1
|
Kim Y, Kim M, Kim SD, Yoon N, Wang X, Bae GU, Song YS. Distribution of Neuroglobin in Pericytes is Associated with Blood-Brain Barrier Leakage against Cerebral Ischemia in Mice. Exp Neurobiol 2022; 31:289-298. [PMID: 36351839 PMCID: PMC9659490 DOI: 10.5607/en22001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 09/27/2022] [Accepted: 10/09/2022] [Indexed: 11/11/2022] Open
Abstract
With emerging data on the various functions of neuroglobin (Ngb), such as neuroprotection and neurogenesis, we investigated the role of Ngb in the neurovascular unit (NVU) of the brain. To study the distribution and function of Ngb after cerebral ischemia, transient middle cerebral artery occlusion (tMCAO) was performed in mice. Brain immunostaining and fluorescence-activated cell sorting were used to analyze the role of Ngb according to the location and cell type. In normal brain tissue, it was observed that Ngb was distributed not only in neurons but also around the brain’s blood vessels. Interestingly, Ngb was largely expressed in platelet-derived growth factor receptor β (PDGFRβ)-positive pericytes in the NVU. After tMCAO, Ngb levels were significantly decreased in the core of the infarct, and Ngb and PDGFRβ-positive pericytes were detached from the vasculature. In contrast, in the penumbra of the infarct, PDGFRβ-positive pericytes expressing Ngb were increased compared with that in the core of the infarct. Moreover, the cerebral blood vessels, which have Ngb-positive PDGFRβ pericytes, showed reduced blood-brain barrier (BBB) leakage after tMCAO. It showed that Ngb-positive PDGFRβ pericytes stayed around the endothelial cells and reduced the BBB leakage in the NVU. Our results indicate that Ngb may play a role in attenuating BBB leakage in part by its association with PDGFRβ. In this study, the distribution and function of Ngb in the pericytes of the cerebrovascular system have been elucidated, which contributes to the treatment of stroke through a new function of Ngb.
Collapse
Affiliation(s)
- Yeojin Kim
- Department of Pharmacology, College of Pharmacy, Drug Information Research Institute, Muscle Physiome Research Center, Sookmyung Women’s University, Seoul 04310, Korea
| | - Mingee Kim
- Department of Pharmacology, College of Pharmacy, Drug Information Research Institute, Muscle Physiome Research Center, Sookmyung Women’s University, Seoul 04310, Korea
| | - So-Dam Kim
- Department of Pharmacology, College of Pharmacy, Drug Information Research Institute, Muscle Physiome Research Center, Sookmyung Women’s University, Seoul 04310, Korea
| | - Naeun Yoon
- Department of Pharmacology, College of Pharmacy, Drug Information Research Institute, Muscle Physiome Research Center, Sookmyung Women’s University, Seoul 04310, Korea
| | - Xiaoying Wang
- Clinical Neuroscience Research Center, Department of Neurosurgery and Neurology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Gyu-Un Bae
- Department of Pharmacology, College of Pharmacy, Drug Information Research Institute, Muscle Physiome Research Center, Sookmyung Women’s University, Seoul 04310, Korea
| | - Yun Seon Song
- Department of Pharmacology, College of Pharmacy, Drug Information Research Institute, Muscle Physiome Research Center, Sookmyung Women’s University, Seoul 04310, Korea
| |
Collapse
|
2
|
Ueyama A, Hoshino T, Asakawa MG, Shimada T, Nagata M. Focal cutaneous telangiectasia in a young dog of probable congenital origin. Vet Med Sci 2022; 8:2277-2282. [DOI: 10.1002/vms3.940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Akira Ueyama
- Department of Dermatology Veterinary Specialists Emergency Centre Saitama Japan
- Dolphin Animal Hospital Saitama Japan
| | - Tomoya Hoshino
- Department of Dermatology Veterinary Specialists Emergency Centre Saitama Japan
| | - Midori Goto Asakawa
- Department of Dermatology Veterinary Specialists Emergency Centre Saitama Japan
- Department of Pathology Veterinary Specialists Emergency Centre Saitama Japan
| | | | - Masahiko Nagata
- Department of Dermatology Veterinary Specialists Emergency Centre Saitama Japan
| |
Collapse
|
3
|
Guo FH, Guan YN, Guo JJ, Zhang LJ, Qiu JJ, Ji Y, Chen AF, Jing Q. Single-Cell Transcriptome Analysis Reveals Embryonic Endothelial Heterogeneity at Spatiotemporal Level and Multifunctions of MicroRNA-126 in Mice. Arterioscler Thromb Vasc Biol 2022; 42:326-342. [PMID: 35021856 PMCID: PMC8860216 DOI: 10.1161/atvbaha.121.317093] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Supplemental Digital Content is available in the text. Endothelial cells (ECs) play a critical role in angiogenesis and vascular remodeling. The heterogeneity of ECs has been reported at adult stages, yet it has not been fully investigated. This study aims to assess the transcriptional heterogeneity of developmental ECs at spatiotemporal level and to reveal the changes of embryonic ECs clustering when endothelium-enriched microRNA-126 (miR-126) was specifically knocked out.
Collapse
Affiliation(s)
- Fang-Hao Guo
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Innovation Center for Intervention of Chronic Disease and Promotion of Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, China (F.-H.G., Y.-N.G., J.-J.G., J.J.Q., Q.J.)
| | - Ya-Na Guan
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Innovation Center for Intervention of Chronic Disease and Promotion of Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, China (F.-H.G., Y.-N.G., J.-J.G., J.J.Q., Q.J.)
| | - Jun-Jun Guo
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Innovation Center for Intervention of Chronic Disease and Promotion of Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, China (F.-H.G., Y.-N.G., J.-J.G., J.J.Q., Q.J.)
| | - Lu-Jun Zhang
- Department of Cardiology, Changhai Hospital, Shanghai, China (L.-J.Z.)
| | - Jing-Jing Qiu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Innovation Center for Intervention of Chronic Disease and Promotion of Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, China (F.-H.G., Y.-N.G., J.-J.G., J.J.Q., Q.J.)
| | - Yong Ji
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Nanjing Medical University, Jiangsu, China (Y.J.)
| | - Alex F Chen
- Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, China (A.F.C.)
| | - Qing Jing
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Innovation Center for Intervention of Chronic Disease and Promotion of Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, China (F.-H.G., Y.-N.G., J.-J.G., J.J.Q., Q.J.)
| |
Collapse
|
4
|
Baek J, Lee KI, Ra HJ, Lotz MK, D'Lima DD. Collagen fibrous scaffolds for sustained delivery of growth factors for meniscal tissue engineering. Nanomedicine (Lond) 2022; 17:77-93. [PMID: 34991339 PMCID: PMC8765117 DOI: 10.2217/nnm-2021-0313] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Aim: To mimic the ultrastructural morphology of the meniscus with nanofiber scaffolds coupled with controlled growth factor delivery to modulate cellular performance for tissue engineering of menisci. Methods: The authors functionalized collagen nanofibers by conjugating heparin to the following growth factors for sustained release: PDGF-BB, TGF-β1 and CTGF. Results: Incorporating growth factors increased human meniscal and synovial cell viability, proliferation and infiltration in vitro, ex vivo and in vivo; upregulated key genes involved in meniscal extracellular matrix synthesis and enhanced generation of meniscus-like tissue. Conclusion: The authors' results indicate that functionalizing collagen nanofibers can create a cell-favorable micro- and nanoenvironment and can serve as a system for sustained release of bioactive factors.
Collapse
Affiliation(s)
- Jihye Baek
- Shiley Center for Orthopaedic Research and Education at Scripps Clinic, 10666 North Torrey Pines Road, MS126, La Jolla, CA 92037, USA,Department of Molecular Medicine, Scripps Research, 10550 North Torrey Pines Road, MB-102, La Jolla, CA 92037, USA
| | - Kwang Il Lee
- Department of Molecular Medicine, Scripps Research, 10550 North Torrey Pines Road, MB-102, La Jolla, CA 92037, USA
| | - Ho Jong Ra
- Shiley Center for Orthopaedic Research and Education at Scripps Clinic, 10666 North Torrey Pines Road, MS126, La Jolla, CA 92037, USA,Department of Molecular Medicine, Scripps Research, 10550 North Torrey Pines Road, MB-102, La Jolla, CA 92037, USA
| | - Martin K Lotz
- Department of Molecular Medicine, Scripps Research, 10550 North Torrey Pines Road, MB-102, La Jolla, CA 92037, USA
| | - Darryl D D'Lima
- Shiley Center for Orthopaedic Research and Education at Scripps Clinic, 10666 North Torrey Pines Road, MS126, La Jolla, CA 92037, USA,Department of Molecular Medicine, Scripps Research, 10550 North Torrey Pines Road, MB-102, La Jolla, CA 92037, USA,Author for correspondence: Tel.: +1 858 784 7816;
| |
Collapse
|
5
|
Eltanahy AM, Koluib YA, Gonzales A. Pericytes: Intrinsic Transportation Engineers of the CNS Microcirculation. Front Physiol 2021; 12:719701. [PMID: 34497540 PMCID: PMC8421025 DOI: 10.3389/fphys.2021.719701] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 07/29/2021] [Indexed: 12/15/2022] Open
Abstract
Pericytes in the brain are candidate regulators of microcirculatory blood flow because they are strategically positioned along the microvasculature, contain contractile proteins, respond rapidly to neuronal activation, and synchronize microvascular dynamics and neurovascular coupling within the capillary network. Analyses of mice with defects in pericyte generation demonstrate that pericytes are necessary for the formation of the blood-brain barrier, development of the glymphatic system, immune homeostasis, and white matter function. The development, identity, specialization, and progeny of different subtypes of pericytes, however, remain unclear. Pericytes perform brain-wide 'transportation engineering' functions in the capillary network, instructing, integrating, and coordinating signals within the cellular communicome in the neurovascular unit to efficiently distribute oxygen and nutrients ('goods and services') throughout the microvasculature ('transportation grid'). In this review, we identify emerging challenges in pericyte biology and shed light on potential pericyte-targeted therapeutic strategies.
Collapse
Affiliation(s)
- Ahmed M. Eltanahy
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno, NV, United States
| | - Yara A. Koluib
- Tanta University Hospitals, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Albert Gonzales
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno, NV, United States
| |
Collapse
|
6
|
Su H, Cantrell AC, Zeng H, Zhu SH, Chen JX. Emerging Role of Pericytes and Their Secretome in the Heart. Cells 2021; 10:548. [PMID: 33806335 PMCID: PMC8001346 DOI: 10.3390/cells10030548] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/25/2021] [Accepted: 02/27/2021] [Indexed: 12/11/2022] Open
Abstract
Pericytes, as mural cells covering microvascular capillaries, play an essential role in vascular remodeling and maintaining vascular functions and blood flow. Pericytes are crucial participants in the physiological and pathological processes of cardiovascular disease. They actively interact with endothelial cells, vascular smooth muscle cells (VSMCs), fibroblasts, and other cells via the mechanisms involved in the secretome. The secretome of pericytes, along with diverse molecules including proinflammatory cytokines, angiogenic growth factors, and the extracellular matrix (ECM), has great impacts on the formation, stabilization, and remodeling of vasculature, as well as on regenerative processes. Emerging evidence also indicates that pericytes work as mesenchymal cells or progenitor cells in cardiovascular regeneration. Their capacity for differentiation also contributes to vascular remodeling in different ways. Previous studies primarily focused on the roles of pericytes in organs such as the brain, retina, lung, and kidney; very few studies have focused on pericytes in the heart. In this review, following a brief introduction of the origin and fundamental characteristics of pericytes, we focus on pericyte functions and mechanisms with respect to heart disease, ending with the promising use of cardiac pericytes in the treatment of ischemic heart failure.
Collapse
Affiliation(s)
- Han Su
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA
- Department of General Surgery, Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Aubrey C Cantrell
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Heng Zeng
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Shai-Hong Zhu
- Department of General Surgery, Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Jian-Xiong Chen
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| |
Collapse
|
7
|
Huang S, Jin M, Su N, Chen L. New insights on the reparative cells in bone regeneration and repair. Biol Rev Camb Philos Soc 2020; 96:357-375. [PMID: 33051970 DOI: 10.1111/brv.12659] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 10/06/2020] [Accepted: 10/07/2020] [Indexed: 12/14/2022]
Abstract
Bone possesses a remarkable repair capacity to regenerate completely without scar tissue formation. This unique characteristic, expressed during bone development, maintenance and injury (fracture) healing, is performed by the reparative cells including skeletal stem cells (SSCs) and their descendants. However, the identity and functional roles of SSCs remain controversial due to technological difficulties and the heterogeneity and plasticity of SSCs. Moreover, for many years, there has been a biased view that bone marrow is the main cell source for bone repair. Together, these limitations have greatly hampered our understanding of these important cell populations and their potential applications in the treatment of fractures and skeletal diseases. Here, we reanalyse and summarize current understanding of the reparative cells in bone regeneration and repair and outline recent progress in this area, with a particular emphasis on the temporal and spatial process of fracture healing, the sources of reparative cells, an updated definition of SSCs, and markers of skeletal stem/progenitor cells contributing to the repair of craniofacial and long bones, as well as the debate between SSCs and pericytes. Finally, we also discuss the existing problems, emerging novel technologies and future research directions in this field.
Collapse
Affiliation(s)
- Shuo Huang
- Department of Wound Repair and Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University (Third Military Medical University), 10 Changjiang zhi Road, Yuzhong District, Chongqing, China
| | - Min Jin
- Department of Wound Repair and Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University (Third Military Medical University), 10 Changjiang zhi Road, Yuzhong District, Chongqing, China
| | - Nan Su
- Department of Wound Repair and Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University (Third Military Medical University), 10 Changjiang zhi Road, Yuzhong District, Chongqing, China
| | - Lin Chen
- Department of Wound Repair and Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University (Third Military Medical University), 10 Changjiang zhi Road, Yuzhong District, Chongqing, China
| |
Collapse
|
8
|
Uemura MT, Maki T, Ihara M, Lee VMY, Trojanowski JQ. Brain Microvascular Pericytes in Vascular Cognitive Impairment and Dementia. Front Aging Neurosci 2020; 12:80. [PMID: 32317958 PMCID: PMC7171590 DOI: 10.3389/fnagi.2020.00080] [Citation(s) in RCA: 146] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 03/04/2020] [Indexed: 12/19/2022] Open
Abstract
Pericytes are unique, multi-functional mural cells localized at the abluminal side of the perivascular space in microvessels. Originally discovered in 19th century, pericytes had drawn less attention until decades ago mainly due to lack of specific markers. Recently, however, a growing body of evidence has revealed that pericytes play various important roles: development and maintenance of blood–brain barrier (BBB), regulation of the neurovascular system (e.g., vascular stability, vessel formation, cerebral blood flow, etc.), trafficking of inflammatory cells, clearance of toxic waste products from the brain, and acquisition of stem cell-like properties. In the neurovascular unit, pericytes perform these functions through coordinated crosstalk with neighboring cells including endothelial, glial, and neuronal cells. Dysfunction of pericytes contribute to a wide variety of diseases that lead to cognitive impairments such as cerebral small vessel disease (SVD), acute stroke, Alzheimer’s disease (AD), and other neurological disorders. For instance, in SVDs, pericyte degeneration leads to microvessel instability and demyelination while in stroke, pericyte constriction after ischemia causes a no-reflow phenomenon in brain capillaries. In AD, which shares some common risk factors with vascular dementia, reduction in pericyte coverage and subsequent microvascular impairments are observed in association with white matter attenuation and contribute to impaired cognition. Pericyte loss causes BBB-breakdown, which stagnates amyloid β clearance and the leakage of neurotoxic molecules into the brain parenchyma. In this review, we first summarize the characteristics of brain microvessel pericytes, and their roles in the central nervous system. Then, we focus on how dysfunctional pericytes contribute to the pathogenesis of vascular cognitive impairment including cerebral ‘small vessel’ and ‘large vessel’ diseases, as well as AD. Finally, we discuss therapeutic implications for these disorders by targeting pericytes.
Collapse
Affiliation(s)
- Maiko T Uemura
- Institute on Aging and Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States.,JSPS Overseas Research Fellowship Program, Japan Society for the Promotion of Science, Tokyo, Japan
| | - Takakuni Maki
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Masafumi Ihara
- Department of Neurology, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Virginia M Y Lee
- Institute on Aging and Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - John Q Trojanowski
- Institute on Aging and Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
9
|
Liu Q, Yang Y, Fan X. Microvascular pericytes in brain-associated vascular disease. Biomed Pharmacother 2020; 121:109633. [DOI: 10.1016/j.biopha.2019.109633] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 10/31/2019] [Accepted: 11/01/2019] [Indexed: 01/01/2023] Open
|
10
|
Santos GSP, Magno LAV, Romano-Silva MA, Mintz A, Birbrair A. Pericyte Plasticity in the Brain. Neurosci Bull 2019; 35:551-560. [PMID: 30367336 PMCID: PMC6527663 DOI: 10.1007/s12264-018-0296-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 08/06/2018] [Indexed: 12/16/2022] Open
Abstract
Cerebral pericytes are perivascular cells that stabilize blood vessels. Little is known about the plasticity of pericytes in the adult brain in vivo. Recently, using state-of-the-art technologies, including two-photon microscopy in combination with sophisticated Cre/loxP in vivo tracing techniques, a novel role of pericytes was revealed in vascular remodeling in the adult brain. Strikingly, after pericyte ablation, neighboring pericytes expand their processes and prevent vascular dilatation. This new knowledge provides insights into pericyte plasticity in the adult brain.
Collapse
Affiliation(s)
- Gabryella S P Santos
- Departamento de Patologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Luiz A V Magno
- Department of Mental Health, Federal University of Minas Gerais, Belo Horizonte, MG, 30130-100, Brazil
| | - Marco A Romano-Silva
- Department of Mental Health, Federal University of Minas Gerais, Belo Horizonte, MG, 30130-100, Brazil
| | - Akiva Mintz
- Department of Radiology, Columbia University Medical Center, New York, NY, 10032, USA
| | - Alexander Birbrair
- Departamento de Patologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil.
- Department of Radiology, Columbia University Medical Center, New York, NY, 10032, USA.
| |
Collapse
|
11
|
Winkler EA, Lu AY, Raygor KP, Linzey JR, Jonzzon S, Lien BV, Rutledge WC, Abla AA. Defective vascular signaling & prospective therapeutic targets in brain arteriovenous malformations. Neurochem Int 2019; 126:126-138. [PMID: 30858016 DOI: 10.1016/j.neuint.2019.03.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 03/01/2019] [Accepted: 03/04/2019] [Indexed: 02/08/2023]
Abstract
The neurovascular unit is composed of endothelial cells, vascular smooth muscle cells, pericytes, astrocytes and neurons. Through tightly regulated multi-directional cell signaling, the neurovascular unit is responsible for the numerous functionalities of the cerebrovasculature - including the regulation of molecular and cellular transport across the blood-brain barrier, angiogenesis, blood flow responses to brain activation and neuroinflammation. Historically, the study of the brain vasculature focused on endothelial cells; however, recent work has demonstrated that pericytes and vascular smooth muscle cells - collectively known as mural cells - play critical roles in many of these functions. Given this emerging data, a more complete mechanistic understanding of the cellular basis of brain vascular malformations is needed. In this review, we examine the integrated functions and signaling within the neurovascular unit necessary for normal cerebrovascular structure and function. We then describe the role of aberrant cell signaling within the neurovascular unit in brain arteriovenous malformations and identify how these pathways may be targeted therapeutically to eradicate or stabilize these lesions.
Collapse
Affiliation(s)
- Ethan A Winkler
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA.
| | - Alex Y Lu
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Kunal P Raygor
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Joseph R Linzey
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, USA
| | - Soren Jonzzon
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Brian V Lien
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - W Caleb Rutledge
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Adib A Abla
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
12
|
Morikawa S, Iribar H, Gutiérrez-Rivera A, Ezaki T, Izeta A. Pericytes in Cutaneous Wound Healing. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1147:1-63. [DOI: 10.1007/978-3-030-16908-4_1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
13
|
Mecheri B, Paris F, Lübbert H. Histological investigations on the dura mater vascular system of mice. Acta Histochem 2018; 120:846-857. [PMID: 30292321 DOI: 10.1016/j.acthis.2018.09.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 08/06/2018] [Accepted: 09/27/2018] [Indexed: 11/25/2022]
Abstract
The human dura mater encephali is a well innervated and vascularized membrane. Its vascular system plays a crucial role in disorders and pathological cases like dural hematoma, meningitis, and different headache types. To investigate these diseases mouse models are increasingly being used. However, the literature on the vascular system of the mouse dura mater is sparse and explicit studies concerned exclusively with its vasculature are lacking. Here we present a detailed light and scanning electron microscopic investigation of the supratentorial dura mater of the mouse species, with a focus on the largest part of it, the parietal dura mater. By utilizing different immunohistochemical and classical staining methods, a "cartography" of the vascular system was achieved. Additionally, the different blood vessel types with their mural cells were characterized. In contrast to humans, no arteries were found in the mouse parietal dura mater. Its supply is assured through frontolateral and occipital localized arteriolar branches. These arteriolar vessels exhibit in some specimens arteriolar anastomoses with one another. The venous blood is drained to the superior sagittal and transverse sinus through satellite venules accompanying the arterioles or through solitary venules. In all samples, large ruptured venules were identified in the frontolateral dural area. Scanning electron microscopy revealed that these vessels were ruptured on the dorsal side (skull bones-oriented side) of the dura. Our results contribute to the anatomical data on the mouse species and may set up a basis for fundamental investigation of disorders, for which the role of dural blood vessels is not yet clarified.
Collapse
|
14
|
Cheng J, Korte N, Nortley R, Sethi H, Tang Y, Attwell D. Targeting pericytes for therapeutic approaches to neurological disorders. Acta Neuropathol 2018; 136:507-523. [PMID: 30097696 PMCID: PMC6132947 DOI: 10.1007/s00401-018-1893-0] [Citation(s) in RCA: 156] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 07/30/2018] [Accepted: 07/31/2018] [Indexed: 12/13/2022]
Abstract
Many central nervous system diseases currently lack effective treatment and are often associated with defects in microvascular function, including a failure to match the energy supplied by the blood to the energy used on neuronal computation, or a breakdown of the blood–brain barrier. Pericytes, an under-studied cell type located on capillaries, are of crucial importance in regulating diverse microvascular functions, such as angiogenesis, the blood–brain barrier, capillary blood flow and the movement of immune cells into the brain. They also form part of the “glial” scar isolating damaged parts of the CNS, and may have stem cell-like properties. Recent studies have suggested that pericytes play a crucial role in neurological diseases, and are thus a therapeutic target in disorders as diverse as stroke, traumatic brain injury, migraine, epilepsy, spinal cord injury, diabetes, Huntington’s disease, Alzheimer’s disease, diabetes, multiple sclerosis, glioma, radiation necrosis and amyotrophic lateral sclerosis. Here we report recent advances in our understanding of pericyte biology and discuss how pericytes could be targeted to develop novel therapeutic approaches to neurological disorders, by increasing blood flow, preserving blood–brain barrier function, regulating immune cell entry to the CNS, and modulating formation of blood vessels in, and the glial scar around, damaged regions.
Collapse
Affiliation(s)
- Jinping Cheng
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yan Jiang Xi Rd, Guangzhou, 510120, People's Republic of China
| | - Nils Korte
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Ross Nortley
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Huma Sethi
- Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, Queen Square, London, WC1N 3BG, UK
| | - Yamei Tang
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yan Jiang Xi Rd, Guangzhou, 510120, People's Republic of China.
| | - David Attwell
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK.
| |
Collapse
|
15
|
Pericytes reduce inflammation and collagen deposition in acute wounds. Cytotherapy 2018; 20:1046-1060. [PMID: 30093323 DOI: 10.1016/j.jcyt.2018.06.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 05/22/2018] [Accepted: 06/22/2018] [Indexed: 12/16/2022]
Abstract
BACKGROUND Pericytes have been shown to have mesenchymal stromal cell-like properties and play a role in tissue regeneration. The goal of this study was to determine whether the addition of a pericyte sheet to a full-thickness dermal wound would enhance the healing of an acute wound. METHODS Human muscle-derived pericytes and human dermal fibroblasts were formed into cell sheets, then applied to full-thickness excisional wounds on the dorsum of nu/nu mice. Histology was performed to evaluate epidermal and dermal reformation, inflammation and fibrosis. In addition, real-time reverse transcriptase-polymerase chain reaction (RT-PCR) was used to determine cytokine response. RESULTS Pericytes were detected in the wounds until day 16 but not fibroblasts. Decrease in wound size was noted in pericyte sheet-treated wounds. Enhanced neo-vascularization and healthy granulation tissue formation were noted in the pericyte-treated wounds. Expression of type I collagen messenger RNA (mRNA) was significantly higher in the fibroblast-treated group, whereas Type III collagen mRNA showed significant increase in the pericyte group at days 3, 6 and 9 compared with the fibroblast and no-cell groups. Trichrome staining revealed thick unorganized collagen fibrils in the fibroblast-treated wounds, whereas pericyte-treated wounds contained thinner and more alligned collagen fibrils. Tumor necrosis factor (TNF)-α mRNA levels were increased in the fibroblast-treated wounds compared with pericyte-treated wounds. DISCUSSION The addition of pericytes may confer beneficial effects to wound healing resulting in reduced recruitment of inflammatory cells and collagen I deposition, potential to enhance wound closure and better collagen alignment promoting stronger tissue.
Collapse
|
16
|
Yang S, Jin H, Zhu Y, Wan Y, Opoku EN, Zhu L, Hu B. Diverse Functions and Mechanisms of Pericytes in Ischemic Stroke. Curr Neuropharmacol 2018; 15:892-905. [PMID: 28088914 PMCID: PMC5652032 DOI: 10.2174/1570159x15666170112170226] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 11/30/2016] [Accepted: 12/28/2016] [Indexed: 12/26/2022] Open
Abstract
Background: Every year, strokes take millions of lives and leave millions of individuals living with permanent disabilities. Recently more researchers embrace the concept of the neurovascular unit (NVU), which encompasses neurons, endothelial cells (ECs), pericytes, astrocyte, microglia, and the extracellular matrix. It has been well-documented that NVU emerged as a new paradigm for the exploration of mechanisms and therapies in ischemic stroke. To better understand the complex NVU and broaden therapeutic targets, we must probe the roles of multiple cell types in ischemic stroke. The aims of this paper are to introduce the biological characteristics of brain pericytes and the available evidence on the diverse functions and mechanisms involving the pericytes in the context of ischemic stroke. Methods: Research and online content related to the biological characteristics and pathophysiological roles of pericytes is review. The new research direction on the Pericytes in ischemic stroke, and the potential therapeutic targets are provided. Results: During the different stages of ischemic stroke, pericytes play different roles: 1) On the hyperacute phase of stroke, pericytes constriction and death may be a cause of the no-reflow phenomenon in brain capillaries; 2) During the acute phase, pericytes detach from microvessels and participate in inflammatory-immunological response, resulting in the BBB damage and brain edema. Pericytes also provide benefit for neuroprotection by protecting endothelium, stabilizing BBB and releasing neurotrophins; 3) Similarly, during the later recovery phase of stroke, pericytes also contribute to angiogenesis, neurogenesis, and thereby promote neurological recovery. Conclusion: This emphasis on the NVU concept has shifted the focus of ischemic stroke research from neuro-centric views to the complex interactions within NVU. With this new perspective, pericytes that are centrally positioned in the NVU have been widely studied in ischemic stroke. More work is needed to elucidate the beneficial and detrimental roles of brain pericytes in ischemic stroke that may serve as a basis for potential therapeutic targets.
Collapse
Affiliation(s)
- Shuai Yang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Huijuan Jin
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yiyi Zhu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yan Wan
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Elvis Nana Opoku
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Lingqiang Zhu
- Department of Pathophysiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bo Hu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| |
Collapse
|
17
|
Harder DR, Rarick KR, Gebremedhin D, Cohen SS. Regulation of Cerebral Blood Flow: Response to Cytochrome P450 Lipid Metabolites. Compr Physiol 2018; 8:801-821. [PMID: 29687906 DOI: 10.1002/cphy.c170025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
There have been numerous reviews related to the cerebral circulation. Most of these reviews are similar in many ways. In the present review, we thought it important to provide an overview of function with specific attention to details of cerebral arterial control related to brain homeostasis, maintenance of neuronal energy demands, and a unique perspective related to the role of astrocytes. A coming review in this series will discuss cerebral vascular development and unique properties of the neonatal circulation and developing brain, thus, many aspects of development are missing here. Similarly, a review of the response of the brain and cerebral circulation to heat stress has recently appeared in this series (8). By trying to make this review unique, some obvious topics were not discussed in lieu of others, which are from recent and provocative research such as endothelium-derived hyperpolarizing factor, circadian regulation of proteins effecting cerebral blood flow, and unique properties of the neurovascular unit. © 2018 American Physiological Society. Compr Physiol 8:801-821, 2018.
Collapse
Affiliation(s)
- David R Harder
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Clement J. Zablocki VA Medical Center, Milwaukee, Wisconsin, USA
| | - Kevin R Rarick
- Department of Pediatrics, Division of Critical Care, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Debebe Gebremedhin
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Susan S Cohen
- Department of Pediatrics, Division of Neonatology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
18
|
DiVito KA, Daniele MA, Roberts SA, Ligler FS, Adams AA. Microfabricated blood vessels undergo neoangiogenesis. Biomaterials 2017; 138:142-152. [DOI: 10.1016/j.biomaterials.2017.05.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 04/25/2017] [Accepted: 05/07/2017] [Indexed: 01/06/2023]
|
19
|
Gökçinar-Yagci B, Çelebi-Saltik B. Comparison of different culture conditions for smooth muscle cell differentiation of human umbilical cord vein CD146+ perivascular cells. Cell Tissue Bank 2017; 18:501-511. [DOI: 10.1007/s10561-017-9656-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 08/12/2017] [Indexed: 12/12/2022]
|
20
|
Platelet-Rich Plasma as an Autologous and Proangiogenic Cell Delivery System. Mediators Inflamm 2017; 2017:1075975. [PMID: 28845088 PMCID: PMC5563430 DOI: 10.1155/2017/1075975] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 06/20/2017] [Indexed: 12/18/2022] Open
Abstract
Angiogenesis is a key factor in early stages of wound healing and is crucial for the repair of vascularized tissues such as the bone. However, supporting timely revascularization of the defect site still presents a clinical challenge. Tissue engineering approaches delivering endothelial cells or prevascularized constructs may overcome this problem. In the current study, we investigated platelet-rich plasma (PRP) gels as autologous, injectable cell delivery systems for prevascularized constructs. PRP was produced from human thrombocyte concentrates. GFP-expressing human umbilical vein endothelial cells (HUVECs) and human bone marrow-derived mesenchymal stem cells (MSCs) were encapsulated in PRP gels in different proportions. The formation of cellular networks was assessed over 14 days by time-lapse microscopy, gene expression analysis, and immunohistology. PRP gels presented a favorable environment for the formation of a three-dimensional (3D) cellular network. The formation of these networks was apparent as early as 3 days after seeding. Networks increased in complexity and branching over time but were only stable in HUVEC-MSC cocultures. The high cell viability together with the 3D capillary-like networks observed at early time points suggests that PRP can be used as an autologous and proangiogenic cell delivery system for the repair of vascularized tissues such as the bone.
Collapse
|
21
|
Esteves CL, Sheldrake TA, Dawson L, Menghini T, Rink BE, Amilon K, Khan N, Péault B, Donadeu FX. Equine Mesenchymal Stromal Cells Retain a Pericyte-Like Phenotype. Stem Cells Dev 2017; 26:964-972. [PMID: 28376684 PMCID: PMC5510672 DOI: 10.1089/scd.2017.0017] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 04/04/2017] [Indexed: 12/16/2022] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) have been used in human and equine regenerative medicine, and interest in exploiting their potential has increased dramatically over the years. Despite significant effort to characterize equine MSCs, the actual origin of these cells and how much of their native phenotype is maintained in culture have not been determined. In this study, we investigated the relationship between MSCs, derived from adipose tissue (AT) and bone marrow (BM), and pericytes in the horse. Both pericyte (CD146, NG2, and αSMA) and MSC (CD29, CD90, and CD73) markers were detected in equine AT and colocalized around blood vessels. Importantly, as assessed by flow cytometry, both pericyte (CD146, NG2, and αSMA) and MSC (CD29, CD44, CD90, and CD105) markers were present in a majority (≥90%) of cells in cultures of AT-MSCs and BM-MSCs; however, levels of pericyte markers were variable within each of those populations. Moreover, the expression of pericyte markers was maintained for at least eight passages in both AT-MSCs and BM-MSCs. Hematopoietic (CD45) and endothelial (CD144) markers were also detected at low levels in MSCs by quantitative polymerase chain reaction (qPCR). Finally, in coculture experiments, AT-MSCs closely associated with networks produced by endothelial cells, resembling the natural perivascular location of pericytes in vivo. Our results indicate that equine MSCs originate from perivascular cells and moreover maintain a pericyte-like phenotype in culture. Therefore, we suggest that, in addition to classical MSC markers, pericyte markers such as CD146 could be used when assessing and characterizing equine MSCs.
Collapse
Affiliation(s)
| | - Tara A. Sheldrake
- The Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Lucy Dawson
- The Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Timothy Menghini
- The Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | | | - Karin Amilon
- The Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Nusrat Khan
- Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Bruno Péault
- Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, United Kingdom
- Orthopaedic Hospital Research Centre, University of California, Los Angeles, California
| | | |
Collapse
|
22
|
Xu J, Gong T, Heng BC, Zhang CF. A systematic review: differentiation of stem cells into functional pericytes. FASEB J 2017; 31:1775-1786. [PMID: 28119398 DOI: 10.1096/fj.201600951rrr] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 01/09/2017] [Indexed: 12/13/2022]
Abstract
Pericytes are an integral cellular component of vascular structures. Numerous studies have investigated various stem cell types as potential sources of pericytes for application in cell-based therapy. The diverse stem cell types and variable experimental protocols of these studies make it imperative to evaluate the relevant scientific literature on the basis of a unified standard. The purpose of this systematic review is to rigorously evaluate the relevant scientific literature for conclusive evidence that stem cells can differentiate into functional pericytes. An online literature search was conducted up to July 2016. Eligible papers were evaluated on 4 pertinent criteria: 1) appropriate controls, 2) markers to confirm pericyte phenotype, 3) techniques for assessing pericyte functionality, and 4) differentiation efficiency of the protocol. Our search yielded 20 eligible studies (from 2006 to 2016), 12 of which were published in the past 5 yr. Of these 20 articles, only 1 had positive control, and 5 papers evaluated differentiation efficiency. The most commonly used pericyte markers were neuron-glial antigen 2, platelet-derived growth factor receptor-β, and α-smooth muscle actin. Three articles were associated with adipose stem cells, 4 with mesenchymal stem cells, and 7 with pluripotent stem cells, whereas the remaining 6 articles were based on other miscellaneous stem cell types. Stem cells can serve as a potential source of pericytes, but there should be standardized guidelines in future studies for assessing pericyte differentiation.-Xu, J., Gong, T., Heng, B. C., Zhang, C. F. A systematic review: differentiation of stem cells into functional pericytes.
Collapse
Affiliation(s)
- Jianguang Xu
- Comprehensive Dental Care, Endodontics, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China; and
| | - Ting Gong
- Comprehensive Dental Care, Endodontics, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China; and
| | - Boon Chin Heng
- Comprehensive Dental Care, Endodontics, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China; and
| | - Cheng Fei Zhang
- Comprehensive Dental Care, Endodontics, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China; and .,Shenzhen Institute of Research and Innovation, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
23
|
de Souza LEB, Malta TM, Kashima Haddad S, Covas DT. Mesenchymal Stem Cells and Pericytes: To What Extent Are They Related? Stem Cells Dev 2016; 25:1843-1852. [PMID: 27702398 DOI: 10.1089/scd.2016.0109] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Mesenchymal stem cells (MSCs) were initially identified as progenitors of skeletal tissues within mammalian bone marrow and cells with similar properties were also obtained from other tissues such as adipose and dental pulp. Although MSCs have been extensively investigated, their native behavior and in vivo identity remain poorly defined. Uncovering the in vivo identity of MSCs has been challenging due to the lack of exclusive cell markers, cellular alterations caused by culture methods, and extensive focus on in vitro properties for characterization. Although MSC site of origin influences their functional properties, these mesenchymal progenitors can be found in the perivascular space in virtually all organs from where they were obtained. However, the precise identity of MSCs within the vascular wall is highly controversial. The recurrent concept that MSCs correspond to pericytes in vivo has been supported mainly by their perivascular localization and expression of some molecular markers. However, this view has been a subject of controversy, in part, due to the application of loose criteria to define pericytes and due to the lack of a marker able to unequivocally identify these cells. Furthermore, recent evidences indicate that subpopulations of MSCs can be found at extravascular sites such as the endosteum. In this opinion review, we bring together the advances and pitfalls on the search for the in vivo identity of MSCs and highlight the recent evidences that suggest that perivascular MSCs are adventitial cells, acting as precursors of pericytes and other stromal cells during tissue homeostasis.
Collapse
Affiliation(s)
- Lucas Eduardo Botelho de Souza
- 1 Department of Clinical Medicine, Ribeirão Preto Medical School, University of São Paulo , Ribeirão Preto, Brazil .,2 National Institute of Science and Technology for Stem Cell and Cell Therapy , Ribeirão Preto, Brazil
| | - Tathiane Maistro Malta
- 2 National Institute of Science and Technology for Stem Cell and Cell Therapy , Ribeirão Preto, Brazil .,3 Department of Genetics, Ribeirão Preto Medical School, University of São Paulo , Ribeirão Preto, Brazil
| | - Simone Kashima Haddad
- 2 National Institute of Science and Technology for Stem Cell and Cell Therapy , Ribeirão Preto, Brazil
| | - Dimas Tadeu Covas
- 1 Department of Clinical Medicine, Ribeirão Preto Medical School, University of São Paulo , Ribeirão Preto, Brazil .,2 National Institute of Science and Technology for Stem Cell and Cell Therapy , Ribeirão Preto, Brazil
| |
Collapse
|
24
|
Bersini S, Yazdi IK, Talò G, Shin SR, Moretti M, Khademhosseini A. Cell-microenvironment interactions and architectures in microvascular systems. Biotechnol Adv 2016; 34:1113-1130. [PMID: 27417066 DOI: 10.1016/j.biotechadv.2016.07.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 07/02/2016] [Accepted: 07/09/2016] [Indexed: 02/06/2023]
Abstract
In the past decade, significant advances have been made in the design and optimization of novel biomaterials and microfabrication techniques to generate vascularized tissues. Novel microfluidic systems have facilitated the development and optimization of in vitro models for exploring the complex pathophysiological phenomena that occur inside a microvascular environment. To date, most of these models have focused on engineering of increasingly complex systems, rather than analyzing the molecular and cellular mechanisms that drive microvascular network morphogenesis and remodeling. In fact, mutual interactions among endothelial cells (ECs), supporting mural cells and organ-specific cells, as well as between ECs and the extracellular matrix, are key driving forces for vascularization. This review focuses on the integration of materials science, microengineering and vascular biology for the development of in vitro microvascular systems. Various approaches currently being applied to study cell-cell/cell-matrix interactions, as well as biochemical/biophysical cues promoting vascularization and their impact on microvascular network formation, will be identified and discussed. Finally, this review will explore in vitro applications of microvascular systems, in vivo integration of transplanted vascularized tissues, and the important challenges for vascularization and controlling the microcirculatory system within the engineered tissues, especially for microfabrication approaches. It is likely that existing models and more complex models will further our understanding of the key elements of vascular network growth, stabilization and remodeling to translate basic research principles into functional, vascularized tissue constructs for regenerative medicine applications, drug screening and disease models.
Collapse
Affiliation(s)
- Simone Bersini
- Cell and Tissue Engineering Lab, IRCCS Istituto Ortopedico Galeazzi, Milano, Italy
| | - Iman K Yazdi
- Biomaterials Innovation Research Center, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02139, USA
| | - Giuseppe Talò
- Cell and Tissue Engineering Lab, IRCCS Istituto Ortopedico Galeazzi, Milano, Italy
| | - Su Ryon Shin
- Biomaterials Innovation Research Center, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02139, USA
| | - Matteo Moretti
- Cell and Tissue Engineering Lab, IRCCS Istituto Ortopedico Galeazzi, Milano, Italy; Regenerative Medicine Technologies Lab, Ente Ospedaliero Cantonale, Lugano, Switzerland; Swiss Institute for Regenerative Medicine, Lugano, Switzerland; Cardiocentro Ticino, Lugano, Switzerland.
| | - Ali Khademhosseini
- Biomaterials Innovation Research Center, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02139, USA; Department of Physics, King Abdulaziz University, Jeddah 21569, Saudi Arabia; College of Animal Bioscience and Technology, Department of Bioindustrial Technologies, Konkuk University, Hwayang-dong, Kwangjin-gu, Seoul 143-701, Republic of Korea.
| |
Collapse
|
25
|
Yu QC, Song W, Wang D, Zeng YA. Identification of blood vascular endothelial stem cells by the expression of protein C receptor. Cell Res 2016; 26:1079-1098. [PMID: 27364685 PMCID: PMC5113308 DOI: 10.1038/cr.2016.85] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 05/20/2016] [Accepted: 05/25/2016] [Indexed: 02/07/2023] Open
Abstract
Vascular growth and remodeling are dependent on the generation of new endothelial cells from stem cells and the involvement of perivascular cells to maintain vessel integrity and function. The existence and cellular identity of vascular endothelial stem cells (VESCs) remain unclear. The perivascular pericytes in adult tissues are thought to arise from the recruitment and differentiation of mesenchymal progenitors during early development. In this study, we identified Protein C receptor-expressing (Procr+) endothelial cells as VESCs in multiple tissues. Procr+ VESCs exhibit robust clonogenicity in culture, high vessel reconstitution efficiency in transplantation, long-term clonal expansion in lineage tracing, and EndMT characteristics. Moreover, Procr+ VESCs are bipotent, giving rise to de novo formation of endothelial cells and pericytes. This represents a novel origin of pericytes in adult angiogenesis, reshaping our understanding of blood vessel development and homeostatic process. Our study may also provide a more precise therapeutic target to inhibit pathological angiogenesis and tumor growth.
Collapse
Affiliation(s)
- Qing Cissy Yu
- The State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Wenqian Song
- The State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Daisong Wang
- The State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yi Arial Zeng
- The State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
26
|
Hall AP. Review of the Pericyte during Angiogenesis and its Role in Cancer and Diabetic Retinopathy. Toxicol Pathol 2016; 34:763-75. [PMID: 17162534 DOI: 10.1080/01926230600936290] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Anthony P Hall
- AstraZeneca R&D Alderley Park, Safety Assessment UK, Mereside, Alderley Park, Macclesfield, SK10 4TG Cheshire, England.
| |
Collapse
|
27
|
Hall AP, Westwood FR, Wadsworth PF. Review of the Effects of Anti-Angiogenic Compounds on the Epiphyseal Growth Plate. Toxicol Pathol 2016; 34:131-47. [PMID: 16537292 DOI: 10.1080/01926230600611836] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The formation of new blood vessels from a pre-existing vascular bed, termed “angiogenesis,” is of critical importance for the growth and development of the animal since it is required for the growth of the skeleton during endochondral ossification, development and cycling of the corpus luteum and uterus, and for the repair of tissues during wound healing. “Vasculogenesis,” the de novo formation of blood vessels is also important for the proper function and development of the vascular system in the embryo. New blood vessel formation is a prominent feature and permissive factor in the relentless progression of many human diseases, one of the most important examples of which is neoplasia. It is for this reason that angiogenesis is considered to be one of the hallmarks of cancer. The development of new classes of drugs that inhibit the growth and proper functioning of new blood vessels in vivo is likely to provide significant therapeutic benefit in the treatment of cancer, as well as other conditions where angiogenesis is a strong driver to the disease process. During the preclinical safety testing of these drugs, it is becoming increasingly clear that their in vivo efficacy is reflected in the profile of “expected toxicity” (resulting from pharmacology) observed in laboratory animals, so much so, that this profile of “desired” toxicity may act as a signature for their anti-angiogenic effect. In this article we review the major mechanisms controlling angiogenesis and its role during endochondral ossification. We also review the effects of perturbation of endochondral ossification through four mechanisms—inhibition of vascular endothelial growth factor (VEGF), pp60 c-Src kinase and matrix metalloproteinases as well as disruption of the blood supply with vascular targeting agents. Inhibition through each of these mechanisms appears to have broadly similar effects on the epiphyseal growth plate characterised by thickening due to the retention of hypertrophic chondrocytes resulting from the inhibition of angiogenesis. In contrast, in the metaphysis there are differing effects reflecting the specific role of these targets at this site.
Collapse
Affiliation(s)
- Anthony P Hall
- AstraZeneca, Mereside, Alderley Park, Macclesfield, Cheshire SK10 4TG, England.
| | | | | |
Collapse
|
28
|
Gökçinar-Yagci B, Uçkan-Çetinkaya D, Çelebi-Saltik B. Pericytes: Properties, Functions and Applications in Tissue Engineering. Stem Cell Rev Rep 2016; 11:549-59. [PMID: 25865146 DOI: 10.1007/s12015-015-9590-z] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Mesenchymal stem cells (MSCs) are one of the most studied adult stem cells and in recent years. They have become attractive agents/cell source for cellular therapy and regenerative medicine applications. During investigations about their origin, researchers hypothesized that perivascular regions are the common anatomical regions where MSCs come from and perivascular cells like pericytes (PCs) (Rouget cells, mural cells) are in vivo counterparts of MSCs. Beside capillaries and microvessels as their most common locations, PCs are also found in large vessels (arteries and veins). They can be isolated from several tissues and organs particularly from retina and brain. There are different approaches about their isolation, characterization and culture but there has been no common protocol yet because of the lack of defined PC-specific marker. They make special contact with endothelial cells in the basement membrane and have very important functions in several tissues and organs. They participate in vascular development, stabilization, maturation, and remodeling, blood pressure control, endothelial cell proliferation and differentiation, contractility of vascular smooth muscle cells, wound healing, vasculogenesis and angiogenesis, long-term maintenance of hematopoietic stem cells in bone marrow niche. Their multipotential differentiation capacity and participation in many events in the body make PCs preferred cells in tissue engineering applications including 3D blood-brain barrier models, skeletal muscle constructs, bone tissue engineering and tissue-engineered vascular grafts.
Collapse
Affiliation(s)
- Beyza Gökçinar-Yagci
- Health Science Institute, Department of Stem Cell Sciences, Hacettepe University, 06100, Ankara, Turkey
| | | | | |
Collapse
|
29
|
Endosialin and Associated Protein Expression in Soft Tissue Sarcomas: A Potential Target for Anti-Endosialin Therapeutic Strategies. Sarcoma 2016; 2016:5213628. [PMID: 27057137 PMCID: PMC4748105 DOI: 10.1155/2016/5213628] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 12/30/2015] [Indexed: 12/15/2022] Open
Abstract
Endosialin (CD248, TEM-1) is expressed in pericytes, tumor vasculature, tumor fibroblasts, and some tumor cells, including sarcomas, with limited normal tissue expression, and appears to play a key role in tumor-stromal interactions, including angiogenesis. Monoclonal antibodies targeting endosialin have entered clinical trials, including soft tissue sarcomas. We evaluated a cohort of 94 soft tissue sarcoma samples to assess the correlation between gene expression and protein expression by immunohistochemistry for endosialin and PDGFR-β, a reported interacting protein, across available diagnoses. Correlations between the expression of endosialin and 13 other genes of interest were also examined. Within cohorts of soft tissue diagnoses assembled by tissue type (liposarcoma, leiomyosarcoma, undifferentiated sarcoma, and other), endosialin expression was significantly correlated with a better outcome. Endosialin expression was highest in liposarcomas and lowest in leiomyosarcomas. A robust correlation between protein and gene expression data for both endosialin and PDGFR-β was observed. Endosialin expression positively correlated with PDGFR-β and heparin sulphate proteoglycan 2 and negatively correlated with carbonic anhydrase IX. Endosialin likely interacts with a network of extracellular and hypoxia activated proteins in sarcomas and other tumor types. Since expression does vary across histologic groups, endosialin may represent a selective target in soft tissue sarcomas.
Collapse
|
30
|
Shih AY, Rühlmann C, Blinder P, Devor A, Drew PJ, Friedman B, Knutsen PM, Lyden PD, Mateo C, Mellander L, Nishimura N, Schaffer CB, Tsai PS, Kleinfeld D. Robust and fragile aspects of cortical blood flow in relation to the underlying angioarchitecture. Microcirculation 2015; 22:204-218. [PMID: 25705966 DOI: 10.1111/micc.12195] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Accepted: 02/17/2015] [Indexed: 01/25/2023]
Abstract
We review the organizational principles of the cortical vasculature and the underlying patterns of blood flow under normal conditions and in response to occlusion of single vessels. The cortex is sourced by a two-dimensional network of pial arterioles that feeds a three-dimensional network of subsurface microvessels in close proximity to neurons and glia. Blood flow within the surface and subsurface networks is largely insensitive to occlusion of a single vessel within either network. However, the penetrating arterioles that connect the pial network to the subsurface network are bottlenecks to flow; occlusion of even a single penetrating arteriole results in the death of a 500 μm diameter cylinder of cortical tissue despite the potential for collateral flow through microvessels. This pattern of flow is consistent with that calculated from a full reconstruction of the angioarchitecture. Conceptually, collateral flow is insufficient to compensate for the occlusion of a penetrating arteriole because penetrating venules act as shunts of blood that flows through collaterals. Future directions that stem from the analysis of the angioarchitecture concern cellular-level issues, in particular the regulation of blood flow within the subsurface microvascular network, and system-level issues, in particular the role of penetrating arteriole occlusions in human cognitive impairment.
Collapse
Affiliation(s)
- Andy Y Shih
- Department of Neurosciences, Medical University of South Carolina, Charleston, SC
| | - Charlotta Rühlmann
- Department of Physics, University of California at San Diego, La Jolla, CA
| | - Pablo Blinder
- Department of Neurobiology, Tel Aviv University, Tel Aviv, Israel
| | - Anna Devor
- Department of Neurosciences, University of California School of Medicine, La Jolla, CA
| | - Patrick J Drew
- Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA
| | - Beth Friedman
- Department of Pharmacology, University of California School of Medicine, La Jolla, CA
| | - Per M Knutsen
- Department of Physics, University of California at San Diego, La Jolla, CA
| | - Patrick D Lyden
- Department of Neurology, Cedars-Sinai Hospital, Los Angeles, CA
| | - Celine Mateo
- Department of Physics, University of California at San Diego, La Jolla, CA
| | - Lisa Mellander
- Department of Physics, University of California at San Diego, La Jolla, CA
| | - Nozomi Nishimura
- Department of Biomedical Engineering, Cornell University, Ithaca, NY
| | - Chris B Schaffer
- Department of Biomedical Engineering, Cornell University, Ithaca, NY
| | - Philbert S Tsai
- Department of Physics, University of California at San Diego, La Jolla, CA
| | - David Kleinfeld
- Department of Physics, University of California at San Diego, La Jolla, CA.,Section of Neurobiology, University of California, La Jolla, CA
| |
Collapse
|
31
|
Wen L, Wang Y, Wen N, Yuan G, Wen M, Zhang L, Liu Q, Liang Y, Cai C, Chen X, Ding Y. Role of Endothelial Progenitor Cells in Maintaining Stemness and Enhancing Differentiation of Mesenchymal Stem Cells by Indirect Cell-Cell Interaction. Stem Cells Dev 2015; 25:123-38. [PMID: 26528828 DOI: 10.1089/scd.2015.0049] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
A hot issue in current research regarding stem cells for regenerative medicine is the retainment of the stemness and multipotency of stem cell. Endothelial progenitor cells (EPCs) are characterized by an angiogenic switch that induces angiogenesis and further ameliorates the local microenvironment in ischemic organs. This study investigated whether EPCs could modulate the multipotent and differential abilities of mesenchymal stem cells (MSCs) in vitro and in vivo. We established an EPC/MSC indirect Transwell coculture system and then examined the effects of EPCs on the regulation of MSC biological properties in vitro and bone formation in vivo. The in vitro studies showed that cocultured MSCs (coMSCs) display no overt changes in cell morphology but an enhanced MSC phenotype compared with monocultured MSCs (monoMSCs). Our studies regarding the cellular, molecular, and protein characteristics of coMSCs and monoMSCs demonstrated that EPCs greatly promote the proliferation and differentiation potentials of coMSCs under indirect coculture condition. The expression of the pluripotency factors OCT4, SOX2, Nanog, and Klf4 was also upregulated in coMSCs. Furthermore, coMSCs combined with fibrin glue showed improved bone regeneration when used to repair rat alveolar bone defects compared with monoMSC grafts in vivo. This study is the first to demonstrate that EPCs have dynamic roles in maintaining MSC stemness and regulating MSC differentiation potential.
Collapse
Affiliation(s)
- Li Wen
- 1 Department of Orthodontics, School of Stomatology, Fourth Military Medical University , Xi'an, China .,2 Institute of Stomatology, Chinese PLA General Hospital , Beijing, China
| | - Yu Wang
- 2 Institute of Stomatology, Chinese PLA General Hospital , Beijing, China .,3 Department of Oncology, State Key Discipline of Cell Biology, Xijing Hospital, Fourth Military Medical University , Xi'an, China
| | - Ning Wen
- 2 Institute of Stomatology, Chinese PLA General Hospital , Beijing, China
| | - Gongjie Yuan
- 4 Department of Orthodontics, Dalian Stomatological Hospital , Dalian, China
| | - Mingling Wen
- 5 Department of Pharmacy, Affiliated Hospital of Academy of Military Medical Sciences , Beijing, China
| | - Liang Zhang
- 6 Department of Stomatology, 323 Hospital of the People's Liberation Army , Xi'an, China
| | - Qian Liu
- 1 Department of Orthodontics, School of Stomatology, Fourth Military Medical University , Xi'an, China
| | - Yuan Liang
- 1 Department of Orthodontics, School of Stomatology, Fourth Military Medical University , Xi'an, China
| | - Chuan Cai
- 2 Institute of Stomatology, Chinese PLA General Hospital , Beijing, China
| | - Xin Chen
- 7 Department of General Dentistry, 174th Hospital of Chinese PLA , Xiamen, China
| | - Yin Ding
- 1 Department of Orthodontics, School of Stomatology, Fourth Military Medical University , Xi'an, China
| |
Collapse
|
32
|
Driesen T, Schuler D, Schmetter R, Heiss C, Kelm M, Fischer JW, Freudenberger T. A systematic approach to assess locoregional differences in angiogenesis. Histochem Cell Biol 2015; 145:213-25. [PMID: 26526138 DOI: 10.1007/s00418-015-1379-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2015] [Indexed: 10/22/2022]
Abstract
Skeletal muscle tissue differs with regard to the abundance of glycolytic and oxidative fiber types. In this context, capillary density has been described to be higher in muscle tissue with more oxidative metabolism as compared to that one with more glycolytic metabolism, and the highest abundance of capillaries has been found in boneward-oriented moieties of skeletal muscle tissue. Importantly, capillary formation is often analyzed as a measure for angiogenesis, a process that describes neo-vessel formation emanating from preexisting vessels, occurring, i.e., after arterial occlusion. However, a standardized way for investigation of calf muscle capillarization after surgically induced unilateral hind limb ischemia in mice, especially considering these locoregional differences, has not been provided so far. In this manuscript, a novel, methodical approach for reliable analysis of capillary density was established using anatomic-morphological reference points, and a software-assisted way of capillary density analysis is described. Thus, the systematic approach provided conscientiously considers intra-layer differences in capillary formation and therefore guarantees for a robust, standardized analysis of capillary density as a measure for angiogenesis. The significance of the methodology is further supported by the observation that capillary density in the calf muscle layers analyzed negatively correlates with distal lower limb perfusion measured in vivo.
Collapse
Affiliation(s)
- T Driesen
- Institut für Pharmakologie und Klinische Pharmakologie, Universitätsklinikum Düsseldorf, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - D Schuler
- Klinik für Kardiologie, Pneumologie und Angiologie, Universitätsklinikum Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany
| | - R Schmetter
- Institut für Pharmakologie und Klinische Pharmakologie, Universitätsklinikum Düsseldorf, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - C Heiss
- Klinik für Kardiologie, Pneumologie und Angiologie, Universitätsklinikum Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany
| | - M Kelm
- Klinik für Kardiologie, Pneumologie und Angiologie, Universitätsklinikum Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany
| | - J W Fischer
- Institut für Pharmakologie und Klinische Pharmakologie, Universitätsklinikum Düsseldorf, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - T Freudenberger
- Institut für Pharmakologie und Klinische Pharmakologie, Universitätsklinikum Düsseldorf, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany.
| |
Collapse
|
33
|
Angiogenesis in primary hyperparathyroidism. Ann Diagn Pathol 2015; 19:91-8. [DOI: 10.1016/j.anndiagpath.2015.01.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Revised: 12/03/2014] [Accepted: 01/09/2015] [Indexed: 01/29/2023]
|
34
|
Thalgott J, Dos-Santos-Luis D, Lebrin F. Pericytes as targets in hereditary hemorrhagic telangiectasia. Front Genet 2015; 6:37. [PMID: 25763012 PMCID: PMC4327729 DOI: 10.3389/fgene.2015.00037] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 01/26/2015] [Indexed: 12/04/2022] Open
Abstract
Defective paracrine Transforming Growth Factor-β (TGF-β) signaling between endothelial cells and the neighboring mural cells have been thought to lead to the development of vascular lesions that are characteristic of Hereditary Hemorrhagic Telangiectasia (HHT). This review highlights recent progress in our understanding of TGF-β signaling in mural cell recruitment and vessel stabilization and how perturbed TGF-β signaling might contribute to defective endothelial-mural cell interaction affecting vessel functionalities. Our recent findings have provided exciting insights into the role of thalidomide, a drug that reduces both the frequency and the duration of epistaxis in individuals with HHT by targeting mural cells. These advances provide opportunities for the development of new therapies for vascular malformations.
Collapse
Affiliation(s)
- Jérémy Thalgott
- INSERM, Center for Interdisciplinary Research in Biology, UMR CNRS 7241/INSERM U1050, Group Pathological Angiogenesis and Vessel Normalization, Collège de France Paris, France
| | - Damien Dos-Santos-Luis
- INSERM, Center for Interdisciplinary Research in Biology, UMR CNRS 7241/INSERM U1050, Group Pathological Angiogenesis and Vessel Normalization, Collège de France Paris, France
| | - Franck Lebrin
- INSERM, Center for Interdisciplinary Research in Biology, UMR CNRS 7241/INSERM U1050, Group Pathological Angiogenesis and Vessel Normalization, Collège de France Paris, France
| |
Collapse
|
35
|
Murray KN, Parry-Jones AR, Allan SM. Interleukin-1 and acute brain injury. Front Cell Neurosci 2015; 9:18. [PMID: 25705177 PMCID: PMC4319479 DOI: 10.3389/fncel.2015.00018] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 01/12/2015] [Indexed: 01/05/2023] Open
Abstract
Inflammation is the key host-defense response to infection and injury, yet also a major contributor to a diverse range of diseases, both peripheral and central in origin. Brain injury as a result of stroke or trauma is a leading cause of death and disability worldwide, yet there are no effective treatments, resulting in enormous social and economic costs. Increasing evidence, both preclinical and clinical, highlights inflammation as an important factor in stroke, both in determining outcome and as a contributor to risk. A number of inflammatory mediators have been proposed as key targets for intervention to reduce the burden of stroke, several reaching clinical trial, but as yet yielding no success. Many factors could explain these failures, including the lack of robust preclinical evidence and poorly designed clinical trials, in addition to the complex nature of the clinical condition. Lack of consideration in preclinical studies of associated co-morbidities prevalent in the clinical stroke population is now seen as an important omission in previous work. These co-morbidities (atherosclerosis, hypertension, diabetes, infection) have a strong inflammatory component, supporting the need for greater understanding of how inflammation contributes to acute brain injury. Interleukin (IL)-1 is the prototypical pro-inflammatory cytokine, first identified many years ago as the endogenous pyrogen. Research over the last 20 years or so reveals that IL-1 is an important mediator of neuronal injury and blocking the actions of IL-1 is beneficial in a number of experimental models of brain damage. Mechanisms underlying the actions of IL-1 in brain injury remain unclear, though increasing evidence indicates the cerebrovasculature as a key target. Recent literature supporting this and other aspects of how IL-1 and systemic inflammation in general contribute to acute brain injury are discussed in this review.
Collapse
Affiliation(s)
- Katie N Murray
- Faculty of Life Sciences, University of Manchester Manchester, UK
| | | | - Stuart M Allan
- Faculty of Life Sciences, University of Manchester Manchester, UK
| |
Collapse
|
36
|
Birbrair A, Zhang T, Wang ZM, Messi ML, Mintz A, Delbono O. Pericytes at the intersection between tissue regeneration and pathology. Clin Sci (Lond) 2015; 128:81-93. [PMID: 25236972 PMCID: PMC4200531 DOI: 10.1042/cs20140278] [Citation(s) in RCA: 173] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Perivascular multipotent cells, pericytes, contribute to the generation and repair of various tissues in response to injury. They are heterogeneous in their morphology, distribution, origin and markers, and elucidating their molecular and cellular differences may inform novel treatments for disorders in which tissue regeneration is either impaired or excessive. Moreover, these discoveries offer novel cellular targets for therapeutic approaches to many diseases. This review discusses recent studies that support the concept that pericyte subtypes play a distinctive role in myogenesis, neurogenesis, adipogenesis, fibrogenesis and angiogenesis.
Collapse
Affiliation(s)
- Alexander Birbrair
- Department of Internal Medicine-Gerontology, Wake Forest School of Medicine, Winston-Salem, North Carolina, Medical Center Boulevard, Winston Salem, NC 27157, U.S.A
- Neuroscience Program, Wake Forest School of Medicine, Winston-Salem, North Carolina, Medical Center Boulevard, Winston Salem, NC 27157, U.S.A
| | - Tan Zhang
- Department of Internal Medicine-Gerontology, Wake Forest School of Medicine, Winston-Salem, North Carolina, Medical Center Boulevard, Winston Salem, NC 27157, U.S.A
| | - Zhong-Min Wang
- Department of Internal Medicine-Gerontology, Wake Forest School of Medicine, Winston-Salem, North Carolina, Medical Center Boulevard, Winston Salem, NC 27157, U.S.A
| | - Maria Laura Messi
- Department of Internal Medicine-Gerontology, Wake Forest School of Medicine, Winston-Salem, North Carolina, Medical Center Boulevard, Winston Salem, NC 27157, U.S.A
| | - Akiva Mintz
- Department of Neurosurgery, Wake Forest School of Medicine, Winston-Salem, North Carolina, Medical Center Boulevard, Winston Salem, NC 27157, U.S.A
| | - Osvaldo Delbono
- Department of Internal Medicine-Gerontology, Wake Forest School of Medicine, Winston-Salem, North Carolina, Medical Center Boulevard, Winston Salem, NC 27157, U.S.A
- Neuroscience Program, Wake Forest School of Medicine, Winston-Salem, North Carolina, Medical Center Boulevard, Winston Salem, NC 27157, U.S.A
| |
Collapse
|
37
|
Birbrair A, Zhang T, Files DC, Mannava S, Smith T, Wang ZM, Messi ML, Mintz A, Delbono O. Type-1 pericytes accumulate after tissue injury and produce collagen in an organ-dependent manner. Stem Cell Res Ther 2014; 5:122. [PMID: 25376879 PMCID: PMC4445991 DOI: 10.1186/scrt512] [Citation(s) in RCA: 199] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 09/30/2014] [Indexed: 02/06/2023] Open
Abstract
Introduction Fibrosis, or scar formation, is a pathological condition characterized by excessive production and accumulation of collagen, loss of tissue architecture, and organ failure in response to uncontrolled wound healing. Several cellular populations have been implicated, including bone marrow-derived circulating fibrocytes, endothelial cells, resident fibroblasts, epithelial cells, and recently, perivascular cells called pericytes. We previously demonstrated pericyte functional heterogeneity in skeletal muscle. Whether pericyte subtypes are present in other tissues and whether a specific pericyte subset contributes to organ fibrosis are unknown. Methods Here, we report the presence of two pericyte subtypes, type-1 (Nestin-GFP-/NG2-DsRed+) and type-2 (Nestin-GFP+/NG2-DsRed+), surrounding blood vessels in lungs, kidneys, heart, spinal cord, and brain. Using Nestin-GFP/NG2-DsRed transgenic mice, we induced pulmonary, renal, cardiac, spinal cord, and cortical injuries to investigate the contributions of pericyte subtypes to fibrous tissue formation in vivo. Results A fraction of the lung’s collagen-producing cells corresponds to type-1 pericytes and kidney and heart pericytes do not produce collagen in pathological fibrosis. Note that type-1, but not type-2, pericytes increase and accumulate near the fibrotic tissue in all organs analyzed. Surprisingly, after CNS injury, type-1 pericytes differ from scar-forming PDGFRβ + cells. Conclusions Pericyte subpopulations respond differentially to tissue injury, and the production of collagen by type-1 pericytes is organ-dependent. Characterization of the mechanisms underlying scar formation generates cellular targets for future anti-fibrotic therapeutics. Electronic supplementary material The online version of this article (doi:10.1186/scrt512) contains supplementary material, which is available to authorized users.
Collapse
|
38
|
Jiang Y, Berry DC, Tang W, Graff JM. Independent stem cell lineages regulate adipose organogenesis and adipose homeostasis. Cell Rep 2014; 9:1007-22. [PMID: 25437556 PMCID: PMC4250841 DOI: 10.1016/j.celrep.2014.09.049] [Citation(s) in RCA: 142] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 08/26/2014] [Accepted: 09/24/2014] [Indexed: 12/31/2022] Open
Abstract
Adipose tissues have striking plasticity, highlighted by childhood and adult obesity. Using adipose lineage analyses, smooth muscle actin (SMA)-mural cell-fate mapping, and conditional PPARγ deletion to block adipocyte differentiation, we find two phases of adipocyte generation that emanate from two independent adipose progenitor compartments: developmental and adult. These two compartments are sequentially required for organ formation and maintenance. Although both developmental and adult progenitors are specified during the developmental period and express PPARγ, they have distinct microanatomical, functional, morphogenetic, and molecular profiles. Furthermore, the two compartments derive from different lineages; whereas adult adipose progenitors fate-map from an SMA+ mural lineage, developmental progenitors do not. Remarkably, the adult progenitor compartment appears to be specified earlier than the developmental cells and then enters the already developmentally formed adipose depots. Thus, two distinct cell compartments control adipose organ development and organ homeostasis, which may provide a discrete therapeutic target for childhood and adult obesity.
Collapse
Affiliation(s)
- Yuwei Jiang
- Department of Developmental Biology, UT Southwestern Medical Center, Dallas, TX 75390-9133, USA
| | - Daniel C Berry
- Department of Developmental Biology, UT Southwestern Medical Center, Dallas, TX 75390-9133, USA
| | - Wei Tang
- Department of Developmental Biology, UT Southwestern Medical Center, Dallas, TX 75390-9133, USA
| | - Jonathan M Graff
- Department of Developmental Biology, UT Southwestern Medical Center, Dallas, TX 75390-9133, USA; Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX 75390-9133, USA.
| |
Collapse
|
39
|
Abstract
Renal pericytes have been neglected for many years, but recently they have become an intensively studied cell population in renal biology and pathophysiology. Pericytes are stromal cells that support vasculature, and a subset of pericytes are mesenchymal stem cells. In kidney, pericytes have been reported to play critical roles in angiogenesis, regulation of renal medullary and cortical blood flow, and serve as progenitors of interstitial myofibroblasts in renal fibrogenesis. They interact with endothelial cells through distinct signaling pathways and their activation and detachment from capillaries after acute or chronic kidney injury may be critical for driving chronic kidney disease progression. By contrast, during kidney homeostasis it is likely that pericytes serve as a local stem cell population that replenishes differentiated interstitial and vascular cells lost during aging. This review describes both the regenerative properties of pericytes as well as involvement in pathophysiologic conditions such as fibrogenesis.
Collapse
Affiliation(s)
- Rafael Kramann
- Brigham and Women's Hospital, Renal Division, Department of Medicine, Boston, MA; Harvard Medical School, Boston, MA; Division of Nephrology, Rheinisch-Westfaelische Technische Hochschule Aachen University, Aachen, Germany
| | - Benjamin D Humphreys
- Brigham and Women's Hospital, Renal Division, Department of Medicine, Boston, MA; Harvard Medical School, Boston, MA; Harvard Stem Cell Institute, Cambridge, MA.
| |
Collapse
|
40
|
Stapor PC, Sweat RS, Dashti DC, Betancourt AM, Murfee WL. Pericyte dynamics during angiogenesis: new insights from new identities. J Vasc Res 2014; 51:163-74. [PMID: 24853910 DOI: 10.1159/000362276] [Citation(s) in RCA: 132] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2013] [Accepted: 03/11/2014] [Indexed: 12/13/2022] Open
Abstract
Therapies aimed at manipulating the microcirculation require the ability to control angiogenesis, defined as the sprouting of new capillaries from existing vessels. Blocking angiogenesis would be beneficial in many pathologies (e.g. cancer, retinopathies and rheumatoid arthritis). In others (e.g. myocardial infarction, stroke and hypertension), promoting angiogenesis would be desirable. We know that vascular pericytes elongate around endothelial cells (ECs) and are functionally associated with regulating vessel stabilization, vessel diameter and EC proliferation. During angiogenesis, bidirectional pericyte-EC signaling is critical for capillary sprout formation. Observations of pericytes leading capillary sprouts also implicate their role in EC guidance. As such, pericytes have recently emerged as a therapeutic target to promote or inhibit angiogenesis. Advancing our basic understanding of pericytes and developing pericyte-related therapies are challenged, like in many other fields, by questions regarding cell identity. This review article discusses what we know about pericyte phenotypes and the opportunity to advance our understanding by defining the specific pericyte cell populations involved in capillary sprouting.
Collapse
Affiliation(s)
- Peter C Stapor
- Department of Biomedical Engineering, Tulane University, Lindy Boggs Center, New Orleans, La., USA
| | | | | | | | | |
Collapse
|
41
|
Birbrair A, Zhang T, Wang ZM, Messi ML, Olson JD, Mintz A, Delbono O. Type-2 pericytes participate in normal and tumoral angiogenesis. Am J Physiol Cell Physiol 2014; 307:C25-38. [PMID: 24788248 DOI: 10.1152/ajpcell.00084.2014] [Citation(s) in RCA: 230] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Tissue growth and function depend on vascularization, and vascular insufficiency or excess exacerbates many human diseases. Identification of the biological processes involved in angiogenesis will dictate strategies to modulate reduced or excessive vessel formation. We examine the essential role of pericytes. Their heterogeneous morphology, distribution, origins, and physiology have been described. Using double-transgenic Nestin-GFP/NG2-DsRed mice, we identified two pericyte subsets. We found that Nestin-GFP(-)/NG2-DsRed(+) (type-1) and Nestin-GFP(+)/NG2-DsRed(+) (type-2) pericytes attach to the walls of small and large blood vessels in vivo; in vitro, type-2, but not type-1, pericytes spark endothelial cells to form new vessels. Matrigel assay showed that only type-2 pericytes participate in normal angiogenesis. Moreover, when cancer cells were transplanted into Nestin-GFP/NG2-DsRed mice, type-1 pericytes did not penetrate the tumor, while type-2 pericytes were recruited during its angiogenesis. As inhibition of angiogenesis is a promising strategy in cancer therapy, type-2 pericytes may provide a cellular target susceptible to signaling and pharmacological manipulation in treating malignancy. This work also reports the potential of type-2 pericytes to improve blood perfusion in ischemic hindlimbs, indicating their potential for treating ischemic illnesses.
Collapse
Affiliation(s)
- Alexander Birbrair
- Department of Internal Medicine-Gerontology, Wake Forest School of Medicine, Winston-Salem, North Carolina; Neuroscience Program, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Tan Zhang
- Department of Internal Medicine-Gerontology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Zhong-Min Wang
- Department of Internal Medicine-Gerontology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Maria Laura Messi
- Department of Internal Medicine-Gerontology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - John D Olson
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, North Carolina; and
| | - Akiva Mintz
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, North Carolina; and Department of Neurosurgery, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Osvaldo Delbono
- Department of Internal Medicine-Gerontology, Wake Forest School of Medicine, Winston-Salem, North Carolina; Neuroscience Program, Wake Forest School of Medicine, Winston-Salem, North Carolina;
| |
Collapse
|
42
|
Yao Y, Tsirka SE. Monocyte chemoattractant protein-1 and the blood-brain barrier. Cell Mol Life Sci 2014; 71:683-97. [PMID: 24051980 PMCID: PMC3946874 DOI: 10.1007/s00018-013-1459-1] [Citation(s) in RCA: 140] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2013] [Revised: 07/20/2013] [Accepted: 08/19/2013] [Indexed: 12/17/2022]
Abstract
The blood-brain barrier (BBB) is a dynamic structure that maintains the homeostasis of the brain and thus proper neurological functions. BBB compromise has been found in many pathological conditions, including neuroinflammation. Monocyte chemoattractant protein-1 (MCP1), a chemokine that is transiently and significantly up-regulated during inflammation, is able to disrupt the integrity of BBB and modulate the progression of various diseases, including excitotoxic injury and hemorrhage. In this review, we first introduce the biochemistry and biology of MCP1, and then summarize the effects of MCP1 on BBB integrity as well as individual BBB components.
Collapse
Affiliation(s)
- Yao Yao
- Program in Molecular and Cellular Pharmacology, Department of Pharmacological Sciences, BST8-192, Stony Brook University, Stony Brook, NY 11794-8651 USA
- Laboratory of Neurobiology and Genetics, The Rockefeller University, New York, NY 10065 USA
| | - Stella E. Tsirka
- Program in Molecular and Cellular Pharmacology, Department of Pharmacological Sciences, BST8-192, Stony Brook University, Stony Brook, NY 11794-8651 USA
| |
Collapse
|
43
|
Pieper C, Galla HJ. Ultra structure analysis of cell-cell interactions between pericytes and neutrophils in vitro. Biochem Biophys Res Commun 2014; 445:180-3. [PMID: 24495804 DOI: 10.1016/j.bbrc.2014.01.159] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 01/27/2014] [Indexed: 01/02/2023]
Abstract
Neutrophils' adhesion to the endothelium during inflammatory is a well-known processes. In contrast the interaction of neutrophils with cells of the neurovascular unit after they have been transmigrated into the brain is less clear. Recently, lymphocyte function-associated antigen-1 (LFA-1) dependent subendothelial crawling of neutrophils has been observed in vivo. This is mediated by intracellular adhesion molecule-1 (ICAM-1), which is expressed on the cell surface of pericytes. In our work we demonstrated in vitro a cell-cell interaction between porcine brain capillary pericytes (PBCPs) and neutrophils, with further characterization of the initial contact between these cells. PBCPs increase ICAM-1 protein expression in response to the cytokine tumor necrosis factor-alpha (TNF-α). Furthermore, an increase in neutrophil adhesion to PBCPs was determined by immunofluorescence staining. By means of scanning force microscopy (SFM), we could additionally show that pericytes as well as neutrophils form cell extensions towards the neighboring cell. Interestingly, these extensions differ for different cell types.
Collapse
Affiliation(s)
- Christian Pieper
- Institute of Biochemistry, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Str. 2, 48149 Münster, Germany
| | - Hans-Joachim Galla
- Institute of Biochemistry, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Str. 2, 48149 Münster, Germany.
| |
Collapse
|
44
|
Direct cell-cell contact between mesenchymal stem cells and endothelial progenitor cells induces a pericyte-like phenotype in vitro. BIOMED RESEARCH INTERNATIONAL 2014; 2014:395781. [PMID: 24563864 PMCID: PMC3915932 DOI: 10.1155/2014/395781] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 11/24/2013] [Accepted: 12/15/2013] [Indexed: 01/10/2023]
Abstract
Tissue engineering techniques for the regeneration of large bone defects require sufficient vascularisation of the applied constructs to ensure a sufficient supply of oxygen and nutrients. In our previous work, prevascularised 3D scaffolds have been successfully established by coculture of bone marrow derived stem cells (MSCs) and endothelial progenitor cells (EPCs). We identified stabilising pericytes (PCs) as part of newly formed capillary-like structures. In the present study, we report preliminary data on the interactions between MSCs and EPCs, leading to the differentiation of pericyte-like cells. MSCs and EPCs were seeded in transwell cultures, direct cocultures, and single cultures. Cells were cultured for 10 days in IMDM 10% FCS or IMDM 5% FCS 5% platelet lysate medium. Gene expression of PC markers, CD146, NG2, αSMA, and PDGFR-β, was analysed using RT-PCR at days 0, 3, 7, and 10. The upregulation of CD146, NG2, and αSMA in MSCs in direct coculture with EPCs advocates the MSCs' differentiation towards a pericyte-like phenotype in vitro. These results suggest that pericyte-like cells derive from MSCs and that cell-cell contact with EPCs is an important factor for this differentiation process. These findings emphasise the concept of coculture strategies to promote angiogenesis for cell-based tissue engineered bone grafts.
Collapse
|
45
|
Pieper C, Marek JJ, Unterberg M, Schwerdtle T, Galla HJ. Brain capillary pericytes contribute to the immune defense in response to cytokines or LPS in vitro. Brain Res 2014; 1550:1-8. [PMID: 24418464 DOI: 10.1016/j.brainres.2014.01.004] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 01/03/2014] [Accepted: 01/04/2014] [Indexed: 01/22/2023]
Abstract
The prevention of an inflammation in the brain is one of the most important goals the body has to achieve. As pericytes are located on the abluminal side of the capillaries in the brain, their role in fighting against invading pathogens has been investigated in some points, mostly in their ability to behave like macrophages. Here we studied the potential of pericytes to react as immune cells under inflammatory conditions, especially regarding the expression of the inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), major histocompatibility complex II (MHC II) molecules, CD68, as well as the generation of reactive oxygen and nitrogen species (RONS), and their ability in phagocytosis. Quantitative real time PCR and western blot analysis showed that pericytes are able to increase the expression of typical inflammatory marker proteins after the stimulation with tumor necrosis factor-alpha (TNF-α), interleukin-1beta (IL-1β), interferon-gamma (IFN-γ), or lipopolysaccharides (LPS). Depending on the different specific pro-inflammatory factors pericytes changed the expression of alpha smooth muscle actin (αSMA), the most predominant pericyte marker. We conclude that the role of the pericytes within the immune system is regulated and fine-tuned by different cytokines strongly depending on the time when the cytokines are released and their concentration. The present results will help to understand the pericyte mediated defense mechanisms in the brain.
Collapse
Affiliation(s)
- Christian Pieper
- Institute of Biochemistry, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Strasse 2, 48149 Münster, Germany
| | - Jasmin Jacqueline Marek
- Institute of Biochemistry, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Strasse 2, 48149 Münster, Germany
| | - Marlies Unterberg
- Graduate School of Chemistry, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Strasse 10, 48149 Münster, Germany; Institute for Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany
| | - Tanja Schwerdtle
- Institute for Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany
| | - Hans-Joachim Galla
- Institute of Biochemistry, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Strasse 2, 48149 Münster, Germany.
| |
Collapse
|
46
|
Jönsson L, Friberg LG, Gatzinsky V, Jennische E, Sandin A, Abrahamsson K. Early Regenerative Response in the Intrathoracic Porcine Esophagus-The Impact of the Inflammation. Artif Organs 2013; 38:439-46. [DOI: 10.1111/aor.12216] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Linus Jönsson
- Department of Pediatric Surgery, The Queen Silvia Children's Hospital; The Sahlgrenska Academy at University of Gothenburg; Gothenburg Sweden
| | - Lars-Göran Friberg
- Department of Pediatric Surgery, The Queen Silvia Children's Hospital; The Sahlgrenska Academy at University of Gothenburg; Gothenburg Sweden
| | - Vladimir Gatzinsky
- Department of Pediatric Surgery, The Queen Silvia Children's Hospital; The Sahlgrenska Academy at University of Gothenburg; Gothenburg Sweden
| | - Eva Jennische
- Department of Medical Chemistry and Cell Biology, Institute of Biomedicine; University of Gothenburg; Gothenburg Sweden
| | - Anders Sandin
- Department of Pediatric Surgery, The Queen Silvia Children's Hospital; The Sahlgrenska Academy at University of Gothenburg; Gothenburg Sweden
| | - Kate Abrahamsson
- Department of Pediatric Surgery, The Queen Silvia Children's Hospital; The Sahlgrenska Academy at University of Gothenburg; Gothenburg Sweden
| |
Collapse
|
47
|
Birbrair A, Zhang T, Wang ZM, Messi ML, Enikolopov GN, Mintz A, Delbono O. Role of pericytes in skeletal muscle regeneration and fat accumulation. Stem Cells Dev 2013; 22:2298-314. [PMID: 23517218 PMCID: PMC3730538 DOI: 10.1089/scd.2012.0647] [Citation(s) in RCA: 203] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2012] [Accepted: 03/20/2013] [Indexed: 02/06/2023] Open
Abstract
Stem cells ensure tissue regeneration, while overgrowth of adipogenic cells may compromise organ recovery and impair function. In myopathies and muscle atrophy associated with aging, fat accumulation increases dysfunction, and after chronic injury, the process of fatty degeneration, in which muscle is replaced by white adipocytes, further compromises tissue function and environment. Some studies suggest that pericytes may contribute to muscle regeneration as well as fat formation. This work reports the presence of two pericyte subpopulations in the skeletal muscle and characterizes their specific roles. Skeletal muscle from Nestin-GFP/NG2-DsRed mice show two types of pericytes, Nestin-GFP-/NG2-DsRed+ (type-1) and Nestin-GFP+/NG2-DsRed+ (type-2), in close proximity to endothelial cells. We also found that both Nestin-GFP-/NG2-DsRed+ and Nestin-GFP+/NG2-DsRed+ cells colocalize with staining of two pericyte markers, PDGFRβ and CD146, but only type-1 pericyte express the adipogenic progenitor marker PDGFRα. Type-2 pericytes participate in muscle regeneration, while type-1 contribute to fat accumulation. Transplantation studies indicate that type-1 pericytes do not form muscle in vivo, but contribute to fat deposition in the skeletal muscle, while type-2 pericytes contribute only to the new muscle formation after injury, but not to the fat accumulation. Our results suggest that type-1 and type-2 pericytes contribute to successful muscle regeneration which results from a balance of myogenic and nonmyogenic cells activation.
Collapse
MESH Headings
- Adipogenesis/genetics
- Animals
- Antigens/genetics
- Antigens/metabolism
- CD146 Antigen/genetics
- CD146 Antigen/metabolism
- Cell Lineage/genetics
- Endothelial Cells/cytology
- Female
- Gene Expression
- Genes, Reporter
- Green Fluorescent Proteins/genetics
- Green Fluorescent Proteins/metabolism
- Luminescent Proteins/genetics
- Luminescent Proteins/metabolism
- Male
- Mice
- Mice, Nude
- Mice, Transgenic
- Muscle, Skeletal/cytology
- Muscle, Skeletal/injuries
- Muscle, Skeletal/metabolism
- Nestin/genetics
- Nestin/metabolism
- Pericytes/cytology
- Pericytes/metabolism
- Pericytes/transplantation
- Proteoglycans/genetics
- Proteoglycans/metabolism
- Receptor, Platelet-Derived Growth Factor alpha/genetics
- Receptor, Platelet-Derived Growth Factor alpha/metabolism
- Receptor, Platelet-Derived Growth Factor beta/genetics
- Receptor, Platelet-Derived Growth Factor beta/metabolism
- Regeneration/genetics
- Red Fluorescent Protein
Collapse
Affiliation(s)
- Alexander Birbrair
- Department of Internal Medicine-Gerontology, Wake Forest School of Medicine, Winston-Salem, North Carolina
- Department of Neuroscience Program, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Tan Zhang
- Department of Internal Medicine-Gerontology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Zhong-Min Wang
- Department of Internal Medicine-Gerontology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Maria Laura Messi
- Department of Internal Medicine-Gerontology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Grigori N. Enikolopov
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
- NBIC, Moscow Institute of Physics and Technology, Moscow, Russia
| | - Akiva Mintz
- Department of Neurosurgery, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Osvaldo Delbono
- Department of Internal Medicine-Gerontology, Wake Forest School of Medicine, Winston-Salem, North Carolina
- Department of Neuroscience Program, Wake Forest School of Medicine, Winston-Salem, North Carolina
| |
Collapse
|
48
|
Frenette PS, Pinho S, Lucas D, Scheiermann C. Mesenchymal stem cell: keystone of the hematopoietic stem cell niche and a stepping-stone for regenerative medicine. Annu Rev Immunol 2013; 31:285-316. [PMID: 23298209 DOI: 10.1146/annurev-immunol-032712-095919] [Citation(s) in RCA: 343] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Mesenchymal stem cells (MSCs) are self-renewing precursor cells that can differentiate into bone, fat, cartilage, and stromal cells of the bone marrow. Recent studies suggest that MSCs themselves are critical for forming a niche that maintains hematopoietic stem cells (HSCs). The ease by which human MSC-like and stromal progenitor cells can be isolated from the bone marrow and other tissues has led to the rapid development of clinical investigations exploring their anti-inflammatory properties, tissue preservation capabilities, and regenerative potential. However, the identity of genuine MSCs and their specific contributions to these various beneficial effects have remained enigmatic. In this article, we examine the definition of MSCs and discuss the importance of rigorously characterizing their stem cell activity. We review their role and that of other putative niche constituents in the regulation of bone marrow HSCs. Additionally, how MSCs and their stromal progeny alter immune function is discussed, as well as potential therapeutic implications.
Collapse
Affiliation(s)
- Paul S Frenette
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, New York 10461, USA.
| | | | | | | |
Collapse
|
49
|
Abstract
Non-union fracture is a pathological condition having some impairment of the cellular part of the repair: a reduction of MSC and of the osteoblastic activation. Non union is therefore a good indication for cell-based therapies using stem cells. We described the rational of this treatment and described the technique of autologous bone marrow concentrate implantation that was until now used. With the development of stem cell research and regenerative medicine, we believed that therapy based on cytotherapy has great potential. In this review, clinical applications of cytotherapy are summarized and analyzed. Current problems and future challenges are discussed.
Collapse
Affiliation(s)
- Y Homma
- Department of Orthopaedic Surgery, Juntendo University, Tokyo, Japan
| | | | | |
Collapse
|
50
|
Skeletal muscle pericyte subtypes differ in their differentiation potential. Stem Cell Res 2012; 10:67-84. [PMID: 23128780 DOI: 10.1016/j.scr.2012.09.003] [Citation(s) in RCA: 153] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Revised: 09/10/2012] [Accepted: 09/12/2012] [Indexed: 12/16/2022] Open
Abstract
Neural progenitor cells have been proposed as a therapy for central nervous system disorders, including neurodegenerative diseases and trauma injuries, however their accessibility is a major limitation. We recently isolated Tuj1+ cells from skeletal muscle culture of Nestin-GFP transgenic mice however whether they form functional neurons in the brain is not yet known. Additionally, their isolation from nontransgenic species and identification of their ancestors is unknown. This gap of knowledge precludes us from studying their role as a valuable alternative to neural progenitors. Here, we identified two pericyte subtypes, type-1 and type-2, using a double transgenic Nestin-GFP/NG2-DsRed mouse and demonstrated that Nestin-GFP+/Tuj1+ cells derive from type-2 Nestin-GFP+/NG2-DsRed+/CD146+ pericytes located in the skeletal muscle interstitium. These cells are bipotential as they generate either Tuj1+ cells when cultured with muscle cells or become "classical" α-SMA+pericytes when cultured alone. In contrast, type-1 Nestin-GFP-/NG2-DsRed+/CD146+ pericytes generate α-SMA+pericytes but not Tuj1+ cells. Interestingly, type-2 pericyte derived Tuj1+ cells retain some pericytic markers (CD146+/PDGFRβ+/NG2+). Given the potential application of Nestin-GFP+/NG2-DsRed+/Tuj1+ cells for cell therapy, we found a surface marker, the nerve growth factor receptor, which is expressed exclusively in these cells and can be used to identify and isolate them from mixed cell populations in nontransgenic species for clinical purposes.
Collapse
|