1
|
Pepin R, Ringuet J, Beaudet MJ, Bellenfant S, Galbraith T, Veillette H, Pouliot R, Berthod F. Sensory neurons increase keratinocyte proliferation through CGRP release in a tissue engineered in vitro model of innervation in psoriasis. Acta Biomater 2024; 182:1-13. [PMID: 38750917 DOI: 10.1016/j.actbio.2024.05.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/22/2024] [Accepted: 05/08/2024] [Indexed: 05/24/2024]
Abstract
Skin denervation has been shown to cause remission of psoriatic lesions in patients, which can reappear if reinnervation occurs. This effect can be induced by the activation of dendritic cells through sensory innervation. However, a direct effect of nerves on the proliferation of keratinocytes involved in the formation of psoriatic plaques has not been investigated. We developed, by tissue engineering, a model of psoriatic skin made of patient skin cells that showed increased keratinocyte proliferation and epidermal thickness compared to healthy controls. When this model was treated with CGRP, a neuropeptide released by sensory neurons, an increased keratinocyte proliferation was observed in the psoriatic skin model, but not in the control. When a sensory nerve network was incorporated in the psoriatic model and treated with capsaicin to induce neuropeptide release, an increase of keratinocyte proliferation was confirmed, which was blocked by a CGRP antagonist while no difference was noticed in the innervated healthy control. We showed that sensory neurons can participate directly to keratinocyte hyperproliferation in the formation of psoriatic lesions through the release of CGRP, independently of the immune system. Our unique tissue-engineered innervated psoriatic skin model could be a valuable tool to better understand the mechanism by which nerves may modulate psoriatic lesion formation in humans. STATEMENT OF SIGNIFICANCE: This study shows that keratinocytes extracted from patients' psoriatic skin retain, at least in part, the disease phenotype. Indeed, when combined in a 3D model of tissue-engineered psoriatic skin, keratinocytes exhibited a higher proliferation rate, and produced a thicker epidermis than a healthy skin control. In addition, their hyperproliferation was aggravated by a treatment with CGRP, a neuropeptide released by sensory nerves. In a innervated model of tissue-engineered psoriatic skin, an increase in keratinocyte hyperproliferation was also observed after inducing neurons to release neuropeptides. This effect was prevented by concomitant treatment with an antagonist to CGRP. Thus, this study shows that sensory nerves can directly participate to affect keratinocyte hyperproliferation in psoriasis through CGRP release.
Collapse
Affiliation(s)
- Rémy Pepin
- LOEX, CHU de Québec-Université Laval research center, Quebec City, Canada
| | - Julien Ringuet
- Division of Dermatology, CHU de Québec-Université Laval research center, Quebec City, Canada
| | | | - Sabrina Bellenfant
- LOEX, CHU de Québec-Université Laval research center, Quebec City, Canada
| | - Todd Galbraith
- LOEX, CHU de Québec-Université Laval research center, Quebec City, Canada
| | - Hélène Veillette
- Division of Dermatology, CHU de Québec-Université Laval research center, Quebec City, Canada
| | - Roxane Pouliot
- LOEX, CHU de Québec-Université Laval research center, Quebec City, Canada; Faculty of Pharmacy, Université Laval, Quebec City, Canada
| | - François Berthod
- LOEX, CHU de Québec-Université Laval research center, Quebec City, Canada; Department of Surgery, Faculty of Medicine, Université Laval, Quebec City, Canada.
| |
Collapse
|
2
|
Hajam EY, Panikulam P, Chu CC, Jayaprakash H, Majumdar A, Jamora C. The expanding impact of T-regs in the skin. Front Immunol 2022; 13:983700. [PMID: 36189219 PMCID: PMC9521603 DOI: 10.3389/fimmu.2022.983700] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/26/2022] [Indexed: 11/29/2022] Open
Abstract
As the interface between the body and the environment, the skin functions as the physical barrier against external pathogens and toxic agents. In addition, the skin is an immunologically active organ with a plethora of resident adaptive and innate immune cells, as well as effector molecules that provide another layer of protection in the form of an immune barrier. A major subpopulation of these immune cells are the Foxp3 expressing CD4 T cells or regulatory T cells (T-regs). The canonical function of T-regs is to keep other immune cells in check during homeostasis or to dissipate a robust inflammatory response following pathogen clearance or wound healing. Interestingly, recent data has uncovered unconventional roles that vary between different tissues and we will highlight the emerging non-lymphoid functions of cutaneous T-regs. In light of the novel functions of other immune cells that are routinely being discovered in the skin, their regulation by T-regs implies that T-regs have executive control over a broad swath of biological activities in both homeostasis and disease. The blossoming list of non-inflammatory functions, whether direct or indirect, suggests that the role of T-regs in a regenerative organ such as the skin will be a field ripe for discovery for decades to come.
Collapse
Affiliation(s)
- Edries Yousaf Hajam
- IFOM ETS- The AIRC Institute of Molecular Oncology Joint Research Laboratory, Centre for Inflammation and Tissue Homeostasis, Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, Karnataka, India
- School of Chemical and Biotechnology, Shanmugha Arts, Science, Technology and Research Academy (SASTRA) University, Thanjavur, Tamil Nadu, India
| | - Patricia Panikulam
- IFOM ETS- The AIRC Institute of Molecular Oncology Joint Research Laboratory, Centre for Inflammation and Tissue Homeostasis, Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, Karnataka, India
| | | | - Haarshadri Jayaprakash
- IFOM ETS- The AIRC Institute of Molecular Oncology Joint Research Laboratory, Centre for Inflammation and Tissue Homeostasis, Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, Karnataka, India
| | | | - Colin Jamora
- IFOM ETS- The AIRC Institute of Molecular Oncology Joint Research Laboratory, Centre for Inflammation and Tissue Homeostasis, Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, Karnataka, India
| |
Collapse
|
3
|
Xu X, Yu C, Xu L, Xu J. Emerging roles of keratinocytes in nociceptive transduction and regulation. Front Mol Neurosci 2022; 15:982202. [PMID: 36157074 PMCID: PMC9500148 DOI: 10.3389/fnmol.2022.982202] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/23/2022] [Indexed: 01/07/2023] Open
Abstract
Keratinocytes are the predominant block-building cells in the epidermis. Emerging evidence has elucidated the roles of keratinocytes in a wide range of pathophysiological processes including cutaneous nociception, pruritus, and inflammation. Intraepidermal free nerve endings are entirely enwrapped within the gutters of keratinocyte cytoplasm and form en passant synaptic-like contacts with keratinocytes. Keratinocytes can detect thermal, mechanical, and chemical stimuli through transient receptor potential ion channels and other sensory receptors. The activated keratinocytes elicit calcium influx and release ATP, which binds to P2 receptors on free nerve endings and excites sensory neurons. This process is modulated by the endogenous opioid system and endothelin. Keratinocytes also express neurotransmitter receptors of adrenaline, acetylcholine, glutamate, and γ-aminobutyric acid, which are involved in regulating the activation and migration, of keratinocytes. Furthermore, keratinocytes serve as both sources and targets of neurotrophic factors, pro-inflammatory cytokines, and neuropeptides. The autocrine and/or paracrine mechanisms of these mediators create a bidirectional feedback loop that amplifies neuroinflammation and contributes to peripheral sensitization.
Collapse
Affiliation(s)
- Xiaohan Xu
- Department of Anesthesiology, Chinese Academy of Medical Sciences & Peking Union Medical College Hospital, Beijing, China
| | - Catherine Yu
- Department of Pain Management, Anesthesiology Institute, Cleveland, OH, United States,Department of Inflammation and Immunity, Lerner Research Institute, Cleveland, OH, United States,Cleveland Clinic, Case Western Reserve University, Cleveland, OH, United States
| | - Li Xu
- Department of Anesthesiology, Chinese Academy of Medical Sciences & Peking Union Medical College Hospital, Beijing, China,*Correspondence: Li Xu,
| | - Jijun Xu
- Department of Pain Management, Anesthesiology Institute, Cleveland, OH, United States,Department of Inflammation and Immunity, Lerner Research Institute, Cleveland, OH, United States,Cleveland Clinic, Case Western Reserve University, Cleveland, OH, United States,*Correspondence: Li Xu,
| |
Collapse
|
4
|
Cutaneous innervation in impaired diabetic wound healing. Transl Res 2021; 236:87-108. [PMID: 34029747 PMCID: PMC8380642 DOI: 10.1016/j.trsl.2021.05.003] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/09/2021] [Accepted: 05/11/2021] [Indexed: 12/11/2022]
Abstract
Type 2 diabetes is associated with several potential comorbidities, among them impaired wound healing, chronic ulcerations, and the requirement for lower extremity amputation. Disease-associated abnormal cellular responses, infection, immunological and microvascular dysfunction, and peripheral neuropathy are implicated in the pathogenesis of the wound healing impairment and the diabetic foot ulcer. The skin houses a dense network of sensory nerve afferents and nerve-derived modulators, which communicate with epidermal keratinocytes and dermal fibroblasts bidirectionally to effect normal wound healing after trauma. However, the mechanisms through which cutaneous innervation modulates wound healing are poorly understood, especially in humans. Better understanding of these mechanisms may provide the basis for targeted treatments for chronic diabetic wounds. This review provides an overview of wound healing pathophysiology with a focus on neural involvement in normal and diabetic wound healing, as well as future therapeutic perspectives to address the unmet needs of diabetic patients with chronic wounds.
Collapse
|
5
|
Bae SJ, Ji JY, Oh JY, Won J, Ryu YH, Lee H, Jung HS, Park HJ. The Role of Skin Mast Cells in Acupuncture Induced Analgesia in Animals: A Preclinical Systematic Review and Meta-analysis. THE JOURNAL OF PAIN 2021; 22:1560-1577. [PMID: 34182104 DOI: 10.1016/j.jpain.2021.06.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 05/08/2021] [Accepted: 06/05/2021] [Indexed: 01/28/2023]
Abstract
While mast cells (MCs) are previously well-known as a pathological indicator of pain, their role in alleviating pain is recently emerged in acupuncture research. Thus, this study systematically reviews the role of MC in acupuncture analgesia. Animal studies on MC changes associated with the acupuncture analgesia were searched in PubMed and EMBASE. The MC number, degranulation ratio and pain threshold changes were collected as outcome measures for meta-analyses. Twenty studies were included with 13 suitable for meta-analysis, most with a moderate risk of bias. A significant MC degranulation after acupuncture was indicated in the normal and was significantly higher in the pain model. In the subgroup analysis by acupuncture type, manual (MA) and electrical (EA, each P < .00001) but not sham acupuncture had significant MC degranulation. Meta-regression revealed the linear proportionality between MC degranulation and acupuncture-induced analgesia (P < .001), which was found essential in MA (P < .00001), but not in EA (P = .45). MC mediators, such as adenosine and histamine, are involved in its mechanism. Taken together, skin MC is an essential factor for acupuncture-induced analgesia, which reveals a new aspect of MC as a pain alleviator. However, its molecular mechanism requires further study. PERSPECTIVE: This systematic review synthesizes data from studies that examined the contribution of skin MC in acupuncture analgesia. Current reports suggest a new role for skin MC and its mediators in pain alleviation and explain a peripheral mechanism of acupuncture analgesia, with suggesting the need of further studies to confirm these findings.
Collapse
Affiliation(s)
- Sun-Jeong Bae
- Acupuncture and Meridian Science Research Center (AMSRC), Kyung Hee University, Seoul, Republic of Korea; College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Jeong-Yeon Ji
- Acupuncture and Meridian Science Research Center (AMSRC), Kyung Hee University, Seoul, Republic of Korea; College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Ju-Young Oh
- Acupuncture and Meridian Science Research Center (AMSRC), Kyung Hee University, Seoul, Republic of Korea; Department of Korean Medical Science, Graduate School of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Jiyoon Won
- Acupuncture and Meridian Science Research Center (AMSRC), Kyung Hee University, Seoul, Republic of Korea; Department of Korean Medical Science, Graduate School of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Yeon-Hee Ryu
- Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
| | - Hyangsook Lee
- Acupuncture and Meridian Science Research Center (AMSRC), Kyung Hee University, Seoul, Republic of Korea; Department of Korean Medical Science, Graduate School of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Hyuk-Sang Jung
- Department of Korean Medical Science, Graduate School of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Hi-Joon Park
- Acupuncture and Meridian Science Research Center (AMSRC), Kyung Hee University, Seoul, Republic of Korea; Department of Korean Medical Science, Graduate School of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea.
| |
Collapse
|
6
|
Ayasse MT, Buddenkotte J, Alam M, Steinhoff M. Role of neuroimmune circuits and pruritus in psoriasis. Exp Dermatol 2020; 29:414-426. [PMID: 31954075 DOI: 10.1111/exd.14071] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 12/09/2019] [Accepted: 12/31/2019] [Indexed: 12/19/2022]
Abstract
Psoriasis is a chronic inflammatory skin disease presenting with an array of clinical phenotypes, often associated with pruritus. Environmental and psychological stressors can exacerbate psoriasis symptoms and provoke flares. Recent studies suggest a dysfunctional hypothalamic-pituitary-adrenal (HPA) axis in some patients with psoriasis that can result in immune dysregulation. The immune system, in turn, can communicate with the nervous system to induce, maintain or aggravate psoriasis. In the skin, peripheral sensory as well as autonomic nerves control release of inflammatory mediators from dendritic cells, mast cells, T cells or keratinocytes, thereby modulating inflammatory responses and, in case of sensory nerves, pruritus. In response to the environment or stress, cytokines, chemokines, proteases, and neuropeptides fluctuate in psoriasis and influence immune responses as well as nerve activity. Furthermore, immune cells communicate with sensory nerves which control release of cytokines, such as IL-23, that are ultimately involved in psoriasis pathogenesis. Nerves also communicate with keratinocytes to induce epidermal proliferation. Notably, in contrast to recent years the debilitating problem of pruritus in psoriasis has been increasingly appreciated. Thus, investigating neuroimmune communication in psoriasis will not only expand our knowledge about the impact of sensory nerves in inflammation and pruritus and give new insights into the impact of environmental factors activating neuroimmune circuits or of stress in psoriasis, but may also lead to novel therapies. This review summarizes the relevant literature on the role of neuroimmune circuits, stress and how the central HPA axis and its peripheral equivalent in the skin, impact psoriasis.
Collapse
Affiliation(s)
- Marissa T Ayasse
- Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA
| | - Jörg Buddenkotte
- Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA.,Department of Dermatology and Venereology, Hamad Medical Corporation, Doha, Qatar.,Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Majid Alam
- Department of Dermatology and Venereology, Hamad Medical Corporation, Doha, Qatar.,Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Martin Steinhoff
- Department of Dermatology and Venereology, Hamad Medical Corporation, Doha, Qatar.,Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar.,Weill Cornell Medicine-Qatar, Doha, Qatar.,Medical School, Qatar University, Doha, Qatar.,School of Medicine, Weill Cornell University, New York, NY, USA
| |
Collapse
|
7
|
Gross AR, Theoharides TC. Chondroitin sulfate inhibits secretion of TNF and CXCL8 from human mast cells stimulated by IL-33. Biofactors 2019; 45:49-61. [PMID: 30521103 DOI: 10.1002/biof.1464] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 08/14/2018] [Accepted: 08/21/2018] [Indexed: 01/19/2023]
Abstract
Glycosaminoglycans (GAGs) are linear, highly negatively charged carbohydrate chains present in connective tissues. Chondroitin sulfate (CS) and heparin (Hep) are also found in the numerous secretory granules of mast cells (MC), tissue immune cells involved in allergic and inflammatory reactions. CS and Hep may inhibit secretion of histamine from rat connective tissue MC, but their effect on human MC remains unknown. Human LAD2 MC were pre-incubated with CS, Hep, or dermatan sulfate (DS) before being stimulated by either the peptide substance P (SP, 2 μM) or the cytokine IL-33 (10 ng/mL). Preincubation with CS had no effect on MC degranulation stimulated by SP, but inhibited TNF (60%) and CXCL8 (45%) secretion from LAD2 cells stimulated by IL-33. Fluorescein-conjugated CS (CS-F) was internalized by LAD2 cells only at 37 °C, but not 4 °C, indicating it occurred by endocytosis. DS and Hep inhibited IL-33-stimulated secretion of TNF and CXCL8 to a similar extent as CS. None of the GAGs tested inhibited IL-33-stimulated gene expression of either TNF or CXCL8. There was no effect of CS on ionomycin-stimulated calcium influx. There was also no effect of CS on surface expression of the IL-33 receptor, ST2. Neutralization of the hyaluronan receptor CD44 did not affect the internalization of CS-F. The findings in this article show that CS inhibits secretion of TNF and CXCL8 from human cultured MC stimulated by IL-33. CS could be formulated for systemic or topical treatment of allergic or inflammatory diseases, such as atopic dermatitis, cutaneous mastocytosis, and psoriasis. © 2018 BioFactors, 45(1):49-61, 2019.
Collapse
Affiliation(s)
- Amanda R Gross
- Laboratory of Molecular Immunopharmacology and Drug Discovery, Department of Immunology, Tufts University School of Medicine, Boston, MA, USA
- Graduate Program in Pharmacology and Experimental Therapeutics, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA, USA
| | - Theoharis C Theoharides
- Laboratory of Molecular Immunopharmacology and Drug Discovery, Department of Immunology, Tufts University School of Medicine, Boston, MA, USA
- Graduate Program in Pharmacology and Experimental Therapeutics, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA, USA
- Department of Internal Medicine, Tufts University School of Medicine and Tufts Medical Center, Boston, MA, USA
| |
Collapse
|
8
|
Neuropeptides, Inflammation, and Diabetic Wound Healing: Lessons from Experimental Models and Human Subjects. CONTEMPORARY DIABETES 2018. [DOI: 10.1007/978-3-319-89869-8_8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
9
|
TRPV1: A Potential Therapeutic Target in Type 2 Diabetes and Comorbidities? Trends Mol Med 2017; 23:1002-1013. [DOI: 10.1016/j.molmed.2017.09.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 09/07/2017] [Accepted: 09/14/2017] [Indexed: 12/14/2022]
|
10
|
Grace SA, Sutton AM, Abraham N, Armbrecht ES, Vidal CI. Presence of Mast Cells and Mast Cell Degranulation in Scalp Biopsies of Telogen Effluvium. Int J Trichology 2017; 9:25-29. [PMID: 28761261 PMCID: PMC5514792 DOI: 10.4103/ijt.ijt_43_16] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Telogen effluvium (TE) is a type of acquired, diffuse alopecia that occurs due to an abnormal shift of scalp hair follicles from anagen to telogen, leading to premature shedding of hair. Previous studies have suggested the existence of a neuroimmunologic "brain-hair follicle" axis, in which mast cells have been implicated as an important link between the nervous system and immunologic system. OBJECTIVE The current study sought to investigate the role of mast cell presence and mast cell degranulation in the pathogenesis of TE. MATERIALS AND METHODS Mast cells were counted using Giemsa and tryptase immunohistochemical stains in scalp biopsy specimens with the pathologic diagnosis of TE (TE, n = 10), alopecia areata (AA, n = 7), and androgenic alopecia (ANDRO, n = 9). RESULTS We found significant (P < 0.001) group-level differences between the mean mast cell counts per high-power fields for each type of alopecia studied. Tukey post hoc analysis showed the mean mast cell count for TE to be significantly larger than AA for both Giemsa (P = 0.002) and tryptase (P = 0.006); significantly larger than ANDRO for both Giemsa (P < 0.001) and tryptase (P < 0.001); and significantly larger when compared to normal scalp skin for both Giemsa (P < 0.001) and tryptase (P < 0.001). No significant difference of mean mast cell counts was observed for AA compared to ANDRO for Giemsa (P = 0.373) or tryptase (P = 0.598) stains. CONCLUSION Our findings suggest that mast cells could play a role in mediating stress-induced hair loss seen in TE.
Collapse
Affiliation(s)
- Shane A Grace
- Department of Dermatology, Saint Louis University, St. Louis, MO, USA
| | - Angela M Sutton
- Department of Dermatology, Saint Louis University, St. Louis, MO, USA
| | - Nina Abraham
- Department of Dermatology, Saint Louis University, St. Louis, MO, USA
| | - Eric S Armbrecht
- Center for Health Outcomes Research, Saint Louis University, St. Louis, MO, USA
| | - Claudia I Vidal
- Department of Dermatology, Saint Louis University, St. Louis, MO, USA
| |
Collapse
|
11
|
Geyfman M, Plikus MV, Treffeisen E, Andersen B, Paus R. Resting no more: re-defining telogen, the maintenance stage of the hair growth cycle. Biol Rev Camb Philos Soc 2015; 90:1179-96. [PMID: 25410793 PMCID: PMC4437968 DOI: 10.1111/brv.12151] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 09/12/2014] [Accepted: 10/07/2014] [Indexed: 12/17/2022]
Abstract
The hair follicle (HF) represents a prototypic ectodermal-mesodermal interaction system in which central questions of modern biology can be studied. A unique feature of these stem-cell-rich mini-organs is that they undergo life-long, cyclic transformations between stages of active regeneration (anagen), apoptotic involution (catagen), and relative proliferative quiescence (telogen). Due to the low proliferation rate and small size of the HF during telogen, this stage was conventionally thought of as a stage of dormancy. However, multiple lines of newly emerging evidence show that HFs during telogen are anything but dormant. Here, we emphasize that telogen is a highly energy-efficient default state of the mammalian coat, whose function centres around maintenance of the hair fibre and prompt responses to its loss. While actively retaining hair fibres with minimal energy expenditure, telogen HFs can launch a new regeneration cycle in response to a variety of stimuli originating in their autonomous micro-environment (including its stem cell niche) as well as in their external tissue macro-environment. Regenerative responses of telogen HFs change as a function of time and can be divided into two sub-stages: early 'refractory' and late 'competent' telogen. These changing activities are reflected in hundreds of dynamically regulated genes in telogen skin, possibly aimed at establishing a fast response-signalling environment to trauma and other disturbances of skin homeostasis. Furthermore, telogen is an interpreter of circadian output in the timing of anagen initiation and the key stage during which the subsequent organ regeneration (anagen) is actively prepared by suppressing molecular brakes on hair growth while activating pro-regenerative signals. Thus, telogen may serve as an excellent model system for dissecting signalling and cellular interactions that precede the active 'regenerative mode' of tissue remodeling. This revised understanding of telogen biology also points to intriguing new therapeutic avenues in the management of common human hair growth disorders.
Collapse
Affiliation(s)
- Mikhail Geyfman
- Department of Ophthalmology, University of California, Irvine, CA 92697, USA
| | - Maksim V. Plikus
- Department of Developmental and Cell Biology, Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, CA 92697, USA
| | - Elsa Treffeisen
- Department of Dermatology, Kligman Labouratories, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Bogi Andersen
- Department of Biological Chemistry, University of California Irvine, CA 92697, USA
- Department of Medicine, University of California Irvine, CA 92697, USA
- Institute for Genomics and Bioinformatics, University of California, Irvine, CA 92697, USA
| | - Ralf Paus
- Department of Dermatology, University of Luebeck, Luebeck, Germany
- Institute of Inflammation and Repair, and Dermatology Centre, University of Manchester, Stopford Building, Oxford Road, Manchester M13 9PL, UK
| |
Collapse
|
12
|
Rieger S, Zhao H, Martin P, Abe K, Lisse TS. The role of nuclear hormone receptors in cutaneous wound repair. Cell Biochem Funct 2014; 33:1-13. [PMID: 25529612 DOI: 10.1002/cbf.3086] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 11/06/2014] [Accepted: 11/14/2014] [Indexed: 12/12/2022]
Abstract
The cutaneous wound repair process involves balancing a dynamic series of events ranging from inflammation, oxidative stress, cell migration, proliferation, survival and differentiation. A complex series of secreted trophic factors, cytokines, surface and intracellular proteins are expressed in a temporospatial manner to restore skin integrity after wounding. Impaired initiation, maintenance or termination of the tissue repair processes can lead to perturbed healing, necrosis, fibrosis or even cancer. Nuclear hormone receptors (NHRs) in the cutaneous environment regulate tissue repair processes such as fibroplasia and angiogenesis. Defects in functional NHRs and their ligands are associated with the clinical phenotypes of chronic non-healing wounds and skin endocrine disorders. The functional relationship between NHRs and skin niche cells such as epidermal keratinocytes and dermal fibroblasts is pivotal for successful wound closure and permanent repair. The aim of this review is to delineate the cutaneous effects and cross-talk of various nuclear receptors upon injury towards functional tissue restoration.
Collapse
Affiliation(s)
- Sandra Rieger
- Center for Regenerative Biology and Medicine, MDI Biological Laboratory, Salisbury Cove, ME, USA
| | | | | | | | | |
Collapse
|
13
|
Blais M, Mottier L, Germain MA, Bellenfant S, Cadau S, Berthod F. Sensory neurons accelerate skin reepithelialization via substance P in an innervated tissue-engineered wound healing model. Tissue Eng Part A 2014; 20:2180-8. [PMID: 24716723 DOI: 10.1089/ten.tea.2013.0535] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Keratinocytes are responsible for reepithelialization and restoration of the epidermal barrier during wound healing. The influence of sensory neurons on this mechanism is not fully understood. We tested whether sensory neurons influence wound closure via the secretion of the neuropeptide substance P (SP) with a new tissue-engineered wound healing model made of an upper-perforated epidermal compartment reconstructed with human keratinocytes expressing green fluorescent protein, stacked over a dermal compartment, innervated or not with sensory neurons. We showed that sensory neurons secreted SP in the construct and induced a two times faster wound closure in vitro. This effect was partially reproduced by addition of SP in the model without neurons, and completely blocked by a treatment with a specific antagonist of the SP receptor neurokinin-1 expressed by keratinocytes. However, this antagonist did not compromise wound closure compared with the control. Similar results were obtained when the model with or without neurons was transplanted on CD1 mice, while wound closure occurred faster. We conclude that sensory neurons play an important, but not essential, role in wound healing, even in absence of the immune system. This model is promising to study the influence of the nervous system on reepithelialization in normal and pathological conditions.
Collapse
Affiliation(s)
- Mathieu Blais
- 1 Centre LOEX de l'Université Laval , Centre de recherche du CHU de Québec, Québec, Canada
| | | | | | | | | | | |
Collapse
|
14
|
Chéret J, Lebonvallet N, Carré JL, Misery L, Le Gall-Ianotto C. Role of neuropeptides, neurotrophins, and neurohormones in skin wound healing. Wound Repair Regen 2013; 21:772-88. [PMID: 24134750 DOI: 10.1111/wrr.12101] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 07/01/2013] [Indexed: 12/01/2022]
Abstract
Due to the close interactions between the skin and peripheral nervous system, there is increasing evidence that the cutaneous innervation is an important modulator of the normal wound healing process. The communication between sensory neurons and skin cells involves a variety of molecules (neuropeptides, neurohormones, and neurotrophins) and their specific receptors expressed by both neuronal and nonneuronal skin cells. It is well established that neurotransmitters and nerve growth factors released in skin have immunoregulatory roles and can exert mitogenic actions; they could also influence the functions of the different skin cell types during the wound healing process.
Collapse
Affiliation(s)
- Jérémy Chéret
- Laboratory of Neurosciences of Brest (EA4685), University of Western Brittany, Brest, France
| | | | | | | | | |
Collapse
|
15
|
Wei T, Guo TZ, Li WW, Hou S, Kingery WS, Clark JD. Keratinocyte expression of inflammatory mediators plays a crucial role in substance P-induced acute and chronic pain. J Neuroinflammation 2012; 9:181. [PMID: 22824437 PMCID: PMC3458986 DOI: 10.1186/1742-2094-9-181] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Accepted: 06/29/2012] [Indexed: 11/10/2022] Open
Abstract
Tibia fracture in rats followed by cast immobilization leads to nociceptive, trophic, vascular and bone-related changes similar to those seen in Complex Regional Pain Syndrome (CRPS). Substance P (SP) mediated neurogenic inflammation may be responsible for some of the signs of CRPS in humans. We therefore hypothesized that SP acting through the SP receptor (NK1) leads to the CRPS-like changes found in the rat model. In the present study, we intradermally injected rats with SP and monitored hindpaw mechanical allodynia, temperature, and thickness as well as tissue levels of tumor necrosis factor-α (TNF-α), interleukin 1β (IL-1β), interleukin 6 (IL-6), and nerve growth factor-β (NGF) for 72 h. Anti-NGF antibody was utilized to block the effects of SP-induced NGF up-regulation. Fracture rats treated with the selective NK1 receptor antagonist LY303870 prior to cast removal were assessed for BrdU, a DNA synthesis marker, incorporation in skin cells to examine cellular proliferation. Bone microarchitecture was measured using micro computed tomography (μCT). We observed that: (1) SP intraplantar injection induced mechanical allodynia, warmth and edema as well as the expression of nociceptive mediators in the hindpaw skin of normal rats, (2) LY303870 administered intraperitoneally after fracture attenuated allodynia, hindpaw unweighting, warmth, and edema, as well as cytokine and NGF expression, (3) LY303870 blocked fracture-induced epidermal thickening and BrdU incorporation after fracture, (4) anti-NGF antibody blocked SP-induced allodynia but not warmth or edema, and (5) LY303870 had no effect on bone microarchitecture. Collectively our data indicate that SP acting through NK1 receptors supports the nociceptive and vascular components of CRPS, but not the bone-related changes.
Collapse
Affiliation(s)
- Tzuping Wei
- Physical Medicine and Rehabilitation Service, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304, USA
| | | | | | | | | | | |
Collapse
|
16
|
Theoharides TC, Alysandratos KD, Angelidou A, Delivanis DA, Sismanopoulos N, Zhang B, Asadi S, Vasiadi M, Weng Z, Miniati A, Kalogeromitros D. Mast cells and inflammation. BIOCHIMICA ET BIOPHYSICA ACTA 2012; 1822:21-33. [PMID: 21185371 PMCID: PMC3318920 DOI: 10.1016/j.bbadis.2010.12.014] [Citation(s) in RCA: 551] [Impact Index Per Article: 45.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Revised: 12/05/2010] [Accepted: 12/16/2010] [Indexed: 12/28/2022]
Abstract
Mast cells are well known for their role in allergic and anaphylactic reactions, as well as their involvement in acquired and innate immunity. Increasing evidence now implicates mast cells in inflammatory diseases where they are activated by non-allergic triggers, such as neuropeptides and cytokines, often exerting synergistic effects as in the case of IL-33 and neurotensin. Mast cells can also release pro-inflammatory mediators selectively without degranulation. In particular, IL-1 induces selective release of IL-6, while corticotropin-releasing hormone secreted under stress induces the release of vascular endothelial growth factor. Many inflammatory diseases involve mast cells in cross-talk with T cells, such as atopic dermatitis, psoriasis and multiple sclerosis, which all worsen by stress. How mast cell differential responses are regulated is still unresolved. Preliminary evidence suggests that mitochondrial function and dynamics control mast cell degranulation, but not selective release. Recent findings also indicate that mast cells have immunomodulatory properties. Understanding selective release of mediators could explain how mast cells participate in numerous diverse biologic processes, and how they exert both immunostimulatory and immunosuppressive actions. Unraveling selective mast cell secretion could also help develop unique mast cell inhibitors with novel therapeutic applications. This article is part of a Special Issue entitled: Mast cells in inflammation.
Collapse
Affiliation(s)
- Theoharis C Theoharides
- Laboratory of Molecular Immunopharmacology and Drug Discovery, Department of Molecular Physiology and Pharmacology, Tufts University School of Medicine, Boston, MA 02111, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Wang Z, Lai Y, Bernard JJ, Macleod DT, Cogen AL, Moss B, Di Nardo A. Skin mast cells protect mice against vaccinia virus by triggering mast cell receptor S1PR2 and releasing antimicrobial peptides. THE JOURNAL OF IMMUNOLOGY 2011; 188:345-57. [PMID: 22140255 DOI: 10.4049/jimmunol.1101703] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Mast cells (MCs) are well-known effectors of allergic reactions and are considered sentinels in the skin and mucosa. In addition, through their production of cathelicidin, MCs have the capacity to oppose invading pathogens. We therefore hypothesized that MCs could act as sentinels in the skin against viral infections using antimicrobial peptides. In this study, we demonstrate that MCs react to vaccinia virus (VV) and degranulate using a membrane-activated pathway that leads to antimicrobial peptide discharge and virus inactivation. This finding was supported using a mouse model of viral infection. MC-deficient (Kit(wsh-/-)) mice were more susceptible to skin VV infection than the wild type animals, whereas Kit(wsh-/-) mice reconstituted with MCs in the skin showed a normal response to VV. Using MCs derived from mice deficient in cathelicidin antimicrobial peptide, we showed that antimicrobial peptides are one important antiviral granule component in in vivo skin infections. In conclusion, we demonstrate that MC presence protects mice from VV skin infection, MC degranulation is required for protecting mice from VV, neutralizing Ab to the L1 fusion entry protein of VV inhibits degranulation apparently by preventing S1PR2 activation by viral membrane lipids, and antimicrobial peptide release from MC granules is necessary to inactivate VV infectivity.
Collapse
Affiliation(s)
- Zhenping Wang
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
Substance P (SP) induces expression of functional corticotropin-releasing hormone receptor-1 (CRHR-1) in human mast cells. J Invest Dermatol 2011; 132:324-9. [PMID: 22089831 PMCID: PMC3471564 DOI: 10.1038/jid.2011.334] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Corticotropin-releasing hormone (CRH) is secreted under stress and regulates the hypothalamic-pituitary-adrenal axis. However, CRH is also secreted outside the brain where it exerts proinflammatory effects through activation of mast cells, which are increasingly implicated in immunity and inflammation. Substance P (SP) is also involved in inflammatory diseases. Human LAD2 leukemic mast cells express only CRHR-1 mRNA weakly. Treatment of LAD2 cells with SP (0.5-2 μM) for 6 hours significantly increases corticotropin-releasing hormone receptor-1 (CRHR-1) mRNA and protein expression. Addition of CRH (1 μM) to LAD2 cells, which are "primed" with SP for 48 hours and then washed, induces synthesis and release of IL-8, tumor necrosis factor (TNF), and vascular endothelial growth factor (VEGF) 24 hours later. These effects are blocked by pretreatment with an NK-1 receptor antagonist. Treatment of LAD2 cells with CRH (1 μM) for 6 hours induces gene expression of NK-1 as compared with controls. However, repeated stimulation of mast cells with CRH (1 μM) leads to downregulation of CRHR-1 and upregulation in NK-1 gene expression. These results indicate that SP can stimulate mast cells and also increase expression of functional CRHR-1, whereas CRH induces NK-1 gene expression. These results may explain CRHR-1 and NK-1 expression in lesional skin of psoriatic patients.
Collapse
|
19
|
Kingery WS. Role of neuropeptide, cytokine, and growth factor signaling in complex regional pain syndrome. PAIN MEDICINE 2011; 11:1239-50. [PMID: 20704672 DOI: 10.1111/j.1526-4637.2010.00913.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Complex regional pain syndrome (CRPS) patients exhibit multiorgan pathology and inflammatory changes after limb trauma. The objective of this study was to identify how neuro-cutaneous signaling is facilitated after fracture and examine how this altered signaling contributes to the development of CRPS-like changes in the injured limb. DESIGN AND METHODS These studies used a rat tibia fracture model that reliably generates hindpaw warmth, edema, increased spontaneous protein extravasation, allodynia, unweighting, and periarticular bone loss, a symptom complex resembling the vascular, nociceptive, and bone sequelae observed in early CRPS. Substance P (SP)-evoked extravasation responses, EIA and PCR assays, and immunohistochemical techniques were used to evaluate post-fracture up-regulation of neuro-cutaneous inflammatory signaling. A SP NK1 receptor antagonist was used to inhibit CRPS-like changes in the fracture model. RESULTS In the rat fracture model the SP-evoked extravasation and edema responses were enhanced. SP NK1 receptor expression also increased in the microvascular endothelial cells in the fracture hindpaw skin, leading us to postulate that NK1 receptor up-regulation mediates the facilitated extravasation and edema responses observed after SP injection. The NK1 receptor antagonist LY303870 reversed hindpaw warmth, edema, increased vascular permeability, allodynia, and unweighting observed after tibia fracture in rats. There was also increased keratinocyte proliferation and NK1 receptor expression in the fracture hindpaw. Similar to the rat fracture model, we have observed increased epidermal thickness and keratinocyte NK1 expression in skin biopsies from CRPS patients. There was an up-regulation of inflammatory cytokine expression in the rat hindpaw skin and in keratinocytes at 4 weeks post-fracture. These inflammatory mediators appear to play a crucial role in the development of pain behavior after fracture, as we have repeatedly demonstrated that inhibition of cytokine, and NGF signaling prevents the allodynia and attenuates unweighting at 4 weeks post-fracture. LY303870 treatment also reversed post-fracture keratinocyte proliferation, suggesting that SP might be acting as an intermediate mediator in the inflammatory cascade by causing the up-regulation of inflammatory proteins that can directly sensitize nociceptors in the skin and joints. CONCLUSIONS Collectively, these data suggest that neuro-cutaneous signaling is up-regulated and can mediate inflammatory changes observed in the hindpaw skin of the fracture rat model and in human CRPS skin. Future translational and clinical studies mapping these inflammatory changes may identify novel therapeutic targets for preventing post-traumatic pain from transitioning into chronic CRPS.
Collapse
Affiliation(s)
- Wade S Kingery
- Physical Medicine and Rehabilitation Service, Veterans Affairs Palo Alto Health Care System, Palo Alto, California 94304, USA.
| |
Collapse
|
20
|
Li WW, Guo TZ, Li XQ, Kingery WS, Clark DJ. Fracture induces keratinocyte activation, proliferation, and expression of pro-nociceptive inflammatory mediators. Pain 2010; 151:843-852. [PMID: 20934254 DOI: 10.1016/j.pain.2010.09.026] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2010] [Revised: 09/15/2010] [Accepted: 09/16/2010] [Indexed: 11/17/2022]
Abstract
Tibia fracture in rats results in chronic vascular and nociceptive changes in the injured limb resembling complex regional pain syndrome (CRPS) and up-regulates expression of interleukin 1β (IL-1β), interleukin IL-6 (IL-6), tumor necrosis factor-α (TNF-α), and nerve growth factor-β (NGF-β) in the hindpaw skin. When fractured rats are treated with cytokine or NGF inhibitors nociceptive sensitization is blocked. Because there is no leukocyte infiltration in the hindpaw skin we postulated that resident skin cells produce the inflammatory mediators causing nociceptive sensitization after fracture. To test this hypothesis rats underwent distal tibia fracture and hindlimb casting for 4 weeks, then the hindpaw skin was harvested and immunostained for keratin, cytokines and NGF. BrdU staining was used to evaluate cell proliferation. Hindpaw nociceptive thresholds, edema, and temperature were tested before and up to 96h after intraplantar injections of IL-6 and TNF-α. Tibia fracture caused keratinocyte activation, proliferation, and up-regulated IL-1β, IL-6, TNF-α and NGF-β protein expression in the hindpaw keratinocytes. Local injections of IL-6 and TNF-α induced hindpaw mechanical allodynia lasting for several days and modest increases in temperature and edema. These data indicate that activated keratinocytes proliferate and express IL-1β, IL-6, TNF-α, and NGF-β after fracture and that excess amounts of inflammatory mediators in the skin cause sustained nociceptive sensitization. This is the first study demonstrating in vivo keratinocyte expression of IL-6, TNF-α and NGF-β in a CRPS model and we postulate that the keratinocyte is the primary cellular source for the inflammatory signals mediating cutaneous nociceptive sensitization in early CRPS.
Collapse
Affiliation(s)
- Wen-Wu Li
- Physical Medicine and Rehabilitation Service, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA Department of Orthopedic Surgery, Stanford University School of Medicine, Stanford, CA, USA Anesthesiology Service, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA Department of Anesthesia, Stanford University School of Medicine, Stanford, CA, USA
| | | | | | | | | |
Collapse
|
21
|
IL-33 augments substance P-induced VEGF secretion from human mast cells and is increased in psoriatic skin. Proc Natl Acad Sci U S A 2010; 107:4448-53. [PMID: 20160089 DOI: 10.1073/pnas.1000803107] [Citation(s) in RCA: 249] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The peptide substance P (SP) has been implicated in inflammatory conditions, such as psoriasis, where mast cells and VEGF are increased. A relationship between SP and VEGF has not been well studied, nor has any interaction with the proinflammatory cytokines, especially IL-33. Here we report that SP (0.1-10 microM) induces gene expression and secretion of VEGF from human LAD2 mast cells and human umbilical core blood-derived cultured mast cells (hCBMCs). This effect is significantly increased by coadministration of IL-33 (5-100 ng/mL) in both cell types. The effect of SP on VEGF release is inhibited by treatment with the NK-1 receptor antagonist 733,060. SP rapidly increases cytosolic calcium, and so does IL-33 to a smaller extent; the addition of IL-33 augments the calcium increase. SP-induced VEGF production involves calcium-dependent PKC isoforms, as well as the ERK and JNK MAPKs. Gene expression of IL-33 and histidine decarboxylase (HDC), an indicator of mast cell presence/activation, is significantly increased in affected and unaffected (at least 15 cm away from the lesion) psoriatic skin, as compared with normal control skin. Immunohistochemistry indicates that IL-33 is associated with endothelial cells in both the unaffected and affected sites, but is stronger and also associated with immune cells in the affected site. These results imply that functional interactions among SP, IL-33, and mast cells leading to VEGF release contribute to inflammatory conditions, such as the psoriasis, a nonallergic hyperproliferative skin inflammatory disorder with a neurogenic component.
Collapse
|
22
|
Wei T, Li WW, Guo TZ, Zhao R, Wang L, Clark DJ, Oaklander AL, Schmelz M, Kingery WS. Post-junctional facilitation of Substance P signaling in a tibia fracture rat model of complex regional pain syndrome type I. Pain 2009; 144:278-286. [PMID: 19464118 DOI: 10.1016/j.pain.2009.04.020] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2008] [Revised: 04/02/2009] [Accepted: 04/20/2009] [Indexed: 11/19/2022]
Abstract
Tibia fracture in rats evokes nociceptive, vascular, and bone changes resembling complex regional pain syndrome (CRPS). Substance P (SP) signaling contributes to the hindpaw warmth, increased vascular permeability, and edema observed in this model, suggesting that neurogenic inflammatory responses could be enhanced after fracture. Four weeks after tibia fracture we measured SP and calcitonin gene-related peptide (CGRP) protein levels in the sciatic nerve and serum. Hindpaw skin extravasation responses and SP receptor (NK1), CGRP receptor (calcitonin receptor-like receptor, CRLR) and neutral endopeptidase (NEP) protein levels were also determined. Gene expression levels of these peptides, receptors, and peptidase were examined in the DRG and skin. Spontaneous and intravenous SP-evoked extravasation responses were increased ipsilateral, but not contralateral to the fracture. Fracture increased SP and CGRP gene expression in the ipsilateral L4,L5 DRG and neuropeptide protein levels in the sciatic nerve and in serum, but had no effect on electrically evoked SP and CGRP release. NK1 receptor expression was increased in the ipsilateral hindpaw skin keratinocytes and endothelial cells after injury, but CRLR and NEP expression were unchanged. Fracture also increased epidermal thickness, but had no effect on epidermal skin neurite counts. These results demonstrate that spontaneous and intravenous SP-evoked extravasation responses are enhanced in the ipsilateral hindlimb after fracture and that fracture chronically increases the expression of endothelial and keratinocyte NK1 receptors in the injured limb. We postulate that SP activation of these up-regulated NK1 receptors results in skin warmth, protein leakage, edema, and keratinocyte proliferation in the injured limb.
Collapse
Affiliation(s)
- Tzuping Wei
- Physical Medicine and Rehabilitation Service, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA Department of Orthopedic Surgery, Stanford University School of Medicine, Stanford, CA, USA Anesthesiology Service, Veterans Affairs Palo Alto Health Care System Palo Alto, CA, USA Department of Anesthesiology, Stanford University School of Medicine, Stanford, CA, USA Departments of Neurology and Pathology, Harvard Medical School, Boston, MA, USA Department of Anesthesiology and Intensive Care Medicine, University of Heidelberg, Mannheim, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Terkelsen AJ, Bach FW, Jensen TS. Experimental forearm immobilization in humans reduces capsaicin-induced pain and flare. Brain Res 2009; 1263:43-9. [DOI: 10.1016/j.brainres.2009.01.054] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2008] [Revised: 12/21/2008] [Accepted: 01/23/2009] [Indexed: 10/21/2022]
|
24
|
TRPV1 antagonists: the challenges for therapeutic targeting. Trends Mol Med 2009; 15:14-22. [DOI: 10.1016/j.molmed.2008.11.004] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2008] [Revised: 11/04/2008] [Accepted: 11/04/2008] [Indexed: 01/23/2023]
|
25
|
Cortright DN, Szallasi A. The Role of the Vanilloid and Related Receptors in Nociceptor Function and Neuroimmune Regulation. ACTA ACUST UNITED AC 2009. [DOI: 10.1016/s1567-7443(08)10405-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
|
26
|
Erin N, Afacan B, Ersoy Y, Ercan F, Balcı MK. Gibberellic acid, a plant growth regulator, increases mast cell recruitment and alters Substance P levels. Toxicology 2008; 254:75-81. [DOI: 10.1016/j.tox.2008.09.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2008] [Revised: 08/27/2008] [Accepted: 09/11/2008] [Indexed: 01/03/2023]
|
27
|
|
28
|
Siebenhaar F, Magerl M, Peters EM, Hendrix S, Metz M, Maurer M. Mast cell–driven skin inflammation is impaired in the absence of sensory nerves. J Allergy Clin Immunol 2008; 121:955-61. [DOI: 10.1016/j.jaci.2007.11.013] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2007] [Revised: 11/13/2007] [Accepted: 11/15/2007] [Indexed: 12/26/2022]
|
29
|
Hendrix S, Picker B, Liezmann C, Peters EMJ. Skin and hair follicle innervation in experimental models: a guide for the exact and reproducible evaluation of neuronal plasticity. Exp Dermatol 2008; 17:214-27. [PMID: 18261087 DOI: 10.1111/j.1600-0625.2007.00653.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The remodelling of skin innervation is an instructive example of neuronal plasticity in the peripheral nervous system. Cutaneous innervation displays dramatic plasticity during morphogenesis, adult remodelling, skin diseases and after skin nerve lesions. To recognize even subtle changes or abnormalities of cutaneous innervation under different experimental conditions, it is critically important to use a quantitative approach. Here, we introduce a simple, fast and reproducible quantitative method based on immunofluorescence histochemistry for the exact quantification of peripheral nerve fibres. Computer-generated schematic representations of cutaneous innervation in defined skin compartments are presented with the aim of standardizing reports on gene and protein expression patterns. This guide should become a useful tool when screening new mouse mutants, disease models affecting innervation or mice treated with pharmaceuticals for discrete morphologic abnormalities of skin innervation in a highly reproducible and quantifiable manner. Moreover, this method can be easily transferred to other densely innervated peripheral organs.
Collapse
Affiliation(s)
- Sven Hendrix
- Institute for Cell Biology and Neurobiology, Center for Anatomy, Charité-Universitätsmedizin, Berlin, Germany
| | | | | | | |
Collapse
|
30
|
Abstract
Healed partial thickness wounds including burns and donor sites cause hypertrophic scar formation and patient discomfort. For many patients with hypertrophic scars, pruritus is the most distressing symptom, which leads to wound excoriation and chronic wound formation. In spite of the clinical significance of abnormal innervation in scars, the nervous system has been largely ignored in the pathophysiology of hypertrophic scars. Evidence that neuropeptides contribute to inflammatory responses to injury include inflammatory cell chemotaxis, cytokine and growth factor production. The neuropeptide substance P, which is released from nerve endings after injury, induces inflammation and mediates angiogenesis, keratinocyte proliferation, and fibrogenesis. Substance P activity is tightly regulated by neutral endopeptidase (NEP), a membrane bound metallopeptidase that degrades substance P at the cell membrane. Altered substance P levels may contribute to impaired cutaneous healing responses associated with diabetes mellitus or hypertrophic scar formation. Topical application of exogenous substance P or an NEP inhibitor enhances wound closure kinetics in diabetic murine wounds suggesting that diabetic wounds have insufficient substance P levels to promote a neuroinflammatory response necessary for normal wound repair. Conversely, increased nerve numbers and neuropeptide levels with reduced NEP levels in human and porcine hypertrophic scar samples suggest that excessive neuropeptide activity induces exuberant inflammation in hypertrophic scars. Given these observations about the role of neuropeptides in cutaneous repair, neuronal modulation of repair processes at two extremes of abnormal wound healing, chronic non-healing ulcers in type II diabetes mellitus and hypertrophic scars in deep partial thickness wounds, may provide therapeutic targets.
Collapse
Affiliation(s)
- Jeffrey R Scott
- University of Washington Department of Surgery, Harborview Medical Center, Seattle, Washington 98104, USA
| | | | | |
Collapse
|
31
|
Gharat L, Szallasi A. Medicinal chemistry of the vanilloid (Capsaicin) TRPV1 receptor: current knowledge and future perspectives. Drug Dev Res 2008. [DOI: 10.1002/ddr.20218] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
32
|
Peters EMJ, Liotiri S, Bodó E, Hagen E, Bíró T, Arck PC, Paus R. Probing the effects of stress mediators on the human hair follicle: substance P holds central position. THE AMERICAN JOURNAL OF PATHOLOGY 2007; 171:1872-86. [PMID: 18055548 DOI: 10.2353/ajpath.2007.061206] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Stress alters murine hair growth, depending on substance P-mediated neurogenic inflammation and nerve growth factor (NGF), a key modulator of hair growth termination (catagen induction). Whether this is of any relevance in human hair follicles (HFs) is completely unclear. Therefore, we have investigated the effects of substance P, the central cutaneous prototypic stress-associated neuropeptide, on normal, growing human scalp HFs in organ culture. We show that these prominently expressed substance P receptor (NK1) at the gene and protein level. Organ-cultured HFs responded to substance P by premature catagen development, down-regulation of NK1, and up-regulation of neutral endopeptidase (degrades substance P). This was accompanied by mast cell degranulation in the HF connective tissue sheath, indicating neurogenic inflammation. Substance P down-regulated immunoreactivity for the growth-promoting NGF receptor (TrkA), whereas it up-regulated NGF and its apoptosis- and catagen-promoting receptor (p75NTR). In addition, MHC class I and beta2-microglobulin immunoreactivity were up-regulated and detected ectopically, indicating collapse of the HF immune privilege. In conclusion, we present a simplistic, but instructive, organ culture assay to demonstrate sensitivity of the human HF to key skin stress mediators. The data obtained therewith allow one to sketch the first evidence-based biological explanation for how stress may trigger or aggravate telogen effluvium and alopecia areata.
Collapse
Affiliation(s)
- Eva M J Peters
- Department of Dermatology, University Hospital Schleswig-Holstein, University of Lübeck, Ratzeburger Allee 160, D-23538 Lübeck, Germany
| | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
The pathogenesis of psoriasis is incompletely understood but cutaneous neurogenic inflammation is probably involved. This involvement is suggested by a number of clinical and histological observations. Reports about the distribution of cutaneous nerves and the quantification of nerve growth factor and neuropeptides, including calcitonin gene-related peptide and vasoactive intestinal peptide, in lesional and nonlesional psoriatic skin suggest that sensory neuropeptides contribute to the development of psoriasis. This review summarizes what is known about the role of neurogenic markers in psoriasis.
Collapse
Affiliation(s)
- R Saraceno
- Dermatology Centre, Hope Hospital, The University of Manchester, Salford, Manchester M6 8HD, UK
| | | | | | | |
Collapse
|
34
|
Zhou Z, Kawana S, Aoki E, Katayama M, Nagano M, Suzuki H. Dynamic changes in nerve growth factor and substance P in the murine hair cycle induced by depilation. J Dermatol 2007; 33:833-41. [PMID: 17169085 DOI: 10.1111/j.1346-8138.2006.00191.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Increasing evidence suggests that various neurotrophins and neuropeptides play an important role in the progression of hair follicle cycling. Among them, nerve growth factor (NGF) and substance P (SP) have attracted special interest recently. However, the interaction between these factors during hair cycling has not yet been systematically studied. We therefore investigated the mutual relationships between NGF and SP and the mechanism by which the anagen stage of the hair cycle is initiated. Fluctuations in numbers of SP-positive nerve fibers and variations in amounts of SP, NGF, and another neurotrophic factor, glial cell-derived neurotrophic factor, in skin in the C57BL/6 mouse depilation-induced hair cycle model, together with the spatiotemporal expression patterns of each of these factors, were followed simultaneously by enzyme-linked immunosorbent assay and immunohistochemistry. The main finding was that a surge in NGF expression and a rapid increase in NGF content in skin is an initial event within 1 day after depilation, followed by elevation of SP content and numbers of SP-containing fibers 2 days after the increase in NGF. Our findings suggest that a rapid and abundant increase in NGF plays a key role in the induction and progression of anagen hair cycling through keratinocyte growth promotion. NGF may also induce plastic changes such as sprouting and hyperplasia in dermal nerve fibers and enhance their SP production. Elevated levels of SP in skin may additionally contribute to the progression of consecutive anagen hair cycles.
Collapse
Affiliation(s)
- Zhanchao Zhou
- Department of Dermatology, Nippon Medical School, Bunkyo-Ku, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
35
|
Roosterman D, Goerge T, Schneider SW, Bunnett NW, Steinhoff M. Neuronal Control of Skin Function: The Skin as a Neuroimmunoendocrine Organ. Physiol Rev 2006; 86:1309-79. [PMID: 17015491 DOI: 10.1152/physrev.00026.2005] [Citation(s) in RCA: 416] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
This review focuses on the role of the peripheral nervous system in cutaneous biology and disease. During the last few years, a modern concept of an interactive network between cutaneous nerves, the neuroendocrine axis, and the immune system has been established. We learned that neurocutaneous interactions influence a variety of physiological and pathophysiological functions, including cell growth, immunity, inflammation, pruritus, and wound healing. This interaction is mediated by primary afferent as well as autonomic nerves, which release neuromediators and activate specific receptors on many target cells in the skin. A dense network of sensory nerves releases neuropeptides, thereby modulating inflammation, cell growth, and the immune responses in the skin. Neurotrophic factors, in addition to regulating nerve growth, participate in many properties of skin function. The skin expresses a variety of neurohormone receptors coupled to heterotrimeric G proteins that are tightly involved in skin homeostasis and inflammation. This neurohormone-receptor interaction is modulated by endopeptidases, which are able to terminate neuropeptide-induced inflammatory or immune responses. Neuronal proteinase-activated receptors or transient receptor potential ion channels are recently described receptors that may have been important in regulating neurogenic inflammation, pain, and pruritus. Together, a close multidirectional interaction between neuromediators, high-affinity receptors, and regulatory proteases is critically involved to maintain tissue integrity and regulate inflammatory responses in the skin. A deeper understanding of cutaneous neuroimmunoendocrinology may help to develop new strategies for the treatment of several skin diseases.
Collapse
|
36
|
Peters EMJ, Arck PC, Paus R. Hair growth inhibition by psychoemotional stress: a mouse model for neural mechanisms in hair growth control. Exp Dermatol 2006; 15:1-13. [PMID: 16364026 DOI: 10.1111/j.0906-6705.2005.00372.x] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Stress has long been discussed controversially as a cause of hair loss. However, solid proof of stress-induced hair growth inhibition had long been missing. If psychoemotional stress can affect hair growth, this must be mediated via definable neurorendocrine and/or neuroimmunological signaling pathways. Revisiting and up-dating relevant background data on neural mechanisms of hair growth control, we sketch essentials of hair follicle (HF) neurobiology and discuss the modulation of murine hair growth by neuropeptides, neurotransmitters, neurotrophins, and mast cells. Exploiting an established mouse model for stress, we summarize recent evidence that sonic stress triggers a cascade of molecular events including plasticity of the peptidergic peri- and interfollicular innervation and neuroimmune crosstalk. Substance P (SP) and NGF (nerve growth factor) are recruited as key mediators of stress-induced hair growth-inhibitory effects. These effects include perifollicular neurogenic inflammation, HF keratinocyte apoptosis, inhibition of proliferation within the HF epithelium, and premature HF regression (catagen induction). Intriguingly, most of these effects can be abrogated by treatment of stressed mice with SP-receptor neurokinin-1 receptor (NK-1) antagonists or NGF-neutralizing antibodies - as well as, surprisingly, by topical minoxidil. Thus there is now solid in vivo-evidence for the existence of a defined brain- HF axis. This axis can be utilized by psychoemotional and other stressors to prematurely terminate hair growth. Stress-induced hair growth inhibition can therefore serve as a highly instructive model for exploring the brain-skin connection and provides a unique experimental model for dissecting general principles of skin neuroendocrinology and neuroimmunology well beyond the HF.
Collapse
Affiliation(s)
- Eva M J Peters
- Biomedical Research Center, Psychoneuroimmunology Research Group, Internal Medicine, Psychosomatics, University Medicine Berlin, Charité Virchow Campus, Germany.
| | | | | |
Collapse
|
37
|
Kleij HPVD, Bienenstock J. Significance of Conversation between Mast Cells and Nerves. Allergy Asthma Clin Immunol 2005; 1:65-80. [PMID: 20529227 PMCID: PMC2877069 DOI: 10.1186/1710-1492-1-2-65] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
More and more studies are demonstrating interactions between the nervous system and the immune system. However, the functional relevance of this interaction still remains to be elucidated. Such associations have been found in the intestine between nerves and mast cells as well as between eosinophils and plasma cells. Similar morphologic associations have been demonstrated in the liver, mesentery, urinary bladder, and skin. Unmyelinated axons especially were found to associate with mast cells as well as Langerhans' cells in primate as well as murine skin. Although there are several pathways by which immune cells interact with the nervous system, the focus in this review will be on the interaction between mast cells and nerves.
Collapse
Affiliation(s)
- Hanneke Pm van der Kleij
- Brain-Body Institute and Department of Pathology and Molecular Medicine, St, Joseph's Healthcare, Hamilton, Ontario, and McMaster University, Hamilton, Ontario
| | | |
Collapse
|
38
|
Metz M, Botchkarev VA, Botchkareva NV, Welker P, Tobin DJ, Knop J, Maurer M, Paus R. Neurotrophin-3 regulates mast cell functions in neonatal mouse skin. Exp Dermatol 2004; 13:273-81. [PMID: 15140017 DOI: 10.1111/j.0906-6705.2004.00115.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Nerve growth factor (NGF) has long been recognized as an important mast cell (MC) growth factor. To explore whether other neurotrophins (NTs) of the NGF family, which are widely expressed in mouse skin, affect the numbers and/or functions of MCs we examined the effects of NT-3 on neonatal skin MCs. We demonstrate that TrkC, the high affinity NT-3 receptor, is expressed by virtually all neonatal skin MCs in C57BL/6 mice, which indicates that MCs can respond to NT-3. Skin of neonatal and early postnatal NT-3-overexpressing mice (promoter: K14) displayed significantly and up to twofold increased numbers of MCs during the first 20 days after birth, as compared to wild-type mice. To check whether this increase in MC numbers in NT-3 transgenic mice reflects a higher rate of proliferation, we performed immunohistochemistry, which revealed that only 1-2% of all skin MCs both in NT-3-overexpressing and in wild-type controls showed Ki-67-positive nuclei, suggesting that the observed differences in the number of MCs do not reflect a higher rate of MC proliferation. Additionally, we show that the effect of NT-3 on the number of MCs is most likely to be stem cell factor (SCF)-independent, because NT-3 significantly downregulates secretion of SCF-protein in cultured dermal fibroblasts, as assessed by enzyme-linked immunosorbent assay. Numbers of skin MCs in neonatal TrkC-deficient mice were found to be modestly reduced, as compared to wild-type mice, indicating that NT-3 can modulate the number of MCs directly via TrkC, although TrkC does not seem to be essential for the number of basal MCs. To further analyze the effects of NT-3 on MCs, we stimulated skin organ culture of early postnatal C57BL/6 mouse skin with 5-50 ng/ml NT-3, which induced a significant increase in MC degranulation, as visualized by Giemsa staining. However, stimulation of isolated neonatal dermal skin MCs with NT-3 in vitro failed to result in MC activation, as measured by serotonin release. Our data suggest a role for NT-3 in the maturation of MCs, such as a TrkC-mediated stimulation of the differentiation of pre-existing, less mature MCs and/or by enhancing the migration of circulating MC precursors into the skin.
Collapse
Affiliation(s)
- Martin Metz
- Department of Dermatology, University Hospital Mainz, Mainz, Germany
| | | | | | | | | | | | | | | |
Collapse
|
39
|
|
40
|
Viewpoint 1. Exp Dermatol 2003. [DOI: 10.1111/j.0906-6705.2003.0109b.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
41
|
Abstract
Há evidências crescentes de que a inervação cutânea é capaz de modular uma variedade de fenômenos cutâneos agudos e crônicos, interagindo com as células da pele e seus componentes imunes. Essa forma de sinalização local entre tecido nervoso e tecido cutâneo ocorre especialmente por meio dos neuropeptídeos, uma numerosa família de neurotransmissores de natureza química comum e nomenclatura heterogênea presentes em todo o sistema nervoso e secretados pelas fibras nervosas cutâneas. São alvo desta revisão os neuropeptídeos substância P (SP), o peptídeo relacionado ao gene da calcitonina (CGRP), o peptídeo vasoativo intestinal (VIP), o peptídeo ativador da adenilato-ciclase pituitária (PACAP), o neuropeptídeo Y (NPY) e a somatostatina (SOM). Serão discutidas suas ações sobre as células da pele e sistema imune, bem como estudos recentes que sugerem a participação dos neuropeptídeos nas respostas inflamatórias cutâneas, nas reações de hipersensibilidade e em dermatoses humanas, notadamente na psoríase, dermatite atópica, hanseníase e alopecia.
Collapse
|
42
|
Antezana M, Sullivan SR, Usui M, Gibran N, Spenny M, Larsen J, Ansel J, Bunnett N, Olerud J. Neutral endopeptidase activity is increased in the skin of subjects with diabetic ulcers. J Invest Dermatol 2002; 119:1400-4. [PMID: 12485446 DOI: 10.1046/j.1523-1747.2002.19618.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cutaneous sensory nerves mediate inflammation and wound healing by releasing neuropeptides, such as substance P, which stimulates pro-inflammatory responses by keratinocytes, fibroblasts, and endothelial cells. The cell surface enzyme, neutral endopeptidase, degrades substance P, thereby regulating its biologic actions. We hypothesized that neutral endopeptidase enzymatic activity is increased in chronic wounds and skin from subjects with diabetes. We compared cutaneous neutral endopeptidase expression and enzymatic activity between normal controls and diabetic subjects with neuropathy and chronic wounds. Skin samples from subjects with diabetes were taken at the time of amputation for nonhealing ulcers. Skin taken from the ulcer margin, 1 cm from the ulcer (adjacent), and from the most proximal region of the amputated leg were studied. Skin biopsies from the leg of healthy control subjects were also studied. Neutral endopeptidase was localized by immunohistochemistry in all tissue sections. Neutral endopeptidase activity was measured using a fluorimetric assay. The median neutral endopeptidase activity of the ulcer margin was 1.21 x higher (p>0.2) than adjacent skin, 5.26 (p<0.001) than proximal skin, and 15.22 x higher (p<0.001) than control skin. Adjacent skin had a median neutral endopeptidase activity 4.34 x higher (p<0.001) than proximal skin and 12.58 x higher (p<0.001) than control skin. The median neutral endopeptidase activity of proximal skin was 2.90 x higher (p<0.001) than control skin. This elevated neutral endopeptidase activity in the skin and chronic ulcers of subjects with diabetes combined with peripheral neuropathy may contribute to deficient neuroinflammatory signaling and may impair wound healing in subjects with diabetes.
Collapse
Affiliation(s)
- MarcosA Antezana
- Departments of Medicine (Dermatology) andSurgery, University of Washington, Seattle, WA 981954-6524, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Gibran NS, Jang YC, Isik FF, Greenhalgh DG, Muffley LA, Underwood RA, Usui ML, Larsen J, Smith DG, Bunnett N, Ansel JC, Olerud JE. Diminished neuropeptide levels contribute to the impaired cutaneous healing response associated with diabetes mellitus. J Surg Res 2002; 108:122-8. [PMID: 12443724 DOI: 10.1006/jsre.2002.6525] [Citation(s) in RCA: 143] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background. Patients with diabetic sensory neuropathy have significant risk of chronic ulcers. Insufficient nerve-derived mediators such as substance P (SP) may contribute to the impaired response to injury. Mutant diabetic mice (db/db), which develop neuropathy and have delayed healing, may provide a model to study the role of nerves in cutaneous injury.Methods. Skin from human chronic nonhealing ulcers and age-matched control skin was immunohistochemically evaluated for nerves. Nerve counts were also compared in murine diabetic (C57BL/KsJ-m+/+ Lepr(db); db/db) and nondiabetic (db/-) skin. Excisional wounds on the backs of db/db and db/- mice were grouped as: (a) untreated db/- mice; (b) untreated db/db mice; (c) db/db mice with polyethylene glycol (PEG); (d) db/db mice with PEG and SP 10(-9) M; or (e) db/db mice with PEG and SP 10(-6) M.Results. We demonstrated fewer nerves in the epidermis and papillary dermis of skin from human subjects with diabetes. Likewise, db/db murine skin had significantly fewer epidermal nerves than nondiabetic littermates. We confirmed increased healing times in db/db mice (51.7 days) compared to db/- littermates (19.8 days; P </= 0.001). SP 10(-6) M (44 days; P = 0.02) and SP 10(-9) M (45 days; P = 0.03) shortened time to closure compared to PEG treatment alone (68 days). Since there was no difference in the percentage contraction in these treatment groups, SP may favorably promote wound epithelization.Conclusions. Our data support the use of db/db murine excisional wounds to evaluate the role of nerves in healing. We have demonstrated that exogenous SP improves wound healing kinetics in an animal model.
Collapse
Affiliation(s)
- Nicole S Gibran
- Department of Surgery, University of Washington, Seattle 98104, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Arck PC, Handjiski B, Hagen E, Joachim R, Klapp BF, Paus R. Indications for a 'brain-hair follicle axis (BHA)': inhibition of keratinocyte proliferation and up-regulation of keratinocyte apoptosis in telogen hair follicles by stress and substance P. FASEB J 2001; 15:2536-8. [PMID: 11641256 DOI: 10.1096/fj.00-0699fje] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
It has long been suspected that stress can cause hair loss, although convincing evidence of this has been unavailable. Here, we show that in mice sonic stress significantly increased the number of hair follicles containing apoptotic cells and inhibited intrafollicular keratinocyte proliferation in situ. Sonic stress also significantly increased the number of activated perifollicular macrophage clusters and the number of degranulated mast cells, whereas it down-regulated the number of intraepithelial gd T lymphocytes. These stress-induced immune changes could be mimicked by injection of the neuropeptide substance P in nonstressed mice and were abrogated by a selective substance P receptor antagonist in stressed mice. We conclude that stress can indeed inhibit hair growth in vivo, probably via a substance P-dependent activation of macrophages and/or mast cells in the context of a brain-hair follicle axis.
Collapse
Affiliation(s)
- P C Arck
- Department of Internal Medicine, Charité, Humboldt University, Berlin, Germany.
| | | | | | | | | | | |
Collapse
|
45
|
Peters EM, Botchkarev VA, Botchkareva NV, Tobin DJ, Paus R. Hair-cycle-associated remodeling of the peptidergic innervation of murine skin, and hair growth modulation by neuropeptides. J Invest Dermatol 2001; 116:236-45. [PMID: 11179999 DOI: 10.1046/j.1523-1747.2001.01232.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
As the neuropeptide substance P can manipulate murine hair growth in vivo, we here further studied the role of sensory neuropeptides in hair follicle biology by determining the distribution and hair-cycle-dependent remodeling of the sensory innervation in C57BL/6 mouse back skin. Calcitonin-gene-related peptide, substance P, and peptide histidine methionine (employed as vasoactive intestinal peptide marker) were identified by immunohistochemistry. All of these markers immunolocalized to bundles of nerve fibers and to single nerve fibers, with distinct distribution patterns and major hair-cycle-associated changes. In the epidermis and around the distal hair follicle and the arrector pili muscle, only calcitonin-gene-related peptide immunoreactive nerve fibers were visualized, whereas substance P and peptide histidine methionine immunoreactive nerve fibers were largely restricted to the dermis and subcutis. Compared to telogen skin, the number of calcitonin-gene-related peptide, substance P, and peptide histidine methionine immunoreactive single nerve fibers increased significantly (p < 0.01) during anagen, including around the bulge region (the seat of epithelial stem cells). Substance P significantly accelerated anagen progression in murine skin organ culture, whereas calcitonin-gene-related peptide and a substance-P-inhibitory peptide inhibited anagen (p < 0.05). The inhibitory effect of calcitonin-gene-related peptide could be antagonized by coadministrating substance P. In contrast to substance P, calcitonin-gene-related peptide failed to induce anagen when released from subcutaneous implants. This might reflect a differential functional assignment of the neuropeptides calcitonin-gene-related peptide and substance P in hair growth control, and invites the use of neuropeptide receptor agonists and antagonists as novel pharmacologic tools for therapeutic hair growth manipulation.
Collapse
Affiliation(s)
- E M Peters
- Department of Dermatology, University Hospital Eppendorf, University of Hamburg, Martinstr. 52, D-20246 Hamburg, Germany
| | | | | | | | | |
Collapse
|
46
|
Abstract
Nearly 50 years ago, Chase published a review of hair cycling in which he detailed hair growth in the mouse and integrated hair biology with the biology of his day. In this review we have used Chase as our model and tried to put the adult hair follicle growth cycle in perspective. We have tried to sketch the adult hair follicle cycle, as we know it today and what needs to be known. Above all, we hope that this work will serve as an introduction to basic biologists who are looking for a defined biological system that illustrates many of the challenges of modern biology: cell differentiation, epithelial-mesenchymal interactions, stem cell biology, pattern formation, apoptosis, cell and organ growth cycles, and pigmentation. The most important theme in studying the cycling hair follicle is that the follicle is a regenerating system. By traversing the phases of the cycle (growth, regression, resting, shedding, then growth again), the follicle demonstrates the unusual ability to completely regenerate itself. The basis for this regeneration rests in the unique follicular epithelial and mesenchymal components and their interactions. Recently, some of the molecular signals making up these interactions have been defined. They involve gene families also found in other regenerating systems such as fibroblast growth factor, transforming growth factor-beta, Wnt pathway, Sonic hedgehog, neurotrophins, and homeobox. For the immediate future, our challenge is to define the molecular basis for hair follicle growth control, to regenerate a mature hair follicle in vitro from defined populations, and to offer real solutions to our patients' problems.
Collapse
Affiliation(s)
- K S Stenn
- Beauty Genome Sciences Inc., Skillman, New Jersey, USA.
| | | |
Collapse
|
47
|
Sung KJ, Chang SE, Paik EM, Lee MW, Choi JH. Vasoactive intestinal polypeptide stimulates the proliferation of HaCaT cell via TGF-alpha. Neuropeptides 1999; 33:435-46. [PMID: 10657522 DOI: 10.1054/npep.1999.0042] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
It is well known that psoriasis, an immunogenetic cutaneous disorder whose major pathogenic findings are epidermal hyperplasia and T-cell infiltration, is aggravated by psychological stresses. Although the exact mechanism is not yet clarified, antidromic secretion of neuropeptides by cutaneous nerve fibers is thought to be involved. In this study, we examined the effect and mechanism of vasoactive intestinal polypeptide (VIP), one of the major neuropeptides, on the proliferation of HaCaT cell which is a spontaneous, immortalized, human keratinocyte cell line. Twenty-four and 48 h after its addition, 1 pM to 100 nM of VIP increased the number of cells cultured with/without serum. We indirectly verified VIP(1)R on the surface of HaCaT cell based on the proliferative ability of various VIP families such as VIP, PACAP and secretin, and increased PKA level 30 min after stimulation. However, because H-89, a PKA inhibitor, did not inhibit the proliferative potential of VIP, its mitogenicity is not medicated through VIP(1)R. One nM VIP produced the TGF-alpha protein which is a strong mitogen of keratinocytes and increased in the psoriatic lesion 2.25 times more compared with the control. Genistein, a tyrosine kinase inhibitor, abrogated the mitogenic activity of VIP. Like VIP, VIP fragments, VIP(1-12) and VIP(10-28) also acted as a mitogen for HaCaT cells through the same mechanism. Collectively, our studies clearly show that VIP and its fragments stimulate keratinocyte growth, not through increased cAMP level, but through increased TGF-alpha protein production.
Collapse
Affiliation(s)
- K J Sung
- Division of Dermatology, Asan Medical Center, College of Medicine, University of Ulsan, Seoul, Korea
| | | | | | | | | |
Collapse
|
48
|
Botchkarev VA, Peters EM, Botchkareva NV, Maurer M, Paus R. Hair cycle-dependent changes in adrenergic skin innervation, and hair growth modulation by adrenergic drugs. J Invest Dermatol 1999; 113:878-87. [PMID: 10594725 DOI: 10.1046/j.1523-1747.1999.00791.x] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Skin nerves may exert "trophic" functions during hair follicle development, growth, and/or cycling. Here, we demonstrate hair cycle-related plasticity in the sympathetic innervation of skin and hair follicle in C57BL/6 mice. Compared with telogen skin, the number of nerve fibers containing norepinephrine or immunoreactive for tyrosine hydroxylase increased during the early growth phase of the hair cycle (anagen) in dermis and subcutis. The number of these fibers declined again during late anagen. beta2-adrenoreceptor-positive keratinocytes were transiently detectable in the noncycling hair follicle epithelium, especially in the isthmus and bulge region, but only during early anagen. In early anagen skin organ culture, the beta2-adrenoreceptor agonist isoproterenol promoted hair cycle progression from anagen III to anagen IV. The observed hair cycle-dependent changes in adrenergic skin innervation on the one hand, and hair growth modulation by isoproterenol, accompanied by changes in beta2-adrenoreceptor expression of selected regions of the hair follicle epithelium on the other, further support the concept that bi-directional interactions between the hair follicle and its innervation play a part in hair growth control. This invites one to systematically explore the neuropharmacologic manipulation of follicular neuroepithelial interactions as a novel therapeutic strategy for managing hair growth disorders.
Collapse
Affiliation(s)
- V A Botchkarev
- Department of Dermatology, Charité, Humboldt University, Berlin, Germany
| | | | | | | | | |
Collapse
|
49
|
Katsamba AD, Karpouzis AJ, Koumantaki-Mathioudaki E, Jorizzo JL. Mastocytosis with skin manifestations: current status. J Eur Acad Dermatol Venereol 1999; 13:155-65. [PMID: 10642051 DOI: 10.1111/j.1468-3083.1999.tb00878.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
AIM To review our present knowledge about mastocyte origin, mastocytosis classification and management. METHODS Literature review. RESULTS Mastocytoses are chronic and recurrent disorders with symptoms which might either be limited only to the skin or to internal organs as well. The mastocytes, coming from bone marrow progenitor cells, migrate to tissues where they participate in inflammation and in cellular immunity as well as in the metabolism of connective and osseous tissues. Their proliferation causes the appearance of mastocytoses. The classification of the clinical manifestations of the mastocytoses into cutaneous, reactive (under the influence of the degranulator factors) and systemic disease, facilitates dialog among clinicians. Determination of prognosis and appropriate therapeutic regimens depend on individual features. CONCLUSIONS Mastocytosis diagnosis is verified by histological study of skin lesion biopsy material. Management is symptomatic and unfortunately does not eradicate the disease.
Collapse
Affiliation(s)
- A D Katsamba
- Department of Dermatology, A. Sygros Hospital, National University School of Medicine, Athens, Greece
| | | | | | | |
Collapse
|
50
|
Bae S, Matsunaga Y, Tanaka Y, Katayama I. Autocrine induction of substance P mRNA and peptide in cultured normal human keratinocytes. Biochem Biophys Res Commun 1999; 263:327-33. [PMID: 10491292 DOI: 10.1006/bbrc.1999.1285] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In this study, we have demonstrated that normal cultured keratinocytes (KCs) could generate significant endogenous substance P (SP) in a dose- and time-dependent response to exogenous SP by sensitive ELISA assay and express preprotachinin-a mRNA by RT-PCR and Southern blotting. We performed immunohistochemical analysis to confirm the presence of SP in cultured keratinocytes. In contrast, adrenaline, acetylcholine, histamine and CGRP induced only low amount of SP from cultured normal human KCs. This is the first report that SP can be induced by skin epithelial cells in response to exogenous SP and KC derived SP might play an important role in induction and acceleration of certain cutaneous diseases.
Collapse
Affiliation(s)
- S Bae
- Department of Dermatology, Nagasaki University School of Medicine, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | | | | | | |
Collapse
|