1
|
Xue M, Irshad Z, Rabbani N, Thornalley PJ. Increased cellular protein modification by methylglyoxal activates endoplasmic reticulum-based sensors of the unfolded protein response. Redox Biol 2024; 69:103025. [PMID: 38199038 PMCID: PMC10821617 DOI: 10.1016/j.redox.2024.103025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 12/30/2023] [Accepted: 01/01/2024] [Indexed: 01/12/2024] Open
Abstract
The unfolded protein response (UPR) detects increased misfolded proteins and activates protein refolding, protein degradation and inflammatory responses. UPR sensors in the endoplasmic reticulum, IRE1α and PERK, bind and are activated by proteins with unexpected surface hydrophobicity, whereas sensor ATF6 is activated by proteolytic cleavage when released from complexation with protein disulfide isomerases (PDIs). Metabolic dysfunction leading to the formation of misfolded proteins with surface hydrophobicity and disruption of ATF6-PDI complexes leading to activation of UPR sensors remains unclear. The cellular concentration of reactive dicarbonyl metabolite, methylglyoxal (MG), is increased in impaired metabolic health, producing increased MG-modified cellular proteins. Herein we assessed the effect of high glucose concentration and related increased cellular MG on activation status of IRE1α, PERK and ATF6. Human aortal endothelial cells and HMEC-1 microvascular endothelial cells were incubated in low and high glucose concentration to model blood glucose control, with increase or decrease of MG by silencing or increasing expression of glyoxalase 1 (Glo1), which metabolizes MG. Increased MG induced by high glucose concentration activated IRE1α, PERK and ATF6 and related downstream signalling leading to increased chaperone, apoptotic and inflammatory gene expression. Correction of increased MG by increasing Glo1 expression prevented UPR activation. MG modification of proteins produces surface hydrophobicity through arginine-derived hydroimidazolone MG-H1 formation, with related protein unfolding and preferentially targets PDIs and chaperone pathways for modification. It thereby poses a major challenge to proteostasis and activates UPR sensors. Pharmacological decrease of MG with Glo1 inducer, trans-resveratrol and hesperetin in combination, offers a novel treatment strategy to counter UPR-related cell dysfunction, particularly in hyperglycemia associated with diabetes.
Collapse
Affiliation(s)
- Mingzhan Xue
- Diabetes Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University (HBKU), Qatar Foundation, P.O. Box 34110, Doha, Qatar
| | - Zehra Irshad
- Clinical Sciences Research Laboratories, Warwick Medical School, University of Warwick, University Hospital, Coventry, CV2 2DX, UK
| | - Naila Rabbani
- Department of Basic Medical Science, College of Medicine, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Paul J Thornalley
- Diabetes Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University (HBKU), Qatar Foundation, P.O. Box 34110, Doha, Qatar; Clinical Sciences Research Laboratories, Warwick Medical School, University of Warwick, University Hospital, Coventry, CV2 2DX, UK; College of Health and Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, P.O. Box 34110, Doha, Qatar.
| |
Collapse
|
2
|
Zeng Q, Yang T, Wei W, Zou D, Wei Y, Han F, He J, Huang J, Guo R. Association between GLO1 variants and gestational diabetes mellitus susceptibility in a Chinese population: a preliminary study. Front Endocrinol (Lausanne) 2023; 14:1235581. [PMID: 38027126 PMCID: PMC10656739 DOI: 10.3389/fendo.2023.1235581] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 10/06/2023] [Indexed: 12/01/2023] Open
Abstract
Background Glyoxalase 1 (GLO1) plays a crucial role in defending against glycation. Single nucleotide polymorphism (SNP) variants in the GLO1 gene may affect gene expression and alter enzyme activity. However, there have been limited studies evaluating the association between GLO1 and diabetes, especially gestational diabetes mellitus (GDM). Therefore, this study is the first to explore the association of GLO1 SNPs and GDM risk. Methods The study included a total of 500 GDM patients and 502 control subjects. The SNPscan™ genotyping assay was used to genotype rs1781735, rs4746 and rs1130534. To assess the disparities in genotype, allele, and haplotype distributions and their correlation with GDM risk, the independent sample t-test, logistic regression, and chi-square test were employed during the data processing phase. Furthermore, one-way ANOVA was conducted to determine the differences in genotype and blood glucose and methylglyoxal(MG) levels. Results Significant differences were observed in prepregnancy body mass index (pre-BMI), age, systolic blood pressure (SBP), diastolic blood pressure (DBP), and parity between GDM and healthy subjects (P < 0.05). After adjusting for these factors, GLO1 rs1130534 TA remained associated with an increased risk of GDM (TA vs. TT + AA: OR = 1.320; 95% CI: 1.008-1.728; P = 0.044), especially in the pre-BMI ≥ 24 subgroup (TA vs. TT + AA: OR = 2.424; 95% CI: 1.048-5.607; P = 0.039), with fasting glucose levels being significantly elevated in the TA genotype compared to the TT genotype (P < 0.05). Conversely, the GLO1 rs4746 TG was associated with a decreased risk of GDM (TG vs. TT: OR = 0.740; 95% CI: 0.548-0.999; P = 0.049; TG vs. TT + GG: OR = 0.740; 95% CI: 0.548-0.998; P = 0.048). Additionally, the haplotype T-G-T of rs1781735, rs4746 and rs1130534 was associated with a decreased risk of GDM among individuals with a pre-BMI ≥ 24 (OR = 0.423; 95% CI: 0.188-0.955; P = 0.038). Furthermore, the rs1781735 GG genotype was found to be more closely related to maternal MG accumulation and neonatal weight gain (P < 0.05). Conclusion Our findings suggested that GLO1 rs1130534 was associated with an increased susceptibility to GDM and higher blood glucose levels, but GLO1 rs4746 was associated with a decreased risk of GDM. The rs1781735 has been associated with the accumulation of maternal MG and subsequent weight gain in neonates.
Collapse
Affiliation(s)
- Qiaoli Zeng
- Department of Internal Medicine, Shunde Women and Children’s Hospital (Maternity and Child Healthcare Hospital of Shunde Foshan), Guangdong Medical University, Foshan, Guangdong, China
- Key Laboratory of Research in Maternal and Child Medicine and Birth Defects, Guangdong Medical University, Foshan, Guangdong, China
- Maternal and Child Research Institute, Shunde Women and Children’s Hospital (Maternity and Child Healthcare Hospital of Shunde Foshan), Guangdong Medical University, Foshan, Guangdong, China
| | - Taili Yang
- Department of Internal Medicine, Shunde Women and Children’s Hospital (Maternity and Child Healthcare Hospital of Shunde Foshan), Guangdong Medical University, Foshan, Guangdong, China
- Key Laboratory of Research in Maternal and Child Medicine and Birth Defects, Guangdong Medical University, Foshan, Guangdong, China
| | - Wenfeng Wei
- Department of Internal Medicine, Shunde Women and Children’s Hospital (Maternity and Child Healthcare Hospital of Shunde Foshan), Guangdong Medical University, Foshan, Guangdong, China
| | - Dehua Zou
- State Key Laboratory of Quality Research in Chinese Medicine, School of Pharmacy, Macau University of Science and Technology, Taipa, Macao, Macao SAR, China
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, Guangdong, China
| | - Yue Wei
- Department of Ultrasound, Shunde Women and Children’s Hospital (Maternity and Child Healthcare Hospital of Shunde Foshan), Guangdong Medical University, Foshan, Guangdong, China
- Department of Ultrasound, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Fengqiong Han
- Department of Obstetric, Shunde Women and Children’s Hospital (Maternity and Child Healthcare Hospital of Shunde Foshan), Guangdong Medical University, Foshan, Guangdong, China
| | - Jieyun He
- Department of Obstetric, Shunde Women and Children’s Hospital (Maternity and Child Healthcare Hospital of Shunde Foshan), Guangdong Medical University, Foshan, Guangdong, China
| | - Jinzhi Huang
- Key Laboratory of Research in Maternal and Child Medicine and Birth Defects, Guangdong Medical University, Foshan, Guangdong, China
- Department of Gynecology, Shunde Women and Children’s Hospital (Maternity and Child Healthcare Hospital of Shunde Foshan), Guangdong Medical University, Foshan, Guangdong, China
| | - Runmin Guo
- Department of Internal Medicine, Shunde Women and Children’s Hospital (Maternity and Child Healthcare Hospital of Shunde Foshan), Guangdong Medical University, Foshan, Guangdong, China
- Key Laboratory of Research in Maternal and Child Medicine and Birth Defects, Guangdong Medical University, Foshan, Guangdong, China
- Maternal and Child Research Institute, Shunde Women and Children’s Hospital (Maternity and Child Healthcare Hospital of Shunde Foshan), Guangdong Medical University, Foshan, Guangdong, China
- Department of Endocrinology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| |
Collapse
|
3
|
Soccio M, Marangi M, Laus MN. Genome-Wide Expression Analysis of Glyoxalase I Genes Under Hyperosmotic Stress and Existence of a Stress-Responsive Mitochondrial Glyoxalase I Activity in Durum Wheat ( Triticum durum Desf.). FRONTIERS IN PLANT SCIENCE 2022; 13:934523. [PMID: 35832233 PMCID: PMC9272005 DOI: 10.3389/fpls.2022.934523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 06/08/2022] [Indexed: 06/18/2023]
Abstract
Glyoxalase I (GLYI) catalyzes the rate-limiting step of the glyoxalase pathway that, in the presence of GSH, detoxifies the cytotoxic molecule methylglyoxal (MG) into the non-toxic D-lactate. In plants, MG levels rise under various abiotic stresses, so GLYI may play a crucial role in providing stress tolerance. In this study, a comprehensive genome database analysis was performed in durum wheat (Triticum durum Desf.), identifying 27 candidate GLYI genes (TdGLYI). However, further analyses of phylogenetic relationships and conserved GLYI binding sites indicated that only nine genes encode for putative functionally active TdGLYI enzymes, whose distribution was predicted in three different subcellular compartments, namely cytoplasm, plastids and mitochondria. Expression profile by qRT-PCR analysis revealed that most of the putative active TdGLYI genes were up-regulated by salt and osmotic stress in roots and shoots from 4-day-old seedlings, although a different behavior was observed between the two types of stress and tissue. Accordingly, in the same tissues, hyperosmotic stress induced an increase (up to about 40%) of both GLYI activity and MG content as well as a decrease of GSH (up to about -60%) and an increase of GSSG content (up to about 7-fold) with a consequent strong decrease of the GSH/GSSG ratio (up to about -95%). Interestingly, in this study, we reported the first demonstration of the existence of GLYI activity in highly purified mitochondrial fraction. In particular, GLYI activity was measured in mitochondria from durum wheat (DWM), showing hyperbolic kinetics with Km and Vmax values equal to 92 ± 0.2 μM and 0.519 ± 0.004 μmol min-1 mg-1 of proteins, respectively. DWM-GLYI resulted inhibited in a competitive manner by GSH (Ki = 6.5 ± 0.7 mM), activated by Zn2+ and increased, up to about 35 and 55%, under salt and osmotic stress, respectively. In the whole, this study provides basis about the physiological significance of GLYI in durum wheat, by highlighting the role of this enzyme in the early response of seedlings to hyperosmotic stress. Finally, our results strongly suggest the existence of a complete mitochondrial GLYI pathway in durum wheat actively involved in MG detoxification under hyperosmotic stress.
Collapse
Affiliation(s)
- Mario Soccio
- Department of Agriculture, Food, Natural resources and Engineering, University of Foggia, Foggia, Italy
| | - Marianna Marangi
- Department of Clinic and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Maura N. Laus
- Department of Agriculture, Food, Natural resources and Engineering, University of Foggia, Foggia, Italy
| |
Collapse
|
4
|
Usami M, Ando K, Shibuya A, Takasawa R, Yokoyama H. Crystal structures of human glyoxalase I and its complex with TLSC702 reveal inhibitor binding mode and substrate preference. FEBS Lett 2022; 596:1458-1467. [PMID: 35363883 DOI: 10.1002/1873-3468.14344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/25/2022] [Accepted: 03/25/2022] [Indexed: 11/11/2022]
Abstract
Human glyoxalase I (hGLO I) is an enzyme for detoxification of methylglyoxal (MG), and has been considered an attractive target for the development of new anti-cancer drugs. In our previous report, the GLO I inhibitor TLSC702 induced apoptosis in tumor cells. Here, we determined the crystal structures of hGLO I and its complex with TLSC702. In the complex, the carboxy O atom of TLSC702 is coordinated to Zn2+ , and TLSC702 mainly shows van der Waals interaction with hydrophobic residues. In the inhibitor-unbound structure, glycerol, which has similar functional groups to MG, was bound to Zn2+ , indicating that GLO I can easily bind to MG. This study provides a structural basis to develop better anticancer drugs.
Collapse
Affiliation(s)
- Midori Usami
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Koki Ando
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Asuka Shibuya
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Ryoko Takasawa
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Hideshi Yokoyama
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| |
Collapse
|
5
|
Emerging Glycation-Based Therapeutics-Glyoxalase 1 Inducers and Glyoxalase 1 Inhibitors. Int J Mol Sci 2022; 23:ijms23052453. [PMID: 35269594 PMCID: PMC8910005 DOI: 10.3390/ijms23052453] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 02/15/2022] [Accepted: 02/17/2022] [Indexed: 12/13/2022] Open
Abstract
The abnormal accumulation of methylglyoxal (MG) leading to increased glycation of protein and DNA has emerged as an important metabolic stress, dicarbonyl stress, linked to aging, and disease. Increased MG glycation produces inactivation and misfolding of proteins, cell dysfunction, activation of the unfolded protein response, and related low-grade inflammation. Glycation of DNA and the spliceosome contribute to an antiproliferative and apoptotic response of high, cytotoxic levels of MG. Glyoxalase 1 (Glo1) of the glyoxalase system has a major role in the metabolism of MG. Small molecule inducers of Glo1, Glo1 inducers, have been developed to alleviate dicarbonyl stress as a prospective treatment for the prevention and early-stage reversal of type 2 diabetes and prevention of vascular complications of diabetes. The first clinical trial with the Glo1 inducer, trans-resveratrol and hesperetin combination (tRES-HESP)-a randomized, double-blind, placebo-controlled crossover phase 2A study for correction of insulin resistance in overweight and obese subjects, was completed successfully. tRES-HESP corrected insulin resistance, improved dysglycemia, and low-grade inflammation. Cell permeable Glo1 inhibitor prodrugs have been developed to induce severe dicarbonyl stress as a prospective treatment for cancer-particularly for high Glo1 expressing-related multidrug-resistant tumors. The prototype Glo1 inhibitor is prodrug S-p-bromobenzylglutathione cyclopentyl diester (BBGD). It has antitumor activity in vitro and in tumor-bearing mice in vivo. In the National Cancer Institute human tumor cell line screen, BBGD was most active against the glioblastoma SNB-19 cell line. Recently, potent antitumor activity was found in glioblastoma multiforme tumor-bearing mice. High Glo1 expression is a negative survival factor in chemotherapy of breast cancer where adjunct therapy with a Glo1 inhibitor may improve treatment outcomes. BBGD has not yet been evaluated clinically. Glycation by MG now appears to be a pathogenic process that may be pharmacologically manipulated for therapeutic outcomes of potentially important clinical impact.
Collapse
|
6
|
Hernandez-Castillo C, Shuck SC. Diet and Obesity-Induced Methylglyoxal Production and Links to Metabolic Disease. Chem Res Toxicol 2021; 34:2424-2440. [PMID: 34851609 DOI: 10.1021/acs.chemrestox.1c00221] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The obesity rate in the United States is 42.4% and has become a national epidemic. Obesity is a complex condition that is influenced by socioeconomic status, ethnicity, genetics, age, and diet. Increased consumption of a Western diet, one that is high in processed foods, red meat, and sugar content, is associated with elevated obesity rates. Factors that increase obesity risk, such as socioeconomic status, also increase consumption of a Western diet because of a limited access to healthier options and greater affordability of processed foods. Obesity is a public health threat because it increases the risk of several pathologies, including atherosclerosis, diabetes, and cancer. The molecular mechanisms linking obesity to disease onset and progression are not well understood, but a proposed mechanism is physiological changes caused by altered lipid peroxidation, glycolysis, and protein metabolism. These metabolic pathways give rise to reactive molecules such as the abundant electrophile methylglyoxal (MG), which covalently modifies nucleic acids and proteins. MG-adducts are associated with obesity-linked pathologies and may have potential for biomonitoring to determine the risk of disease onset and progression. MG-adducts may also play a role in disease progression because they are mutagenic and directly impact protein stability and function. In this review, we discuss how obesity drives metabolic alterations, how these alterations lead to MG production, the association of MG-adducts with disease, and the potential impact of MG-adducts on cellular function.
Collapse
Affiliation(s)
- Carlos Hernandez-Castillo
- Department of Diabetes and Cancer Metabolism, Beckman Research Institute of City of Hope, Duarte, California 91010, United States
| | - Sarah C Shuck
- Department of Diabetes and Cancer Metabolism, Beckman Research Institute of City of Hope, Duarte, California 91010, United States
| |
Collapse
|
7
|
Ahmad K, Shaikh S, Lee EJ, Lee YH, Choi I. Consequences of Dicarbonyl Stress on Skeletal Muscle Proteins in Type 2 Diabetes. Curr Protein Pept Sci 2021; 21:878-889. [PMID: 31746292 DOI: 10.2174/1389203720666191119100759] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 05/27/2019] [Accepted: 10/22/2019] [Indexed: 12/15/2022]
Abstract
Skeletal muscle is the largest organ in the body and constitutes almost 40% of body mass. It is also the primary site of insulin-mediated glucose uptake, and skeletal muscle insulin resistance, that is, diminished response to insulin, is characteristic of Type 2 diabetes (T2DM). One of the foremost reasons posited to explain the etiology of T2DM involves the modification of proteins by dicarbonyl stress due to an unbalanced metabolism and accumulations of dicarbonyl metabolites. The elevated concentration of dicarbonyl metabolites (i.e., glyoxal, methylglyoxal, 3-deoxyglucosone) leads to DNA and protein modifications, causing cell/tissue dysfunctions in several metabolic diseases such as T2DM and other age-associated diseases. In this review, we recapitulated reported effects of dicarbonyl stress on skeletal muscle and associated extracellular proteins with emphasis on the impact of T2DM on skeletal muscle and provided a brief introduction to the prevention/inhibition of dicarbonyl stress.
Collapse
Affiliation(s)
- Khurshid Ahmad
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, 38541, Korea
| | - Sibhghatulla Shaikh
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, 38541, Korea
| | - Eun Ju Lee
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, 38541, Korea
| | - Yong-Ho Lee
- Department of Biomedical Sciences, Daegu Catholic University, Gyeongsan, 38430, Korea
| | - Inho Choi
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, 38541, Korea
| |
Collapse
|
8
|
Saeed M, Kausar MA, Singh R, Siddiqui AJ, Akhter A. The Role of Glyoxalase in Glycation and Carbonyl Stress Induced Metabolic Disorders. Curr Protein Pept Sci 2021; 21:846-859. [PMID: 32368974 DOI: 10.2174/1389203721666200505101734] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 06/09/2019] [Accepted: 12/08/2019] [Indexed: 12/14/2022]
Abstract
Glycation refers to the covalent binding of sugar molecules to macromolecules, such as DNA, proteins, and lipids in a non-enzymatic reaction, resulting in the formation of irreversibly bound products known as advanced glycation end products (AGEs). AGEs are synthesized in high amounts both in pathological conditions, such as diabetes and under physiological conditions resulting in aging. The body's anti-glycation defense mechanisms play a critical role in removing glycated products. However, if this defense system fails, AGEs start accumulating, which results in pathological conditions. Studies have been shown that increased accumulation of AGEs acts as key mediators in multiple diseases, such as diabetes, obesity, arthritis, cancer, atherosclerosis, decreased skin elasticity, male erectile dysfunction, pulmonary fibrosis, aging, and Alzheimer's disease. Furthermore, glycation of nucleotides, proteins, and phospholipids by α-oxoaldehyde metabolites, such as glyoxal (GO) and methylglyoxal (MGO), causes potential damage to the genome, proteome, and lipidome. Glyoxalase-1 (GLO-1) acts as a part of the anti-glycation defense system by carrying out detoxification of GO and MGO. It has been demonstrated that GLO-1 protects dicarbonyl modifications of the proteome and lipidome, thereby impeding the cell signaling and affecting age-related diseases. Its relationship with detoxification and anti-glycation defense is well established. Glycation of proteins by MGO and GO results in protein misfolding, thereby affecting their structure and function. These findings provide evidence for the rationale that the functional modulation of the GLO pathway could be used as a potential therapeutic target. In the present review, we summarized the newly emerged literature on the GLO pathway, including enzymes regulating the process. In addition, we described small bioactive molecules with the potential to modulate the GLO pathway, thereby providing a basis for the development of new treatment strategies against age-related complications.
Collapse
Affiliation(s)
- Mohd Saeed
- Department of Biology, College of Sciences, University of Hail, Hail, Saudi Arabia
| | - Mohd Adnan Kausar
- Department of Biochemistry, College of Medicine, University of Hail, Hail, Saudi Arabia
| | - Rajeev Singh
- Department of Environmental Studies, Sataywati College, Delhi University, Delhi, India
| | - Arif J Siddiqui
- Department of Biology, College of Sciences, University of Hail, Hail, Saudi Arabia
| | - Asma Akhter
- Department of Biosciences, Integral University, Lucknow, Uttar Pradesh 226026, India
| |
Collapse
|
9
|
Kosmachevskaya OV, Novikova NN, Topunov AF. Carbonyl Stress in Red Blood Cells and Hemoglobin. Antioxidants (Basel) 2021; 10:253. [PMID: 33562243 PMCID: PMC7914924 DOI: 10.3390/antiox10020253] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 12/13/2022] Open
Abstract
The paper overviews the peculiarities of carbonyl stress in nucleus-free mammal red blood cells (RBCs). Some functional features of RBCs make them exceptionally susceptible to reactive carbonyl compounds (RCC) from both blood plasma and the intracellular environment. In the first case, these compounds arise from the increased concentrations of glucose or ketone bodies in blood plasma, and in the second-from a misbalance in the glycolysis regulation. RBCs are normally exposed to RCC-methylglyoxal (MG), triglycerides-in blood plasma of diabetes patients. MG modifies lipoproteins and membrane proteins of RBCs and endothelial cells both on its own and with reactive oxygen species (ROS). Together, these phenomena may lead to arterial hypertension, atherosclerosis, hemolytic anemia, vascular occlusion, local ischemia, and hypercoagulation phenotype formation. ROS, reactive nitrogen species (RNS), and RCC might also damage hemoglobin (Hb), the most common protein in the RBC cytoplasm. It was Hb with which non-enzymatic glycation was first shown in living systems under physiological conditions. Glycated HbA1c is used as a very reliable and useful diagnostic marker. Studying the impacts of MG, ROS, and RNS on the physiological state of RBCs and Hb is of undisputed importance for basic and applied science.
Collapse
Affiliation(s)
- Olga V. Kosmachevskaya
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia;
| | | | - Alexey F. Topunov
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia;
| |
Collapse
|
10
|
He Y, Zhou C, Huang M, Tang C, Liu X, Yue Y, Diao Q, Zheng Z, Liu D. Glyoxalase system: A systematic review of its biological activity, related-diseases, screening methods and small molecule regulators. Biomed Pharmacother 2020; 131:110663. [DOI: 10.1016/j.biopha.2020.110663] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/18/2020] [Accepted: 08/20/2020] [Indexed: 12/27/2022] Open
|
11
|
Al-Motawa MS, Abbas H, Wijten P, de la Fuente A, Xue M, Rabbani N, Thornalley PJ. Vulnerabilities of the SARS-CoV-2 Virus to Proteotoxicity-Opportunity for Repurposed Chemotherapy of COVID-19 Infection. Front Pharmacol 2020; 11:585408. [PMID: 33162891 PMCID: PMC7581855 DOI: 10.3389/fphar.2020.585408] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 09/14/2020] [Indexed: 01/06/2023] Open
Abstract
The global pandemic of COVID-19 disease caused by infection with the SARS-CoV-2 coronavirus, has produced an urgent requirement and search for improved treatments while effective vaccines are developed. A strategy for improved drug therapy is to increase levels of endogenous reactive metabolites for selective toxicity to SARS-CoV-2 by preferential damage to the viral proteome. Key reactive metabolites producing major quantitative damage to the proteome in physiological systems are: reactive oxygen species (ROS) and the reactive glycating agent methylglyoxal (MG); cysteine residues and arginine residues are their most susceptible targets, respectively. From sequenced-based prediction of the SARS-CoV-2 proteome, we found 0.8-fold enrichment or depletion of cysteine residues in functional domains of the viral proteome; whereas there was a 4.6-fold enrichment of arginine residues, suggesting SARS-CoV-2 is resistant to oxidative agents and sensitive to MG. For arginine residues of the SARS-CoV-2 coronavirus predicted to be in functional domains, we examined which are activated toward modification by MG - residues with predicted or expected low pKa by neighboring group in interactions. We found 25 such arginine residues, including 2 in the spike protein and 10 in the nucleoprotein. These sites were partially conserved in related coronaviridae: SARS-CoV and MERS. Finally, we identified drugs which increase cellular MG concentration to virucidal levels: antitumor drugs with historical antiviral activity, doxorubicin and paclitaxel. Our findings provide evidence of potential vulnerability of SARS-CoV-2 to inactivation by MG and a scientific rationale for repurposing of doxorubicin and paclitaxel for treatment of COVID-19 disease, providing efficacy and adequate therapeutic index may be established.
Collapse
Affiliation(s)
- Maryam S. Al-Motawa
- College of Health and Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
- Diabetes Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Hafsa Abbas
- Clinical Sciences Research Laboratories, Warwick Medical School, University of Warwick, University Hospital, Coventry, United Kingdom
| | - Patrick Wijten
- Diabetes Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Alberto de la Fuente
- Diabetes Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Mingzhan Xue
- Diabetes Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
- Clinical Sciences Research Laboratories, Warwick Medical School, University of Warwick, University Hospital, Coventry, United Kingdom
| | - Naila Rabbani
- Department of Basic Medical Science, College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Paul J. Thornalley
- College of Health and Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
- Diabetes Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
- Clinical Sciences Research Laboratories, Warwick Medical School, University of Warwick, University Hospital, Coventry, United Kingdom
| |
Collapse
|
12
|
Activation of the unfolded protein response in high glucose treated endothelial cells is mediated by methylglyoxal. Sci Rep 2019; 9:7889. [PMID: 31133647 PMCID: PMC6536510 DOI: 10.1038/s41598-019-44358-1] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 11/21/2018] [Indexed: 12/31/2022] Open
Abstract
Metabolic dysfunction of endothelial cells in hyperglycemia contributes to the development of vascular complications of diabetes where increased reactive glycating agent, methylglyoxal (MG), is involved. We assessed if increased MG glycation induced proteotoxic stress, identifying related metabolic drivers and protein targets. Human aortal endothelial cells (HAECs) were incubated in high glucose concentration (20 mM versus 5 mM control) in vitro for 3–6 days. Flux of glucose metabolism, MG formation and glycation and changes in cytosolic protein abundances, MG modification and proteotoxic responses were assessed. Similar studies were performed with human microvascular endothelial HMEC-1 cells where similar outcomes were observed. HAECs exposed to high glucose concentration showed increased cellular concentration of MG (2.27 ± 0.21 versus 1.28 ± 0.03 pmol/106 cells, P < 0.01) and formation of MG-modified proteins (24.0 ± 3.7 versus 14.1 ± 3.2 pmol/106 cells/day; P < 0.001). In proteomics analysis, high glucose concentration increased proteins of the heat shock response – indicating activation of the unfolded protein response (UPR) with downstream inflammatory and pro-thrombotic responses. Proteins susceptible to MG modification were enriched in protein folding, protein synthesis, serine/threonine kinase signalling, glycolysis and gluconeogenesis. MG was increased in high glucose by increased flux of MG formation linked to increased glucose metabolism mediated by proteolytic stabilisation and increase of hexokinase-2 (HK-2); later potentiated by proteolytic down regulation of glyoxalase 1 (Glo1) - the major enzyme of MG metabolism. Silencing of Glo1, selectively increasing MG, activated the UPR similarly. Silencing of HK-2 prevented increased glucose metabolism and MG formation. trans-Resveratrol and hesperetin combination (tRES-HESP) corrected increased MG and glucose metabolism by increasing expression of Glo1 and decreasing expression of HK-2. Increased MG glycation activates the UPR in endothelial cells and thereby may contribute to endothelial cell dysfunction in diabetic vascular disease where tRES-HESP may provide effective therapy.
Collapse
|
13
|
Mey JT, Haus JM. Dicarbonyl Stress and Glyoxalase-1 in Skeletal Muscle: Implications for Insulin Resistance and Type 2 Diabetes. Front Cardiovasc Med 2018; 5:117. [PMID: 30250846 PMCID: PMC6139330 DOI: 10.3389/fcvm.2018.00117] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 08/09/2018] [Indexed: 01/01/2023] Open
Abstract
Glyoxalase-1 (GLO1) is a ubiquitously expressed cytosolic protein which plays a role in the natural maintenance of cellular health and is abundantly expressed in human skeletal muscle. A consequence of reduced GLO1 protein expression is cellular dicarbonyl stress, which is elevated in obesity, insulin resistance and type 2 diabetes (T2DM). Both in vitro and pre-clinical models suggest dicarbonyl stress per se induces insulin resistance and is prevented by GLO1 overexpression, implicating a potential role for GLO1 therapy in insulin resistance and type 2 diabetes (T2DM). Recent work has identified the therapeutic potential of novel natural agents as a GLO1 inducer, which resulted in improved whole-body metabolism in obese adults. Given skeletal muscle is a major contributor to whole-body glucose, lipid, and protein metabolism, such GLO1 inducers may act, in part, through mechanisms in skeletal muscle. Currently, investigations examining the specificity of dicarbonyl stress and GLO1 biology in human skeletal muscle are lacking. Recent work from our lab indicates that dysregulation of GLO1 in skeletal muscle may underlie human insulin resistance and that exercise training may impart therapeutic benefits. This minireview will summarize the existing human literature examining skeletal muscle GLO1 and highlight the emerging therapeutic concepts for GLO1 gain-of-function in conditions such as insulin resistance and cardiometabolic disease.
Collapse
Affiliation(s)
- Jacob T Mey
- Department of Pathobiology, Cleveland Clinic, Cleveland, OH, United States
| | - Jacob M Haus
- School of Kinesiology, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
14
|
Xue M, Shafie A, Qaiser T, Rajpoot NM, Kaltsas G, James S, Gopalakrishnan K, Fisk A, Dimitriadis GK, Grammatopoulos DK, Rabbani N, Thornalley PJ, Weickert MO. Glyoxalase 1 copy number variation in patients with well differentiated gastro-entero-pancreatic neuroendocrine tumours (GEP-NET). Oncotarget 2017; 8:76961-76973. [PMID: 29100361 PMCID: PMC5652755 DOI: 10.18632/oncotarget.20290] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 06/27/2017] [Indexed: 11/25/2022] Open
Abstract
Background The glyoxalase-1 gene (GLO1) is a hotspot for copy-number variation (CNV) in human genomes. Increased GLO1 copy-number is associated with multidrug resistance in tumour chemotherapy, but prevalence of GLO1 CNV in gastro-entero-pancreatic neuroendocrine tumours (GEP-NET) is unknown. Methods GLO1 copy-number variation was measured in 39 patients with GEP-NET (midgut NET, n = 25; pancreatic NET, n = 14) after curative or debulking surgical treatment. Primary tumour tissue, surrounding healthy tissue and, where applicable, additional metastatic tumour tissue were analysed, using real time qPCR. Progression and survival following surgical treatment were monitored over 4.2 ± 0.5 years. Results In the pooled GEP-NET cohort, GLO1 copy-number in healthy tissue was 2.0 in all samples but significantly increased in primary tumour tissue in 43% of patients with pancreatic NET and in 72% of patients with midgut NET, mainly driven by significantly higher GLO1 copy-number in midgut NET. In tissue from additional metastases resection (18 midgut NET and one pancreatic NET), GLO1 copy number was also increased, compared with healthy tissue; but was not significantly different compared with primary tumour tissue. During mean 3 - 5 years follow-up, 8 patients died and 16 patients showed radiological progression. In midgut NET, a high GLO1 copy-number was associated with earlier progression. In NETs with increased GLO1 copy number, there was increased Glo1 protein expression compared to non-malignant tissue. Conclusions GLO1 copy-number was increased in a large percentage of patients with GEP-NET and correlated positively with increased Glo1 protein in tumour tissue. Analysis of GLO1 copy-number variation particularly in patients with midgut NET could be a novel prognostic marker for tumour progression.
Collapse
Affiliation(s)
- Mingzhan Xue
- Division of Translational Medicine, Clinical Sciences Research Laboratories, Warwick Medical School, University of Warwick, University Hospital, Coventry, U.K
| | - Alaa Shafie
- Division of Translational Medicine, Clinical Sciences Research Laboratories, Warwick Medical School, University of Warwick, University Hospital, Coventry, U.K.,Faculty of Applied Medical Sciences, Taif University, Taif, Kingdom of Saudi Arabia
| | - Talha Qaiser
- Department of Computer Sciences, University of Warwick, Coventry, U.K
| | - Nasir M Rajpoot
- Department of Computer Sciences, University of Warwick, Coventry, U.K
| | - Gregory Kaltsas
- University Hospitals Coventry & Warwickshire NHS Trust, The ARDEN NET Centre, ENETS CoE, Coventry, U.K
| | - Sean James
- University Hospitals Coventry & Warwickshire NHS Trust, The ARDEN NET Centre, ENETS CoE, Coventry, U.K
| | - Kishore Gopalakrishnan
- University Hospitals Coventry & Warwickshire NHS Trust, The ARDEN NET Centre, ENETS CoE, Coventry, U.K
| | - Adrian Fisk
- University Hospitals Coventry & Warwickshire NHS Trust, The ARDEN NET Centre, ENETS CoE, Coventry, U.K
| | - Georgios K Dimitriadis
- Division of Translational Medicine, Clinical Sciences Research Laboratories, Warwick Medical School, University of Warwick, University Hospital, Coventry, U.K.,University Hospitals Coventry & Warwickshire NHS Trust, The ARDEN NET Centre, ENETS CoE, Coventry, U.K.,Coventry University, Centre for Applied Biological & Exercise Sciences, Coventry, U.K
| | - Dimitris K Grammatopoulos
- Division of Translational Medicine, Clinical Sciences Research Laboratories, Warwick Medical School, University of Warwick, University Hospital, Coventry, U.K.,University Hospitals Coventry & Warwickshire NHS Trust, The ARDEN NET Centre, ENETS CoE, Coventry, U.K
| | - Naila Rabbani
- Division of Translational Medicine, Clinical Sciences Research Laboratories, Warwick Medical School, University of Warwick, University Hospital, Coventry, U.K.,Warwick Systems Biology Centre, Senate House, University of Warwick, Coventry, U.K
| | - Paul J Thornalley
- Division of Translational Medicine, Clinical Sciences Research Laboratories, Warwick Medical School, University of Warwick, University Hospital, Coventry, U.K.,Warwick Systems Biology Centre, Senate House, University of Warwick, Coventry, U.K
| | - Martin O Weickert
- Division of Translational Medicine, Clinical Sciences Research Laboratories, Warwick Medical School, University of Warwick, University Hospital, Coventry, U.K.,University Hospitals Coventry & Warwickshire NHS Trust, The ARDEN NET Centre, ENETS CoE, Coventry, U.K.,Coventry University, Centre for Applied Biological & Exercise Sciences, Coventry, U.K
| |
Collapse
|
15
|
Methylglyoxal-induced dicarbonyl stress in aging and disease: first steps towards glyoxalase 1-based treatments. Clin Sci (Lond) 2017; 130:1677-96. [PMID: 27555612 DOI: 10.1042/cs20160025] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 06/03/2016] [Indexed: 12/20/2022]
Abstract
Dicarbonyl stress is the abnormal accumulation of dicarbonyl metabolites leading to increased protein and DNA modification contributing to cell and tissue dysfunction in aging and disease. It is produced by increased formation and/or decreased metabolism of dicarbonyl metabolites. MG (methylglyoxal) is a dicarbonyl metabolite of relatively high flux of formation and precursor of the most quantitatively and functionally important spontaneous modifications of protein and DNA clinically. Major MG-derived adducts are arginine-derived hydroimidazolones of protein and deoxyguanosine-derived imidazopurinones of DNA. These are formed non-oxidatively. The glyoxalase system provides an efficient and essential basal and stress-response-inducible enzymatic defence against dicarbonyl stress by the reduced glutathione-dependent metabolism of methylglyoxal by glyoxalase 1. The GLO1 gene encoding glyoxalase 1 has low prevalence duplication and high prevalence amplification in some tumours. Dicarbonyl stress contributes to aging, disease and activity of cytotoxic chemotherapeutic agents. It is found at a low, moderate and severe level in obesity, diabetes and renal failure respectively, where it contributes to the development of metabolic and vascular complications. Increased glyoxalase 1 expression confers multidrug resistance to cancer chemotherapy and has relatively high prevalence in liver, lung and breast cancers. Studies of dicarbonyl stress are providing improved understanding of aging and disease and the basis for rational design of novel pharmaceuticals: glyoxalase 1 inducers for obesity, diabetes and cardiovascular disease and glyoxalase 1 inhibitors for multidrug-resistant tumours. The first clinical trial of a glyoxalase 1 inducer in overweight and obese subjects showed improved glycaemic control, insulin resistance and vascular function.
Collapse
|
16
|
Rabbani N, Xue M, Weickert MO, Thornalley PJ. Multiple roles of glyoxalase 1-mediated suppression of methylglyoxal glycation in cancer biology-Involvement in tumour suppression, tumour growth, multidrug resistance and target for chemotherapy. Semin Cancer Biol 2017; 49:83-93. [PMID: 28506645 DOI: 10.1016/j.semcancer.2017.05.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 04/19/2017] [Accepted: 05/09/2017] [Indexed: 12/16/2022]
Abstract
Glyoxalase 1 (Glo1) is part of the glyoxalase system in the cytoplasm of all human cells. It catalyses the glutathione-dependent removal of the endogenous reactive dicarbonyl metabolite, methylglyoxal (MG). MG is formed mainly as a side product of anaerobic glycolysis. It modifies protein and DNA to form mainly hydroimidazolone MG-H1 and imidazopurinone MGdG adducts, respectively. Abnormal accumulation of MG, dicarbonyl stress, increases adduct levels which may induce apoptosis and replication catastrophe. In the non-malignant state, Glo1 is a tumour suppressor protein and small molecule inducers of Glo1 expression may find use in cancer prevention. Increased Glo1 expression is permissive for growth of tumours with high glycolytic activity and is thereby a biomarker of tumour growth. High Glo1 expression is a cause of multi-drug resistance. It is produced by over-activation of the Nrf2 pathway and GLO1 amplification. Glo1 inhibitors are antitumour agents, inducing apoptosis and necrosis, and anoikis. Tumour stem cells and tumours with high flux of MG formation and Glo1 expression are sensitive to Glo1 inhibitor therapy. It is likely that MG-induced cell death contributes to the mechanism of action of current antitumour agents. Common refractory tumours have high prevalence of Glo1 overexpression for which Glo1 inhibitors may improve therapy.
Collapse
Affiliation(s)
- Naila Rabbani
- Clinical Sciences Research Laboratories, Warwick Medical School, University of Warwick, University Hospitals, Coventry CV2 2DX, UK; Warwick Systems Biology Centre, Senate House, University of Warwick, Coventry CV4 7AL, UK
| | - Mingzhan Xue
- Clinical Sciences Research Laboratories, Warwick Medical School, University of Warwick, University Hospitals, Coventry CV2 2DX, UK
| | - Martin O Weickert
- Clinical Sciences Research Laboratories, Warwick Medical School, University of Warwick, University Hospitals, Coventry CV2 2DX, UK; The ARDEN NET Centre, ENETS Centre of Excellence, University Hospitals Coventry & Warwickshire NHS Trust CV2 2DX, UK
| | - Paul J Thornalley
- Clinical Sciences Research Laboratories, Warwick Medical School, University of Warwick, University Hospitals, Coventry CV2 2DX, UK; Warwick Systems Biology Centre, Senate House, University of Warwick, Coventry CV4 7AL, UK.
| |
Collapse
|
17
|
Abstract
MG (methylglyoxal) is a potent glycating agent and an endogenous reactive dicarbonyl metabolite formed in all live cells and organisms. It is an important precursor of AGEs (advanced glycation end-products) and is implicated in aging and disease. MG is assayed by derivatization by 1,2-diaminobenzene derivatives in cell extracts. Such assays are not applicable to high sample throughput, subcellular, live-cell and in vivo estimations. The use of fluorogenic probes designed for NO (nitric oxide) detection in biological samples and living cells has inadvertently provided probes for the detection of dicarbonyls such as MG. We describe the application of DAF-2 (4,5-diaminofluorescein) and DAR-1 (4,5-diaminorhodamine) for the detection of MG in cell-free systems and application for high-throughput assay of glyoxalase activity and assay of glucose degradation products in peritoneal dialysis fluids. DAF-2 and DAR-1, as for related BODIPY probes, do not have sufficient sensitivity to detect MG in live cells. Care will also be required to control for NO and dehydroascorbate co-detection and interference from peroxidase catalysing the degradation of probes to MG and glyoxal. Fluorogenic detection of MG, however, has great potential to facilitate the assay of MG and to advance towards that capability of imaging this product in live cells in vitro and small animals in vivo.
Collapse
|
18
|
Abstract
Molecular, catalytic and structural properties of glyoxalase pathway enzymes of many species are now known. Current research has focused on the regulation of activity and expression of Glo1 (glyoxalase I) and Glo2 (glyoxalase II) and their role in health and disease. Human GLO1 has MRE (metal-response element), IRE (insulin-response element), E2F4 (early gene 2 factor isoform 4), AP-2α (activating enhancer-binding protein 2α) and ARE (antioxidant response-element) regulatory elements and is a hotspot for copy number variation. The human Glo2 gene, HAGH (hydroxyacylglutathione hydrolase), has a regulatory p53-response element. Glo1 is linked to healthy aging, obesity, diabetes and diabetic complications, chronic renal disease, cardiovascular disease, other disorders and multidrug resistance in cancer chemotherapy. Mathematical modelling of the glyoxalase pathway predicts that pharmacological levels of increased Glo1 activity markedly decrease cellular methylglyoxal and related glycation, and pharmacological Glo1 inhibition markedly increases cellular methylglyoxal and related glycation. Glo1 inducers are in development to sustain healthy aging and for treatment of vascular complications of diabetes and other disorders, and cell-permeant Glo1 inhibitors are in development for treatment of multidrug-resistant tumours, malaria and potentially pathogenic bacteria and fungi.
Collapse
|
19
|
Škrha J, Muravská A, Flekač M, Horová E, Novák J, Novotný A, Prázný M, Škrha J, Kvasnička J, Landová L, Jáchymová M, Zima T, Kalousová M. Fructosamine 3-kinase and glyoxalase I polymorphisms and their association with soluble RAGE and adhesion molecules in diabetes. Physiol Res 2015; 63:S283-91. [PMID: 24908234 DOI: 10.33549/physiolres.932790] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Advanced glycation end-products (AGEs) are key players in pathogenesis of long-term vascular diabetes complications. Several enzymes such as fructosamine 3-kinase (FN3K) and glyoxalase I (GLO I) are crucial in preventing glycation processes. The aim of our study was to evaluate an association of FN3K (rs1056534, rs3848403) and GLO1 rs4746 polymorphisms with parameters of endothelial dysfunction and soluble receptor for AGEs (sRAGE) in 595 diabetic and non-diabetic subjects. Genotypic and allelic frequencies of mentioned polymorphisms did not differ between subgroups. In diabetic patients significant differences were observed in sRAGE concentrations according to their rs1056534 and rs3848403 genotype. While GG and CG genotypes of rs1056534 with mutated G allele were associated with significant decrease of sRAGE (GG: 1055+/-458 and CG: 983+/-363 vs. CC: 1796+/-987 ng/l, p<0.0001), in rs3848403 polymorphism TT genotype with mutated T allele was related with significant sRAGE increase (TT: 1365+/-852 vs. CT: 1016+/-401 and CC: 1087+/-508 ng/l, p=0.05). Significant differences in adhesion molecules were observed in genotype subgroups of GLO1 rs4746 polymorphism. In conclusion, this is the first study describing significant relationship of FN3K (rs1056534) and (rs3848403) polymorphisms with concentration of sRAGE in patients with diabetes.
Collapse
Affiliation(s)
- J Škrha
- Third Department of Internal Medicine, First Faculty of Medicine, Charles University in Prague and General University Hospital, Prague, Czech Republic.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
The glyoxalase system is an important component of the enzymatic defence against glycation, preventing particularly quantitatively and functionally important glycation of protein and DNA by methylglyoxal. Expression of genes encoding Glo1 (glyoxalase I) and Glo2 (glyoxalase II) may be induced or suppressed, and rates of proteolysis of Glo1 and Glo2 proteins may change in health and disease. Quantitative assessment of glyoxalase gene expression at the mRNA and protein levels has become a key part of glyoxalase system characterization. For mRNA, there is the common technique of real-time RT (reverse transcription)–PCR and direct quantification of mRNA copy number by the Nanostring™ method. For glyoxalase protein quantification, there is the commonly used Western blotting, and also immunoassay and, in proteome-wide studies, quantitative proteomics and proteome dynamics. We provide protocols for the common methods below and briefly review their application.
Collapse
|
21
|
Abstract
The discovery of the enzymatic formation of lactic acid from methylglyoxal dates back to 1913 and was believed to be associated with one enzyme termed ketonaldehydemutase or glyoxalase, the latter designation prevailed. However, in 1951 it was shown that two enzymes were needed and that glutathione was the required catalytic co-factor. The concept of a metabolic pathway defined by two enzymes emerged at this time. Its association to detoxification and anti-glycation defence are its presently accepted roles, since methylglyoxal exerts irreversible effects on protein structure and function, associated with misfolding. This functional defence role has been the rationale behind the possible use of the glyoxalase pathway as a therapeutic target, since its inhibition might lead to an increased methylglyoxal concentration and cellular damage. However, metabolic pathway analysis showed that glyoxalase effects on methylglyoxal concentration are likely to be negligible and several organisms, from mammals to yeast and protozoan parasites, show no phenotype in the absence of one or both glyoxalase enzymes. The aim of the present review is to show the evolution of thought regarding the glyoxalase pathway since its discovery 100 years ago, the current knowledge on the glyoxalase enzymes and their recognized role in the control of glycation processes.
Collapse
|
22
|
Deponte M. Glutathione catalysis and the reaction mechanisms of glutathione-dependent enzymes. Biochim Biophys Acta Gen Subj 2013; 1830:3217-66. [DOI: 10.1016/j.bbagen.2012.09.018] [Citation(s) in RCA: 625] [Impact Index Per Article: 56.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Accepted: 09/25/2012] [Indexed: 12/12/2022]
|
23
|
Lee C, Shin J, Park C. Novel regulatory systemnemRA-gloAfor electrophile reduction inEscherichia coli K-12. Mol Microbiol 2013; 88:395-412. [DOI: 10.1111/mmi.12192] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/20/2013] [Indexed: 01/05/2023]
Affiliation(s)
- Changhan Lee
- Department of Biological Sciences; Korea Advanced Institute of Science and Technology; Yuseong-gu; Daejeon; 305-701; Korea
| | - Jongcheol Shin
- Department of Biological Sciences; Korea Advanced Institute of Science and Technology; Yuseong-gu; Daejeon; 305-701; Korea
| | - Chankyu Park
- Department of Biological Sciences; Korea Advanced Institute of Science and Technology; Yuseong-gu; Daejeon; 305-701; Korea
| |
Collapse
|
24
|
Transcriptional control of glyoxalase 1 by Nrf2 provides a stress-responsive defence against dicarbonyl glycation. Biochem J 2012; 443:213-22. [PMID: 22188542 DOI: 10.1042/bj20111648] [Citation(s) in RCA: 234] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Abnormal cellular accumulation of the dicarbonyl metabolite MG (methylglyoxal) occurs on exposure to high glucose concentrations, inflammation, cell aging and senescence. It is associated with increased MG-adduct content of protein and DNA linked to increased DNA strand breaks and mutagenesis, mitochondrial dysfunction and ROS (reactive oxygen species) formation and cell detachment from the extracellular matrix. MG-mediated damage is countered by glutathione-dependent metabolism by Glo1 (glyoxalase 1). It is not known, however, whether Glo1 has stress-responsive up-regulation to counter periods of high MG concentration or dicarbonyl stress. We identified a functional ARE (antioxidant-response element) in the 5'-untranslated region of exon 1 of the mammalian Glo1 gene. Transcription factor Nrf2 (nuclear factor-erythroid 2 p45 subunit-related factor 2) binds to this ARE, increasing basal and inducible expression of Glo1. Activators of Nrf2 induced increased Glo1 mRNA, protein and activity. Increased expression of Glo1 decreased cellular and extracellular concentrations of MG, MG-derived protein adducts, mutagenesis and cell detachment. Hepatic, brain, heart, kidney and lung Glo1 mRNA and protein were decreased in Nrf2-/- mice, and urinary excretion of MG protein and nucleotide adducts were increased approximately 2-fold. We conclude that dicarbonyl stress is countered by up-regulation of Glo1 in the Nrf2 stress-responsive system, protecting protein and DNA from increased damage and preserving cell function.
Collapse
|
25
|
Distler MG, Plant LD, Sokoloff G, Hawk AJ, Aneas I, Wuenschell GE, Termini J, Meredith SC, Nobrega MA, Palmer AA. Glyoxalase 1 increases anxiety by reducing GABAA receptor agonist methylglyoxal. J Clin Invest 2012; 122:2306-15. [PMID: 22585572 DOI: 10.1172/jci61319] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Accepted: 04/04/2012] [Indexed: 12/11/2022] Open
Abstract
Glyoxalase 1 (Glo1) expression has previously been associated with anxiety in mice; however, its role in anxiety is controversial, and the underlying mechanism is unknown. Here, we demonstrate that GLO1 increases anxiety by reducing levels of methylglyoxal (MG), a GABAA receptor agonist. Mice overexpressing Glo1 on a Tg bacterial artificial chromosome displayed increased anxiety-like behavior and reduced brain MG concentrations. Treatment with low doses of MG reduced anxiety-like behavior, while higher doses caused locomotor depression, ataxia, and hypothermia, which are characteristic effects of GABAA receptor activation. Consistent with these data, we found that physiological concentrations of MG selectively activated GABAA receptors in primary neurons. These data indicate that GLO1 increases anxiety by reducing levels of MG, thereby decreasing GABAA receptor activation. More broadly, our findings potentially link metabolic state, neuronal inhibitory tone, and behavior. Finally, we demonstrated that pharmacological inhibition of GLO1 reduced anxiety, suggesting that GLO1 is a possible target for the treatment of anxiety disorders.
Collapse
Affiliation(s)
- Margaret G Distler
- Department of Pathology, University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Urscher M, Alisch R, Deponte M. The glyoxalase system of malaria parasites—Implications for cell biology and general glyoxalase research. Semin Cell Dev Biol 2011; 22:262-70. [DOI: 10.1016/j.semcdb.2011.02.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Accepted: 02/02/2011] [Indexed: 12/14/2022]
|
27
|
Glyoxalase in tumourigenesis and multidrug resistance. Semin Cell Dev Biol 2011; 22:318-25. [PMID: 21315826 DOI: 10.1016/j.semcdb.2011.02.006] [Citation(s) in RCA: 133] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2011] [Revised: 02/02/2011] [Accepted: 02/04/2011] [Indexed: 01/29/2023]
Abstract
Since the discovery by Warburg of high aerobic glycolysis in most tumours in the 1920s, it has remained unclear how to exploit this in chemotherapy. The aim of this review is to assess the evidence for the involvement of the glyoxalase system in tumour growth and multidrug resistance and the importance of the glyoxalase system as a target for anticancer drug development and a source of biomarkers for tumour diagnosis. Increased expression of glyoxalase 1 appears to support the viability of tumour cells with high glycolytic rates. Multidrug resistance conferred by overexpression of glyoxalase 1 suggests mechanisms of toxicity of most current antitumour agents involve, in some part, accumulation of methylglyoxal to cytotoxic levels. The recent finding of glyoxalase 1 gene amplification in tumours and induction of increased glyoxalase 1 expression by malignant transformation and conventional antitumour drug treatment implies a critical role of glyoxalase 1 in innate and acquired multidrug resistance in cancer treatment. Improved understanding of glyoxalase 1 in cancer chemotherapy multidrug resistance is likely vital to achieve improvement of cancer patient survival rates. Advances made to counter glyoxalase 1-linked multidrug resistance with glyoxalase 1 inhibitors and related prodrugs has been translated from in vitro to pre-clinical in vivo studies. Further research is required urgently for next stage clinical translation. Finally, overexpression of glyoxalase 1 may be linked to multidrug resistance in chemotherapy of other disease - such as microbial infections.
Collapse
|
28
|
Baba SP, Barski OA, Ahmed Y, O'Toole TE, Conklin DJ, Bhatnagar A, Srivastava S. Reductive metabolism of AGE precursors: a metabolic route for preventing AGE accumulation in cardiovascular tissue. Diabetes 2009; 58:2486-97. [PMID: 19651811 PMCID: PMC2768164 DOI: 10.2337/db09-0375] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE To examine the role of aldo-keto reductases (AKRs) in the cardiovascular metabolism of the precursors of advanced glycation end products (AGEs). RESEARCH DESIGN AND METHODS Steady-state kinetic parameters of AKRs with AGE precursors were determined using recombinant proteins expressed in bacteria. Metabolism of methylglyoxal and AGE accumulation were studied in human umbilical vein endothelial cells (HUVECs) and C57 wild-type, akr1b3 (aldose reductase)-null, cardiospecific-akr1b4 (rat aldose reductase), and akr1b8 (FR-1)-transgenic mice. AGE accumulation and atherosclerotic lesions were studied 12 weeks after streptozotocin treatment of C57, akr1b3-null, and apoE- and akr1b3-apoE-null mice. RESULTS Higher levels of AGEs were generated in the cytosol than at the external surface of HUVECs cultured in high glucose, indicating that intracellular metabolism may be an important regulator of AGE accumulation and toxicity. In vitro, AKR 1A and 1B catalyzed the reduction of AGE precursors, whereas AKR1C, AKR6, and AKR7 were relatively ineffective. Highest catalytic efficiency was observed with AKR1B1. Acetol formation in methylglyoxal-treated HUVECs was prevented by the aldose reductase inhibitor sorbinil. Acetol was generated in hearts perfused with methylglyoxal, and its formation was increased in akr1b4- or akr1b8-transgenic mice. Reduction of AGE precursors was diminished in hearts from akr1b3-null mice. Diabetic akr1b3-null mice accumulated more AGEs in the plasma and the heart than wild-type mice, and deletion of akr1b3 increased AGE accumulation and atherosclerotic lesion formation in apoE-null mice. CONCLUSIONS Aldose reductase-catalyzed reduction is an important pathway in the endothelial and cardiac metabolism of AGE precursors, and it prevents AGE accumulation and atherosclerotic lesion formation.
Collapse
Affiliation(s)
- Shahid P. Baba
- From the Diabetes and Obesity Center, University of Louisville, Louisville, Kentucky
| | - Oleg A. Barski
- From the Diabetes and Obesity Center, University of Louisville, Louisville, Kentucky
| | - Yonis Ahmed
- From the Diabetes and Obesity Center, University of Louisville, Louisville, Kentucky
| | - Timothy E. O'Toole
- From the Diabetes and Obesity Center, University of Louisville, Louisville, Kentucky
| | - Daniel J. Conklin
- From the Diabetes and Obesity Center, University of Louisville, Louisville, Kentucky
| | - Aruni Bhatnagar
- From the Diabetes and Obesity Center, University of Louisville, Louisville, Kentucky
| | - Sanjay Srivastava
- From the Diabetes and Obesity Center, University of Louisville, Louisville, Kentucky
- Corresponding author: Sanjay Srivastava,
| |
Collapse
|
29
|
Singla-Pareek SL, Yadav SK, Pareek A, Reddy MK, Sopory SK. Enhancing salt tolerance in a crop plant by overexpression of glyoxalase II. Transgenic Res 2007; 17:171-80. [PMID: 17387627 DOI: 10.1007/s11248-007-9082-2] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2006] [Accepted: 02/26/2007] [Indexed: 11/25/2022]
Abstract
Earlier we have shown the role of glyoxalase overexpression in conferring salinity tolerance in transgenic tobacco. We now demonstrate the feasibility of same in a crop like rice through overproduction of glyoxalase II. The rice glyoxalase II was cloned in pCAMBIA1304 and transformed into rice (Oryza sativa cv PB1) via Agrobacterium. The transgenic plants showed higher constitutive activity of glyoxalase II that increased further upon salt stress, reflecting the upregulation of endogenous glyoxalase II. The transgenic rice showed higher tolerance to toxic concentrations of methylglyoxal (MG) and NaCl. Compared with non-transgenics, transgenic plants at the T1 generation exhibited sustained growth and more favorable ion balance under salt stress conditions.
Collapse
Affiliation(s)
- Sneh L Singla-Pareek
- Plant Molecular Biology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110 067, India.
| | | | | | | | | |
Collapse
|
30
|
Kuhla B, Haase C, Flach K, Lüth HJ, Arendt T, Münch G. Effect of pseudophosphorylation and cross-linking by lipid peroxidation and advanced glycation end product precursors on tau aggregation and filament formation. J Biol Chem 2006; 282:6984-91. [PMID: 17082178 DOI: 10.1074/jbc.m609521200] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Accumulation of hyperphosphorylated Tau protein as paired helical filaments in pyramidal neurons is a major hallmark of Alzheimer disease. Besides hyperphosphorylation, other modifications of the Tau protein, such as cross-linking, are likely to contribute to the characteristic features of paired helical filaments, including their insolubility and resistance against proteolytic degradation. In this study, we have investigated whether the four reactive carbonyl compounds acrolein, malondialdehyde, glyoxal, and methylglyoxal accelerate the formation of Tau oligomers, thioflavin T-positive aggregates, and fibrils using wild-type and seven pseudophosphorylated mutant Tau proteins. Acrolein and methylglyoxal were the most reactive compounds followed by glyoxal and malondialdehyde in terms of formation of Tau dimers and higher molecular weight oligomers. Furthermore, acrolein and methylglyoxal induced the formation of thioflavin T-fluorescent aggregates in a triple pseudophosphorylation-mimicking mutant to a slightly higher degree than wild-type Tau. Analysis of the Tau aggregates by electron microscopy study showed that formation of fibrils using wild-type Tau and several Tau mutants could be observed with acrolein and methylglyoxal but not with glyoxal and malondialdehyde. Our results suggest that reactive carbonyl compounds, particularly methylglyoxal and acrolein, could accelerate tangle formation in vivo and that this process could be slightly accelerated, at least in the case of methylglyoxal and acrolein, by hyperphosphorylation. Interference with the formation or the reaction of these reactive carbonyl compounds could be a promising way of inhibiting tangle formation and neuronal dysfunction in Alzheimer disease and other tauopathies.
Collapse
Affiliation(s)
- Björn Kuhla
- Nutritional Physiology Unit "Oskar Kellner," Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany.
| | | | | | | | | | | |
Collapse
|
31
|
Yadav SK, Singla-Pareek SL, Kumar M, Pareek A, Saxena M, Sarin NB, Sopory SK. Characterization and functional validation of glyoxalase II from rice. Protein Expr Purif 2006; 51:126-32. [PMID: 16931048 DOI: 10.1016/j.pep.2006.07.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2006] [Revised: 07/06/2006] [Accepted: 07/10/2006] [Indexed: 11/30/2022]
Abstract
Glyoxalase II, one of the enzymes of the glyoxalase pathway, cDNA cloned from rice (OsglyII) consists of 1623 nucleotides with an open reading frame of 1010 bp encoding a polypeptide of 336 amino acids and an estimated isoelectric point of 8.08. The recombinant protein purified from Escherichia coli using Ni-NTA affinity chromatography showed molecular mass of approximately 37 kDa. Catalytic parameters of the protein were determined using S-D-lactoylglutathione as a thioester substrate. The K(m) (61 microM) and K(cat) (301 s(-1)) values were lower than those reported for Arabidopsis, human and yeast and showed pH optima at 7.2. The E. coli overexpressing OsglyII were able to grow on higher concentration of methylglyoxal. Transcript analysis in rice showed that OsglyII gene expression is stimulated within 15 min in response to various abiotic stresses as well as treatment with abscisic acid or salicylic acid. This multistress response of OsglyII gene documents its future utility in developing tolerance to various stresses in crop plants.
Collapse
Affiliation(s)
- Sudesh Kumar Yadav
- Plant Molecular Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi 110 067, India
| | | | | | | | | | | | | |
Collapse
|
32
|
Kuhla B, Boeck K, Schmidt A, Ogunlade V, Arendt T, Münch G, Lüth HJ. Age- and stage-dependent glyoxalase I expression and its activity in normal and Alzheimer's disease brains. Neurobiol Aging 2006; 28:29-41. [PMID: 16427160 DOI: 10.1016/j.neurobiolaging.2005.11.007] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2005] [Revised: 10/24/2005] [Accepted: 11/09/2005] [Indexed: 11/18/2022]
Abstract
The reaction of lysine and arginine residues of proteins with 1,2-dicarbonyl compounds result in the formation of advanced glycation end products (AGEs). Accumulation of AGEs is a characteristic feature of the aging brain and contributes to the development of neurodegenerative diseases such as Alzheimer's disease (AD). Therefore, it is of particular interest to study the cellular defense mechanisms against AGE formation and particularly the detoxification of their precursors. AGE precursor compounds such as methylglyoxal and glyoxal were cellulary detoxified by the glyoxalase system, consisting of glyoxalases I and II. Glyoxalase I levels are diminished in old aged brains but elevated in AD brains. However, it is still unknown how glyoxalase I level of AD brains changes in a disease and in an age-dependent manner. Therefore, we investigated the AD stage- and the age-dependent levels of glyoxalase I in the Brodmann area 22 of AD brains (n=25) and healthy controls (n=10). Our results obtained from RT-PCR reveal reducing glyoxalase I RNA levels with advancing stage of AD and with increasing age. Western Blot analysis indicates that in comparison to healthy controls, glyoxalase I protein amounts are 1.5-fold increased in early AD subjects and continuously decrease in middle and late stages of AD. The glyoxalase I protein amounts of AD patients also decrease with age. Results obtained from glyoxalase I activity measurement show 1.05-1.2-fold diminished levels in AD brains compared to healthy controls and no significant decrease neither with the stage of AD nor with age. The immunohistochemical investigations demonstrate an elevated number of glyoxalase I stained neurons in brains of early and middle but not in late AD subjects compared to age-matched healthy controls. In addition, the stage-dependent immunohistochemical investigation demonstrates that with reduced glyoxalase I staining AGE deposits prevail, specifically in late stage of AD. In conclusion, the decrease of glyoxalase I expression with increasing AD stage might be one reason for methylglyoxal-induced neuronal impairment, apoptosis, and AGE formation in plaques and tangles.
Collapse
Affiliation(s)
- Björn Kuhla
- Neuroimmunological Cell Biology Unit, IZKF Leipzig, Inselstrasse 22, 04103 Leipzig, Germany
| | | | | | | | | | | | | |
Collapse
|
33
|
Kuhla B, Boeck K, Lüth HJ, Schmidt A, Weigle B, Schmitz M, Ogunlade V, Münch G, Arendt T. Age-dependent changes of glyoxalase I expression in human brain. Neurobiol Aging 2005; 27:815-22. [PMID: 15950319 DOI: 10.1016/j.neurobiolaging.2005.04.006] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2005] [Revised: 04/12/2005] [Accepted: 04/26/2005] [Indexed: 10/25/2022]
Abstract
Increased modification and crosslinking of proteins by advanced glycation end products (AGEs) is a characteristic feature of aging, and contributes to the formation of many of the lesions of neurodegenerative diseases including neurofibrillary tangles and amyloid plaques in Alzheimer's disease. Therefore, defense mechanisms against AGE formation or detoxification of their precursors such as the glyoxalase system are of particular interest in aging research. Thus, we investigated the age-dependent protein expression, the activity as well as the RNA level of glyoxalase I in Brodmann area 22 (auditory association area of superior temporal gyrus) of the human cerebral cortex. Our immunohistochemical results demonstrate the localization of glyoxalase I in neurons, predominantly pyramidal cells, as well as in astroglia, located predominantly in the subpial region. The number of glyoxalase I expressing neurons and astroglia increases with age, with a peak at approximately 55 years, and progressively decreases thereafter. These results were confirmed by biochemical investigations in total brain tissue, where the RNA, the protein level as well as the activity of glyoxalase I enzyme were analyzed in different age groups. In conclusion, the increase in glyoxalase I expression up to the age of 55 may be a compensatory mechanism against high oxoaldyde levels and the accumulation of AGEs. However, the decline of glyoxalase expression and activity in old age, possibly caused by impairment in transcription or/and translation, may subsequently lead to increased levels of reactive carbonyl compounds, followed by protein crosslinking, inflammation, oxidative stress and neuronal degeneration.
Collapse
Affiliation(s)
- Björn Kuhla
- Neuroimmunological Cell Biology Unit, IZKF Leipzig, Inselstrasse 22, 04103 Leipzig, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Lupidi G, Venardi G, Bollettini M, Marmocchi F, Rotilio G. Purification and partial characterization of glyoxalase I from bovine brain. Prep Biochem Biotechnol 2001; 31:305-16. [PMID: 11513094 DOI: 10.1081/pb-100104911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Glyoxalase I was purified to homogeneity from bovine brain using affinity chromatography on S-hexylglutathione-Sepharose 6B with a yield of 22%. The enzyme was a dimer (44,000 Daltons) composed of, apparently, identical subunits (22,000 Daltons), as shown by SDS electrophoresis, and contained one mole of Zn2+/monomer. The active site metal ion, Zn2+, was removed by dialysis against EDTA, but the activity of the apoenzyme obtained was not completely restored after addition of Co2+ and Zn2+ (<25%), while a recovery of 50% was obtained after addition of Mg2+. The enzyme was inhibited by S-bromobenzylglutathione and S-p-nitrobenzylglutathione with a Ki value of 21 microM and 32 microM, respectively. The highest dissociation constant observed for the brain enzyme with respect to that reported for human erythrocytes, or other mammalian forms of enzyme could be related to a tissue-specific dependence of the glyoxalase I activity.
Collapse
Affiliation(s)
- G Lupidi
- Dept. of Biology M.C.A., University of Camerino, Italy.
| | | | | | | | | |
Collapse
|
35
|
Lupidi G, Bollettini M, Venardi G, Marmocchi F, Rotilio G. Functional residues on the enzyme active site of glyoxalase I from bovine brain. Prep Biochem Biotechnol 2001; 31:317-29. [PMID: 11513095 DOI: 10.1081/pb-100104912] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Bovine brain glyoxalase I was investigated in order to identify amino acid residues essential for its catalytic activity. This enzyme is a 44-kDa dimeric protein which exhibits a characteristic intrinsic fluorescence, with an emission peak centered at 342 nm. The total of eight tryptophan residues/molecule was estimated by using a fluorescence titration method. Low values of Stern Volmer quenching constants for the quenchers used indicated that the tryptophan residues are relatively buried in the native molecule. Similar results were obtained for glyoxalase I, purified from yeast and human erythrocytes. The activity of bovine brain glyoxalase I was found to be particularly sensitive to 2,3-butanedione and diethylpyrocarbonate, selective reagents for arginine and histidine residues, respectively. A minor effect was observed by treatment of the enzyme with other amino acid-specific reagents. A protective effect of the competitive inhibitor S-hexylglutathione was observed for all reagents used, indicating the presence of modified amino acids in or near the enzyme active site.
Collapse
Affiliation(s)
- G Lupidi
- Department of Biology M.C.A., University of Camerino, Italy.
| | | | | | | | | |
Collapse
|
36
|
Thornalley PJ. Pharmacology of methylglyoxal: formation, modification of proteins and nucleic acids, and enzymatic detoxification--a role in pathogenesis and antiproliferative chemotherapy. GENERAL PHARMACOLOGY 1996; 27:565-73. [PMID: 8853285 DOI: 10.1016/0306-3623(95)02054-3] [Citation(s) in RCA: 460] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
1. Methylglyoxal is a reactive alpha-oxoaldehyde and physiological metabolite formed by the fragmentation of triose-phosphates, and by the metabolism of acetone and aminoacetone. 2. Methylglyoxal modifies guanylate residues to form 6,7-dihydro-6,7-dihydroxy-6-methyl-imidazo[2,3-b]purine-9(8)one and N2-(1-carboxyethyl)guanylate residues and induces apoptosis. 3. Methylglyoxal modifies arginine residues in proteins to form N(delta)-(4,5-dihydroxy-4-methylimidazolidin-2-yl) ornithine, N(delta)-(5-hydro-5-methylimidazol-4-on-2-yl)ornithine and N(delta)-(5)methylimidazol-4-on-2-yl)ornithine residues. 4. Methylglyoxal-modified proteins undergo receptor-mediated endocytosis and lysosomal degradation in monocytes and macrophages, and induce cytokine synthesis and secretion. 5. Methylglyoxal is detoxified by the glyoxalase system. Decreased detoxification of methylglyoxal may be induced pharmacologically by glyoxalase I inhibitors which have anti-tumor and anti-malarial activities. 6. The modification of nucleic acids and protein by methylglyoxal is a signal for their degradation and may have a role in the development of diabetic complications, atherosclerosis, the immune response in starvation, aging and oxidative stress.
Collapse
Affiliation(s)
- P J Thornalley
- Department of Biological and Chemical Sciences, University of Essex, Colchester, UK
| |
Collapse
|
37
|
Thornalley PJ, Edwards LG, Kang Y, Wyatt C, Davies N, Ladan MJ, Double J. Antitumour activity of S-p-bromobenzylglutathione cyclopentyl diester in vitro and in vivo. Inhibition of glyoxalase I and induction of apoptosis. Biochem Pharmacol 1996; 51:1365-72. [PMID: 8787553 DOI: 10.1016/0006-2952(96)00059-7] [Citation(s) in RCA: 134] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The glyoxalase I inhibitor diester, S-p-bromobenzyl-glutathione cyclopentyl diester (BrBzGSHCp2), inhibited the growth of human leukaemia 60 (HL60) cells in vitro. The median growth inhibitory concentration GC50 value of BrBzGSHCp2 was 4.23 +/- 0.001 microM (n = 21), and the median toxic concentration TC50 value was 8.86 +/- 0.01 microM (n = 21). BrBzGSHCp2 inhibited DNA synthesis in the third hr of incubation: the median inhibitory concentration IC50 value was 6.11 +/- 0.02 microM (n = 8). Incubation of HL60 cells with 10 microM BrBzGSHCp2 delivered the diester into cells: de-esterification of the diester there in lead to formation of the S-p-bromobenzylglutathione, inhibition of glyoxalase I activity in situ, increase in the methylglyoxal concentration after 1 hr, and induction of apoptosis after 6 hr. BrBzGSHCp2 (50-200 mg/kg) also inhibited the growth of murine adenocarcinoma 15A in vivo. Glyoxalase I inhibitor diesters may, therefore, inhibit tumour growth by inducing the accumulation of methylglyoxal in tumour cells, and induction of apoptosis.
Collapse
Affiliation(s)
- P J Thornalley
- Department of Biological and Chemical Sciences, Central Campus, University of Essex, U.K
| | | | | | | | | | | | | |
Collapse
|
38
|
Thornalley PJ. Advances in glyoxalase research. Glyoxalase expression in malignancy, anti-proliferative effects of methylglyoxal, glyoxalase I inhibitor diesters and S-D-lactoylglutathione, and methylglyoxal-modified protein binding and endocytosis by the advanced glycation endproduct receptor. Crit Rev Oncol Hematol 1995; 20:99-128. [PMID: 7576201 DOI: 10.1016/1040-8428(94)00149-n] [Citation(s) in RCA: 85] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Affiliation(s)
- P J Thornalley
- Department of Chemistry and Biological Chemistry, University of Essex, Colchester, UK
| |
Collapse
|
39
|
Thornalley PJ, Strath M, Wilson RJ. Antimalarial activity in vitro of the glyoxalase I inhibitor diester, S-p-bromobenzylglutathione diethyl ester. Biochem Pharmacol 1994; 47:418-20. [PMID: 8304987 DOI: 10.1016/0006-2952(94)90035-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
S-p-Bromobenzylglutathione diethyl ester induced toxicity in the malarial parasite Plasmodium falciparum in infected human red blood cells in culture. The median inhibitory concentration, IC50, was 4.77 +/- 0.12 microM (N = 10) for incorporation of [3H]hypoxanthine in nucleotide synthesis and 5.20 +/- 0.1 microM (N = 10) for incorporation of [14C]isoleucine into protein. The prospective mechanism of action is inhibition of glyoxalase I by the de-esterified metabolite, S-p-bromobenzylglutathione, and accumulation of the cytotoxic substrate methylglyoxal.
Collapse
Affiliation(s)
- P J Thornalley
- Department of Chemistry and Biological Chemistry, University of Essex, Colchester, U.K
| | | | | |
Collapse
|
40
|
Affiliation(s)
- P J Thornalley
- Department of Chemistry and Biological Chemistry, University of Essex, Colchester, U.K
| |
Collapse
|