1
|
Koyama Y. The role of orexinergic system in the regulation of cataplexy. Peptides 2023; 169:171080. [PMID: 37598758 DOI: 10.1016/j.peptides.2023.171080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/06/2023] [Accepted: 08/18/2023] [Indexed: 08/22/2023]
Abstract
Loss of orexin/hypocretin causes serious sleep disorder; narcolepsy. Cataplexy is the most striking symptom of narcolepsy, characterized by abrupt muscle paralysis induced by emotional stimuli, and has been considered pathological activation of REM sleep atonia system. Clinical treatments for cataplexy/narcolepsy and early pharmacological studies in narcoleptic dogs tell us about the involvement of monoaminergic and cholinergic systems in the control of cataplexy/narcolepsy. Muscle atonia may be induced by activation of REM sleep-atonia generating system in the brainstem. Emotional stimuli may be processed in the limbic systems including the amygdala, nucleus accumbens, and medial prefrontal cortex. It is now considered that orexin/hypocretin prevents cataplexy by modulating the activity of different points of cataplexy-inducing circuit, including monoaminergic/cholinergic systems, muscle atonia-generating systems, and emotion-related systems. This review will describe the recent advances in understanding the neural mechanisms controlling cataplexy, with a focus on the involvement of orexin/hypocretin system, and will discuss future experimental strategies that will lead to further understanding and treatment of this disease.
Collapse
Affiliation(s)
- Yoshimasa Koyama
- Faculty of Symbiotic Systems Science, Fukushima University, 1 Kanaya-gawa, Fukushima 960-1296, Japan..
| |
Collapse
|
2
|
Sakai N, Nishino S. Comparison of Solriamfetol and Modafinil on Arousal and Anxiety-Related Behaviors in Narcoleptic Mice. Neurotherapeutics 2023; 20:546-563. [PMID: 36544071 PMCID: PMC10121964 DOI: 10.1007/s13311-022-01328-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/29/2022] [Indexed: 12/24/2022] Open
Abstract
Wake-promoting agents are used for the management of excessive daytime sleepiness caused by narcolepsy. Clinical and preclinical data suggests that solriamfetol, a novel dopamine and norepinephrine reuptake inhibitor, is a promising therapeutic option for excessive daytime sleepiness. We provide the first head-to-head comparison of in vivo efficacy between modafinil and solriamfetol in narcoleptic mice. Both compounds induced potent wake-promoting effects in littermate wild-type and orexin-tTA; TetO-DTA mice when dosed at active and resting phases. However, neither modafinil nor solriamfetol alleviated cataplexy. Remarkably, modafinil significantly induced locomotor activity but solriamfetol had small effects. Awake electroencephalogram profiles revealed that modafinil augmented theta oscillation in a dose-dependent manner, but, on the contrary, the response to solriamfetol was blunted, reflecting the differences in their neurochemical properties and anxiogenic effects. Drug-induced anxiety-related behaviors were evaluated at equipotent wake-promoting doses in WT and DTA mice using the elevated plus maze and forced swim tests. Importantly, 100 mg/kg of modafinil significantly produced anxiety-related behaviors in WT mice, whereas 150 mg/kg of solriamfetol did not have anxiogenic effects. On the other hand, DTA mice exhibited trait anxiety and altered drug responses. Our results suggest that solriamfetol potently promotes wakefulness without psychomotor effects and without inducing anxiety-related behaviors.
Collapse
Affiliation(s)
- Noriaki Sakai
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA, 94304, USA
| | - Seiji Nishino
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA, 94304, USA.
| |
Collapse
|
3
|
Seifinejad A, Vassalli A, Tafti M. Neurobiology of cataplexy. Sleep Med Rev 2021; 60:101546. [PMID: 34607185 DOI: 10.1016/j.smrv.2021.101546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 07/29/2021] [Accepted: 09/06/2021] [Indexed: 11/17/2022]
Abstract
Cataplexy is the pathognomonic and the most striking symptom of narcolepsy. It has originally been, and still is now, widely considered as an abnormal manifestation of rapid eye movement (REM) sleep during wakefulness due to the typical muscle atonia. The neurocircuits of cataplexy, originally confined to the brainstem as those of REM sleep atonia, now include the hypothalamus, dorsal raphe (DR), amygdala and frontal cortex, and its neurochemistry originally focused on catecholamines and acetylcholine now extend to hypocretin (HCRT) and other neuromodulators. Here, we review the neuroanatomy and neurochemistry of cataplexy and propose that cataplexy is a distinct brain state that, despite similarities with REM sleep, involves cataplexy-specific features.
Collapse
Affiliation(s)
- Ali Seifinejad
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, 1005 Lausanne, Switzerland
| | - Anne Vassalli
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, 1005 Lausanne, Switzerland
| | - Mehdi Tafti
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, 1005 Lausanne, Switzerland.
| |
Collapse
|
4
|
Ravel JM, Mignot EJM. [Narcolepsy: From the discovery of a wake promoting peptide to autoimmune T cell biology and molecular mimicry with flu epitopes]. Biol Aujourdhui 2019; 213:87-108. [PMID: 31829930 DOI: 10.1051/jbio/2019026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Indexed: 11/14/2022]
Abstract
Narcolepsy-cataplexy was first described in the late 19th century in Germany and France. Prevalence was established to be 0.05 % and a canine model was discovered in the 1970s. In 1983, a Japanese study found that all patients carried HLA-DR2, suggesting autoimmunity as the cause of the disease. Studies in the canine model established that dopaminergic stimulation underlies anti-narcoleptic action of psychostimulants, while antidepressants were found to suppress cataplexy through adrenergic reuptake inhibition. No HLA association was found in canines. A linkage study initiated in 1988 revealed in hypocretin (orexin) receptor two mutations as the cause of canine narcolepsy in 1999. In 1992, studies on African Americans showed that DQ0602 was a better marker than DR2 across all ethnic groups. In 2000, hypocretin-1/orexin A levels were measured in the cerebrospinal fluid (CSF) and found to be undetectable in most patients, establishing hypocretin deficiency as the cause of narcolepsy. Decreased CSF hypocretin-1 was then found to be secondary to the loss of the 70,000 neurons producing hypocretin in the hypothalamus, suggesting immune destruction of these cells as the cause of the disease. Additional genetic studies, notably genome wide associations (GWAS), found multiple genetic predisposing factors for narcolepsy. These were almost all involved in other autoimmune diseases, although a strong and unique association with T cell receptor (TCR) alpha and beta loci were observed. Nonetheless, all attempts to demonstrate presence of autoantibodies against hypocretin cells in narcolepsy failed, and the presumed autoimmune cause remained unproven. In 2009, association with strep throat infections were found, and narcolepsy onsets were found to occur more frequently in spring and summer, suggesting upper away infections as triggers. Following reports that narcolepsy cases were triggered by vaccinations and infections against influenza A 2009 pH1N1, a new pandemic strain that erupted in 2009, molecular mimicry with influenza A virus was suggested in 2010. This hypothesis was later confirmed by peptide screening showing higher activity of CD4+ T cell reactivity to a specific post-translationally amidated segment of hypocretin (HCRT-NH2) and cross-reactivity of specific TCRs with a pH1N1-specific segment of hemagglutinin that shares homology with HCRT-NH2. Strikingly, the most frequent TCR recognizing these antigens was found to carry sequences containing TRAJ24 or TRVB4-2, segments modulated by narcolepsy-associated genetic polymorphisms. Cross-reactive CD4+ T cells with these cross-reactive TCRs likely subsequently recruit CD8+ T cells that are then involved in hypocretin cell destruction. Additional flu mimics are also likely to be discovered since narcolepsy existed prior to 2009. The work that has been conducted over the years on narcolepsy offers a unique perspective on the conduct of research on the etiopathogeny of a specific disease.
Collapse
Affiliation(s)
- Jean-Marie Ravel
- Stanford Center for Sleep Sciences and Medicine, Department of Psychiatry and Behavioral Medicine, Stanford University, 3615 Porter Drive, Palo Alto, CA, USA
| | - Emmanuel J M Mignot
- Stanford Center for Sleep Sciences and Medicine, Department of Psychiatry and Behavioral Medicine, Stanford University, 3615 Porter Drive, Palo Alto, CA, USA
| |
Collapse
|
5
|
The norepinephrine reuptake inhibitor reboxetine is more potent in treating murine narcoleptic episodes than the serotonin reuptake inhibitor escitalopram. Behav Brain Res 2016; 308:205-10. [DOI: 10.1016/j.bbr.2016.04.033] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 04/13/2016] [Accepted: 04/18/2016] [Indexed: 12/18/2022]
|
6
|
Black SW, Yamanaka A, Kilduff TS. Challenges in the development of therapeutics for narcolepsy. Prog Neurobiol 2015; 152:89-113. [PMID: 26721620 DOI: 10.1016/j.pneurobio.2015.12.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 11/14/2015] [Accepted: 12/04/2015] [Indexed: 01/19/2023]
Abstract
Narcolepsy is a neurological disorder that afflicts 1 in 2000 individuals and is characterized by excessive daytime sleepiness and cataplexy-a sudden loss of muscle tone triggered by positive emotions. Features of narcolepsy include dysregulation of arousal state boundaries as well as autonomic and metabolic disturbances. Disruption of neurotransmission through the hypocretin/orexin (Hcrt) system, usually by degeneration of the HCRT-producing neurons in the posterior hypothalamus, results in narcolepsy. The cause of Hcrt neurodegeneration is unknown but thought to be related to autoimmune processes. Current treatments for narcolepsy are symptomatic, including wake-promoting therapeutics that increase presynaptic dopamine release and anticataplectic agents that activate monoaminergic neurotransmission. Sodium oxybate is the only medication approved by the US Food and Drug Administration that alleviates both sleep/wake disturbances and cataplexy. Development of therapeutics for narcolepsy has been challenged by historical misunderstanding of the disease, its many disparate symptoms and, until recently, its unknown etiology. Animal models have been essential to elucidating the neuropathology underlying narcolepsy. These models have also aided understanding the neurobiology of the Hcrt system, mechanisms of cataplexy, and the pharmacology of narcolepsy medications. Transgenic rodent models will be critical in the development of novel therapeutics for the treatment of narcolepsy, particularly efforts directed to overcome challenges in the development of hypocretin replacement therapy.
Collapse
Affiliation(s)
- Sarah Wurts Black
- Center for Neuroscience, Biosciences Division, SRI International, Menlo Park, CA 94025, USA
| | - Akihiro Yamanaka
- Research Institute of Environmental Medicine, Nagoya University, Nagoya 464-8601, Japan
| | - Thomas S Kilduff
- Center for Neuroscience, Biosciences Division, SRI International, Menlo Park, CA 94025, USA.
| |
Collapse
|
7
|
Maruyama T, Matsumura M, Sakai N, Nishino S. The pathogenesis of narcolepsy, current treatments and prospective therapeutic targets. Expert Opin Orphan Drugs 2015. [DOI: 10.1517/21678707.2016.1117973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
8
|
Abstract
Cataplexy is defined as episodes of sudden loss of voluntary muscle tone triggered by emotions generally lasting <2 minutes. Cataplexy is most commonly associated with and considered pathognomonic for narcolepsy, a sleep disorder affecting ~0.05% of the general population. Knowledge of the pathophysiology of cataplexy has advanced through study of canine, murine, and human models. It is now generally considered that loss of signaling by hypothalamic hypocretin/orexin-producing neurons plays a key role in the development of cataplexy. Although the cause of hypocretin/orexin neuron loss in narcolepsy with cataplexy is unknown, an autoimmune etiology is widely hypothesized. Despite these advances, a literature review shows that treatment of cataplexy remains limited. Multiple classes of antidepressants have been commonly used off-label for cataplexy in narcolepsy and are suggested for this use in expert consensus guidelines based on traditional practice, case reports, and small trials. However, systematic research evidence supporting antidepressants for cataplexy is lacking. The single pharmacotherapy indicated for cataplexy and the guideline-recommended first-line treatment in Europe and the US is sodium oxybate, the sodium salt of gamma-hydroxybutyrate. Clinical trial evidence of its efficacy and safety in cataplexy is robust, and it is hypothesized that its therapeutic effects may occur through gamma-aminobutyric acid receptor type B-mediated effects at noradrenergic, dopaminergic, and thalamocortical neurons. Additional possible mechanisms for cataplexy therapy suggested by preliminary research include antagonism of the histamine H3 autoreceptor with pitolisant and intravenous immunoglobulin therapy for amelioration of the presumed autoimmune-mediated hypocretin/orexin cell loss. Further research and development of therapeutic approaches to cataplexy are needed.
Collapse
Affiliation(s)
- Todd J Swick
- Department of Neurology, University of Texas School of Medicine-Houston, Houston, TX, USA ; The Sleep Center at North Cypress Medical Center, Cypress, TX, USA ; Apnix Sleep Diagnostics, Houston, TX, USA ; Neurology and Sleep Medicine Consultants, Houston, TX, USA
| |
Collapse
|
9
|
De la Herrán-Arita AK, García-García F. Current and emerging options for the drug treatment of narcolepsy. Drugs 2014; 73:1771-81. [PMID: 24122734 DOI: 10.1007/s40265-013-0127-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Narcolepsy/hypocretin deficiency (now called type 1 narcolepsy) is a lifelong neurologic disorder with well-established diagnostic criteria and etiology. Narcolepsy is a chronic sleep disorder characterized by excessive daytime sleepiness (EDS) and symptoms of dissociated rapid eye movement sleep such as cataplexy (sudden loss of muscle tone), hypnagogic hallucinations (sensory events that occur at the transition from wakefulness to sleep), sleep paralysis (inability to perform movements upon wakening or sleep onset), and nocturnal sleep disruption. As these symptoms are often disabling, most patients need life-long treatment. The treatment of narcolepsy is well defined, and, traditionally, amphetamine-like stimulants (i.e., dopaminergic release enhancers) have been used for clinical management to improve EDS and sleep attacks, whereas tricyclic antidepressants have been used as anticataplectics. However, treatments have evolved to better-tolerated compounds such as modafinil or armodafinil (for EDS) and adrenergic/serotonergic selective reuptake inhibitors (as anticataplectics). In addition, night-time administration of a short-acting sedative, c-hydroxybutyrate (sodium oxybate), has been used for the treatment for EDS and cataplexy. These therapies are almost always needed in combination with non-pharmacologic treatments (i.e., behavioral modification). A series of new drugs is currently being tested in animal models and in humans. These include a wide variety of hypocretin agonists, melanin- concentrating hormone receptor antagonists, antigenspecific immunopharmacology, and histamine H3 receptor antagonists/inverse agonists (e.g., pitolisant), which have been proposed for specific therapeutic applications, including the treatment of Alzheimer's disease, attention-deficit hyperactivity disorder, epilepsy, and more recently, narcolepsy. Even though current treatment is strictly symptomatic, based on the present state of knowledge of the pathophysiology of narcolepsy, we expect that more pathophysiology-based treatments will be available in the near future.
Collapse
|
10
|
Schwarz PB, Mir S, Peever JH. Noradrenergic modulation of masseter muscle activity during natural rapid eye movement sleep requires glutamatergic signalling at the trigeminal motor nucleus. J Physiol 2014; 592:3597-609. [PMID: 24860176 DOI: 10.1113/jphysiol.2014.272633] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Noradrenergic neurotransmission in the brainstem is closely coupled to changes in muscle activity across the sleep-wake cycle, and noradrenaline is considered to be a key excitatory neuromodulator that reinforces the arousal-related stimulus on motoneurons to drive movement. However, it is unknown if α-1 noradrenoceptor activation increases motoneuron responsiveness to excitatory glutamate (AMPA) receptor-mediated inputs during natural behaviour. We studied the effects of noradrenaline on AMPA receptor-mediated motor activity at the motoneuron level in freely behaving rats, particularly during rapid eye movement (REM) sleep, a period during which both AMPA receptor-triggered muscle twitches and periods of muscle quiescence in which AMPA drive is silent are exhibited. Male rats were subjected to electromyography and electroencephalography recording to monitor sleep and waking behaviour. The implantation of a cannula into the trigeminal motor nucleus of the brainstem allowed us to perfuse noradrenergic and glutamatergic drugs by reverse microdialysis, and thus to use masseter muscle activity as an index of motoneuronal output. We found that endogenous excitation of both α-1 noradrenoceptor and AMPA receptors during waking are coupled to motor activity; however, REM sleep exhibits an absence of endogenous α-1 noradrenoceptor activity. Importantly, exogenous α-1 noradrenoceptor stimulation cannot reverse the muscle twitch suppression induced by AMPA receptor blockade and nor can it elevate muscle activity during quiet REM, a phase when endogenous AMPA receptor activity is subthreshold. We conclude that the presence of an endogenous glutamatergic drive is necessary for noradrenaline to trigger muscle activity at the level of the motoneuron in an animal behaving naturally.
Collapse
Affiliation(s)
- Peter B Schwarz
- Systems Neurobiology Laboratory, Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Saba Mir
- Systems Neurobiology Laboratory, Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - John H Peever
- Systems Neurobiology Laboratory, Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada Department of Physiology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
11
|
Abstract
Although narcolepsy was first described in the late nineteenth century in Germany and France, much of the research on this disorder has been conducted at Stanford University, starting with Drs. William C. Dement and Christian Guilleminault in the 1970s. The prevalence of narcolepsy was established, and a canine model discovered. Following the finding in Japan that almost all patients with narcolepsy carry a specific HLA subtype, HLA-DR2, Hugh Mac Devitt, F. Carl Grumet, and Larry Steinman initiated immunological studies, but results were generally negative. Using the narcoleptic canines, Dr. Nishino and I established that stimulants increased wakefulness by stimulating dopaminergic transmission while antidepressants suppress cataplexy via adrenergic reuptake inhibition. A linkage study was initiated with Dr. Grumet in 1988, and after 10 years of work, the canine narcolepsy gene was cloned by in 1999 and identified as the hypocretin (orexin) receptor 2. In 1992, studying African Americans, we also found that DQ0602 rather than DR2 was a better marker for narcolepsy across all ethnic groups. In 2000, Dr. Nishino and I, in collaboration with Dr. Lammers in the Netherlands, found that hypocretin 1 levels in the cerebrospinal fluid (CSF) were undetectable in most cases, establishing hypocretin deficiency as the cause of narcolepsy. Pursuing this research, our and Dr. Siegel's group, examining postmortem brains, found that the decreased CSF hypocretin 1 was secondary to the loss the 70,000 neurons producing hypocretin in the hypothalamus. This finding revived the autoimmune hypothesis but attempts at demonstrating immune targeting of hypocretin cells failed until 2013. At this date, Dr. Elisabeth Mellins and I discovered that narcolepsy is characterized by the presence of autoreactive CD4(+) T cells to hypocretin fragments when presented by DQ0602. Following reports that narcolepsy cases were triggered by vaccinations and infections against influenza A 2009 pH1N1, a new pandemic strain that erupted in 2009, our groups also established that a small epitope of pH1N1 resembles hypocretin and is likely involved in molecular mimicry. Although much remains to be done, these achievements, establishing hypocretin deficiency as the cause of narcolepsy, demonstrating its autoimmune basis, and showing molecular mimicry between hypocretin and sequences derived from a pandemic strain of influenza, are likely to remain classics in human immunology.
Collapse
Affiliation(s)
- Emmanuel J M Mignot
- Stanford University Center for Sleep Sciences, 3165 Porter Drive, #2178, Palo Alto, CA, 94304, USA,
| |
Collapse
|
12
|
Abstract
Sodium oxybate (Xyrem), also known as gamma-hydroxybutyric acid, is the only therapeutic specifically approved in the USA for the treatment of cataplexy in narcolepsy. The US FDA has recently expanded its indication to include excessive daytime sleepiness associated with narcolepsy. In contrast to the antidepressants and stimulants commonly used to treat the disorder, sodium oxybate is the only compound that addresses both sets of symptoms and, when used properly, is less likely to lead to the development of tolerance and other undesirable side effects. In this review, the results of clinical trials and the place of sodium oxybate in narcolepsy treatment are discussed.
Collapse
Affiliation(s)
- Martin B Scharf
- The Center for Research in Sleep Disorders, 1275 Kemper Road Cincinnati, OH 45246-3901, USA.
| |
Collapse
|
13
|
Wisor J. Modafinil as a catecholaminergic agent: empirical evidence and unanswered questions. Front Neurol 2013; 4:139. [PMID: 24109471 PMCID: PMC3791559 DOI: 10.3389/fneur.2013.00139] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 09/06/2013] [Indexed: 11/21/2022] Open
Abstract
Modafinil, in its two clinical formulations (Provigil® and Nuvigil®), is a widely prescribed wake-promoting therapeutic agent. It binds competitively to the cell-membrane dopamine (DA) transporter and is dependent on catecholaminergic (dopaminergic and adrenergic) signaling for its wake-promoting effects. The clinical spectrum of effects for modafinil is distinct from the effects seen with other catecholaminergic agents. Relative to other commonly used agents that act through catecholaminergic mechanisms, modafinil has a relatively low abuse potential, produces wakefulness with an attenuated compensatory sleep recovery thereafter, and does not ameliorate cataplexy in narcolepsy. These clinically relevant phenomenological differences between modafinil and agents such as amphetamines and cocaine do not eliminate catecholaminergic effects as a possible mediator of its wake-promoting action; they merely reflect its unique pharmacological profile. Modafinil is an exceptionally weak, but apparently very selective, DA transporter inhibitor. The pharmacodynamic response to modafinil, as measured by DA levels in brain microdialyzate, is protracted relative to other agents that act via catecholaminergic mechanisms. The conformational constraints on the interaction of modafinil with the DA transporter – and probably, as a consequence, its effects on trace amine receptor signaling in the catecholaminergic cell – are unique among catecholaminergic agents. These unique pharmacological properties of modafinil should be considered both in seeking to thoroughly understand its putatively elusive mechanism of action and in the design of novel therapeutic agents.
Collapse
Affiliation(s)
- Jonathan Wisor
- Department of Integrative Physiology and Neuroscience, Sleep and Performance Research Center, Washington State University , Spokane, WA , USA
| |
Collapse
|
14
|
Burgess C, Peever J. A Noradrenergic Mechanism Functions to Couple Motor Behavior with Arousal State. Curr Biol 2013; 23:1719-25. [DOI: 10.1016/j.cub.2013.07.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 07/03/2013] [Accepted: 07/03/2013] [Indexed: 10/26/2022]
|
15
|
Abstract
INTRODUCTION Narcolepsy with cataplexy is a rare disabling sleep disorder characterized by two major symptoms: excessive daytime sleepiness and cataplexy characterized by a sudden bilateral loss of voluntary muscular tone triggered by strong positive emotional factors. Pathophysiological studies have shown that the disease is caused by the early loss of hypothalamic hypocretin neurons. AREAS COVERED Following a literature search on PubMed using "narcolepsy," "cataplexy," "treatment," "medication," and "drug" as keywords, we critically analyzed and reviewed current evidence about optimal management of cataplexy in humans. The management of cataplexy has evolved over the past few years with the widespread use of antidepressants, especially those with adrenergic uptake inhibitor properties and gamma-hydroxybutyrate (sodium oxybate). EXPERT OPINION Based on class 1 evidence studies, first-line pharmacological treatment of cataplexy should be sodium oxybate. Second-line treatment should be antidepressants with norepinephrine/serotonine reuptake inhibitor venlafaxine based on its good benefit-risk ratio; however, this recommendation lacks class 1 evidence and is based on expert opinion only. Given the major developments in understanding the neurobiological basis of cataplexy, future therapeutic targets are clearly oriented toward immune-based therapies at early stages of the disease and hypocretin replacement therapy.
Collapse
Affiliation(s)
- Régis Lopez
- Gui-de-Chauliac Hospital, National Reference Network for Narcolepsy, Sleep-Wake Disorders Center, Department of Neurology, CHU Montpellier, INSERM U1061, 80 avenue Augustin Fliche, 34295 Montpellier cedex 5, France
| | | |
Collapse
|
16
|
|
17
|
Abstract
Narcolepsy and other syndromes associated with excessive daytime sleepiness can be challenging to treat. New classifications now distinguish narcolepsy/hypocretin deficiency (also called type 1 narcolepsy), a lifelong disorder with well-established diagnostic procedures and etiology, from other syndromes with hypersomnolence of unknown causes. Klein-Levin Syndrome, a periodic hypersomnia associated with cognitive and behavioral abnormalities, is also considered a separate entity with separate therapeutic protocols. Non hypocretin-related hypersomnia syndromes are diagnoses of exclusion. These diagnoses are only made after eliminating sleep deprivation, sleep apnea, disturbed nocturnal sleep, and psychiatric comorbidities as the primary cause of daytime sleepiness. The treatment of narcolepsy/hypocretin deficiency is well-codified, and involves pharmacotherapies using sodium oxybate, stimulants, and/or antidepressants, plus behavioral modifications. These therapies are almost always needed, and the risk-to-benefit ratio is clear, notably in children. Detailed knowledge of the pharmacological profile of each compound is needed to optimize use. Treatment for other syndromes with hypersomnolence is more challenging and less codified. Preferably, therapy should be conservative (such as modafinil, atomoxetine, behavioral modifications), but it may have to be more aggressive (high-dose stimulants, sodium oxybate, etc.) on a case-by-case, empirical trial basis. As cause and evolution are unknown in these conditions, it is important to challenge diagnosis and therapy over time, keeping in mind the possibility of tolerance and the development of stimulant addiction. Kleine-Levin Syndrome is usually best left untreated, although lithium can be considered in severe cases with frequent episodes. Guidelines are provided based on the literature and personal experience of the author.
Collapse
Affiliation(s)
- Emmanuel J M Mignot
- Stanford Center for Sleep Sciences and Medicine, Stanford University Medical School, Palo Alto, CA 94304, USA.
| |
Collapse
|
18
|
|
19
|
Affiliation(s)
- Seiji Nishino
- Stanford University School of Medicine, Stanford Sleep Research Center, Palo Alto, CA, USA.
| | | |
Collapse
|
20
|
Burgess CR, Tse G, Gillis L, Peever JH. Dopaminergic regulation of sleep and cataplexy in a murine model of narcolepsy. Sleep 2010; 33:1295-304. [PMID: 21061851 PMCID: PMC2941415 DOI: 10.1093/sleep/33.10.1295] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
STUDY OBJECTIVES To determine if the dopaminergic system modulates cataplexy, sleep attacks and sleep-wake behavior in narcoleptic mice. DESIGN Hypocretin/orexin knockout (i.e., narcoleptic) and wild-type mice were administered amphetamine and specific dopamine receptor modulators to determine their effects on sleep, cataplexy and sleep attacks. PATIENTS OR PARTICIPANTS Hypocretin knockout (n = 17) and wild-type mice (n = 21). INTERVENTIONS Cataplexy, sleep attacks and sleep-wake behavior were identified using electroencephalogram, electromyogram and videography. These behaviors were monitored for 4 hours after an i.p. injection of saline, amphetamine and specific dopamine receptor modulators (D1- and D2-like receptor modulators). MEASUREMENTS AND RESULTS Amphetamine (2 mg/kg), which increases brain dopamine levels, decreased sleep attacks and cataplexy by 61% and 67%, suggesting that dopamine transmission modulates such behaviors. Dopamine receptor modulation also had powerful effects on sleep attacks and cataplexy. Activation (SKF 38393; 20 mg/kg) and blockade (SCH 23390; 1 mg/kg) of D1-like receptors decreased and increased sleep attacks by 77% and 88%, without affecting cataplexy. Pharmacological activation of D2-like receptors (quinpirole; 0.5 mg/kg) increased cataplectic attacks by 172% and blockade of these receptors (eticlopride; 1 mg/kg) potently suppressed them by 97%. Manipulation of D2-like receptors did not affect sleep attacks. CONCLUSIONS We show that the dopaminergic system plays a role in regulating both cataplexy and sleep attacks in narcoleptic mice. We found that cataplexy is modulated by a D2-like receptor mechanism, whereas dopamine modulates sleep attacks by a D1-like receptor mechanism. These results support a role for the dopamine system in regulating sleep attacks and cataplexy in a murine model of narcolepsy.
Collapse
Affiliation(s)
| | - Gavin Tse
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
| | - Lauren Gillis
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
| | - John H. Peever
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
- Department of Physiology, University of Toronto, Toronto, Canada
| |
Collapse
|
21
|
Nishino S, Okuro M. Emerging treatments for narcolepsy and its related disorders. Expert Opin Emerg Drugs 2010; 15:139-58. [PMID: 20166851 DOI: 10.1517/14728210903559852] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
IMPORTANCE OF THE FIELD Narcolepsy is a chronic sleep disorder, characterized by excessive daytime sleepiness (EDS), cataplexy, hypnagogic hallucinations, sleep paralysis and nocturnal sleep disruption. Non-pharmacological treatments (i.e., behavioral modification) are often helpful for the clinical management of narcoleptic patients. As these symptoms are often disabling, most patients need life-long treatments. Over 90% of diagnosed narcoleptic patients are currently prescribed medications to control their symptoms; however, available treatments are merely symptomatic. AREAS COVERED IN THIS REVIEW This review presents a description of the clinical symptoms of narcolepsy, followed by a discussion of the state-of-the-art knowledge regarding the disorder and related emerging treatments. In preparing this review, an extensive literature search was conducted using Pubmed. Only selected references from 1970 to 2008 are cited. WHAT THE READER WILL GAIN This review focuses on emerging treatments for human narcolepsy, and the reader will gain significant knowledge of current and future treatment for this and related disorders. Traditionally, amphetamine-like stimulants (i.e., dopaminergic release enhancers) have been used for clinical management to improve EDS, and tricyclic antidepressants have been used as anticataplectics. However, treatments have recently evolved which utilize better tolerated compounds, such as modafinil (for EDS) and adrenergic/serotonergic selective reuptake inhibitors (as anticataplectics). In addition, night time administration of a short-acting sedative, gamma-hydroxybutyrate, has been used for the treatment for EDS and cataplexy. As a large majority of human narcolepsy is hypocretin peptide deficient, hypocretin replacement therapy may also be a new therapeutic option; yet, this option is still unavailable. In addition to the hypocretin-based therapy, a series of new treatments are currently being tested in animal and/or humans models. These potential options include novel stimulant and anticataplectic drugs as well as immunotherapy, based on current knowledge of the pathophysiology of narcolepsy with cataplexy. TAKE HOME MESSAGE We expect that more pathophysiology-based treatments, capable of curing and/or preventing narcolepsy and related diseases, will be available in near future. As cases of EDS, associated with other neurological conditions (i.e., symptomatic narcolepsy or narcolepsy due to medical conditions), are often linked with hypocretin deficiency, these novel therapeutic options may also be applied to treatment of these disabling conditions.
Collapse
|
22
|
Nojimoto FD, Mueller A, Hebeler-Barbosa F, Akinaga J, Lima V, Kiguti LRDA, Pupo AS. The tricyclic antidepressants amitriptyline, nortriptyline and imipramine are weak antagonists of human and rat alpha1B-adrenoceptors. Neuropharmacology 2010; 59:49-57. [PMID: 20363235 DOI: 10.1016/j.neuropharm.2010.03.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2010] [Revised: 03/24/2010] [Accepted: 03/26/2010] [Indexed: 12/11/2022]
Abstract
Although it is long known that the tricyclic antidepressants amitriptyline, nortriptyline and imipramine inhibit the noradrenaline transporter and alpha(1)-adrenoceptors with similar affinities, which may lead to self-cancelling actions, the selectivity of these drugs for alpha(1)-adrenoceptor subtypes is unknown. The present study investigates the selectivity of amitriptyline, nortriptyline and imipramine for human recombinant and rat native alpha(1)-adrenoceptor subtypes. The selectivity of amitriptyline, nortriptyline and imipramine was investigated in HEK-293 cells expressing each of the human alpha(1)-subtypes and in rat native receptors from the vas deferens (alpha(1A)), spleen (alpha(1B)) and aorta (alpha(1D)) through [(3)H]prazosin binding, and noradrenaline-induced intracellular Ca(2+) increases and contraction assays. Amitriptyline, nortriptyline and imipramine showed considerably higher affinities for alpha(1A)- (approximately 25- to 80-fold) and alpha(1D)-adrenoceptors (approximately 10- to 25-fold) than for alpha(1B)-adrenoceptors in both contraction and [(3)H]prazosin binding assays with rat native and human receptors, respectively. In addition, amitriptyline, nortriptyline and imipramine were substantially more potent in the inhibition of noradrenaline-induced intracellular Ca(2+) increases in HEK-293 cells expressing alpha(1A)- or a truncated version of alpha(1D)-adrenoceptors which traffics more efficiently towards the cell membrane than in cells expressing alpha(1B)-adrenoceptors. Amitriptyline, nortriptyline and imipramine are much weaker antagonists of rat and human alpha(1B)-adrenoceptors than of alpha(1A)- and alpha(1D)-adrenoceptors. The differential affinities for these receptors indicate that the alpha(1)-adrenoceptor subtype which activation is most increased by the augmented noradrenaline availability resultant from the blockade of neuronal reuptake is the alpha(1B)-adrenoceptor. This may be important for the behavioural effects of these drugs.
Collapse
Affiliation(s)
- F D Nojimoto
- Department of Pharmacology, Instituto de Biociências, UNESP, Botucatu, SP, Brazil
| | | | | | | | | | | | | |
Collapse
|
23
|
Pelayo R, Hodgson N, Guilleminault C. Chapter 34: the history of sleep medicine. HANDBOOK OF CLINICAL NEUROLOGY 2010; 95:547-556. [PMID: 19892137 DOI: 10.1016/s0072-9752(08)02134-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Affiliation(s)
- Rafael Pelayo
- Sleep Medicine Center, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | | | | |
Collapse
|
24
|
Chen L, Brown RE, McKenna JT, McCarley RW. Animal models of narcolepsy. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2009; 8:296-308. [PMID: 19689311 DOI: 10.2174/187152709788921717] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Narcolepsy is a debilitating sleep disorder with excessive daytime sleepiness and cataplexy as its two major symptoms. Although this disease was first described about one century ago, an animal model was not available until the 1970s. With the establishment of the Stanford canine narcolepsy colony, researchers were able to conduct multiple neurochemical studies to explore the pathophysiology of this disease. It was concluded that there was an imbalance between monoaminergic and cholinergic systems in canine narcolepsy. In 1999, two independent studies revealed that orexin neurotransmission deficiency was pivotal to the development of narcolepsy with cataplexy. This scientific leap fueled the generation of several genetically engineered mouse and rat models of narcolepsy. To facilitate further research, it is imperative that researchers reach a consensus concerning the evaluation of narcoleptic behavioral and EEG phenomenology in these models.
Collapse
Affiliation(s)
- Lichao Chen
- Research Service, VA Boston Healthcare System, Department of Psychiatry, Harvard Medical School, Brockton, MA 02301, USA.
| | | | | | | |
Collapse
|
25
|
Mamelak M. Narcolepsy and depression and the neurobiology of gammahydroxybutyrate. Prog Neurobiol 2009; 89:193-219. [PMID: 19654034 DOI: 10.1016/j.pneurobio.2009.07.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2009] [Revised: 05/24/2009] [Accepted: 07/28/2009] [Indexed: 12/23/2022]
Abstract
A voluminous literature describes the relationship between disturbed sleep and depression. The breakdown of sleep is one of the cardinal features of depression and often also heralds its onset. Frequent arousals, periods of wakefulness and a short sleep onset REM latency are typical polysomnographic features of depression. The short latency to REM sleep has been attributed to the combination of a monoaminergic deficiency and cholinergic supersensitivity and these irregularities have been proposed to form the biological basis of the disorder. A similar imbalance between monoaminergic and cholinergic neurotransmission has been found in narcolepsy, a condition in which frequent awakenings, periods of wakefulness and short sleep onset REM latencies are also characteristic findings during sleep. In many cases of narcolepsy, this imbalance appears to result from a deficiency of hypocretin but once established, whether in depression or narcolepsy, this disequilibrium sets the stage for the dissociation or premature appearance of REM sleep and for the dissociation of the motor inhibitory component of REM sleep or cataplexy. In the presence of this monoaminergic/cholinergic imbalance, gammahydroxybutyrate (GHB) may acutely further reduce the latency of REM sleep and induce cataplexy, in both patients with narcolepsy or depression. On the other hand, the repeated nocturnal application of GHB in patients with narcolepsy improves the continuity of sleep, prolongs the latency to REM sleep and prevents cataplexy. Evidence to date suggests that GHB may restore the normal balance between monoaminergic and cholinergic neurotransmission. As such, the repeated use of GHB at night and the stabilization of sleep over time makes GHB an effective treatment for narcolepsy and a potentially effective treatment for depression.
Collapse
Affiliation(s)
- Mortimer Mamelak
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
26
|
Arias HR. Is the inhibition of nicotinic acetylcholine receptors by bupropion involved in its clinical actions? Int J Biochem Cell Biol 2009; 41:2098-108. [PMID: 19497387 DOI: 10.1016/j.biocel.2009.05.015] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2009] [Revised: 05/23/2009] [Accepted: 05/26/2009] [Indexed: 11/26/2022]
Abstract
In this mini review we will focus on those molecular and cellular mechanisms exerted by bupropion (BP), ultimately leading to the antidepressant and anti-nicotinic properties described for this molecule. The main pharmacological mechanism is based on the fact that BP induces the release as well as inhibits the reuptake of neurotransmitters such as a dopamine (DA) and norepinephrine (NE). Additional mechanisms of action have been also determined. For example, BP is a noncompetitive antagonist (NCA) of several nicotinic acetylcholine receptors (AChRs). Based on this evidence, the dual antidepressant and anti-nicotinic activity of BP is currently considered to be mediated by its stimulatory action on the DA and NE systems as well as its inhibitory action on AChRs. Considering the results obtained in the archetypical mouse muscle AChR, a sequential mechanism can be hypothesized to explain the inhibitory action of BP on neuronal AChRs: (1) BP first binds to AChRs in the resting state, decreasing the probability of ion channel opening, (2) the remnant fraction of open ion channels is subsequently decreased by accelerating the desensitization process, and (3), BP interacts with a binding domain located between the serine (position 6') and valine (position 13') rings that is shared with the NCA phencyclidine and other tricyclic antidepressants. This new evidence paves the way for further investigations using AChRs as targets for the action of safer antidepressants and novel anti-addictive compounds.
Collapse
Affiliation(s)
- Hugo R Arias
- Department of Pharmaceutical Sciences, College of Pharmacy, Midwestern University, 19555 N. 59th Avenue, Glendale, AZ 85308, USA.
| |
Collapse
|
27
|
Møller LR, Østergaard JR. Treatment with venlafaxine in six cases of children with narcolepsy and with cataplexy and hypnagogic hallucinations. J Child Adolesc Psychopharmacol 2009; 19:197-201. [PMID: 19364297 DOI: 10.1089/cap.2008.036] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
OBJECTIVE Narcolepsy with cataplexy is a chronic neuropsychiatric disorder associated with inappropriate control of rapid eye movement (REM) sleep. The main symptoms are excessive daytime sleepiness, cataplexy, hypnagogic hallucinations, and disturbed nocturnal sleep. Cataplexy is marked by episodes of muscular weakness and may cause the patient to collapse to the ground. So far, pharmacotherapy of cataplexy and hypnagogic hallucinations has been predominantly based on tricyclic antidepressants. Recently, new drugs that block the reuptake of norepineprine and serotonin (e.g., venlafaxine) have been suggested as first-line treatment. These drugs have become our choice in treating children with cataplexy and nightmares as a symptom in narcolepsy. METHODS We describe clinical case reports of venlafaxine treatment in 6 children aged 7-12 years old when diagnosed with narcolepsy-cataplexy. RESULTS In 2 cases with up to 50 daily cataplectic attacks, an initial effect of 37.5 mg of venlafaxine was initially observed. However, during the first year, the dose had to be increased to 112.5 mg daily to avoid cataplexy. A third patient with partial cataplexy was treated with 75 mg of venlafaxine daily. In 2 cases, hypnagogic hallucinations, described by the patients as nightmares, were the most troubling symptom and were successfully treated with only 37.5 mg of venlafaxine daily. Side effects included an increase of disturbed nocturnal sleep when venlafaxine was taken after 2:00 p.m. No major aggressive or suicidal thoughts and no raised blood pressure were recorded. CONCLUSION Venlafaxine has proven to be an effective treatment of cataplexy and hypnagogic hallucinations in 6 children with narcolepsy. No severe side effects were observed.
Collapse
Affiliation(s)
- Lene Ruge Møller
- Psychiatric Hospital for Children and Adolescents, Risskov, Denmark.
| | | |
Collapse
|
28
|
Abstract
Modafinil is a wake-promoting agent that is pharmacologically different from other stimulants. It has been investigated in healthy volunteers, and in individuals with clinical disorders associated with excessive sleepiness, fatigue, impaired cognition and other symptoms. This review examines the use of modafinil in clinical practice based on the results of randomized, double-blind, placebo-controlled clinical trials available in the English language in the MEDLINE database. In sleep-deprived individuals, modafinil improves mood, fatigue, sleepiness and cognition to a similar extent as caffeine but has a longer duration of action. Evidence for improved cognition in non-sleep-deprived healthy volunteers is controversial.Modafinil improves excessive sleepiness and illness severity in all three disorders for which it has been approved by the US FDA, i.e. narcolepsy, shift-work sleep disorder and obstructive sleep apnoea with residual excessive sleepiness despite optimal use of continuous positive airway pressure (CPAP). However, its effects on safety on the job and on morbidities associated with these disorders have not been ascertained. Continued use of CPAP in obstructive sleep apnoea is essential. Modafinil does not benefit cataplexy.In very small, short-term trials, modafinil improved excessive sleepiness in patients with myotonic dystrophy. It was efficacious in fairly large studies of attention deficit hyperactivity disorder (ADHD) in children and adolescents, and was as efficacious as methylphenidate in a small trial, but has not been approved by the FDA, in part because of its serious dermatological toxicity. In a trial of 21 non-concurrent subjects, with 2-week treatment periods, modafinil was as effective as dexamfetamine in adult ADHD. Modafinil was helpful for depressive symptoms in bipolar disorder in a trial that excluded patients with stimulant-induced mania. A single dose of modafinil may hasten recovery from general anaesthesia after day surgery. A single dose of modafinil improved the ability of emergency room physicians to attend didactic lectures after a night shift, but did not improve their ability to drive home and caused sleep disturbances subsequently.Modafinil had a substantial placebo effect on outcomes such as fatigue, excessive sleepiness and depression in patients with traumatic brain injury, major depressive disorder, schizophrenia, post-polio fatigue and multiple sclerosis; however, it did not provide any benefit greater than placebo.Trials of modafinil for excessive sleepiness in Parkinson's disease, cocaine addiction and cognition in chronic fatigue syndrome provided inconsistent results; all studies had extremely small sample sizes. Modafinil cannot be recommended for these conditions until definitive data become available.Modafinil induces and inhibits several cytochrome P450 isoenzymes and has the potential for interacting with drugs from all classes. The modafinil dose should be reduced in the elderly and in patients with hepatic disease. Caution is needed in patients with severe renal insufficiency because of substantial increases in levels of modafinil acid. Common adverse events with modafinil include insomnia, headache, nausea, nervousness and hypertension. Decreased appetite, weight loss and serious dermatological have been reported with greater frequency in children and adolescents, probably due to the higher doses (based on bodyweight) used. Modafinil may have some abuse/addictive potential although no cases have been reported to date.
Collapse
Affiliation(s)
- Raminder Kumar
- Department of Family Medicine, University of Chicago, Chicago, Illinois 60637, USA.
| |
Collapse
|
29
|
Arias HR, Santamaría A, Ali SF. Pharmacological and neurotoxicological actions mediated by bupropion and diethylpropion. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2009; 88:223-55. [PMID: 19897080 DOI: 10.1016/s0074-7742(09)88009-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The antiappetite agent diethylpropion (DEP), and the antidepressant and antismoking aid compound bupropion (BP), not only share the same structural motif but also present similar mechanisms of action in the CNS. For example, both drugs induce the release as well as inhibit the reuptake of neurotransmitters such as a dopamine (DA) and norepinephrine (NE). In general, they produce mild side effects, including reversible psychomotor alterations mostly in geriatric patients (by BP), or moderate changes in neurotransmitter contents linked to oxidative damage (by DEP). Therefore, attention must be paid during any therapeutic use of these agents. Regarding the interaction of BP with the DA transporter, residues S359, located in the middle of TM7, and A279, located close to the extracellular end of TM5, contribute to the binding and blockade of translocation mediated by BP, respectively. Additional mechanisms of action have also been determined for each compound. For example, BP is a noncompetitive antagonist (NCA) of several nicotinic acetylcholine receptors (AChRs). Based on this evidence, the dual antidepressant and antinicotinic activity of BP is currently considered to be mediated by its stimulatory action on DA and NE systems as well as its inhibitory action on AChRs. Considering the results obtained in the archetypical mouse muscle AChR, a sequential mechanism can be hypothesized to explain the inhibitory action of BP on neuronal AChRs: (1) BP first binds to AChRs in the resting state, decreasing the probability of ion channel opening, (2) the remnant fraction of open ion channels is subsequently decreased by accelerating the desensitization process, and finally (3) BP interacts with a binding domain located between the serine (position 9') and valine (position 13') rings that is shared with the NCA phencyclidine and other tricyclic antidepressants. The homologous location in the alpha3beta4 AChR is between the serine and valine/phenylalanine rings. This new evidence opens a window for further investigation using AChRs as targets for the action of safer antidepressants and novel antiaddictive compounds.
Collapse
Affiliation(s)
- Hugo R Arias
- Department of Pharmaceutical Sciences, College of Pharmacy, Midwestern University, Glendale, Arizona 85308, USA
| | | | | |
Collapse
|
30
|
Hemodynamic and Cardiac Neurotransmitter-releasing Effects in Conscious Dogs of Attention- and Wake-promoting Agents: A Comparison of d-Amphetamine, Atomoxetine, Modafinil, and a Novel Quinazolinone H3 Inverse Agonist. J Cardiovasc Pharmacol 2009; 53:52-9. [DOI: 10.1097/fjc.0b013e318195a470] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
31
|
Abstract
This article reviews the most common pharmacologic options in the treatment of sleep disorders in children. Despite the high prevalence of sleep disorders in children, there is a paucity of education and information available on the pharmacologic management of sleep disorders in children. The principles of sleep physiology and pathophysiology that help provide more rational pharmacologic management are discussed. Medications are typically not Food and Drug Administration (FDA) approved for the pediatric age range or for the specific sleep disorder. Medications have a role for insomnia, narcolepsy, parasomnias, and sleep-related movement disorders. The available choices of hypnotics are reviewed. Medications to increase alertness of narcoleptics and decrease cataplexy are discussed. The use of dopaminergic agents for Restless Legs Syndrome is reviewed. The potential use of medication in sleep apnea is also reviewed. Pharmacologic guidelines need to be developed specifically for sleep disorders in children. Ideally, these guidelines should be FDA approved for the specific sleep disorder and for the pediatric age range. The development of easy to swallow, chewable or liquid forms of these medications are needed. Training programs should play the lead role in enhancing pediatricians' knowledge of the pharmacologic treatment of sleep disorders in children.
Collapse
|
32
|
Abstract
Modafinil (2-[(Diphenylmethyl) sulfinyl] acetamide, Provigil) is an FDA-approved medication with wake-promoting properties. Pre-clinical studies of modafinil suggest a complex profile of neurochemical and behavioral effects, distinct from those of amphetamine. In addition, modafinil shows initial promise for a variety of off-label indications in psychiatry, including treatment-resistant depression, attention-deficit/hyperactivity disorder, and schizophrenia. Cognitive dysfunction may be a particularly important emerging treatment target for modafinil, across these and other neuropsychiatric disorders. We aimed to comprehensively review the empirical literature on neurochemical actions of modafinil, and effects on cognition in animal models, healthy adult humans, and clinical populations. We searched PubMed with the search term 'modafinil' and reviewed all English-language articles for neurochemical, neurophysiological, cognitive, or information-processing experimental measures. We additionally summarized the pharmacokinetic profile of modafinil and clinical efficacy in psychiatric patients. Modafinil exhibits robust effects on catecholamines, serotonin, glutamate, gamma amino-butyric acid, orexin, and histamine systems in the brain. Many of these effects may be secondary to catecholamine effects, with some selectivity for cortical over subcortical sites of action. In addition, modafinil (at well-tolerated doses) improves function in several cognitive domains, including working memory and episodic memory, and other processes dependent on prefrontal cortex and cognitive control. These effects are observed in rodents, healthy adults, and across several psychiatric disorders. Furthermore, modafinil appears to be well-tolerated, with a low rate of adverse events and a low liability to abuse. Modafinil has a number of neurochemical actions in the brain, which may be related to primary effects on catecholaminergic systems. These effects are in general advantageous for cognitive processes. Overall, modafinil is an excellent candidate agent for remediation of cognitive dysfunction in neuropsychiatric disorders.
Collapse
Affiliation(s)
- Michael J Minzenberg
- Imaging Research Center, Davis School of Medicine, UC-Davis Health System, University of California, Sacramento, CA 95817, USA.
| | | |
Collapse
|
33
|
Brooks PL, Peever JH. Glycinergic and GABA(A)-mediated inhibition of somatic motoneurons does not mediate rapid eye movement sleep motor atonia. J Neurosci 2008; 28:3535-45. [PMID: 18385312 PMCID: PMC6671096 DOI: 10.1523/jneurosci.5023-07.2008] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2007] [Revised: 01/28/2008] [Accepted: 02/18/2008] [Indexed: 01/29/2023] Open
Abstract
A hallmark of rapid eye movement (REM) sleep is a potent suppression of postural muscle tone. Motor control in REM sleep is unique because it is characterized by flurries of intermittent muscle twitches that punctuate muscle atonia. Because somatic motoneurons are bombarded by strychnine-sensitive IPSPs during REM sleep, it is assumed that glycinergic inhibition underlies REM atonia. However, it has never been determined whether glycinergic inhibition of motoneurons is indeed responsible for triggering the loss of postural muscle tone during REM sleep. Therefore, we used reverse microdialysis, electrophysiology, and pharmacological and histological methods to determine whether glycinergic and/or GABA(A)-mediated neurotransmission at the trigeminal motor pool mediates masseter muscle atonia during REM sleep in rats. By antagonizing glycine and GABA(A) receptors on trigeminal motoneurons, we unmasked a tonic glycinergic/GABAergic drive at the trigeminal motor pool during waking and non-rapid eye movement (NREM) sleep. Blockade of this drive potently increased masseter muscle tone during both waking and NREM sleep. This glycinergic/GABAergic drive was immediately switched-off and converted into a phasic glycinergic drive during REM sleep. Blockade of this phasic drive potently provoked muscle twitch activity in REM sleep; however, it did not prevent or reverse REM atonia. Muscle atonia in REM even persisted when glycine and GABA(A) receptors were simultaneously antagonized and trigeminal motoneurons were directly activated by glutamatergic excitation, indicating that a powerful, yet unidentified, inhibitory mechanism overrides motoneuron excitation during REM sleep. Our data refute the prevailing hypothesis that REM atonia is caused by glycinergic inhibition. The inhibitory mechanism mediating REM atonia therefore requires reevaluation.
Collapse
Affiliation(s)
- Patricia L Brooks
- Department of Cell and Systems Biology, Systems Neurobiology Laboratory, University of Toronto, Toronto, Ontario, Canada M5S 3G5
| | | |
Collapse
|
34
|
Abstract
Narcolepsy is characterized by excessive daytime sleepiness (EDS), cataplexy and/or other dissociated manifestations of rapid eye movement (REM) sleep (hypnagogic hallucinations and sleep paralysis). Narcolepsy is currently treated with amphetamine-like central nervous system (CNS) stimulants (for EDS) and antidepressants (for cataplexy). Some other classes of compounds such as modafinil (a non-amphetamine wake-promoting compound for EDS) and gamma-hydroxybutyrate (GHB, a short-acting sedative for EDS/fragmented nighttime sleep and cataplexy) given at night are also employed. The major pathophysiology of human narcolepsy has been recently elucidated based on the discovery of narcolepsy genes in animals. Using forward (i.e., positional cloning in canine narcolepsy) and reverse (i.e., mouse gene knockout) genetics, the genes involved in the pathogenesis of narcolepsy (hypocretin/orexin ligand and its receptor) in animals have been identified. Hypocretins/orexins are novel hypothalamic neuropeptides also involved in various hypothalamic functions such as energy homeostasis and neuroendocrine functions. Mutations in hypocretin-related genes are rare in humans, but hypocretin-ligand deficiency is found in many narcolepsy-cataplexy cases. In this review, the clinical, pathophysiological and pharmacological aspects of narcolepsy are discussed.
Collapse
Affiliation(s)
- Seiji Nishino
- Stanford University School of Medicine, Department of Psychiatry and Behavioral Sciences, Sleep and Circadian, Neurobiology Laboratory, Center for Narcolepsy, 1201 Welch Road, P213, Palo Alto, CA 94304, USA.
| |
Collapse
|
35
|
Takakusaki K, Takahashi K, Saitoh K, Harada H, Okumura T, Kayama Y, Koyama Y. Orexinergic projections to the cat midbrain mediate alternation of emotional behavioural states from locomotion to cataplexy. J Physiol 2005; 568:1003-20. [PMID: 16123113 PMCID: PMC1464186 DOI: 10.1113/jphysiol.2005.085829] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Orexinergic neurones in the perifornical lateral hypothalamus project to structures of the midbrain, including the substantia nigra and the mesopontine tegmentum. These areas contain the mesencephalic locomotor region (MLR), and the pedunculopontine and laterodorsal tegmental nuclei (PPN/LDT), which regulate atonia during rapid eye movement (REM) sleep. Deficiencies of the orexinergic system result in narcolepsy, suggesting that these projections are concerned with switching between locomotor movements and muscular atonia. The present study characterizes the role of these orexinergic projections to the midbrain. In decerebrate cats, injecting orexin-A (60 microm to 1.0 mm, 0.20-0.25 microl) into the MLR reduced the intensity of the electrical stimulation required to induce locomotion on a treadmill (4 cats) or even elicit locomotor movements without electrical stimulation (2 cats). On the other hand, when orexin was injected into either the PPN (8 cats) or the substantia nigra pars reticulata (SNr, 4 cats), an increased stimulus intensity at the PPN was required to induce muscle atonia. The effects of orexin on the PPN and the SNr were reversed by subsequently injecting bicuculline (5 mm, 0.20-0.25 microl), a GABA(A) receptor antagonist, into the PPN. These findings indicate that excitatory orexinergic drive could maintain a higher level of locomotor activity by increasing the excitability of neurones in the MLR, while enhancing GABAergic effects on presumably cholinergic PPN neurones, to suppress muscle atonia. We conclude that orexinergic projections from the hypothalamus to the midbrain play an important role in regulating motor behaviour and controlling postural muscle tone and locomotor movements when awake and during sleep. Furthermore, as the excitability is attenuated in the absence of orexin, signals to the midbrain may induce locomotor behaviour when the orexinergic system functions normally but elicit atonia or narcolepsy when the orexinergic function is disturbed.
Collapse
Affiliation(s)
- Kaoru Takakusaki
- Department of Physiology, Asahikawa Medical College, Midorigaoka-higashi 2-1, Asahikawa 078-8510, Japan
| | | | | | | | | | | | | |
Collapse
|
36
|
Wisor JP, Eriksson KS. Dopaminergic-adrenergic interactions in the wake promoting mechanism of modafinil. Neuroscience 2005; 132:1027-34. [PMID: 15857707 DOI: 10.1016/j.neuroscience.2005.02.003] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2004] [Revised: 01/28/2005] [Accepted: 02/02/2005] [Indexed: 10/25/2022]
Abstract
Adrenergic signaling regulates the timing of sleep states and sleep state-dependent changes in muscle tone. Recent studies indicate a possible role for noradrenergic transmission in the wake-promoting action of modafinil, a widely used agent for the treatment of excessive sleepiness. We now report that noradrenergic projections from the locus coeruleus to the forebrain are not necessary for the wake-promoting action of modafinil. The efficacy of modafinil was maintained after treatment of C57BL/6 mice with N-(2-chloroethyl)-N-ethyl 2-bromobenzylamine (DSP-4), which eliminates all noradrenaline transporter-bearing forebrain noradrenergic projections. However, the necessity for adrenergic receptors in the wake-promoting action of modafinil was demonstrated by the observation that the adrenergic antagonist terazosin suppressed the response to modafinil in DSP-4 treated mice. The wake-promoting efficacy of modafinil was also blunted by the dopamine autoreceptor agonist quinpirole. These findings implicate non-noradrenergic, dopamine-dependent adrenergic signaling in the wake-promoting mechanism of modafinil. The anatomical specificity of these dopaminergic-adrenergic interactions, which are present in forebrain areas that regulate sleep timing but not in brain stem areas that regulate sleep state-dependent changes in muscle tone, may explain why modafinil effectively treats excessive daytime sleepiness in narcolepsy but fails to prevent the loss of muscle tone that occurs in narcoleptic patients during cataplexy.
Collapse
Affiliation(s)
- J P Wisor
- Molecular Neurobiology Laboratory, SRI International, Menlo Park, CA 94025, USA.
| | | |
Collapse
|
37
|
Abstract
Narcolepsy is a syndrome of unknown aetiology characterised by excessive daytime sleepiness (often severe) usually in association with cataplexy (brief episodes of partial or complete muscle paralysis) and often with other uncommon symptoms. Due to limited disease-specific knowledge, medication treatment for this condition has focussed on specific symptom amelioration rather than improving or eliminating underlying disease mechanisms. Such treatment generally consists of stimulants for daytime sleepiness and anticataplectic medication for cataplexy; hence, both types of agents are reviewed in this article. Recent discoveries, including the finding that canine familial narcolepsy is caused by a single gene defect in the hypocretin receptor, coupled with the findings in human narcoleptics of undetectable hypocretin levels in the CSF and of severe hypocretin-containing neuronal atrophy in brains of deceased narcoleptics, have shifted the focus of narcolepsy treatment research to the hypocretin system. The hope is that a single agent can be developed to provide effective treatment for all symptoms of narcolepsy. While the mechanism of action in narcolepsy is unknown, gamma-hydroxybutyrate (GHB) is proving to be such an agent. Interestingly, GHB is not known to impact hypocretin pathways in the brain, yet specific research exploring this possible interaction has not been performed. The market for medications limited to use by narcoleptics is small because of the relatively low prevalence of narcolepsy; however, the prevalence of clinically important daytime sleepiness and/or fatigue is surprisingly high. New agents that effectively manage the sleepiness of narcolepsy thus have a much larger potential for appropriate use in treating sleepiness and fatigue in the general population. This fact has recently been demonstrated by the tremendous success of modafinil, a drug introduced to the market a little over 2 years ago, which was developed to treat sleepiness in narcolepsy but now is used in a much larger patient population.
Collapse
Affiliation(s)
- J Black
- Stanford Sleep Disorders Clinic, 401, Quarry Road, Suite 3301, Stanford, CA 94305, USA.
| | | |
Collapse
|
38
|
Abstract
OBJECTIVE To determine the nature of the relationship between schizophrenia-like psychosis and narcolepsy. BACKGROUND A relationship between schizophrenia and narcolepsy has long been postulated due to the association of schizophrenia-like psychosis with narcolepsy and its treatment. METHOD We report two patients who presented with schizophrenia-like psychosis of narcolepsy and review the literature regarding possible shared neurobiology between the two disorders that might explain their co-occurrence. RESULTS There appears to be little in the way of common pathology between these two conditions when symptoms, human leukocyte antigen associations, rapid eye movement sleep architecture, D2-dopamine receptor changes, and hypocretinergic function are examined. CONCLUSIONS The available literature suggests that schizophrenia-like psychosis in narcolepsy is most commonly medication related or a chance co-occurrence, with limited evidence for a separate psychosis of narcolepsy.
Collapse
Affiliation(s)
- Mark Walterfang
- Neuropsychiatry Unit, Royal Melbourne Hospital, Parkville, Victoria, Australia.
| | | | | |
Collapse
|
39
|
Abstract
Recent studies provide valid criteria that help differentiate idiopathic narcolepsy from other disorders of excessive daytime somnolence [3]. Research to date suggests that idiopathic narcolepsy might properly be considered a disorder of excessive sleepiness with dysfunctional REM-sleep mechanisms, clinically evidenced as cataplexy and electrophysiologically recognized as SOREMPs. Given these criteria, a diagnosis can generally be made using a combination of history, PSG, and MSLT. Traditionally, the medical treatment of idiopathic narcolepsy has centered on a two-drug regimen (stimulants for sleepiness and TCAs for cataplexy and auxiliary symptoms). Some newer medications are proving efficacious for sleepiness with minimal adverse effects, whereas others may provide a single-drug regimen that simultaneously addresses sleepiness and cataplexy [18]. New research has allowed some experts to hypothesize that idiopathic narcolepsy may be the result of a genetic predisposition to autoimmune disease [176]. It is possible that aberrant genetic coding of elements in the hypocretin/orexin systems allows a sensitivity to inducible and possibly virally mediated changes, which leave cells in the lateral hypothalamus susceptible to autoimmune attack [96]. As such, genetic screening of high-risk individuals might eventually rationalize the prophylactic use of immunosuppressants in some instances. In the future, for atypical cases(poorly responsive to therapy), genetic, CSF, and brain imaging studies, and possibly even neuronal transplantation may prove beneficial in the assessment and treatment of idiopathic narcolepsy.
Collapse
Affiliation(s)
- Mark E Dyken
- Department of Neurology, Sleep Disorders Center, University of Iowa Roy J. and Lucille A. Carver College of Medicine, 200 Hawkins Drive, Iowa City, IA 52242, USA.
| | | |
Collapse
|
40
|
Dauvilliers Y, Carlander B, Billiard M. La narcolepsie, de Westphal à l’hypocrétine. Presse Med 2004; 33:1593-600. [PMID: 15685112 DOI: 10.1016/s0755-4982(04)99000-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
CLINICAL DATA Narcolepsy is a poorly known disease, though not exceptional, with a prevalence of 25 to 35 per 100,000 according to various surveys. Its onset can be anytime from childhood to the fifties with a peak in the second decade. It is characterized by two cardinal symptoms, irresistible sleep episodes and cataplexy or sudden loss of muscle tone triggered by emotional situations. The other symptoms, referred to as accessory due to their inconstancy, are hypnagogic hallucinations, sleep paralysis and disturbed nocturnal sleep. Its diagnosis relies on the identification of the cardinal symptoms. Laboratory tests are required to confirm the diagnosis before initiation of a life-long treatment. Theses test include: all-night and daytime polysomnography documenting sleep-onset REM periods, HLA typing, showing the association with HLA DQB1*0602, and, in unclear cases only, measurement of cerebro-spinal fluid (CSF) hypocretine-1 showing values below 110pg/ml, highly specific of narcolepsy with cataplexy. Pathophysiology owes a lot to the existence of a natural canine model, the narcoleptic dog. Irresistible sleep episodes and cataplexy exhibit different pharmacological control, the former depending on dopaminergic systems and the latter on noradrenergic systems. The most remarkable findings of the last twenty years are the close association with HLA DQB1*0602, the identification of a mutation of hypocretin receptor 2 in the narcoleptic dog and the absence of CSF hypocretin-1 in 90% of patients. An autoimmune mechanism is suggested but not evidenced. THREE-FOLD TREATMENT: First line treatment of irresistible sleep episodes in modafinil, Cataplexy or tricyclic antidepressants or sodium oxybate, and disturbed nocturnal sleep by hypnotics or sodium oxybate. Current therapeutic research is oriented towards hypocretin agonists and immunosuppressors.
Collapse
|
41
|
|
42
|
Boehmer L, Wu MF, John J, Siegel J. Treatment with immunosuppressive and anti-inflammatory agents delays onset of canine genetic narcolepsy and reduces symptom severity. Exp Neurol 2004; 188:292-9. [PMID: 15246829 PMCID: PMC8788643 DOI: 10.1016/j.expneurol.2004.04.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2003] [Revised: 04/05/2004] [Accepted: 04/07/2004] [Indexed: 11/30/2022]
Abstract
All Doberman pinschers and Labrador retrievers homozygous for a mutation of the hypocretin (orexin) receptor-2 (hcrtr2) gene develop narcolepsy under normal conditions. Degenerative changes and increased display of major histocompatibility complex class II antigens have been linked to symptom onset in genetically narcoleptic Doberman pinschers. This suggests that the immune system may contribute to neurodegenerative changes and narcoleptic symptomatology in these dogs. We therefore attempted to alter the course of canine genetic narcolepsy, as an initial test of principle, by administering a combination of three immunosuppressive and anti-inflammatory drugs chosen to suppress the immune response globally. Experimental dogs were treated with a combination of methylprednisolone, methotrexate and azathioprine orally starting within 3 weeks after birth, and raised in an environment that minimized pathogen exposure. Symptoms in treated and untreated animals were quantified using the food elicited cataplexy test (FECT), modified FECT and actigraphy. With drug treatment, time to cataplexy onset more than doubled, time spent in cataplexy during tests was reduced by more than 90% and nighttime sleep periods were consolidated. Short-term drug administration to control dogs did not reduce cataplexy symptoms, demonstrating that the drug regimen did not directly affect symptoms. Treatment was stopped at 6 months, after which experimental animals remained less symptomatic than controls until at least 2 years of age. This treatment is the first shown to affect symptom development in animal or human genetic narcolepsy. Our findings show that hcrtr2 mutation is not sufficient for the full symptomatic development of canine genetic narcolepsy and suggest that the immune system may play a role in the development of this disorder.
Collapse
Affiliation(s)
- L.N. Boehmer
- Department of Psychiatry, University of California at Los Angeles, Los Angeles, CA 90095, USA
- Neurobiology Research (151A3), Veterans Administration Greater Los Angeles Healthcare System, North Hills, CA 91343, USA
| | - M.-F. Wu
- Neurobiology Research (151A3), Veterans Administration Greater Los Angeles Healthcare System, North Hills, CA 91343, USA
| | - J. John
- Department of Psychiatry, University of California at Los Angeles, Los Angeles, CA 90095, USA
- Neurobiology Research (151A3), Veterans Administration Greater Los Angeles Healthcare System, North Hills, CA 91343, USA
| | - J.M. Siegel
- Department of Psychiatry, University of California at Los Angeles, Los Angeles, CA 90095, USA
- Neurobiology Research (151A3), Veterans Administration Greater Los Angeles Healthcare System, North Hills, CA 91343, USA
- Brain Research Institute, University of California at Los Angeles, Los Angeles, CA 90095, USA
- Corresponding author. Neurobiology Research (151A3), Sepulveda VAGLAHS, 16111 Plummer Street, North Hills, CA 91343. Fax: +1-818-895-9575. (J.M. Siegel)
| |
Collapse
|
43
|
Schatzberg SJ, Cutter-Schatzberg K, Nydam D, Barrett J, Penn R, Flanders J, deLahunta A, Linx L, Mignot E. The Effect of Hypocretin Replacement Therapy in a 3-Year-Old Weimaraner with Narcolepsy. J Vet Intern Med 2004. [DOI: 10.1111/j.1939-1676.2004.tb02590.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
44
|
Abstract
Narcolepsy is a disorder of impaired expression of wakefulness and rapid-eye-movement (REM) sleep. This manifests as excessive daytime sleepiness and expression of individual physiological correlates of REM sleep that include cataplexy and sleep paralysis (REM sleep atonia intruding into wakefulness), impaired maintenance of REM sleep atonia (e.g. REM sleep behaviour disorder [RBD]), and dream imagery intruding into wakefulness (e.g. hypnagogic and hypnopompic hallucinations). Excessive sleepiness typically begins in the second or third decade followed by expression of auxiliary symptoms. Only cataplexy exhibits a high specificity for diagnosis of narcolepsy. While the natural history is poorly defined, narcolepsy appears to be lifelong but not progressive. Mild disease severity, misdiagnoses or long delays in cataplexy expression often cause long intervals between symptom onset, presentation and diagnosis. Only 15-30% of narcoleptic individuals are ever diagnosed or treated, and nearly half first present for diagnosis after the age of 40 years. Attention to periodic leg movements (PLM), sleep apnoea and RBD is particularly important in the management of the older narcoleptic patient, in whom these conditions are more likely to occur. Diagnosis requires nocturnal polysomnography (NPSG) followed by multiple sleep latency testing (MSLT). The NPSG of a narcoleptic patient may be totally normal, or demonstrate the patient has a short nocturnal REM sleep latency, exhibits unexplained arousals or PLM. The MSLT diagnostic criteria for narcolepsy include short sleep latencies (<8 minutes) and at least two naps with sleep-onset REM sleep. Treatment includes counselling as to the chronic nature of narcolepsy, the potential for developing further symptoms reflective of REM sleep dyscontrol, and the hazards associated with driving and operating machinery. Elderly narcoleptic patients, despite age-related decrements in sleep quality, are generally less sleepy and less likely to evidence REM sleep dyscontrol. Nonpharmacological management also includes maintenance of a strict wake-sleep schedule, good sleep hygiene, the benefits of afternoon naps and a programme of regular exercise. Thereafter, treatment is highly individualised, depending on the severity of daytime sleepiness, cataplexy and sleep disruption. Wake-promoting agents include the traditional psychostimulants. More recently, treatment with the 'activating' antidepressants and the novel wake-promoting agent modafinil has been advocated. Cataplexy is especially responsive to antidepressants which enhance synaptic levels of noradrenaline (norepinephrine) and/or serotonin. Obstructive sleep apnoea and PLMs are more common in narcolepsy and should be suspected when previously well controlled older narcolepsy patients exhibit a worsening of symptoms. The discovery that narcolepsy/cataplexy results from the absence of neuroexcitatory properties of the hypothalamic hypocretin-peptidergic system will significantly advance understanding and treatment of the symptom complex in the future.
Collapse
|
45
|
Pelayo R, Chen W, Monzon S, Guilleminault C. Pediatric sleep pharmacology: you want to give my kid sleeping pills? Pediatr Clin North Am 2004; 51:117-34. [PMID: 15008585 DOI: 10.1016/s0031-3955(03)00179-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
There is a need for greater information about the pharmacologic management of sleep disorders in children. Pharmacologic guidelines must be developed specifically for sleep disorders in children. Ideally, these guidelines should be approved by the Food and Drug Administration for a specific sleep disorder or for the pediatric age range. This approval prevents physicians from being forced to prescribe medications as an "off label" indication. Development of easy-to-swallow, chewable, or liquid forms of these medications would be well received by parents everywhere. When these are not available, instructions for compounding these medications into a suspension by pharmacists are needed. Integration of behavioral and pharmacologic treatments may yield better patient outcomes. This approach requires pediatricians to have a comprehensive understanding of clinical sleep disorders in children. Training programs should play the lead role in enhancing pediatricians' knowledge of the pharmacologic treatment of sleep disorders in children.
Collapse
Affiliation(s)
- Rafael Pelayo
- Department of Pediatrics, Psychiatry, and Behavioral Science, Stanford University School of Medicine, 401 Quarry Road, Stanford, CA 94305, USA.
| | | | | | | |
Collapse
|
46
|
Abstract
UNLABELLED Narcolepsy is a chronic debilitating sleep disorder first described in the late 19th century. It is characterized by two major symptoms, excessive daytime sleepiness and cataplexy, and two so-called auxiliary symptoms, hypnagogic hallucinations and sleep paralysis. The final diagnosis relies on polysomnography showing the presence of sleep onset rapid eye movement periods (SOREMPs) during the multiple sleep latency test. The presence of HLA DQA1*0102-DQB1*0602 is supportive of the diagnosis. The pathophysiology of the disorder is still unknown but an imbalance between monoamines and acetylcholine is generally accepted. Recent findings in narcoleptic dogs, a natural model of narcolepsy, and in knockout mice revealed that a mutation of type 2 hypocretin receptor plays a major role in the etiology of narcolepsy. Up to now, no mutation has been found in humans except a case of early onset and atypical narcolepsy. However, a marked reduction of hypocretin type 1 has been found in the cerebrospinal fluid (CSF) of a majority of patients and a global loss of hypocretins was noted in post-mortem brain tissue of narcoleptic subjects. Conversely, no hypocretin neuron degeneration has been observed in the genetic form of narcolepsy in dogs but no trace of hypocretin was seen in the brain or the CSF in cases of sporadic canine narcolepsy. This suggests that different hypocretinergic mechanisms are involved in sporadic and genetic forms of canine narcolepsy. Treatment has not evolved significantly over the last few years. However, new drugs, such as hypocretin agonists, are currently being developed. SIGNIFICANCE After the discovery of the type 2 hypocretin receptor mutation in canine narcolepsy and the finding of a CSF hypocretin-1 deficiency in human narcolepsy, the major stream of research has involved the hypocretinergic system. However, other lines of research deserve to be pursued simultaneously, in view of comprehensive advancements in the understanding of narcolepsy.
Collapse
Affiliation(s)
- Yves Dauvilliers
- Service de Neurologie B, Hôpital Gui de Chauliac, 80 avenue Augustin Fliche, 34295 Montpellier Cedex 5, France
| | | | | |
Collapse
|
47
|
Rinne JO, Hublin C, Någren K, Helenius H, Partinen M. Unchanged striatal dopamine transporter availability in narcolepsy: a PET study with [11C]-CFT. Acta Neurol Scand 2004; 109:52-5. [PMID: 14653850 DOI: 10.1034/j.1600-0404.2003.00175.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
OBJECTIVE To investigate dopamine reuptake sites (dopamine transporter) in the caudate nucleus and putamen in narcolepsy. PATIENTS AND METHODS Ten patients with narcolepsy and 15 controls were studied with positron emission tomography. A cocaine analogue [11C]-CFT was used as a radioligand. RESULTS The uptake of[11C]-CFT was within normal limits (89% of age-adjusted control mean in the caudate nucleus and 91% in the putamen) in patients with narcolepsy. CONCLUSIONS No evidence of altered striataldopamine transporter availability was found in narcolepsy.
Collapse
Affiliation(s)
- J O Rinne
- Turku PET-Centre, University of Turku, Turku, Finland.
| | | | | | | | | |
Collapse
|
48
|
Caballero J, Nahata MC. Atomoxetine hydrochloride for the treatment of attention-deficit/hyperactivity disorder. Clin Ther 2003; 25:3065-83. [PMID: 14749146 DOI: 10.1016/s0149-2918(03)90092-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
BACKGROUND Attention-deficit/hyperactivity disorder (ADHD) occurs in approximately 3% to 10% of the pediatric population. Most of the drugs typically used to treat ADHD are stimulants, which, because of their addictive properties and potential for abuse, are controlled substances. Although these drugs are the mainstay of treatment for ADHD, nearly one third of patients may not respond to or be able to tolerate them. Atomoxetine hydrochloride, a nonstimulant approved by the US Food and Drug Administration for the treatment of ADHD, may provide an alternative to the use of stimulants. OBJECTIVE The goal of this review was to describe the chemistry, mechanism of action, pharmacokinetics, drug interactions, and efficacy and safety profiles of atomoxetine in pediatric and adult patients with ADHD, as well as relevant pharmacoeconomic considerations. METHODS Relevant publications were identified through a search of the English-language literature indexed on PreMEDLINE and MEDLINE (1966-May 2003) using the search terms atomoxetine, tomoxetine, and LY139603. These terms were also applied to the Google search engine. All articles were reviewed for suitability for inclusion. The manufacturer of atomoxetine provided both published and unpublished data. RESULTS In the data reviewed, atomoxetine was more efficacious than placebo in patients with ADHD (P<0.05 to P<0.01). Therapeutic doses ranged from 45 mg or placebo (P<0.05). These results add support to the hypothesis that atomoxetine may not cause the increase in dopamine concentrations in the nucleus accumbens that is associated with pleasurable effects and abuse potential.
Collapse
Affiliation(s)
- Joshua Caballero
- Division of Pharmacy Practice and Administration, The Ohio State University College of Pharmacy, Columbus 43210, USA
| | | |
Collapse
|
49
|
Abstract
Human narcolepsy is a genetically complex disorder. Family studies indicate a 20-40 times increased risk of narcolepsy in first-degree relatives and twin studies suggest that nongenetic factors also play a role. The tight association between narcolepsy-cataplexy and the HLA allele DQB1*0602 suggests that narcolepsy has an autoimmune etiology. In recent years, extensive genetic studies in animals, using positional cloning in dogs and gene knockouts in mice, have identified abnormalities in hypothalamic hypocretin (orexin) neurotransmission as key to narcolepsy pathophysiology. Though most patients with narcolepsy-cataplexy are hypocretin deficient, mutations or polymorphisms in hypocretin-related genes are extremely rare. It is anticipated that susceptibility genes that are independent of HLA and impinge on the hypocretin neurotransmitter system are isolated in human narcolepsy.
Collapse
Affiliation(s)
- Dorothee Chabas
- Federation de neurologie, Batiment Paul Castaigne, Hopital Salpetriere, 47-83 Boulevard de l'hopital, 75 013 Paris, France.
| | | | | | | |
Collapse
|
50
|
Abstract
Narcolepsy is a neurological disorder characterized by excessive daytime sleepiness and cataplexy. Available treatments of narcolepsy include stimulants and antidepressants but the recent discovery of orexin/hypocretin deficiency in narcolepsy opens up new perspectives. Narcolepsy is a complex disorder involving genetic, immune and environmental factors. Although only a strong association is found with the HLA DQB1*0602 gene, other genetic susceptibility factors might be involved. Among these, the functional polymorphism of the catechol-O-methyltransferase (COMT) gene is critically involved in the severity of narcolepsy and in the response to the stimulant modafinil. Other pharmacogenetic targets include the orexinergic, noradrenergic and possibly the serotonergic pathways.
Collapse
Affiliation(s)
- Mehdi Tafti
- Biochemistry and Genetics Unit, Department of Psychiatry, Geneva University Hospitals, 2 Chemin du Petit-Bel-Air, CH-1225 Chêne-Bourg, Switzerland.
| | | |
Collapse
|