1
|
Hernández-Sarmiento LJ, Tamayo-Molina YS, Valdés-López JF, Urcuqui-Inchima S. Mayaro virus infection elicits a robust pro-inflammatory and antiviral response in human macrophages. Acta Trop 2024; 252:107146. [PMID: 38342287 DOI: 10.1016/j.actatropica.2024.107146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 02/07/2024] [Accepted: 02/07/2024] [Indexed: 02/13/2024]
Abstract
Mayaro virus (MAYV), the etiological agent of Mayaro fever (MAYF), is an emergent arbovirus pathogen belonging to Togaviridae family. MAYF is characterized by high inflammatory component that can cause long-lasting arthralgia that persists for months. Macrophages are viral targets and reservoirs, key components of innate immunity and host response. Given the importance of this pathogen, our aim was to determine the inflammatory and antiviral response of human monocyte-derived macrophages (MDMs) infected with MAYV. First, we established the replication kinetics of the virus. Thereafter, we determined the expression of pattern recognition receptors, NF-ĸB complex, interferons (IFNs), two interleukin 27 (IL27) subunits, IFN-stimulated genes (ISGs), and the production of cytokines/chemokines. We found that human MDMs are susceptible to MAYV infection in vitro, with a peak of viral particles released between 24- and 48-hours post-infection (h.p.i) at MOI 0.5, and between 12 and 24 h.p.i at MOI 1. Interestingly, we observed a significant decline in the production of infectious viral particles at 72 h.p.i that was associated with the induction of antiviral response and high cytotoxic effect of MAYV infection in MDMs. We observed modulation of several genes after MAYV infection, as well, we noted the activation of antiviral detection and response pathways (Toll-like receptors, RIG-I/MDA5, and PKR) at 48 h.p.i but not at 6 h.p.i. Furthermore, MAYV-infected macrophages express high levels of the three types of IFNs and the two IL27 subunits at 48 h.p.i. Moreover, we found higher production of IL6, IL1β, CXCL8/IL8, CCL2, and CCL5 at 48 h.p.i as compared to 6 h.p.i. A robust antiviral response (ISG15, APOBEC3A, IFITM1, and MX2) was observed at 48 but not at 6 h.p.i. The innate and antiviral responses of MAYV-infected MDMs differ at 6 and 48 h.p.i. We conclude that MAYV infection induces robust pro-inflammatory and antiviral responses in human primary macrophages.
Collapse
Affiliation(s)
| | - Y S Tamayo-Molina
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia
| | - Juan Felipe Valdés-López
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia
| | - Silvio Urcuqui-Inchima
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia.
| |
Collapse
|
2
|
Drosslerova M, Sterclova M, Taskova A, Hytych V, Richterova E, Bruzova M, Spunda M, Komarc M, Koziar Vasakova M. CCL2, CCL8, CXCL12 chemokines in resectable non-small cell lung cancer (NSCLC). Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2023; 167:335-339. [PMID: 36628560 DOI: 10.5507/bp.2022.050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 12/01/2022] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Complex networks of chemokines are part of the immune reaction targeted against tumor cells. Chemokines influence cancer growth. It is unclear whether the concentrations of chemokines at the time of NSCLC (non-small cell lung cancer) diagnosis differ from healthy controls and reflect the extent of NSCLC. AIMS To compare chemokine concentrations (CCL2, CCL8, CXCL12) in the plasma of patients with resectable NSCLC to those without cancer. To determine whether the chemokine concentrations differ relative to the stage of disease. METHODS Sixty-nine patients undergoing surgery for proven/suspected NSCLC were enrolled. They underwent standard diagnostic and staging procedures to determine resectability, surgery was performed. Forty-two patients were diagnosed with NSCLC, while 27patients had benign lung lesions and functioned as the control group. Chemokine concentrations in peripheral blood were assessed using ELISA. Parametric statistics were used for the analysis of results. RESULTS There were no differences in plasma chemokine concentrations in NSCLC patients compared to controls. CXCL12 concentrations correlated positively with tumor extent expressed as clinical stage, (mean values: stage I 5.08 ng/mL, SEM 0.59; stage II and IIIA 7.82 ng/mL; SEM 1.06; P=0.022). Patients with NSCLC stages II+IIIA had significantly higher CXCL12 concentrations than controls (mean values: stage II+IIIA 7.82 ng/mL; SEM 1.06; controls 5.3 ng/mL; SEM 0.46; P=0.017). CONCLUSION CXCL12 was related to tumor growth and could potentially be used as a biomarker of advanced disease.
Collapse
Affiliation(s)
- Marie Drosslerova
- Department of Respiratory Medicine, 1st Faculty of Medicine, Charles University and Thomayer University Hospital, Videnska 800, 140 00 Prague 4, Czech Republic
| | - Martina Sterclova
- Department of Respiratory Medicine, 1st Faculty of Medicine, Charles University and Thomayer University Hospital, Videnska 800, 140 00 Prague 4, Czech Republic
| | - Alice Taskova
- Department of Thoracic Surgery, Thomayer University Hospital, Videnska 800, 140 00 Prague 4, Czech Republic
| | - Vladislav Hytych
- Department of Thoracic Surgery, Thomayer University Hospital, Videnska 800, 140 00 Prague 4, Czech Republic
| | - Eva Richterova
- Department of Pathology and Molecular Medicine, 3rd Faculty of Medicine, Charles University and Thomayer University Hospital, Videnska 800, 140 00 Prague 4, Czech Republic
| | - Magdalena Bruzova
- Department of Pathology and Molecular Medicine, 3rd Faculty of Medicine, Charles University and Thomayer University Hospital, Videnska 800, 140 00 Prague 4, Czech Republic
| | - Miloslav Spunda
- Institute of Biophysics and Informatics, First Faculty of Medicine, Charles University, Salmovska 1, 120 00 Prague 2, Czech Republic
| | - Martin Komarc
- Institute of Biophysics and Informatics, First Faculty of Medicine, Charles University, Salmovska 1, 120 00 Prague 2, Czech Republic
| | - Martina Koziar Vasakova
- Department of Respiratory Medicine, 1st Faculty of Medicine, Charles University and Thomayer University Hospital, Videnska 800, 140 00 Prague 4, Czech Republic
| |
Collapse
|
3
|
Domaingo A, Jokesch P, Schweiger A, Gschwandtner M, Gerlza T, Koch M, Midwood KS, Kungl AJ. Chemokine Binding to Tenascin-C Influences Chemokine-Induced Immune Cell Migration. Int J Mol Sci 2023; 24:14694. [PMID: 37834140 PMCID: PMC10572825 DOI: 10.3390/ijms241914694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/15/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
Tenascin-C (TNC) is a complex glycoprotein of the extracellular matrix (ECM) involved in a plethora of (patho-)physiological processes, such as oncogenesis and inflammation. Since chemokines play an essential role in both disease processes, we have investigated here the binding of TNC to some of the key chemokines, namely CCL2, CCL26, CXCL8, CXCL10, and CXCL12. Thereby, a differential chemokine-TNC binding pattern was observed, with CCL26 exhibiting the highest and CCL2 the lowest affinity for TNC. Heparan sulfate (HS), another member of the ECM, proved to be a similarly high-affinity ligand of TNC, with a Kd value of 730 nM. Chemokines use glycosa-minoglycans such as HS as co-receptors to induce immune cell migration. Therefore, we assumed an influence of TNC on immune cell chemotaxis due to co-localization within the ECM. CCL26- and CCL2-induced mobilization experiments of eosinophils and monocytes, respectively, were thus performed in the presence and the absence of TNC. Pre-incubation of the immune cells with TNC resulted in a 3.5-fold increase of CCL26-induced eosinophil chemotaxis, whereas a 1.3-fold de-crease in chemotaxis was observed when monocytes were pre-incubated with CCL2. As both chemokines have similar HS binding but different TNC binding affinities, we speculate that TNC acts as an attenuator in monocyte and as an amplifier in eosinophil mobilization by impeding CCL2 from binding to HS on the one hand, and by reinforcing CCL26 to bind to HS on the other hand.
Collapse
Affiliation(s)
- Alissa Domaingo
- Institute of Pharmaceutical Sciences, Karl-Franzens-University Graz, Schubertstr. 1, 8010 Graz, Austria
| | - Philipp Jokesch
- Institute of Pharmaceutical Sciences, Karl-Franzens-University Graz, Schubertstr. 1, 8010 Graz, Austria
| | - Alexandra Schweiger
- Institute of Pharmaceutical Sciences, Karl-Franzens-University Graz, Schubertstr. 1, 8010 Graz, Austria
| | - Martha Gschwandtner
- Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Oxford OX3 7FY, UK
| | - Tanja Gerlza
- Institute of Pharmaceutical Sciences, Karl-Franzens-University Graz, Schubertstr. 1, 8010 Graz, Austria
| | - Manuel Koch
- Institute for Dental Research and Oral Musculoskeletal Biology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Joseph-Stelzmann-Str. 52, 50931 Cologne, Germany
| | - Kim S. Midwood
- Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Oxford OX3 7FY, UK
| | - Andreas J. Kungl
- Institute of Pharmaceutical Sciences, Karl-Franzens-University Graz, Schubertstr. 1, 8010 Graz, Austria
- Antagonis Biotherapeutics GmbH, Strasserhofweg 77a, 8045 Graz, Austria
| |
Collapse
|
4
|
Bardi G, Boselli L, Pompa PP. Anti-inflammatory potential of platinum nanozymes: mechanisms and perspectives. NANOSCALE 2023; 15:14284-14300. [PMID: 37584343 DOI: 10.1039/d3nr03016d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
Inflammation is a complex process of the body in response to pathogen infections or dysregulated metabolism, involving the recruitment and activation of immune system components. Repeated dangerous stimuli or uncontrolled immune effector mechanisms can result in tissue injury. Reactive Oxygen Species (ROS) play key roles in physiological cell signaling as well as in the destruction of internalized pathogens. However, aberrant ROS production and release have deleterious effects on the surrounding environment, making ROS regulation a priority to reduce inflammation. Most of the current anti-inflammatory therapies rely on drugs that impair the release of pro-inflammatory mediators. Nevertheless, increasing the enzymatic activity to reduce ROS levels could be an alternative or complementary therapeutic approach to decrease inflammation. Nanozymes are nanomaterials with high catalytic activity that mimic natural enzymes, allowing biochemical reactions to take place. Such functional particles typically show different and regenerable oxidation states or catalytically reactive surfaces offering long-term activity and stability. In this scenario, platinum-based nanozymes (PtNZs) exhibit broad and efficient catalytic functionalities and can reduce inflammation mainly through ROS scavenging, e.g. by catalase and superoxide dismutase reactions. Dose-dependent biocompatibility and immune compatibility of PtNZs have been shown in different cells and tissues, both in vitro and in vivo. Size/shape/surface engineering of the nanozymes could also potentiate their efficacy to act at different sites and/or steps of the inflammation process, such as cytokine removal or specific targeting of activated leukocytes. In the present review, we analyze key inflammation triggering processes and the effects of platinum nanozymes under exemplificative inflammatory conditions. We further discuss potential platinum nanozyme design and improvements to modulate and expand their anti-inflammatory action.
Collapse
Affiliation(s)
- Giuseppe Bardi
- Nanobiointeractions & Nanodiagnostics, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy.
| | - Luca Boselli
- Nanobiointeractions & Nanodiagnostics, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy.
| | - Pier Paolo Pompa
- Nanobiointeractions & Nanodiagnostics, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy.
| |
Collapse
|
5
|
Dar S, Koirala S, Khan A, Bellary MD, Patel AV, Mathew B, Singh R, Baigam N, Razzaq W, Abdin ZU, Khawaja UA. A Comprehensive Literature Review on Managing Systemic Lupus Erythematosus: Addressing Cardiovascular Disease Risk in Females and Its Autoimmune Disease Associations. Cureus 2023; 15:e43725. [PMID: 37727166 PMCID: PMC10505685 DOI: 10.7759/cureus.43725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 08/18/2023] [Indexed: 09/21/2023] Open
Abstract
This review aimed to evaluate the mechanism of premature cardiovascular disease (CVD) in systemic lupus erythematosus (SLE) patients, particularly in the female population, and emphasize the need for early management interventions; explore the association between SLE and two autoimmune diseases, myasthenia gravis (MG) and antiphospholipid antibody syndrome (APS), and their management strategies; and evaluate the effectiveness of pharmacological and non-pharmacological interventions in managing SLE, focusing on premenopausal females, females of childbearing age, and pregnant patients. We conducted a comprehensive literature review to achieve these objectives using various databases, including PubMed, Google Scholar, and Cochrane. The collected data were analyzed and synthesized to provide an evidence-based overview of SLE, its management strategies as an independent disease, and some disease associations. The treatment should be focused on remission, preventing organ damage, and improving the overall quality of life (QOL). Extensive emphasis should also be focused on diagnosing SLE and concurrent underlying secondary diseases timely and managing them appropriately.
Collapse
Affiliation(s)
- Saleha Dar
- Department of Adult Medicine, Louisiana State University Health Sciences Center, Shreveport, USA
| | - Sabina Koirala
- Department of Medicine, Gandaki Medical College, Pokhara, NPL
| | - Arooba Khan
- Department of Internal Medicine, Khyber Medical College, Peshawar, PAK
| | | | - Arya V Patel
- Department of Internal Medicine, Smt. Nathiba Hargovandas Lakhmichand (NHL) Municipal Medical College, Ahmedabad, IND
| | - Bejoi Mathew
- Department of Internal Medicine, Sri Devaraj Urs Medical College, Kolar, IND
| | - Rahul Singh
- Department of Medicine, Armed Forces Medical College, Pune, IND
| | - Nahida Baigam
- Department of Medicine, Association of Physicians of Pakistani Descent of North America (APPNA), Westmont, USA
| | - Waleed Razzaq
- Department of Internal Medicine, Services Hospital Lahore, Lahore, PAK
| | - Zain U Abdin
- Department of Medicine, District Head Quarter Hospital, Faisalabad, PAK
| | - Uzzam Ahmed Khawaja
- Department of Pulmonary and Critical Care Medicine, Jinnah Medical and Dental College, Karachi, PAK
- Department of Clinical and Translational Research, Dr. Ferrer BioPharma, South Miami, USA
| |
Collapse
|
6
|
Molczyk C, Singh RK. CXCR1: A Cancer Stem Cell Marker and Therapeutic Target in Solid Tumors. Biomedicines 2023; 11:biomedicines11020576. [PMID: 36831112 PMCID: PMC9953306 DOI: 10.3390/biomedicines11020576] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/10/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023] Open
Abstract
Therapy resistance is a significant concern while treating malignant disease. Accumulating evidence suggests that a subset of cancer cells potentiates tumor survival, therapy resistance, and relapse. Several different pathways regulate these purported cancer stem cells (CSCs). Evidence shows that the inflammatory tumor microenvironment plays a crucial role in maintaining the cancer stem cell pool. Typically, in the case of the tumor microenvironment, inflammatory pathways can be utilized by the tumor to aid in tumor progression; one such pathway is the CXCR1/2 pathway. The CXCR1 and CXCR2 receptors are intricately related, with CXCR1 binding two ligands that also bind CXCR2. They have the same downstream pathways but potentially separate roles in the tumor microenvironment. CXCR1 is becoming more well known for its role as a cancer stem cell identifier and therapeutic target. This review elucidates the role of the CXCR1 axis as a CSC marker in several solid tumors and discusses the utility of CXCR1 as a therapeutic target.
Collapse
|
7
|
Hernández-Sarmiento LJ, Valdés-López JF, Urcuqui-Inchima S. American-Asian- and African lineages of Zika virus induce differential pro-inflammatory and Interleukin 27-dependent antiviral responses in human monocytes. Virus Res 2023; 325:199040. [PMID: 36610657 PMCID: PMC10194209 DOI: 10.1016/j.virusres.2023.199040] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/23/2022] [Accepted: 01/04/2023] [Indexed: 01/06/2023]
Abstract
Zika virus (ZIKV) is an arbovirus that belongs to the Flaviviridae family and inflammatory responses play a critical role in ZIKV pathogenesis. As a first-line defense, monocytes are key components of innate immunity and host response to viruses. Monocytes are considered the earliest blood cell type to be infected by ZIKV and have been shown to be associated with ZIKV pathogenesis. The first ZIKV epidemic was reported in Africa and Asia although, it is less well known whether African- and Asian- lineages of ZIKV have different impacts on host immune response. We studied the pro-inflammatory and antiviral response of ZIKV-infected monocytes using publicly available RNA-seq analysis (GSE103114). We compared the transcriptomic profiles of human monocytes infected with ZIKV Puerto Rico strain (PRVABC59), American-Asian lineage, and ZIKV Nigeria strain (IBH30656), African lineage. We validated RNA-seq results by ELISA or RT-qPCR, in human monocytes infected with a clinical isolate of ZIKV from Colombia (American-Asian lineage), or with ZIKV from Dakar (African lineage). The transcriptomic analysis showed that ZIKV Puerto Rico strain promotes a higher pro-inflammatory response through TLR2 signaling and NF-kB activation and induces a strong IL27-dependent antiviral activity than ZIKV Nigeria strain. Furthermore, human monocytes are more susceptible to infection with ZIKV from Colombia than ZIKV from Dakar. Likewise, Colombian ZIKV isolate activated IL27 signaling and induced a robust antiviral response in an IFN-independent manner. Moreover, we show that treatment of monocytes with IL27 results in decreased release of ZIKV particles in a dose-dependent manner with an EC50 =2.870 ng/mL for ZIKV from Colombia and EC50 =10.23 ng/mL to ZIKV from Dakar. These findings highlight the differential inflammatory response and antiviral activity of monocytes infected with different lineages of ZIKV and may help better management of ZIKV-infected patients.
Collapse
Affiliation(s)
| | - Juan Felipe Valdés-López
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia
| | - Silvio Urcuqui-Inchima
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia.
| |
Collapse
|
8
|
CCL4 Regulates Eosinophil Activation in Eosinophilic Airway Inflammation. Int J Mol Sci 2022; 23:ijms232416149. [PMID: 36555793 PMCID: PMC9782438 DOI: 10.3390/ijms232416149] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Eosinophilic chronic rhinosinusitis (ECRS) is a refractory airway disease accompanied by eosinophilic inflammation, the mechanisms of which are unknown. We recently found that CCL4/MIP-1β-a specific ligand for CCR5 receptors-was implicated in eosinophil recruitment into the inflammatory site and was substantially released from activated eosinophils. Moreover, it was found in nasal polyps from patients with ECRS, primarily in epithelial cells. In the present study, the role of epithelial cell-derived CCL4 in eosinophil activation was investigated. First, CCL4 expression in nasal polyps from patients with ECRS as well as its role of CCL4 in eosinophilic airway inflammation were investigated in an in vivo model. Furthermore, the role of CCL4 in CD69 expression-a marker of activated eosinophils-as well as the signaling pathways involved in CCL4-mediated eosinophil activation were investigated. Notably, CCL4 expression, but not CCL5, CCL11, or CCL26, was found to be significantly increased in nasal polyps from patients with ECRS associated with eosinophil infiltration as well as in BEAS-2B cells co-incubated with eosinophils. In an OVA-induced allergic mouse model, CCL4 increased eosinophil accumulation in the nasal mucosa and the bronchoalveolar lavage (BALF). Moreover, we found that CD69 expression was upregulated in CCL4-stimulated eosinophils; similarly, phosphorylation of several kinases, including platelet-derived growth factor receptor (PDGFR)β, SRC kinase family (Lck, Src, and Yes), and extracellular signal-regulated kinase (ERK), was upregulated. Further, CCR5, PDGFRβ, and/or Src kinase inhibition partially restored CCL4-induced CD69 upregulation. Thus, CCL4, which is derived from airway epithelial cells, plays a role in the accumulation and activation of eosinophils at inflammatory sites. These findings may provide a novel therapeutic target for eosinophilic airway inflammation, such as ECRS.
Collapse
|
9
|
The Role of G Protein-Coupled Receptor Kinase 6 Regulation in Inflammation and Pain. Int J Mol Sci 2022; 23:ijms232415880. [PMID: 36555521 PMCID: PMC9784940 DOI: 10.3390/ijms232415880] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/09/2022] [Accepted: 12/10/2022] [Indexed: 12/15/2022] Open
Abstract
The G protein-coupled receptor kinase 6 is associated with inflammation and pathological pain. Impairment of GRK6 expression was described in chronic inflammatory diseases such as rheumatoid arthritis and this was shown to be accompanied by an imbalance of downstream signaling pathways. Here, we discuss novel aspects of GRK6 interaction and its impact upon hyperalgesia and inflammatory processes. In this review, we compile important findings concerning GRK6 regulation for a better pathophysiological understanding of the intracellular interaction in the context of inflammation and show clinical implications-for example, the identification of possible therapy goals in the treatment of chronic inflammatory hyperalgesia.
Collapse
|
10
|
Annamalai P, Thangam EB. Vitex trifolia L. modulates inflammatory mediators via down-regulation of the NF-κB signaling pathway in carrageenan-induced acute inflammation in experimental rats. JOURNAL OF ETHNOPHARMACOLOGY 2022; 298:115583. [PMID: 36028166 DOI: 10.1016/j.jep.2022.115583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 07/23/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Vitex trifolia L. (V. trifolia L.), commonly known as the three-leaved chaste tree, is extensively employed in traditional Chinese medicine (TCM) to treat various conditions associated with inflammation. AIM OF THE STUDY The present study aimed to delineate the molecular mechanisms responsible for the anti-inflammatory effect of V. trifolia L. in carrageenan (CA)-induced acute inflammation in experimental rats. MATERIALS AND METHODS CA-induced rat paw edema model was adopted to investigate the anti-inflammatory effect of methanolic extract from leaves of V. trifolia L. (VTME) in vivo. Leukocyte infiltration into the site of inflammation was determined by histopathological analysis. Further, the effect of VTME on CA-induced local and systemic levels of specific cytokines was quantified by enzyme-linked immunosorbent assay (ELISA). Moreover, its impact on the nuclear translocation of nuclear factor Kappa B (NF-κB) was analyzed by employing the western blotting technique. RESULTS VTME at the doses of 100 mg/kg and 200 mg/kg significantly inhibited the paw edema induced by CA (p < 0.05) and effectively reduced the inflammatory leukocyte infiltration. Further, VTME markedly inhibited the CA-induced levels of Interleukin (IL)-1β, IL-6, tumor necrosis factor (TNF)-α in tissue, and that of cytokine-induced neutrophil chemoattractant (CINC)-2/C-X-C motif chemokine (CXCL)3 and CINC-3/CXCL2 in tissue as well as in serum. On the other hand, VTME significantly upregulated the tissue concentration of anti-inflammatory cytokine IL-10. Moreover, VTME significantly attenuated the CA-induced IκBα degradation and nuclear translocation of NF-κB p65. CONCLUSIONS Our results demonstrate the potent anti-inflammatory effect of V. trifolia L. in vivo, providing insight into its molecular mechanism, which is mediated through down-regulation of NF-κB signal transduction.
Collapse
Affiliation(s)
- Parvathi Annamalai
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, 603203, Tamil Nadu, India.
| | - Elden Berla Thangam
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, 603203, Tamil Nadu, India.
| |
Collapse
|
11
|
Zajkowska M, Mroczko B. Chemokines in Primary Liver Cancer. Int J Mol Sci 2022; 23:ijms23168846. [PMID: 36012108 PMCID: PMC9408270 DOI: 10.3390/ijms23168846] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/04/2022] [Accepted: 08/08/2022] [Indexed: 11/16/2022] Open
Abstract
The liver is responsible for extremely important functions in the human body. In the liver’s structure, we distinguish between connective tissue (stroma) and parenchyma, the latter of which is formed from the basic structural and functional units of the liver—hepatocytes. There are many factors, that negatively affect the liver cells, contributing to their damage. This may lead to fibrosis, liver failure and, in consequence, primary liver cancer, which is the sixth most commonly diagnosed malignancy and the fourth leading cause of cancer death worldwide. Chemokines are a large family of secreted proteins. Their main role is to direct the recruitment and migration of cells to sites of inflammation or injury. Some authors suggest that these proteins might play a potential role in the development of many malignancies, including primary liver cancer. The aim of this study was to evaluate and summarize the knowledge regarding liver diseases, especially primary liver cancer (HCC) and the participation of chemokines in the development of this malignancy. Chemokines involved in the initiation of this type of tumor belong mainly to the CC and CXC chemokines. Their significant role in the course of hepatocellular carcinoma proves their usefulness in detecting and monitoring the course and treatment in patients with this disease.
Collapse
Affiliation(s)
- Monika Zajkowska
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland
- Correspondence: ; Tel.: +48-686-5168; Fax: +48-686-5169
| | - Barbara Mroczko
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland
- Department of Biochemical Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland
| |
Collapse
|
12
|
The Role of Heparan Sulfate in CCL26-Induced Eosinophil Chemotaxis. Int J Mol Sci 2022; 23:ijms23126519. [PMID: 35742962 PMCID: PMC9224159 DOI: 10.3390/ijms23126519] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 11/26/2022] Open
Abstract
Proinflammatory chemokine ligand 26 (CCL26, eotaxin-3) mediates transendothelial cell migration of eosinophils by binding and activating the G-protein-coupled (GPC) chemokine receptor 3 on the surface of eosinophilic cells. Here we have investigated the role of glycosaminoglycans (GAGs) as potential co-receptors in the process of CCL26-induced eosinophil chemotaxis. For this purpose, we have first identified the GAG-binding site of CCL26 by a site-directed mutagenesis approach in the form of an alanine screening. A panel of GAG-binding-deficient mutants has been designed, generated, and analyzed with respect to their binding affinities to heparan sulphate (HS) by isothermal fluorescence titration studies. This showed that basic amino acids in the α-helical part of CCL26 are strongly involved in GAG-binding. In chemotaxis experiments, we found that decreased GAG-binding affinity correlated with decreased chemotactic activity, which indicates an involvement of GAGs in eosinophil migration. This was further proven by the negative impact of heparinase III treatment and, independently, by the incubation of eosinophils with an anti heparan sulfate antibody. We finally investigated eosinophils’ proteoglycan (PG) expression patterns by real-time PCR, which revealed the highest expression level for serglycin. Including an anti-serglycin antibody in CCL26-induced eosinophil migration experiments reduced the chemotaxis of these immune cells, thereby proving the dependence of eosinophil mobilization on the proteoglycan serglycin.
Collapse
|
13
|
Abstract
Coronavirus disease 2019 (COVID-19) due to infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been an ongoing pandemic causing significant morbidity and mortality worldwide. The “cytokine storm” is a critical driving force in severe COVID-19 cases, leading to hyperinflammation, multi-system organ failure, and death. A paradigm shift is emerging in our understanding of the resolution of inflammation from a passive course to an active biochemical process driven by endogenous specialized pro-resolving mediators (SPMs), such as resolvins, protectins, lipoxins, and maresins. SPMs stimulate macrophage-mediated debris clearance and counter pro-inflammatory cytokine production, a process collectively termed as the “resolution of inflammation.” Hyperinflammation is not unique to COVID-19 and also occurs in neoplastic conditions, putting individuals with underlying health conditions such as cancer at elevated risk of severe SARS-CoV-2 infection. Despite approaches to block systemic inflammation, there are no current therapies designed to stimulate the resolution of inflammation in patients with COVID-19 or cancer. A non-immunosuppressive therapeutic approach that reduces the cytokine storm in patients with COVID-19 and cancer is urgently needed. SPMs are potent immunoresolvent and organ-protective lipid autacoids that stimulate the resolution of inflammation, facilitate clearance of infections, reduce thrombus burden, and promote a return to tissue homeostasis. Targeting endogenous lipid mediators, such as SPMs, offers an entirely novel approach to control SARS-CoV-2 infection and cancer by increasing the body’s natural reserve of pro-resolving mediators without overt toxicity or immunosuppression.
Collapse
Affiliation(s)
- Chantal Barksdale
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA.,Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA.,Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Franciele C Kipper
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA.,Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA.,Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Shreya Tripathy
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA.,Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA.,Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Selvakumar Subbian
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, NJ, 07103, USA
| | - Charles N Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02215, USA
| | - Dipak Panigrahy
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA. .,Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA. .,Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA.
| |
Collapse
|
14
|
Differential Effect of Light and Dark Period Sleep Fragmentation on Composition of Gut Microbiome and Inflammation in Mice. Life (Basel) 2021; 11:life11121283. [PMID: 34947814 PMCID: PMC8709399 DOI: 10.3390/life11121283] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/17/2021] [Accepted: 11/19/2021] [Indexed: 12/17/2022] Open
Abstract
Bi-directional interactions amongst the gut microbiota, immune system, and brain function are thought to be critical mediators of health and disease. The role sleep plays in mediating these interactions is not known. We assessed the effects of sleep fragmentation (SF) on the microbiota–gut–brain axis. Male C57BL/6NCrl mice (4 to 5 per cage, fed standard lab chow) experienced SF via mechanical stimulation at 2 min intervals during the light (SF) and dark (DD, dark disturbances) periods. Home cage (HC) controls were undisturbed. After 10 days, fecal samples were collected at light onset, midday, light offset, and midnight. Samples were also collected after 10 days without SF. Subsequently, the mice were randomized across groups and allowed 20 additional days of recovery followed by 10 days of SF or DD. To assess effects on the microbiota, 16S rRNA sequencing was used, and mesenteric lymph nodes (MLNs) and cortex and medial prefrontal cortex were analyzed using cytokine arrays. SF and DD produced significant alterations in the microbiota compared to HC, and DD had greater impact than SF on some organisms. SF produced marked suppression in MLNs of chemokines that regulate inflammation (CCL3, CCL4 and their receptor CCR5) and maintain the immune mucosal barrier (Cxcl13) at the same time that cortical cytokines (IL-33) indicated neuroinflammation. DD effects on immune responses were similar to HC. These data suggest that SF alters the microbiome and suppresses mucosal immunity at the same time that mediators of brain inflammation are upregulated. The translational implications for potential application to clinical care are compelling.
Collapse
|
15
|
Donnellan EM, O'Brien MB, Meade KG, Fair S. Comparison of the uterine inflammatory response to frozen-thawed sperm from high and low fertility bulls. Theriogenology 2021; 176:26-34. [PMID: 34564014 DOI: 10.1016/j.theriogenology.2021.09.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 07/19/2021] [Accepted: 09/16/2021] [Indexed: 12/29/2022]
Abstract
Some bulls with apparently normal semen quality yield unacceptably low pregnancy rates. We hypothesised that a differential uterine immunological response to sperm from high and low fertility bulls may contribute to these differences. The experimental model used was heifer follicular phase uterine explants incubated with frozen-thawed sperm from high and low fertility bulls (3-5 replicates per experiment). Inflammatory gene expression of IL1A, IL1B, IL6, TNFA and CXCL8 were assessed by qPCR and IL1-β and IL-8 were quantified in explant supernatants by ELISA. Neutrophil binding affinity to sperm from high and low fertility bulls was also assessed. There was a significant up-regulation of IL1A, IL1B and TNFA from frozen-thawed sperm, irrespective of fertility status, compared to the unstimulated control. This response was confirmed at the protein level, with an increase of IL-1β and IL-8 protein concentrations by 5 and 2.7 fold, respectively (P < 0.05). Although no significant differences in the inflammatory response at the gene or protein level were evident between high and low fertility bulls, more sperm from low compared to high fertility bulls bound to neutrophils (P < 0.05). Using bulls of unknown fertility, cauda epididymal sperm (CES) plus seminal plasma (SP) upregulated IL6 (P < 0.05) but there was no upregulation of any inflammatory gene expression for CES alone. Overall, this ex vivo study demonstrated an upregulation of inflammatory gene expression in the uterus in response to frozen-thawed bull sperm. While there was no difference between sperm from high and low fertility bulls, there was a greater binding affinity of low fertility sperm by neutrophils.
Collapse
Affiliation(s)
- E M Donnellan
- Laboratory of Animal Reproduction, Department of Biological Sciences, Biomaterials Research Cluster, Bernal Institute, Faculty of Science and Engineering, University of Limerick, Limerick, Ireland
| | - M B O'Brien
- Teagasc Animal & Grassland Research and Innovation Centre, Grange, Dunsany, Co. Meath, Ireland
| | - K G Meade
- School of Agriculture and Food Science, University College Dublin, Dublin 4, Ireland
| | - S Fair
- Laboratory of Animal Reproduction, Department of Biological Sciences, Biomaterials Research Cluster, Bernal Institute, Faculty of Science and Engineering, University of Limerick, Limerick, Ireland.
| |
Collapse
|
16
|
Zhang HJ, Liao HY, Bai DY, Wang ZQ, Xie XW. MAPK /ERK signaling pathway: A potential target for the treatment of intervertebral disc degeneration. Biomed Pharmacother 2021; 143:112170. [PMID: 34536759 DOI: 10.1016/j.biopha.2021.112170] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 09/01/2021] [Accepted: 09/05/2021] [Indexed: 12/17/2022] Open
Abstract
Intervertebral disc degeneration (IDD) is a chronic skeletal muscle degenerative disease, which is considered the main cause of low back pain. It seriously affects the quality of life of patients and consequently brings a heavy economic burden to their families and the society. Although IDD is considered a natural process in degenerative lesions, it is mainly caused by aging, trauma, genetic susceptibility and other factors. It is closely related to changes in the tissue structure and function, including the progressive destruction of extracellular matrix, cell aging, cell death of the intervertebral disc (IVD), inflammation, and impairment of tissue biomechanical function. Currently, the treatment of IDD is aimed at alleviating symptoms rather than at targeting pathological changes in the IVD. Furthermore, the mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) signaling pathway is closely related to various pathological processes in IDD, and the activation of the MAPK/ERK pathway promotes the degradation of the IVD extracellular matrix, cell aging, apoptosis, and inflammatory responses. It also induces autophagy and oxidative stress that accelerate the IVD process. In our current review, we summarize the latest developments in the negative regulation of IDD after activation of the MAPK/ERK signaling pathway and emphasize on its influence on IDD. Targeting this pathway may become an attractive treatment strategy for IDD in the near future.
Collapse
Affiliation(s)
- Hai-Jun Zhang
- Second Provincial People's Hospital of Gansu, 1 Hezheng West Street, Lanzhou 730000, PR China; Affiliated Hospital of Northwest Minzu Univsity, Lanzhou 730000, PR China
| | - Hai-Yang Liao
- Fist Affiliated Hospital of Ganan Medical University, 23 Qingnian Road, Ganzhou 342800, PR China
| | - Deng-Yan Bai
- Second Provincial People's Hospital of Gansu, 1 Hezheng West Street, Lanzhou 730000, PR China; Affiliated Hospital of Northwest Minzu Univsity, Lanzhou 730000, PR China
| | - Zhi-Qiang Wang
- Fist Affiliated Hospital of Ganan Medical University, 23 Qingnian Road, Ganzhou 342800, PR China
| | - Xing-Wen Xie
- Second Provincial People's Hospital of Gansu, 1 Hezheng West Street, Lanzhou 730000, PR China; Affiliated Hospital of Northwest Minzu Univsity, Lanzhou 730000, PR China.
| |
Collapse
|
17
|
Immunophenotypic characterization of TCR γδ T cells and MAIT cells in HIV-infected individuals developing Hodgkin's lymphoma. Infect Agent Cancer 2021; 16:24. [PMID: 33865435 PMCID: PMC8052713 DOI: 10.1186/s13027-021-00365-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 04/08/2021] [Indexed: 12/12/2022] Open
Abstract
Background Despite successful combined antiretroviral therapy (cART), the risk of non-AIDS defining cancers (NADCs) remains higher for HIV-infected individuals than the general population. The reason for this increase is highly disputed. Here, we hypothesized that T-cell receptor (TCR) γδ cells and/or mucosal-associated invariant T (MAIT) cells might be associated with the increased risk of NADCs. γδ T cells and MAIT cells both serve as a link between the adaptive and the innate immune system, and also to exert direct anti-viral and anti-tumor activity. Methods We performed a longitudinal phenotypic characterization of TCR γδ cells and MAIT cells in HIV-infected individuals developing Hodgkin’s lymphoma (HL), the most common type of NADCs. Cryopreserved PBMCs of HIV-infected individuals developing HL, matched HIV-infected controls without (w/o) HL and healthy controls were used for immunophenotyping by polychromatic flow cytometry, including markers for activation, exhaustion and chemokine receptors. Results We identified significant differences in the CD4+ T cell count between HIV-infected individuals developing HL and HIV-infected matched controls within 1 year before cancer diagnosis. We observed substantial differences in the cellular phenotype mainly between healthy controls and HIV infection irrespective of HL. A number of markers tended to be different in Vδ1 and MAIT cells in HIV+HL+ patients vs. HIV+ w/o HL patients; notably, we observed significant differences for the expression of CCR5, CCR6 and CD16 between these two groups of HIV+ patients. Conclusion TCR Vδ1 and MAIT cells in HIV-infected individuals developing HL show subtle phenotypical differences as compared to the ones in HIV-infected controls, which may go along with functional impairment and thereby may be less efficient in detecting and eliminating malignant cells. Further, our results support the potential of longitudinal CD4+ T cell count analysis for the identification of patients at higher risk to develop HL. Supplementary Information The online version contains supplementary material available at 10.1186/s13027-021-00365-4.
Collapse
|
18
|
Tsai SJ. Role of interleukin 8 in depression and other psychiatric disorders. Prog Neuropsychopharmacol Biol Psychiatry 2021; 106:110173. [PMID: 33186640 DOI: 10.1016/j.pnpbp.2020.110173] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 11/06/2020] [Accepted: 11/08/2020] [Indexed: 12/28/2022]
Abstract
Low grade neuroinflammation has been suggested as one of the underlying mechanisms of many psychiatric diseases as well as cognitive disorders. Interleukin 8 (IL-8), a proinflammatory cytokine produced by many cell types including macrophage and microglia, mainly functions as a neutrophil chemoattractant in the bloodstream. IL-8 is also found in the brain, where it is released from microglia in response to proinflammatory stimuli. In this review, we highlight studies focusing on the role of IL-8 in psychiatric diseases such as major depression, bipolar disorder, schizophrenia, sleep disorder, autism spectrum disorder, anxiety disorders and dementia. Increased peripheral IL-8 levels have been reported in these diseases, particularly in schizophrenic disorder, bipolar disorder, obstructive sleep apnea and autism spectrum disorder. The literature on IL-8 and major depression is inconsistent. IL-8 has been found to be a factor associated with schizophrenic prognosis and therapeutic response, and may affect a wide range of symptomatology. Considering that the exact role of immune alterations is still under research, the success of immune-based therapies in psychiatric diseases is limited for the time being.
Collapse
Affiliation(s)
- Shih-Jen Tsai
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan; School of Medicine, National Yang-Ming University, Taipei, Taiwan; Institute of Brain Science, National Yang-Ming University, Taipei, Taiwan.
| |
Collapse
|
19
|
Tsutsui Y, Onoue T, Hikima JI, Sakai M, Kono T. Diel Variation in CC Chemokine Gene Expression in the Japanese Pufferfish Takifugu rubripes. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2020; 22:607-612. [PMID: 32876759 DOI: 10.1007/s10126-020-09988-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 08/05/2020] [Indexed: 06/11/2023]
Abstract
CC chemokines are key molecules in the regulation of leukocyte trafficking to the site of injury, infection, or inflammation. In recent years, some mammalian chemokines have been shown to exhibit rhythmic expression, regulated by clock genes. However, the rhythmic expression of chemokines in teleost fish remains unknown. In the present study, the diel variation of teleost CC chemokine genes was investigated using the model fish, Fugu (Takifugu rubripes). Diel variation analysis revealed that clock (bmal1, clock1, per2, rorα, and rev-erbβ) and CC chemokine (ccl18l, ccl19, and ccl25l) genes show diel expression under 12:12 light-dark cycle (LD12:12) conditions. CC chemokine genes, which exhibit diel expression, contain RORE (ccl18l, ccl19, ccl25l) and/or E-box (ccl25l) motifs in their transcription regulatory region. Moreover, in vitro head kidney stimulation with lipopolysaccharide (LPS) at different zeitgeber times (ZT) under LD12:12 conditions affected the degree of ccl18l, ccl19, and ccl25l expression; high and low responsiveness to LPS stimulation at ZT12 and ZT0 (ccl25l), and ZT16 and ZT4 (ccl18l and ccl19), respectively, were observed. These results suggest that the expression of some fish CC chemokines is affected by the diel variation regulated by clock proteins, and that responsiveness against bacterial infection depends on the time zone.
Collapse
Affiliation(s)
- Yuri Tsutsui
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuen kibanadai-nishi, Miyazaki, 889-2192, Japan
| | - Teika Onoue
- Interdisciplinary Graduate School of Agriculture and Engineering, University of Miyazaki, 1-1 Gakuen kibanadai-nishi, Miyazaki, 889-2192, Japan
| | - Jun-Ichi Hikima
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuen kibanadai-nishi, Miyazaki, 889-2192, Japan
| | - Masahiro Sakai
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuen kibanadai-nishi, Miyazaki, 889-2192, Japan
| | - Tomoya Kono
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuen kibanadai-nishi, Miyazaki, 889-2192, Japan.
| |
Collapse
|
20
|
Ge J, Zhou Q, Cheng X, Qian J, Yan Q, Wu C, Chen Y, Yang H, Zou J. The protein tyrosine kinase inhibitor, Genistein, delays intervertebral disc degeneration in rats by inhibiting the p38 pathway-mediated inflammatory response. Aging (Albany NY) 2020; 12:2246-2260. [PMID: 32023553 PMCID: PMC7041767 DOI: 10.18632/aging.102743] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Accepted: 01/07/2020] [Indexed: 12/12/2022]
Abstract
The treatment for intervertebral disc degeneration (IDD) has drawn great attention and recent studies have revealed that the p38 MAPK pathway is a potential therapeutic target for delaying the degeneration of intervertebral discs. In this study, we analyzed a nature-derived protein tyrosine kinase inhibitor, Genistein, and its function in delaying IDD in rats both in vitro and in vivo via the p38 MAPK pathway. Nucleus pulposus cells treated with Genistein showed better function compared with untreated cells. Further study revealed that Genistein could play a protective role in IDD by inhibiting phosphorylation of p38, consequently inhibiting the p38 pathway-mediated inflammatory response. The rat IDD model also demonstrated that Genistein could effectively delay the degeneration of intervertebral disc tissue. The current study reveals new biological functions of Genistein, further demonstrates the effects of the p38 MAPK pathway on intervertebral disc degeneration, and deepens our understanding of the treatment and prevention of IDD.
Collapse
Affiliation(s)
- Jun Ge
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Quan Zhou
- Department of Orthopaedic Surgery, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, Jiangsu 223002, China
| | - Xiaoqiang Cheng
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Jiale Qian
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Qi Yan
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Cenhao Wu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Yufeng Chen
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Huilin Yang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Jun Zou
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| |
Collapse
|
21
|
Ge J, Yan Q, Wang Y, Cheng X, Song D, Wu C, Yu H, Yang H, Zou J. IL-10 delays the degeneration of intervertebral discs by suppressing the p38 MAPK signaling pathway. Free Radic Biol Med 2020; 147:262-270. [PMID: 31883468 DOI: 10.1016/j.freeradbiomed.2019.12.040] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 12/15/2019] [Accepted: 12/24/2019] [Indexed: 12/31/2022]
Abstract
OBJECTIVES The degeneration of intervertebral discs (IVD) is a risk factor for chronic low back pain. Anti-inflammation therapy could alleviate IVD degeneration. IL-10 is an important anti-inflammatory cytokine. However, the effect of IL-10 on IVD has not been fully revealed. The current study is to reveal the effect of IL-10 on IVD and its underlying mechanism. METHODS IL-1β was used to induce the degeneration of nucleus pulposus cells (NPCs). mRNA expression level was determined by qPCR. Protein expression level was determined by western blotting. Methylene blue was used to determined the expression of aggrecan. Immunocytochemical staining was used to determined the expression of collagen II. A rat caudal IVD degeneration model was established and used to evaluate the effect of IL-10 on IVD in vivo. RESULTS IL10 could alleviated NPC degeneration in both morphology and extracellular matrix. IL-10 could increase the mRNA expression of Collagen II, Sox-9, but decrease the mRNA expression of IL-1β, TNFα and Collagen X. IL-10 could also increase the protein level of Collagen II and aggrecan, but decrease that of Collagen X. Western blotting futher revealed the mechanism of the positive effect of IL-10 on IVD. IL-10 reduces phosphorylation level of p38 MAPK effectively. Rat caudal IVD degeneration model futher confirmed the positive effect of IL-10 on IVD degeneration and its mechanism in vivo. CONCLUSION The current study demonstrates that exogenous IL-10 treatment can induce an anti-inflammatory response and inhibit p38 MAPK activation to delay IVD degeneration.
Collapse
Affiliation(s)
- Jun Ge
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
| | - Qi Yan
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
| | - Yingjie Wang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
| | - Xiaoqiang Cheng
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
| | - Dawei Song
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
| | - Cenhao Wu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
| | - Hao Yu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
| | - Huilin Yang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
| | - Jun Zou
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China.
| |
Collapse
|
22
|
Gerlza T, Nagele M, Gschwandtner M, Winkler S, Kungl A. Designing an improved T-cell mobilising CXCL10 mutant through enhanced GAG binding affinity. Protein Eng Des Sel 2020; 32:367-373. [DOI: 10.1093/protein/gzz043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/29/2019] [Indexed: 11/13/2022] Open
Abstract
Abstract
The chemokine CXCL10 is released by a plethora of cells, including immune and metastatic cancer cells, following stimulation with interferon-gamma. It acts via its GPC receptor on T-cells attracting them to various target tissues. Glycosaminoglycans (GAGs) are regarded as co-receptors of chemokines, which enable the establishment of a chemotactic gradient for target cell migration. We have engineered human CXCL10 towards improved T-cell mobilisation by implementing a single site-directed mutation N20K into the protein, which leads to a higher GAG binding affinity compared to the wild type. Interestingly, this mutation not only increased T-cell migration in a transendothelial migration assay, the mutant intensified T-cell chemotaxis also in a Boyden chamber set-up thereby indicating a strong role of T-cell-localised GAGs on leukocyte migration. A CXCL10 mutant with increased GAG-binding affinity could therefore potentially serve as a T-cell mobiliser in pathological conditions where the immune surveillance of the target tissue is impaired, as is the case for most solid tumors.
Collapse
Affiliation(s)
- Tanja Gerlza
- Institute of Pharmaceutical Sciences, Department of pharmaceutical chemistry, Karl-Franzens-University Graz, Universitätsplatz 1, Graz A-8010, Austria
| | - Michael Nagele
- Institute of Pharmaceutical Sciences, Department of pharmaceutical chemistry, Karl-Franzens-University Graz, Universitätsplatz 1, Graz A-8010, Austria
| | - Martha Gschwandtner
- Institute of Pharmaceutical Sciences, Department of pharmaceutical chemistry, Karl-Franzens-University Graz, Universitätsplatz 1, Graz A-8010, Austria
| | - Sophie Winkler
- Institute of Pharmaceutical Sciences, Department of pharmaceutical chemistry, Karl-Franzens-University Graz, Universitätsplatz 1, Graz A-8010, Austria
| | - Andreas Kungl
- Institute of Pharmaceutical Sciences, Department of pharmaceutical chemistry, Karl-Franzens-University Graz, Universitätsplatz 1, Graz A-8010, Austria
- Antagonis Biotherapeutics GmbH, Strasserhofweg 77a, Graz A-8045, Austria
| |
Collapse
|
23
|
De Laere M, Berneman ZN, Cools N. To the Brain and Back: Migratory Paths of Dendritic Cells in Multiple Sclerosis. J Neuropathol Exp Neurol 2019; 77:178-192. [PMID: 29342287 PMCID: PMC5901086 DOI: 10.1093/jnen/nlx114] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Migration of dendritic cells (DC) to the central nervous system (CNS) is a critical event in the pathogenesis of multiple sclerosis (MS). While up until now, research has mainly focused on the transmigration of DC through the blood-brain barrier, experimental evidence points out that also the choroid plexus and meningeal vessels represent important gateways to the CNS, especially in early disease stages. On the other hand, DC can exit the CNS to maintain immunological tolerance to patterns expressed in the CNS, a process that is perturbed in MS. Targeting trafficking of immune cells, including DC, to the CNS has demonstrated to be a successful strategy to treat MS. However, this approach is known to compromise protective immune surveillance of the brain. Unravelling the migratory paths of regulatory and pathogenic DC within the CNS may ultimately lead to the design of new therapeutic strategies able to selectively interfere with the recruitment of pathogenic DC to the CNS, while leaving host protective mechanisms intact.
Collapse
Affiliation(s)
- Maxime De Laere
- Laboratory of Experimental Hematology, Vaccine & Infectious Disease Institute (VAXINFECTIO), Faculty of Medicine and Health Sciences, University of Antwerp
| | - Zwi N Berneman
- Laboratory of Experimental Hematology, Vaccine & Infectious Disease Institute (VAXINFECTIO), Faculty of Medicine and Health Sciences, University of Antwerp.,Center for Cell Therapy and Regenerative Medicine, Antwerp University Hospital (UZA), Edegem, Belgium
| | - Nathalie Cools
- Laboratory of Experimental Hematology, Vaccine & Infectious Disease Institute (VAXINFECTIO), Faculty of Medicine and Health Sciences, University of Antwerp
| |
Collapse
|
24
|
The ameliorative effect of AST2017-01 in an ovalbumin-induced allergic rhinitis animal model. Inflamm Res 2019; 68:387-395. [PMID: 30874868 DOI: 10.1007/s00011-019-01226-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 03/08/2019] [Accepted: 03/09/2019] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVE AST2017-01 is developed to be used for treatment and prevention of allergic diseases and composed of processed-Cordyceps militaris and processed-Rumex crispus. But, effect of AST2017-01 remains unclear in an allergic rhinitis (AR). So, this study aimed to explore the effects of AST2017-01 in ovalbumin (OVA)-induced AR animal model. METHODS OVA-induced AR animals were orally administered AST2017-01 and chrysophanol, an active component of AST2017-01 for 10 days. RESULTS In mice with AR, AST2017-01 and chrysophanol markedly decreased number of rubs, IgE, histamine, thymic stromal lymphopoietin, tumor necrosis factor-α, interleukin (IL)-1β, IL-4, IL-5, and IL-13 in serum or nasal mucosa tissues. Moreover, activities and protein levels of caspase-1 were markedly diminished by oral administration of AST2017-01 and chrysophanol. Declines of macrophage inflammatory protein-2, intercellular adhesion molecules-1, eosinophil, and mast cells were also noted in nasal mucosa tissues of AST2017-01 and chrysophanol groups. CONCLUSIONS Taken together, these findings indicate that AST2017-01 has an anti-allergic effect as a therapeutic agent or functional food for treating and preventing AR.
Collapse
|
25
|
Frampton D, Schwenzer H, Marino G, Butcher LM, Pollara G, Kriston-Vizi J, Venturini C, Austin R, de Castro KF, Ketteler R, Chain B, Goldstein RA, Weiss RA, Beck S, Fassati A. Molecular Signatures of Regression of the Canine Transmissible Venereal Tumor. Cancer Cell 2018; 33:620-633.e6. [PMID: 29634949 PMCID: PMC5896242 DOI: 10.1016/j.ccell.2018.03.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 12/08/2017] [Accepted: 03/01/2018] [Indexed: 01/16/2023]
Abstract
The canine transmissible venereal tumor (CTVT) is a clonally transmissible cancer that regresses spontaneously or after treatment with vincristine, but we know little about the regression mechanisms. We performed global transcriptional, methylation, and functional pathway analyses on serial biopsies of vincristine-treated CTVTs and found that regression occurs in sequential steps; activation of the innate immune system and host epithelial tissue remodeling followed by immune infiltration of the tumor, arrest in the cell cycle, and repair of tissue damage. We identified CCL5 as a possible driver of CTVT regression. Changes in gene expression are associated with methylation changes at specific intragenic sites. Our results underscore the critical role of host innate immunity in triggering cancer regression.
Collapse
Affiliation(s)
- Dan Frampton
- Department of Infection, Division of Infection & Immunity, University College London (UCL), Cruciform Building, 90 Gower Street, London WC1E 6BT, UK
| | - Hagen Schwenzer
- Department of Infection, Division of Infection & Immunity, University College London (UCL), Cruciform Building, 90 Gower Street, London WC1E 6BT, UK
| | - Gabriele Marino
- Department of Veterinary Sciences, Polo Universitario dell'Annunziata, University of Messina, Messina 98168, Italy
| | - Lee M Butcher
- Department of Cancer Biology, Cancer Institute, UCL, 72 Huntley Street, London WC1E 6BT, UK
| | - Gabriele Pollara
- Department of Infection, Division of Infection & Immunity, University College London (UCL), Cruciform Building, 90 Gower Street, London WC1E 6BT, UK
| | - Janos Kriston-Vizi
- MRC Laboratory for Molecular Cell Biology, UCL, Gower Street, London WC1E 6BT, UK
| | - Cristina Venturini
- Department of Infection, Division of Infection & Immunity, University College London (UCL), Cruciform Building, 90 Gower Street, London WC1E 6BT, UK
| | - Rachel Austin
- Department of Infection, Division of Infection & Immunity, University College London (UCL), Cruciform Building, 90 Gower Street, London WC1E 6BT, UK
| | - Karina Ferreira de Castro
- Transmissible Cancer Group, Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK
| | - Robin Ketteler
- MRC Laboratory for Molecular Cell Biology, UCL, Gower Street, London WC1E 6BT, UK
| | - Benjamin Chain
- Department of Infection, Division of Infection & Immunity, University College London (UCL), Cruciform Building, 90 Gower Street, London WC1E 6BT, UK
| | - Richard A Goldstein
- Department of Infection, Division of Infection & Immunity, University College London (UCL), Cruciform Building, 90 Gower Street, London WC1E 6BT, UK
| | - Robin A Weiss
- Department of Infection, Division of Infection & Immunity, University College London (UCL), Cruciform Building, 90 Gower Street, London WC1E 6BT, UK
| | - Stephan Beck
- Department of Cancer Biology, Cancer Institute, UCL, 72 Huntley Street, London WC1E 6BT, UK
| | - Ariberto Fassati
- Department of Infection, Division of Infection & Immunity, University College London (UCL), Cruciform Building, 90 Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
26
|
Boff D, Crijns H, Teixeira MM, Amaral FA, Proost P. Neutrophils: Beneficial and Harmful Cells in Septic Arthritis. Int J Mol Sci 2018; 19:E468. [PMID: 29401737 PMCID: PMC5855690 DOI: 10.3390/ijms19020468] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 01/30/2018] [Accepted: 02/01/2018] [Indexed: 12/17/2022] Open
Abstract
Septic arthritis is an inflammatory joint disease that is induced by pathogens such as Staphylococcus aureus. Infection of the joint triggers an acute inflammatory response directed by inflammatory mediators including microbial danger signals and cytokines and is accompanied by an influx of leukocytes. The recruitment of these inflammatory cells depends on gradients of chemoattractants including formylated peptides from the infectious agent or dying cells, host-derived leukotrienes, complement proteins and chemokines. Neutrophils are of major importance and play a dual role in the pathogenesis of septic arthritis. On the one hand, these leukocytes are indispensable in the first-line defense to kill invading pathogens in the early stage of disease. However, on the other hand, neutrophils act as mediators of tissue destruction. Since the elimination of inflammatory neutrophils from the site of inflammation is a prerequisite for resolution of the acute inflammatory response, the prolonged stay of these leukocytes at the inflammatory site can lead to irreversible damage to the infected joint, which is known as an important complication in septic arthritis patients. Thus, timely reduction of the recruitment of inflammatory neutrophils to infected joints may be an efficient therapy to reduce tissue damage in septic arthritis.
Collapse
Affiliation(s)
- Daiane Boff
- Imunofarmacologia, Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil.
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, B-3000 Leuven, Belgium.
| | - Helena Crijns
- Imunofarmacologia, Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil.
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, B-3000 Leuven, Belgium.
| | - Mauro M Teixeira
- Imunofarmacologia, Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil.
| | - Flavio A Amaral
- Imunofarmacologia, Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil.
| | - Paul Proost
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, B-3000 Leuven, Belgium.
| |
Collapse
|
27
|
Elmoselhi H, Mansell H, Soliman M, Shoker A. Circulating chemokine ligand levels before and after successful kidney transplantation. JOURNAL OF INFLAMMATION-LONDON 2016; 13:32. [PMID: 27795695 PMCID: PMC5081672 DOI: 10.1186/s12950-016-0141-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Accepted: 10/20/2016] [Indexed: 11/10/2022]
Abstract
BACKGROUND Chemokine ligands (CCLs) play a pivotal role in tissue injury before and after kidney transplantation. Meanwhile, transplantation improves patient's survival and diminishes morbidity. It is hypothesized, then, that kidney transplantation diminishes pre-transplant (pre-TX) levels of circulating inflammatory CCLs. This retrospective study compared circulating levels and profiles of CCLs before transplantation (pre-TX) and after transplantation (post-TX). METHODS Nineteen CCLs (1, 2, 3, 4, 5, 8, 11, 13, 15, 17, 21, 24, 26, 27, CXCL 5, 8, 10, 12 and 13) were measured in 47 stable post-TX recipients, and their stored pre-TX plasma was analyzed by multiplexed fluorescent bead-based immunoassay. Twenty normal controls were included for comparisons. Normalized data was presented as mean ± SD and non-normalized data as median (5-95 % CI). Significance was measured at p < 0.01. Arbitrary upper and lower margins for each CCL at the 95 % CI or 2SD levels in each group were chosen to calculate the percentile of patients in the other group who exceeded these limits. Significant CCL levels present in more than 75 % of patients in a group that exceeded the arbitrary upper or lower set margins in the other two groups were labeled as preferentially characteristic for the respective group. RESULTS More than 75 % of pre- and post-TX patients had levels that exceeded the upper control for CCL1, 11, 15 and CCL15, CCL26 and CXCL13 levels, respectively. More than 75 % of pre- and post-TX patients exceeded the lower control for CCL3, 21, and CCL5 limits, respectively. More than 75 % of post-TX patients demonstrated elevated levels of CCL2, 3, 21, 26 and CXCL13 above the upper pre-TX cut offs. Meanwhile, more than 75 % of post-TX patients exceeded the lower pre-TX levels for CCL1, 4, 5, 8, 13, 15, 17, 24 and CXCL8 and10. Pre-TX was preferentially characterized by elevated CCL1 and 15 and diminished CCL3 and 21. Post-TX was preferentially characterized by elevated CCL26 and CXCL13 and diminished CCL4 and 5. CONCLUSION End stage kidney disease is associated with enhanced circulating inflammatory chemokine levels. Stable kidney transplantation is associated with 1) lowered burden of circulating inflammatory chemokine levels and, 2) elevation in the pro T-helper2 chemokine, CCL26 and the homeostatic CXCL13.
Collapse
Affiliation(s)
- Hamdi Elmoselhi
- St. Paul's Hospital, Saskatchewan Renal Transplant Program, Saskatoon, SK Canada
| | - Holly Mansell
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatchewan, Canada
| | - Mahmoud Soliman
- St. Paul's Hospital, Saskatchewan Renal Transplant Program, Saskatoon, SK Canada
| | - Ahmed Shoker
- St. Paul's Hospital, Saskatchewan Renal Transplant Program, Saskatoon, SK Canada ; Division of Nephrology, Department of Medicine, University of Saskatchewan, University of Saskatchewan, 103 Hospital Drive, Saskatoon, SK S7N 0W8 Canada
| |
Collapse
|
28
|
Uddin M, Betts C, Robinson I, Malmgren A, Humfrey C. The chemokine CXCR2 antagonist (AZD5069) preserves neutrophil-mediated host immunity in non-human primates. Haematologica 2016; 102:e65-e68. [PMID: 27742769 DOI: 10.3324/haematol.2016.152371] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Affiliation(s)
- Mohib Uddin
- The IMED Respiratory, Inflammation & Autoimmunity Unit, AstraZeneca Gothenburg, Mölndal, Sweden
| | - Catherine Betts
- Drug Safety and Metabolism, AstraZeneca R&D, Cambridge, U.K.
| | - Ian Robinson
- Drug Safety and Metabolism, AstraZeneca R&D, Cambridge, U.K
| | - Anna Malmgren
- The IMED Respiratory, Inflammation & Autoimmunity Unit, AstraZeneca Gothenburg, Mölndal, Sweden
| | | |
Collapse
|
29
|
Calciolari E, Mardas N, Dereka X, Anagnostopoulos AK, Tsangaris GT, Donos N. The effect of experimental osteoporosis on bone regeneration: part 2, proteomics results. Clin Oral Implants Res 2016; 28:e135-e145. [PMID: 27580862 DOI: 10.1111/clr.12950] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/25/2016] [Indexed: 01/17/2023]
Abstract
OBJECTIVES To identify and describe protein expression in a Wistar rat calvarial critical size defect (CSD) model following treatment with guided bone regeneration in healthy and osteoporotic conditions. MATERIAL AND METHODS Thirty-six 10-month-old female Wistar rats were used. Half of them were ovariectomized (OVX) and fed with a low-calcium diet to induce an osteoporotic-like status. In each animal of both groups, two 5-mm calvarial CSDs were treated with deproteinized bovine bone mineral graft particles and a bilayer collagen membrane. Six OVX and six control rats were randomly euthanized at 7, 14, and 30 days. One defect/animal was randomly chosen for proteomic analysis. Differently expressed proteins between the two groups were identified with matrix-assisted laser desorption time-of-flight mass spectrometry and liquid chromatography-mass spectrometry/mass spectrometry. RESULTS At 7 days, 29 and 27 proteins were, respectively, identified in the healthy and OVX animals. At 14 days, 103 proteins were detected in the healthy controls and 20 proteins in the OVX rats, while at 30 days, 31 and 75 proteins were identified, respectively. Only limited proteins known to play a role in the later stages of bone formation and maturation were identified within the animals 'proteomes. DISCUSSION The osseous formation process was quite immature even at 30 days of healing. An overexpression of inflammatory and stress response pathways was detected in the OVX animals, as well as a tendency toward a delayed maturation of the osseous wound and a reduced/delayed differentiation of osteoblast cell precursors.
Collapse
Affiliation(s)
- E Calciolari
- Centre for Clinical Oral Research, Institute of Dentistry, Barts and The London School of Medicine and Dentistry, Queen Mary University of London (QMUL), London, UK.,Periodontology Department, UCL Eastman Dental Institute, London, UK
| | - N Mardas
- Centre for Adult Oral Health, Bart's & The London School of Dentistry & Medicine, Queen Mary University of London (QMUL), London, UK
| | - X Dereka
- Department of Periodontology, National and Kapodistrian University of Athens, Athens, Greece
| | - A K Anagnostopoulos
- Proteomics Research Unit, Centre of Basic Research II, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - G T Tsangaris
- Proteomics Research Unit, Centre of Basic Research II, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - N Donos
- Centre for Clinical Oral Research, Institute of Dentistry, Barts and The London School of Medicine and Dentistry, Queen Mary University of London (QMUL), London, UK
| |
Collapse
|
30
|
Zhang XY, Tan YL, Chen DC, Tan SP, Yang FD, Wu HE, Zunta-Soares GB, Huang XF, Kosten TR, Soares JC. Interaction of BDNF with cytokines in chronic schizophrenia. Brain Behav Immun 2016; 51:169-175. [PMID: 26407757 DOI: 10.1016/j.bbi.2015.09.014] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 09/21/2015] [Accepted: 09/22/2015] [Indexed: 02/08/2023] Open
Abstract
Brain-derived neurotrophic factor (BDNF) interacts with cytokines. Although both BDNF and cytokines occur at abnormal levels in schizophrenia patients, their interactions have not yet been examined. We therefore compared serum BDNF, TNF-α, interleukin (IL)-2, IL-6, and IL-8 levels in 92 chronically medicated schizophrenia patients and 60 healthy controls. We correlated these serum levels within these subject groups with each other and with clinical symptoms assessed according to the Positive and Negative Syndrome Scale (PANSS). Compared to the control group, the schizophrenia patients had significantly lower BDNF and TNF-α levels, and higher IL-2, IL-6, and IL-8 levels. The patients also showed a significant positive correlation between BDNF and both IL-2 and IL-8 levels, and low BDNF and TNF-α levels together were associated with poor performance on the PANSS cognitive factor. Thus, an interaction between cytokines and neurotrophic factors may be implicated in the pathophysiology of chronic schizophrenia. In particular, the cytokine TNF-α may interact with BNDF causing cognitive impairment.
Collapse
Affiliation(s)
- Xiang Yang Zhang
- Psychiatry Research Center, Beijing HuiLongGuan Hospital, Peking University, Beijing, China; Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, TX, USA.
| | - Yun-Long Tan
- Psychiatry Research Center, Beijing HuiLongGuan Hospital, Peking University, Beijing, China
| | - Da-Chun Chen
- Psychiatry Research Center, Beijing HuiLongGuan Hospital, Peking University, Beijing, China
| | - Shu-Ping Tan
- Psychiatry Research Center, Beijing HuiLongGuan Hospital, Peking University, Beijing, China
| | - Fu-De Yang
- Psychiatry Research Center, Beijing HuiLongGuan Hospital, Peking University, Beijing, China
| | - Hanjing Emily Wu
- Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Giovana B Zunta-Soares
- Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Xu-Feng Huang
- Centre for Translational Neuroscience, School of Medicine, University of Wollongong, and Illawarra Health and Medical Research Institute, NSW, Australia
| | - Thomas R Kosten
- Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA
| | - Jair C Soares
- Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, TX, USA
| |
Collapse
|
31
|
Ribeiro D, Freitas M, Tomé SM, Silva AMS, Laufer S, Lima JLFC, Fernandes E. Flavonoids inhibit COX-1 and COX-2 enzymes and cytokine/chemokine production in human whole blood. Inflammation 2015; 38:858-70. [PMID: 25139581 DOI: 10.1007/s10753-014-9995-x] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cyclooxygenase 2 (COX-2) and the production of cytokines/chemokines are important targets for the modulation of the inflammatory response. Although a large variety of inhibitors of these pathways have been commercialized, some of those inhibitors present severe side effects, governing the search for new molecules, as alternative anti-inflammatory agents. This study was undertaken to study an hitherto not evaluated group of flavonoids, concerning its capacity to inhibit COX-1 and COX-2 enzymes, as well as to inhibit the production of the cytokines and a chemokine, in a complex matrix involved in the systemic inflammatory process, the blood, aiming the establishment of a structure-activity relationship. The results obtained reveal promising flavonoids for the modulation of the inflammatory process, namely the ones presenting a catechol group in B ring, as some flavonoids were able to simultaneously inhibit the production of inflammatory prostaglandin E2 and pro-inflammatory cytokines.
Collapse
Affiliation(s)
- Daniela Ribeiro
- REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira n 228, 4050-313, Porto, Portugal
| | | | | | | | | | | | | |
Collapse
|
32
|
Choi CY, Rho SB, Kim HS, Han J, Bae J, Lee SJ, Jung WW, Chun T. The ORF3 protein of porcine circovirus type 2 promotes secretion of IL-6 and IL-8 in porcine epithelial cells by facilitating proteasomal degradation of regulator of G protein signalling 16 through physical interaction. J Gen Virol 2015; 96:1098-1108. [DOI: 10.1099/vir.0.000046] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 01/06/2015] [Indexed: 12/27/2022] Open
Affiliation(s)
- Chang-Yong Choi
- Division of Biotechnology, School of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Republic of Korea
| | - Seung Bae Rho
- Research Institute, National Cancer Center, Goyang-si 410-769, Republic of Korea
| | - Hyun-Sook Kim
- Department of Integrated Biomedical and Life Science, College of Health Science, Korea University, Seoul 136-703, Republic of Korea
| | - Jihye Han
- Division of Biotechnology, School of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Republic of Korea
| | - Joonbeom Bae
- Division of Biotechnology, School of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Republic of Korea
| | - Suk Jun Lee
- Department of Biomedical Laboratory Science, College of Health Science, Cheongju University, Cheongju-si 360-764, Republic of Korea
| | - Woon-Won Jung
- Department of Biomedical Laboratory Science, College of Health Science, Cheongju University, Cheongju-si 360-764, Republic of Korea
| | - Taehoon Chun
- Division of Biotechnology, School of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Republic of Korea
| |
Collapse
|
33
|
Dinh CT, Goncalves S, Bas E, Van De Water TR, Zine A. Molecular regulation of auditory hair cell death and approaches to protect sensory receptor cells and/or stimulate repair following acoustic trauma. Front Cell Neurosci 2015; 9:96. [PMID: 25873860 PMCID: PMC4379916 DOI: 10.3389/fncel.2015.00096] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Accepted: 03/03/2015] [Indexed: 12/20/2022] Open
Abstract
Loss of auditory sensory hair cells (HCs) is the most common cause of hearing loss. This review addresses the signaling pathways that are involved in the programmed and necrotic cell death of auditory HCs that occur in response to ototoxic and traumatic stressor events. The roles of inflammatory processes, oxidative stress, mitochondrial damage, cell death receptors, members of the mitogen-activated protein kinase (MAPK) signal pathway and pro- and anti-cell death members of the Bcl-2 family are explored. The molecular interaction of these signal pathways that initiates the loss of auditory HCs following acoustic trauma is covered and possible therapeutic interventions that may protect these sensory HCs from loss via apoptotic or non-apoptotic cell death are explored.
Collapse
Affiliation(s)
- Christine T Dinh
- University of Miami Ear Institute, University of Miami Miller School of Medicine Miami, FL, USA
| | - Stefania Goncalves
- University of Miami Ear Institute, University of Miami Miller School of Medicine Miami, FL, USA
| | - Esperanza Bas
- University of Miami Ear Institute, University of Miami Miller School of Medicine Miami, FL, USA
| | - Thomas R Van De Water
- University of Miami Ear Institute, University of Miami Miller School of Medicine Miami, FL, USA
| | - Azel Zine
- Integrative and Adaptive Neurosciences, Aix-Marseille Université, CNRS, UMR 7260 Marseille, France ; Faculty of Pharmacy, Biophysics Department, University of Montpellier Montpellier, France
| |
Collapse
|
34
|
An HM, Tan YL, Shi J, Wang ZR, Soars JC, Wu JQ, Yang FD, Huang XF, Zhang XY. Altered IL-2, IL-6 and IL-8 serum levels in schizophrenia patients with tardive dyskinesia. Schizophr Res 2015; 162:261-8. [PMID: 25600548 DOI: 10.1016/j.schres.2014.12.037] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 11/29/2014] [Accepted: 12/29/2014] [Indexed: 11/27/2022]
Abstract
Immune deregulation has been postulated to be one of the mechanisms underlying the pathogenesis of tardive dyskinesia (TD). We hypothesized that interleukins would have a link with TD in schizophrenia patients. In this study, the serum IL-2, IL-6 and IL-8 levels were examined by enzyme-linked immunosorbent assay (ELISA) in schizophrenia patients with TD (n=48) and without TD (n=45), and healthy controls (n=44). The psychopathological symptoms of schizophrenia were assessed by the Positive and Negative Syndrome Scale (PANSS). The severity of TD was evaluated using Abnormal Involuntary Movement Scale (AIMS). The results showed that serum IL-2, IL-6 and IL-8 levels were significantly different among schizophrenia patients with TD and without TD and normal controls. Moreover, IL-2 level was significantly correlated with PANSS positive subscale and general subscale in patients with TD and without TD. In addition, IL-2 level was positively correlated with AIMS score in TD patients. The results supported that immune disturbance is related to the schizophrenia patients, especially to the patients with TD and ILs might play an important role in the pathophysiology of schizophrenia patients with TD.
Collapse
Affiliation(s)
- Hui-Mei An
- Beijing HuiLongGuan Hospital, Peking University, Beijing, China
| | - Yun-Long Tan
- Beijing HuiLongGuan Hospital, Peking University, Beijing, China
| | - Jing Shi
- Beijing HuiLongGuan Hospital, Peking University, Beijing, China
| | - Zhi-Ren Wang
- Beijing HuiLongGuan Hospital, Peking University, Beijing, China
| | - Jair C Soars
- Department of Psychiatry and Behavioral Sciences, Harris County Psychiatric Center, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Jing Qin Wu
- School of Biomedical Sciences and Pharmacy, Faculty of Health, The University of Newcastle, University Drive, Callaghan, NSW 2308, Australia
| | - Fu-De Yang
- Beijing HuiLongGuan Hospital, Peking University, Beijing, China
| | - Xu-Feng Huang
- Centre for Translational Neuroscience, School of Medicine, Illawarra Health and Medical Research Institute, University of Wollongong, NSW, Australia
| | - Xiang Yang Zhang
- Beijing HuiLongGuan Hospital, Peking University, Beijing, China; Department of Psychiatry and Behavioral Sciences, Harris County Psychiatric Center, The University of Texas Health Science Center at Houston, Houston, TX, USA.
| |
Collapse
|
35
|
Singhal G, Jaehne EJ, Corrigan F, Toben C, Baune BT. Inflammasomes in neuroinflammation and changes in brain function: a focused review. Front Neurosci 2014; 8:315. [PMID: 25339862 PMCID: PMC4188030 DOI: 10.3389/fnins.2014.00315] [Citation(s) in RCA: 260] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 09/18/2014] [Indexed: 12/11/2022] Open
Abstract
Recent literature has pointed to the existence of inflammasome-mediated inflammatory pathways in central nervous system (CNS) disorders and associated changes in behavior. Neuroinflammation, which is an innate immune response in the CNS against harmful and irritable stimuli such as pathogens and metabolic toxic waste, as well as to chronic mild stress, is mediated by protein complexes known as inflammasomes. Inflammasomes activate pro-inflammatory caspases 1 and 5, which then cleave the precursor forms of pro-inflammatory cytokines IL-1β, IL-18, and IL-33 into their active forms. These pro-inflammatory cytokines have been shown to promote a variety of innate immune processes associated with infection, inflammation, and autoimmunity, and thereby play an instrumental role in the instigation of neuroinflammation during old age and subsequent occurrence of neurodegenerative diseases, cognitive impairment, and dementia. In particular, NLRP inflammasomes may also have a role in the etiologies of depression, Alzheimer's disease (AD) and in metabolic disorders, such as Type II diabetes, obesity and cardiovascular diseases that have been shown to be co-morbid with psychiatric illnesses. It has been reported that while these inflammasomes may be activated through TNF-α dependent pathways, other cytokines, like IFN-γ, may assist in inhibiting their activation and thus delay disease progression. Furthermore, some other cytokines, including IL-6, may not have a direct role in inflammasome-mediated diseases. An array of recent research suggests that NLRP inflammasomes targeted therapies could be used for alleviating neuroinflammation and for treatment of associated psychiatric illnesses, although this still remains a challenge and necessitates further extensive research. This review examines the complex inflammatory signaling pathways involved in the activation of NLRP inflammasomes and the role they play in promoting neuroinflammation and subsequent behavioral changes.
Collapse
Affiliation(s)
- Gaurav Singhal
- Psychiatric Neuroscience Lab, Discipline of Psychiatry, School of Medicine, University of AdelaideAdelaide, SA, Australia
| | - Emily J. Jaehne
- Psychiatric Neuroscience Lab, Discipline of Psychiatry, School of Medicine, University of AdelaideAdelaide, SA, Australia
| | - Frances Corrigan
- Discipline of Anatomy and Physiology, School of Medical Sciences, University of AdelaideAdelaide, SA, Australia
| | - Catherine Toben
- Psychiatric Neuroscience Lab, Discipline of Psychiatry, School of Medicine, University of AdelaideAdelaide, SA, Australia
| | - Bernhard T. Baune
- Psychiatric Neuroscience Lab, Discipline of Psychiatry, School of Medicine, University of AdelaideAdelaide, SA, Australia
| |
Collapse
|
36
|
de Brito LCN, Teles FR, Teles RP, Nogueira PM, Vieira LQ, Ribeiro Sobrinho AP. Immunological profile of periapical endodontic infections from HIV- and HIV+ patients. Int Endod J 2014; 48:533-41. [PMID: 25069888 DOI: 10.1111/iej.12345] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 07/25/2014] [Indexed: 11/30/2022]
Abstract
AIM To evaluate CD4(+) CD28(+) and CD8(+) T-cell genes and the gene expression of IFN-γ, TNF-α, IL-1-β, IL-17A, IL-10, CCL-2/MCP-1, CCL-4, CCL-5 (RANTES), CXCR4, CCR5 and RANKL from cells in the periapical interstitial fluid from root canal infections in healthy patients (HIV-) and HIV-positive individuals (HIV+). METHODOLOGY Subjects included 20 HIV- and 23 HIV+ patients referred to the School of Dentistry at the Universidade Federal de Minas Gerais (Belo Horizonte, MG, Brazil). Almost all HIV+ patients were undergoing highly active antiretroviral therapy (HAART). Clinical samples were taken from teeth with pulp necrosis, and no patients had acute periapical symptoms at the time of the appointments. After cleaning and drying, 3 paper points were introduced into the root canal, passing passively through the root apex (2 mm) into the periapical tissues for 1 min. The samples were collected immediately after root canal cleaning and 7 days later (restrained root canal bacterial load) to characterize those gene expressions using real-time PCR. RESULTS Significantly higher levels of CD4(+) CD28(+) and CD8(+) T cells in teeth with restrained bacterial loads (second collection) compared with the first collection were observed in both HIV- and HIV+ samples. In HIV- patients, an increase in IL-10 and CXCR4 expression was demonstrated as well as a decrease in pro-inflammatory cytokines such as RANKL, IFN-γ, IL1-β and CCL5. However, in HIV+ patients an increase in cytokines IFN-γ, IL-1-β, TNF-α and IL-17A, and chemokines CCL-2, CXCR4 and CCR5 were observed. The chemokine CCL-5 was not detected in HIV+ individuals. CONCLUSIONS These findings suggest that after reducing the root canal bacterial load in HIV- individuals an anti-inflammatory response is generated whilst in HIV+ patients a pro-inflammatory response is sustained in the periapical area.
Collapse
Affiliation(s)
- L C N de Brito
- Faculdade de Odontologia, Universidade de Itaúna, Itaúna, Brazil
| | - F R Teles
- Departament of Applied Oral Sciences, The Forsyth Institute, Boston, MA, USA.,Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA, USA
| | - R P Teles
- Departament of Applied Oral Sciences, The Forsyth Institute, Boston, MA, USA.,Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA, USA
| | - P M Nogueira
- Departamento de Odontologia Restauradora, Faculdade de Odontologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - L Q Vieira
- Departamento de Bioquímica e Imunologia Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Nucleo de Pesquisa em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| | - A P Ribeiro Sobrinho
- Departamento de Odontologia Restauradora, Faculdade de Odontologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
37
|
Mahmood S, Nandagopal S, Sow I, Lin F, Kung SKP. Microfluidic-based, live-cell analysis allows assessment of NK-cell migration in response to crosstalk with dendritic cells. Eur J Immunol 2014; 44:2737-48. [DOI: 10.1002/eji.201344244] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 05/02/2014] [Accepted: 06/13/2014] [Indexed: 12/13/2022]
Affiliation(s)
- Sajid Mahmood
- Department of Immunology; University of Manitoba; Winnipeg MB Canada
| | - Saravanan Nandagopal
- Department of Immunology; University of Manitoba; Winnipeg MB Canada
- Department of Physics and Astronomy; University of Manitoba; Winnipeg MB Canada
- Department of Biosystems Engineering; University of Manitoba; Winnipeg MB Canada
| | - Ibrahim Sow
- Department of Immunology; University of Manitoba; Winnipeg MB Canada
| | - Francis Lin
- Department of Immunology; University of Manitoba; Winnipeg MB Canada
- Department of Physics and Astronomy; University of Manitoba; Winnipeg MB Canada
- Department of Biosystems Engineering; University of Manitoba; Winnipeg MB Canada
| | - Sam K. P. Kung
- Department of Immunology; University of Manitoba; Winnipeg MB Canada
| |
Collapse
|
38
|
Saha A, Biswas A, Srivastav S, Mukherjee M, Das PK, Ukil A. Prostaglandin E2 negatively regulates the production of inflammatory cytokines/chemokines and IL-17 in visceral leishmaniasis. THE JOURNAL OF IMMUNOLOGY 2014; 193:2330-9. [PMID: 25049356 DOI: 10.4049/jimmunol.1400399] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Persistence of intracellular infection depends on the exploitation of factors that negatively regulate the host immune response. In this study, we elucidated the role of macrophage PGE2, an immunoregulatory lipid, in successful survival of Leishmania donovani, causative agent of the fatal visceral leishmaniasis. PGE2 production was induced during infection and resulted in increased cAMP level in peritoneal macrophages through G protein-coupled E-series prostanoid (EP) receptors. Among four different EPs (EP1-4), infection upregulated the expression of only EP2, and individual administration of either EP2-specific agonist, butaprost, or 8-Br-cAMP, a cell-permeable cAMP analog, promoted parasite survival. Inhibition of cAMP also induced generation of reactive oxygen species, an antileishmanial effector molecule. Negative modulation of PGE2 signaling reduced infection-induced anti-inflammatory cytokine polarization and enhanced inflammatory chemokines, CCL3 and CCL5. Effect of PGE2 on cytokine and chemokine production was found to be differentially modulated by cAMP-dependent protein kinase A (PKA) and exchange protein directly activated by cAMP (EPAC). PGE2-induced decreases in TNF-α and CCL5 were mediated specifically by PKA, whereas administration of brefeldin A, an EPAC inhibitor, could reverse decreased production of CCL3. Apart from modulating inflammatory/anti-inflammatory balance, PGE2 inhibited antileishmanial IL-17 cytokine production in splenocyte culture. Augmented PGE2 production was also found in splenocytes of infected mice, and administration of EP2 antagonist in mice resulted in reduced liver and spleen parasite burden along with host-favorable T cell response. These results suggest that Leishmania facilitates an immunosuppressive environment in macrophages by PGE2-driven, EP2-mediated cAMP signaling that is differentially regulated by PKA and EPAC.
Collapse
Affiliation(s)
- Amrita Saha
- Department of Biochemistry, University of Calcutta, Kolkata 700019, India; and
| | - Arunima Biswas
- Infectious Diseases and Immunology Division, Council of Scientific & Industrial Research-Indian Institute of Chemical Biology, Kolkata 700032, India
| | - Supriya Srivastav
- Infectious Diseases and Immunology Division, Council of Scientific & Industrial Research-Indian Institute of Chemical Biology, Kolkata 700032, India
| | - Madhuchhanda Mukherjee
- Infectious Diseases and Immunology Division, Council of Scientific & Industrial Research-Indian Institute of Chemical Biology, Kolkata 700032, India
| | - Pijush K Das
- Infectious Diseases and Immunology Division, Council of Scientific & Industrial Research-Indian Institute of Chemical Biology, Kolkata 700032, India
| | - Anindita Ukil
- Department of Biochemistry, University of Calcutta, Kolkata 700019, India; and
| |
Collapse
|
39
|
Absence of Association between CCR5 rs333 Polymorphism and Childhood Acute Lymphoblastic Leukemia. Adv Hematol 2014; 2014:924030. [PMID: 24822066 PMCID: PMC4009163 DOI: 10.1155/2014/924030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 03/19/2014] [Accepted: 03/21/2014] [Indexed: 12/28/2022] Open
Abstract
Acute lymphoblastic leukemia (ALL) is a malignant disorder that originates from one single hematopoietic precursor committed to B- or T-cell lineage. Ordinarily, these cells express CCR5 chemokine receptor, which directs the immune response to a cellular pattern and is involved in cancer pathobiology. The genetic rs333 polymorphism of CCR5 (Δ32), results in a diminished receptor expression, thus leading to impaired cell trafficking. The objective of the present study was to investigate the effect of CCR5 chemokine receptor rs333 polymorphism in the pathogenesis of ALL. The genotype distribution was studied in 79 patients and compared with 80 control subjects, in a childhood population of Southern Brazil. Genotyping was performed using DNA samples amplified by polymerase chain reaction with sequence-specific primers (PCR-SSP). The homozygous (Δ32/Δ32) deletion was not observed in any subject involved in the study. Heterozygous genotype was not associated with ALL risk (OR 0.7%; 95% CI 0.21–2.32; P > 0.05), nor recurrence status of ALL (OR 0.86; 95% CI 0.13–5.48; P > 0.05). This work demonstrated, for the first time, no significant differences in the frequency of the CCR5/Δ32 genotype between ALL and control groups, indicating no effect of this genetic variant on the ALL susceptibility and recurrence risk.
Collapse
|
40
|
Singhal G, Jaehne EJ, Corrigan F, Baune BT. Cellular and molecular mechanisms of immunomodulation in the brain through environmental enrichment. Front Cell Neurosci 2014; 8:97. [PMID: 24772064 PMCID: PMC3982075 DOI: 10.3389/fncel.2014.00097] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 03/14/2014] [Indexed: 11/17/2022] Open
Abstract
Recent studies on environmental enrichment (EE) have shown cytokines, cellular immune components [e.g., T lymphocytes, natural killer (NK) cells], and glial cells in causal relationship to EE in bringing out changes to neurobiology and behavior. The purpose of this review is to evaluate these neuroimmune mechanisms associated with neurobiological and behavioral changes in response to different EE methods. We systematically reviewed common research databases. After applying all inclusion and exclusion criteria, 328 articles remained for this review. Physical exercise (PE), a form of EE, elicits anti-inflammatory and neuromodulatory effects through interaction with several immune pathways including interleukin (IL)-6 secretion from muscle fibers, reduced expression of Toll-like receptors on monocytes and macrophages, reduced secretion of adipokines, modulation of hippocampal T cells, priming of microglia, and upregulation of mitogen-activated protein kinase phosphatase-1 in central nervous system. In contrast, immunomodulatory roles of other enrichment methods are not studied extensively. Nonetheless, studies showing reduction in the expression of IL-1β and tumor necrosis factor-α in response to enrichment with novel objects and accessories suggest anti-inflammatory effects of novel environment. Likewise, social enrichment, though considered a necessity for healthy behavior, results in immunosuppression in socially defeated animals. This has been attributed to reduction in T lymphocytes, NK cells and IL-10 in subordinate animals. EE through sensory stimuli has been investigated to a lesser extent and the effect on immune factors has not been evaluated yet. Discovery of this multidimensional relationship between immune system, brain functioning, and EE has paved a way toward formulating environ-immuno therapies for treating psychiatric illnesses with minimal use of pharmacotherapy. While the immunomodulatory role of PE has been evaluated extensively, more research is required to investigate neuroimmune changes associated with other enrichment methods.
Collapse
Affiliation(s)
- Gaurav Singhal
- Psychiatric Neuroscience Lab, Discipline of Psychiatry, School of Medicine, University of AdelaideAdelaide, SA, Australia
| | - Emily J. Jaehne
- Psychiatric Neuroscience Lab, Discipline of Psychiatry, School of Medicine, University of AdelaideAdelaide, SA, Australia
| | - Frances Corrigan
- Discipline of Anatomy and Physiology, School of Medical Sciences, University of AdelaideAdelaide, SA, Australia
| | - Bernhard T. Baune
- Psychiatric Neuroscience Lab, Discipline of Psychiatry, School of Medicine, University of AdelaideAdelaide, SA, Australia
| |
Collapse
|
41
|
CC chemokine receptor 5: the interface of host immunity and cancer. DISEASE MARKERS 2014; 2014:126954. [PMID: 24591756 PMCID: PMC3925608 DOI: 10.1155/2014/126954] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 10/30/2013] [Indexed: 01/17/2023]
Abstract
Solid tumors are embedded in a stromal microenvironment consisting of immune cells, such as macrophages and lymphocytes, as well as nonimmune cells, such as endothelial cells and fibroblasts. Chemokines are a type of small secreted chemotactic cytokine and together with their receptors play key roles in the immune defense. Critically, they regulate cancer cellular migration and also contribute to their proliferation and survival. The CCR5 chemokine receptor is involved in leucocytes chemotaxis to sites of inflammation and plays an important role in the macrophages, T cells, and monocytes recruitment. Additionally, CCR5 may have an indirect effect on cancer progression by controlling the antitumor immune response, since it has been demonstrated that its expression could promote tumor growth and contribute to tumor metastasis, in different types of malignant tumors. Furthermore, it was demonstrated that a CCR5 antagonist may inhibit tumor growth, consisting of a possible therapeutic target. In this context, the present review focuses on the establishment of CCR5 within the interface of host immunity, tumor microenvironment, and its potential as a targeting to immunotherapy.
Collapse
|
42
|
Kachewar SG, Kulkarni DS. Calcific tendinitis of the rotator cuff: a review. J Clin Diagn Res 2013; 7:1482-5. [PMID: 23998102 DOI: 10.7860/jcdr/2013/4473.3180] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2012] [Accepted: 06/01/2013] [Indexed: 11/24/2022]
Abstract
Calcifying tendinitis of the rotator cuff is a common disorder; its underlying mechanism still remains unknown. Although details of the clinical presentation(s) and pathological changes which are associated with calcific tendinitis are available, conservative management of this condition remains a topic of debate. About 90% of the patients can be treated non - operatively, but as some are resistant to conservative treatment; newer techniques or surgery should be indicated. Rheumatologists and radiologists have often described this shoulder abnormality, leading to its progressive differentiation from other painful shoulder syndromes. The conservative treatment includes the use of non - steroidal anti - inflammatory agents, roentegen therapy, physical modalities for controlling the pain and for preventing loss of joint mobility, local steroid injections, and open or arthroscopic surgeries. Results of non - operative treatments have also been satisfactory. These include heat, cold, range of motion and pendulum exercises, diathermy, short - wave, and radiation therapy. Rest, immobilization with a sling, and oral non - steroidal and steroid anti - inflammatory medications have also been mentioned. This review aimed at looking at calcific tendinitis of the rotator cuff with a wide vision in the light of modern advances; while at the same time, not disregarding the past experiences.
Collapse
Affiliation(s)
- Sushil G Kachewar
- Associate Professor, Department of Radio-diagnosis, Rural Medical College (RMC) , PIMS, Loni, India
| | | |
Collapse
|
43
|
RIBAS ADRIANADANMVOLF, RIBAS REJANECRISTINA, DA SILVA WALDIRVERÍSSIMO, ARISTIDES SANDRAMARAALESSI, LONARDONI MARIAVALDRINEZCAMPANA, WATANABE MARIAANGÉLICAEHARA, BORELLI SUELIDONIZETE, SILVEIRA THAÍSGOMESVERZIGNASSI. Effect of the chemokine receptor CCR5 in the development of American cutaneous leishmaniasis in a Southern Brazilian population. Mol Med Rep 2013; 8:189-94. [DOI: 10.3892/mmr.2013.1452] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 04/02/2013] [Indexed: 11/05/2022] Open
|
44
|
Cieśla A, Kuśmider M, Faron-Górecka A, Dziedzicka-Wasylewska M, Bociąga-Jasik M, Owczarek D, Ciećko-Michalska I, Cibor D, Mach T. Intrahepatic expression of genes related to metabotropic receptors in chronic hepatitis. World J Gastroenterol 2012; 18:4156-61. [PMID: 22919248 PMCID: PMC3422796 DOI: 10.3748/wjg.v18.i31.4156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Revised: 04/23/2012] [Accepted: 04/27/2012] [Indexed: 02/06/2023] Open
Abstract
AIM: To screen for genes related to metabotropic receptors that might be involved in the development of chronic hepatitis.
METHODS: Assessment of 20 genes associated with metabotropic receptors was performed in liver specimens obtained by punch biopsy from 12 patients with autoimmune and chronic hepatitis type B and C. For this purpose, a microarray with low integrity grade and with oligonucleotide DNA probes complementary to target transcripts was used. Evaluation of gene expression was performed in relation to transcript level, correlation between samples and grouping of clinical parameters used in chronic hepatitis assessment. Clinical markers of chronic hepatitis included alanine and aspartate aminotransferase, γ-glutamyltranspeptidase, alkaline phosphatase and cholinesterase activity, levels of iron ions, total cholesterol, triglycerides, albumin, glucose, hemoglobin, platelets, histological analysis of inflammatory and necrotic status, fibrosis according to METAVIR score, steatosis, as well as anthropometric body mass index, waist/hip index, percentage of adipose tissue and liver size in ultrasound examination. Gender, age, concomitant diseases and drugs were also taken into account. Validation of oligonucleotide microarray gene expression results was done with the use of quantitative real-time polymerase chain reaction (qRT-PCR).
RESULTS: The highest (0.002 < P < 0.046) expression among genes encoding main components of metabotropic receptor pathways, such as the α subunit of G-coupled protein, phosphoinositol-dependent protein kinase or arrestin was comparable to that of angiotensinogen synthesized in the liver. Carcinogenesis suppressor genes, such as chemokine ligand 4, transcription factor early growth response protein 1 and lysophosphatidic acid receptor, were characterized by the lowest expression (0.002 < P < 0.046), while the factor potentially triggering hepatic cancer, transcription factor JUN-B, had a 20-fold higher expression. The correlation between expression of genes of protein kinases PDPK1, phosphoinositide 3-kinase and protein kinase A (Spearman’s coefficient range: 0.762-0.769) confirmed a functional link between these enzymes. Gender (P = 0.0046) and inflammation severity, measured by alanine aminotransferase activity (P = 0.035), were characterized by diverse metabotropic receptor gene expression patterns. The Pearson’s coefficient ranging from -0.35 to 0.99 from the results of qRT-PCR and microarray indicated that qRT-PCR had certain limitations as a validation tool for oligonucleotide microarray studies.
CONCLUSION: A microarray-based analysis of hepatocyte metabotropic G-protein-related gene expression can reveal the molecular basis of chronic hepatitis.
Collapse
|
45
|
Bae H, Kim R, Kim Y, Lee E, Jin Kim H, Pyo Jang Y, Jung SK, Kim J. Effects of Schisandra chinensis Baillon (Schizandraceae) on lipopolysaccharide induced lung inflammation in mice. JOURNAL OF ETHNOPHARMACOLOGY 2012; 142:41-47. [PMID: 22543173 DOI: 10.1016/j.jep.2012.04.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Revised: 03/29/2012] [Accepted: 04/08/2012] [Indexed: 05/31/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Schisandra chinensis Baillon (Sc), an anti-inflammatory herb that has been used in traditional Chinese medicine for thousands of years, is frequently used to treat upper respiratory tract infections. AIM OF THE STUDY This study was conducted to evaluate the ability of a water extract of Sc to prevent airway inflammation both in vitro and in vivo. MATERIALS AND METHODS Human lung alveolar epithelial-derived A549 cells were stimulated with to interleukin-1β, tumor necrosis factor-α, and interferon-γ (IL-1β, TNF-α, and INF-γ; cytokine mixture; CM) and treated with Sc extracts. They were then evaluated using nitric oxide (NO), IL-8 and monocyte chemotactic protein-1 (MCP-1) secretions. In the in vivo study, BALB/c mice were challenged with lipopolysaccharide (LPS) to induce acute airway inflammation. After this challenge, the mice were treated with Sc extracts (10, 50 and 100mg/kg) by oral administration, and inflammatory cells in the bronchoalveolar lavage (BAL) fluid were counted. IL-6 and TNF-α secretions were measured using an enzyme-linked immunosorbent assay. Lung tissues of the LPS treated mice were prepared and stained with hematoxylin and eosin (HE) for histological examination. RESULTS In the A549 cells, Sc extracts dose-dependently and significantly inhibited CM-induced NO production and reduced IL-8 and MCP-1 secretions. Sc extracts efficiently suppressed neutrophil and macrophage infiltrations of lung tissues and increased IL-6 and TNF-α levels in BAL fluid in LPS-instilled BALB/c mice. In addition, Sc extracts treatment inhibited pathologic progress in the lung tissues, as confirmed by H&E staining. These findings indicate that Sc extracts could be potentially useful for the treatment of acute lung inflammation and acute lung injury.
Collapse
Affiliation(s)
- Hyunsu Bae
- Department of Physiology, College of Oriental Medicine, Kyung Hee University, #1 Hoeki-dong, Dongdaemoon-gu, Seoul 130-701, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Worsham MJ, Stephen JK, Lu M, Chen KM, Havard S, Shah V, Schweitzer VP. Disparate molecular, histopathology, and clinical factors in head and neck squamous cell carcinoma racial groups. Otolaryngol Head Neck Surg 2012; 147:281-8. [PMID: 22412179 DOI: 10.1177/0194599812440681] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
OBJECTIVE There is a lack of consensus regarding the causes of the differences in the higher incidence of and the mortality from head and neck squamous cell carcinoma (HNSCC) in African Americans (AA) versus Caucasian Americans (CA). We examined a comprehensive array of risk factors influencing health and disease in an access-to-care, racially diverse, primary HNSCC cohort. STUDY DESIGN Cross-sectional study. SETTING Primary care academic health care system. SUBJECTS AND METHODS The cohort of 673 patients comprised 391 CA and 282 AA (42%). Risk variables included demographic, histopathology, and clinical/epidemiologic factors. Tumor DNA was interrogated for loss and gain of 113 genes with known involvement in HNSCC/cancer. Logistic regression for univariate analysis was followed by multivariate modeling with determination of model predictability (c-index). RESULTS Of the 39 univariate differences between AA and CA, multivariate modeling (c-index = 0.81) retained 7 differences (P < .05). AA were less likely to be married and more likely to have tumor lymphocytic response, undergo radiation treatment, and smoke. Insurance type was a significant predictor of race. AA were more likely to have Medicaid, Medicare, and other HMO types. AA tumors were more likely to have loss of CDKN2A and gain of SCYA3 versus CA. CONCLUSIONS Multivariate modeling indicated significant differences between AA and CA HNSCC for histopathology, treatment, smoking, marital status, type of insurance, and tumor gene copy number alterations. Our data reiterate that for HNSCC, as in the case of other complex diseases, tumor genetics or biology is only one of many potential contributors to differences among racial groups.
Collapse
Affiliation(s)
- Maria J Worsham
- Department of Otolaryngology/Head and Neck Surgery, Henry Ford Hospital, Detroit, Michigan 48202, USA.
| | | | | | | | | | | | | |
Collapse
|
47
|
Kireva T, Erhardt A, Tiegs G, Tilg H, Denk H, Haybaeck J, Aigner E, Moschen A, Distler JH, Schett G, Zwerina J. Transcription factor Fra-1 induces cholangitis and liver fibrosis. Hepatology 2011; 53:1259-69. [PMID: 21480331 DOI: 10.1002/hep.24175] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
UNLABELLED Chronic diseases of the biliary system are common and may cause fibrosis and eventually progression to liver cirrhosis. The aim was to define a new mouse model of a cholangiopathy leading to liver fibrosis in fra-1tg mice. Liver pathology of fra-1tg mice was analyzed in detail by histology and flow cytometry. Transcript levels of fibrosis-related genes and matrix metalloproteinase (MMP) activities were quantified and immunohistochemical analysis additionally applied. The role of the immune system in this model was analyzed by crossing fra-1tg mice with rag2(-/-) mice. Furthermore, expression of Fra-1 in corresponding human liver diseases was investigated on transcription level and histologically. Fra-1tg mice spontaneously develop biliary fibrosis preceded by ductular proliferation and infiltration of inflammatory cells. Fra-1 protein is present in cholangiocytes and inflammatory cells within the liver. These findings were replicated in human biopsies of patients with advanced liver fibrosis. The inflammatory infiltrate showed a strong increase in activated T cells and decreased natural killer (NK), natural killer T cells (NKT), and B cells in fra-1tg mice as compared to wildtype mice. Moreover, fra-1tg mice develop biliary fibrosis with a time-dependent increase in hepatic collagen content and increase in relative messenger RNA (mRNA) expression of profibrotic genes. Attenuation but not complete prevention of collagen accumulation in liver was observed in the fra-1tg × rag2(-/-) mice. However, transplantation of fra-1tg bone marrow cells into wildtype mice could not induce disease. CONCLUSION Fra-1tg mice spontaneously develop a progressive biliary disease. These mice are an attractive model for the investigation of cholangiopathies and their interaction with the immune system.
Collapse
Affiliation(s)
- Trayana Kireva
- Department of Internal Medicine 3, University of Erlangen-Nuremberg, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Pan MH, Chiou YS, Wang YJ, Ho CT, Lin JK. Multistage carcinogenesis process as molecular targets in cancer chemoprevention by epicatechin-3-gallate. Food Funct 2011; 2:101-10. [PMID: 21779554 DOI: 10.1039/c0fo00174k] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The consumption of green tea has long been associated with a reduced risk of cancer development. (-)-Epicatechin-3-gallate (ECG) or (-)-epigallocatechin-3-gallate (EGCG) are the major antioxidative polyphenolic compounds of green tea. They have been shown to exert growth-inhibitory potential of various cancer cells in culture and antitumor activity in vivo models. ECG or EGCG could interact with various molecules like proteins, transcription factors, and enzymes, which block multiple stages of carcinogenesis via regulating intracellular signaling transduction pathways. Moreover, ECG and EGCG possess pharmacological and physiological properties including induction of phase II enzymes, mediation of anti-inflammation response, regulation of cell proliferation and apoptosis effects and prevention of tumor angiogenesis, invasion and metastasis. Numerous review articles have been focused on EGCG, however none have been focused on ECG despite many studies supporting the cancer preventive potential of ECG. To develop ECG as an anticarcinogenic agent, more clear understanding of the cell signaling pathways and the molecular targets responsible for chemopreventive and chemotherapeutic effects are needed. This review summarizes recent research on the ECG-induced cellular signal transduction events which implicate in cancer management.
Collapse
Affiliation(s)
- Min-Hsiung Pan
- Department of Seafood Science, National Kaohsiung Marine University, No.142, Haijhuan Rd., Nanzih District, Kaohsiung 81143, Taiwan.
| | | | | | | | | |
Collapse
|
49
|
Henkels KM, Frondorf K, Gonzalez-Mejia ME, Doseff AL, Gomez-Cambronero J. IL-8-induced neutrophil chemotaxis is mediated by Janus kinase 3 (JAK3). FEBS Lett 2010; 585:159-66. [PMID: 21095188 DOI: 10.1016/j.febslet.2010.11.031] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2010] [Revised: 11/15/2010] [Accepted: 11/16/2010] [Indexed: 12/11/2022]
Abstract
Janus kinase 3 (JAK3) is a non-receptor tyrosine kinase vital to the regulation of T-cells. We report that JAK3 is a mediator of interleukin-8 (IL-8) stimulation of a different class of hematopoietic relevant cells: human neutrophils. IL-8 induced a time- and concentration-dependent activation of JAK3 activity in neutrophils and differentiated HL-60 leukemic cells. JAK3 was more robustly activated by IL-8 than other kinases: p70S6K, mTOR, MAPK or PKC. JAK3 silencing severely inhibited IL-8-mediated chemotaxis. Thus, IL-8 stimulates chemotaxis through a mechanism mediated by JAK3. Further, JAK3 activity and chemotaxis were inhibited by the flavonoid apigenin (4',5,7-trihydroxyflavone) at ∼5nM IC(50). These new findings lay the basis for understanding the molecular mechanism of cell migration as it relates to neutrophil-mediated chronic inflammatory processes.
Collapse
Affiliation(s)
- Karen M Henkels
- Department of Biochemistry and Molecular Biology, Wright State University School Medicine, Dayton, OH 45435, USA
| | | | | | | | | |
Collapse
|
50
|
Fibbi B, Penna G, Morelli A, Adorini L, Maggi M. Chronic inflammation in the pathogenesis of benign prostatic hyperplasia. ACTA ACUST UNITED AC 2009; 33:475-88. [PMID: 19508330 DOI: 10.1111/j.1365-2605.2009.00972.x] [Citation(s) in RCA: 148] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Benign prostatic hyperplasia (BPH) is a common disorder affecting 50-80% of the aged male population. Androgens and age have been traditionally considered the main determinants of prostate enlargement, but in the last years a potentially important role of chronic inflammation in BPH pathogenesis has emerged. Bacterial and non-infectious chronic prostatitis could represent inciting factors leading to tissue hyperproliferation, possibly via the recently demonstrated antigen-presenting capacity of prostatic stromal cells, enabling them to induce and sustain intraglandular immune responses. The prostate growth-promoting chemokine IL-8 could represent a direct link between chronic prostate inflammation and autocrine/paracrine stromal cell proliferation, in agreement with its marked secretion induced in BPH stromal cells by a combination of Th1 and Th17 cell-derived inflammatory cytokines. BPH stromal cells express the vitamin D receptor (VDR), which is up-regulated by exposure to inflammatory stimuli. The non-hypercalcaemic VDR agonist elocalcitol, shown to arrest BPH development by decreasing the intra-prostatic androgen signalling without directly interfering with systemic androgen action, exerts immunoregulatory and anti-inflammatory properties in different prostatic pathology characterized by growth and inflammation. The mechanism of action of VDR agonists supports an important role of chronic inflammation in BPH pathogenesis and strengthens the concept of these agents as a therapeutic option for pharmacological treatment of BPH.
Collapse
Affiliation(s)
- B Fibbi
- Andrology Unit, Department of Clinical Physiopathology, University of Florence, Florence, Italy
| | | | | | | | | |
Collapse
|