fe, Argentina
| | - Alberto A Iglesias
- Instituto de Agrobiotecnología del Litoral, UNL, CONICET, FBCB, Santa Fe, Argentina
| | - Carlos M Figueroa
- Instituto de Agrobiotecnología del Litoral, UNL, CONICET, FBCB, Santa Fe, Argentina.
| |
Collapse
|
11
|
Deinum EE, Mulder BM, Benitez-Alfonso Y. From plasmodesma geometry to effective symplasmic permeability through biophysical modelling. eLife 2019; 8:49000. [PMID: 31755863 PMCID: PMC6994222 DOI: 10.7554/elife.49000] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 11/16/2019] [Indexed: 12/12/2022] Open
Abstract
Regulation of molecular transport via intercellular channels called plasmodesmata (PDs) is important for both coordinating developmental and environmental responses among neighbouring cells, and isolating (groups of) cells to execute distinct programs. Cell-to-cell mobility of fluorescent molecules and PD dimensions (measured from electron micrographs) are both used as methods to predict PD transport capacity (i.e., effective symplasmic permeability), but often yield very different values. Here, we build a theoretical bridge between both experimental approaches by calculating the effective symplasmic permeability from a geometrical description of individual PDs and considering the flow towards them. We find that a dilated central region has the strongest impact in thick cell walls and that clustering of PDs into pit fields strongly reduces predicted permeabilities. Moreover, our open source multi-level model allows to predict PD dimensions matching measured permeabilities and add a functional interpretation to structural differences observed between PDs in different cell walls.
Collapse
Affiliation(s)
- Eva E Deinum
- Mathematical and statistical methods (Biometris), Wageningen University, Wageningen, Netherlands
| | - Bela M Mulder
- Living Matter Department, Institute AMOLF, Amsterdam, Netherlands.,Laboratory of Cell Biology, Wageningen University, Wageningen, Netherlands
| | | |
Collapse
|
12
|
Mori K, Beauvoit BP, Biais B, Chabane M, Allwood JW, Deborde C, Maucourt M, Goodacre R, Cabasson C, Moing A, Rolin D, Gibon Y. Central Metabolism Is Tuned to the Availability of Oxygen in Developing Melon Fruit. FRONTIERS IN PLANT SCIENCE 2019; 10:594. [PMID: 31156666 PMCID: PMC6529934 DOI: 10.3389/fpls.2019.00594] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 04/24/2019] [Indexed: 06/09/2023]
Abstract
Respiration of bulky plant organs such as fleshy fruits depends on oxygen (O2) availability and often decreases with O2 concentration to avoid anoxia, but the relationship between O2 diffusional resistance and metabolic adjustments remains unclear. Melon fruit (Cucumis melo L.) was used to study relationships between O2 availability and metabolism in fleshy fruits. Enzyme activities, primary metabolites and O2 partial pressure were quantified from the periphery to the inner fruit mesocarp, at three stages of development. Hypoxia was gradually established during fruit development, but there was no strong oxygen gradient between the outer- and the inner mesocarp. These trends were confirmed by a mathematical modeling approach combining O2 diffusion equations and O2 demand estimates of the mesocarp tissue. A multivariate analysis of metabolites, enzyme activities, O2 demand and concentration reveals that metabolite gradients and enzyme capacities observed in melon fruits reflect continuous metabolic adjustments thus ensuring a timely maturation of the mesocarp. The present results suggest that the metabolic adjustments, especially the tuning of the capacity of cytochrome c oxidase (COX) to O2-availability that occurs during growth development, contribute to optimizing the O2-demand and avoiding the establishment of an O2 gradient within the flesh.
Collapse
Affiliation(s)
- Kentaro Mori
- UMR1332 BFP, INRA, Univ. Bordeaux, Villenave d’Ornon, France
| | | | - Benoît Biais
- UMR1332 BFP, INRA, Univ. Bordeaux, Villenave d’Ornon, France
- Plateforme Métabolome Bordeaux, MetaboHUB, Bordeaux Functional Genomic Centre, Villenave d’Ornon, France
| | - Maxime Chabane
- UMR1332 BFP, INRA, Univ. Bordeaux, Villenave d’Ornon, France
| | - J. William Allwood
- Environmental and Biochemical Sciences Group, The James Hutton Institute, Dundee, United Kingdom
| | - Catherine Deborde
- UMR1332 BFP, INRA, Univ. Bordeaux, Villenave d’Ornon, France
- Plateforme Métabolome Bordeaux, MetaboHUB, Bordeaux Functional Genomic Centre, Villenave d’Ornon, France
| | - Mickaël Maucourt
- UMR1332 BFP, INRA, Univ. Bordeaux, Villenave d’Ornon, France
- Plateforme Métabolome Bordeaux, MetaboHUB, Bordeaux Functional Genomic Centre, Villenave d’Ornon, France
| | - Royston Goodacre
- Manchester Institute of Biotechnology, University of Manchester, Manchester, United Kingdom
| | - Cécile Cabasson
- UMR1332 BFP, INRA, Univ. Bordeaux, Villenave d’Ornon, France
- Plateforme Métabolome Bordeaux, MetaboHUB, Bordeaux Functional Genomic Centre, Villenave d’Ornon, France
| | - Annick Moing
- UMR1332 BFP, INRA, Univ. Bordeaux, Villenave d’Ornon, France
- Plateforme Métabolome Bordeaux, MetaboHUB, Bordeaux Functional Genomic Centre, Villenave d’Ornon, France
| | - Dominique Rolin
- UMR1332 BFP, INRA, Univ. Bordeaux, Villenave d’Ornon, France
- Plateforme Métabolome Bordeaux, MetaboHUB, Bordeaux Functional Genomic Centre, Villenave d’Ornon, France
| | - Yves Gibon
- UMR1332 BFP, INRA, Univ. Bordeaux, Villenave d’Ornon, France
- Plateforme Métabolome Bordeaux, MetaboHUB, Bordeaux Functional Genomic Centre, Villenave d’Ornon, France
| |
Collapse
|
13
|
Bishop KA, Lemonnier P, Quebedeaux JC, Montes CM, Leakey ADB, Ainsworth EA. Similar photosynthetic response to elevated carbon dioxide concentration in species with different phloem loading strategies. PHOTOSYNTHESIS RESEARCH 2018; 137:453-464. [PMID: 29860702 DOI: 10.1007/s11120-018-0524-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 05/14/2018] [Indexed: 06/08/2023]
Abstract
Species have different strategies for loading sugars into the phloem, which vary in the route that sugars take to enter the phloem and the energetics of sugar accumulation. Species with passive phloem loading are hypothesized to have less flexibility in response to changes in some environmental conditions because sucrose export from mesophyll cells is dependent on fixed anatomical plasmodesmatal connections. Passive phloem loaders also have high mesophyll sugar content, and may be less likely to exhibit sugar-mediated down-regulation of photosynthetic capacity at elevated CO2 concentrations. To date, the effect of phloem loading strategy on the response of plant carbon metabolism to rising atmospheric CO2 concentrations is unclear, despite the widespread impacts of rising CO2 on plants. Over three field seasons, five species with apoplastic loading, passive loading, or polymer-trapping were grown at ambient and elevated CO2 concentration in free air concentration enrichment plots. Light-saturated rate of photosynthesis, photosynthetic capacity, leaf carbohydrate content, and anatomy were measured and compared among the species. All five species showed significant stimulation in midday photosynthetic CO2 uptake by elevated CO2 even though the two passive loading species showed significant down-regulation of maximum Rubisco carboxylation capacity at elevated CO2. There was a trend toward greater starch accumulation at elevated CO2 in all species, and was most pronounced in passive loaders. From this study, we cannot conclude that phloem loading strategy is a key determinant of plant response to elevated CO2, but compelling differences in response counter to our hypothesis were observed. A phylogenetically controlled experiment with more species may be needed to fully test the hypothesis.
Collapse
Affiliation(s)
- Kristen A Bishop
- Departments of Plant Biology and Crop Sciences and Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Champaign, USA
| | - Pauline Lemonnier
- Departments of Plant Biology and Crop Sciences and Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Champaign, USA
- USDA ARS Global Change and Photosynthesis Research Unit, 1201 W. Gregory Drive, Urbana, IL, 61801, USA
| | - Jennifer C Quebedeaux
- Departments of Plant Biology and Crop Sciences and Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Champaign, USA
| | - Christopher M Montes
- Departments of Plant Biology and Crop Sciences and Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Champaign, USA
| | - Andrew D B Leakey
- Departments of Plant Biology and Crop Sciences and Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Champaign, USA
| | - Elizabeth A Ainsworth
- Departments of Plant Biology and Crop Sciences and Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Champaign, USA.
- USDA ARS Global Change and Photosynthesis Research Unit, 1201 W. Gregory Drive, Urbana, IL, 61801, USA.
| |
Collapse
|
14
|
Beauvoit B, Belouah I, Bertin N, Cakpo CB, Colombié S, Dai Z, Gautier H, Génard M, Moing A, Roch L, Vercambre G, Gibon Y. Putting primary metabolism into perspective to obtain better fruits. ANNALS OF BOTANY 2018; 122:1-21. [PMID: 29718072 PMCID: PMC6025238 DOI: 10.1093/aob/mcy057] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 03/29/2017] [Indexed: 05/18/2023]
Abstract
Background One of the key goals of fruit biology is to understand the factors that influence fruit growth and quality, ultimately with a view to manipulating them for improvement of fruit traits. Scope Primary metabolism, which is not only essential for growth but is also a major component of fruit quality, is an obvious target for improvement. However, metabolism is a moving target that undergoes marked changes throughout fruit growth and ripening. Conclusions Agricultural practice and breeding have successfully improved fruit metabolic traits, but both face the complexity of the interplay between development, metabolism and the environment. Thus, more fundamental knowledge is needed to identify further strategies for the manipulation of fruit metabolism. Nearly two decades of post-genomics approaches involving transcriptomics, proteomics and/or metabolomics have generated a lot of information about the behaviour of fruit metabolic networks. Today, the emergence of modelling tools is providing the opportunity to turn this information into a mechanistic understanding of fruits, and ultimately to design better fruits. Since high-quality data are a key requirement in modelling, a range of must-have parameters and variables is proposed.
Collapse
Affiliation(s)
| | - Isma Belouah
- UMR 1332 BFP, INRA, Univ. Bordeaux, Villenave d’Ornon, France
| | | | | | - Sophie Colombié
- UMR 1332 BFP, INRA, Univ. Bordeaux, Villenave d’Ornon, France
| | - Zhanwu Dai
- UMR 1287 EGFV, INRA, Univ. Bordeaux, Bordeaux Sci Agro, F-Villenave d’Ornon, France
| | | | | | - Annick Moing
- UMR 1332 BFP, INRA, Univ. Bordeaux, Villenave d’Ornon, France
| | - Léa Roch
- UMR 1332 BFP, INRA, Univ. Bordeaux, Villenave d’Ornon, France
| | | | - Yves Gibon
- UMR 1332 BFP, INRA, Univ. Bordeaux, Villenave d’Ornon, France
| |
Collapse
|
15
|
Watkins OC, Joyce NI, Gould N, Perry NB. Glycosides of the Neurotoxin Tutin in Toxic Honeys Are from Coriaria arborea Phloem Sap, Not Insect Metabolism. JOURNAL OF NATURAL PRODUCTS 2018; 81:1116-1120. [PMID: 29504746 DOI: 10.1021/acs.jnatprod.8b00120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Some honeys contain the neurotoxin tutin (1) plus hyenanchin (2), 2-(β-d-glucopyranosyl)tutin (3), and 2-[6'-(α-d-glucopyranosyl)-β-d-glucopyranosyl]tutin (4). These honeys are made by bees collecting honeydew from passionvine hoppers feeding on the sap of tutu plants ( Coriaria spp.). We report a LC-MS study showing that all these picrotoxanes are of plant, not insect, origin. Hyenanchin was barely detectable and the diglucoside was not detectable in C. arborea leaves, but tutu phloem sap contained all four compounds at concentrations up to the highest found in honeydew. It is proposed that the diglucoside may function as a transport form of tutin, analogous to sucrose transport in phloem.
Collapse
Affiliation(s)
- Oliver C Watkins
- Department of Chemistry , University of Otago , P.O. Box 56, Dunedin , New Zealand
| | - Nigel I Joyce
- The New Zealand Institute for Plant & Food Research Limited , Private Bag 4704, Christchurch , New Zealand
| | - Nick Gould
- The New Zealand Institute for Plant & Food Research Limited , RD 2, Te Puke , New Zealand
| | - Nigel B Perry
- The New Zealand Institute for Plant & Food Research Limited, Department of Chemistry, University of Otago , P.O. Box 56, Dunedin , New Zealand
| |
Collapse
|
16
|
Lü J, Sui X, Ma S, Li X, Liu H, Zhang Z. Suppression of cucumber stachyose synthase gene (CsSTS) inhibits phloem loading and reduces low temperature stress tolerance. PLANT MOLECULAR BIOLOGY 2017; 95:1-15. [PMID: 28608281 PMCID: PMC5594042 DOI: 10.1007/s11103-017-0621-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 06/02/2017] [Indexed: 05/09/2023]
Abstract
Stachyose is the main transporting sugar in phloem of Raffinose family oligosaccharides-transporting species. Stachyose synthase (STS) is a key enzyme for stachyose biosynthesis, but the gene encoding STS is poorly characterized in cucumber (Cucumis sativus L.), which is a model plant for studying stachyose metabolism and phloem function. In this research, stachyose synthase gene (CsSTS) from cucumber was isolated and its physiological functions were analyzed. CsSTS expressed mainly in the phloem of the minor veins in mature leaves and localized to companion cells. Reverse genetics with CsSTS RNAi lines revealed obviously reductions in STS activity and stachyose content along with a small amount of starch accumulation in leaves, suggesting that CsSTS is involved in phloem loading of cucumber leaves. After 6 °C low temperature stress, malondialdehyde content and electrical conductivity increased, especially in CsSTS-RNAi plants. But CsSTS expression was up-regulated, STS activity and stachyose level increased, the activities of reactive-oxygen-scavenging enzyme in cucumber seedlings improved significantly and starch accumulation reduced, especially in CsSTS-OE lines. These results demonstrate clearly that CsSTS is involved in phloem loading, carbohydrate distribution and tolerance of cucumber seedlings to low temperature stress.
Collapse
Affiliation(s)
- Jianguo Lü
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, 100193, China
- College of Agricultural and Biological Sciences, Dali University, Dali, 671003, Yunnan, China
| | - Xiaolei Sui
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Si Ma
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Xin Li
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Huan Liu
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Zhenxian Zhang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
17
|
Liesche J. Sucrose transporters and plasmodesmal regulation in passive phloem loading. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2017; 59:311-321. [PMID: 28429873 DOI: 10.1111/jipb.12548] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 04/21/2017] [Indexed: 06/07/2023]
Abstract
An essential step for the distribution of carbon throughout the whole plant is the loading of sugars into the phloem in source organs. In many plants, accumulation of sugars in the sieve element-companion cell (SE-CC) complex is mediated and regulated by active processes. However, for poplar and many other tree species, a passive symplasmic mechanism of phloem loading has been proposed, characterized by symplasmic continuity along the pre-phloem pathway and the absence of active sugar accumulation in the SE-CC complex. A high overall leaf sugar concentration is thought to enable diffusion of sucrose into the phloem. In this review, we critically evaluate current evidence regarding the mechanism of passive symplasmic phloem loading, with a focus on the potential influence of active sugar transport and plasmodesmal regulation. The limited experimental data, combined with theoretical considerations, suggest that a concomitant operation of passive symplasmic and active phloem loading in the same minor vein is unlikely. However, active sugar transport could well play an important role in how passively loading plants might modulate the rate of sugar export from leaves. Insights into the operation of this mechanism has direct implications for our understanding of how these plants utilize assimilated carbon.
Collapse
Affiliation(s)
- Johannes Liesche
- College of Life Science, Northwest A&F University, No 3 Taicheng Road, Yangling 712100, China
- Biomass Energy Center for Arid and Semi-arid lands, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
18
|
Lopez-Cobollo RM, Filippis I, Bennett MH, Turnbull CGN. Comparative proteomics of cucurbit phloem indicates both unique and shared sets of proteins. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 88:633-647. [PMID: 27472661 DOI: 10.1111/tpj.13288] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 07/15/2016] [Accepted: 07/18/2016] [Indexed: 06/06/2023]
Abstract
Cucurbits are well-studied models for phloem biology but unusually possess both fascicular phloem (FP) within vascular bundles and additional extrafascicular phloem (EFP). Although the functional differences between the two systems are not yet clear, sugar analysis and limited protein profiling have established that FP and EFP have divergent compositions. Here we report a detailed comparative proteomics study of FP and EFP in two cucurbits, pumpkin and cucumber. We re-examined the sites of exudation by video microscopy, and confirmed that in both species, the spontaneous exudate following tissue cutting derives almost exclusively from EFP. Comparative gel electrophoresis and mass spectrometry-based proteomics of exudates, sieve element contents and microdissected stem tissues established that EFP and FP profiles are highly dissimilar, and that there are also species differences. Searches against cucurbit databases enabled identification of more than 300 FP proteins from each species. Few of the detected proteins (about 10%) were shared between the sieve element contents of FP and EFP, and enriched Gene Ontology categories also differed. To explore quantitative differences in the proteomes, we developed multiple reaction monitoring methods for cucumber proteins that are representative markers for FP or EFP and assessed exudate composition at different times after tissue cutting. Based on failure to detect FP markers in exudate samples, we conclude that FP is blocked very rapidly and therefore makes a minimal contribution to the exudates. Overall, the highly divergent contents of FP and EFP indicate that they are substantially independent vascular compartments.
Collapse
Affiliation(s)
| | - Ioannis Filippis
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Mark H Bennett
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Colin G N Turnbull
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| |
Collapse
|
19
|
Griffiths CA, Paul MJ, Foyer CH. Metabolite transport and associated sugar signalling systems underpinning source/sink interactions. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1857:1715-25. [PMID: 27487250 PMCID: PMC5001786 DOI: 10.1016/j.bbabio.2016.07.007] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 06/06/2016] [Accepted: 07/23/2016] [Indexed: 11/19/2022]
Abstract
Metabolite transport between organelles, cells and source and sink tissues not only enables pathway co-ordination but it also facilitates whole plant communication, particularly in the transmission of information concerning resource availability. Carbon assimilation is co-ordinated with nitrogen assimilation to ensure that the building blocks of biomass production, amino acids and carbon skeletons, are available at the required amounts and stoichiometry, with associated transport processes making certain that these essential resources are transported from their sites of synthesis to those of utilisation. Of the many possible posttranslational mechanisms that might participate in efficient co-ordination of metabolism and transport only reversible thiol-disulphide exchange mechanisms have been described in detail. Sucrose and trehalose metabolism are intertwined in the signalling hub that ensures appropriate resource allocation to drive growth and development under optimal and stress conditions, with trehalose-6-phosphate acting as an important signal for sucrose availability. The formidable suite of plant metabolite transporters provides enormous flexibility and adaptability in inter-pathway coordination and source-sink interactions. Focussing on the carbon metabolism network, we highlight the functions of different transporter families, and the important of thioredoxins in the metabolic dialogue between source and sink tissues. In addition, we address how these systems can be tailored for crop improvement.
Collapse
Affiliation(s)
- Cara A Griffiths
- Plant Biology and Crop Science, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, UK
| | - Matthew J Paul
- Plant Biology and Crop Science, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, UK
| | - Christine H Foyer
- Centre for Plant Sciences, School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK.
| |
Collapse
|
20
|
Hao J, Gu F, Zhu J, Lu S, Liu Y, Li Y, Chen W, Wang L, Fan S, Xian CJ. Low Night Temperature Affects the Phloem Ultrastructure of Lateral Branches and Raffinose Family Oligosaccharide (RFO) Accumulation in RFO-Transporting Plant Melon (Cucumismelo L.) during Fruit Expansion. PLoS One 2016; 11:e0160909. [PMID: 27501301 PMCID: PMC4976869 DOI: 10.1371/journal.pone.0160909] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 07/27/2016] [Indexed: 11/18/2022] Open
Abstract
Due to the importance and complexity of photo assimilate transport in raffinose family oligosaccharide (RFO)-transporting plants such as melon, it is important to study the features of the transport structure (phloem) particularly of the lateral branches connecting the source leaves and the sink fruits, and its responses to environmental challenges. Currently, it is unclear to what extents the cold environmental temperature stress would alter the phloem ultrastructure and RFO accumulation in RFO-transporting plants. In this study, we firstly utilized electron microscopy to investigate the changes in the phloem ultrastructure of lateral branches and RFO accumulation in melons after being subjected to low night temperatures (12°C and 9°C). The results demonstrated that exposure to 9°C and 12°C altered the ultrastructure of the phloem, with the effect of 9°C being more obvious. The most obvious change was the appearance of plasma membrane invaginations in 99% companion cells and intermediary cells. In addition, phloem parenchyma cells contained chloroplasts with increased amounts of starch grains, sparse cytoplasm and reduced numbers of mitochondria. In the intermediary cells, the volume of cytoplasm was reduced by 50%, and the central vacuole was present. Moreover, the treatment at 9°C during the night led to RFO accumulation in the vascular bundles of the lateral branches and fruit carpopodiums. These ultrastructural changes of the transport structure (phloem) following the treatment at 9°C represented adaptive responses of melons to low temperature stresses. Future studies are required to examine whether these responses may affect phloem transport.
Collapse
Affiliation(s)
- Jinghong Hao
- Beijing Key Laboratory of New Technique in Agricultural Application, College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Fengying Gu
- Institute of Agro-products Processing Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jie Zhu
- Institute of Agro-products Processing Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Shaowei Lu
- Institute of Protected Horticulture, Chinese Academy of Agricultural Engineering, Beijing 100125, China
| | - Yifei Liu
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Yunfei Li
- Beijing Agricultural Technology Extension Centre, Beijing 100029, China
| | - Weizhi Chen
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Liping Wang
- Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide 5001, Australia
| | - Shuangxi Fan
- Beijing Key Laboratory of New Technique in Agricultural Application, College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Cory J. Xian
- Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide 5001, Australia
| |
Collapse
|
21
|
Santos TBD, de Lima RB, Nagashima GT, Petkowicz CLDO, Carpentieri-Pípolo V, Pereira LFP, Domingues DS, Vieira LGE. Galactinol synthase transcriptional profile in two genotypes of Coffea canephora with contrasting tolerance to drought. Genet Mol Biol 2015; 38:182-90. [PMID: 26273221 PMCID: PMC4530651 DOI: 10.1590/s1415-475738220140171] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 11/07/2014] [Indexed: 12/03/2022] Open
Abstract
Increased synthesis of galactinol and raffinose family oligosaccharides (RFOs) has been reported in vegetative tissues in response to a range of abiotic stresses. In this work, we evaluated the transcriptional profile of a Coffea canephora galactinol synthase gene (CcGolS1) in two clones that differed in tolerance to water deficit in order to assess the contribution of this gene to drought tolerance. The expression of CcGolS1 in leaves was differentially regulated by water deficit, depending on the intensity of stress and the genotype. In clone 109A (drought-susceptible), the abundance of CcGolS1 transcripts decreased upon exposure to drought, reaching minimum values during recovery from severe water deficit and stress. In contrast, CcGolS1 gene expression in clone 14 (drought-tolerant) was stimulated by water deficit. Changes in galactinol and RFO content did not correlate with variation in the steady-state transcript level. However, the magnitude of increase in RFO accumulation was higher in the tolerant cultivar, mainly under severe water deficit. The finding that the drought-tolerant coffee clone showed enhanced accumulation of CcGolS1 transcripts and RFOs under water deficit suggests the possibility of using this gene to improve drought tolerance in this important crop.
Collapse
Affiliation(s)
- Tiago Benedito Dos Santos
- Laboratório de Biotecnologia Vegetal, Instituto Agronômico do Paraná, Londrina, PR, Brazil ; Programa de Pós-Graduação em Agronomia, Universidade Estadual de Londrina, Londrina, PR, Brazil
| | - Rogério Barbosa de Lima
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | | | | | | | - Luiz Filipe Protasio Pereira
- Laboratório de Biotecnologia Vegetal, Instituto Agronômico do Paraná, Londrina, PR, Brazil ; Embrapa Café, Brasília, DF, Brazil
| | | | | |
Collapse
|
22
|
Schulz A. Diffusion or bulk flow: how plasmodesmata facilitate pre-phloem transport of assimilates. JOURNAL OF PLANT RESEARCH 2015; 128:49-61. [PMID: 25516499 DOI: 10.1007/s10265-014-0676-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2014] [Accepted: 10/14/2014] [Indexed: 05/11/2023]
Abstract
Assimilates synthesized in the mesophyll of mature leaves move along the pre-phloem transport pathway to the bundle sheath of the minor veins from which they are loaded into the phloem. The present review discusses the most probable driving force(s) for the pre-phloem pathway, diffusion down the concentration gradient or bulk flow along a pressure gradient. The driving force seems to depend on the mode of phloem loading. In a majority of plant species phloem loading is a thermodynamically active process, involving the activity of membrane transporters in the sieve-element companion cell complex. Since assimilate movement includes an apoplasmic step, this mode is called apoplasmic loading. Well established is also the polymer-trap loading mode, where the phloem-transport sugars are raffinose-family oligomers in herbaceous plants. Also this mode depends on the investment of energy, here for sugar oligomerization, and leads to a high sugar accumulation in the phloem, even though the phloem is not symplasmically isolated, but well coupled by plasmodesmata (PD). Hence the mode polymer-trap mode is also designated active symplasmic loading. For woody angiosperms and gymnosperms an alternate loading mode is currently matter of discussion, called passive symplasmic loading. Based on the limited material available, this review compares the different loading modes and suggests that diffusion is the driving force in apoplasmic loaders, while bulk flow plays an increasing role in plants having a continuous symplasmic pathway from mesophyll to sieve elements. Crucial for the driving force is the question where water enters the pre-phloem pathway. Surprisingly, the role of PD in water movement has not been addressed so far appropriately. Modeling of assimilate and water fluxes indicates that in symplasmic loaders a considerable part of water flux happens through the PD between bundle sheath and phloem.
Collapse
Affiliation(s)
- Alexander Schulz
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark,
| |
Collapse
|
23
|
Sengupta S, Mukherjee S, Basak P, Majumder AL. Significance of galactinol and raffinose family oligosaccharide synthesis in plants. FRONTIERS IN PLANT SCIENCE 2015; 6:656. [PMID: 26379684 PMCID: PMC4549555 DOI: 10.3389/fpls.2015.00656] [Citation(s) in RCA: 194] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 08/07/2015] [Indexed: 05/18/2023]
Abstract
Abiotic stress induces differential expression of genes responsible for the synthesis of raffinose family of oligosaccharides (RFOs) in plants. RFOs are described as the most widespread D-galactose containing oligosaccharides in higher plants. Biosynthesis of RFOs begin with the activity of galactinol synthase (GolS; EC 2.4.1.123), a GT8 family glycosyltransferase that galactosylates myo-inositol to produce galactinol. Raffinose and the subsequent higher molecular weight RFOs (Stachyose, Verbascose, and Ajugose) are synthesized from sucrose by the subsequent addition of activated galactose moieties donated by Galactinol. Interestingly, GolS, the key enzyme of this pathway is functional only in the flowering plants. It is thus assumed that RFO synthesis is a specialized metabolic event in higher plants; although it is not known whether lower plant groups synthesize any galactinol or RFOs. In higher plants, several functional importance of RFOs have been reported, e.g., RFOs protect the embryo from maturation associated desiccation, are predominant transport carbohydrates in some plant families, act as signaling molecule following pathogen attack and wounding and accumulate in vegetative tissues in response to a range of abiotic stresses. However, the loss-of-function mutants reported so far fail to show any perturbation in those biological functions. The role of RFOs in biotic and abiotic stress is therefore still in debate and their specificity and related components remains to be demonstrated. The present review discusses the biology and stress-linked regulation of this less studied extension of inositol metabolic pathway.
Collapse
Affiliation(s)
- Sonali Sengupta
- *Correspondence: Arun L. Majumder and Sonali Sengupta, Division of Plant Biology, Bose Institute, Centenary Campus, P-1/12, C.I.T. Road, Scheme - VIIM, Kolkata 700054, West Bengal, India, ;
| | - Sritama Mukherjee
- †Present address: Sritama Mukherjee, Department of Botany, Bethune College, Kolkata 700006, West Bengal, India
| | | | - Arun L. Majumder
- *Correspondence: Arun L. Majumder and Sonali Sengupta, Division of Plant Biology, Bose Institute, Centenary Campus, P-1/12, C.I.T. Road, Scheme - VIIM, Kolkata 700054, West Bengal, India, ;
| |
Collapse
|
24
|
Dölger J, Rademaker H, Liesche J, Schulz A, Bohr T. Diffusion and bulk flow in phloem loading: a theoretical analysis of the polymer trap mechanism for sugar transport in plants. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 90:042704. [PMID: 25375520 DOI: 10.1103/physreve.90.042704] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Indexed: 05/26/2023]
Abstract
Plants create sugar in the mesophyll cells of their leaves by photosynthesis. This sugar, mostly sucrose, has to be loaded via the bundle sheath into the phloem vascular system (the sieve elements), where it is distributed to growing parts of the plant. We analyze the feasibility of a particular loading mechanism, active symplasmic loading, also called the polymer trap mechanism, where sucrose is transformed into heavier sugars, such as raffinose and stachyose, in the intermediary-type companion cells bordering the sieve elements in the minor veins of the phloem. Keeping the heavier sugars from diffusing back requires that the plasmodesmata connecting the bundle sheath with the intermediary cell act as extremely precise filters, which are able to distinguish between molecules that differ by less than 20% in size. In our modeling, we take into account the coupled water and sugar movement across the relevant interfaces, without explicitly considering the chemical reactions transforming the sucrose into the heavier sugars. Based on the available data for plasmodesmata geometry, sugar concentrations, and flux rates, we conclude that this mechanism can in principle function, but that it requires pores of molecular sizes. Comparing with the somewhat uncertain experimental values for sugar export rates, we expect the pores to be only 5%-10% larger than the hydraulic radius of the sucrose molecules. We find that the water flow through the plasmodesmata, which has not been quantified before, contributes only 10%-20% to the sucrose flux into the intermediary cells, while the main part is transported by diffusion. On the other hand, the subsequent sugar translocation into the sieve elements would very likely be carried predominantly by bulk water flow through the plasmodesmata. Thus, in contrast to apoplasmic loaders, all the necessary water for phloem translocation would be supplied in this way with no need for additional water uptake across the plasma membranes of the phloem.
Collapse
Affiliation(s)
- Julia Dölger
- Department of Physics and Center for Fluid Dynamics, Technical University of Denmark, Kgs. Lyngby, Denmark and Institute for Condensed Matter Physics, Darmstadt University of Technology, Darmstadt, Germany
| | - Hanna Rademaker
- Department of Physics and Center for Fluid Dynamics, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Johannes Liesche
- Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Alexander Schulz
- Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tomas Bohr
- Department of Physics and Center for Fluid Dynamics, Technical University of Denmark, Kgs. Lyngby, Denmark
| |
Collapse
|
25
|
Boualem A, Fleurier S, Troadec C, Audigier P, Kumar APK, Chatterjee M, Alsadon AA, Sadder MT, Wahb-Allah MA, Al-Doss AA, Bendahmane A. Development of a Cucumis sativus TILLinG platform for forward and reverse genetics. PLoS One 2014; 9:e97963. [PMID: 24835852 PMCID: PMC4024006 DOI: 10.1371/journal.pone.0097963] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 04/27/2014] [Indexed: 11/23/2022] Open
Abstract
Background Cucumber (Cucumis sativus) belongs to the Cucurbitaceae family that includes more than 800 species. The cucumber genome has been recently sequenced and annotated. Transcriptomics and genome sequencing of many plant genomes are providing information on candidate genes potentially related to agronomically important traits. To accelerate functional characterization of these genes in cucumber we have generated an EMS mutant population that can be used as a TILLinG platform for reverse genetics. Principal Findings A population of 3,331 M2 mutant seed families was generated using two EMS concentrations (0.5% and 0.75%). Genomic DNA was extracted from M2 families and eight-fold pooled for mutation detection by ENDO1 nuclease. To assess the quality of the mutant collection, we screened for induced mutations in five genes and identified 26 mutations. The average mutation rate was calculated as 1/1147 Kb giving rise to approximately 320 mutations per genome. We focused our characterization on three missense mutations, G33C, S238F and S249F identified in the CsACS2 sex determination gene. Protein modeling and crystallography studies predicted that mutation at G33 may affect the protein function, whereas mutations at S238 and S249 may not impair the protein function. As predicted, detailed phenotypic evaluation showed that the S238F and the S249F mutant lines had no sexual phenotype. In contrast, plants homozygous for the G33C mutation showed a complete sexual transition from monoecy to andromonoecy. This result demonstrates that TILLinG is a valuable tool for functional validation of gene function in crops recalcitrant to transgenic transformation. Conclusions We have developed a cucumber mutant population that can be used as an efficient reverse genetics tool. The cucumber TILLinG collection as well as the previously described melon TILLinG collection will prove to be a valuable resource for both fundamental research and the identification of agronomically-important genes for crop improvement in cucurbits in general.
Collapse
Affiliation(s)
- Adnane Boualem
- INRA-URGV, UMR1165, Unité de Recherche en Génomique Végétale, Saclay Plant Sciences, Evry, France
| | - Sebastien Fleurier
- INRA-URGV, UMR1165, Unité de Recherche en Génomique Végétale, Saclay Plant Sciences, Evry, France
| | - Christelle Troadec
- INRA-URGV, UMR1165, Unité de Recherche en Génomique Végétale, Saclay Plant Sciences, Evry, France
| | - Pascal Audigier
- INRA-URGV, UMR1165, Unité de Recherche en Génomique Végétale, Saclay Plant Sciences, Evry, France
| | - Anish P. K. Kumar
- Bench Bio Pvt Ltd., c/o Jai Research Foundation, Vapi, Gujarat, India
| | - Manash Chatterjee
- Bench Bio Pvt Ltd., c/o Jai Research Foundation, Vapi, Gujarat, India
- Plant and AgriBiosciences Research Centre (PABC), Botany and Plant Science, National University of Ireland Galway, University Road, Galway, Ireland
| | - Abdullah A. Alsadon
- Department of Plant Production, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Monther T. Sadder
- Department of Plant Production, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Mahmoud A. Wahb-Allah
- Department of Plant Production, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Abdullah A. Al-Doss
- Department of Plant Production, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Abdelhafid Bendahmane
- INRA-URGV, UMR1165, Unité de Recherche en Génomique Végétale, Saclay Plant Sciences, Evry, France
- * E-mail:
| |
Collapse
|
26
|
Will T, Furch ACU, Zimmermann MR. How phloem-feeding insects face the challenge of phloem-located defenses. FRONTIERS IN PLANT SCIENCE 2013; 4:336. [PMID: 24009620 PMCID: PMC3756233 DOI: 10.3389/fpls.2013.00336] [Citation(s) in RCA: 125] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 08/09/2013] [Indexed: 05/20/2023]
Abstract
Due to the high content of nutrient, sieve tubes are a primary target for pests, e.g., most phytophagous hemipteran. To protect the integrity of the sieve tubes as well as their content, plants possess diverse chemical and physical defense mechanisms. The latter mechanisms are important because they can potentially interfere with the food source accession of phloem-feeding insects. Physical defense mechanisms are based on callose as well as on proteins and often plug the sieve tube. Insects that feed from sieve tubes are potentially able to overwhelm these defense mechanisms using their saliva. Gel saliva forms a sheath in the apoplast around the stylet and is suggested to seal the stylet penetration site in the cell plasma membrane. In addition, watery saliva is secreted into penetrated cells including sieve elements; the presence of specific enzymes/effectors in this saliva is thought to interfere with plant defense responses. Here we detail several aspects of plant defense and discuss the interaction of plants and phloem-feeding insects. Recent agro-biotechnological phloem-located aphid control strategies are presented.
Collapse
Affiliation(s)
- Torsten Will
- Institute of Phytopathology and Applied Zoology, Centre for BioSystems, Land Use and Nutrition, Justus-Liebig-UniversityGiessen, Germany
| | - Alexandra C. U. Furch
- Institute of Phytopathology and Applied Zoology, Centre for BioSystems, Land Use and Nutrition, Justus-Liebig-UniversityGiessen, Germany
| | | |
Collapse
|
27
|
den Ende WV. Multifunctional fructans and raffinose family oligosaccharides. FRONTIERS IN PLANT SCIENCE 2013; 4:247. [PMID: 23882273 PMCID: PMC3713406 DOI: 10.3389/fpls.2013.00247] [Citation(s) in RCA: 132] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2013] [Accepted: 06/19/2013] [Indexed: 05/17/2023]
Abstract
Fructans and raffinose family oligosaccharides (RFOs) are the two most important classes of water-soluble carbohydrates in plants. Recent progress is summarized on their metabolism (and regulation) and on their functions in plants and in food (prebiotics, antioxidants). Interest has shifted from the classic inulin-type fructans to more complex fructans. Similarly, alternative RFOs were discovered next to the classic RFOs. Considerable progress has been made in the understanding of structure-function relationships among different kinds of plant fructan metabolizing enzymes. This helps to understand their evolution from (invertase) ancestors, and the evolution and role of so-called "defective invertases." Both fructans and RFOs can act as reserve carbohydrates, membrane stabilizers and stress tolerance mediators. Fructan metabolism can also play a role in osmoregulation (e.g., flower opening) and source-sink relationships. Here, two novel emerging roles are highlighted. First, fructans and RFOs may contribute to overall cellular reactive oxygen species (ROS) homeostasis by specific ROS scavenging processes in the vicinity of organellar membranes (e.g., vacuole, chloroplasts). Second, it is hypothesized that small fructans and RFOs act as phloem-mobile signaling compounds under stress. It is speculated that such underlying antioxidant and oligosaccharide signaling mechanisms contribute to disease prevention in plants as well as in animals and in humans.
Collapse
|
28
|
Liesche J, Schulz A. Modeling the parameters for plasmodesmal sugar filtering in active symplasmic phloem loaders. FRONTIERS IN PLANT SCIENCE 2013; 4:207. [PMID: 23802006 PMCID: PMC3685819 DOI: 10.3389/fpls.2013.00207] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 05/31/2013] [Indexed: 05/05/2023]
Abstract
Plasmodesmata (PD) play a key role in loading of sugars into the phloem. In plant species that employ the so-called active symplasmic loading strategy, sucrose that diffuses into their unique intermediary cells (ICs) is converted into sugar oligomers. According to the prevalent hypothesis, the oligomers are too large to pass back through PD on the bundle sheath side, but can pass on into the sieve element to be transported in the phloem. Here, we investigate if the PD at the bundle sheath-IC interface can indeed fulfill the function of blocking transport of sugar oligomers while still enabling efficient diffusion of sucrose. Hindrance factors are derived via theoretical modeling for different PD substructure configurations: sub-nano channels, slit, and hydrogel. The results suggest that a strong discrimination could only be realized when the PD opening is almost as small as the sugar oligomers. In order to find model parameters that match the in vivo situation, we measured the effective diffusion coefficient across the interface in question in Cucurbita pepo with 3D-photoactivation microscopy. Calculations indicate that a PD substructure of several sub-nano channels with a radius around 7 Å, a 10.4 Å-wide slit or a hydrogel with 49% polymer fraction would be compatible with the effective diffusion coefficient. If these configurations can accommodate sufficient flux of sucrose into the IC, while blocking raffinose and stachyose movement was assessed using literature data. While the slit-configuration would efficiently prevent the sugar oligomers from "leaking" from the IC, none of the configurations could enable a diffusion-driven sucrose flux that matches the reported rates at a physiologically relevant concentration potential. The presented data provides a first insight on how the substructure of PD could enable selective transport, but indicates that additional factors are involved in efficient phloem loading in active symplasmic loading species.
Collapse
Affiliation(s)
- Johannes Liesche
- Department of Plant and Environmental Sciences, University of CopenhagenCopenhagen, Denmark
| | | |
Collapse
|
29
|
Turnbull CGN, Lopez-Cobollo RM. Heavy traffic in the fast lane: long-distance signalling by macromolecules. THE NEW PHYTOLOGIST 2013; 198:33-51. [PMID: 23398598 DOI: 10.1111/nph.12167] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Accepted: 12/21/2012] [Indexed: 05/05/2023]
Abstract
The two major vascular conduits in plants, the xylem and phloem, theoretically provide opportunities for the long-distance translocation of almost any type of water-borne molecule. This review focuses on the signalling functions conveyed by the movement of macromolecules. Here, a signal is defined as the communication of information from source to destination, where it modifies development, physiology or defence through altered gene expression or by direct influences on other cellular processes. Xylem and phloem sap both contain diverse classes of proteins; in addition, phloem contains many full-length and small RNA species. Only a few of these mobile molecules have proven functions in signalling. The transduction of signals typically depends on connection to appropriate signalling pathways. Incoming protein signals require specific detection systems, generally via receptors. Mobile RNAs require either the translation or presence of a homologous target. Given that phloem sieve elements are enucleate and lack translation machinery, RNA function requires subsequent unloading at least into adjacent companion cells. The binding of RNA by proteins in ribonucleoprotein complexes enables the translocation of some signals, with evidence for both sequence-specific and size-specific binding. Several examples of long-distance macromolecular signalling are highlighted, including the FT protein signal which regulates flowering time and other developmental switches.
Collapse
Affiliation(s)
- Colin G N Turnbull
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | | |
Collapse
|
30
|
dos Santos R, Vergauwen R, Pacolet P, Lescrinier E, Van den Ende W. Manninotriose is a major carbohydrate in red deadnettle (Lamium purpureum, Lamiaceae). ANNALS OF BOTANY 2013; 111:385-93. [PMID: 23264235 PMCID: PMC3579443 DOI: 10.1093/aob/mcs288] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2012] [Accepted: 11/15/2012] [Indexed: 05/21/2023]
Abstract
BACKGROUND AND AIMS There is a great need to search for natural compounds with superior prebiotic, antioxidant and immunostimulatory properties for use in (food) applications. Raffinose family oligosaccharides (RFOs) show such properties. Moreover, they contribute to stress tolerance in plants, acting as putative membrane stabilizers, antioxidants and signalling agents. METHODS A large-scale soluble carbohydrate screening was performed within the plant kingdom. An unknown compound accumulated to a high extent in early-spring red deadnettle (Lamium purpureum) but not in other RFO plants. The compound was purified and its structure was unravelled with NMR. Organs and organ parts of red deadnettle were carefully dissected and analysed for soluble sugars. Phloem sap content was analysed by a common EDTA-based method. KEY RESULTS Early-spring red deadnettle stems and roots accumulate high concentrations of the reducing trisaccharide manninotriose (Galα1,6Galα1,6Glc), a derivative of the non-reducing RFO stachyose (Galα1,6Galα1,6Glcα1,2βFru). Detailed soluble carbohydrate analyses on dissected stem and leaf sections, together with phloem sap analyses, strongly suggest that stachyose is the main transport compound, but extensive hydrolysis of stachyose to manninotriose seems to occur along the transport path. Based on the specificities of the observed carbohydrate dynamics, the putative physiological roles of manninotriose in red deadnettle are discussed. CONCLUSIONS It is demonstrated for the first time that manninotriose is a novel and important player in the RFO metabolism of red dead deadnettle. It is proposed that manninotriose represents a temporary storage carbohydrate in early-spring deadnettle, at the same time perhaps functioning as a membrane protector and/or as an antioxidant in the vicinity of membranes, as recently suggested for other RFOs and fructans. This novel finding urges further research on this peculiar carbohydrate on a broader array of RFO accumulators.
Collapse
Affiliation(s)
- Raquel dos Santos
- Laboratory of Molecular Plant Biology, KU Leuven, Kasteelpark Arenberg 31, B-3001 Leuven, Belgium
| | - Rudy Vergauwen
- Laboratory of Molecular Plant Biology, KU Leuven, Kasteelpark Arenberg 31, B-3001 Leuven, Belgium
| | - Pieter Pacolet
- Laboratory of Molecular Plant Biology, KU Leuven, Kasteelpark Arenberg 31, B-3001 Leuven, Belgium
| | - Eveline Lescrinier
- Laboratory for Medicinal Chemistry, KU Leuven, Minderbroedersstraat 10, B-3000 Leuven, Belgium
| | - Wim Van den Ende
- Laboratory of Molecular Plant Biology, KU Leuven, Kasteelpark Arenberg 31, B-3001 Leuven, Belgium
| |
Collapse
|
31
|
Van den Ende W. Multifunctional fructans and raffinose family oligosaccharides. FRONTIERS IN PLANT SCIENCE 2013. [PMID: 23882273 DOI: 10.3389/fpls.201300247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Fructans and raffinose family oligosaccharides (RFOs) are the two most important classes of water-soluble carbohydrates in plants. Recent progress is summarized on their metabolism (and regulation) and on their functions in plants and in food (prebiotics, antioxidants). Interest has shifted from the classic inulin-type fructans to more complex fructans. Similarly, alternative RFOs were discovered next to the classic RFOs. Considerable progress has been made in the understanding of structure-function relationships among different kinds of plant fructan metabolizing enzymes. This helps to understand their evolution from (invertase) ancestors, and the evolution and role of so-called "defective invertases." Both fructans and RFOs can act as reserve carbohydrates, membrane stabilizers and stress tolerance mediators. Fructan metabolism can also play a role in osmoregulation (e.g., flower opening) and source-sink relationships. Here, two novel emerging roles are highlighted. First, fructans and RFOs may contribute to overall cellular reactive oxygen species (ROS) homeostasis by specific ROS scavenging processes in the vicinity of organellar membranes (e.g., vacuole, chloroplasts). Second, it is hypothesized that small fructans and RFOs act as phloem-mobile signaling compounds under stress. It is speculated that such underlying antioxidant and oligosaccharide signaling mechanisms contribute to disease prevention in plants as well as in animals and in humans.
Collapse
Affiliation(s)
- Wim Van den Ende
- Laboratory of Molecular Plant Biology, KU Leuven Leuven, Belgium
| |
Collapse
|
32
|
Sui XL, Meng FZ, Wang HY, Wei YX, Li RF, Wang ZY, Hu LP, Wang SH, Zhang ZX. Molecular cloning, characteristics and low temperature response of raffinose synthase gene in Cucumis sativus L. JOURNAL OF PLANT PHYSIOLOGY 2012; 169:1883-91. [PMID: 22985990 DOI: 10.1016/j.jplph.2012.07.019] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2012] [Revised: 07/30/2012] [Accepted: 07/30/2012] [Indexed: 05/07/2023]
Abstract
Raffinose synthase (RS, EC2.4.1.82) is one of the key enzymes that channels sucrose into the raffinose family oligosaccharides (RFOs) biosynthetic pathway. However, the gene encoding RS is poorly characterized in cucumber (Cucumis sativus L.), which is a typical RFOs-translocating plant species. Here we isolated the gene encoding RS (CsRS) from the leaves of cucumber plants. The complete cDNA of CsRS consisted of 2552 nucleotides with an open reading frame encoding a polypeptide of 784 amino acid residues. Reverse transcription-polymerase chain reaction and RNA hybridization analysis revealed that expression of CsRS was the highest in leaves followed by roots, fruits, and stems. The RS activity was up-regulated and the raffinose content was high in the leaves of transgenic tobacco with over-expression of CsRS, while both the RS activity and the raffinose content decreased in the transgenic cucumber plants with anti-sense expression of CsRS. The expression of CsRS could be induced by low temperature and exogenous phytohormone abscisic acid (ABA). In cucumber growing under low temperature stress, CsRS expression, RS activity and raffinose content increased gradually in the leaves, the fruits, the stems and the roots. The most notable increase was observed in the leaves. Similarly, the expression of CsRS was induced in cucumber leaves and fruits with 200 μM and 150 μM ABA treatments, respectively.
Collapse
Affiliation(s)
- Xiao-lei Sui
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Dumlao MR, Darehshouri A, Cohu CM, Muller O, Mathias J, Adams WW, Demmig-Adams B. Low temperature acclimation of photosynthetic capacity and leaf morphology in the context of phloem loading type. PHOTOSYNTHESIS RESEARCH 2012; 113:181-9. [PMID: 22791016 DOI: 10.1007/s11120-012-9762-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Accepted: 06/26/2012] [Indexed: 05/22/2023]
Abstract
Carbon export from leaf mesophyll to sugar-transporting phloem occurs via either an apoplastic (across the cell membrane) or symplastic (through plasmodesmatal cell wall openings) pathway. Herbaceous apoplastic loaders generally exhibit an up-regulation of photosynthetic capacity in response to growth at lower temperature. However, acclimation of photosynthesis to temperature by symplastically loading species, whose geographic distribution is particularly strong in tropical and subtropical areas, has not been characterized. Photosynthetic and leaf anatomical acclimation to lower temperature was explored in two symplastic (Verbascum phoeniceum, Cucurbita pepo) and two apoplastic (Helianthus annuus, Spinacia oleracea) loaders, representing summer- and winter-active life histories for each loading type. Regardless of phloem loading type, the two summer-active species, C. pepo and H. annuus, exhibited neither foliar anatomical nor photosynthetic acclimation when grown under low temperature compared to moderate temperature. In contrast, and again irrespective of phloem loading type, the two winter-active mesophytes, V. phoeniceum and S. oleracea, exhibited both a greater number of palisade cell layers (and thus thicker leaves) and significantly higher maximal capacities of photosynthetic electron transport, as well as, in the case of V. phoeniceum, a greater foliar vein density in response to cool temperatures compared to growth at moderate temperature. It is therefore noteworthy that symplastic phloem loading per se does not prevent acclimation of intrinsic photosynthetic capacity to cooler growth temperatures. Given the vagaries of weather and climate, understanding the basis of plant acclimation to, and tolerance of, low temperature is critical to maintaining and increasing plant productivity for food, fuel, and fiber to meet the growing demands of a burgeoning human population.
Collapse
Affiliation(s)
- Matthew R Dumlao
- Department of Ecology & Evolutionary Biology, University of Colorado, Boulder, CO 80309-0334, USA.
| | | | | | | | | | | | | |
Collapse
|
34
|
Gil L, Ben-Ari J, Turgeon R, Wolf S. Effect of CMV infection and high temperatures on the enzymes involved in raffinose family oligosaccharide biosynthesis in melon plants. JOURNAL OF PLANT PHYSIOLOGY 2012; 169:965-970. [PMID: 22575056 DOI: 10.1016/j.jplph.2012.02.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 01/30/2012] [Accepted: 02/21/2012] [Indexed: 05/31/2023]
Abstract
Ultrastructural and molecular studies have provided experimental evidence for the classification of cucurbits as symplastic loaders, mainly translocating the raffinose family oligosaccharides (RFOs) raffinose and stachyose. Earlier studies established that cucumber mosaic virus (CMV) infection causes a significant increase in the sucrose-to-RFO ratio in the phloem sap of melon plants. The alteration in phloem sap sugar composition was associated with upregulation of CmSUT1 transcript within the vascular bundles. The current research aimed to explore the effect of CMV infection on the enzymes involved in symplastic phloem loading and RFO biosynthesis. Viral infection did not affect the activity of either raffinose or stachyose synthases in source leaves, but caused upregulation of the respective transcripts. Interestingly, activity of galactinol synthase was higher in CMV-infected leaves, associated with upregulation of CmGAS2. A significant increase in CmGAS2 expression in source leaves of melon plants exposed to high temperatures indicated that this response is common for both biotic and abiotic stresses. However, the effect of CMV or heat stress on phloem sap sugar composition is not due to alteration in RFO biosynthesis.
Collapse
Affiliation(s)
- Lidor Gil
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, The Robert H. Smith Faculty of Agriculture, Food and Environment, Rehovot 76100, Israel
| | | | | | | |
Collapse
|
35
|
Liesche J, Schulz A. In vivo quantification of cell coupling in plants with different phloem-loading strategies. PLANT PHYSIOLOGY 2012; 159:355-65. [PMID: 22422939 PMCID: PMC3375970 DOI: 10.1104/pp.112.195115] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2012] [Accepted: 03/09/2012] [Indexed: 05/18/2023]
Abstract
Uptake of photoassimilates into the leaf phloem is the key step in carbon partitioning and phloem transport. Symplasmic and apoplasmic loading strategies have been defined in different plant taxa based on the abundance of plasmodesmata between mesophyll and phloem. For apoplasmic loading to occur, an absence of plasmodesmata is a sufficient but not a necessary criterion, as passage of molecules through plasmodesmata might well be blocked or restricted. Here, we present a noninvasive, whole-plant approach to test symplasmic coupling and quantify the intercellular flux of small molecules using photoactivation microscopy. Quantification of coupling between all cells along the prephloem pathways of the apoplasmic loader Vicia faba and Nicotiana tabacum showed, to our knowledge for the first time in vivo, that small solutes like sucrose can diffuse through plasmodesmata up to the phloem sieve element companion cell complex (SECCC). As expected, the SECCC was found to be symplasmically isolated for small solutes. In contrast, the prephloem pathway of the symplasmic loader Cucurbita maxima was found to be well coupled with the SECCC. Phloem loading in gymnosperms is not well understood, due to a profoundly different leaf anatomy and a scarcity of molecular data compared with angiosperms. A cell-coupling analysis for Pinus sylvestris showed high symplasmic coupling along the entire prephloem pathway, comprising at least seven cell border interfaces between mesophyll and sieve elements. Cell coupling together with measurements of leaf sap osmolality indicate a passive symplasmic loading type. Similarities and differences of this loading type with that of angiosperm trees are discussed.
Collapse
Affiliation(s)
- Johannes Liesche
- Department of Plant Biology and Biotechnology, University of Copenhagen, DK–1871 Frederiksberg C, Denmark
| | - Alexander Schulz
- Department of Plant Biology and Biotechnology, University of Copenhagen, DK–1871 Frederiksberg C, Denmark
| |
Collapse
|
36
|
|
37
|
Slewinski TL. Diverse functional roles of monosaccharide transporters and their homologs in vascular plants: a physiological perspective. MOLECULAR PLANT 2011; 4:641-62. [PMID: 21746702 DOI: 10.1093/mp/ssr051] [Citation(s) in RCA: 133] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Vascular plants contain two gene families that encode monosaccharide transporter proteins. The classical monosaccharide transporter(-like) gene superfamily is large and functionally diverse, while the recently identified SWEET transporter family is smaller and, thus far, only found to transport glucose. These transporters play essential roles at many levels, ranging from organelles to the whole plant. Many family members are essential for cellular homeostasis and reproductive success. Although most transporters do not directly participate in long-distance transport, their indirect roles greatly impact carbon allocation and transport flux to the heterotrophic tissues of the plant. Functional characterization of some members from both gene families has revealed their diverse roles in carbohydrate partitioning, phloem function, resource allocation, plant defense, and sugar signaling. This review highlights the broad impacts and implications of monosaccharide transport by describing some of the functional roles of the monosaccharide transporter(-like) superfamily and the SWEET transporter family.
Collapse
Affiliation(s)
- Thomas L Slewinski
- Department of Plant Biology, Cornell University, 262 Plant Science Building, Ithaca, NY 14853, USA.
| |
Collapse
|
38
|
Clepet C, Joobeur T, Zheng Y, Jublot D, Huang M, Truniger V, Boualem A, Hernandez-Gonzalez ME, Dolcet-Sanjuan R, Portnoy V, Mascarell-Creus A, Caño-Delgado AI, Katzir N, Bendahmane A, Giovannoni JJ, Aranda MA, Garcia-Mas J, Fei Z. Analysis of expressed sequence tags generated from full-length enriched cDNA libraries of melon. BMC Genomics 2011; 12:252. [PMID: 21599934 PMCID: PMC3118787 DOI: 10.1186/1471-2164-12-252] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Accepted: 05/20/2011] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Melon (Cucumis melo), an economically important vegetable crop, belongs to the Cucurbitaceae family which includes several other important crops such as watermelon, cucumber, and pumpkin. It has served as a model system for sex determination and vascular biology studies. However, genomic resources currently available for melon are limited. RESULT We constructed eleven full-length enriched and four standard cDNA libraries from fruits, flowers, leaves, roots, cotyledons, and calluses of four different melon genotypes, and generated 71,577 and 22,179 ESTs from full-length enriched and standard cDNA libraries, respectively. These ESTs, together with ~35,000 ESTs available in public domains, were assembled into 24,444 unigenes, which were extensively annotated by comparing their sequences to different protein and functional domain databases, assigning them Gene Ontology (GO) terms, and mapping them onto metabolic pathways. Comparative analysis of melon unigenes and other plant genomes revealed that 75% to 85% of melon unigenes had homologs in other dicot plants, while approximately 70% had homologs in monocot plants. The analysis also identified 6,972 gene families that were conserved across dicot and monocot plants, and 181, 1,192, and 220 gene families specific to fleshy fruit-bearing plants, the Cucurbitaceae family, and melon, respectively. Digital expression analysis identified a total of 175 tissue-specific genes, which provides a valuable gene sequence resource for future genomics and functional studies. Furthermore, we identified 4,068 simple sequence repeats (SSRs) and 3,073 single nucleotide polymorphisms (SNPs) in the melon EST collection. Finally, we obtained a total of 1,382 melon full-length transcripts through the analysis of full-length enriched cDNA clones that were sequenced from both ends. Analysis of these full-length transcripts indicated that sizes of melon 5' and 3' UTRs were similar to those of tomato, but longer than many other dicot plants. Codon usages of melon full-length transcripts were largely similar to those of Arabidopsis coding sequences. CONCLUSION The collection of melon ESTs generated from full-length enriched and standard cDNA libraries is expected to play significant roles in annotating the melon genome. The ESTs and associated analysis results will be useful resources for gene discovery, functional analysis, marker-assisted breeding of melon and closely related species, comparative genomic studies and for gaining insights into gene expression patterns.
Collapse
Affiliation(s)
- Christian Clepet
- URGV Plant Genomics, Unité de Recherche en Génomique Végétale, UMR1165 ERL8196 INRA-UEVE-CNRS. 2, Rue Gaston Crémieux, 91057 Evry, France
| | - Tarek Joobeur
- Molecular and Cellular Imaging Center, The Ohio State University, OARDC, 1680 Madison Ave, Wooster, OH 44691, USA
- Seminis Vegetable Seeds, 37437 State Highway 16 Woodland, CA 95695, USA
| | - Yi Zheng
- Boyce Thompson Institute, Cornell University, Ithaca, NY 14853, USA
| | - Delphine Jublot
- URGV Plant Genomics, Unité de Recherche en Génomique Végétale, UMR1165 ERL8196 INRA-UEVE-CNRS. 2, Rue Gaston Crémieux, 91057 Evry, France
| | - Mingyun Huang
- Boyce Thompson Institute, Cornell University, Ithaca, NY 14853, USA
| | - Veronica Truniger
- Centro de Edafología y Biología Aplicada del Segura (CEBAS), Consejo Superior de Investigaciones Científicas (CSIC), Apdo. Correos 164, 30100 Espinardo, Murcia, Spain
| | - Adnane Boualem
- URGV Plant Genomics, Unité de Recherche en Génomique Végétale, UMR1165 ERL8196 INRA-UEVE-CNRS. 2, Rue Gaston Crémieux, 91057 Evry, France
| | | | - Ramon Dolcet-Sanjuan
- IRTA, Center for Research in Agricultural Genomics CSIC-IRTA-UAB, Campus UAB, Edifici CRAG, 08193 Bellaterra (Barcelona), Spain
| | - Vitaly Portnoy
- Department of Vegetable Research, Agricultural Research Organization, Newe Ya'ar Research Center, P.O. Box 1021, Ramat Yishay, 30095, Israel
| | - Albert Mascarell-Creus
- Department de Genètica Molecular, Center for Research in Agricultural Genomics CSIC-IRTA-UAB, Campus UAB, Edifici CRAG, 08193 Bellaterra (Barcelona), Spain
| | - Ana I Caño-Delgado
- Department de Genètica Molecular, Center for Research in Agricultural Genomics CSIC-IRTA-UAB, Campus UAB, Edifici CRAG, 08193 Bellaterra (Barcelona), Spain
| | - Nurit Katzir
- Department of Vegetable Research, Agricultural Research Organization, Newe Ya'ar Research Center, P.O. Box 1021, Ramat Yishay, 30095, Israel
| | - Abdelhafid Bendahmane
- URGV Plant Genomics, Unité de Recherche en Génomique Végétale, UMR1165 ERL8196 INRA-UEVE-CNRS. 2, Rue Gaston Crémieux, 91057 Evry, France
- Department of Plant Production, College of Food and Agricultural Sciences, King Saud University, Riyadh Saudi Arabia
| | - James J Giovannoni
- Boyce Thompson Institute, Cornell University, Ithaca, NY 14853, USA
- USDA Robert W. Holley Center for Agriculture and Health, Tower Road, Ithaca, NY 14853, USA
| | - Miguel A Aranda
- Centro de Edafología y Biología Aplicada del Segura (CEBAS), Consejo Superior de Investigaciones Científicas (CSIC), Apdo. Correos 164, 30100 Espinardo, Murcia, Spain
| | - Jordi Garcia-Mas
- IRTA, Center for Research in Agricultural Genomics CSIC-IRTA-UAB, Campus UAB, Edifici CRAG, 08193 Bellaterra (Barcelona), Spain
| | - Zhangjun Fei
- Boyce Thompson Institute, Cornell University, Ithaca, NY 14853, USA
- USDA Robert W. Holley Center for Agriculture and Health, Tower Road, Ithaca, NY 14853, USA
| |
Collapse
|
39
|
Akashi K, Yoshida K, Kuwano M, Kajikawa M, Yoshimura K, Hoshiyasu S, Inagaki N, Yokota A. Dynamic changes in the leaf proteome of a C3 xerophyte, Citrullus lanatus (wild watermelon), in response to water deficit. PLANTA 2011; 233:947-960. [PMID: 21259065 DOI: 10.1007/s00425-010-1341-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Accepted: 12/10/2010] [Indexed: 05/30/2023]
Abstract
Wild watermelon (Citrullus lanatus) is a xerophyte native to the Kalahari Desert, Africa. To better understand the molecular mechanisms of drought resistance in this plant, we examined changes in the proteome in response to water deficit. Wild watermelon leaves showed decreased transpiration and a concomitant increase in leaf temperature under water deficit conditions. Comparison of the proteome of stressed plants with that of unstressed plants by two-dimensional gel electrophoresis revealed that the intensity of 40 spots increased in response to the stress, and the intensity of 11 spots decreased. We positively identified 23 stress-induced and 6 stress-repressed proteins by mass spectrometry and database analyses. Interestingly, 15 out of the 23 up-regulated proteins (65% of annotated up-regulated proteins) were heat shock proteins (HSPs). Especially, 10 out of the 15 up-regulated HSPs belonged to the small heat shock protein (sHSP) family. Other stress-induced proteins included those related to antioxidative defense and carbohydrate metabolism. Fifteen distinct cDNA sequences encoding the sHSP were characterized from wild watermelon. Quantitative real-time PCR analysis of the representative sHSP genes revealed strong transcriptional up-regulation in the leaves under water deficit. Moreover, immunoblot analysis confirmed that protein abundance of sHSPs was massively increased under water deficit. Overall, these observations suggest that the defense response of wild watermelon may involve orchestrated regulation of a diverse array of functional proteins related to cellular defense and metabolism, of which HSPs may play a pivotal role on the protection of the plant under water deficit in the presence of strong light.
Collapse
Affiliation(s)
- Kinya Akashi
- Graduate School of Biological Sciences, Nara Institute of Science and Technology (NAIST), Ikoma, Nara 630-0192, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
40
|
dos Santos TB, Budzinski IGF, Marur CJ, Petkowicz CLO, Pereira LFP, Vieira LGE. Expression of three galactinol synthase isoforms in Coffea arabica L. and accumulation of raffinose and stachyose in response to abiotic stresses. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2011; 49:441-8. [PMID: 21330144 DOI: 10.1016/j.plaphy.2011.01.023] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Revised: 01/11/2011] [Accepted: 01/24/2011] [Indexed: 05/08/2023]
Abstract
Galactinol synthase (EC 2.4.1.123; GolS) catalyzes the first step in the synthesis of raffinose family oligosaccharides (RFOs). Their accumulation in response to abiotic stresses implies a role for RFOs in stress adaptation. In this study, the expression patterns of three isoforms of galactinol synthase (CaGolS1-2-3) from Coffea arabica were evaluated in response to water deficit, salinity and heat stress. All CaGolS isoforms were highly expressed in leaves while little to no expression were detected in flower buds, flowers, plagiotropic shoots, roots, endosperm and pericarp of mature fruits. Transcriptional analysis indicated that the genes were differentially regulated under water deficit, high salt and heat stress. CaGolS1 isoform is constitutively expressed in plants under normal growth conditions and was the most responsive during all stress treatments. CaGolS2 is unique among the three isoforms in that it was detected only under severe water deficit and salt stresses. CaGolS3 was primarily expressed under moderate and severe drought. This isoform was induced only at the third day of heat and under high salt stress. The increase in GolS transcription was not reflected into the amount of galactinol in coffee leaves, as specific glycosyltransferases most likely used galactinol to transfer galactose units to higher homologous oligosaccharides, as suggested by the increase of raffinose and stachyose during the stresses.
Collapse
Affiliation(s)
- Tiago B dos Santos
- Instituto Agronômico do Paraná (IAPAR), Laboratório de Biotecnologia Vegetal, Londrina PR, Brazil
| | | | | | | | | | | |
Collapse
|
41
|
Gil L, Yaron I, Shalitin D, Sauer N, Turgeon R, Wolf S. Sucrose transporter plays a role in phloem loading in CMV-infected melon plants that are defined as symplastic loaders. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 66:366-74. [PMID: 21241389 DOI: 10.1111/j.1365-313x.2011.04498.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Based on the high density of plasmodesmata interconnecting the intermediary cells and their neighboring phloem parenchyma or bundle-sheath cells, and based on the insensitivity to the sucrose transport inhibitor p-chloromercuribenzenesulfonic acid (PCMBS), cucurbits have been concluded to be symplastic loaders. In the present study, we identified and characterized the full-length sequence of sucrose transporter gene (CmSUT1) from melon (Cucumis melo L. cv. Hale's best jumbo). In vitro experiments confirmed that the identified gene product has sucrose transporter activity in baker's yeast. Healthy and cucumber mosaic virus (CMV)-infected melon plants were employed to examine sucrose transporter activity in planta. Pretreatment with PCMBS inhibited loading of newly fixed ¹⁴CO₂ into minor veins of CMV-infected plants. Moreover, CMV infection caused significant increase in CmSUT1 transcripts expression, mainly in vascular bundles of minor veins, which was associated with elevated sucrose content in phloem sap collected from source-leaf petioles. We propose that cucurbit plants contain the machinery for apoplastic phloem loading and that CMV infection causes a quantitative shift in the mode by which photoassimilates are loaded into the sieve tube.
Collapse
Affiliation(s)
- Lidor Gil
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture and the Otto Warburg Minerva Center for Agricultural Biotechnology, The Hebrew University of Jerusalem, The Robert H. Smith Faculty of Agriculture, Food and Environment, Rehovot 76100, Israel
| | | | | | | | | | | |
Collapse
|
42
|
Hewer A, Will T, van Bel AJE. Plant cues for aphid navigation in vascular tissues. ACTA ACUST UNITED AC 2011; 213:4030-42. [PMID: 21075945 DOI: 10.1242/jeb.046326] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The ability of aphids to detect and find sieve tubes suggests that aphids receive cues for sieve-tube recognition by taking samples. Specific natural conditions such as pH value, sugar species and concentration, viscosity, and oxygen pressure may enable sieve-tube detection. We tested the preference of Megoura viciae and Myzus persicae for potential plant-borne orientation parameters in artificial choice-chamber systems. Both species preferred sucrose (in comparison with fructose, glucose, raffinose or sorbitol) at concentrations of 15-22.5% (over a tested range of 0-22.5%) and at approximately pH 7 (over a tested range of pH 5-8). This preference matches the composition of the sieve-tube sap of their host plants. Likewise, Rhopalosiphum padi (normally found on barley plants with sucrose in the phloem sap) and Macrosiphum euphorbiae (normally found on pumpkin plants with raffinose-family oligosaccharides in the phloem sap) showed a significant preference for sucrose. In the absence of sucrose, however, M. euphorbiae strongly preferred raffinose. No clear preference for any carbohydrate was observed for Macrosiphum rosae and Aphis pomi (both normally found on plants with various amounts of sorbitol in the phloem sap). Electrical penetration graph (EPG) measurements of M. persicae feeding on artificial diets confirmed that sieve tubes are recognized solely by a combination of carbohydrate abundance and a neutral to slightly alkaline pH.
Collapse
Affiliation(s)
- Angela Hewer
- Plant Cell Biology Research Group, Institute of General Botany, Justus-Liebig-University, Senckenbergstraße 17-21, D-35390 Gießen, Germany
| | | | | |
Collapse
|
43
|
Turgeon R, Medville R. Amborella trichopoda, plasmodesmata, and the evolution of phloem loading. PROTOPLASMA 2011; 248:173-80. [PMID: 21080011 DOI: 10.1007/s00709-010-0237-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2010] [Accepted: 10/26/2010] [Indexed: 05/09/2023]
Abstract
Phloem loading is the process by which photoassimilates synthesized in the mesophyll cells of leaves enter the sieve elements and companion cells of minor veins in preparation for long distance transport to sink organs. Three loading strategies have been described: active loading from the apoplast, passive loading via the symplast, and passive symplastic transfer followed by polymer trapping of raffinose and stachyose. We studied phloem loading in Amborella trichopoda, a premontane shrub that may be sister to all other flowering plants. The minor veins of A. trichopoda contain intermediary cells, indicative of the polymer trap mechanism, forming an arc on the abaxial side and subtending a cluster of ordinary companion cells in the interior of the veins. Intermediary cells are linked to bundle sheath cells by highly abundant plasmodesmata whereas ordinary companion cells have few plasmodesmata, characteristic of phloem that loads from the apoplast. Intermediary cells, ordinary companion cells, and sieve elements form symplastically connected complexes. Leaves provided with (14)CO(2) translocate radiolabeled sucrose, raffinose, and stachyose. Therefore, structural and physiological evidence suggests that both apoplastic and polymer trapping mechanisms of phloem loading operate in A. trichopoda. The evolution of phloem loading strategies is complex and may be difficult to resolve.
Collapse
Affiliation(s)
- Robert Turgeon
- Department of Plant Biology, Cornell University, Ithaca, NY 14853, USA.
| | | |
Collapse
|
44
|
Dahmani-Mardas F, Troadec C, Boualem A, Lévêque S, Alsadon AA, Aldoss AA, Dogimont C, Bendahmane A. Engineering melon plants with improved fruit shelf life using the TILLING approach. PLoS One 2010; 5:e15776. [PMID: 21209891 PMCID: PMC3012703 DOI: 10.1371/journal.pone.0015776] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Accepted: 11/26/2010] [Indexed: 11/18/2022] Open
Abstract
Background Fruit ripening and softening are key traits that have an effect on food supply, fruit nutritional value and consequently, human health. Since ethylene induces ripening of climacteric fruit, it is one of the main targets to control fruit over ripening that leads to fruit softening and deterioration. The characterization of the ethylene pathway in Arabidopsis and tomato identified key genes that control fruit ripening. Methodology/Principal Findings To engineer melon fruit with improved shelf-life, we conducted a translational research experiment. We set up a TILLING platform in a monoecious and climacteric melon line, cloned genes that control ethylene production and screened for induced mutations that lead to fruits with enhanced shelf life. Two missense mutations, L124F and G194D, of the ethylene biosynthetic enzyme, ACC oxidase 1, were identified and the mutant plants were characterized with respect to fruit maturation. The L124F mutation is a conservative mutation occurring away from the enzyme active site and thus was predicted to not affect ethylene production and thus fruit ripening. In contrast, G194D modification occurs in a highly conserved amino acid position predicted, by crystallographic analysis, to affect the enzymatic activity. Phenotypic analysis of the G194D mutant fruit showed complete delayed ripening and yellowing with improved shelf life and, as predicted, the L124F mutation did not have an effect. Conclusions/Significance We constructed a mutant collection of 4023 melon M2 families. Based on the TILLING of 11 genes, we calculated the overall mutation rate of one mutation every 573 kb and identified 8 alleles per tilled kilobase. We also identified a TILLING mutant with enhanced fruit shelf life. This work demonstrates the effectiveness of TILLING as a reverse genetics tool to improve crop species. As cucurbits are model species in different areas of plant biology, we anticipate that the developed tool will be widely exploited by the scientific community.
Collapse
Affiliation(s)
- Fatima Dahmani-Mardas
- Unité de Recherche en Génomique Végétale, UMR1165 ERL8196 INRA-UEVE-CNRS, Evry, France
| | - Christelle Troadec
- Unité de Recherche en Génomique Végétale, UMR1165 ERL8196 INRA-UEVE-CNRS, Evry, France
| | - Adnane Boualem
- Unité de Recherche en Génomique Végétale, UMR1165 ERL8196 INRA-UEVE-CNRS, Evry, France
| | - Sylvie Lévêque
- Unité de Génétique et Amélioration des Fruits et Légumes, INRA UR1052, Montfavet, France
| | - Abdullah A. Alsadon
- Department of Plant Production, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Abdullah A. Aldoss
- Department of Plant Production, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Catherine Dogimont
- Unité de Génétique et Amélioration des Fruits et Légumes, INRA UR1052, Montfavet, France
| | - Abdelhafid Bendahmane
- Unité de Recherche en Génomique Végétale, UMR1165 ERL8196 INRA-UEVE-CNRS, Evry, France
- Department of Plant Production, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
- * E-mail:
| |
Collapse
|
45
|
Philippe RN, Ralph SG, Mansfield SD, Bohlmann J. Transcriptome profiles of hybrid poplar (Populus trichocarpa × deltoides) reveal rapid changes in undamaged, systemic sink leaves after simulated feeding by forest tent caterpillar (Malacosoma disstria). THE NEW PHYTOLOGIST 2010; 188:787-802. [PMID: 20955416 DOI: 10.1111/j.1469-8137.2010.03392.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
• Poplar has been established as a model tree system for genomic research of the response to biotic stresses. This study describes a series of induced transcriptome changes and the associated physiological characterization of local and systemic responses in hybrid poplar (Populus trichocarpa × deltoides) after simulated herbivory. • Responses were measured in local source (LSo), systemic source (SSo), and systemic sink (SSi) leaves following application of forest tent caterpillar (Malacosoma disstria) oral secretions to mechanically wounded leaves. • Transcriptome analyses identified spatially and temporally dynamic, distinct patterns of local and systemic gene expression in LSo, SSo and SSi leaves. Galactinol synthase was strongly and rapidly upregulated in SSi leaves. Genome analyses and full-length cDNA cloning established an inventory of poplar galactinol synthases. Induced changes of galactinol and raffinose oligosaccharides were detected by anion-exchange high-pressure liquid chromatography. • The LSo leaves showed a rapid and strong transcriptome response compared with a weaker and slower response in adjacent SSo leaves. Surprisingly, the transcriptome response in distant, juvenile SSi leaves was faster and stronger than that observed in SSo leaves. Systemic transcriptome changes of SSi leaves have signatures of rapid change of metabolism and signaling, followed by later induction of defense genes.
Collapse
Affiliation(s)
- Ryan N Philippe
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | | | | | | |
Collapse
|
46
|
Divergent metabolome and proteome suggest functional independence of dual phloem transport systems in cucurbits. Proc Natl Acad Sci U S A 2010; 107:13532-7. [PMID: 20566864 DOI: 10.1073/pnas.0910558107] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cucurbitaceous plants (cucurbits) have long been preferred models for studying phloem physiology. However, these species are unusual in that they possess two different phloem systems, one within the main vascular bundles [fascicular phloem (FP)] and another peripheral to the vascular bundles and scattered through stem and petiole cortex tissues [extrafascicular phloem (EFP)]. We have revisited the assumption that the sap released after shoot incision originates from the FP, and also investigated the long-standing question of why the sugar content of this sap is ~30-fold less than predicted for requirements of photosynthate delivery. Video microscopy and phloem labeling experiments unexpectedly reveal that FP very quickly becomes blocked upon cutting, whereas the extrafascicular phloem bleeds for extended periods. Thus, all cucurbit phloem sap studies to date have reported metabolite, protein, and RNA composition and transport in the relatively minor extrafascicular sieve tubes. Using tissue dissection and direct sampling of sieve tube contents, we show that FP in fact does contain up to 1 M sugars, in contrast to low-millimolar levels in the EFP. Moreover, major phloem proteins in sieve tubes of FP differ from those that predominate in the extrafascicular sap, and include several previously uncharacterized proteins with little or no homology to databases. The overall compositional differences of the two phloem systems strongly indicate functional isolation. On this basis, we propose that the fascicular phloem is largely responsible for sugar transport, whereas the extrafascicular phloem may function in signaling, defense, and transport of other metabolites.
Collapse
|
47
|
Dinant S, Bonnemain JL, Girousse C, Kehr J. Phloem sap intricacy and interplay with aphid feeding. C R Biol 2010; 333:504-15. [PMID: 20541162 DOI: 10.1016/j.crvi.2010.03.008] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Aphididae feed upon the plant sieve elements (SE), where they ingest sugars, nitrogen compounds and other nutrients. For ingestion, aphid stylets penetrate SE, and because of the high hydrostatic pressure in SE, phloem sap exudes out into the stylets. Severing stylets to sample phloem exudates (i.e. stylectomy) has been used extensively for the study of phloem contents. Alternative sampling techniques are spontaneous exudation upon wounding that only works in a few plant species, and the popular EDTA-facilitated exudation technique. These approaches have allowed fundamental advances on the understanding of phloem sap composition and sieve tube physiology, which are surveyed in this review. A more complete picture of metabolites, ions, proteins and RNAs present in phloem sap is now available, which has provided large evidence for the phloem role as a signalling network in addition to its primary role in partitioning of photo-assimilates. Thus, phloem sap sampling methods can have remarkable applications to analyse plant nutrition, physiology and defence responses. Since aphid behaviour is suspected to be affected by phloem sap quality, attempts to manipulate phloem sap content were recently undertaken based on deregulation in mutant plants of genes controlling amino acid or sugar content of phloem sap. This opens up new strategies to control aphid settlement on a plant host.
Collapse
Affiliation(s)
- Sylvie Dinant
- UMR 1318 INRA-AgroParisTech, institut Jean-Pierre-Bourgin, bâtiment 2, route de Saint-Cyr, Versailles, France.
| | | | | | | |
Collapse
|
48
|
Sengupta S, Majumder AL. Porteresia coarctata (Roxb.) Tateoka, a wild rice: a potential model for studying salt-stress biology in rice. PLANT, CELL & ENVIRONMENT 2010; 33:526-42. [PMID: 19843254 DOI: 10.1111/j.1365-3040.2009.02054.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Porteresia coarctata (Syn = Oryza coarctata) is a tetraploid wild rice growing abundantly in the coastal region of India and some other Asian countries. The salt tolerance property of this mangrove associate has been dealt with by a number of workers earlier. The distinct morphology and leaf architecture enabling the plant to exclude salt is a characteristic feature of Porteresia in comparison with Oryza sp. A number of genes have been isolated and characterized from Porteresia that are related to the salt-tolerance property of the plant. Evidence have accumulated that some pathways critical to salt tolerance are in operation in Porteresia of which the inositol metabolic pathway has been recently elaborated. Some of the enzymes of Porteresia have been shown to function as salt-tolerant under in vitro studies giving a clue that this wild halophytic rice may have evolved genes and proteins capable of functioning under a salt environment. Bioprospecting of such genes and proteins coupled with genomic and proteomic approaches remain an exciting area of research in evaluating this plant as a model for salt tolerance for the rice plant.
Collapse
|
49
|
Zhang C, Turgeon R. Downregulating the sucrose transporter VpSUT1 in Verbascum phoeniceum does not inhibit phloem loading. Proc Natl Acad Sci U S A 2009; 106:18849-54. [PMID: 19846784 PMCID: PMC2774004 DOI: 10.1073/pnas.0904189106] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2009] [Indexed: 11/18/2022] Open
Abstract
Sucrose is loaded into the phloem in the minor veins of leaves before export. Two active, species-specific loading mechanisms have been proposed. One involves transporter-mediated sucrose transfer from the apoplast into the sieve element-companion cell complex, so-called apoplastic loading. In the putative second mechanism, sucrose follows an entirely symplastic pathway, and the solute concentration is elevated by the synthesis of raffinose and stachyose in the phloem, not by transporter activity. Several sucrose-transporting plants have been shown to be apoplastic loaders by downregulating sucrose transporter 1 (SUT1), leading to accumulation of sugars and leaf chlorosis. In this study we compared the effect of downregulating SUT1 in Nicotiana tabacum, a sucrose transporter, and Verbascum phoeniceum, a species that transports raffinose and stachyose. To test the effectiveness of RNAi downregulation, we measured SUT1 mRNA levels and sucrose-H(+) symport in leaf discs. Mild NtSUT1 downregulation in N. tabacum resulted in the pronounced phenotype associated with loading inhibition. In contrast, no such phenotype developed when VpSUT1 was downregulated in V. phoeniceum, leaving minimal sucrose transport activity. Only those plants with the most severe VpSUT1 downregulation accumulated more carbohydrate than usual and these plants were normal by other criteria: growth rate, photosynthesis, and ability to clear starch during the night. The results provide direct evidence that the mechanism of phloem loading in V. phoeniceum does not require active sucrose uptake from the apoplast and strongly supports the conclusion that the loading pathway is symplastic in this species.
Collapse
Affiliation(s)
- Cankui Zhang
- Department of Plant Biology, Cornell University, Ithaca, NY 14853
| | - Robert Turgeon
- Department of Plant Biology, Cornell University, Ithaca, NY 14853
| |
Collapse
|
50
|
Mascarell-Creus A, Cañizares J, Vilarrasa-Blasi J, Mora-García S, Blanca J, Gonzalez-Ibeas D, Saladié M, Roig C, Deleu W, Picó-Silvent B, López-Bigas N, Aranda MA, Garcia-Mas J, Nuez F, Puigdomènech P, Caño-Delgado AI. An oligo-based microarray offers novel transcriptomic approaches for the analysis of pathogen resistance and fruit quality traits in melon (Cucumis melo L.). BMC Genomics 2009; 10:467. [PMID: 19821986 PMCID: PMC2767371 DOI: 10.1186/1471-2164-10-467] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2008] [Accepted: 10/12/2009] [Indexed: 11/22/2022] Open
Abstract
Background Melon (Cucumis melo) is a horticultural specie of significant nutritional value, which belongs to the Cucurbitaceae family, whose economic importance is second only to the Solanaceae. Its small genome of approx. 450 Mb coupled to the high genetic diversity has prompted the development of genetic tools in the last decade. However, the unprecedented existence of a transcriptomic approaches in melon, highlight the importance of designing new tools for high-throughput analysis of gene expression. Results We report the construction of an oligo-based microarray using a total of 17,510 unigenes derived from 33,418 high-quality melon ESTs. This chip is particularly enriched with genes that are expressed in fruit and during interaction with pathogens. Hybridizations for three independent experiments allowed the characterization of global gene expression profiles during fruit ripening, as well as in response to viral and fungal infections in plant cotyledons and roots, respectively. Microarray construction, statistical analyses and validation together with functional-enrichment analysis are presented in this study. Conclusion The platform validation and enrichment analyses shown in our study indicate that this oligo-based microarray is amenable for future genetic and functional genomic studies of a wide range of experimental conditions in melon.
Collapse
Affiliation(s)
- Albert Mascarell-Creus
- Molecular Genetics Department, Centre for Research in Agricultural Genomics CRAG (CSIC-IRTA-UAB), Barcelona (08034), Spain.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|