1
|
Tipu MMH, Sherif SM. Ethylene and its crosstalk with hormonal pathways in fruit ripening: mechanisms, modulation, and commercial exploitation. FRONTIERS IN PLANT SCIENCE 2024; 15:1475496. [PMID: 39574438 PMCID: PMC11579711 DOI: 10.3389/fpls.2024.1475496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 10/10/2024] [Indexed: 11/24/2024]
Abstract
Ethylene is an important phytohormone that orchestrates a multitude of physiological and biochemical processes regulating fruit ripening, from early maturation to post-harvest. This review offers a comprehensive analysis of ethylene's multifaceted roles in climacteric fruit ripening, characterized by a pronounced increase in ethylene production and respiration rates. It explores potential genetic and molecular mechanisms underlying ethylene's action, focusing on key transcription factors, biosynthetic pathway genes, and signal transduction elements crucial for the expression of ripening-related genes. The varied sensitivity and dependency of ripening traits on ethylene are elucidated through studies employing genetic mutations and ethylene inhibitors such as AVG and 1-MCP. Additionally, the modulation of ripening traits by ethylene is influenced by its interaction with other phytohormones, including auxins, abscisic acid, gibberellins, jasmonates, brassinosteroids, and salicylic acid. Pre-harvest fruit drop is intricately linked to ethylene, which triggers enzyme activity in the abscission zone, leading to cell wall degradation and fruit detachment. This review also highlights the potential for applying ethylene-related knowledge in commercial contexts to enhance fruit quality, control pre-harvest drop, and extend shelf life. Future research directions are proposed, advocating for the integration of physiological, genetic, biochemical, and transcriptional insights to further elucidate ethylene's role in fruit ripening and its interaction with other hormonal pathways.
Collapse
Affiliation(s)
| | - Sherif M. Sherif
- Virginia Tech School of Plant and Environmental Sciences, Alson H. Smith Jr. Agricultural Research and Extension Center, Winchester, VA, United States
| |
Collapse
|
2
|
Farkas P, Fitzpatrick TB. Two pyridoxal phosphate homeostasis proteins are essential for management of the coenzyme pyridoxal 5'-phosphate in Arabidopsis. THE PLANT CELL 2024; 36:3689-3708. [PMID: 38954500 PMCID: PMC11371154 DOI: 10.1093/plcell/koae176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/17/2024] [Accepted: 06/10/2024] [Indexed: 07/04/2024]
Abstract
Coenzyme management is important for homeostasis of the pool of active metabolic enzymes. The coenzyme pyridoxal 5'-phosphate (PLP) is involved in diverse enzyme reactions including amino acid and hormone metabolism. Regulatory proteins that contribute to PLP homeostasis remain to be explored in plants. Here, we demonstrate the importance of proteins annotated as PLP homeostasis proteins (PLPHPs) for controlling PLP in Arabidopsis (Arabidopsis thaliana). A systematic analysis indicates that while most organisms across kingdoms have a single PLPHP homolog, Angiosperms have two. PLPHPs from Arabidopsis bind PLP and exist as monomers, in contrast to reported PLP-dependent enzymes, which exist as multimers. Disrupting the function of both PLPHP homologs perturbs vitamin B6 (pyridoxine) content, inducing a PLP deficit accompanied by light hypersensitive root growth, unlike PLP biosynthesis mutants. Micrografting studies show that the PLP deficit can be relieved distally between shoots and roots. Chemical treatments probing PLP-dependent reactions, notably those for auxin and ethylene, provide evidence that PLPHPs function in the dynamic management of PLP. Assays in vitro show that Arabidopsis PLPHP can coordinate PLP transfer and withdrawal from other enzymes. This study thus expands our knowledge of vitamin B6 biology and highlights the importance of PLP coenzyme homeostasis in plants.
Collapse
Affiliation(s)
- Peter Farkas
- Vitamins & Environmental Stress Responses in Plants, Department of Plant Sciences, University of Geneva, 1211 Geneva, Switzerland
| | - Teresa B Fitzpatrick
- Vitamins & Environmental Stress Responses in Plants, Department of Plant Sciences, University of Geneva, 1211 Geneva, Switzerland
| |
Collapse
|
3
|
Cao D, Depaepe T, Sanchez-Muñoz R, Janssens H, Lemière F, Willems T, Winne J, Prinsen E, Van Der Straeten D. A UPLC-MS/MS method for quantification of metabolites in the ethylene biosynthesis pathway and its biological validation in Arabidopsis. THE NEW PHYTOLOGIST 2024; 243:1262-1275. [PMID: 38849316 DOI: 10.1111/nph.19878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 05/14/2024] [Indexed: 06/09/2024]
Abstract
The plant hormone ethylene is of vital importance in the regulation of plant development and stress responses. Recent studies revealed that 1-aminocyclopropane-1-carboxylic acid (ACC) plays a role beyond its function as an ethylene precursor. However, the absence of reliable methods to quantify ACC and its conjugates malonyl-ACC (MACC), glutamyl-ACC (GACC), and jasmonyl-ACC (JA-ACC) hinders related research. Combining synthetic and analytical chemistry, we present the first, validated methodology to rapidly extract and quantify ACC and its conjugates using ultra-high-performance liquid chromatography coupled to tandem mass spectrometry (UPLC-MS/MS). Its relevance was confirmed by application to Arabidopsis mutants with altered ACC metabolism and wild-type plants under stress. Pharmacological and genetic suppression of ACC synthesis resulted in decreased ACC and MACC content, whereas induction led to elevated levels. Salt, wounding, and submergence stress enhanced ACC and MACC production. GACC and JA-ACC were undetectable in vivo; however, GACC was identified in vitro, underscoring the broad applicability of the method. This method provides an efficient tool to study individual functions of ACC and its conjugates, paving the road toward exploration of novel avenues in ACC and ethylene metabolism, and revisiting ethylene literature in view of the recent discovery of an ethylene-independent role of ACC.
Collapse
Affiliation(s)
- Da Cao
- Laboratory of Functional Plant Biology, Department of Biology, Faculty of Sciences, Ghent University, 9000, Ghent, Belgium
| | - Thomas Depaepe
- Laboratory of Functional Plant Biology, Department of Biology, Faculty of Sciences, Ghent University, 9000, Ghent, Belgium
| | - Raul Sanchez-Muñoz
- Laboratory of Functional Plant Biology, Department of Biology, Faculty of Sciences, Ghent University, 9000, Ghent, Belgium
| | - Hilde Janssens
- Department of Organic Chemistry, Polymer Chemistry Research Group and Laboratory for Organic Synthesis, Ghent University, 9000, Ghent, Belgium
| | - Filip Lemière
- Department of Chemistry, Biomolecular and Analytical Mass Spectrometry, University of Antwerp, 2020, Antwerp, Belgium
| | - Tim Willems
- Integrated Molecular Plant Physiology Research, Department of Biology, University of Antwerp, 2020, Antwerp, Belgium
| | - Johan Winne
- Department of Organic Chemistry, Polymer Chemistry Research Group and Laboratory for Organic Synthesis, Ghent University, 9000, Ghent, Belgium
| | - Els Prinsen
- Integrated Molecular Plant Physiology Research, Department of Biology, University of Antwerp, 2020, Antwerp, Belgium
| | - Dominique Van Der Straeten
- Laboratory of Functional Plant Biology, Department of Biology, Faculty of Sciences, Ghent University, 9000, Ghent, Belgium
| |
Collapse
|
4
|
Kadam MS, Burra VLSP. S-adenosyl-l-methionine interaction signatures in methyltransferases. J Biomol Struct Dyn 2024; 42:3166-3176. [PMID: 37261836 DOI: 10.1080/07391102.2023.2217679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 05/01/2023] [Indexed: 06/02/2023]
Abstract
The switching on or off of methylation, a change from a normal methylation to hyper or hypo methylation is implicated in many diseases that include cancers, infectious, neurodegenerative diseases and others. Methyltransferases are one of the most sought targets that have diversified for the methylation of a variety of substrates. However, without S-adenosyl-l-methionine (SAM), the universal methyl donor, the majority of the methyltransferases remain functionally inactive. In this article, we did a comprehensive analysis of all available SAM-receptor crystal structures at atom, moiety and structure levels to gain deeper insights into the structure and function of SAM. SAM demonstrated flexibility in binding to a variety of receptors irrespective of the size of the binding pockets. Further analysis of the binding pockets resulted in all SAM conformations clustering into four natural shapes. The conserved interaction analysis provides an unambiguous orientation of SAM binding to receptors which has been elusive till now. SAM peptide moiety (SPM) and SAM nucleobase moiety (SNM) show up to 89% interactions with receptors whereas only 11% interactions with SAM ribose moiety (SRM). It is found that SPM and SNM terminal atoms anchor to the highly conserved receptor subsites creating a workbench for catalysis. It is seen that every interacting atom and its position is crucial in the methyl transfer phenomenon. A very unique observation is that the methyl group of SAM does not have even one interaction with the receptor. The deep insights gained help in the design and development of novel drugs against the methyltransferases.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mangal S Kadam
- Center for Advanced Research and Innovation in Structural Biology of Diseases (CARISBD), Department of Biotechnology, KLEF University, Vaddeswaram, Andhra Pradesh, India
| | - V L S Prasad Burra
- Center for Advanced Research and Innovation in Structural Biology of Diseases (CARISBD), Department of Biotechnology, KLEF University, Vaddeswaram, Andhra Pradesh, India
| |
Collapse
|
5
|
Gautam H, Khan S, Nidhi, Sofo A, Khan NA. Appraisal of the Role of Gaseous Signaling Molecules in Thermo-Tolerance Mechanisms in Plants. PLANTS (BASEL, SWITZERLAND) 2024; 13:791. [PMID: 38592775 PMCID: PMC10975175 DOI: 10.3390/plants13060791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/19/2024] [Accepted: 03/09/2024] [Indexed: 04/11/2024]
Abstract
A significant threat to the ongoing rise in temperature caused by global warming. Plants have many stress-resistance mechanisms, which is responsible for maintaining plant homeostasis. Abiotic stresses largely increase gaseous molecules' synthesis in plants. The study of gaseous signaling molecules has gained attention in recent years. The role of gaseous molecules, such as nitric oxide (NO), hydrogen sulfide (H2S), carbon dioxide (CO2), carbon monoxide (CO), methane (CH4), and ethylene, in plants under temperature high-temperature stress are discussed in the current review. Recent studies revealed the critical function that gaseous molecules play in controlling plant growth and development and their ability to respond to various abiotic stresses. Here, we provide a thorough overview of current advancements that prevent heat stress-related plant damage via gaseous molecules. We also explored and discussed the interaction of gaseous molecules. In addition, we provided an overview of the role played by gaseous molecules in high-temperature stress responses, along with a discussion of the knowledge gaps and how this may affect the development of high-temperature-resistant plant species.
Collapse
Affiliation(s)
- Harsha Gautam
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Aligarh Muslim University, Aligarh 202002, India
| | - Sheen Khan
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Aligarh Muslim University, Aligarh 202002, India
| | - Nidhi
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Aligarh Muslim University, Aligarh 202002, India
| | - Adriano Sofo
- Department of European and Mediterranean Cultures: Architecture, Environment, Cultural Heritage (DiCEM), University of Basilicata, 75100 Matera, Italy
| | - Nafees A. Khan
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Aligarh Muslim University, Aligarh 202002, India
| |
Collapse
|
6
|
Bhardwaj M, Kailoo S, Khan RT, Khan SS, Rasool S. Harnessing fungal endophytes for natural management: a biocontrol perspective. Front Microbiol 2023; 14:1280258. [PMID: 38143866 PMCID: PMC10748429 DOI: 10.3389/fmicb.2023.1280258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 11/21/2023] [Indexed: 12/26/2023] Open
Abstract
In the ever-evolving realm of agriculture, the convoluted interaction between plants and microorganisms have assumed paramount significance. Fungal endophytes, once perceived as mere bystanders within plant tissues, have now emerged as dynamic defenders of plant health. This comprehensive review delves into the captivating world of fungal endophytes and their multifaceted biocontrol mechanisms. Exploring their unique ability to coexist with their plant hosts, fungal endophytes have unlocked a treasure trove of biological weaponry to fend off pathogens and enhance plant resilience. From the synthesis of bioactive secondary metabolites to intricate signaling pathways these silent allies are masters of biological warfare. The world of fungal endophytes is quite fascinating as they engage in a delicate dance with the plant immune system, orchestrating a symphony of defense that challenges traditional notions of plant-pathogen interactions. The journey through the various mechanisms employed by these enigmatic endophytes to combat diseases, will lead to revelational understanding of sustainable agriculture. The review delves into cutting-edge research and promising prospects, shedding light on how fungal endophytes hold the key to biocontrol and the reduction of chemical inputs in agriculture. Their ecological significance, potential for bioprospecting and avenues for future research are also explored. This exploration of the biocontrol mechanisms of fungal endophytes promise not only to enrich our comprehension of plant-microbe relationships but also, to shape the future of sustainable and ecofriendly agricultural practices. In this intricate web of life, fungal endophytes are indeed the unsung heroes, silently guarding our crops and illuminating a path towards a greener, healthier tomorrow.
Collapse
Affiliation(s)
| | | | | | | | - Shafaq Rasool
- Molecular Biology Laboratory, School of Biotechnology, Shri Mata Vaishno Devi University, Katra, Jammu and Kashmir, India
| |
Collapse
|
7
|
Geng C, Li L, Han S, Jia M, Jiang J. Activation of Gossypium hirsutum ACS6 Facilitates Fiber Development by Improving Sucrose Metabolism and Transport. PLANTS (BASEL, SWITZERLAND) 2023; 12:3530. [PMID: 37895992 PMCID: PMC10610492 DOI: 10.3390/plants12203530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/05/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023]
Abstract
Cotton fiber yield depends on the density of fiber cell initials that form on the ovule epidermis. Fiber initiation is triggered by MYB-MIXTA-like transcription factors (GhMMLs) and requires a sucrose supply. Ethylene or its precursor ACC (1-aminocyclopropane-1-carboxylic acid) is suggested to affect fiber yield. The Gossypium hirsutum (L.) genome contains 35 ACS genes (GhACS) encoding ACC synthases. Here, we explored the role of a GhACS family member in the regulation of fiber initiation. Expression analyses showed that the GhACS6.3 gene pair was specifically expressed in the ovules during fiber initiation (3 days before anthesis to 5 days post anthesis, -3 to 5 DPA), especially at -3 DPA, whereas other GhACS genes were expressed at very low or undetectable levels. The expression profile of GhACS6.3 during fiber initial development was confirmed by qRT-PCR analysis. Transgenic lines overexpressing GhACS6.3 (GhACS6.3-OE) showed increased ACC accumulation in ovules, which promoted the formation of fiber initials and fiber yield components. This was accompanied by increased transcript levels of GhMML3 and increased transcript levels of genes encoding sucrose transporters and sucrose synthase. These findings imply that GhACS6.3 activation is required for fiber initial development. Our results lay the foundation for further research on increasing cotton fiber production.
Collapse
Affiliation(s)
| | | | | | | | - Jing Jiang
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, College of Life Sciences, Henan University, Kaifeng 475004, China; (C.G.); (L.L.); (S.H.); (M.J.)
| |
Collapse
|
8
|
Wei W, Yang YY, Wu CJ, Kuang JF, Chen JY, Lu WJ, Shan W. MaMADS1-MaNAC083 transcriptional regulatory cascade regulates ethylene biosynthesis during banana fruit ripening. HORTICULTURE RESEARCH 2023; 10:uhad177. [PMID: 37868621 PMCID: PMC10585711 DOI: 10.1093/hr/uhad177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 08/25/2023] [Indexed: 10/24/2023]
Abstract
The hormone ethylene is crucial in the regulation of ripening in climacteric fruit, such as bananas. The transcriptional regulation of ethylene biosynthesis throughout banana fruit ripening has received much study, but the cascaded transcriptional machinery of upstream transcriptional regulators implicated in the ethylene biosynthesis pathway is still poorly understood. Here we report that ethylene biosynthesis genes, including MaACS1, MaACO1, MaACO4, MaACO5, and MaACO8, were upregulated in ripening bananas. NAC (NAM, ATAF, CUC) transcription factor, MaNAC083, a ripening and ethylene-inhibited gene, was discovered as a potential binding protein to the MaACS1 promoter by yeast one-hybrid screening. Further in vitro and in vivo experiments indicated that MaNAC083 bound directly to promoters of the five ethylene biosynthesis genes, thereby transcriptionally repressing their expression, which was further verified by transient overexpression experiments, where ethylene production was inhibited through MaNAC083-modulated transcriptional repression of ethylene biosynthesis genes in banana fruits. Strikingly, MaMADS1, a ripening-induced MADS (MCM1, AGAMOUS, DEFICIENS, SRF4) transcription factor, was found to directly repress the expression of MaNAC083, inhibiting trans-repression of MaNAC083 to ethylene biosynthesis genes, thereby attenuating MaNAC083-repressed ethylene production in bananas. These findings collectively illustrated the mechanistic basis of a MaMADS1-MaNAC083-MaACS1/MaACOs regulatory cascade controlling ethylene biosynthesis during banana fruit ripening. These findings increase our knowledge of the transcriptional regulatory mechanisms of ethylene biosynthesis at the transcriptional level and are expected to help develop molecular approaches to control ripening and improve fruit storability.
Collapse
Affiliation(s)
- Wei Wei
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Ying-ying Yang
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Chao-jie Wu
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Jian-fei Kuang
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Jian-ye Chen
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Wang-jin Lu
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Wei Shan
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
9
|
López-Gómez A, Navarro-Martínez A, Garre A, Iguaz A, Martínez-Hernández GB. The Potential of Essential Oils from Active Packaging to Reduce Ethylene Biosynthesis in Plant Products. Part 2: Fruits (Blueberries and Blackberries). PLANTS (BASEL, SWITZERLAND) 2023; 12:3418. [PMID: 37836158 PMCID: PMC10574652 DOI: 10.3390/plants12193418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/25/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023]
Abstract
Plant essential oils (EOs) have an important ability to inhibit ethylene biosynthesis. Nevertheless, the effects of EOs on the key components of ethylene biosynthesis (l-aminocyclopropane-1-carboxylic (ACC) oxidase activity, ACC synthase activity, and ACC content) have not yet been thoroughly studied. Accordingly, this study focused on the effects of emitted EOs from active packaging (EO doses from 100 to 1000 mg m-2) on the key components of ethylene biosynthesis of blueberries and blackberries under several storage temperatures. Anise EO and lemon EO active packaging induced the greatest inhibitory effects (60-76%) on the ethylene production of blueberries and blackberries, respectively, even at high storage temperatures (22 °C). In terms of EO doses, active packaging with 1000 mg m-2 of anise EO or lemon EO led to the highest reduction of ethylene production, respectively. At 22 °C, the investigated EO active packing reduced the activities of ACC synthase and ACC oxidase up to 50%. In order to minimise ethylene biosynthesis in blueberries and blackberries when they are stored even under improper temperature scenarios at high temperatures, this EO active packaging is a natural and efficient technological solution.
Collapse
Affiliation(s)
- Antonio López-Gómez
- Food Safety and Refrigeration Engineering Group, Department of Agricultural Engineering, Universidad Politécnica de Cartagena, Paseo Alfonso XIII 48, 30203 Cartagena, Spain; (A.L.-G.); (A.N.-M.); (A.I.)
- Institute of Plant Biotechnology, Camouys Muralla del Mar (Universidad Politécnica de Cartagena), 30202 Cartagena, Spain
| | - Alejandra Navarro-Martínez
- Food Safety and Refrigeration Engineering Group, Department of Agricultural Engineering, Universidad Politécnica de Cartagena, Paseo Alfonso XIII 48, 30203 Cartagena, Spain; (A.L.-G.); (A.N.-M.); (A.I.)
| | - Alberto Garre
- Department of Agricultural Engineering, Universidad Politécnica de Cartagena, Paseo Alfonso XIII, 48, 30203 Cartegan, Spain;
| | - Asunción Iguaz
- Food Safety and Refrigeration Engineering Group, Department of Agricultural Engineering, Universidad Politécnica de Cartagena, Paseo Alfonso XIII 48, 30203 Cartagena, Spain; (A.L.-G.); (A.N.-M.); (A.I.)
| | - Ginés Benito Martínez-Hernández
- Food Safety and Refrigeration Engineering Group, Department of Agricultural Engineering, Universidad Politécnica de Cartagena, Paseo Alfonso XIII 48, 30203 Cartagena, Spain; (A.L.-G.); (A.N.-M.); (A.I.)
- Institute of Plant Biotechnology, Camouys Muralla del Mar (Universidad Politécnica de Cartagena), 30202 Cartagena, Spain
| |
Collapse
|
10
|
Bajguz A, Piotrowska-Niczyporuk A. Biosynthetic Pathways of Hormones in Plants. Metabolites 2023; 13:884. [PMID: 37623827 PMCID: PMC10456939 DOI: 10.3390/metabo13080884] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/22/2023] [Accepted: 07/24/2023] [Indexed: 08/26/2023] Open
Abstract
Phytohormones exhibit a wide range of chemical structures, though they primarily originate from three key metabolic precursors: amino acids, isoprenoids, and lipids. Specific amino acids, such as tryptophan, methionine, phenylalanine, and arginine, contribute to the production of various phytohormones, including auxins, melatonin, ethylene, salicylic acid, and polyamines. Isoprenoids are the foundation of five phytohormone categories: cytokinins, brassinosteroids, gibberellins, abscisic acid, and strigolactones. Furthermore, lipids, i.e., α-linolenic acid, function as a precursor for jasmonic acid. The biosynthesis routes of these different plant hormones are intricately complex. Understanding of these processes can greatly enhance our knowledge of how these hormones regulate plant growth, development, and physiology. This review focuses on detailing the biosynthetic pathways of phytohormones.
Collapse
Affiliation(s)
- Andrzej Bajguz
- Department of Biology and Plant Ecology, Faculty of Biology, University of Bialystok, Ciolkowskiego 1J, 15-245 Bialystok, Poland;
| | | |
Collapse
|
11
|
Yang L, Wang X, Zhao F, Zhang X, Li W, Huang J, Pei X, Ren X, Liu Y, He K, Zhang F, Ma X, Yang D. Roles of S-Adenosylmethionine and Its Derivatives in Salt Tolerance of Cotton. Int J Mol Sci 2023; 24:ijms24119517. [PMID: 37298464 DOI: 10.3390/ijms24119517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/19/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
Salinity is a major abiotic stress that restricts cotton growth and affects fiber yield and quality. Although studies on salt tolerance have achieved great progress in cotton since the completion of cotton genome sequencing, knowledge about how cotton copes with salt stress is still scant. S-adenosylmethionine (SAM) plays important roles in many organelles with the help of the SAM transporter, and it is also a synthetic precursor for substances such as ethylene (ET), polyamines (PAs), betaine, and lignin, which often accumulate in plants in response to stresses. This review focused on the biosynthesis and signal transduction pathways of ET and PAs. The current progress of ET and PAs in regulating plant growth and development under salt stress has been summarized. Moreover, we verified the function of a cotton SAM transporter and suggested that it can regulate salt stress response in cotton. At last, an improved regulatory pathway of ET and PAs under salt stress in cotton is proposed for the breeding of salt-tolerant varieties.
Collapse
Affiliation(s)
- Li Yang
- College of Life Science, Yangtze University, Jingzhou 434025, China
| | - Xingxing Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
- Western Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Changji 831100, China
| | - Fuyong Zhao
- College of Life Science, Yangtze University, Jingzhou 434025, China
| | - Xianliang Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
- Western Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Changji 831100, China
| | - Wei Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
- Western Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Changji 831100, China
| | - Junsen Huang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Xiaoyu Pei
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Xiang Ren
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Yangai Liu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Kunlun He
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Fei Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Xiongfeng Ma
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
- Western Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Changji 831100, China
| | - Daigang Yang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| |
Collapse
|
12
|
Bittner A, Cieśla A, Gruden K, Lukan T, Mahmud S, Teige M, Vothknecht UC, Wurzinger B. Organelles and phytohormones: a network of interactions in plant stress responses. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:7165-7181. [PMID: 36169618 PMCID: PMC9675595 DOI: 10.1093/jxb/erac384] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 09/26/2022] [Indexed: 06/08/2023]
Abstract
Phytohormones are major signaling components that contribute to nearly all aspects of plant life. They constitute an interconnected communication network to fine-tune growth and development in response to the ever-changing environment. To this end, they have to coordinate with other signaling components, such as reactive oxygen species and calcium signals. On the one hand, the two endosymbiotic organelles, plastids and mitochondria, control various aspects of phytohormone signaling and harbor important steps of hormone precursor biosynthesis. On the other hand, phytohormones have feedback actions on organellar functions. In addition, organelles and phytohormones often act in parallel in a coordinated matter to regulate cellular functions. Therefore, linking organelle functions with increasing knowledge of phytohormone biosynthesis, perception, and signaling will reveal new aspects of plant stress tolerance. In this review, we highlight recent work on organelle-phytohormone interactions focusing on the major stress-related hormones abscisic acid, jasmonates, salicylic acid, and ethylene.
Collapse
|
13
|
Vaughan-Hirsch J, Li D, Roig Martinez A, Roden S, Pattyn J, Taira S, Shikano H, Miyama Y, Okano Y, Voet A, Van de Poel B. A 1-aminocyclopropane-1-carboxylic-acid (ACC) dipeptide elicits ethylene responses through ACC-oxidase mediated substrate promiscuity. FRONTIERS IN PLANT SCIENCE 2022; 13:995073. [PMID: 36172554 PMCID: PMC9510837 DOI: 10.3389/fpls.2022.995073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 08/26/2022] [Indexed: 06/16/2023]
Abstract
Plants produce the volatile hormone ethylene to regulate many developmental processes and to deal with (a)biotic stressors. In seed plants, ethylene is synthesized from 1-aminocyclopropane-1-carboxylic acid (ACC) by the dedicated enzyme ACC oxidase (ACO). Ethylene biosynthesis is tightly regulated at the level of ACC through ACC synthesis, conjugation and transport. ACC is a non-proteinogenic amino acid, which also has signaling roles independent from ethylene. In this work, we investigated the biological function of an uncharacterized ACC dipeptide. The custom-synthesized di-ACC molecule can be taken up by Arabidopsis in a similar way as ACC, in part via Lysine Histidine Transporters (e.g., LHT1). Using Nano-Particle Assisted Laser Desoprtion/Ionization (Nano-PALDI) mass-spectrometry imaging, we revealed that externally fed di-ACC predominantly localizes to the vasculature tissue, despite it not being detectable in control hypocotyl segments. Once taken up, the ACC dimer can evoke a triple response phenotype in dark-grown seedlings, reminiscent of ethylene responses induced by ACC itself, albeit less efficiently compared to ACC. Di-ACC does not act via ACC-signaling, but operates via the known ethylene signaling pathway. In vitro ACO activity and molecular docking showed that di-ACC can be used as an alternative substrate by ACO to form ethylene. The promiscuous nature of ACO for the ACC dimer also explains the higher ethylene production rates observed in planta, although this reaction occurred less efficiently compared to ACC. Overall, the ACC dipeptide seems to be transported and converted into ethylene in a similar way as ACC, and is able to augment ethylene production levels and induce subsequent ethylene responses in Arabidopsis.
Collapse
Affiliation(s)
- John Vaughan-Hirsch
- Division of Crop Biotechnics, Department of Biosystems, University of Leuven, Leuven, Belgium
| | - Dongdong Li
- Division of Crop Biotechnics, Department of Biosystems, University of Leuven, Leuven, Belgium
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Albert Roig Martinez
- Division of Biochemistry, Molecular and Structural Biology, Department of Chemistry, University of Leuven, Leuven, Belgium
| | - Stijn Roden
- Division of Crop Biotechnics, Department of Biosystems, University of Leuven, Leuven, Belgium
| | - Jolien Pattyn
- Division of Crop Biotechnics, Department of Biosystems, University of Leuven, Leuven, Belgium
| | - Shu Taira
- Department of Agriculture, Fukushima University, Fukushima, Japan
| | - Hitomi Shikano
- Department of Agriculture, Fukushima University, Fukushima, Japan
| | - Yoko Miyama
- Department of Agriculture, Fukushima University, Fukushima, Japan
| | - Yukari Okano
- Department of Agriculture, Fukushima University, Fukushima, Japan
| | - Arnout Voet
- Division of Biochemistry, Molecular and Structural Biology, Department of Chemistry, University of Leuven, Leuven, Belgium
| | - Bram Van de Poel
- Division of Crop Biotechnics, Department of Biosystems, University of Leuven, Leuven, Belgium
- KU Leuven Plant Institute, University of Leuven, Leuven, Belgium
| |
Collapse
|
14
|
Ethylene Signaling under Stressful Environments: Analyzing Collaborative Knowledge. PLANTS 2022; 11:plants11172211. [PMID: 36079592 PMCID: PMC9460115 DOI: 10.3390/plants11172211] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 11/26/2022]
Abstract
Ethylene is a gaseous plant growth hormone that regulates various plant developmental processes, ranging from seed germination to senescence. The mechanisms underlying ethylene biosynthesis and signaling involve multistep mechanisms representing different control levels to regulate its production and response. Ethylene is an established phytohormone that displays various signaling processes under environmental stress in plants. Such environmental stresses trigger ethylene biosynthesis/action, which influences the growth and development of plants and opens new windows for future crop improvement. This review summarizes the current understanding of how environmental stress influences plants’ ethylene biosynthesis, signaling, and response. The review focuses on (a) ethylene biosynthesis and signaling in plants, (b) the influence of environmental stress on ethylene biosynthesis, (c) regulation of ethylene signaling for stress acclimation, (d) potential mechanisms underlying the ethylene-mediated stress tolerance in plants, and (e) summarizing ethylene formation under stress and its mechanism of action.
Collapse
|
15
|
Gao M, Gu X, Satterlee T, Duke MV, Scheffler BE, Gold SE, Glenn AE. Transcriptomic Responses of Fusarium verticillioides to Lactam and Lactone Xenobiotics. FRONTIERS IN FUNGAL BIOLOGY 2022; 3:923112. [PMID: 37746160 PMCID: PMC10512309 DOI: 10.3389/ffunb.2022.923112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 05/12/2022] [Indexed: 09/26/2023]
Abstract
The important cereal crops of maize, rye, and wheat constitutively produce precursors to 2-benzoxazolinone, a phytochemical having antifungal effects towards many Fusarium species. However, Fusarium verticillioides can tolerate 2-benzoxazolinone by converting it into non-toxic metabolites through the synergism of two previously identified gene clusters, FDB1 and FDB2. Inspired by the induction of these two clusters upon exposure to 2-benzoxazolinone, RNA sequencing experiments were carried out by challenging F. verticillioides individually with 2-benzoxazolinone and three related chemical compounds, 2-oxindole, 2-coumaranone, and chlorzoxazone. These compounds all contain lactam and/or lactone moieties, and transcriptional analysis provided inferences regarding the degradation of such lactams and lactones. Besides induction of FDB1 and FDB2 gene clusters, four additional clusters were identified as induced by 2-benzoxazolinone exposure, including a cluster thought to be responsible for biosynthesis of pyridoxine (vitamin B6), a known antioxidant providing tolerance to reactive oxygen species. Three putative gene clusters were identified as induced by challenging F. verticillioides with 2-oxindole, two with 2-coumaranone, and two with chlorzoxazone. Interestingly, 2-benzoxazolinone and 2-oxindole each induced two specific gene clusters with similar composition of enzymatic functions. Exposure to 2-coumranone elicited the expression of the fusaric acid biosynthetic gene cluster. Another gene cluster that may encode enzymes responsible for degrading intermediate catabolic metabolites with carboxylic ester bonds was induced by 2-benzoxazolinone, 2-oxindole, and chlorzoxazone. Also, the induction of a dehalogenase encoding gene during chlorzoxazone exposure suggested its role in the removal of the chlorine atom. Together, this work identifies genes and putative gene clusters responsive to the 2-benzoxazolinone-like compounds with metabolic inferences. Potential targets for future functional analyses are discussed.
Collapse
Affiliation(s)
- Minglu Gao
- Department of Plant Pathology, University of Georgia, Athens, GA, United States
| | - Xi Gu
- Institute of Bioinformatics, University of Georgia, Athens, GA, United States
| | - Timothy Satterlee
- United States Department of Agriculture (USDA), Agricultural Research Service (ARS), U.S. National Poultry Research Center, Toxicology & Mycotoxin Research Unit, Athens, GA, United States
| | - Mary V. Duke
- United States Department of Agriculture (USDA), Agricultural Research Service, Genomics and Bioinformatics Research Unit, Stoneville, MS, United States
| | - Brian E. Scheffler
- United States Department of Agriculture (USDA), Agricultural Research Service, Genomics and Bioinformatics Research Unit, Stoneville, MS, United States
| | - Scott E. Gold
- United States Department of Agriculture (USDA), Agricultural Research Service (ARS), U.S. National Poultry Research Center, Toxicology & Mycotoxin Research Unit, Athens, GA, United States
| | - Anthony E. Glenn
- United States Department of Agriculture (USDA), Agricultural Research Service (ARS), U.S. National Poultry Research Center, Toxicology & Mycotoxin Research Unit, Athens, GA, United States
| |
Collapse
|
16
|
Yu YB, Adams DO, Yang SF. Reprint of: 1-Aminocyclopropanecarboxylate Synthase, a Key Enzyme in Ethylene Biosynthesis. Arch Biochem Biophys 2022; 726:109238. [PMID: 35680445 DOI: 10.1016/j.abb.2022.109238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
1-Aminocyclopropanecarboxylate (ACC) synthase, which catalyzes the conversion of S-adenosylmethionine (SAM) to ACC and methylthioadenosine, was demonstrated in tomato extract. Methylthioadenosine was then rapidly hydrolyzed to methylthioribose by a nucleosidase present in the extract. ACC synthase had an optimum pH of 8.5, and a Km of 20 μM with respect to SAM. S-Adenosylethionine also served as a substrate for ACC synthase, but at a lower efficiency than that of SAM. Since S-adenosylethionine had a higher affinity for the enzyme than SAM, it inhibited the reaction of SAM when both were present. S-Adenosylhomocysteine was, however, an inactive substrate. The enzyme was activated by pyridoxal phosphate at a concentration of 0.1 μM or higher, and competitively inhibited by aminoethoxyvinylglycine and aminooxyacetic acid, which are known to inhibit pyridoxal phosphate-mediated enzymic reactions. These results support the view that ACC synthase is a pyridoxal enzyme. The biochemical role of pyridoxal phosphate is catalyzing the formation of ACC by α,γ-elimination of SAM is discussed.
Collapse
Affiliation(s)
- Yeong-Biau Yu
- Department of Vegetable Crops, University of California, Davis, California, 95616
| | - Douglas O Adams
- Department of Vegetable Crops, University of California, Davis, California, 95616
| | - Shang Fa Yang
- Department of Vegetable Crops, University of California, Davis, California, 95616
| |
Collapse
|
17
|
Chen H, Bullock DA, Alonso JM, Stepanova AN. To Fight or to Grow: The Balancing Role of Ethylene in Plant Abiotic Stress Responses. PLANTS (BASEL, SWITZERLAND) 2021; 11:plants11010033. [PMID: 35009037 PMCID: PMC8747122 DOI: 10.3390/plants11010033] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/18/2021] [Accepted: 12/19/2021] [Indexed: 05/04/2023]
Abstract
Plants often live in adverse environmental conditions and are exposed to various stresses, such as heat, cold, heavy metals, salt, radiation, poor lighting, nutrient deficiency, drought, or flooding. To adapt to unfavorable environments, plants have evolved specialized molecular mechanisms that serve to balance the trade-off between abiotic stress responses and growth. These mechanisms enable plants to continue to develop and reproduce even under adverse conditions. Ethylene, as a key growth regulator, is leveraged by plants to mitigate the negative effects of some of these stresses on plant development and growth. By cooperating with other hormones, such as jasmonic acid (JA), abscisic acid (ABA), brassinosteroids (BR), auxin, gibberellic acid (GA), salicylic acid (SA), and cytokinin (CK), ethylene triggers defense and survival mechanisms thereby coordinating plant growth and development in response to abiotic stresses. This review describes the crosstalk between ethylene and other plant hormones in tipping the balance between plant growth and abiotic stress responses.
Collapse
|
18
|
Li G, Wang J, Zhang C, Ai G, Zhang D, Wei J, Cai L, Li C, Zhu W, Larkin RM, Zhang J. L2, a chloroplast metalloproteinase, regulates fruit ripening by participating in ethylene autocatalysis under the control of ethylene response factors. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:7035-7048. [PMID: 34255841 DOI: 10.1093/jxb/erab325] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 07/12/2021] [Indexed: 06/13/2023]
Abstract
Although autocatalytic ethylene biosynthesis plays an important role in the ripening of climacteric fruits, our knowledge of the network that promotes it remains limited. We identified white fruit (wf), a tomato mutant that produces immature fruit that are white and that ripen slowly. We found that an inversion on chromosome 10 disrupts the LUTESCENT2 (L2) gene, and that white fruit is allelic to lutescent2. Using CRISPR/Cas9 technology we knocked out L2 in wild type tomato and found that the l2-cr mutants produced phenotypes that were very similar to white fruit (lutescent2). In the l2-cr fruit, chloroplast development was impaired and the accumulation of carotenoids and lycopene occurred more slowly than in wild type. During fruit ripening in l2-cr mutants, the peak of ethylene release was delayed, less ethylene was produced, and the expression of ACO genes was significantly suppressed. We also found that exogenous ethylene induces the expression of L2 and that ERF.B3, an ethylene response factor, binds to the promoter of the L2 gene and activates its transcription. Thus, the expression of L2 is regulated by exogenous ethylene. Taken together, our results indicate that ethylene may affect the expression of L2 gene and that L2 participates in autocatalytic ethylene biosynthesis during tomato fruit ripening.
Collapse
Affiliation(s)
- Guobin Li
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiafa Wang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Chunli Zhang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Guo Ai
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Dedi Zhang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Jing Wei
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Liangyu Cai
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Changbao Li
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Wenzhao Zhu
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Robert M Larkin
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Junhong Zhang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Urban Agriculture in Central China, Ministry of Agriculture and Rural Affairs, Wuhan 430070, China
| |
Collapse
|
19
|
Park C, Lee HY, Yoon GM. The regulation of ACC synthase protein turnover: a rapid route for modulating plant development and stress responses. CURRENT OPINION IN PLANT BIOLOGY 2021; 63:102046. [PMID: 33965697 DOI: 10.1016/j.pbi.2021.102046] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/22/2021] [Accepted: 03/25/2021] [Indexed: 06/12/2023]
Abstract
The phytohormone ethylene regulates plant growth, development, and stress responses. The strict fine-tuning of the regulation of ethylene biosynthesis contributes to the diverse roles of ethylene in plants. Pyridoxal 5'-phosphate-dependent 1-aminocyclopropane-1-carboxylic acid synthase, a rate-limiting enzyme in ethylene biosynthesis, is central and often rate-limiting to regulate ethylene concentration in plants. The post-translational regulation of ACS is a major pathway controlling ethylene biosynthesis in response to various stimuli. We conclude that the regulation of ACS turnover may serve as a central hub for the rapid integration of developmental, environmental, and hormonal signals, all of which influence plant growth and stress responses.
Collapse
Affiliation(s)
- Chanung Park
- Department of Botany and Plant Pathology and Center for Plant Biology, Purdue University, West Lafayette, IN, 47907, USA
| | - Han Yong Lee
- Department of Botany and Plant Pathology and Center for Plant Biology, Purdue University, West Lafayette, IN, 47907, USA
| | - Gyeong Mee Yoon
- Department of Botany and Plant Pathology and Center for Plant Biology, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
20
|
Balassa K, Balassa G, Gondor OK, Janda T, Almási A, Rudnóy S. Changes in physiology, gene expression and ethylene biosynthesis in MDMV-infected sweet corn primed by small RNA pre-treatment. Saudi J Biol Sci 2021; 28:5568-5578. [PMID: 34588867 PMCID: PMC8459037 DOI: 10.1016/j.sjbs.2021.05.073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 11/17/2022] Open
Abstract
The physiological condition of plants is significantly affected by viral infections. Viral proliferation occurs at the expense of the energy and protein stores in infected plant cells. At the same time, plants invest much of their remaining resources in the fight against infection, making them even less capable of normal growth processes. Thus, the slowdown in the development and growth processes of plants leads to a large-scale decrease in plant biomass and yields, which may be a perceptible problem even at the level of the national economy. One form of protection against viral infections is treatment with small interfering RNA (siRNA) molecules, which can directly reduce the amount of virus that multiplies in plant cells by enhancing the process of highly conserved RNA interference in plants. The present work demonstrated how pre-treatment with siRNA may provide protection against MDMV (Maize dwarf mosaic virus) infection in sweet corn (Zea mays cv. saccharata var. Honey Koern). In addition to monitoring the physiological condition of the maize plants, the accumulation of the virus in young leaves was examined, parallel, with changes in the plant RNA interference system and the ethylene (ET) biosynthetic pathway. The siRNA pre-treatment activated the plant antiviral defence system, thus significantly reducing viral RNA and coat protein levels in the youngest leaves of the plants. The lower initial amount of virus meant a weaker stress load, which allowed the plants to devote more energy to their growth and development. In contrast, small RNA pre-treatment did not initially have a significant effect on the ET biosynthetic pathway, but later a significant decrease was observed both in the level of transcription of genes responsible for ET production and, in the amount of ACC (1-aminocyclopropane-1-carboxylic acid) metabolite. The significantly better physiological condition, enhanced RNAi response and lower quantity of virus particles in siRNA pretreated plants, suggested that siRNA pre-treatment stimulated the antiviral defence mechanisms in MDMV infected plants. In addition, the consistently lower ACC content of the plants pre-treated with siRNA suggest that ET does not significantly contribute to the successful defence in this maize hybrid type against MDMV.
Collapse
Affiliation(s)
- Kinga Balassa
- Department of Plant Physiology and Molecular Plant Biology, Faculty of Science, Eötvös Loránd University, Budapest, Hungary
| | - György Balassa
- Department of Plant Physiology and Molecular Plant Biology, Faculty of Science, Eötvös Loránd University, Budapest, Hungary
| | - Orsolya Kinga Gondor
- Department of Plant Physiology, Agricultural Institute, Centre for Agricultural Research, ELKH Martonvásár, Hungary
| | - Tibor Janda
- Department of Plant Physiology, Agricultural Institute, Centre for Agricultural Research, ELKH Martonvásár, Hungary
| | - Asztéria Almási
- Department of Plant Pathology, Agricultural Institute, Centre for Agricultural Research, ELKH Budapest, Hungary
| | - Szabolcs Rudnóy
- Department of Plant Physiology and Molecular Plant Biology, Faculty of Science, Eötvös Loránd University, Budapest, Hungary
| |
Collapse
|
21
|
Nieuwenhuizen NJ, Chen X, Pellan M, Zhang L, Guo L, Laing WA, Schaffer RJ, Atkinson RG, Allan AC. Regulation of wound ethylene biosynthesis by NAC transcription factors in kiwifruit. BMC PLANT BIOLOGY 2021; 21:411. [PMID: 34496770 PMCID: PMC8425125 DOI: 10.1186/s12870-021-03154-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 08/02/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND The phytohormone ethylene controls many processes in plant development and acts as a key signaling molecule in response to biotic and abiotic stresses: it is rapidly induced by flooding, wounding, drought, and pathogen attack as well as during abscission and fruit ripening. In kiwifruit (Actinidia spp.), fruit ripening is characterized by two distinct phases: an early phase of system-1 ethylene biosynthesis characterized by absence of autocatalytic ethylene, followed by a late burst of autocatalytic (system-2) ethylene accompanied by aroma production and further ripening. Progress has been made in understanding the transcriptional regulation of kiwifruit fruit ripening but the regulation of system-1 ethylene biosynthesis remains largely unknown. The aim of this work is to better understand the transcriptional regulation of both systems of ethylene biosynthesis in contrasting kiwifruit organs: fruit and leaves. RESULTS A detailed molecular study in kiwifruit (A. chinensis) revealed that ethylene biosynthesis was regulated differently between leaf and fruit after mechanical wounding. In fruit, wound ethylene biosynthesis was accompanied by transcriptional increases in 1-aminocyclopropane-1-carboxylic acid (ACC) synthase (ACS), ACC oxidase (ACO) and members of the NAC class of transcription factors (TFs). However, in kiwifruit leaves, wound-specific transcriptional increases were largely absent, despite a more rapid induction of ethylene production compared to fruit, suggesting that post-transcriptional control mechanisms in kiwifruit leaves are more important. One ACS member, AcACS1, appears to fulfil a dominant double role; controlling both fruit wound (system-1) and autocatalytic ripening (system-2) ethylene biosynthesis. In kiwifruit, transcriptional regulation of both system-1 and -2 ethylene in fruit appears to be controlled by temporal up-regulation of four NAC (NAM, ATAF1/2, CUC2) TFs (AcNAC1-4) that induce AcACS1 expression by directly binding to the AcACS1 promoter as shown using gel-shift (EMSA) and by activation of the AcACS1 promoter in planta as shown by gene activation assays combined with promoter deletion analysis. CONCLUSIONS Our results indicate that in kiwifruit the NAC TFs AcNAC2-4 regulate both system-1 and -2 ethylene biosynthesis in fruit during wounding and ripening through control of AcACS1 expression levels but not in leaves where post-transcriptional/translational regulatory mechanisms may prevail.
Collapse
Affiliation(s)
- Niels J. Nieuwenhuizen
- The New Zealand Institute for Plant and Food Research Limited (PFR), Private Bag 92169, Auckland, 1142 New Zealand
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, 1142 New Zealand
| | - Xiuyin Chen
- The New Zealand Institute for Plant and Food Research Limited (PFR), Private Bag 92169, Auckland, 1142 New Zealand
| | - Mickaël Pellan
- The New Zealand Institute for Plant and Food Research Limited (PFR), Private Bag 92169, Auckland, 1142 New Zealand
| | - Lei Zhang
- The New Zealand Institute for Plant and Food Research Limited (PFR), Private Bag 92169, Auckland, 1142 New Zealand
- Institute of Fruit and Tea, Hubei Academy of Agricultural Sciences, Wuhan, 430064 China
| | - Lindy Guo
- The New Zealand Institute for Plant and Food Research Limited (PFR), Private Bag 92169, Auckland, 1142 New Zealand
| | | | - Robert J. Schaffer
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, 1142 New Zealand
- PFR, 55 Old Mill Road, RD 3, Motueka, 7198 New Zealand
| | - Ross G. Atkinson
- The New Zealand Institute for Plant and Food Research Limited (PFR), Private Bag 92169, Auckland, 1142 New Zealand
| | - Andrew C. Allan
- The New Zealand Institute for Plant and Food Research Limited (PFR), Private Bag 92169, Auckland, 1142 New Zealand
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, 1142 New Zealand
| |
Collapse
|
22
|
Sako K, Van Ha C, Matsui A, Tanaka M, Sato A, Seki M. Transcriptome Analysis of Arabidopsis thaliana Plants Treated with a New Compound Natolen128, Enhancing Salt Stress Tolerance. PLANTS 2021; 10:plants10050978. [PMID: 34068843 PMCID: PMC8153642 DOI: 10.3390/plants10050978] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/09/2021] [Accepted: 05/11/2021] [Indexed: 01/06/2023]
Abstract
Salinity stress is a major threat to agriculture and global food security. Chemical priming is a promising approach to improving salinity stress tolerance in plants. To identify small molecules with the capacity to enhance salinity stress tolerance in plants, chemical screening was performed using Arabidopsis thaliana. We screened 6400 compounds from the Nagoya University Institute of Transformative Bio-Molecule (ITbM) chemical library and identified one compound, Natolen128, that enhanced salinity-stress tolerance. Furthermore, we isolated a negative compound of Natolen128, namely Necolen124, that did not enhance salinity stress tolerance, though it has a similar chemical structure to Natolen128. We conducted a transcriptomic analysis of Natolen128 and Necolen124 to investigate how Natolen128 enhances high-salinity stress tolerance. Our data indicated that the expression levels of 330 genes were upregulated by Natolen128 treatment compared with that of Necolen124. Treatment with Natolen128 increased expression of hypoxia-responsive genes including ethylene biosynthetic enzymes and PHYTOGLOBIN, which modulate accumulation of nitric oxide (NO) level. NO was slightly increased in plants treated with Natolen128. These results suggest that Natolen128 may regulate NO accumulation and thus, improve salinity stress tolerance in A. thaliana.
Collapse
Affiliation(s)
- Kaori Sako
- Department of Advanced Bioscience, Faculty of Agriculture, Kindai University, Nara 631-8505, Japan
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science (CSRS), Yokohama 230-0045, Japan; (C.V.H.); (A.M.); (M.T.)
- Correspondence: (K.S.); (M.S.)
| | - Chien Van Ha
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science (CSRS), Yokohama 230-0045, Japan; (C.V.H.); (A.M.); (M.T.)
| | - Akihiro Matsui
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science (CSRS), Yokohama 230-0045, Japan; (C.V.H.); (A.M.); (M.T.)
| | - Maho Tanaka
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science (CSRS), Yokohama 230-0045, Japan; (C.V.H.); (A.M.); (M.T.)
| | - Ayato Sato
- Institute of Transformative Bio-Molecules (ITbM), Nagoya University, Nagoya 464-8601, Japan;
| | - Motoaki Seki
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science (CSRS), Yokohama 230-0045, Japan; (C.V.H.); (A.M.); (M.T.)
- Kihara Institute for Biological Research, Yokohama City University, Yokohama 244-0813, Japan
- Plant Epigenome Regulation Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan
- Correspondence: (K.S.); (M.S.)
| |
Collapse
|
23
|
Zhou X, Smaill SJ, Gu X, Clinton PW. Manipulation of soil methane oxidation under drought stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 757:144089. [PMID: 33310579 DOI: 10.1016/j.scitotenv.2020.144089] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/20/2020] [Accepted: 11/22/2020] [Indexed: 06/12/2023]
Abstract
Drought events are predicted to occur more frequently, but comprehensive knowledge of their effects on methane (CH4) oxidation by soil methanotrophs in upland ecosystems remains elusive. Here, we put forward a new conceptual model in which drought influences soil CH4 oxidation through a direct pathway (i.e., positive effects of soil CH4 oxidation via increasing soil aeration) and through an indirect pathway (i.e., negative effects of in planta ethylene (C2H4) production on soil CH4 oxidation). Through measuring soil CH4 efflux along a gradient of drought stress, we found that drought increases soil CH4 oxidation, as the former outweighs the latter on soil CH4 oxidation, based on a mesocosm experiment employing distinct levels of watering and a long-term drought field trial created by rainfall exclusion in a subtropical evergreen forest. Moreover, we used aminoethoxyvinylglycine (AVG), a C2H4 biosynthesis inhibitor, to reduce in planta C2H4 production under drought, and found that reducing in planta C2H4 production increased soil CH4 oxidation under drought. To confirm these findings, we found that inoculation of plant growth-promoting rhizobacteria containing the 1-aminocyclopropane-1-carboxylate deaminase alleviated the negative effects of drought-induced in planta C2H4, thus increasing soil CH4 oxidation rates. All these results provide strong evidence for the hypothesis that in planta C2H4 production inhibits soil CH4 oxidation under drought. To our knowledge, this is the first study to manipulate the negative feedback between C2H4 production and CH4 oxidation under drought stress. Given the current widespread extent of arid and semiarid regions in the world, combined with the projected increased frequency of drought stress in future climate scenarios, we provide a reliable means for increasing soil CH4 oxidation in the context of global warming.
Collapse
Affiliation(s)
- Xiaoqi Zhou
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, Center for Global Change and Ecological Forecasting, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China.
| | - Simeon J Smaill
- Scion, P.O. Box 29237, Riccarton, Christchurch 8440, New Zealand
| | - Xinyun Gu
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, Center for Global Change and Ecological Forecasting, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Peter W Clinton
- Scion, P.O. Box 29237, Riccarton, Christchurch 8440, New Zealand
| |
Collapse
|
24
|
Liu Y, Shi Y, Su D, Lu W, Li Z. SlGRAS4 accelerates fruit ripening by regulating ethylene biosynthesis genes and SlMADS1 in tomato. HORTICULTURE RESEARCH 2021; 8:3. [PMID: 33384413 PMCID: PMC7775462 DOI: 10.1038/s41438-020-00431-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 09/12/2020] [Accepted: 10/12/2020] [Indexed: 05/29/2023]
Abstract
GRAS proteins are plant-specific transcription factors that play crucial roles in plant development and stress responses. However, their involvement in the ripening of economically important fruits and their transcriptional regulatory mechanisms remain largely unclear. Here, we demonstrated that SlGRAS4, encoding a transcription factor of the GRAS family, was induced by the tomato ripening process and regulated by ethylene. Overexpression of SlGRAS4 accelerated fruit ripening, increased the total carotenoid content and increased PSY1 expression in SlGRAS4-OE fruit compared to wild-type fruit. The expression levels of key ethylene biosynthesis genes (SlACS2, SlACS4, SlACO1, and SlACO3) and crucial ripening regulators (RIN and NOR) were increased in SlGRAS4-OE fruit. The negative regulator of tomato fruit ripening, SlMADS1, was repressed in OE fruit. Exogenous ethylene and 1-MCP treatment revealed that more endogenous ethylene was derived in SlGRAS4-OE fruit. More obvious phenotypes were observed in OE seedlings after ACC treatment. Yeast one-hybrid and dual-luciferase assays confirmed that SlGRAS4 can directly bind SlACO1 and SlACO3 promoters to activate their transcription, and SlGRAS4 can also directly repress SlMADS1 expression. Our study identified that SlGRAS4 acts as a new regulator of fruit ripening by regulating ethylene biosynthesis genes in a direct manner. This provides new knowledge of GRAS transcription factors involved in regulating fruit ripening.
Collapse
Affiliation(s)
- Yudong Liu
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, 401331, Chongqing, China
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, 401331, Chongqing, China
| | - Yuan Shi
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, 401331, Chongqing, China
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, 401331, Chongqing, China
| | - Deding Su
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, 401331, Chongqing, China
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, 401331, Chongqing, China
| | - Wang Lu
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, 401331, Chongqing, China
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, 401331, Chongqing, China
| | - Zhengguo Li
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, 401331, Chongqing, China.
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, 401331, Chongqing, China.
| |
Collapse
|
25
|
Pattyn J, Vaughan‐Hirsch J, Van de Poel B. The regulation of ethylene biosynthesis: a complex multilevel control circuitry. THE NEW PHYTOLOGIST 2021; 229:770-782. [PMID: 32790878 PMCID: PMC7820975 DOI: 10.1111/nph.16873] [Citation(s) in RCA: 145] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 08/04/2020] [Indexed: 05/06/2023]
Abstract
The gaseous plant hormone ethylene is produced by a fairly simple two-step biosynthesis route. Despite this pathway's simplicity, recent molecular and genetic studies have revealed that the regulation of ethylene biosynthesis is far more complex and occurs at different layers. Ethylene production is intimately linked with the homeostasis of its general precursor S-adenosyl-l-methionine (SAM), which experiences transcriptional and posttranslational control of its synthesising enzymes (SAM synthetase), as well as the metabolic flux through the adjacent Yang cycle. Ethylene biosynthesis continues from SAM by two dedicated enzymes: 1-aminocyclopropane-1-carboxylic (ACC) synthase (ACS) and ACC oxidase (ACO). Although the transcriptional dynamics of ACS and ACO have been well documented, the first transcription factors that control ACS and ACO expression have only recently been discovered. Both ACS and ACO display a type-specific posttranslational regulation that controls protein stability and activity. The nonproteinogenic amino acid ACC also shows a tight level of control through conjugation and translocation. Different players in ACC conjugation and transport have been identified over the years, however their molecular regulation and biological significance is unclear, yet relevant, as ACC can also signal independently of ethylene. In this review, we bring together historical reports and the latest findings on the complex regulation of the ethylene biosynthesis pathway in plants.
Collapse
Affiliation(s)
- Jolien Pattyn
- Molecular Plant Hormone Physiology LaboratoryDivision of Crop BiotechnicsDepartment of BiosystemsUniversity of LeuvenWillem de Croylaan 42Leuven3001Belgium
| | - John Vaughan‐Hirsch
- Molecular Plant Hormone Physiology LaboratoryDivision of Crop BiotechnicsDepartment of BiosystemsUniversity of LeuvenWillem de Croylaan 42Leuven3001Belgium
| | - Bram Van de Poel
- Molecular Plant Hormone Physiology LaboratoryDivision of Crop BiotechnicsDepartment of BiosystemsUniversity of LeuvenWillem de Croylaan 42Leuven3001Belgium
| |
Collapse
|
26
|
Barbero F, Guglielmotto M, Islam M, Maffei ME. Extracellular Fragmented Self-DNA Is Involved in Plant Responses to Biotic Stress. FRONTIERS IN PLANT SCIENCE 2021; 12:686121. [PMID: 34381477 PMCID: PMC8350447 DOI: 10.3389/fpls.2021.686121] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 07/05/2021] [Indexed: 05/17/2023]
Abstract
A growing body of evidence indicates that extracellular fragmented self-DNA (eDNA), by acting as a signaling molecule, triggers inhibitory effects on conspecific plants and functions as a damage-associated molecular pattern (DAMP). To evaluate early and late events in DAMP-dependent responses to eDNA, we extracted, fragmented, and applied the tomato (Solanum lycopersicum) eDNA to tomato leaves. Non-sonicated, intact self-DNA (intact DNA) was used as control. Early event analyses included the evaluation of plasma transmembrane potentials (Vm), cytosolic calcium variations (Ca2+ cy t), the activity and subcellular localization of both voltage-gated and ligand-gated rectified K+ channels, and the reactive oxygen species (ROS) subcellular localization and quantification. Late events included RNA-Seq transcriptomic analysis and qPCR validation of gene expression of tomato leaves exposed to tomato eDNA. Application of eDNA induced a concentration-dependent Vm depolarization which was correlated to an increase in (Ca2+)cyt; this event was associated to the opening of K+ channels, with particular action on ligand-gated rectified K+ channels. Both eDNA-dependent (Ca2+)cyt and K+ increases were correlated to ROS production. In contrast, application of intact DNA produced no effects. The plant response to eDNA was the modulation of the expression of genes involved in plant-biotic interactions including pathogenesis-related proteins (PRPs), calcium-dependent protein kinases (CPK1), heat shock transcription factors (Hsf), heat shock proteins (Hsp), receptor-like kinases (RLKs), and ethylene-responsive factors (ERFs). Several genes involved in calcium signaling, ROS scavenging and ion homeostasis were also modulated by application of eDNA. Shared elements among the transcriptional response to eDNA and to biotic stress indicate that eDNA might be a common DAMP that triggers plant responses to pathogens and herbivores, particularly to those that intensive plant cell disruption or cell death. Our results suggest the intriguing hypothesis that some of the plant reactions to pathogens and herbivores might be due to DNA degradation, especially when associated to the plant cell disruption. Fragmented DNA would then become an important and powerful elicitor able to trigger early and late responses to biotic stress.
Collapse
Affiliation(s)
- Francesca Barbero
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Michela Guglielmotto
- Neuroscience Institute of Cavalieri Ottolenghi Foundation, University of Turin, Turin, Italy
| | - Monirul Islam
- Plant Physiology Unit, Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Massimo E. Maffei
- Plant Physiology Unit, Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
- *Correspondence: Massimo E. Maffei,
| |
Collapse
|
27
|
Sussholz O, Pizarro L, Schuster S, Avni A. SlRLK-like is a malectin-like domain protein affecting localization and abundance of LeEIX2 receptor resulting in suppression of EIX-induced immune responses. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 104:1369-1381. [PMID: 33048397 DOI: 10.1111/tpj.15006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 09/05/2020] [Accepted: 09/15/2020] [Indexed: 05/04/2023]
Abstract
The first line of plant defense occurs when a plant pattern recognition receptor (PRR) recognizes microbe-associated molecular patterns. Plant PRRs are either receptor-like kinases (RLKs), which have an extracellular domain for ligand binding, a single-pass transmembrane domain, and an intracellular kinase domain for activating downstream signaling, or receptor-like proteins (RLPs), which share the same overall structure but lack an intracellular kinase domain. The tomato (Solanum lycopersicum) LeEIX2 is an RLP that binds ethylene-inducing xylanase (EIX), a fungal elicitor. To identify LeEIX2 receptor interactors, we conducted a yeast two-hybrid screen and found a tomato protein that we termed SlRLK-like. The interaction of LeEIX2 with SlRLK-like was verified using co-immunoprecipitation and bimolecular fluorescence complementation assays. The defense responses induced by EIX were markedly reduced when SlRLK-like was overexpressed in Nicotiana benthamiana or Nicotiana tabacum, and knockout of SlRLK-like using the CRISPR/Cas9 system increased EIX-induced ethylene production and 1-aminocyclopropane-1-carboxylate synthase (SlACS2) gene expression in tomato. Co-expression of SlRLK-like with LeEIX2 led to a reduction in its abundance, apparently through an endoplasmic reticulum-associated degradation process. Notably, truncation of SlRLK-like protein revealed that the malectin-like domain is sufficient and essential for its function. Moreover, SlRLK-like associated with the RLK FLS2, resulting in its degradation and concomitantly a reduction of the flagellin 22 (flg22)-induced burst of reactive oxygen species. In addition, SlRLK-like co-expression with other RLPs, Ve1 and AtRLP23, also led to a reduction in their abundance. Our findings suggest that SlRLK-like leads to a decreased stability of various PRRs, leading to a reduction in their abundance and resulting in attenuation of defense responses.
Collapse
Affiliation(s)
- Orian Sussholz
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Lorena Pizarro
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Silvia Schuster
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Adi Avni
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, 69978, Israel
| |
Collapse
|
28
|
McCauley CL, McAdam SAM, Bhide K, Thimmapuram J, Banks JA, Young BG. Transcriptomics in Erigeron canadensis reveals rapid photosynthetic and hormonal responses to auxin herbicide application. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:3701-3709. [PMID: 32161961 PMCID: PMC7307852 DOI: 10.1093/jxb/eraa124] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 03/10/2020] [Indexed: 05/14/2023]
Abstract
The perception pathway for endogenous auxin has been well described, yet the mode of action of synthetic auxin herbicides, used for >70 years, remains uncharacterized. We utilized transcriptomics and targeted physiological studies to investigate the unknown rapid response to synthetic auxin herbicides in the globally problematic weed species Erigeron canadensis. Synthetic auxin herbicide application consistently and rapidly down-regulated the photosynthetic machinery. At the same time, there was considerable perturbation to the expression of many genes related to phytohormone metabolism and perception. In particular, auxin herbicide application enhanced the expression of the key abscisic acid biosynthetic gene, 9-cis-epoxycarotenoid deoxygenase (NCED). The increase in NCED expression following auxin herbicide application led to a rapid biosynthesis of abscisic acid (ABA). This increase in ABA levels was independent of a loss of cell turgor or an increase in ethylene levels, both proposed triggers for rapid ABA biosynthesis. The levels of ABA in the leaf after auxin herbicide application continued to increase as plants approached death, up to >3-fold higher than in the leaves of plants that were drought stressed. We propose a new model in which synthetic auxin herbicides trigger plant death by the whole-scale, rapid, down-regulation of photosynthetic processes and an increase in ABA levels through up-regulation of NCED expression, independent of ethylene levels or a loss of cell turgor.
Collapse
Affiliation(s)
- Cara L McCauley
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, USA
- Correspondence:
| | - Scott A M McAdam
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, USA
| | - Ketaki Bhide
- Bioinformatics Core, Purdue University, West Lafayette, IN, USA
| | | | - Jo Ann Banks
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, USA
| | - Bryan G Young
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
29
|
Li L, Shuai L, Sun J, Li C, Yi P, Zhou Z, He X, Ling D, Sheng J, Kong K, Zheng F, Li J, Liu G, Xin M, Li Z, Tang Y. The Role of 1-Methylcyclopropene in the regulation of ethylene biosynthesis and ethylene receptor gene expression in Mangifera indica L. (Mango Fruit). Food Sci Nutr 2020; 8:1284-1294. [PMID: 32148834 PMCID: PMC7020288 DOI: 10.1002/fsn3.1417] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 05/10/2019] [Accepted: 05/17/2019] [Indexed: 11/29/2022] Open
Abstract
Mango (Mangifera indica L.) is respiratory climacteric fruit that ripens and decomposes quickly following their harvest. 1-methylcyclopropene (1-MCP) is known to affect the ripening of fruit, delaying the decay of mango stored under ambient conditions. The objective of this study was to clarify the role of 1-MCP in the regulation of ethylene biosynthesis and ethylene receptor gene expression in mango. 1-MCP significantly inhibited the 1-aminocyclopropane-1-carboxylic acid (ACC) content. The activity of ACC oxidase (ACO) increased on days 6, 8, and 10 of storage, whereas delayed ACC synthase (ACS) activity increased after day 4. The two homologous ethylene receptor genes, ETR1 and ERS1 (i.e., MiETR1 and MiERS1), were obtained and deposited in GenBank® (National Center for Biotechnology Information-National Institutes of Health [NCBI-NIH]) (KY002681 and KY002682). The MiETR1 coding sequence was 2,220 bp and encoded 739 amino acids (aa). The MiERS1 coding sequence was 1,890 bp and encoded 629 aa, similar to ERS1 in other fruit. The tertiary structures of MiETR1 and MiERS1 were also predicted. MiERS1 lacks a receiver domain and shares a low homology with MiETR1 (44%). The expression of MiETR1 and MiERS1 mRNA was upregulated as the storage duration extended and reached the peak expression on day 6. Treatment with 1-MCP significantly reduced the expression of MiETR1 on days 4, 6, and 10 and inhibited the expression of MiETR1 on days 2, 4, 6, and 10. These results indicated that MiETR1 and MiERS1 had important functions in ethylene signal transduction. Treatment with 1-MCP might effectively prevent the biosynthesis of ethylene, as well as ethylene-induced ripening and senescence. This study presents an innovative method for prolonging the storage life of mango after their harvest through the regulation of MiETR1 and MiERS1 expression.
Collapse
Affiliation(s)
- Li Li
- Agro‐food Science and Technology Research InstituteGuangxi Academy of Agricultural SciencesNanningChina
- Guangxi Key Laboratory of Fruits and Vegetables Storage‐processing TechnologyNanningChina
| | - Liang Shuai
- Agro‐food Science and Technology Research InstituteGuangxi Academy of Agricultural SciencesNanningChina
- Guangxi Key Laboratory of Fruits and Vegetables Storage‐processing TechnologyNanningChina
| | - Jian Sun
- Agro‐food Science and Technology Research InstituteGuangxi Academy of Agricultural SciencesNanningChina
- Guangxi Key Laboratory of Fruits and Vegetables Storage‐processing TechnologyNanningChina
| | - Changbao Li
- Agro‐food Science and Technology Research InstituteGuangxi Academy of Agricultural SciencesNanningChina
- Guangxi Key Laboratory of Fruits and Vegetables Storage‐processing TechnologyNanningChina
| | - Ping Yi
- Agro‐food Science and Technology Research InstituteGuangxi Academy of Agricultural SciencesNanningChina
| | - Zhugui Zhou
- Agro‐food Science and Technology Research InstituteGuangxi Academy of Agricultural SciencesNanningChina
| | - Xuemei He
- Agro‐food Science and Technology Research InstituteGuangxi Academy of Agricultural SciencesNanningChina
| | - Dongning Ling
- Agro‐food Science and Technology Research InstituteGuangxi Academy of Agricultural SciencesNanningChina
| | - Jinfeng Sheng
- Agro‐food Science and Technology Research InstituteGuangxi Academy of Agricultural SciencesNanningChina
- Guangxi Key Laboratory of Fruits and Vegetables Storage‐processing TechnologyNanningChina
| | - Kin‐Weng Kong
- Department of Molecular MedicineFaculty of MedicineUniversity of MalayaKuala LumpurMalaysia
| | - Fengjin Zheng
- Agro‐food Science and Technology Research InstituteGuangxi Academy of Agricultural SciencesNanningChina
| | - Jiemin Li
- Agro‐food Science and Technology Research InstituteGuangxi Academy of Agricultural SciencesNanningChina
- Guangxi Key Laboratory of Fruits and Vegetables Storage‐processing TechnologyNanningChina
| | - Guoming Liu
- Agro‐food Science and Technology Research InstituteGuangxi Academy of Agricultural SciencesNanningChina
| | - Ming Xin
- Agro‐food Science and Technology Research InstituteGuangxi Academy of Agricultural SciencesNanningChina
| | - Zhichun Li
- Agro‐food Science and Technology Research InstituteGuangxi Academy of Agricultural SciencesNanningChina
| | - Yayuan Tang
- Agro‐food Science and Technology Research InstituteGuangxi Academy of Agricultural SciencesNanningChina
| |
Collapse
|
30
|
Kafkaletou M, Fasseas C, Tsantili E. Increased firmness and modified cell wall composition by ethylene were reversed by the ethylene inhibitor 1-methylcyclopropene (1-MCP) in the non-climacteric olives harvested at dark green stage - Possible implementation of ethylene for olive quality. JOURNAL OF PLANT PHYSIOLOGY 2019; 238:63-71. [PMID: 31146183 DOI: 10.1016/j.jplph.2019.05.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 05/14/2019] [Accepted: 05/15/2019] [Indexed: 05/14/2023]
Abstract
This study aimed to investigate the firmness retention by ethylene treatment in olive fruit, as observed earlier. Ethylene concentrations up to 1000 μL L-1 were applied to dark green 'Konservolia' olives harvested shortly before the green maturation and exposed to 20 °C for up to 9 d. Surprisingly, the results indicated a tendency to fruit firmness increases in concentration-dependent manner in a non-climacteric fruit. The highest concentration increased the firmness within 12 h by approximately 1.35-fold, but transiently for approximately up to 5 d; all ethylene inhibitors tested, either of synthesis (ethoxyvinyl glycine or AVG), or perception (1 -methyl-cyclopropene or 1-MCP, and silver nitrate) prevented the firmness increase. Texture was evaluated by firmness and changes in lignin, cellulose (CL), total pectins (TPC), water soluble pectins (WSP) and total non-cellulosic sugars (total sugars) concentrations, and in pectin esterification degree (DE) in the alcohol insoluble residue (AIR) of 'Konservolia' fruit pericarp during 1.5-d, 5-d and 10-d treatments with 1000 μL L-1 ethylene at 20 °C. Pectins in AIR were also extracted sequentially with cyclohexane-trans-1,2-diaminetetra-acetate (CDTA), Na2CO3, 1 M and 4 M KOH. The results showed that on day 1.5, the increased firmness was consistent with increased CL (crystalline formation, as observed by microscopy), total sugars and DE levels, but reduced WSP, whereas softening reversed the changes and lowered TPC and CDTA-soluble pectins in all fruit on day 10. However, on day 5 ethylene-treated olives exhibited a transitional phase during softening, characterized by retention of high TPC concentration and energy demand, as indicated by elevated respiration rates. The inhibitor 1-MCP, applied before ethylene, did inhibit the responses to ethylene treatment. Ethylene firming effect and the respective cell wall changes in olives are demonstrated for first time. The experiments could be used for research on perception and transcription responses to ethylene in olive, a non-climacteric fruit. In practice, high ethylene concentrations could also be beneficial for firmness increase and/or short storage of dark green olives.
Collapse
Affiliation(s)
- Mina Kafkaletou
- Laboratory of Pomology, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, Botanikos, 118 55, Athens, Greece.
| | - Costas Fasseas
- Laboratory of Electron Microscopy, Crop Science, Agricultural University of Athens, Iera Odos 75, Botanikos, 11855, Athens, Greece.
| | - Eleni Tsantili
- Laboratory of Pomology, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, Botanikos, 118 55, Athens, Greece.
| |
Collapse
|
31
|
Houben M, Van de Poel B. 1-Aminocyclopropane-1-Carboxylic Acid Oxidase (ACO): The Enzyme That Makes the Plant Hormone Ethylene. FRONTIERS IN PLANT SCIENCE 2019; 10:695. [PMID: 31191592 PMCID: PMC6549523 DOI: 10.3389/fpls.2019.00695] [Citation(s) in RCA: 184] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 05/09/2019] [Indexed: 05/18/2023]
Abstract
The volatile plant hormone ethylene regulates many plant developmental processes and stress responses. It is therefore crucial that plants can precisely control their ethylene production levels in space and time. The ethylene biosynthesis pathway consists of two dedicated steps. In a first reaction, S-adenosyl-L-methionine (SAM) is converted into 1-aminocyclopropane-1-carboxylic acid (ACC) by ACC-synthase (ACS). In a second reaction, ACC is converted into ethylene by ACC-oxidase (ACO). Initially, it was postulated that ACS is the rate-limiting enzyme of this pathway, directing many studies to unravel the regulation of ACS protein activity, and stability. However, an increasing amount of evidence has been gathered over the years, which shows that ACO is the rate-limiting step in ethylene production during certain dedicated processes. This implies that also the ACO protein family is subjected to a stringent regulation. In this review, we give an overview about the state-of-the-art regarding ACO evolution, functionality and regulation, with an emphasis on the transcriptional, post-transcriptional, and post-translational control. We also highlight the importance of ACO being a prime target for genetic engineering and precision breeding, in order to control plant ethylene production levels.
Collapse
Affiliation(s)
| | - Bram Van de Poel
- Molecular Plant Hormone Physiology Laboratory, Division of Crop Biotechnics, Department of Biosystems, KU Leuven, Leuven, Belgium
| |
Collapse
|
32
|
Affiliation(s)
- Steven G Van Lanen
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
33
|
Vanderstraeten L, Depaepe T, Bertrand S, Van Der Straeten D. The Ethylene Precursor ACC Affects Early Vegetative Development Independently of Ethylene Signaling. FRONTIERS IN PLANT SCIENCE 2019; 10:1591. [PMID: 31867034 PMCID: PMC6908520 DOI: 10.3389/fpls.2019.01591] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 11/13/2019] [Indexed: 05/22/2023]
Abstract
The plant hormone ethylene plays a pivotal role in virtually every aspect of plant development, including vegetative growth, fruit ripening, senescence, and abscission. Moreover, it acts as a primary defense signal during plant stress. Being a volatile, its immediate biosynthetic precursor, 1-aminocyclopropane-1-carboxylic acid, ACC, is generally employed as a tool to provoke ethylene responses. However, several reports propose a role for ACC in parallel or independently of ethylene signaling. In this study, pharmacological experiments with ethylene biosynthesis and signaling inhibitors, 2-aminoisobutyric acid and 1-methylcyclopropene, as well as mutant analyses demonstrate ACC-specific but ethylene-independent growth responses in both dark- and light-grown Arabidopsis seedlings. Detection of ethylene emanation in ethylene-deficient seedlings by means of laser-based photoacoustic spectroscopy further supports a signaling role for ACC. In view of these results, future studies employing ACC as a proxy for ethylene should consider ethylene-independent effects as well. The use of multiple knockout lines of ethylene biosynthesis genes will aid in the elucidation of the physiological roles of ACC as a signaling molecule in addition to its function as an ethylene precursor.
Collapse
|
34
|
Choi J, Eom S, Shin K, Lee RA, Choi S, Lee JH, Lee S, Soh MS. Identification of Lysine Histidine Transporter 2 as an 1-Aminocyclopropane Carboxylic Acid Transporter in Arabidopsis thaliana by Transgenic Complementation Approach. FRONTIERS IN PLANT SCIENCE 2019; 10:1092. [PMID: 31572413 PMCID: PMC6749071 DOI: 10.3389/fpls.2019.01092] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 08/09/2019] [Indexed: 05/17/2023]
Abstract
1-Aminocyclopropane-1-carboxylic acid (ACC), a biosynthetic precursor of ethylene, has long been proposed to act as a mobile messenger in higher plants. However, little is known about the transport system of ACC. Recently, our genetic characterization of an ACC-resistant mutant with normal ethylene sensitivity revealed that lysine histidine transporter 1 (LHT1) functions as a transporter of ACC. As amino acid transporters might have broad substrate specificity, we hypothesized that other amino acid transporters including LHT1 paralogs might have the ACC-transporter activity. Here, we took a gain-of-function approach by transgenic complementation of lht1 mutant with a selected set of amino acid transporters. When we introduced transgene into the lht1 mutant, the transgenic expression of LHT2, but not of LHT3 or amino acid permease 5 (AAP5), restored the ACC resistance phenotype of the lht1 mutant. The result provides genetic evidence that some, if not all, amino acid transporters in Arabidopsis can function as ACC transporters. In support, when expressed in Xenopus laevis oocytes, both LHT1 and LHT2 exhibited ACC-transporting activity, inducing inward current upon addition of ACC. Interestingly, the transgenic expression of LHT2, but not of LHT3 or AAP5, could also suppress the early senescence phenotypes of the lht1 mutant. Taking together, we propose that plants have evolved a multitude of ACC transporters based on amino acid transporters, which would contribute to the differential distribution of ACC under various spatiotemporal contexts.
Collapse
Affiliation(s)
- Jungki Choi
- Division of Integrative Bioscience and Biotechnology, College of Life Science, Sejong University, Seoul, South Korea
| | - Sanung Eom
- Departments of Biotechnology, Chonnam National University, Gwangju, South Korea
| | - Kihye Shin
- Division of Integrative Bioscience and Biotechnology, College of Life Science, Sejong University, Seoul, South Korea
| | - Rin-A Lee
- Division of Integrative Bioscience and Biotechnology, College of Life Science, Sejong University, Seoul, South Korea
| | - Soobin Choi
- Division of Integrative Bioscience and Biotechnology, College of Life Science, Sejong University, Seoul, South Korea
| | - Jun-Ho Lee
- Departments of Biotechnology, Chonnam National University, Gwangju, South Korea
| | - Sumin Lee
- Division of Integrative Bioscience and Biotechnology, College of Life Science, Sejong University, Seoul, South Korea
- *Correspondence: Sumin Lee, ; Moon-Soo Soh,
| | - Moon-Soo Soh
- Division of Integrative Bioscience and Biotechnology, College of Life Science, Sejong University, Seoul, South Korea
- *Correspondence: Sumin Lee, ; Moon-Soo Soh,
| |
Collapse
|
35
|
Jiang K, Asami T. Chemical regulators of plant hormones and their applications in basic research and agriculture*. Biosci Biotechnol Biochem 2018; 82:1265-1300. [DOI: 10.1080/09168451.2018.1462693] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
ABSTRACT
Plant hormones are small molecules that play versatile roles in regulating plant growth, development, and responses to the environment. Classic methodologies, including genetics, analytic chemistry, biochemistry, and molecular biology, have contributed to the progress in plant hormone studies. In addition, chemical regulators of plant hormone functions have been important in such studies. Today, synthetic chemicals, including plant growth regulators, are used to study and manipulate biological systems, collectively referred to as chemical biology. Here, we summarize the available chemical regulators and their contributions to plant hormone studies. We also pose questions that remain to be addressed in plant hormone studies and that might be solved with the help of chemical regulators.
Collapse
Affiliation(s)
- Kai Jiang
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Tadao Asami
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
36
|
Ibort P, Molina S, Ruiz-Lozano JM, Aroca R. Molecular Insights into the Involvement of a Never Ripe Receptor in the Interaction Between Two Beneficial Soil Bacteria and Tomato Plants Under Well-Watered and Drought Conditions. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2018; 31:633-650. [PMID: 29384430 DOI: 10.1094/mpmi-12-17-0292-r] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Management of plant growth-promoting bacteria (PGPB) can be implemented to deal with sustainable intensification of agriculture. Ethylene is an essential component for plant growth and development and in response to drought. However, little is known about the effects of bacterial inoculation on ethylene transduction pathway. Thus, the present study sought to establish whether ethylene perception is critical for growth induction by two different PGPB strains under drought conditions and the analysis of bacterial effects on ethylene production and gene expression in tomatoes (Solanum lycopersicum). The ethylene-insensitive never ripe (nr) and its isogenic wild-type (wt) cv. Pearson line were inoculated with either Bacillus megaterium or Enterobacter sp. strain C7 and grown until the attainment of maturity under both well-watered and drought conditions. Ethylene perception is crucial for B. megaterium. However, it is not of prime importance for Enterobacter sp. strain C7 PGPB activity under drought conditions. Both PGPB decreased the expression of ethylene-related genes in wt plants, resulting in stress alleviation, while only B. megaterium induced their expression in nr plants. Furthermore, PGPB inoculation affected transcriptomic profile dependency on strain, genotype, and drought. Ethylene sensitivity determines plant interaction with PGPB strains. Enterobacter sp. strain C7 could modulate amino-acid metabolism, while nr mutation causes a partially functional interaction with B. megaterium, resulting in higher oxidative stress and loss of PGPB activity.
Collapse
Affiliation(s)
- Pablo Ibort
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín (EEZ-CSIC), Profesor Albareda 1, 18008 Granada, Spain
| | - Sonia Molina
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín (EEZ-CSIC), Profesor Albareda 1, 18008 Granada, Spain
| | - Juan Manuel Ruiz-Lozano
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín (EEZ-CSIC), Profesor Albareda 1, 18008 Granada, Spain
| | - Ricardo Aroca
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín (EEZ-CSIC), Profesor Albareda 1, 18008 Granada, Spain
| |
Collapse
|
37
|
Zhang Z, Huang J, Li X. Transcript analyses of ethylene pathway genes during ripening of Chinese jujube fruit. JOURNAL OF PLANT PHYSIOLOGY 2018; 224-225:1-10. [PMID: 29574324 DOI: 10.1016/j.jplph.2018.03.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 03/09/2018] [Accepted: 03/09/2018] [Indexed: 06/08/2023]
Abstract
The fruit of Chinese jujube (Ziziphus jujuba Mill.) is immensely popular worldwide, while its fleshy fruit has a very short shelf life and suffers serious postharvest damage. The fruit has been controversially classified as non-climacteric, though the mechanisms underlying its ripening behavior, particularly the role of ethylene, have remained unclear. In this study, low and stable ethylene production was detected during ripening of Z. jujuba 'Dongzao' fruit, with production increasing at the full maturity stage. To determine potential ripening behavior, the fruit of five cultivars were harvested at the white mature stage, and all exhibited a first decreasing and then moderately increasing respiration rate without concomitant climacteric-like ethylene production during shelf storage. Treatment with 1.0 μL L-1 1-methylcyclopropene (1-MCP) inhibited respiration and ethylene production in white mature fruit, though the effects of 100 μL L-1 exogenous ethylene were not significant. The transcript levels of genes involved in ethylene biosynthesis, perception, and signal transduction were not elevated during fruit-ripening onset but substantially increased at the full-red ripening stage. Moreover, expression of genes controlling ethylene biosynthesis and perception mainly occurred in an auto-inhibited System-1-like manner, but signaling pathway genes were minimally affected by exogenous ethylene or 1-MCP. These results show that the ripening of Chinese jujube is non-climacteric. The basal level of ethylene likely plays a minor role in ripening regulation but is necessary to maintain normal ripening. This study elucidates the effects of ethylene on jujube fruit ripening, characterizing the ripening of this fruit as non-climacteric, and also provides strategies for the improvement and maintenance of fruit quality and the extension of shelf life during postharvest storage.
Collapse
Affiliation(s)
- Zhong Zhang
- College of Forestry, Northwest A&F University, Yangling 712100, Shaanxi, China; Research Center for Jujube Engineering and Technology of State Forestry Administration, Northwest A&F University, Yangling 712100, Shaanxi, China; Key Comprehensive Laboratory of Forestry of Shaanxi Province, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jian Huang
- College of Forestry, Northwest A&F University, Yangling 712100, Shaanxi, China; Research Center for Jujube Engineering and Technology of State Forestry Administration, Northwest A&F University, Yangling 712100, Shaanxi, China; Key Comprehensive Laboratory of Forestry of Shaanxi Province, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xingang Li
- College of Forestry, Northwest A&F University, Yangling 712100, Shaanxi, China; Research Center for Jujube Engineering and Technology of State Forestry Administration, Northwest A&F University, Yangling 712100, Shaanxi, China; Key Comprehensive Laboratory of Forestry of Shaanxi Province, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
38
|
Ke SW, Chen GH, Chen CT, Tzen JTC, Yang CY. Ethylene signaling modulates contents of catechin and ability of antioxidant in Camellia sinensis. BOTANICAL STUDIES 2018; 59:11. [PMID: 29616373 PMCID: PMC5882471 DOI: 10.1186/s40529-018-0226-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 03/29/2018] [Indexed: 05/19/2023]
Abstract
BACKGROUND Tea is one of the most popular beverages in the world. There are many secondary metabolites can be found in tea such as anthocyanins, proanthocyanidins, flavonols and catechins. These secondary metabolites in plants are proved to act protective components for human health effect. Plant hormone ethylene is considered to have an important role in regulation of plant development and signal transduction. This study evaluated the effect of ethylene signaling regulation in phenolic compounds in tea plants. The ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC) enhanced contents of total catechin in treated oolong tea seedlings. RESULTS The degree of epigallocatechin and epicatechin galloylation was increased after ACC treatment in oolong tea seedlings by high performance liquid chromatography determination. The contents of anthocyanins, flavonoids, and total polyphenol were higher after ACC treatment in comparison with control. Antioxidant enzyme such as catalase, superoxide dismutase, and total peroxidase decreased their antioxidant activities after ACC treatment, yet the activity of ascorbate peroxidase is increased. The ability of oxygen radical absorption and 2,2-diphenyl-1-picrylhydrazyl was used to evaluate the antioxidant activity, which was enhanced by ACC treatment. CONCLUSIONS Taken together the results of this study demonstrate that the ethylene signaling is involved in modulation of secondary metabolites accumulation and antioxidant ability that to enhance the benefit of human health in tea products.
Collapse
Affiliation(s)
- Shun-Wun Ke
- Department of Agronomy, National Chung Hsing University, Taichung, 40227 Taiwan
| | - Guan-Heng Chen
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, 40227 Taiwan
| | - Chung-Tse Chen
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, 40227 Taiwan
| | - Jason T. C. Tzen
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, 40227 Taiwan
| | - Chin-Ying Yang
- Department of Agronomy, National Chung Hsing University, Taichung, 40227 Taiwan
| |
Collapse
|
39
|
Abstract
Plants tightly regulate the biosynthesis of ethylene to control growth and development and respond to a wide range of biotic and abiotic stresses. To understand the molecular mechanism by which plants regulate ethylene biosynthesis as well as to identify stimuli triggering the alteration of ethylene production in plants, it is essential to have a reliable tool with which one can directly measure in vivo ethylene concentration. Gas chromatography is a routine detection technique for separation and analysis of volatile compounds with relatively high sensitivity. Gas chromatography has been widely used to measure the ethylene produced by plants, and has in turn become a valuable tool for ethylene research. Here, we describe a protocol for measuring the ethylene produced by dark-grown Arabidopsis seedlings using a gas chromatograph.
Collapse
Affiliation(s)
- Gyeong Mee Yoon
- Department of Botany and Plant Pathology, Purdue University, 915 West State St., West Lafayette, IN, 47907, USA.
| | - Yi-Chun Chen
- Department of Botany and Plant Pathology, Purdue University, 915 West State St., West Lafayette, IN, 47907, USA
| |
Collapse
|
40
|
Calvo-Polanco M, Ibort P, Molina S, Ruiz-Lozano JM, Zamarreño AM, García-Mina JM, Aroca R. Ethylene sensitivity and relative air humidity regulate root hydraulic properties in tomato plants. PLANTA 2017; 246:987-997. [PMID: 28735369 DOI: 10.1007/s00425-017-2746-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 07/19/2017] [Indexed: 06/07/2023]
Abstract
The effect of ethylene and its precursor ACC on root hydraulic properties, including aquaporin expression and abundance, is modulated by relative air humidity and plant sensitivity to ethylene. Relative air humidity (RH) is a main factor contributing to water balance in plants. Ethylene (ET) is known to be involved in the regulation of root water uptake and stomatal opening although its role on plant water balance under different RH is not very well understood. We studied, at the physiological, hormonal and molecular levels (aquaporins expression, abundance and phosphorylation state), the plant responses to exogenous 1-aminocyclopropane-1-carboxylic acid (ACC; precursor of ET) and 2-aminoisobutyric acid (AIB; inhibitor of ET biosynthesis), after 24 h of application to the roots of tomato wild type (WT) plants and its ET-insensitive never ripe (nr) mutant, at two RH levels: regular (50%) and close to saturation RH. Highest RH induced an increase of root hydraulic conductivity (Lpo) of non-treated WT plants, and the opposite effect in nr mutants. The treatment with ACC reduced Lpo in WT plants at low RH and in nr plants at high RH. The application of AIB increased Lpo only in nr plants at high RH. In untreated plants, the RH treatment changed the abundance and phosphorylation of aquaporins that affected differently both genotypes according to their ET sensitivity. We show that RH is critical in regulating root hydraulic properties, and that Lpo is affected by the plant sensitivity to ET, and possibly to ACC, by regulating aquaporins expression and their phosphorylation status. These results incorporate the relationship between RH and ET in the response of Lpo to environmental changes.
Collapse
Affiliation(s)
- Monica Calvo-Polanco
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín (CSIC), C/Profesor Albareda 1, 18008, Granada, Spain
- SupAgro/INRA UMR 5004, Biochimie et Physiologie Moléculaire des Plantes, 2, Place Viala, 34060, Montpellier Cedex 2, France
| | - Pablo Ibort
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín (CSIC), C/Profesor Albareda 1, 18008, Granada, Spain
| | - Sonia Molina
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín (CSIC), C/Profesor Albareda 1, 18008, Granada, Spain
| | - Juan Manuel Ruiz-Lozano
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín (CSIC), C/Profesor Albareda 1, 18008, Granada, Spain
| | - Angel María Zamarreño
- Department of Environmental Biology, Agricultural Chemistry and Biology Group-CMI Roullier, Faculty of Sciences, University of Navarra, Irunlarrea 1, 31008, Pamplona, Spain
| | - Jose María García-Mina
- Department of Environmental Biology, Agricultural Chemistry and Biology Group-CMI Roullier, Faculty of Sciences, University of Navarra, Irunlarrea 1, 31008, Pamplona, Spain
| | - Ricardo Aroca
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín (CSIC), C/Profesor Albareda 1, 18008, Granada, Spain.
| |
Collapse
|
41
|
Sun X, Li Y, He W, Ji C, Xia P, Wang Y, Du S, Li H, Raikhel N, Xiao J, Guo H. Pyrazinamide and derivatives block ethylene biosynthesis by inhibiting ACC oxidase. Nat Commun 2017; 8:15758. [PMID: 28604689 PMCID: PMC5472784 DOI: 10.1038/ncomms15758] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 04/25/2017] [Indexed: 12/30/2022] Open
Abstract
Ethylene is an important phytohormone that promotes the ripening of fruits and senescence of flowers thereby reducing their shelf lives. Specific ethylene biosynthesis inhibitors would help to decrease postharvest loss. Here, we identify pyrazinamide (PZA), a clinical drug used to treat tuberculosis, as an inhibitor of ethylene biosynthesis in Arabidopsis thaliana, using a chemical genetics approach. PZA is converted to pyrazinecarboxylic acid (POA) in plant cells, suppressing the activity of 1-aminocyclopropane-1-carboxylic acid oxidase (ACO), the enzyme catalysing the final step of ethylene formation. The crystal structures of Arabidopsis ACO2 in complex with POA or 2-Picolinic Acid (2-PA), a POA-related compound, reveal that POA/2-PA bind at the active site of ACO, preventing the enzyme from interacting with its natural substrates. Our work suggests that PZA and its derivatives may be promising regulators of plant metabolism, in particular ethylene biosynthesis.
Collapse
Affiliation(s)
- Xiangzhong Sun
- The State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China.,Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China.,Peking-Tsinghua Center for Life Sciences, Beijing 100871, China.,Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Yaxin Li
- The State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Wenrong He
- The State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China.,Center for Plant Cell Biology, Department of Botany and Plant Sciences, University of California, Riverside, California 92507, USA
| | - Chenggong Ji
- The State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Peixue Xia
- The State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China.,Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China.,Peking-Tsinghua Center for Life Sciences, Beijing 100871, China
| | - Yichuan Wang
- Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Shuo Du
- The State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Hongjiang Li
- The State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China.,Center for Plant Cell Biology, Department of Botany and Plant Sciences, University of California, Riverside, California 92507, USA
| | - Natasha Raikhel
- Center for Plant Cell Biology, Department of Botany and Plant Sciences, University of California, Riverside, California 92507, USA
| | - Junyu Xiao
- The State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China.,Peking-Tsinghua Center for Life Sciences, Beijing 100871, China
| | - Hongwei Guo
- Peking-Tsinghua Center for Life Sciences, Beijing 100871, China.,Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| |
Collapse
|
42
|
Cunha CP, Roberto GG, Vicentini R, Lembke CG, Souza GM, Ribeiro RV, Machado EC, Lagôa AMMA, Menossi M. Ethylene-induced transcriptional and hormonal responses at the onset of sugarcane ripening. Sci Rep 2017; 7:43364. [PMID: 28266527 PMCID: PMC5339719 DOI: 10.1038/srep43364] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 01/23/2017] [Indexed: 12/14/2022] Open
Abstract
The effects of ethephon as a sugarcane ripener are attributed to ethylene. However, the role of this phytohormone at the molecular level is unknown. We performed a transcriptome analysis combined with the evaluation of sucrose metabolism and hormone profiling of sugarcane plants sprayed with ethephon or aminoethoxyvinylglycine (AVG), an ethylene inhibitor, at the onset of ripening. The differential response between ethephon and AVG on sucrose level and sucrose synthase activity in internodes indicates ethylene as a potential regulator of sink strength. The correlation between hormone levels and transcriptional changes suggests ethylene as a trigger of multiple hormone signal cascades, with approximately 18% of differentially expressed genes involved in hormone biosynthesis, metabolism, signalling, and response. A defence response elicited in leaves favoured salicylic acid over the ethylene/jasmonic acid pathway, while the upper internode was prone to respond to ethylene with strong stimuli on ethylene biosynthesis and signalling genes. Besides, ethylene acted synergistically with abscisic acid, another ripening factor, and antagonistically with gibberellin and auxin. We identified potential ethylene target genes and characterized the hormonal status during ripening, providing insights into the action of ethylene at the site of sucrose accumulation. A molecular model of ethylene interplay with other hormones is proposed.
Collapse
Affiliation(s)
- Camila P. Cunha
- Departamento de Genética, Evolução e Bioagentes, Instituto de Biologia, Universidade Estadual de Campinas, 13083-862, Campinas, Brasil
| | - Guilherme G. Roberto
- Centro de Ecofisiologia e Biofísica, Instituto Agronômico de Campinas, 13001-970, Campinas, Brasil
| | - Renato Vicentini
- Departamento de Genética, Evolução e Bioagentes, Instituto de Biologia, Universidade Estadual de Campinas, 13083-862, Campinas, Brasil
| | - Carolina G. Lembke
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, 05508-000, São Paulo, Brasil
| | - Glaucia M. Souza
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, 05508-000, São Paulo, Brasil
| | - Rafael V. Ribeiro
- Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas, 13083-862, Campinas, Brasil
| | - Eduardo C. Machado
- Centro de Ecofisiologia e Biofísica, Instituto Agronômico de Campinas, 13001-970, Campinas, Brasil
| | - Ana M. M. A. Lagôa
- Centro de Ecofisiologia e Biofísica, Instituto Agronômico de Campinas, 13001-970, Campinas, Brasil
| | - Marcelo Menossi
- Departamento de Genética, Evolução e Bioagentes, Instituto de Biologia, Universidade Estadual de Campinas, 13083-862, Campinas, Brasil
| |
Collapse
|
43
|
Vanderstraeten L, Van Der Straeten D. Accumulation and Transport of 1-Aminocyclopropane-1-Carboxylic Acid (ACC) in Plants: Current Status, Considerations for Future Research and Agronomic Applications. FRONTIERS IN PLANT SCIENCE 2017; 8:38. [PMID: 28174583 PMCID: PMC5258695 DOI: 10.3389/fpls.2017.00038] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 01/09/2017] [Indexed: 05/18/2023]
Abstract
1-aminocyclopropane-1-carboxylic acid (ACC) is a non-protein amino acid acting as the direct precursor of ethylene, a plant hormone regulating a wide variety of vegetative and developmental processes. ACC is the central molecule of ethylene biosynthesis. The rate of ACC formation differs in response to developmental, hormonal and environmental cues. ACC can be conjugated to three derivatives, metabolized in planta or by rhizobacteria using ACC deaminase, and is transported throughout the plant over short and long distances, remotely leading to ethylene responses. This review highlights some recent advances related to ACC. These include the regulation of ACC synthesis, conjugation and deamination, evidence for a role of ACC as an ethylene-independent signal, short and long range ACC transport, and the identification of a first ACC transporter. Although unraveling the complex mechanism of ACC transport is in its infancy, new questions emerge together with the identification of a first transporter. In the light of the future quest for additional ACC transporters, this review presents perspectives of the novel findings and includes considerations for future research toward applications in agronomy.
Collapse
|
44
|
Yang L, Hu G, Li N, Habib S, Huang W, Li Z. Functional Characterization of SlSAHH2 in Tomato Fruit Ripening. FRONTIERS IN PLANT SCIENCE 2017; 8:1312. [PMID: 28798762 PMCID: PMC5526918 DOI: 10.3389/fpls.2017.01312] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 07/12/2017] [Indexed: 05/05/2023]
Abstract
S-adenosylhomocysteine hydrolase (SAHH) functions as an enzyme catalyzing the reversible hydrolysis of S-adenosylhomocysteine to homocysteine and adenosine. In the present work we have investigated its role in the ripening process of tomato fruit. Among the three SlSAHH genes we demonstrated that SlSAHH2 was highly accumulated during fruit ripening and strongly responded to ethylene treatment. Over-expression of SlSAHH2 enhanced SAHH enzymatic activity in tomato fruit development and ripening stages and resulted in a major phenotypic change of reduced ripening time from anthesis to breaker. Consistent with this, the content of lycopene was higher in SlSAHH2 over-expression lines than in wild-type at the same developmental stage. The expression of two ethylene inducible genes (E4 and E8) and three ethylene biosynthesis genes (SlACO1, SlACO3 and SlACS2) increased to a higher level in SlSAHH2 over-expression lines at breaker stage, and one transgenic line even produced much more ethylene than wild-type. Although inconsistency in gene expression and ethylene production existed between the two transgenic lines, the transcriptional changes of several important ripening regulators such as RIN, AP2a, TAGL1, CNR and NOR showed a consistent pattern. It was speculated that the influence of SlSAHH2 on ethylene production was downstream of the regulation of SlSAHH2 on these ripening regulator genes. The over-expressing lines displayed higher sensitivity to ethylene in both fruit and non-fruit tissues. Ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC) treatment accelerated ripening faster in SlSAHH2 over-expressing fruit than in wild-type. Additionally, seedlings of transgenic lines displayed shorter hypocotyls and roots in ethylene triple response assay. In conclusion, SlSAHH2 played an important role in tomato fruit ripening.
Collapse
|
45
|
Bekele EA, Beshir WF, Hertog MLATM, Nicolai BM, Geeraerd AH. Metabolic profiling reveals ethylene mediated metabolic changes and a coordinated adaptive mechanism of 'Jonagold' apple to low oxygen stress. PHYSIOLOGIA PLANTARUM 2015; 155:232-47. [PMID: 26031836 DOI: 10.1111/ppl.12351] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 03/30/2015] [Accepted: 05/06/2015] [Indexed: 05/14/2023]
Abstract
Apples are predominantly stored in controlled atmosphere (CA) storage to delay ripening and prolong their storage life. Profiling the dynamics of metabolic changes during ripening and CA storage is vital for understanding the governing molecular mechanism. In this study, the dynamics of the primary metabolism of 'Jonagold' apples during ripening in regular air (RA) storage and initiation of CA storage was profiled. 1-Methylcyclopropene (1-MCP) was exploited to block ethylene receptors and to get insight into ethylene mediated metabolic changes during ripening of the fruit and in response to hypoxic stress. Metabolic changes were quantified in glycolysis, the tricarboxylic acid (TCA) cycle, the Yang cycle and synthesis of the main amino acids branching from these metabolic pathways. Partial least square discriminant analysis of the metabolic profiles of 1-MCP treated and control apples revealed a metabolic divergence in ethylene, organic acid, sugar and amino acid metabolism. During RA storage at 18°C, most amino acids were higher in 1-MCP treated apples, whereas 1-aminocyclopropane-1-carboxylic acid (ACC) was higher in the control apples. The initial response of the fruit to CA initiation was accompanied by an increase of alanine, succinate and glutamate, but a decline in aspartate. Furthermore, alanine and succinate accumulated to higher levels in control apples than 1-MCP treated apples. The observed metabolic changes in these interlinked metabolites may indicate a coordinated adaptive strategy to maximize energy production.
Collapse
Affiliation(s)
- Elias A Bekele
- Department of Biosystems (BIOSYST), Division of Mechatronics, Biostatistics and Sensors (MeBioS), KU Leuven, Willem de Croylaan 42, bus 2428, 3001, Leuven, Belgium
| | - Wasiye F Beshir
- Department of Biosystems (BIOSYST), Division of Mechatronics, Biostatistics and Sensors (MeBioS), KU Leuven, Willem de Croylaan 42, bus 2428, 3001, Leuven, Belgium
| | - Maarten L A T M Hertog
- Department of Biosystems (BIOSYST), Division of Mechatronics, Biostatistics and Sensors (MeBioS), KU Leuven, Willem de Croylaan 42, bus 2428, 3001, Leuven, Belgium
| | - Bart M Nicolai
- Department of Biosystems (BIOSYST), Division of Mechatronics, Biostatistics and Sensors (MeBioS), KU Leuven, Willem de Croylaan 42, bus 2428, 3001, Leuven, Belgium
| | - Annemie H Geeraerd
- Department of Biosystems (BIOSYST), Division of Mechatronics, Biostatistics and Sensors (MeBioS), KU Leuven, Willem de Croylaan 42, bus 2428, 3001, Leuven, Belgium
| |
Collapse
|
46
|
Yoon GM. New Insights into the Protein Turnover Regulation in Ethylene Biosynthesis. Mol Cells 2015; 38:597-603. [PMID: 26095506 PMCID: PMC4507024 DOI: 10.14348/molcells.2015.0152] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 06/08/2015] [Indexed: 11/30/2022] Open
Abstract
Biosynthesis of the phytohormone ethylene is under tight regulation to satisfy the need for appropriate levels of ethylene in plants in response to exogenous and endogenous stimuli. The enzyme 1-aminocyclopropane-1-carboxylic acid synthase (ACS), which catalyzes the rate-limiting step of ethylene biosynthesis, plays a central role to regulate ethylene production through changes in ACS gene expression levels and the activity of the enzyme. Together with molecular genetic studies suggesting the roles of post-translational modification of the ACS, newly emerging evidence strongly suggests that the regulation of ACS protein stability is an alternative mechanism that controls ethylene production, in addition to the transcriptional regulation of ACS genes. In this review, recent new insight into the regulation of ACS protein turnover is highlighted, with a special focus on the roles of phosphorylation, ubiquitination, and novel components that regulate the turnover of ACS proteins. The prospect of cross-talk between ethylene biosynthesis and other signaling pathways to control turnover of the ACS protein is also considered.
Collapse
Affiliation(s)
- Gyeong Mee Yoon
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana 47907,
USA
| |
Collapse
|
47
|
Khan MA, Meng Y, Liu D, Tang H, Lü S, Imtiaz M, Jiang G, Lü P, Ji Y, Gao J, Ma N. Responses of rose RhACS1 and RhACS2 promoters to abiotic stresses in transgenic Arabidopsis thaliana. PLANT CELL REPORTS 2015; 34:795-804. [PMID: 25596927 DOI: 10.1007/s00299-015-1742-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2014] [Revised: 12/23/2014] [Accepted: 01/06/2015] [Indexed: 06/04/2023]
Abstract
Promoter activities of RhACS1 and RhACS2 , two rose genes involved in ethylene biosynthesis, are highly sensitive to various abiotic stresses in an organ-specific manner. Our previous studies indicated that two rose (Rosa hybrida) 1-aminocyclopropane-1-carboxylic acid synthase genes, RhACS1 and RhACS2, play a role in dehydration-induced ethylene production and inhibition of cell expansion in rose petals. Here, both RhACS1 and RhACS2 promoters were analyzed using histochemical staining and glucuronidase synthase (GUS) gene reporter activity assays following their introduction into transgenic Arabidopsis thaliana plants. It was found that the promoter activities of both genes were strong throughout the course of development from young seedlings to mature flowering plants in various organs, including hypocotyls, cotyledons, leaves, roots and lateral roots. RhACS1 promoter activity was induced by drought in both rosette leaves and roots of transgenic A. thaliana lines, but was reduced following a re-hydration treatment. In contrast, RhACS2 promoter activity was decreased by drought in rosette leaves, while its response pattern was similar to that of RhACS1 in roots. A mannitol treatment induced the activity of both the RhACS1 and RhACS2 promoters, indicating that both genes are also regulated by osmotic stress. In addition, RhACS2 appeared to be abscisic acid (ABA)-inducible, while RhACS1 was less sensitive to ABA. Finally, four truncated sequences of the RhACS1 promoter were generated and GUS activity assays demonstrated that deleting a 327 bp region between bp 862 and -535 resulted in a substantial decrease of the promoter activity. Taken together, our results suggest that the RhACS1 and RhACS2 promoters respond to abiotic stresses in a developmentally regulated and spatially specific manner.
Collapse
Affiliation(s)
- Muhammad Ali Khan
- Department of Ornamental Horticulture, China Agricultural University, Beijing, 100193, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Bharti N, Bhatla SC. Nitric oxide mediates strigolactone signaling in auxin and ethylene-sensitive lateral root formation in sunflower seedlings. PLANT SIGNALING & BEHAVIOR 2015; 10:e1054087. [PMID: 26076049 PMCID: PMC4622609 DOI: 10.1080/15592324.2015.1054087] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Strigolactones (SLs) play significant role in shaping root architecture whereby auxin-SL crosstalk has been observed in SL-mediated responses of primary root elongation, lateral root formation and adventitious root (AR) initiation. Whereas GR24 (a synthetic strigolactone) inhibits LR and AR formation, the effect of SL biosynthesis inhibitor (fluridone) is just the opposite (root proliferation). Naphthylphthalamic acid (NPA) leads to LR proliferation but completely inhibits AR development. The diffusive distribution of PIN1 in the provascular cells in the differentiating zone of the roots in response to GR24, fluridone or NPA treatments further indicates the involvement of localized auxin accumulation in LR development responses. Inhibition of LR formation by GR24 treatment coincides with inhibition of ACC synthase activity. Profuse LR development by fluridone and NPA treatments correlates with enhanced [Ca(2+)]cyt in the apical region and differentiating zones of LR, indicating a critical role of [Ca(2+)] in LR development in response to the coordinated action of auxins, ethylene and SLs. Significant enhancement of carotenoid cleavage dioxygenase (CCD) activity (enzyme responsible for SL biosynthesis) in tissue homogenates in presence of cPTIO (NO scavenger) indicates the role of endogenous NO as a negative modulator of CCD activity. Differences in the spatial distribution of NO in the primary and lateral roots further highlight the involvement of NO in SL-modulated root morphogenesis in sunflower seedlings. Present work provides new report on the negative modulation of SL biosynthesis through modulation of CCD activity by endogenous nitric oxide during SL-modulated LR development.
Collapse
Affiliation(s)
- Niharika Bharti
- Laboratory of Plant Physiology and Biochemistry; Department of Botany; University of Delhi; Delhi, India
- Correspondence to: Niharika Bharti; ; Satish C Bhatla;
| | - Satish C Bhatla
- Laboratory of Plant Physiology and Biochemistry; Department of Botany; University of Delhi; Delhi, India
- Correspondence to: Niharika Bharti; ; Satish C Bhatla;
| |
Collapse
|
49
|
Roux Y, Ghattas W, Avenier F, Guillot R, Simaan AJ, Mahy JP. Synthesis and characterization of [Fe(BPMEN)ACC]SbF6: a structural and functional mimic of ACC-oxidase. Dalton Trans 2015; 44:5966-8. [DOI: 10.1039/c5dt00347d] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Miming plants: an original synthesis led to the preparation of the first model of the active site of the ethylene-forming enzyme ACC-oxidase. The prepared complex is a structural and a functional model as it reacts with hydrogen peroxide to produce the phytohormone ethylene.
Collapse
Affiliation(s)
- Y. Roux
- Institut de Chimie Moléculaire et des Matériaux d'Orsay
- Université Paris Sud
- Orsay 91405 CEDEX
- France
| | - W. Ghattas
- Institut de Chimie Moléculaire et des Matériaux d'Orsay
- Université Paris Sud
- Orsay 91405 CEDEX
- France
| | - F. Avenier
- Institut de Chimie Moléculaire et des Matériaux d'Orsay
- Université Paris Sud
- Orsay 91405 CEDEX
- France
| | - R. Guillot
- Institut de Chimie Moléculaire et des Matériaux d'Orsay
- Université Paris Sud
- Orsay 91405 CEDEX
- France
| | - A. J. Simaan
- Aix Marseille Université
- Centrale Marseille
- 13397, Marseille
- France
| | - J.-P. Mahy
- Institut de Chimie Moléculaire et des Matériaux d'Orsay
- Université Paris Sud
- Orsay 91405 CEDEX
- France
| |
Collapse
|
50
|
Lada RR, MacDonald MT. Understanding the Physiology of Postharvest Needle Abscission in Balsam Fir. FRONTIERS IN PLANT SCIENCE 2015; 6:1069. [PMID: 26635863 PMCID: PMC4660873 DOI: 10.3389/fpls.2015.01069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 11/16/2015] [Indexed: 05/12/2023]
Abstract
Balsam fir (Abies balsamea) trees are commonly used as a specialty horticultural species for Christmas trees and associated greenery in eastern Canada and United States. Postharvest needle abscission has always been a problem, but is becoming an even bigger challenge in recent years presumably due to increased autumn temperatures and earlier harvesting practices. An increased understanding of postharvest abscission physiology in balsam fir may benefit the Christmas tree industry while simultaneously advancing our knowledge in senescence and abscission of conifers in general. Our paper describes the dynamics of needle abscission in balsam fir while identifying key factors that modify abscission patterns. Concepts such as genotypic abscission resistance, nutrition, environmental factors, and postharvest changes in water conductance and hormone evolution are discussed as they relate to our understanding of the balsam fir abscission physiology. Our paper ultimately proposes a pathway for needle abscission via ethylene and also suggests other potential alternative pathways based on our current understanding.
Collapse
|