1
|
Zaongo SD, Zongo AW, Chen Y. Mechanisms underlying the development of type 1 diabetes in ART-treated people living with HIV: an enigmatic puzzle. Front Immunol 2024; 15:1470308. [PMID: 39257582 PMCID: PMC11383789 DOI: 10.3389/fimmu.2024.1470308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 08/12/2024] [Indexed: 09/12/2024] Open
Abstract
The immunopathogenesis of HIV infection remains poorly understood. Despite the widespread use of effective modern antiretroviral therapy (ART), people living with HIV (PLWH) are known to develop several comorbidities, including type 1 diabetes (T1DM). However, the etiology and critical mechanisms accounting for the onset of T1DM in the preceding context remain unknown. This article proposes to address this topic in order to provide further understanding and future research directions.
Collapse
Affiliation(s)
- Silvere D Zaongo
- Department of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing, China
| | - Abel W Zongo
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
| | - Yaokai Chen
- Department of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing, China
| |
Collapse
|
2
|
Herold KC, Delong T, Perdigoto AL, Biru N, Brusko TM, Walker LSK. The immunology of type 1 diabetes. Nat Rev Immunol 2024; 24:435-451. [PMID: 38308004 PMCID: PMC7616056 DOI: 10.1038/s41577-023-00985-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/15/2023] [Indexed: 02/04/2024]
Abstract
Following the seminal discovery of insulin a century ago, treatment of individuals with type 1 diabetes (T1D) has been largely restricted to efforts to monitor and treat metabolic glucose dysregulation. The recent regulatory approval of the first immunotherapy that targets T cells as a means to delay the autoimmune destruction of pancreatic β-cells highlights the critical role of the immune system in disease pathogenesis and tends to pave the way for other immune-targeted interventions for T1D. Improving the efficacy of such interventions across the natural history of the disease will probably require a more detailed understanding of the immunobiology of T1D, as well as technologies to monitor residual β-cell mass and function. Here we provide an overview of the immune mechanisms that underpin the pathogenesis of T1D, with a particular emphasis on T cells.
Collapse
Affiliation(s)
- Kevan C Herold
- Department of Immunobiology, Yale University, New Haven, CT, USA.
- Department of Internal Medicine, Yale University, New Haven, CT, USA.
| | - Thomas Delong
- Anschutz Medical Campus, University of Colorado, Denver, CO, USA
| | - Ana Luisa Perdigoto
- Department of Internal Medicine, Yale University, New Haven, CT, USA
- Internal Medicine, VA Connecticut Healthcare System, West Haven, CT, USA
| | - Noah Biru
- Department of Immunobiology, Yale University, New Haven, CT, USA
| | - Todd M Brusko
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, FL, USA
| | - Lucy S K Walker
- Institute of Immunity & Transplantation, University College London, London, UK.
- Division of Infection & Immunity, University College London, London, UK.
| |
Collapse
|
3
|
Brod SA. The genealogy, methodology, similarities and differences of immune reconstitution therapies for multiple sclerosis and neuromyelitis optica. Autoimmun Rev 2022; 21:103170. [PMID: 35963569 DOI: 10.1016/j.autrev.2022.103170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 08/07/2022] [Indexed: 11/09/2022]
Abstract
Immune reconstitution therapies (IRTs) are a type of short course procedure or pharmaceutical agent within the MS pharmacopeia. They emanate from oncology and induce transient incomplete lympho-ablation with or without myelo-ablation, resulting in potential prolonged immunomodulation. Thus, they provide significant prophylaxis from disease activity without retreatment. Modern IRT for autoimmunity encompasses a heterogeneous group of pulsed lympho- and non-myelo-ablative treatments designed to re-boot the adaptive immune system in a quasi-permanent manner - a re-induction of ontogeny. IRT is the extensive debulking of an auto-aggressive immune system to attempt to reach the Holy Grail of immune tolerance. This incomplete yet significant lympho-ablation induces lymphoproliferation, reduces pathogenic clonal cells, causes thymopoiesis and results in the induction of immune tolerance. Lympho-ablation with immune reconstitution can result in minimal residual autoimmunity. There is a resetting of the immune thermostat - i.e., the immunostat. IRTs have the potential to provide prolonged periods of disease inactivity without retreatment in part through the immunological results of their pulsatile lymphocyte depletion. It is vital to increase our understanding of how IRTs alter a patient's immune response to the antigenic target of the disease so that we can devise newer, more durable and safer forms of such agents. What common features do extant IRTs (i.e., stem cell transplant, alemtuzumab and oral cladribine) have to produce the durable therapeutic response without long term treatment in neuroimmunological diseases such as MS (multiple sclerosis) and NMOSD (neuromyelitis optica spectrum disorders)? Can we learn from these critical features to predict what other maneuvers or agents might effect similar clinical results with equal or greater efficacy and safety?
Collapse
Affiliation(s)
- Staley A Brod
- Division of MS/Neuro-immunology, Department of Neurology, Medical College of Wisconsin, 8701 W Watertown Plank Rd, Milwaukee, WI 53226, USA.
| |
Collapse
|
4
|
Niazi SA, Bakhsh A. Association between Endodontic Infection, Its Treatment and Systemic Health: A Narrative Review. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:931. [PMID: 35888650 PMCID: PMC9319780 DOI: 10.3390/medicina58070931] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 02/06/2023]
Abstract
The 'Focal Infection Era in Dentistry' in the late 19th and early 20th century resulted in widespread implementation of tooth extraction and limited the progress of endodontics. The theory proposed that bacteria and toxins entrapped in dentinal tubules could disseminate systemically to remote body parts, resulting in many types of degenerative systemic diseases. This theory was eventually refuted due to anecdotal evidence. However, lately there has been increased interest in investigating whether endodontic disease could have an impact on general health. There are reviews that have previously been carried out on this subject, but as new data have emerged since then, this review aims to appraise the available literature investigating the dynamic associations between apical periodontitis, endodontic treatment, and systemic health. The available evidence regarding focal infection theory, bacteraemia and inflammatory markers was appraised. The review also collated the available research arguing the associations of apical periodontitis with cardiovascular diseases, diabetes mellitus, adverse pregnancy outcome and autoimmune disorders, along with the effect of statins and immunomodulators on apical periodontitis prevalence and endodontic treatment prognosis. There is emerging evidence that bacteraemia and low-grade systemic inflammation associated with apical periodontitis may negatively impact systemic health, e.g., development of cardiovascular diseases, adverse pregnancy outcomes, and diabetic metabolic dyscontrol. However, there is limited information supporting the effect of diabetes mellitus or autoimmune disorders on the prevalence and prognosis post endodontic treatment. Furthermore, convincing evidence supports that successful root canal treatment has a beneficial impact on systemic health by reducing the inflammatory burden, thereby dismissing the misconceptions of focal infection theory. Although compelling evidence regarding the association between apical periodontitis and systemic health is present, further high-quality research is required to support and establish the benefits of endodontic treatment on systemic health.
Collapse
Affiliation(s)
- Sadia Ambreen Niazi
- Department of Endodontics, Centre of Oral Clinical & Translational Sciences, Faculty of Dentistry, Oral & Craniofacial Sciences, Guy’s Dental Hospital, King’s College London, London SE1 9RT, UK
| | - Abdulaziz Bakhsh
- Department of Restorative Dentistry, Faculty of Dentistry, Umm Al-Qura University, Makkah 24381, Saudi Arabia;
| |
Collapse
|
5
|
Wang CR, Tsai HW. Anti- and non-tumor necrosis factor-α-targeted therapies effects on insulin resistance in rheumatoid arthritis, psoriatic arthritis and ankylosing spondylitis. World J Diabetes 2021; 12:238-260. [PMID: 33758645 PMCID: PMC7958474 DOI: 10.4239/wjd.v12.i3.238] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/07/2021] [Accepted: 01/22/2021] [Indexed: 02/06/2023] Open
Abstract
In addition to β-cell failure with inadequate insulin secretion, the crucial mechanism leading to establishment of diabetes mellitus (DM) is the resistance of target cells to insulin, i.e. insulin resistance (IR), indicating a requirement of beyond-normal insulin concentrations to maintain euglycemic status and an ineffective strength of transduction signaling from the receptor, downstream to the substrates of insulin action. IR is a common feature of most metabolic disorders, particularly type II DM as well as some cases of type I DM. A variety of human inflammatory disorders with increased levels of proinflammatory cytokines, including tumor necrosis factor (TNF)-α, interleukin (IL)-6 and IL-1β, have been reported to be associated with an increased risk of IR. Autoimmune-mediated arthritis conditions, including rheumatoid arthritis (RA), psoriatic arthritis (PsA) and ankylosing spondylitis (AS), with the involvement of proinflammatory cytokines as their central pathogenesis, have been demonstrated to be associated with IR, especially during the active disease state. There is an increasing trend towards using biologic agents and small molecule-targeted drugs to treat such disorders. In this review, we focus on the effects of anti-TNF-α- and non-TNF-α-targeted therapies on IR in patients with RA, PsA and AS. Anti-TNF-α therapy, IL-1 blockade, IL-6 antagonist, Janus kinase inhibitor and phospho-diesterase type 4 blocker can reduce IR and improve diabetic hyper-glycemia in autoimmune-mediated arthritis.
Collapse
Affiliation(s)
- Chrong-Reen Wang
- Department of Internal Medicine, National Cheng Kung University Hospital, Tainan 70403, Taiwan
| | - Hung-Wen Tsai
- Department of Pathology, National Cheng Kung University Hospital, Tainan 70403, Taiwan
| |
Collapse
|
6
|
Tootee A, Nikbin B, Ghahary A, Esfahani EN, Arjmand B, Aghayan H, Qorbani M, Larijani B. Immunopathology of Type 1 Diabetes and Immunomodulatory Effects of Stem Cells: A Narrative Review of the Literature. Endocr Metab Immune Disord Drug Targets 2021; 22:169-197. [PMID: 33538679 DOI: 10.2174/1871530321666210203212809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 10/11/2020] [Accepted: 10/27/2020] [Indexed: 11/22/2022]
Abstract
Type 1 Diabetes (T1D) is a complex autoimmune disorder which occurs as a result of an intricate series of pathologic interactions between pancreatic β-cells and a wide range of components of both the innate and the adaptive immune systems. Stem-cell therapy, a recently-emerged potentially therapeutic option for curative treatment of diabetes, is demonstrated to cause significant alternations to both different immune cells such as macrophages, natural killer (NK) cells, dendritic cells, T cells, and B cells and non-cellular elements including serum cytokines and different components of the complement system. Although there exists overwhelming evidence indicating that the documented therapeutic effects of stem cells on patients with T1D is primarily due to their potential for immune regulation rather than pancreatic tissue regeneration, to date, the precise underlying mechanisms remain obscure. On the other hand, immune-mediated rejection of stem cells remains one of the main obstacles to regenerative medicine. Moreover, the consequences of efferocytosis of stem-cells by the recipients' lung-resident macrophages have recently emerged as a responsible mechanism for some immune-mediated therapeutic effects of stem-cells. This review focuses on the nature of the interactions amongst different compartments of the immune systems which are involved in the pathogenesis of T1D and provides explanation as to how stem cell-based interventions can influence immune system and maintain the physiologic equilibrium.
Collapse
Affiliation(s)
- Ali Tootee
- Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, . Iran
| | - Behrouz Nikbin
- Research Center of Molecular Immunology, Tehran University of Medical Sciences, Tehran, . Iran
| | - Aziz Ghahary
- British Columbia Professional Firefighters' Burn and Wound Healing Research Laboratory, Department of Surgery, Plastic Surgery, University of British Columbia, Vancouver, . Canada
| | - Ensieh Nasli Esfahani
- Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, . Iran
| | - Babak Arjmand
- Cell therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, . Iran
| | - Hamidreza Aghayan
- Cell therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, . Iran
| | - Mostafa Qorbani
- Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, . Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, . Iran
| |
Collapse
|
7
|
Tompa A, Åkesson K, Karlsson S, Faresjö M. Suppressed immune profile in children with combined type 1 diabetes and celiac disease. Clin Exp Immunol 2020; 201:244-257. [PMID: 32415995 PMCID: PMC7419926 DOI: 10.1111/cei.13454] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 05/06/2020] [Accepted: 05/06/2020] [Indexed: 12/22/2022] Open
Abstract
Children diagnosed with a combination of type 1 diabetes (T1D) and celiac disease (CD) show a dysregulated T helper type 1 (Th1)/Th17 response. Besides the cellular involvement, several soluble immune markers are involved in the autoimmune process of both T1D and CD. Only few studies have examined the peripheral pattern of different cytokines, chemokines and acute-phase proteins (APP) in children with combined T1D and CD. To our knowledge, no studies have evaluated the serum levels of adipocytokines and matrix metalloproteinases (MMPs) in this context. The purpose of the present study was to acquire more knowledge and to gain deeper understanding regarding the peripheral immunoregulatory milieu in children with both T1D and CD. The study included children diagnosed with both T1D and CD (n = 18), children with T1D (n = 27) or CD (n = 16) and reference children (n = 42). Sera were collected and analysis of 28 immune markers (cytokines, chemokines, APPs, adipocytokines and MMPs) was performed using the Luminex technique. The major findings showed that children with a double diagnosis had lower serum levels of interleukin (IL)-22, monocyte chemoattractant protein (MIP)-1α, monocyte chemoattractant protein (MCP)-1, procalcitonin, fibrinogen, visfatin and matrix metalloproteinase (MMP)-2. These results indicate a suppressed immune profile in children with combined T1D and CD, including Th17 cytokines, chemokines, APPs, adipocytokines and MMPs. We conclude that, besides cytokines and chemokines, other immune markers, e.g. APPs, adipocytokines and MMPs, are of importance for further investigations to elucidate the heterogeneous immune processes present in patients diagnosed with T1D in combination with CD.
Collapse
Affiliation(s)
- A. Tompa
- The Biomedical platformDepartment of Natural Science and BiomedicineSchool of Health and WelfareJönköping UniversityJönköpingSweden
- Division of DiagnosticsRegion Jönköping CountyJönköpingSweden
| | - K. Åkesson
- Department of PediatricsRyhov County HospitalJönköpingSweden
| | - S. Karlsson
- The Biomedical platformDepartment of Natural Science and BiomedicineSchool of Health and WelfareJönköping UniversityJönköpingSweden
| | - M. Faresjö
- The Biomedical platformDepartment of Natural Science and BiomedicineSchool of Health and WelfareJönköping UniversityJönköpingSweden
| |
Collapse
|
8
|
Wei W, Li L, Deng L, Wang ZJ, Dong JJ, Lyu XY, Jia T, Wang L, Wang HX, Mao H, Zhao S. Autologous Bone Marrow Mononuclear Cell Transplantation Therapy Improved Symptoms in Patients with Refractory Diabetic Sensorimotor Polyneuropathy via the Mechanisms of Paracrine and Immunomodulation: A Controlled Study. Cell Transplant 2020; 29:963689720949258. [PMID: 32787571 PMCID: PMC7563922 DOI: 10.1177/0963689720949258] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
We recently reported that transplantation of autologous bone marrow mononuclear
cells (BM-MNCs) may be an effective and promising therapy to treat refractory
diabetic sensorimotor polyneuropathy (DSPN) in patients with type 2 diabetes
mellitus (T2DM). This study was designed to investigate the potential mechanisms
of BM-MNCs therapy, which recruited 60 patients with DSPN, 30 T2DM patients
without complications, and 30 healthy control participants. All clinical
parameters, the levels of inflammatory markers, and growth factors in the three
groups were compared. Patients in DSPN group had higher level of tumor necrosis
factor-α (TNF-α) (DSPN vs control, 412.90 ± 64.58 vs 374.81 ± 63.18 pg/mL,
P < 0.01) and lower level of vascular endothelial growth
factor (VEGF) (DSPN vs control, 140.93 ± 24.78 vs 157.39 ± 25.11 pg/mL,
P < 0.01) than those in control group. DSPN group had
the highest level of soluble intercellular adhesion molecule-1 (sICAM-1) among
three groups (DSPN and DM vs control, 1477.56 ± 228.00 and 1342.17 ± 237.54 vs
1308.00 ± 200.94 ng/mL, P < 0.05). The level of nerve growth
factor in the DSPN group was slightly lower than that in the DM group (DSPN vs
DM, 3509.11 ± 438.39 vs 3734.87 ± 647.50 pg/mL, P < 0.05).
All patients with DSPN received one intramuscular injection of BM-MNCs and
clinical follow-ups after the therapy for 2 days, 1, 4, 12, 24, and 48 weeks.
Neuropathic symptoms of foot pain, numbness, and weakness were significantly
improved within 4 weeks after BM-MNCs injection. Patients with DSPN were divided
into the responder (n = 35) and nonresponder groups
(n = 19) based on the improvement of nerve conduction
velocity at 12 weeks post-transplantation. Compared with nonresponders,
responders were younger (57.3 ± 5.2 vs 62.0 ± 4.8, P <
0.01), had a shorter history of diabetes (7.1 ± 2.7 vs 11.2 ± 5.4 years,
P < 0.01), and had higher numbers of mobilized
CD34+ cells (17.61 ± 2.64 vs 14.79 ± 1.62 ×105/L,
P < 0.01) and BM-MNCs (12.05 ± 2.16 vs 9.84 ± 1.53
×108/L, P < 0.01). The levels of TNF-α and
sICAM-1 decreased just after BM-MNCs injection in both groups and slowly
reverted to baseline levels. The duration of the downtrend of TNF-α and sICAM-1
in the responder group lasted longer than that in the nonresponder group. Serum
level of VEGF in the responder group increased immediately after BM-MNC therapy
and reached the highest point after the injection for 12 weeks. On the other
hand, VEGF levels in the nonresponder group only increased slightly. Binary
logistic regression was performed to evaluate the corresponding prognostic
factors for BM-MNCs treatment. The number of applied CD34+ cells and
the duration of diabetes were the independent predictors of responding to
BM-MNCs therapy. No adverse event associated with the treatment was observed
during follow-up observations. These results indicated that BM-MNCs
transplantation is an effective and promising therapeutic strategy to treat
refractory DSPN. The immune regulation and paracrine function of BM-MNCs may
contribute to the improvement of DSPN.
Collapse
Affiliation(s)
- Wei Wei
- Department of Endocrinology, The Central Hospital of Wuhan, Tongji Medical College, 12403Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Li Li
- Department of Endocrinology, The Central Hospital of Wuhan, Tongji Medical College, 12403Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lin Deng
- Department of Endocrinology, The Central Hospital of Wuhan, Tongji Medical College, 12403Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhong-Jing Wang
- Department of Endocrinology, The Central Hospital of Wuhan, Tongji Medical College, 12403Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jing-Jian Dong
- Department of Endocrinology, The Central Hospital of Wuhan, Tongji Medical College, 12403Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiao-Yu Lyu
- Department of Endocrinology, The Central Hospital of Wuhan, Tongji Medical College, 12403Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ting Jia
- Department of Endocrinology, The Central Hospital of Wuhan, Tongji Medical College, 12403Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Li Wang
- Department of Hematology, The Central Hospital of Wuhan, Tongji Medical College, 12403Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hong-Xiang Wang
- Department of Hematology, The Central Hospital of Wuhan, Tongji Medical College, 12403Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hong Mao
- Department of Endocrinology, The Central Hospital of Wuhan, Tongji Medical College, 12403Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shi Zhao
- Department of Endocrinology, The Central Hospital of Wuhan, Tongji Medical College, 12403Huazhong University of Science and Technology, Wuhan, Hubei, China.,Regenerative Medical Center of Hubei Province, The Central Hospital of Wuhan, Tongji Medical College, 12403Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
9
|
Rodrigues KB, Dufort MJ, Llibre A, Speake C, Rahman MJ, Bondet V, Quiel J, Linsley PS, Greenbaum CJ, Duffy D, Tarbell KV. Innate immune stimulation of whole blood reveals IFN-1 hyper-responsiveness in type 1 diabetes. Diabetologia 2020; 63:1576-1587. [PMID: 32500289 PMCID: PMC10091865 DOI: 10.1007/s00125-020-05179-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 03/17/2020] [Indexed: 01/05/2023]
Abstract
AIMS/HYPOTHESIS Self-antigen-specific T cell responses drive type 1 diabetes pathogenesis, but alterations in innate immune responses are also critical and not as well understood. Innate immunity in human type 1 diabetes has primarily been assessed via gene-expression analysis of unstimulated peripheral blood mononuclear cells, without the immune activation that could amplify disease-associated signals. Increased responsiveness in each of the two main innate immune pathways, driven by either type 1 IFN (IFN-1) or IL-1, have been detected in type 1 diabetes, but the dominant innate pathway is still unclear. This study aimed to determine the key innate pathway in type 1 diabetes and assess the whole blood immune stimulation assay as a tool to investigate this. METHODS The TruCulture whole blood ex vivo stimulation assay, paired with gene expression and cytokine measurements, was used to characterise changes in the stimulated innate immune response in type 1 diabetes. We applied specific cytokine-induced signatures to our data, pre-defined from the same assays measured in a separate cohort of healthy individuals. In addition, NOD mice were stimulated with CpG and monocyte gene expression was measured. RESULTS Monocytes from NOD mice showed lower baseline vs diabetes-resistant B6.g7 mice, but higher induced IFN-1-associated gene expression. In human participants, ex vivo whole blood stimulation revealed higher induced IFN-1 responses in type 1 diabetes, as compared with healthy control participants. In contrast, neither the IL-1-induced gene signature nor response to the adaptive immune stimulant Staphylococcal enterotoxin B were significantly altered in type 1 diabetes samples vs healthy control participants. Targeted gene-expression analysis showed that this enhanced IFN response was specific to IFN-1, as IFN-γ-driven responses were not significantly different. CONCLUSIONS/INTERPRETATION Our study identifies increased responsiveness to IFN-1 as a feature of both the NOD mouse model of autoimmune diabetes and human established type 1 diabetes. A stimulated IFN-1 gene signature may be a potential biomarker for type 1 diabetes and used to evaluate the effects of therapies targeting this pathway. DATA AVAILABILITY Mouse gene expression data are found in the gene expression omnibus (GEO) repository, accession GSE146452 ( www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE146452 ). Nanostring count data from the human experiments were deposited in the GEO repository, accession GSE146338 ( www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE146338 ). Data files and R code for all analyses are available at https://github.com/rodriguesk/T1D_truculture_diabetologia . Graphical abstract.
Collapse
Affiliation(s)
- Kameron B Rodrigues
- Immune Tolerance Section, Diabetes Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
- Pathology Department, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Matthew J Dufort
- Systems Immunology Division, Benaroya Research Institute at Virginia Mason, Seattle, WA, USA
| | - Alba Llibre
- Immunobiology of Dendritic Cells/Inserm U1223, Département d'Immunologie, Institut Pasteur, 25 rue de Dr. Roux, 75724, Paris, France
| | - Cate Speake
- Diabetes Program, Benaroya Research Institute at Virginia Mason, Seattle, WA, USA
| | - M Jubayer Rahman
- Immune Tolerance Section, Diabetes Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| | - Vincent Bondet
- Immunobiology of Dendritic Cells/Inserm U1223, Département d'Immunologie, Institut Pasteur, 25 rue de Dr. Roux, 75724, Paris, France
| | - Juan Quiel
- Immune Tolerance Section, Diabetes Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| | - Peter S Linsley
- Systems Immunology Division, Benaroya Research Institute at Virginia Mason, Seattle, WA, USA
| | - Carla J Greenbaum
- Diabetes Program, Benaroya Research Institute at Virginia Mason, Seattle, WA, USA
| | - Darragh Duffy
- Immunobiology of Dendritic Cells/Inserm U1223, Département d'Immunologie, Institut Pasteur, 25 rue de Dr. Roux, 75724, Paris, France.
| | - Kristin V Tarbell
- Immune Tolerance Section, Diabetes Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA.
- Amgen Discovery Research, 1120 Veterans Blvd, South San Francisco, CA, 94080, USA.
| |
Collapse
|
10
|
Jayasuriya WJABN, Handunnetti SM, Wanigatunge CA, Fernando GH, Abeytunga DTU, Suresh TS. Anti-Inflammatory Activity of Pleurotus ostreatus, a Culinary Medicinal Mushroom, in Wistar Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2020; 2020:6845383. [PMID: 32215044 PMCID: PMC7077046 DOI: 10.1155/2020/6845383] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 10/31/2019] [Accepted: 02/07/2020] [Indexed: 01/04/2023]
Abstract
Context. Pleurotus ostreatus (P.o) is a culinary mushroom which is commonly called as "oyster mushroom" belonging to the Basidiomycetous fungi of the order Agaricales and family Pleurotaceae. OBJECTIVES The present study investigates the anti-inflammatory potential of P.o) is a culinary mushroom which is commonly called as "oyster mushroom" belonging to the Basidiomycetous fungi of the order Agaricales and family Pleurotaceae. Materials and Methods. Anti-inflammatory activity was evaluated using suspensions of freeze-dried and powdered (SFDP) P.o) is a culinary mushroom which is commonly called as "oyster mushroom" belonging to the Basidiomycetous fungi of the order Agaricales and family Pleurotaceae. P.o) is a culinary mushroom which is commonly called as "oyster mushroom" belonging to the Basidiomycetous fungi of the order Agaricales and family Pleurotaceae. P.o) is a culinary mushroom which is commonly called as "oyster mushroom" belonging to the Basidiomycetous fungi of the order Agaricales and family Pleurotaceae. in vivo and in vitro assays. RESULTS At doses of 500-1000 mg/kg, the SFDP of P.o) is a culinary mushroom which is commonly called as "oyster mushroom" belonging to the Basidiomycetous fungi of the order Agaricales and family Pleurotaceae. P.o) is a culinary mushroom which is commonly called as "oyster mushroom" belonging to the Basidiomycetous fungi of the order Agaricales and family Pleurotaceae. P.o) is a culinary mushroom which is commonly called as "oyster mushroom" belonging to the Basidiomycetous fungi of the order Agaricales and family Pleurotaceae. P.o) is a culinary mushroom which is commonly called as "oyster mushroom" belonging to the Basidiomycetous fungi of the order Agaricales and family Pleurotaceae. in vitro assays. P < 0.05). Dose-dependent inhibition of NO production was seen with in vitro assays. P.o) is a culinary mushroom which is commonly called as "oyster mushroom" belonging to the Basidiomycetous fungi of the order Agaricales and family Pleurotaceae. r = 0.95; P < 0.05). Dose-dependent inhibition of NO production was seen with Discussion and Conclusion. The promising activity of culinary mushroom P.o against inflammation suggests its potential application as a functional food during inflammatory conditions.P.o) is a culinary mushroom which is commonly called as "oyster mushroom" belonging to the Basidiomycetous fungi of the order Agaricales and family Pleurotaceae.
Collapse
Affiliation(s)
- W. J. A. Banukie N. Jayasuriya
- Department of Pharmacy and Pharmaceutical Sciences, Faculty of Allied Health Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | - Shiroma M. Handunnetti
- Institute of Biochemistry, Molecular Biology and Biotechnology, University of Colombo, Colombo, Sri Lanka
| | - Chandanie A. Wanigatunge
- Department of Pharmacology, Faculty of Medical Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | - Gita H. Fernando
- Department of Pharmacology, Faculty of Medical Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | | | - T. Sugandhika Suresh
- Department of Biochemistry, Faculty of Medical Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| |
Collapse
|
11
|
Rahman MJ, Rodrigues KB, Quiel JA, Liu Y, Bhargava V, Zhao Y, Hotta-Iwamura C, Shih HY, Lau-Kilby AW, Malloy AM, Thoner TW, Tarbell KV. Restoration of the type I IFN-IL-1 balance through targeted blockade of PTGER4 inhibits autoimmunity in NOD mice. JCI Insight 2018; 3:97843. [PMID: 29415894 DOI: 10.1172/jci.insight.97843] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 12/28/2017] [Indexed: 12/14/2022] Open
Abstract
Type I IFN (IFN-I) dysregulation contributes to type 1 diabetes (T1D) development, and although increased IFN-I signals are pathogenic at the initiation of autoimmune diabetes, IFN-I dysregulation at later pathogenic stages more relevant for therapeutic intervention is not well understood. We discovered that 5 key antigen-presenting cell subsets from adult prediabetic NOD mice have reduced responsiveness to IFN-I that is dominated by a decrease in the tonic-sensitive subset of IFN-I response genes. Blockade of IFNAR1 in prediabetic NOD mice accelerated diabetes and increased Th1 responses. Therefore, IFN-I responses shift from pathogenic to protective as autoimmunity progresses, consistent with chronic IFN-I exposure. In contrast, IL-1-associated inflammatory pathways were elevated in prediabetic mice. These changes correlated with human T1D onset-associated gene expression. Prostaglandin E2 (PGE2) and prostaglandin receptor 4 (PTGER4), a receptor for PGE2 that mediates both inflammatory and regulatory eicosanoid signaling, were higher in NOD mice and drive innate immune dysregulation. Treating prediabetic NOD mice with a PTGER4 antagonist restored IFNAR signaling, decreased IL-1 signaling, and decreased infiltration of leukocytes into the islets. Therefore, innate cytokine alterations contribute to both T1D-associated inflammation and autoimmune pathogenesis. Modulating innate immune balance via signals such as PTGER4 may contribute to treatments for autoimmunity.
Collapse
Affiliation(s)
- M Jubayer Rahman
- Immune Tolerance Section, Diabetes, Endocrinology and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, Maryland, USA.,Laboratory of Molecular Immunology and Immunology Center, National Heart, Lung, and Blood Institute, Bethesda, Maryland, USA
| | - Kameron B Rodrigues
- Immune Tolerance Section, Diabetes, Endocrinology and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, Maryland, USA
| | - Juan A Quiel
- Immune Tolerance Section, Diabetes, Endocrinology and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, Maryland, USA
| | - Yi Liu
- Immune Tolerance Section, Diabetes, Endocrinology and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, Maryland, USA
| | - Vipul Bhargava
- Janssen Research and Development, Spring House, Philadelphia, Pennsylvania, USA
| | - Yongge Zhao
- Immune Tolerance Section, Diabetes, Endocrinology and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, Maryland, USA
| | - Chie Hotta-Iwamura
- Immune Tolerance Section, Diabetes, Endocrinology and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, Maryland, USA
| | - Han-Yu Shih
- Lymphocyte Cell Biology Section, Molecular Immunology and Inflammation Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH, Bethesda, Maryland, USA
| | - Annie W Lau-Kilby
- Laboratory of Neonatal Infection and Immunity, Department of Pediatrics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Allison Mw Malloy
- Laboratory of Neonatal Infection and Immunity, Department of Pediatrics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Timothy W Thoner
- Immune Tolerance Section, Diabetes, Endocrinology and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, Maryland, USA
| | - Kristin V Tarbell
- Immune Tolerance Section, Diabetes, Endocrinology and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, Maryland, USA.,Amgen Discovery Research, Inflammation and Oncology, South San Francisco, California, USA
| |
Collapse
|
12
|
Jones IV AR, Coleman EL, Husni NR, Deeney JT, Raval F, Steenkamp D, Dooms H, Nikolajczyk BS, Corkey BE. Type 1 diabetes alters lipid handling and metabolism in human fibroblasts and peripheral blood mononuclear cells. PLoS One 2017; 12:e0188474. [PMID: 29206239 PMCID: PMC5714353 DOI: 10.1371/journal.pone.0188474] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 11/07/2017] [Indexed: 01/05/2023] Open
Abstract
Triggers of the autoimmune response that leads to type 1 diabetes (T1D) remain poorly understood. A possibility is that parallel changes in both T cells and target cells provoke autoimmune attack. We previously documented greater Ca2+ transients in fibroblasts from T1D subjects than non-T1D after exposure to fatty acids (FA) and tumor necrosis factor α (TNFα). These data indicate that metabolic and signal transduction defects present in T1D can be elicited ex vivo in isolated cells. Changes that precede T1D, including inflammation, may activate atypical responses in people that are genetically predisposed to T1D. To identify such cellular differences in T1D, we quantified a panel of metabolic responses in fibroblasts and peripheral blood cells (PBMCs) from age-matched T1D and non-T1D subjects, as models for non-immune and immune cells, respectively. Fibroblasts from T1D subjects accumulated more lipid, had higher LC-CoA levels and converted more FA to CO2, with less mitochondrial proton leak in response to oleate alone or with TNFα, using the latter as a model of inflammation. T1D-PBMCs contained and also accumulated more lipid following FA exposure. In addition, they formed more peroxidized lipid than controls following FA exposure. We conclude that both immune and non-immune cells in T1D subjects differ from controls in terms of responses to FA and TNFα. Our results suggest a differential sensitivity to inflammatory insults and FA that may precede and contribute to T1D by priming both immune cells and their targets for autoimmune reactions.
Collapse
Affiliation(s)
- Albert R. Jones IV
- Obesity Research Center, Evans Department of Medicine, Boston University School of Medicine, Boston, MA, United States of America
| | - Emily L. Coleman
- Yale University School of Medicine, New Haven, CT, United States of America
| | - Nicholas R. Husni
- Obesity Research Center, Evans Department of Medicine, Boston University School of Medicine, Boston, MA, United States of America
| | - Jude T. Deeney
- Obesity Research Center, Evans Department of Medicine, Boston University School of Medicine, Boston, MA, United States of America
| | - Forum Raval
- Department of Microbiology, Boston University School of Medicine, Boston, MA, United States of America
| | - Devin Steenkamp
- Endocrinology Section, Evans Department of Medicine, Boston University School of Medicine, Boston, MA, United States of America
| | - Hans Dooms
- Rheumatology Section, Evans Department of Medicine, Boston University School of Medicine, Boston, MA, United States of America
| | - Barbara S. Nikolajczyk
- Department of Translational Research in Diabetes, University of Kentucky School of Medicine, Lexington, KY, United States of America
- Department of Pharmacology and Nutritional Sciences, University of Kentucky School of Medicine, Lexington, KY, United States of America
| | - Barbara E. Corkey
- Obesity Research Center, Evans Department of Medicine, Boston University School of Medicine, Boston, MA, United States of America
- * E-mail:
| |
Collapse
|
13
|
Constitutive modeling of human femoropopliteal artery biaxial stiffening due to aging and diabetes. Acta Biomater 2017; 64:50-58. [PMID: 28974476 DOI: 10.1016/j.actbio.2017.09.042] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Revised: 09/21/2017] [Accepted: 09/29/2017] [Indexed: 12/17/2022]
Abstract
Atherosclerotic obstructive disease of the femoropopliteal artery (Peripheral Arterial Disease, PAD) is notorious for high treatment failure rates. Older age and diabetes mellitus (DM) are among the major risk factors for PAD, and both are associated with increased arterial stiffness. Our goal was to develop a constitutive model describing multiaxial arterial stiffening, and use it to portray aging of normal and diabetic human femoropopliteal arteries (FPA). Fresh human FPAs (n=744) were obtained from 13-82-year-old donors. Arteries were tested using planar biaxial extension, and their behavior was modeled with a constitutive relation that included stiffening functions of age. FPA diameter, wall thickness, circumferential, and longitudinal opening angles increased with age, while longitudinal pre-stretch decreased. Diameter and circumferential opening angle did not change with age in subjects with DM. Younger FPAs were more compliant longitudinally but became more isotropic with age. Arteries with DM stiffened significantly faster in the circumferential direction than arteries without DM. Constitutive model accurately portrayed orthotropic stiffening with age of both normal and diabetic arteries. Constitutive description of FPA aging contributes to understanding of arterial pathophysiology and can help improve fidelity of computational models investigating device-artery interaction in PAD repair by providing more personalized arterial properties. STATEMENT OF SIGNIFICANCE We have analyzed n=744 human femoropopliteal artery (FPA) specimens using biaxial tensile testing to derive constitutive description of FPA aging in diabetic and non-diabetic subjects. The proposed model allows determination of FPA mechanical properties for subjects of any given age in the range of 13-82years. These results contribute to understanding of FPA pathophysiology and can help improve fidelity of computational models investigating device-artery interaction in peripheral arterial disease repair by providing more personalized arterial properties. In addition, they can guide the development of new materials tunable to diabetic and non-diabetic arteries.
Collapse
|
14
|
Cabrera SM, Wang X, Chen YG, Jia S, Kaldunski ML, Greenbaum CJ, Mandrup-Poulsen T, Hessner MJ. Interleukin-1 antagonism moderates the inflammatory state associated with Type 1 diabetes during clinical trials conducted at disease onset. Eur J Immunol 2016; 46:1030-46. [PMID: 26692253 PMCID: PMC4828314 DOI: 10.1002/eji.201546005] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 11/10/2015] [Accepted: 12/15/2015] [Indexed: 01/09/2023]
Abstract
It was hypothesized that IL-1 antagonism would preserve β-cell function in new onset Type 1 diabetes (T1D). However, the Anti-Interleukin-1 in Diabetes Action (AIDA) and TrialNet Canakinumab (TN-14) trials failed to show efficacy of IL-1 receptor antagonist (IL-1Ra) or canakinumab, as measured by stimulated C-peptide response. Additional measures are needed to define immune state changes associated with therapeutic responses. Here, we studied these trial participants with plasma-induced transcriptional analysis. In blinded analyses, 70.2% of AIDA and 68.9% of TN-14 participants were correctly called to their treatment arm. While the transcriptional signatures from the two trials were distinct, both therapies achieved varying immunomodulation consistent with IL-1 inhibition. On average, IL-1 antagonism resulted in modest normalization relative to healthy controls. At endpoint, signatures were quantified using a gene ontology-based inflammatory index, and an inverse relationship was observed between measured inflammation and stimulated C-peptide response in IL-1Ra- and canakinumab-treated patients. Cytokine neutralization studies showed that IL-1α and IL-1β additively contribute to the T1D inflammatory state. Finally, analyses of baseline signatures were indicative of later therapeutic response. Despite the absence of clinical efficacy by IL-1 antagonist therapy, transcriptional analysis detected immunomodulation and may yield new insight when applied to other clinical trials.
Collapse
Affiliation(s)
- Susanne M. Cabrera
- The Max McGee National Research Center for Juvenile Diabetes, Children’s Research Institute of Children’s Hospital of Wisconsin, and Department of Pediatrics at the Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Xujing Wang
- Systems Biology Center, the National Heart, Lung, and Blood Institute, the National Institutes of Health, Bethesda, MD 20824, USA
| | - Yi-Guang Chen
- The Max McGee National Research Center for Juvenile Diabetes, Children’s Research Institute of Children’s Hospital of Wisconsin, and Department of Pediatrics at the Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Shuang Jia
- The Max McGee National Research Center for Juvenile Diabetes, Children’s Research Institute of Children’s Hospital of Wisconsin, and Department of Pediatrics at the Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Mary L. Kaldunski
- The Max McGee National Research Center for Juvenile Diabetes, Children’s Research Institute of Children’s Hospital of Wisconsin, and Department of Pediatrics at the Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Carla J. Greenbaum
- Diabetes Research Program, Benaroya Research Institute, Seattle, WA 98101, USA
| | | | - Thomas Mandrup-Poulsen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | | | - Martin J. Hessner
- The Max McGee National Research Center for Juvenile Diabetes, Children’s Research Institute of Children’s Hospital of Wisconsin, and Department of Pediatrics at the Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
15
|
Sasaki H, Hirai K, Martins CM, Furusho H, Battaglino R, Hashimoto K. Interrelationship Between Periapical Lesion and Systemic Metabolic Disorders. Curr Pharm Des 2016; 22:2204-15. [PMID: 26881444 PMCID: PMC4856634 DOI: 10.2174/1381612822666160216145107] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 02/15/2016] [Indexed: 12/25/2022]
Abstract
BACKGROUND Periapical periodontitis, also known as periapical lesion, is a common dental disease, along with periodontitis (gum disease). Periapical periodontitis is a chronic inflammatory disease, caused by endodontic infection, and its development is regulated by the host immune/inflammatory response. Metabolic disorders, which are largely dependent on life style such as eating habits, have been interpreted as a "metabolically-triggered" low-grade systemic inflammation and may interact with periapical periodontitis by triggering immune modulation. The host immune system is therefore considered the common fundamental mechanism of both disease conditions. METHOD We have reviewed >200 articles to discuss the interrelationship between periapical lesions and metabolic disorders including type 2 diabetes mellitus, hypertension, and non-alcoholic fatty liver diseases (NAFLD), and their common pathological background in immunology/osteoimmunology and cytokine biology. RESULTS An elevated inflammatory state caused by metabolic disorders can impact the clinical outcome of periapical lesions and interfere with wound healing after endodontic treatment. Although additional well-designed clinical studies are needed, periapical lesions appear to affect insulin sensitivity and exacerbate non-alcoholic steatohepatitis. CONCLUSION Immune regulatory cytokines produced by various cell types, including immune cells and adipose tissue, play an important role in this interrelationship.
Collapse
Affiliation(s)
- Hajime Sasaki
- Department of Immunology & Infectious Diseases, The Forsyth Institute, 245 First Street, Cambridge, MA 02494, U.S.A.
| | | | | | | | | | | |
Collapse
|
16
|
Zhou J, Xu G, Yan J, Li K, Bai Z, Cheng W, Huang K. Rehmannia glutinosa (Gaertn.) DC. polysaccharide ameliorates hyperglycemia, hyperlipemia and vascular inflammation in streptozotocin-induced diabetic mice. JOURNAL OF ETHNOPHARMACOLOGY 2015; 164:229-38. [PMID: 25698243 DOI: 10.1016/j.jep.2015.02.026] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 01/19/2015] [Accepted: 02/09/2015] [Indexed: 05/22/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Rehmannia glutinosa (Gaertn.) DC. (RG) has been widely used as traditional Chinese herbal medicine for treatment of diabetes and its complications. The polysaccharide fraction of RG has been proposed to possess hypoglycemic effect by intraperitoneal administration, however, the mechanisms responsible for the hypoglycemic effect of RG polysaccharide (RGP) remain poorly understood. Here we studied the anti-hyperglycemic and anti-hyperlipidemic effect of oral administration of a purified RGP and its underlying mechanisms in streptozotocin (STZ)-induced diabetic mice. MATERIALS AND METHODS The preliminary structure of RGP was determined by GC and FT-IR. Mice were injected with STZ to induce type 1 diabetes. RGP at doses of 20, 40 and 80 mg/kg/day was orally administered to mice for 4 weeks, and metformin was used as positive control. After 4 weeks, the blood biochemical parameters, the pancreatic insulin contents, in vitro insulin secretion, the hepatic glycogen contents and mRNA expression of phosphoenolpyruvate carboxyl kinase (PEPCK) were assayed. RESULTS RGP was composed of rhamnose, arabinose, mannose, glucose and galactose in the molar ratio of 1.00:1.26:0.73:16.45:30.40 with the average molecular weight of 63.5 kDa. RGP administration significantly decreased the blood levels of glucose, total cholesterol, triglycerides, low density lipoprotein-cholesterol, and increased the blood levels of high density lipoprotein-cholesterol and insulin in diabetic mice, concurrent with increases in body weights and pancreatic insulin contents. The in vitro study revealed that RGP significantly enhanced both basal and glucose-stimulated insulin secretions, as well as islet insulin contents in the pancreatic islets of diabetic mice. Moreover, RGP reversed the increased mRNA expression of PEPCK and the reduced glycogen contents in the liver of diabetic mice. Furthermore, RGP exhibited potent anti-inflammatory and anti-oxidative activities, as evidenced by the decreased blood levels of TNF-α, IL-6, monocyte chemoattractant protein-1, MDA, and also the elevated blood levels of SOD and GPx activities in diabetic mice. CONCLUSIONS Taken together, RGP can effectively ameliorate hyperglycemia, hyperlipemia, vascular inflammation and oxidative stress in STZ-induced diabetic mice, and thus may be a potential therapeutic option for type 1 diabetes.
Collapse
Affiliation(s)
- Jun Zhou
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, PR China.
| | - Gang Xu
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, PR China
| | - Junyan Yan
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, PR China
| | - Kaicheng Li
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, PR China
| | - Zhaoshuai Bai
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, PR China
| | - Weinan Cheng
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, PR China
| | - Kaixun Huang
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, PR China.
| |
Collapse
|
17
|
Allam G, Alsulaimani AA, Alghamdi H, Alswat H, Edrees BM, Ahmad I, Nasr A. Changes in the levels of cytokines in both diabetic/non-diabetic type I children living in a moderate altitude area in Saudi Arabia. High Alt Med Biol 2014; 15:380-7. [PMID: 25167161 DOI: 10.1089/ham.2014.1001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The aim of the present study was to investigate the possible effects of living in moderate altitude area on pro/anti-inflammatory cytokines profile (IFN-γ, TNF-α, IL-6, IL-1β, IL-10, and IL-4) among type I diabetic (T1D) and non- T1D children compared with those living at sea level area. A prospective clinical study was carried out at pediatric outpatient endocrine clinics in Taif City, which is a moderate altitude area in Saudi Arabia, that stands about 1800-2000 meters above sea-level; and in Mecca City, which is a sea level area, that lies in the middle west of Saudi Arabia. Hemoglobin A1c (HbA1c) percentage was estimated and cytokine measurements were performed in sera by flow cytometry using Cytometric Bead Array (CBA) technology. In this study we included 600 children who were consecutively enrolled (sex and age were matched). The HbA1c was statistically significantly higher in children living in moderate altitude compared to those living at sea level (overall p<0.001). Furthermore, T1D patients had higher values of serum cytokine levels (IFN-γ, TNF-α, IL-6, IL-1β, IL-4, and IL-10) in comparison to non-T1D control group (overall p<0.001). In conclusion, the data of the present study clearly showed that in both T1D and non-T1D children, moderate altitude-natives expressed high HbA1c and both pro-and anti-inflammatory cytokines. Type I diabetic children living in moderate altitude or at sea level showed elevated levels of IFN-γ, TNF-α, IL-6, IL-1β, IL-4, and IL-10 than control subjects. Glycemic control in non-diabetic children was affected by living in moderate altitude, however, HbA1c significantly increased in diabetic children living in moderate altitude.
Collapse
Affiliation(s)
- Gamal Allam
- 1 High Altitude Research Center, Taif University , Taif, Saudi Arabia
| | | | | | | | | | | | | |
Collapse
|
18
|
Husni NR, Jones IV AR, Simmons AL, Corkey BE. Fibroblasts from type 1 diabetics exhibit enhanced Ca(2+) mobilization after TNF or fat exposure. PLoS One 2014; 9:e87068. [PMID: 24466329 PMCID: PMC3900712 DOI: 10.1371/journal.pone.0087068] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2013] [Accepted: 12/24/2013] [Indexed: 01/24/2023] Open
Abstract
The effects of cytokine and fatty acid treatment on signal transduction in dermal fibroblasts from type 1 diabetics and matched controls were compared. Chronic exposure to TNF, accentuated Ca2+ mobilization in response to bradykinin (BK) in cells from both controls and diabetics; responses were three-fold greater in cells from diabetics than in controls. Similarly, with chronic exposure to IL-1β, BK-induced Ca2+ mobilization was accentuated in cells from type 1 diabetics compared to the controls. Pretreatment with the protein synthesis inhibitor cycloheximide or the protein kinase C inhibitor calphostin C prior to the addition of TNF completely abrogated the TNF-induced increment in peak bradykinin response. Ca2+ transients induced by depleting endoplasmic reticulum (ER) Ca2+ with thapsigargin were also greater in TNF treated fibroblasts than in untreated cells, with greater increases in cells from diabetics. Exposing fibroblasts for 48 hours to 2 mM oleate also increased both the peak bradykinin response and the TNF-induced increment in peak response, which were significantly greater in diabetics than controls. These data indicate that cells from diabetic patients acquire elevated ER Ca2+ stores in response to both cytokines and free fatty acids,and thus exhibit greater sensitivity to environmental inflammatory stimuli and elevated lipids.
Collapse
Affiliation(s)
- Nicholas R. Husni
- Obesity Research Center, Evans Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Albert R. Jones IV
- Obesity Research Center, Evans Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Amber L. Simmons
- Obesity Research Center, Evans Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Barbara E. Corkey
- Obesity Research Center, Evans Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
19
|
Polymorphic variant at the IL2 region is associated with type 1 diabetes and may affect serum levels of interleukin-2. Mol Biol Rep 2013; 40:6957-63. [PMID: 24154763 PMCID: PMC3835945 DOI: 10.1007/s11033-013-2815-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2012] [Accepted: 10/16/2013] [Indexed: 12/31/2022]
Abstract
Polymorphic variants at the interleukin-2 (IL2) locus affect the risk of several autoimmune disorders. Our aim was to evaluate the association of the four IL2 polymorphisms (rs6822844, rs6534349, rs2069762 and rs3136534) with type 1 diabetes (T1D) in the Polish population, and to correlate them with the serum interleukin-2 levels. 543 unrelated T1D patients and 706 healthy control subjects were enrolled. The minor T allele at rs6822844 was significantly less frequent in T1D compared to controls (p = 0.002; OR 0.71; 95 % CI 0.571–0.880). Likewise, the frequency of the TT genotype was decreased among the affected individuals (p = 0.007). In healthy subjects, stratification according to the rs6822844 genotype revealed significant differences in circulating interleukin-2 (p = 0.037) with the highest levels in TT protective genotypes. Three other IL2 polymorphisms did not display significant differences in allele and genotype distribution. In conclusion, the rs6822844 variant is associated with T1D and may play a functional role, or reflect the influence of another causative genetic variant in linkage disequilibrium.
Collapse
|
20
|
Meng N, Zhang Y, Li H, Ma J, Qu Y. Association of Tumor Necrosis Factor Alpha Promoter Polymorphism (TNF-α 238 G/A and TNF-α 308 G/A) with Diabetic Mellitus, Diabetic Retinopathy and Diabetic Nephropathy: A Meta-analysis. Curr Eye Res 2013; 39:194-203. [DOI: 10.3109/02713683.2013.834942] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
21
|
Zhou J, Zhou S. Inflammation: therapeutic targets for diabetic neuropathy. Mol Neurobiol 2013; 49:536-46. [PMID: 23990376 DOI: 10.1007/s12035-013-8537-0] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 08/15/2013] [Indexed: 11/26/2022]
Abstract
There are still no approved treatments for the prevention or of cure of diabetic neuropathy, and only symptomatic pain therapies of variable efficacy are available. Inflammation is a cardinal pathogenic mechanism of diabetic neuropathy. The relationships between inflammation and the development of diabetic neuropathy involve complex molecular networks and processes. Herein, we review the key inflammatory molecules (inflammatory cytokines, adhesion molecules, chemokines) and pathways (nuclear factor kappa B, JUN N-terminal kinase) implicated in the development and progression of diabetic neuropathy. Advances in the understanding of the roles of these key inflammatory molecules and pathways in diabetic neuropathy will facilitate the discovery of the potential of anti-inflammatory approaches for the inhibition of the development of neuropathy. Specifically, many anti-inflammatory drugs significantly inhibit the development of different aspects of diabetic neuropathy in animal models and clinical trials.
Collapse
Affiliation(s)
- Jiyin Zhou
- National Drug Clinical Trial Institution, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China,
| | | |
Collapse
|
22
|
Sundaram R, Shanthi P, Sachdanandam P. Effect of iridoid glucoside on plasma lipid profile, tissue fatty acid changes, inflammatory cytokines, and GLUT4 expression in skeletal muscle of streptozotocin-induced diabetic rats. Mol Cell Biochem 2013; 380:43-55. [PMID: 23625195 DOI: 10.1007/s11010-013-1656-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Accepted: 04/13/2013] [Indexed: 01/18/2023]
Abstract
The present study was designed to examine the antihyperlipidaemic potential of iridoid glucoside isolated from Vitex negundo leaves in STZ-induced diabetic rats. The levels of cholesterol (TC), triglycerides, lipoproteins, free fatty acids, phospholipids, fatty acid composition, proinflammatory cytokines, muscle glycogen content, and glucose transporter 4 (GLUT4) expression were estimated in control and diabetic rats. Oral administration of iridoid glucoside at a dose of 50 mg/kg body weight per day to STZ-induced diabetic rats for a period of 30 days resulted in a significant reduction in plasma and tissue (liver and kidney) cholesterol, triglycerides, free fatty acids, and phospholipids. In addition, the decreased plasma levels of high-density lipoprotein-cholesterol and increased plasma levels of low density lipoprotein- and very low density lipoprotein-cholesterol in diabetic rats were restored to near normal levels following treatment with iridoid glucoside. The fatty acid composition of the liver and kidney was analyzed by gas chromatography. The altered fatty acid composition in the liver and kidney of diabetic rats was also restored upon treatment with iridoid glucoside. Moreover, the elevated plasma levels of proinflammatory cytokines and decreased levels of muscle glycogen and GLUT4 expression in the skeletal muscle of diabetic rats were reinstated to their normal levels via enhanced secretion of insulin from the remnant β cells of pancreas by the administration of iridoid glucoside. The effect produced by iridoid glucoside on various parameters was comparable with that of glibenclamide, a well-known antihyperglycemic drug.
Collapse
Affiliation(s)
- Ramalingam Sundaram
- Department of Medical Biochemistry, Dr. ALM P-G, Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai 600113, Tamil Nadu, India
| | | | | |
Collapse
|
23
|
He L, Wong CK, Cheung KK, Yau HC, Fu A, Zhao HL, Leung KM, Kong AP, Wong GW, Chan PK, Xu G, Chan JC. Anti-inflammatory effects of exendin-4, a glucagon-like peptide-1 analog, on human peripheral lymphocytes in patients with type 2 diabetes. J Diabetes Investig 2013; 4:382-92. [PMID: 24843684 PMCID: PMC4020234 DOI: 10.1111/jdi.12063] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Revised: 11/08/2012] [Accepted: 01/07/2013] [Indexed: 02/02/2023] Open
Abstract
Aims/Introduction Type 2 diabetes is characterized by dysregulation of immunity, oxidative stress and reduced incretin effects. Experimental studies suggest that glucagon‐like peptide (GLP‐1) might have immunomodulating effects. We hypothesize that GLP‐1 receptor agonist, exendin‐4, might reduce inflammatory response in type 2 diabetes. Materials and Methods Using peripheral blood mononuclear cells (PBMC) sampled from 10 type 2 diabetes and 10 sex‐ and age‐matched control subjects and supernatants from PBMC culture, the expression of phospho‐mitogen activated protein kinase (MAPK) signaling pathways in CD4+ T helper lymphocytes and monocytes was analyzed using flow cytometry. Cytokines/chemokines and superoxide anion before and after treatment with exendin‐4 were measured by cytometric bead array and chemiluminesence assay, respectively. Results Compared with control subjects, PBMC from type 2 diabetes patients showed activated MAPK (P38, c‐Jun NH2‐terminal protein kinase and extracellular signal‐regulated kinase) signaling pathway, elevated superoxide anion, increased pro‐inflammatory cytokines (tumor necrosis factor‐α, interleukin‐1β, interleukin‐6) and chemokines (CCL5/regulated on activation normal T‐cell expressed and secreted and CXCL10/interferon‐γ‐induced protein 10). These changes were attenuated by exendin‐4, possibly through the suppression of p38 MAPK. Conclusions These results suggest that exendin‐4 might downregulate pro‐inflammatory responses and reduce oxidative stress by suppressing MAPK signaling pathways in type 2 diabetes.
Collapse
Affiliation(s)
- Lan He
- Department of Medicine and Therapeutics The Chinese University of Hong Kong Shatin Hong Kong SAR China
| | - Chun Kwok Wong
- Department of Chemical Pathology The Chinese University of Hong Kong Shatin Hong Kong SAR China
| | - Kitty Kt Cheung
- Department of Medicine and Therapeutics The Chinese University of Hong Kong Shatin Hong Kong SAR China
| | - Ho Chung Yau
- Department of Pediatrics Prince of Wales Hospital The Chinese University of Hong Kong Shatin Hong Kong SAR China
| | - Anthony Fu
- Department of Pediatrics Prince of Wales Hospital The Chinese University of Hong Kong Shatin Hong Kong SAR China
| | - Hai-Lu Zhao
- Department of Medicine and Therapeutics The Chinese University of Hong Kong Shatin Hong Kong SAR China
| | - Karen Ml Leung
- Department of Chemical Pathology The Chinese University of Hong Kong Shatin Hong Kong SAR China
| | - Alice Ps Kong
- Department of Medicine and Therapeutics The Chinese University of Hong Kong Shatin Hong Kong SAR China ; Hong Kong Institute of Diabetes and Obesity The Chinese University of Hong Kong Shatin Hong Kong SAR China ; Li Ka Shing Institute of Health Sciences The Chinese University of Hong Kong Shatin Hong Kong SAR China
| | - Gary Wk Wong
- Department of Pediatrics Prince of Wales Hospital The Chinese University of Hong Kong Shatin Hong Kong SAR China
| | - Paul Ks Chan
- Department of Microbiology The Chinese University of Hong Kong Shatin Hong Kong SAR China
| | - Gang Xu
- Department of Medicine and Therapeutics The Chinese University of Hong Kong Shatin Hong Kong SAR China ; Hong Kong Institute of Diabetes and Obesity The Chinese University of Hong Kong Shatin Hong Kong SAR China ; Li Ka Shing Institute of Health Sciences The Chinese University of Hong Kong Shatin Hong Kong SAR China
| | - Juliana Cn Chan
- Department of Medicine and Therapeutics The Chinese University of Hong Kong Shatin Hong Kong SAR China ; Hong Kong Institute of Diabetes and Obesity The Chinese University of Hong Kong Shatin Hong Kong SAR China ; Li Ka Shing Institute of Health Sciences The Chinese University of Hong Kong Shatin Hong Kong SAR China
| |
Collapse
|
24
|
Wong FS, Wen L. Type 1 diabetes therapy beyond T cell targeting: monocytes, B cells, and innate lymphocytes. Rev Diabet Stud 2012; 9:289-304. [PMID: 23804267 DOI: 10.1900/rds.2012.9.289] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Recent clinical trials, investigating type 1 diabetes (T1D), have focused mainly on newly diagnosed individuals who have developed diabetes. We need to continue our efforts to understand disease processes and to rationally design interventions that will be safe and specific for disease, but at the same time not induce undesirable immunosuppression. T cells are clearly involved in the pathogenesis of T1D, and have been a major focus for both antigen-specific and non-antigen-specific therapy, but thus far no single strategy has emerged as superior. As T1D is a multifactorial disease, in which multiple cell types are involved, some of these pathogenic and regulatory cell pathways may be important to consider. In this review, we examine evidence for whether monocytes, B cells, and innate lymphocytes, including natural killer cells, may be suitable targets for intervention.
Collapse
Affiliation(s)
- F Susan Wong
- Institute of Molecular and Experimental Medicine, Cardiff School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK.
| | | |
Collapse
|
25
|
Han D, Cai X, Wen J, Kenyon NS, Chen Z. From biomarkers to a clue of biology: a computation-aided perspective of immune gene expression profiles in human type 1 diabetes. Front Immunol 2012; 3:320. [PMID: 23112798 PMCID: PMC3480653 DOI: 10.3389/fimmu.2012.00320] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Accepted: 10/02/2012] [Indexed: 01/25/2023] Open
Abstract
Dysregulated expression of key immune genes may cause breakdown of immunological tolerance and development of autoimmune disorders such as type 1 diabetes (T1D). General immune insufficiencies have also been implicated as a trigger of autoimmunity, due to their potential impact on immune homeostasis. Recent studies have detected evidence of systemic reduction in immune gene expression in long-term diabetic patients but the changes were not present before or at T1D onset. The changes could not be merely correlated with alteration in metabolic parameters. The studies also identified a dynamic expression pattern of several well-known as well as little-studied, immune-related genes during the course of T1D. An intriguing “ratio profile” of immune regulatory genes, such as CTLA4 and members of the S100 family, versus “baseline” immune genes, such as CD3G, prompted us to further examine immune gene expression relationships for a set of molecules representing T cells, B cells, and myeloid cells. No evidence was found to suggest an overall breach of tolerance equilibrium in T1D. Perplexingly, patients with long-term T1D presented a gene expression profile that was surprisingly more coordinated in analyses of “networking” relationship. Computational analyses of the “ratio profiles” or “relationship profiles” of immune gene expression might provide a clue for further studies of immunobiology in human T1D and other autoimmune diseases, as to how the profiles may be related to the pathogenic cause of the disease, to the effect of the diseases on immune homeostasis, or to an immunological process associated with the course of the diseases but is neither a direct cause nor a direct effect of the diseases.
Collapse
Affiliation(s)
- Dongmei Han
- Diabetes Research Institute, University of Miami Miller School of Medicine Miami, FL, USA
| | | | | | | | | |
Collapse
|
26
|
Levy H, Wang X, Kaldunski M, Jia S, Kramer J, Pavletich SJ, Reske M, Gessel T, Yassai M, Quasney MW, Dahmer MK, Gorski J, Hessner MJ. Transcriptional signatures as a disease-specific and predictive inflammatory biomarker for type 1 diabetes. Genes Immun 2012; 13:593-604. [PMID: 22972474 PMCID: PMC4265236 DOI: 10.1038/gene.2012.41] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The complex milieu of inflammatory mediators associated with many diseases is often too dilute to directly measure in the periphery, necessitating development of more sensitive measurements suitable for mechanistic studies, earlier diagnosis, guiding therapeutic decisions and monitoring interventions. We previously demonstrated that plasma samples from recent-onset type 1 diabetes (RO T1D) patients induce a proinflammatory transcriptional signature in freshly drawn peripheral blood mononuclear cells (PBMCs) relative to that of unrelated healthy controls (HC). Here, using cryopreserved PBMC, we analyzed larger RO T1D and HC cohorts, examined T1D progression in pre-onset samples, and compared the RO T1D signature to those associated with three disorders characterized by airway infection and inflammation. The RO T1D signature, consisting of interleukin-1 cytokine family members, chemokines involved in immunocyte chemotaxis, immune receptors and signaling molecules, was detected during early pre-diabetes and found to resolve post-onset. The signatures associated with cystic fibrosis patients chronically infected with Pseudomonas aeruginosa, patients with confirmed bacterial pneumonia, and subjects with H1N1 influenza all reflected immunological activation, yet each were distinct from one another and negatively correlated with that of T1D. This study highlights the remarkable capacity of cells to serve as biosensors capable of sensitively and comprehensively differentiating immunological states.
Collapse
Affiliation(s)
- H Levy
- The Department of Pediatrics, The Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Yeung WCG, Al-Shabeeb A, Pang CNI, Wilkins MR, Catteau J, Howard NJ, Rawlinson WD, Craig ME. Children with islet autoimmunity and enterovirus infection demonstrate a distinct cytokine profile. Diabetes 2012; 61:1500-8. [PMID: 22474026 PMCID: PMC3357262 DOI: 10.2337/db11-0264] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cytokines are upregulated in prediabetes, but their relationship with Enterovirus (EV) infection and development of islet autoimmunity is unknown. Cytokines (n = 65) were measured using Luminex xMAP technology in a nested case-control study of 67 children with a first-degree relative with type 1 diabetes: 27 with islet autoantibodies (Ab(+)) and 40 age-matched persistently autoantibody negative (Ab(-)) control subjects. Of 74 samples, 37 (50%) were EV-PCR(+) in plasma and/or stool (EV(+)) and the remainder were negative for EV and other viruses (EV(-)). Fifteen cytokines, chemokines, and growth factors were elevated (P ≤ 0.01) in Ab(+) versus Ab(-) children (interleukin [IL]-1β, IL-5, IL-7, IL-12(p70), IL-16, IL-17, IL-20, IL-21, IL-28A, tumor necrosis factor-α, chemokine C-C motif ligand [CCL]13, CCL26, chemokine C-X-C motif ligand 5, granulocyte-macrophage colony-stimulating factor, and thrombopoietin); most have proinflammatory effects. In EV(+) versus EV(-) children, IL-10 was higher (P = 0.005), while IL-21 was lower (P = 0.008). Cytokine levels did not differ between Ab(+)EV(+) and Ab(+)EV(-) children. Heat maps demonstrated clustering of some proinflammatory cytokines in Ab(+) children, suggesting they are coordinately regulated. In conclusion, children with islet autoimmunity demonstrate higher levels of multiple cytokines, consistent with an active inflammatory process in the prediabetic state, which is unrelated to coincident EV infection. Apart from differences in IL-10 and IL-21, EV infection was not associated with a specific cytokine profile.
Collapse
Affiliation(s)
- Wing-Chi G. Yeung
- Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - Ammira Al-Shabeeb
- School of Women’s and Children’s Health, University of New South Wales, Sydney, Australia
- Prince of Wales Hospital, Virology Research Laboratory, Sydney, Australia
| | - Chi Nam Ignatius Pang
- School of Biotechnology and Biomolecular Science, Faculty of Science, University of New South Wales, Sydney, Australia
| | - Marc R. Wilkins
- School of Biotechnology and Biomolecular Science, Faculty of Science, University of New South Wales, Sydney, Australia
| | - Jacki Catteau
- Prince of Wales Hospital, Virology Research Laboratory, Sydney, Australia
- The Children’s Hospital at Westmead, Institute of Endocrinology and Diabetes, Sydney, Australia
| | - Neville J. Howard
- The Children’s Hospital at Westmead, Institute of Endocrinology and Diabetes, Sydney, Australia
| | - William D. Rawlinson
- Prince of Wales Hospital, Virology Research Laboratory, Sydney, Australia
- School of Biotechnology and Biomolecular Science, Faculty of Science, University of New South Wales, Sydney, Australia
- School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - Maria E. Craig
- School of Women’s and Children’s Health, University of New South Wales, Sydney, Australia
- The Children’s Hospital at Westmead, Institute of Endocrinology and Diabetes, Sydney, Australia
- Discipline of Paediatrics and Child Health, The University of Sydney, Sydney, Australia
- Corresponding author: Maria E. Craig,
| |
Collapse
|
28
|
Zarfeshani A, Abd Mutali MS, Khaza`ai H. Evaluating of High Fructose Diet to Induce Hyperglycemia and its Inflammatory Complications in Rats. PAKISTAN JOURNAL OF NUTRITION 2011; 11:21-26. [DOI: 10.3923/pjn.2012.21.26] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
29
|
Wang G, Li W, Lu X, Zhao X. Riboflavin alleviates cardiac failure in Type I diabetic cardiomyopathy. Heart Int 2011; 6:e21. [PMID: 22355488 PMCID: PMC3282438 DOI: 10.4081/hi.2011.e21] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Revised: 10/19/2011] [Accepted: 10/25/2011] [Indexed: 12/17/2022] Open
Abstract
Heart failure (HF) is a common and serious comorbidity of diabetes. Oxidative stress has been associated with the pathogenesis of chronic diabetic complications including cardiomyopathy. The ability of antioxidants to inhibit injury has raised the possibility of new therapeutic treatment for diabetic heart diseases. Riboflavin constitutes an essential nutrient for humans and animals and it is an important food additive. Riboflavin, a precursor of flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD), enhances the oxidative folding and subsequent secretion of proteins. The objective of this study was to investigate the cardioprotective effect of riboflavin in diabetic rats. Diabetes was induced in 30 rats by a single injection of streptozotocin (STZ) (70 mg /kg). Riboflavin (20 mg/kg) was orally administered to animals immediately after induction of diabetes and was continued for eight weeks. Rats were examined for diabetic cardiomyopathy by left ventricular (LV) remadynamic function. Myocardial oxidative stress was assessed by measuring the activity of superoxide dismutase (SOD), the level of malondialdehyde (MDA) as well as heme oxygenase-1 (HO-1) protein level. Myocardial connective tissue growth factor (CTGF) level was measured by Western blot in all rats at the end of the study. In the untreated diabetic rats, left ventricular systolic pressure (LVSP) rate of pressure rose (+dp/dt), and rate of pressure decay (−dp/dt) were depressed while left ventricular end-diastolic pressure (LVEDP) was increased, which indicated the reduced left ventricular contractility and slowing of left ventricular relaxation. The level of SOD decreased, CTGF and HO-1 protein expression and MDA content rose. Riboflavin treatment significantly improved left ventricular systolic and diastolic function in diabetic rats, there were persistent increases in significant activation of SOD and the level of HO-1 protein, and a decrease in the level of CTGF. These results suggest that riboflavin treatment ameliorates myocardial function and improves heart oxidant status, whereas raising myocardial HO-1 and decreasing myocardial CTGF levels have beneficial effects on diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Guoguang Wang
- Department of Pathophysiology, Wannan Medical College, Wuhu, China
| | | | | | | |
Collapse
|
30
|
Han D, Leyva CA, Matheson D, Mineo D, Messinger S, Blomberg BB, Hernandez A, Meneghini LF, Allende G, Skyler JS, Alejandro R, Pugliese A, Kenyon NS. Immune profiling by multiple gene expression analysis in patients at-risk and with type 1 diabetes. Clin Immunol 2011; 139:290-301. [PMID: 21414848 PMCID: PMC3096683 DOI: 10.1016/j.clim.2011.02.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Revised: 02/14/2011] [Accepted: 02/17/2011] [Indexed: 12/17/2022]
Abstract
There is a need for biomarkers to monitor the development and progression of type 1 DM. We analyzed mRNA expression levels for granzyme B, perforin, fas ligand, TNF-α, IFN-γ, Foxp3, IL-10, TGF-β, IL-4, IL-6, IL-17, Activation-induced cytidine deaminase (AID) and Immunoglobulin G gamma chain (IgG<gamma>) genes in peripheral blood of at-risk, new-onset and long-term type 1 DM , and healthy controls. The majority of the genes were suppressed in long-term type 1 DM compared to controls and new-onset patients. IFN-γ, IL-4 and IL-10 mRNA levels were significantly higher in new-onset compared to at-risk and long-term groups. There was decreased mRNA expression for AID and IgG<gamma> and up-regulation of IFN-γ with age in controls. Data suggest an overall depressed immunity in long-term type 1 DM. Increased gene expression levels for IFN-γ, IL-4 and IL-10 in new-onset patients from at-risk patients might be used as potential markers for progression of the disease.
Collapse
Affiliation(s)
- Dongmei Han
- Diabetes Research Institute, Leonard Miller School of Medicine, University of Miami, FL 33136, USA.
| | - Carlos A. Leyva
- Division of Pediatric Endocrinology, Leonard Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Della Matheson
- Diabetes Research Institute, Leonard Miller School of Medicine, University of Miami, Miami, FL 33136, USA,Division of Diabetes, Endocrinology, and Metabolism, Leonard Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Davide Mineo
- Diabetes Research Institute, Leonard Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Shari Messinger
- Diabetes Research Institute, Leonard Miller School of Medicine, University of Miami, Miami, FL 33136, USA,Department of Epidemiology & Public Health, Leonard Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Bonnie B. Blomberg
- Department of Microbiology and Immunology, Leonard Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Ana Hernandez
- Diabetes Research Institute, Leonard Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Luigi F. Meneghini
- Diabetes Research Institute, Leonard Miller School of Medicine, University of Miami, Miami, FL 33136, USA,Division of Diabetes, Endocrinology, and Metabolism, Leonard Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Gloria Allende
- Diabetes Research Institute, Leonard Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Jay S. Skyler
- Diabetes Research Institute, Leonard Miller School of Medicine, University of Miami, Miami, FL 33136, USA,Division of Diabetes, Endocrinology, and Metabolism, Leonard Miller School of Medicine, University of Miami, Miami, FL 33136, USA,Department of Medicine, Leonard Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Rodolfo Alejandro
- Diabetes Research Institute, Leonard Miller School of Medicine, University of Miami, Miami, FL 33136, USA,Department of Medicine, Leonard Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Alberto Pugliese
- Diabetes Research Institute, Leonard Miller School of Medicine, University of Miami, Miami, FL 33136, USA,Department of Microbiology and Immunology, Leonard Miller School of Medicine, University of Miami, Miami, FL 33136, USA,Division of Diabetes, Endocrinology, and Metabolism, Leonard Miller School of Medicine, University of Miami, Miami, FL 33136, USA,Department of Medicine, Leonard Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Norma S. Kenyon
- Diabetes Research Institute, Leonard Miller School of Medicine, University of Miami, Miami, FL 33136, USA,Department of Medicine, Leonard Miller School of Medicine, University of Miami, Miami, FL 33136, USA,Department of Surgery, Leonard Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| |
Collapse
|
31
|
Jia S, Kaldunski M, Jailwala P, Geoffrey R, Kramer J, Wang X, Hessner MJ. Use of transcriptional signatures induced in lymphoid and myeloid cell lines as an inflammatory biomarker in Type 1 diabetes. Physiol Genomics 2011; 43:697-709. [PMID: 21406607 DOI: 10.1152/physiolgenomics.00235.2010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Inflammation is common to many disorders and responsible for tissue and organ damage. In many disorders, the associated peripheral cytokine milieu is dilute and difficult to measure, necessitating development of more sensitive and informative biomarkers for mechanistic studies, earlier diagnosis, and monitoring therapeutic interventions. Previously, we have shown that plasma of recent-onset (RO) Type 1 diabetes patients induces a disease-specific proinflammatory transcriptional profile in fresh peripheral blood mononuclear cells (PBMC) compared with that of healthy controls (HC). To eliminate assay variance introduced through the use of multiple donors or multiple draws of the same person over time, we evaluated human leukemia cell lines as potential surrogates for fresh PBMC. We 1) tested seven different cell lines in their power to differentiate RO from HC plasma and 2) compared the similarity of the signatures generated across the seven cell lines to that obtained with fresh PBMC. While each cell line tested exhibited a distinct transcriptional response when cultured with RO or HC plasma, the expression profile induced in any single cell line shared little identity with that of the other cell lines or fresh PBMC. In terms of regulated biological pathways, the transcriptional response of each cell line shared varying degrees of functional identity with fresh PBMC. These results indicate that use of human leukemia cell lines as surrogates for fresh PBMC has potential in detecting perturbations to the peripheral cytokine milieu. However, the response of each is distinct, possessing varying degrees of functional relatedness to that observed with PBMC.
Collapse
Affiliation(s)
- Shuang Jia
- Max McGee National Research Center for Juvenile Diabetes, Department of Pediatrics at the Medical College of Wisconsin, and The Children's Research Institute of Children's Hospital of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Kain V, Kumar S, Puranik AS, Sitasawad SL. Azelnidipine protects myocardium in hyperglycemia-induced cardiac damage. Cardiovasc Diabetol 2010; 9:82. [PMID: 21118576 PMCID: PMC3004822 DOI: 10.1186/1475-2840-9-82] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Accepted: 12/01/2010] [Indexed: 01/25/2023] Open
Abstract
Background Azelnidipine (AZL), a long-acting dihydropyridine-based calcium antagonist, has been recently approved and used for treating ischemic heart disease and cardiac remodeling after myocardial infarction, however, its effect on hyperglycemia-induced cardiac damage has not been studied. Methods This study examined the effect of AZL on circulating markers of cardiac damage, altered lipid and cytokines profile and markers of oxidative stress including homocysteine in diabetic rats. Results STZ induced diabetes caused a significant increase in blood glucose levels. It also resulted in an increase in the levels of homocysteine and cardiac damage markers, like Troponin-1, CK-MB, CK-NAC, uric acid, LDH and alkaline phosphatase. Moreover, there was an increase in the levels of proinflammatory cytokines like TNF-α, IFN-γ, and TGF-β and decrease in the levels of IL-4 and IL-10. Additionally, there was increase in the levels of cholesterol, triglycerides, LDL, VLDL and a decrease in HDL in these animals. There was an altered antioxidant enzyme profile which resulted in a notable increase in the levels of oxidative stress markers like lipid peroxides, nitric oxide and carbonylated proteins. Compared with the untreated diabetic rats, AZL treatment significantly reduced the levels of troponin-1 (P < 0.05), CK-MB (P < 0.05), CK-NAC (P < 0.05), uric acid (P < 0.05), LDH (P < 0.05) and alkaline phosphatase (P < 0.05). It also reduced the levels of the TNF-α (P < 0.05), IFN-γ (P < 0.05), and TGF-β (P < 0.05) and increased the levels of IL-4 (P < 0.05). A significant decrease in the serum cholesterol (P < 0.05), triglycerides (P < 0.05), LDL (P < 0.05), VLDL (P < 0.05) and a significant rise in levels of HDL (P < 0.05) was also observed. Treatment with AZL corrected the distorted antioxidant enzyme profile resulting in a significant decrease in the levels of lipid peroxides, nitric oxide and carbonylated proteins. Conclusion Our results indicate that AZL treatment can reduce the risk of hyperglycemia induced metabolic disorders and its role can be further extended to explore its therapeutic potential in diabetic patients with cardiac complications.
Collapse
Affiliation(s)
- Vasundhara Kain
- National Centre for Cell Science, NCCS Complex, Pune University Campus, Ganeshkhind Road, Pune 411007, Maharashtra, India
| | | | | | | |
Collapse
|
33
|
Kaldunski M, Jia S, Geoffrey R, Basken J, Prosser S, Kansra S, Mordes JP, Lernmark Å, Wang X, Hessner MJ. Identification of a serum-induced transcriptional signature associated with type 1 diabetes in the BioBreeding rat. Diabetes 2010; 59:2375-85. [PMID: 20682698 PMCID: PMC3279523 DOI: 10.2337/db10-0372] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Inflammatory mediators associated with type 1 diabetes are dilute and difficult to measure in the periphery, necessitating development of more sensitive and informative biomarkers for studying diabetogenic mechanisms, assessing preonset risk, and monitoring therapeutic interventions. RESEARCH DESIGN AND METHODS We previously utilized a novel bioassay in which human type 1 diabetes sera were used to induce a disease-specific transcriptional signature in unrelated, healthy peripheral blood mononuclear cells (PBMCs). Here, we apply this strategy to investigate the inflammatory state associated with type 1 diabetes in biobreeding (BB) rats. RESULTS Consistent with their common susceptibility, sera of both spontaneously diabetic BB DRlyp/lyp and diabetes inducible BB DR+/+ rats induced transcription of cytokines, immune receptors, and signaling molecules in PBMCs of healthy donor rats compared with control sera. Like the human type 1 diabetes signature, the DRlyp/lyp signature, which is associated with progression to diabetes, was differentiated from that of the DR+/+ by induction of many interleukin (IL)-1-regulated genes. Supplementing cultures with an IL-1 receptor antagonist (IL-1Ra) modulated the DRlyp/lyp signature (P < 10(-6)), while administration of IL-1Ra to DRlyp/lyp rats delayed onset (P = 0.007), and sera of treated animals did not induce the characteristic signature. Consistent with the presence of immunoregulatory cells in DR+/+ rats was induction of a signature possessing negative regulators of transcription and inflammation. CONCLUSIONS Paralleling our human studies, serum signatures in BB rats reflect processes associated with progression to type 1 diabetes. Furthermore, these studies support the potential utility of this approach to detect changes in the inflammatory state during therapeutic intervention.
Collapse
Affiliation(s)
- Mary Kaldunski
- Max McGee National Research Center for Juvenile Diabetes, Department of Pediatrics at the Medical College of Wisconsin, the Children's Research Institute of Children's Hospital of Wisconsin, and the Human and Molecular Genetics Center, Milwaukee, Wisconsin
| | - Shuang Jia
- Max McGee National Research Center for Juvenile Diabetes, Department of Pediatrics at the Medical College of Wisconsin, the Children's Research Institute of Children's Hospital of Wisconsin, and the Human and Molecular Genetics Center, Milwaukee, Wisconsin
| | - Rhonda Geoffrey
- Max McGee National Research Center for Juvenile Diabetes, Department of Pediatrics at the Medical College of Wisconsin, the Children's Research Institute of Children's Hospital of Wisconsin, and the Human and Molecular Genetics Center, Milwaukee, Wisconsin
| | - Joel Basken
- Max McGee National Research Center for Juvenile Diabetes, Department of Pediatrics at the Medical College of Wisconsin, the Children's Research Institute of Children's Hospital of Wisconsin, and the Human and Molecular Genetics Center, Milwaukee, Wisconsin
| | - Simon Prosser
- Max McGee National Research Center for Juvenile Diabetes, Department of Pediatrics at the Medical College of Wisconsin, the Children's Research Institute of Children's Hospital of Wisconsin, and the Human and Molecular Genetics Center, Milwaukee, Wisconsin
| | - Sanjay Kansra
- Max McGee National Research Center for Juvenile Diabetes, Department of Pediatrics at the Medical College of Wisconsin, the Children's Research Institute of Children's Hospital of Wisconsin, and the Human and Molecular Genetics Center, Milwaukee, Wisconsin
| | - John P. Mordes
- Division of Endocrinology and Metabolism, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Åke Lernmark
- Robert H. Williams Laboratory, Department of Medicine, University of Washington, Seattle, Washington
| | - Xujing Wang
- Department of Physics and the Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Martin J. Hessner
- Max McGee National Research Center for Juvenile Diabetes, Department of Pediatrics at the Medical College of Wisconsin, the Children's Research Institute of Children's Hospital of Wisconsin, and the Human and Molecular Genetics Center, Milwaukee, Wisconsin
- Corresponding author: Martin J. Hessner,
| |
Collapse
|
34
|
Carey C, Purohit S, She JX. Advances and challenges in biomarker development for type 1 diabetes prediction and prevention using omic technologies. ACTA ACUST UNITED AC 2010; 4:397-410. [PMID: 20885991 DOI: 10.1517/17530059.2010.508492] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
IMPORTANCE OF THE FIELD: Biomarkers are essential for the identification of high risk children as well as monitoring of prevention outcomes for type 1 diabetes (T1D). AREAS COVERED IN THIS REVIEW: This review discusses progress, opportunities and challenges in biomarker discovery and validation using high throughput genomic, transcriptomic and proteomic technologies. The authors also suggest potential solutions to deal with the current challenges. WHAT THE READER WILL GAIN: Readers will gain an overview of the current status on T1D biomarkers, an integrated review of three omic technologies, their applications and limitations for biomarker discovery and validation, and a critical discussion of the major issues encountered in biomarker development. TAKE HOME MESSAGE: Better biomarkers are still urgently needed for T1D prediction and prevention. The high throughput omic technologies offer great opportunities but also face significant challenges that have to be solved before their potential for biomarker development is fully realized.
Collapse
Affiliation(s)
- Colleen Carey
- Medical College of Georgia, Center for Biotechnology and Genomic Medicine, 1120 15th St., Augusta, 30912, USA
| | | | | |
Collapse
|
35
|
Sia C, Hänninen A. Functional alterations of proinflammatory monocytes by T regulatory cells: implications for the prevention and reversal of type 1 diabetes. Rev Diabet Stud 2010; 7:6-14. [PMID: 20703434 DOI: 10.1900/rds.2010.7.6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
The onset and development of type 1 diabetes (T1D) occurs in genetically predisposed individuals, and is attributed to autoimmune destruction of pancreatic beta-cells involving a multitude of immune mechanisms. Defects in immune regulation may play a central role in T1D, involving impaired function and communication of both myeloid and lymphoid cells of the innate and adaptive immune compartments. Dendritic cells and regulatory T (Treg) cells are part of this network, which seem to be hampered in their quest to control and regulate tissue-destructive autoimmunity. Recent studies have shown that in vivo activated CD16- blood monocytes exhibiting proinflammatory features are present in diabetic subjects. These monocytes may govern T cell-mediated immune responses towards the development of tissue-destructive Th1 and Th17 subtypes, and give rise to inflammatory macrophages in tissues. Differential effects of cytokines IFN-gamma and IL-4 in the development of inflammatory macrophages, and the distinct developmental pathways of proinflammatory or tissue-repair-associated monocytes suggest that controlling the activity of these monocytes could be part of an immune intervention strategy to prevent T1D. Similarly, strategies to target autoantigens to immature, steady-state dendritic cells could guide the immune response away from Th1 and Th17 immune effectors. This review examines potential approaches to this goal by manipulation of myeloid and lymphoid cell regulatory networks in T1D.
Collapse
Affiliation(s)
- Charles Sia
- Vaccine Center, National Health Research Institutes, Zhunan Township, Miaoli County, Taiwan 350.
| | | |
Collapse
|
36
|
Bradshaw EM, Raddassi K, Elyaman W, Orban T, Gottlieb PA, Kent SC, Hafler DA. Monocytes from patients with type 1 diabetes spontaneously secrete proinflammatory cytokines inducing Th17 cells. THE JOURNAL OF IMMUNOLOGY 2009; 183:4432-9. [PMID: 19748982 DOI: 10.4049/jimmunol.0900576] [Citation(s) in RCA: 209] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Autoimmune diseases including type 1 diabetes (T1D) are thought to have a Th1/Th17 bias. The underlying mechanisms driving the activation and differentiation of these proinflammatory T cells are unknown. We examined the monocytes isolated directly from the blood of T1D patients and found they spontaneously secreted the proinflammatory cytokines IL-1beta and IL-6, which are known to induce and expand Th17 cells. Moreover, these in vivo-activated monocytes from T1D subjects induced more IL-17-secreting cells from memory T cells compared with monocytes from healthy control subjects. The induction of IL-17-secreting T cells by monocytes from T1D subjects was reduced in vitro with a combination of an IL-6-blocking Ab and IL-1R antagonist. In this study, we report a significant although modest increase in the frequency of IL-17-secreting cells in lymphocytes from long-term patients with T1D compared with healthy controls. These data suggest that the innate immune system in T1D may drive the adaptive immune system by expanding the Th17 population of effector T cells.
Collapse
Affiliation(s)
- Elizabeth M Bradshaw
- Division of Molecular Immunology, Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Speiran K, Bailey DP, Fernando J, Macey M, Barnstein B, Kolawole M, Curley D, Watowich SS, Murray PJ, Oskeritzian C, Ryan JJ. Endogenous suppression of mast cell development and survival by IL-4 and IL-10. J Leukoc Biol 2009; 85:826-36. [PMID: 19228815 DOI: 10.1189/jlb.0708448] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Mast cell development is an important component of atopic and chronic inflammatory diseases such as asthma, multiple sclerosis, rheumatoid arthritis, and atherosclerosis. In this study, we found that IL-4 and IL-10 were produced constitutively in cultures of developing mast cells, correlating with mast cell purity. Deletion of either gene increased mast cell numbers and Fc epsilon RI expression during culture in IL-3 + stem cell factor (SCF). By adding exogenous IL-4 and IL-10 to bone marrow (BM) cultures containing IL-3 + SCF, we found that IL-4 + IL-10 suppressed mast cell development through mechanisms not used by either cytokine alone. IL-4 + IL-10 elicited a rapid cell death coincidental with reduced Kit receptor expression and signaling and enhanced mitochondrial damage and caspase activation. IL-4 or IL-10 costimulation, unlike either cytokine alone, altered mast cell ontogeny to yield predominantly macrophages in cultures that typically produce mast cells. This effect was observed consistently with unseparated BM cells, purified mouse BM stem cells, and erythrocyte-depleted human umbilical cord blood cells. These experiments demonstrated a major role for Stat6 and Stat3, but not the Stat3-induced transcriptional repressor Ets variant gene 3. Genetic background was also a critical factor, as BALB/c-derived BM cells were completely resistant to IL-10-mediated killing and expressed lower levels of IL-10R. Collectively, these results support the theory that IL-4 and IL-10 function as endogenous regulators of mast cell progenitor development, consistent with a role in immune homeostasis. Loss of this homeostasis, perhaps via genetic polymorphism, could contribute to the etiology of mast cell-associated disease.
Collapse
Affiliation(s)
- Kelly Speiran
- Asthma and Allergic Disease Cooperative Research Center, Department of Biology, Virginia Commonwealth University, Richmond, VA 23284-2012, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Wang X, Jia S, Geoffrey R, Alemzadeh R, Ghosh S, Hessner MJ. Identification of a Molecular Signature in Human Type 1 Diabetes Mellitus Using Serum and Functional Genomics. THE JOURNAL OF IMMUNOLOGY 2008; 180:1929-37. [DOI: 10.4049/jimmunol.180.3.1929] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
39
|
Jain SK, Rains JL, Croad JL. Effect of chromium niacinate and chromium picolinate supplementation on lipid peroxidation, TNF-alpha, IL-6, CRP, glycated hemoglobin, triglycerides, and cholesterol levels in blood of streptozotocin-treated diabetic rats. Free Radic Biol Med 2007; 43:1124-31. [PMID: 17854708 PMCID: PMC3568689 DOI: 10.1016/j.freeradbiomed.2007.05.019] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2007] [Revised: 05/08/2007] [Accepted: 05/12/2007] [Indexed: 11/29/2022]
Abstract
Chromium (Cr(3+)) supplementation facilitates normal protein, fat, and carbohydrate metabolism, and is widely used by the public in many countries. This study examined the effect of chromium niacinate (Cr-N) or chromium picolinate (Cr-P) supplementation on lipid peroxidation (LP), TNF-alpha, IL-6, C-reactive protein (CRP), glycosylated hemoglobin (HbA(1)), cholesterol, and triglycerides (TG) in diabetic rats. Diabetes (D) was induced in Sprague-Dawley rats by streptozotocin (STZ) (ip, 65 mg/kg BW). Control buffer, Cr-N, or Cr-P (400 microg Cr/kg BW) was administered by gavages daily for 7 weeks. Blood was collected by heart puncture using light anesthesia. Diabetes caused a significant increase in blood levels of TNF-alpha, IL-6, glucose, HbA(1), cholesterol, TG, and LP. Compared with D, Cr-N supplementation lowered the blood levels of TNF-alpha (P=0.04), IL-6 (P=0.02), CRP (P=0.02), LP (P=0.01), HbA(1) (P=0.02), TG (P=0.04), and cholesterol (P=0.04). Compared with D, Cr-P supplementation showed a decrease in TNF-alpha (P=0.02), IL-6 (P=0.02), and LP (P=0.01). Chromium niacinate lowers blood levels of proinflammatory cytokines (TNF-alpha, IL-6, CRP), oxidative stress, and lipids levels in diabetic rats, and appears to be a more effective form of Cr(3+) supplementation. This study suggests that Cr(3+) supplementation can lower the risk of vascular inflammation in diabetes.
Collapse
Affiliation(s)
- Sushil K Jain
- Department of Pediatrics, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130, USA.
| | | | | |
Collapse
|
40
|
Abstract
Diabetes is known to play a causal role in promoting both microvascular and macrovascular complications. Reducing rates of end-organ damage has been a key objective of multiple clinical trials. In addition to the roles of glycemic and blood pressure control, it is evident that lipid reduction via statin therapy independently helps to reduce the risk of primary and secondary vascular events. This effect seems to remain intact across a broad range of lipid levels, suggesting additional mechanisms for efficacy of statin medications beyond cholesterol reduction. The demonstrated safety and data from recent trials lend support to the argument that all people with diabetes should be started on statin therapy regardless of their cholesterol level. It is also plausible that treating the underlying mechanisms of vascular dysfunction, inflammation, and injury so prevalent in diabetic patients would have similar implications for the patient identified as having insulin resistance or metabolic syndrome.
Collapse
Affiliation(s)
- Paul J Garcia
- Department of Internal Medicine, University of North Texas Health Science Center-Fort Worth, 855 Montgomery, Fort Worth, TX 76107, USA.
| | | |
Collapse
|
41
|
Deja G, Jarosz-Chobot P, Polańska J, Siekiera U, Małecka-Tendera E. Is the association between TNF-alpha-308 A allele and DMT1 independent of HLA-DRB1, DQB1 alleles? Mediators Inflamm 2006; 2006:19724. [PMID: 17047287 PMCID: PMC1618952 DOI: 10.1155/mi/2006/19724] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2006] [Revised: 03/25/2006] [Accepted: 04/05/2006] [Indexed: 11/18/2022] Open
Abstract
The aim of the study was to assess chosen factors of genetic susceptibility to DMT1: DRB1, DQB1, and TNF-alpha polymorphisms-308 (G/A) in children with DMT1 and their up-to-now healthy siblings. Then we tested whether the association between TNF-alpha genes and DMT1 is independent of HLA. 87 diabetic children, their 78 siblings, and 85 persons from healthy control group were followed up. The highest risk of DMT1 was connected with alleles: DRB1*0401 (OR = 3.39; CI: 1.55-7.41), DRB1*0301 (OR = 2.72; CI: 1.48-5.01), DQB1*0201 (OR = 4.04; CI: 2.17-7.52), DQB1*0302 (OR = 5.08; CI: 2.54-10.14), and TNF-alpha-308 A allele (OR = 2.59; CI: 1.23-5.44). Moreover linkage disequilibrium for TNF-alpha-308 A allele with DRB1*0301 and DQB1*0201 was observed in both diabetic children and their siblings. Diabetic children and their siblings present similar genetic risk factors for DMT1. The association between TNF-alpha-308 A allele and DMT1 is dependent of HLA-DRB1 and DQB1 alleles.
Collapse
Affiliation(s)
- Grażyna Deja
- Department of Pediatrics, Endocrinology, and
Diabetes, Medical University of Silesia, 40-752 Katowice, Poland
| | - Przemysława Jarosz-Chobot
- Department of Pediatrics, Endocrinology, and
Diabetes, Medical University of Silesia, 40-752 Katowice, Poland
| | - Joanna Polańska
- Faculty of Automatic Control, Electronic and Computer
Science, Silesian University of Technology, 44-101 Gilwice,
Poland
| | | | - Ewa Małecka-Tendera
- Department of Pediatrics, Endocrinology, and
Diabetes, Medical University of Silesia, 40-752 Katowice, Poland
| |
Collapse
|
42
|
Ben-Mahmud BM, Mann GE, Datti A, Orlacchio A, Kohner EM, Chibber R. Tumor necrosis factor-alpha in diabetic plasma increases the activity of core 2 GlcNAc-T and adherence of human leukocytes to retinal endothelial cells: significance of core 2 GlcNAc-T in diabetic retinopathy. Diabetes 2004; 53:2968-76. [PMID: 15504978 DOI: 10.2337/diabetes.53.11.2968] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
A large body of evidence now implicates increased leukocyte-endothelial cell adhesion as a key early event in the development of diabetic retinopathy. We recently reported that raised activity of the glycosylating enzyme core 2 beta 1,6-N-acetylglucosaminyltransferase (GlcNAc-T) through protein kinase C (PKC)beta2-dependent phosphorylation plays a fundamental role in increased leukocyte-endothelial cell adhesion and capillary occlusion in retinopathy. In the present study, we demonstrate that following exposure to plasma from diabetic patients, the human promonocytic cell line U937 exhibits a significant elevation in core 2 GlcNAc-T activity and increased adherence to cultured retinal capillary endothelial cells. These effects of diabetic plasma on enzyme activity and cell adhesion, mediated by PKCbeta2-dependent phosphorylation of the core 2 GlcNAc-T protein, were found to be triggered by increased plasma levels of tumor necrosis factor (TNF)-alpha. Levels of enzyme activity in plasma-treated U937 cells were closely dependent on the severity of diabetic retinopathy, with the highest values observed upon treatment with plasma of patients affected by proliferative retinopathy. Furthermore, we noted much higher correlation, as compared with control subjects, between increased values of core 2 GlcNAc-T activity and cell adhesion properties. Based on the prominent role of TNF-alpha in the development of diabetic retinopathy, these observations further validate the significance of core 2 GlcNAc-T in the pathogenesis of capillary occlusion, thereby enhancing the therapeutic potential of specific enzyme inhibitors.
Collapse
Affiliation(s)
- Bahaedin M Ben-Mahmud
- Centre for Cardiovascular BiologyMedicine, 2nd floor, New Hunt's House, Guy's, King's & St. Thomas' School of Biomedical Sciences, King's College London, London, SE1 1UL, UK
| | | | | | | | | | | |
Collapse
|
43
|
Sasaki Y, Ihara K, Matsuura N, Kohno H, Nagafuchi S, Kuromaru R, Kusuhara K, Takeya R, Hoey T, Sumimoto H, Hara T. Identification of a novel type 1 diabetes susceptibility gene, T-bet. Hum Genet 2004; 115:177-84. [PMID: 15241679 DOI: 10.1007/s00439-004-1146-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2003] [Accepted: 04/22/2004] [Indexed: 11/25/2022]
Abstract
The gene encoding interferon (IFN)-gamma, IFNG, is known as one of the candidate susceptibility genes for type 1 diabetes. In addition, cytokines, including IFN-gamma, play important roles in the pathogenesis of type 1 diabetes. Therefore, we focused on the Th1-specific T-box transcription factor gene (T-bet), which contributes to the induction of the hallmark Th1 cytokine, IFN-gamma. We first screened for polymorphisms in the T-bet gene and detected two microsatellite repeat polymorphisms located in intron 1 and the 3'- flanking region, and two single nucleotide polymorphisms, including a His33Gln substitution within the coding region. By association studies, the Gln-positive phenotype and (CA)14 allele in 3'-flanking region of T-bet were found to be associated with type 1 diabetes in the Japanese population. Furthermore, Gln33 T-bet showed a significantly higher transcriptional activity of the IFNG gene via a dual luciferase reporter assay. Our study suggests the first evidence of an association between type 1 diabetes and polymorphisms in the T-bet gene, and that variation in T-bet transcriptional activity may play a role in the development of type 1 diabetes, possibly through the effect on IFN-gamma production in Th1 cells.
Collapse
Affiliation(s)
- Yuka Sasaki
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Kocjan T, Wraber B, Kocijancic A, Hojker S. Methimazole upregulates T-cell-derived cytokines without improving the existing Th1/Th2 imbalance in Graves' disease. J Endocrinol Invest 2004; 27:302-7. [PMID: 15233546 DOI: 10.1007/bf03351052] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
There is probably a systemic shift of cytokine production in patients with Graves' disease (GD) toward the Th2 cytokine response. Methimazole (MMI) is the first choice for patients with GD and presumably has some direct immunomodulatory action. The aim of this study was to evaluate the balance shift in Th1/Th2 cytokines in patients with GD after 1 yr of MMI treatment, when compared to the same balance in patients with newly diagnosed GD before treatment and in healthy controls. Peripheral blood mononuclear cells (PBMC) were isolated from 17 healthy volunteers, from 18 patients with newly diagnosed GD before treatment and from 15 euthyroid patients with GD after 1 yr of MMI treatment. The PBMC were activated with ionomycin and phorbol 12-myristate 13-acetate (PMA). The concentrations of Th1/Th2 related cytokines [interferon (IFN)-gamma, interleukin (IL)-12 vs IL-4, IL-10] in the culture supernatants were measured by ELISA. PBMC from patients with GD after treatment produced significantly more IFN-gamma and IL-4 than PBMC from patients with GD before treatment, but there were no significant differences in calculated ratios of Th1 against Th2 cytokines between these two groups. When compared to PBMC from healthy controls, PBMC from patients with GD after treatment produced significantly more IL-4 and significantly less IL-12. The calculated IL-12/IL-4 ratio after treatment was significantly lower than the same ratio from healthy controls. In conclusion, our results show no significant change in the ratio between Th1 and Th2 cytokines produced by PBMC from patients with GD after 1 yr of MMI treatment, when compared to the ratio before treatment. The ongoing prevalence of the Th2 immune response after treatment speaks against the immunomodulatory action of the drug on the systemic level.
Collapse
Affiliation(s)
- T Kocjan
- Department of Endocrinology and Diabetes, University Medical Centre, University of Ljubljana, Ljubljana, Slovenia.
| | | | | | | |
Collapse
|
45
|
Sigfrid LA, Cunningham JM, Beeharry N, Håkan Borg LA, Rosales Hernandez AL, Carlsson C, Bone AJ, Green IC. Antioxidant enzyme activity and mRNA expression in the islets of Langerhans from the BB/S rat model of type 1 diabetes and an insulin-producing cell line. J Mol Med (Berl) 2004; 82:325-35. [PMID: 15007513 DOI: 10.1007/s00109-004-0533-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2003] [Accepted: 01/28/2004] [Indexed: 10/26/2022]
Abstract
It has been proposed that low activities of antioxidant enzymes in pancreatic beta cells may increase their susceptibility to autoimmune attack. We have therefore used the spontaneously diabetic BB/S rat model of type 1 diabetes to compare islet catalase and superoxide dismutase activities in diabetes-prone and diabetes-resistant animals. In parallel studies, we employed the RINm5F beta cell line as a model system (previously validated) to investigate whether regulation of antioxidant enzyme activity by inflammatory mediators (cytokines, nitric oxide) occurs at the gene or protein expression level. Diabetes-prone rat islets had high insulin content at the age used (58-65 days) but showed increased amounts of DNA damage when subjected to cytokine or hydrogen peroxide treatments. There was clear evidence of oxidative damage in freshly isolated rat islets from diabetes-prone animals and significantly lower catalase and superoxide dismutase activities than in islets from age-matched diabetes-resistant BB/S and control Wistar rats. The mRNA expression of antioxidant enzymes in islets from diabetes-prone and diabetes-resistant BB/S rats and in RINm5F cells, treated with a combination of cytokines or a nitric oxide donor, DETA-NO, was analysed semi-quantitatively by real time PCR. The mRNA expression of catalase was lower, whereas MnSOD expression was higher, in diabetes-prone compared to diabetes-resistant BB/S rat islets, suggesting regulation at the level of gene expression as well as of the activities of these enzymes in diabetes. The protein expression of catalase, CuZnSOD and MnSOD was assessed by Western blotting and found to be unchanged in DETA-NO treated cells. Protein expression of MnSOD was increased by cytokines in RINm5F cells whereas the expression of CuZnSOD was slightly decreased and the level of catalase protein was unchanged. We conclude that there are some changes, mostly upregulation, in protein expression but no decreases in the mRNA expression of catalase, CuZnSOD or MnSOD enzymes in beta cells treated with either cytokines or DETA-NO. The lower antioxidant enzyme activities observed in islets from diabetes-prone BB/S rats could be a factor in the development of disease and in susceptibility to DNA damage in vitro and could reflect islet alterations prior to immune attack or inherent differences in the islets of diabetes-prone animals, but are not likely to result from cytokine or nitric oxide exposure in vivo at that stage.
Collapse
Affiliation(s)
- Louise A Sigfrid
- Pharmacy and Biomolecular Sciences, University of Brighton, Cockcroft Building, Lewes Road, Brighton, BN2 4GJ, UK
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Creager MA, Lüscher TF, Cosentino F, Beckman JA. Diabetes and vascular disease: pathophysiology, clinical consequences, and medical therapy: Part I. Circulation 2003; 108:1527-32. [PMID: 14504252 DOI: 10.1161/01.cir.0000091257.27563.32] [Citation(s) in RCA: 910] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Mark A Creager
- Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, 75 Francis St, Boston, Mass 02115, USA.
| | | | | | | |
Collapse
|
47
|
Rabinovitch A, Suarez-Pinzon WL. Role of cytokines in the pathogenesis of autoimmune diabetes mellitus. Rev Endocr Metab Disord 2003; 4:291-9. [PMID: 14501180 DOI: 10.1023/a:1025160614313] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Alex Rabinovitch
- 430 Heritage Medical Research Centre, University of Alberta, Edmonton, Alberta, Canada T6G 2S2.
| | | |
Collapse
|
48
|
Davì G, Chiarelli F, Santilli F, Pomilio M, Vigneri S, Falco A, Basili S, Ciabattoni G, Patrono C. Enhanced lipid peroxidation and platelet activation in the early phase of type 1 diabetes mellitus: role of interleukin-6 and disease duration. Circulation 2003; 107:3199-203. [PMID: 12810609 DOI: 10.1161/01.cir.0000074205.17807.d0] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND To investigate early events possibly related to the development of diabetic angiopathy, we examined whether 8-iso-prostaglandin F2alpha (8-iso-PGF2alpha) formation, a marker of in vivo oxidant stress, is altered in different stages of type 1 diabetes (T1DM) and whether it correlates with the rate of thromboxane (TX) A2 biosynthesis, a marker of in vivo platelet activation. We also investigated the relationship between inflammatory markers and F2-isoprostane formation in this setting. METHODS AND RESULTS A cross-sectional study was performed in 23 insulin-treated patients aged <18 years with new-onset T1DM (<or=6 weeks, group A), matched for age and gender with 23 patients with stable disease (>1 year, group B). Urinary 8-iso-PGF2alpha and 11-dehydro-TXB2 were measured in all patients and in age- and gender-matched controls. Circulating interleukin-6 (IL-6), tumor necrosis factor-alpha, and C-reactive protein were also determined as markers of the inflammatory response. Fifteen of the 23 children in group A were reexamined after 12 months. Compared with either controls or group B, diabetic children in group A showed significantly higher levels of 8-iso-PGF2alpha, 11-dehydro-TXB2, IL-6, tumor necrosis factor-alpha, and C-reactive protein. Statistically significant correlations between IL-6 and both 8-iso-PGF2alpha (r=0.63, P<0.001) and 11-dehydro-TXB2 (r=0.51, P<0.01) were observed. The 15 patients reexamined after 1 year showed a significant reduction in lipid peroxidation and platelet activation (P<0.02 and P<0.001, respectively), consistent with reduced levels of IL-6 and tumor necrosis factor-alpha. CONCLUSIONS These results demonstrate that enhanced lipid peroxidation and platelet activation represent early events in T1DM that are possibly related to an acute inflammatory response. These noninvasive indexes may help in further examining T1DM pathophysiology and monitoring pharmacological interventions to interfere with disease development and progression.
Collapse
Affiliation(s)
- Giovanni Davì
- Center of Excellence on Aging and Department of Medicine, University of Chieti G. D'Annunzio Schools of Medicine and Pharmacy, Chieti, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Jain SK, Kannan K, Lim G, Matthews-Greer J, McVie R, Bocchini JA. Elevated blood interleukin-6 levels in hyperketonemic type 1 diabetic patients and secretion by acetoacetate-treated cultured U937 monocytes. Diabetes Care 2003; 26:2139-43. [PMID: 12832326 DOI: 10.2337/diacare.26.7.2139] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Diabetic patients have elevated blood levels of interleukin-6 (IL-6), which is known to increase inflammation and the development of vascular disease and atherosclerosis. This study examined the hypothesis that ketosis increases the circulating levels of IL-6 in type 1 diabetic patients as well as the secretion of IL-6 in vitro in a cell culture model using U937 monocytes. RESEARCH DESIGN AND METHODS Fasting blood was obtained from type 1 diabetic patients and healthy siblings. To examine the effect of ketosis, U937 monocytes were cultured with ketone bodies (acetoacetate [AA], beta-hydroxybutyrate [BHB]) in the presence or absence of high glucose levels in the medium at 37 degrees C for 24 h. IL-6 was determined by the sandwich enzyme-linked immunosorbent assay method, and intracellular reactive oxygen species (ROS) generation was detected using dihydroethidium dye. RESULTS The blood level of IL-6 was higher in hyperketonemic (HK) diabetic patients than in normoketonemic (NK) diabetic patients (P < 0.05) and normal control subjects (P < 0.05). There was a significant correlation between ketosis and IL-6 levels (r = 0.36, P < 0.04, n = 34) in the blood of diabetic patients. Cell culture studies found that exogenous addition of the ketone body AA, but not BHB, increases IL-6 secretion and ROS generation in U937 cells. N-acetylcysteine (NAC) prevented the IL-6 secretion in acetoacetate-treated U937 monocytes. CONCLUSIONS This study demonstrates that hyperketonemia increases IL-6 levels in the blood of type 1 diabetic patients and that NAC can inhibit IL-6 secretion by U937 monocytic cells cultured in a ketotic medium.
Collapse
Affiliation(s)
- Sushil K Jain
- Department of Pediatrics, Louisiana State University Health Sciences Center, Shreveport, Louisiana 71130, USA.
| | | | | | | | | | | |
Collapse
|
50
|
Hanifi-Moghaddam P, Schloot NC, Kappler S, Seissler J, Kolb H. An association of autoantibody status and serum cytokine levels in type 1 diabetes. Diabetes 2003; 52:1137-42. [PMID: 12716743 DOI: 10.2337/diabetes.52.5.1137] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
At onset of type 1 diabetes, the islet autoantibody status of patients has been reported to predict progression of the disease. We therefore tested the hypothesis that the systemic immunoregulatory balance, as defined by levels of circulating cytokines and chemokines, is associated with islet autoantibody status. In 50 patients with recent-onset type 1 diabetes, antibodies to GAD and insulinoma-associated antigen 2 (IA-2) were analyzed by radioimmunoassay; cytoplasmic islet cell antibodies were determined by indirect immunofluorescence. Cytokine and chemokine concentrations were measured by rigidly evaluated double antibody enzyme-linked immunosorbent assay. Of four classically defined Th1/Th2 cytokines (gamma-interferon, interleukin [IL]-5, IL-10, IL-13), none showed an association with multiple autoantibody positivity. Of six mediators mainly produced by innate immunity cells, three were associated with multiple autoantibody status (IL-18 increased, MIF and MCP-1 decreased) and three were unaffected (IL-12, MIP-1beta, IP-10). GAD and/or IA-2 antibody titers negatively correlated with systemic concentrations of MIF, MIP-1beta, and IL-12. Combining the data of several cytokine and chemokine levels made it possible to predict islet antibody positivity in individual patients with 85% sensitivity and 94% specificity. These data suggest a close association of islet antibody status with systemic immunoregulation in type 1 diabetes.
Collapse
Affiliation(s)
- Pejman Hanifi-Moghaddam
- German Diabetes Research Institute, Heinrich-Heine University of Düsseldorf, Auf'm Hennekamp 65, D-40225 Düsseldorf, Germany
| | | | | | | | | |
Collapse
|