1
|
Badran HM, Helmy JA, Ahmed NF, Yacoub M. Impact of Diabetes Mellitus on Left Ventricular Mechanics and Long-Term Outcome in Patients with Hypertrophic Cardiomyopathy. Echocardiography 2024; 41:e70048. [PMID: 39661017 DOI: 10.1111/echo.70048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/20/2024] [Accepted: 11/23/2024] [Indexed: 12/12/2024] Open
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM) intensifies the clinical symptoms of heart diseases and leads to a worse prognosis in heart failure patients. Although hypertrophic cardiomyopathy (HCM) and DM rarely co-occur, particularly in older individuals, the impact of DM on cardiac function and outcomes in individuals with HCM remains insufficiently understood. METHODS A total of 421 HCM patients were included and followed up in a prospective cohort study (mean 68.7 months). In the diabetic HCM group (n = 47), patients had a mean age of 47 ± 17 years, and 31 (66%) were male, while the non-diabetic HCM group (n = 374) had a mean age of 44 ± 14 years, and 246 (65%) were male. At study entry, all patients underwent echocardiographic evaluation, encompassing left ventricular (LV) regional and global longitudinal strain (GLS), as well as strain rate (SR) analysis. RESULTS In diabetic HCM, there was a greater prevalence of hypertension (p < 0.0001), while the ratio of septal to posterior wall thickness (PWT) (p < 0.003) and E' value were lower (p < 0.009) compared to non-diabetic HCM. No significant difference between groups in NYHA class or cardiac phenotype. Diabetic HCM exhibited notable reductions in GLS (p < 0.02), systolic SR (SRsys) (p < 0.04), and early diastolic SR (SRe) p < 0.006. Additionally, there was a significant inverse correlation between LVGLS and HbA1c levels (r = -0.58, p < 0.0001), and the duration of diabetes (r = -0.39, p < 0.006). Hospitalization rates were greater in the diabetic HCM than in the non-diabetic group (44.7% vs.19.5%, p < 0.001). Among all demographic characteristics, phenotypic data, conventional echocardiographic measurements, and LV mechanics, diabetes emerged as the sole determinant of hospitalization among HCM patients. The presence of diabetes nearly tripled the odds of hospitalization (odds ratio: 2.813 [1.448-5.465], p < 0.002). However, diabetes did not negatively affect long-term survival, and age remained the only independent predictor of all-cause mortality. CONCLUSIONS In HCM, T2DM is linked to more deterioration of cardiac mechanics and contributes to unfavorable consequences by frequent hospitalization on its own, independent of age, comorbidities, or phenotype.
Collapse
Affiliation(s)
- Hala Mahfouz Badran
- Cardiology Department, Faculty of Medicine, Menoufia University, Menoufia, Egypt
| | - John Anis Helmy
- Cardiology Department, Faculty of Medicine, Menoufia University, Menoufia, Egypt
| | - Nagalaa Fahem Ahmed
- Cardiology Department, Faculty of Medicine, Menoufia University, Menoufia, Egypt
| | - Magdi Yacoub
- Cardiovascular surgery, Faculty of Medicine, Imperial College, London, UK
| |
Collapse
|
2
|
Julián MT, Pérez-Montes de Oca A, Julve J, Alonso N. The double burden: type 1 diabetes and heart failure-a comprehensive review. Cardiovasc Diabetol 2024; 23:65. [PMID: 38347569 PMCID: PMC10863220 DOI: 10.1186/s12933-024-02136-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 01/15/2024] [Indexed: 02/15/2024] Open
Abstract
Heart failure (HF) is increasing at an alarming rate, primary due to the rising in aging, obesity and diabetes. Notably, individuals with type 1 diabetes (T1D) face a significantly elevated risk of HF, leading to more hospitalizations and increased case fatality rates. Several risk factors contribute to HF in T1D, including poor glycemic control, female gender, smoking, hypertension, elevated BMI, and albuminuria. However, early and intensive glycemic control can mitigate the long-term risk of HF in individuals with T1D. The pathophysiology of diabetes-associated HF is complex and multifactorial, and the underlying mechanisms in T1D remain incompletely elucidated. In terms of treatment, much of the evidence comes from type 2 diabetes (T2D) populations, so applying it to T1D requires caution. Sodium-glucose cotransporter 2 inhibitors have shown benefits in HF outcomes, even in non-diabetic populations. However, most of the information about HF and the evidence from cardiovascular safety trials related to glucose lowering medications refer to T2D. Glycemic control is key, but the link between hypoglycemia and HF hospitalization risk requires further study. Glycemic variability, common in T1D, is an independent HF risk factor. Technological advances offer the potential to improve glycemic control, including glycemic variability, and may play a role in preventing HF. In summary, HF in T1D is a complex challenge with unique dimensions. This review focuses on HF in individuals with T1D, exploring its epidemiology, risk factors, pathophysiology, diagnosis and treatment, which is crucial for developing tailored prevention and management strategies for this population.
Collapse
Affiliation(s)
- María Teresa Julián
- Department of Endocrinology and Nutrition, Hospital Germans Trias i Pujol, Badalona, Spain.
- Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain.
| | - Alejandra Pérez-Montes de Oca
- Department of Endocrinology and Nutrition, Hospital Germans Trias i Pujol, Badalona, Spain
- Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Josep Julve
- Institut d'Investigació Biomèdica Sant Pau (IIB Sant Pau), Barcelona, Spain
- Center for Biomedical Research on Diabetes and Associated Metabolic Diseases (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Nuria Alonso
- Department of Endocrinology and Nutrition, Hospital Germans Trias i Pujol, Badalona, Spain.
- Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain.
- Center for Biomedical Research on Diabetes and Associated Metabolic Diseases (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
3
|
Steegh FMEG, Keijbeck AA, de Hoogt PA, Rademakers T, Houben AJHM, Reesink KD, Stehouwer CDA, Daemen MJAP, Peutz-Kootstra CJ. Capillary rarefaction: a missing link in renal and cardiovascular disease? Angiogenesis 2024; 27:23-35. [PMID: 37326760 DOI: 10.1007/s10456-023-09883-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/28/2023] [Indexed: 06/17/2023]
Abstract
Patients with chronic kidney disease (CKD) have an increased risk for cardiovascular morbidity and mortality. Capillary rarefaction may be both one of the causes as well as a consequence of CKD and cardiovascular disease. We reviewed the published literature on human biopsy studies and conclude that renal capillary rarefaction occurs independently of the cause of renal function decline. Moreover, glomerular hypertrophy may be an early sign of generalized endothelial dysfunction, while peritubular capillary loss occurs in advanced renal disease. Recent studies with non-invasive measurements show that capillary rarefaction is detected systemically (e.g., in the skin) in individuals with albuminuria, as sign of early CKD and/or generalized endothelial dysfunction. Decreased capillary density is found in omental fat, muscle and heart biopsies of patients with advanced CKD as well as in skin, fat, muscle, brain and heart biopsies of individuals with cardiovascular risk factors. No biopsy studies have yet been performed on capillary rarefaction in individuals with early CKD. At present it is unknown whether individuals with CKD and cardiovascular disease merely share the same risk factors for capillary rarefaction, or whether there is a causal relationship between rarefaction in renal and systemic capillaries. Further studies on renal and systemic capillary rarefaction, including their temporal relationship and underlying mechanisms are needed. This review stresses the importance of preserving and maintaining capillary integrity and homeostasis in the prevention and management of renal and cardiovascular disease.
Collapse
Affiliation(s)
- Floor M E G Steegh
- Department of Pathology, Maastricht University Medical Centre+, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Anke A Keijbeck
- Department of Pathology, Maastricht University Medical Centre+, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Patrick A de Hoogt
- Surgery, Maastricht University Medical Centre+, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Timo Rademakers
- Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, The Netherlands
| | - Alfons J H M Houben
- Internal Medicine, Maastricht University Medical Centre+, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Koen D Reesink
- Biomedical Engineering, Maastricht University Medical Centre+, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Coen D A Stehouwer
- Internal Medicine, Maastricht University Medical Centre+, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Mat J A P Daemen
- Department of Pathology, UMC Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Carine J Peutz-Kootstra
- Department of Pathology, Maastricht University Medical Centre+, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands.
- Department of Pathology, Gelre Ziekenhuizen, Apeldoorn, The Netherlands.
- , Porthoslaan 39, 6213 CN, Maastricht, The Netherlands.
| |
Collapse
|
4
|
Trotta MC, Herman H, Ciceu A, Mladin B, Rosu M, Lepre CC, Russo M, Bácskay I, Fenyvesi F, Marfella R, Hermenean A, Balta C, D’Amico M. Chrysin-based supramolecular cyclodextrin-calixarene drug delivery system: a novel approach for attenuating cardiac fibrosis in chronic diabetes. Front Pharmacol 2023; 14:1332212. [PMID: 38169923 PMCID: PMC10759242 DOI: 10.3389/fphar.2023.1332212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 12/04/2023] [Indexed: 01/05/2024] Open
Abstract
Introduction: Cardiac fibrosis is strongly induced by diabetic conditions. Both chrysin (CHR) and calixarene OTX008, a specific inhibitor of galectin 1 (Gal-1), seem able to reduce transforming growth factor beta (TGF-β)/SMAD pro-fibrotic pathways, but their use is limited to their low solubility. Therefore, we formulated a dual-action supramolecular system, combining CHR with sulfobutylated β-cyclodextrin (SBECD) and OTX008 (SBECD + OTX + CHR). Here we aimed to test the anti-fibrotic effects of SBECD + OTX + CHR in hyperglycemic H9c2 cardiomyocytes and in a mouse model of chronic diabetes. Methods: H9c2 cardiomyocytes were exposed to normal (NG, 5.5 mM) or high glucose (HG, 33 mM) for 48 h, then treated with SBECD + OTX + CHR (containing OTX008 0.75-1.25-2.5 µM) or the single compounds for 6 days. TGF-β/SMAD pathways, Mitogen-Activated Protein Kinases (MAPKs) and Gal-1 levels were assayed by Enzyme-Linked Immunosorbent Assays (ELISAs) or Real-Time Quantitative Reverse Transcription Polymerase chain reaction (qRT-PCR). Adult CD1 male mice received a single intraperitoneal (i.p.) administration of streptozotocin (STZ) at a dosage of 102 mg/kg body weight. From the second week of diabetes, mice received 2 times/week the following i.p. treatments: OTX (5 mg/kg)-SBECD; OTX (5 mg/kg)-SBECD-CHR, SBECD-CHR, SBECD. After a 22-week period of diabetes, mice were euthanized and cardiac tissue used for tissue staining, ELISA, qRT-PCR aimed to analyse TGF-β/SMAD, extracellular matrix (ECM) components and Gal-1. Results: In H9c2 cells exposed to HG, SBECD + OTX + CHR significantly ameliorated the damaged morphology and reduced TGF-β1, its receptors (TGFβR1 and TGFβR2), SMAD2/4, MAPKs and Gal-1. Accordingly, these markers were reduced also in cardiac tissue from chronic diabetes, in which an amelioration of cardiac remodeling and ECM was evident. In both settings, SBECD + OTX + CHR was the most effective treatment compared to the other ones. Conclusion: The CHR-based supramolecular SBECD-calixarene drug delivery system, by enhancing the solubility and the bioavailability of both CHR and calixarene OTX008, and by combining their effects, showed a strong anti-fibrotic activity in rat cardiomyocytes and in cardiac tissue from mice with chronic diabetes. Also an improved cardiac tissue remodeling was evident. Therefore, new drug delivery system, which could be considered as a novel putative therapeutic strategy for the treatment of diabetes-induced cardiac fibrosis.
Collapse
Affiliation(s)
- Maria Consiglia Trotta
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Hildegard Herman
- “Aurel Ardelean” Institute of Life Sciences, Vasile Goldis Western University of Arad, Arad, Romania
| | - Alina Ciceu
- “Aurel Ardelean” Institute of Life Sciences, Vasile Goldis Western University of Arad, Arad, Romania
| | - Bianca Mladin
- “Aurel Ardelean” Institute of Life Sciences, Vasile Goldis Western University of Arad, Arad, Romania
| | - Marcel Rosu
- “Aurel Ardelean” Institute of Life Sciences, Vasile Goldis Western University of Arad, Arad, Romania
| | - Caterina Claudia Lepre
- “Aurel Ardelean” Institute of Life Sciences, Vasile Goldis Western University of Arad, Arad, Romania
- PhD Course in Translational Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Marina Russo
- PhD Course in National Interest in Public Administration and Innovation for Disability and Social Inclusion, Department of Mental, Physical Health and Preventive Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
- School of Pharmacology and Clinical Toxicology, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Ildikó Bácskay
- Department of Molecular and Nanopharmaceutics, Faculty of Pharmacy, University of Debrecen, Debrecen, Hungary
- Institute of Healthcare Industry, University of Debrecen, Debrecen, Hungary
| | - Ferenc Fenyvesi
- Department of Molecular and Nanopharmaceutics, Faculty of Pharmacy, University of Debrecen, Debrecen, Hungary
| | - Raffaele Marfella
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Anca Hermenean
- “Aurel Ardelean” Institute of Life Sciences, Vasile Goldis Western University of Arad, Arad, Romania
- Department of Histology, Faculty of Medicine, Vasile Goldis Western University of Arad, Arad, Romania
| | - Cornel Balta
- “Aurel Ardelean” Institute of Life Sciences, Vasile Goldis Western University of Arad, Arad, Romania
| | - Michele D’Amico
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| |
Collapse
|
5
|
Abstract
Pericytes are specialized cells located in close proximity to endothelial cells within the microvasculature. They play a crucial role in regulating blood flow, stabilizing vessel walls, and maintaining the integrity of the blood-brain barrier. The loss of pericytes has been associated with the development and progression of various diseases, such as diabetes, Alzheimer's disease, sepsis, stroke, and traumatic brain injury. This review examines the detection of pericyte loss in different diseases, explores the methods employed to assess pericyte coverage, and elucidates the potential mechanisms contributing to pericyte loss in these pathological conditions. Additionally, current therapeutic strategies targeting pericytes are discussed, along with potential future interventions aimed at preserving pericyte function and promoting disease mitigation.
Collapse
Affiliation(s)
| | - Hongkuan Fan
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29425, USA;
| |
Collapse
|
6
|
Yang Z, Liu Y, Li Z, Feng S, Lin S, Ge Z, Fan Y, Wang Y, Wang X, Mao J. Coronary microvascular dysfunction and cardiovascular disease: Pathogenesis, associations and treatment strategies. Biomed Pharmacother 2023; 164:115011. [PMID: 37321056 DOI: 10.1016/j.biopha.2023.115011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/09/2023] [Accepted: 06/11/2023] [Indexed: 06/17/2023] Open
Abstract
Coronary microvascular dysfunction (CMD) is a high-risk factor for a variety of cardiovascular events. Due to its complex aetiology and concealability, knowledge of the pathophysiological mechanism of CMD is still limited at present, which greatly restricts its clinical diagnosis and treatment. Studies have shown that CMD is closely related to a variety of cardiovascular diseases, can aggravate the occurrence and development of cardiovascular diseases, and is closely related to a poor prognosis in patients with cardiovascular diseases. Improving coronary microvascular remodelling and increasing myocardial perfusion might be promising strategies for the treatment of cardiovascular diseases. In this paper, the pathogenesis and functional assessment of CMD are reviewed first, along with the relationship of CMD with cardiovascular diseases. Then, the latest strategies for the treatment of CMD and cardiovascular diseases are summarized. Finally, urgent scientific problems in CMD and cardiovascular diseases are highlighted and future research directions are proposed to provide prospective insights for the prevention and treatment of CMD and cardiovascular diseases in the future.
Collapse
Affiliation(s)
- Zhihua Yang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| | - Yangxi Liu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China.
| | - Zhenzhen Li
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| | - Shaoling Feng
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China.
| | - Shanshan Lin
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China.
| | - Zhao Ge
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China.
| | - Yujian Fan
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China.
| | - Yi Wang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| | - Xianliang Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China.
| | - Jingyuan Mao
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China.
| |
Collapse
|
7
|
Pan KL, Hsu YC, Chang ST, Chung CM, Lin CL. The Role of Cardiac Fibrosis in Diabetic Cardiomyopathy: From Pathophysiology to Clinical Diagnostic Tools. Int J Mol Sci 2023; 24:ijms24108604. [PMID: 37239956 DOI: 10.3390/ijms24108604] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/04/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Diabetes mellitus (DM) is a chronic metabolic disorder characterized by hyperglycemia due to inadequate insulin secretion, resistance, or both. The cardiovascular complications of DM are the leading cause of morbidity and mortality in diabetic patients. There are three major types of pathophysiologic cardiac remodeling including coronary artery atherosclerosis, cardiac autonomic neuropathy, and DM cardiomyopathy in patients with DM. DM cardiomyopathy is a distinct cardiomyopathy characterized by myocardial dysfunction in the absence of coronary artery disease, hypertension, and valvular heart disease. Cardiac fibrosis, defined as the excessive deposition of extracellular matrix (ECM) proteins, is a hallmark of DM cardiomyopathy. The pathophysiology of cardiac fibrosis in DM cardiomyopathy is complex and involves multiple cellular and molecular mechanisms. Cardiac fibrosis contributes to the development of heart failure with preserved ejection fraction (HFpEF), which increases mortality and the incidence of hospitalizations. As medical technology advances, the severity of cardiac fibrosis in DM cardiomyopathy can be evaluated by non-invasive imaging modalities such as echocardiography, heart computed tomography (CT), cardiac magnetic resonance imaging (MRI), and nuclear imaging. In this review article, we will discuss the pathophysiology of cardiac fibrosis in DM cardiomyopathy, non-invasive imaging modalities to evaluate the severity of cardiac fibrosis, and therapeutic strategies for DM cardiomyopathy.
Collapse
Affiliation(s)
- Kuo-Li Pan
- Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital, Chiayi Branch, Chiayi City 613, Taiwan
- College of Medicine, Chang Gung University, Taoyuan City 333, Taiwan
- Heart Failure Center, Chang Gung Memorial Hospital, Chiayi Branch, Chiayi City 613, Taiwan
| | - Yung-Chien Hsu
- Department of Nephrology, Kidney and Diabetic Complications Research Team (KDCRT), Chang Gung Memorial Hospital, Chiayi Branch, Chiayi City 613, Taiwan
| | - Shih-Tai Chang
- Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital, Chiayi Branch, Chiayi City 613, Taiwan
- College of Medicine, Chang Gung University, Taoyuan City 333, Taiwan
| | - Chang-Min Chung
- Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital, Chiayi Branch, Chiayi City 613, Taiwan
- College of Medicine, Chang Gung University, Taoyuan City 333, Taiwan
| | - Chun-Liang Lin
- College of Medicine, Chang Gung University, Taoyuan City 333, Taiwan
- Department of Nephrology, Kidney and Diabetic Complications Research Team (KDCRT), Chang Gung Memorial Hospital, Chiayi Branch, Chiayi City 613, Taiwan
- Kidney Research Center, Chang Gung Memorial Hospital, Taipei 105, Taiwan
- Center for Shockwave Medicine and Tissue Engineering, Department of Medical Research, Chang Gung Memorial Hospital, Kaohsiung City 833, Taiwan
| |
Collapse
|
8
|
Reed J, Bain S, Kanamarlapudi V. A Review of Current Trends with Type 2 Diabetes Epidemiology, Aetiology, Pathogenesis, Treatments and Future Perspectives. Diabetes Metab Syndr Obes 2021; 14:3567-3602. [PMID: 34413662 PMCID: PMC8369920 DOI: 10.2147/dmso.s319895] [Citation(s) in RCA: 164] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 07/09/2021] [Indexed: 12/13/2022] Open
Abstract
Type 2 diabetes (T2D), which has currently become a global pandemic, is a metabolic disease largely characterised by impaired insulin secretion and action. Significant progress has been made in understanding T2D aetiology and pathogenesis, which is discussed in this review. Extrapancreatic pathology is also summarised, which demonstrates the highly multifactorial nature of T2D. Glucagon-like peptide (GLP)-1 is an incretin hormone responsible for augmenting insulin secretion from pancreatic beta-cells during the postprandial period. Given that native GLP-1 has a very short half-life, GLP-1 mimetics with a much longer half-life have been developed, which are currently an effective treatment option for T2D by enhancing insulin secretion in patients. Interestingly, there is continual emerging evidence that these therapies alleviate some of the post-diagnosis complications of T2D. Additionally, these therapies have been shown to induce weight loss in patients, suggesting they could be an alternative to bariatric surgery, a procedure associated with numerous complications. Current GLP-1-based therapies all act as orthosteric agonists for the GLP-1 receptor (GLP-1R). Interestingly, it has emerged that GLP-1R also has allosteric binding sites and agonists have been developed for these sites to test their therapeutic potential. Recent studies have also demonstrated the potential of bi- and tri-agonists, which target multiple hormonal receptors including GLP-1R, to more effectively treat T2D. Improved understanding of T2D aetiology/pathogenesis, coupled with the further elucidation of both GLP-1 activity/targets and GLP-1R mechanisms of activation via different agonists, will likely provide better insight into the therapeutic potential of GLP-1-based therapies to treat T2D.
Collapse
Affiliation(s)
- Josh Reed
- Institute of Life Science 1, Medical School, Swansea University, Swansea, SA2 8PP, UK
| | - Stephen Bain
- Institute of Life Science 1, Medical School, Swansea University, Swansea, SA2 8PP, UK
| | | |
Collapse
|
9
|
Karwi QG, Ho KL, Pherwani S, Ketema EB, Sun QY, Lopaschuk GD. Concurrent diabetes and heart failure: interplay and novel therapeutic approaches. Cardiovasc Res 2021; 118:686-715. [PMID: 33783483 DOI: 10.1093/cvr/cvab120] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 03/29/2021] [Indexed: 12/12/2022] Open
Abstract
Diabetes mellitus increases the risk of developing heart failure, and the co-existence of both diseases worsens cardiovascular outcomes, hospitalization and the progression of heart failure. Despite current advancements on therapeutic strategies to manage hyperglycemia, the likelihood of developing diabetes-induced heart failure is still significant, especially with the accelerating global prevalence of diabetes and an ageing population. This raises the likelihood of other contributing mechanisms beyond hyperglycemia in predisposing diabetic patients to cardiovascular disease risk. There has been considerable interest in understanding the alterations in cardiac structure and function in the diabetic patients, collectively termed as "diabetic cardiomyopathy". However, the factors that contribute to the development of diabetic cardiomyopathies is not fully understood. This review summarizes the main characteristics of diabetic cardiomyopathies, and the basic mechanisms that contribute to its occurrence. This includes perturbations in insulin resistance, fuel preference, reactive oxygen species generation, inflammation, cell death pathways, neurohormonal mechanisms, advanced glycated end-products accumulation, lipotoxicity, glucotoxicity, and posttranslational modifications in the heart of the diabetic. This review also discusses the impact of antihyperglycemic therapies on the development of heart failure, as well as how current heart failure therapies influence glycemic control in diabetic patients. We also highlight the current knowledge gaps in understanding how diabetes induces heart failure.
Collapse
Affiliation(s)
- Qutuba G Karwi
- Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Kim L Ho
- Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Simran Pherwani
- Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Ezra B Ketema
- Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Qiu Yu Sun
- Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Gary D Lopaschuk
- Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
10
|
Abstract
Diffuse myocardial fibrosis resulting from the excessive deposition of collagen fibres through the entire myocardium is encountered in a number of chronic cardiac diseases. This lesion results from alterations in the regulation of fibrillary collagen turnover by fibroblasts, facilitating the excessive deposition of type I and type III collagen fibres within the myocardial interstitium and around intramyocardial vessels. The available evidence suggests that, beyond the extent of fibrous deposits, collagen composition and the physicochemical properties of the fibres are also relevant in the detrimental effects of diffuse myocardial fibrosis on cardiac function and clinical outcomes in patients with heart failure. In this regard, findings from the past 20 years suggest that various clinicopathological phenotypes of diffuse myocardial fibrosis exist in patients with heart failure. In this Review, we summarize the current knowledge on the mechanisms and detrimental consequences of diffuse myocardial fibrosis in heart failure. Furthermore, we discuss the validity and usefulness of available imaging techniques and circulating biomarkers to assess the clinicopathological variation in this lesion and to track its clinical evolution. Finally, we highlight the currently available and potential future therapeutic strategies aimed at personalizing the prevention and reversal of diffuse myocardial fibrosis in patients with heart failure.
Collapse
|
11
|
Zhang X, Tian X, Li P, Zhu H, Zhou N, Fang Z, Yang Y, Jing Y, Yuan J. Ultrasound-targeted microbubble destruction promotes myocardial angiogenesis and functional improvements in rat model of diabetic cardiomyopathy. BMC Cardiovasc Disord 2021; 21:21. [PMID: 33413110 PMCID: PMC7791842 DOI: 10.1186/s12872-020-01815-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 12/08/2020] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Microvascular insufficiency plays an important role in the development of diabetic cardiomyopathy (DCM), therapeutic angiogenesis has been mainly used for the treatment of ischemic diseases. This study sought to verify the preclinical performance of SonoVue microbubbles (MB) combined ultrasound (US) treatment on myocardial angiogenesis in the rat model of DCM and investigate the optimal ultrasonic parameters. METHODS The male Sprague-Dawley (SD) rats were induced DCM by streptozotocin through intraperitoneal injecting and fed with high-fat diet. After the DCM model was established, the rats were divided into the normal group, DCM model group, and US + MB group, while the US + MB group was divided into four subsets according to different pulse lengths (PL) (8 cycles;18 cycle;26 cycle; 36 cycle). After all interventions, all rats underwent conventional echocardiography to examine the cardiac function. The rats were sacrificed and myocardial tissue was examined by histology and morphometry evaluations to detect the myocardial protective effect of SonoVue MBs using US techniques. RESULTS From morphologic observation and echocardiography, the DCM rats had a series of structural abnormalities of cardiac myocardium compared to the normal rats. The US-MB groups exerted cardioprotective effect in DCM rats, improved reparative neovascularization and increased cardiac perfusion, while the 26 cycle group showed significant therapeutic effects on the cardiac functions in DCM rats. CONCLUSION This strategy using SonoVue MB and US can improve the efficacy of angiogenesis, even reverse the progress of cardiac dysfunction and pathological abnormalities, especially using the 26 cycle parameters. Under further study, this combined strategy might provide a novel approach for early intervention of DCM in diabetic patients.
Collapse
Affiliation(s)
- Xijun Zhang
- Department of Ultrasonography, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Henan University People's Hospital, NO. 7 Weiwu Road, Zhengzhou, 450003, Henan, China
| | - Xinqiao Tian
- Department of Ultrasonography, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Henan University People's Hospital, NO. 7 Weiwu Road, Zhengzhou, 450003, Henan, China
| | - Peng Li
- School of Pharmacy, Xinxiang Medical University, Xinxiang, 453002, Henan, China
| | - Haohui Zhu
- Department of Ultrasonography, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Henan University People's Hospital, NO. 7 Weiwu Road, Zhengzhou, 450003, Henan, China
| | - Nanqian Zhou
- Department of Ultrasonography, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Henan University People's Hospital, NO. 7 Weiwu Road, Zhengzhou, 450003, Henan, China
| | - Zhixin Fang
- School of Pharmacy, Xinxiang Medical University, Xinxiang, 453002, Henan, China
| | - Yuping Yang
- School of Pharmacy, Xinxiang Medical University, Xinxiang, 453002, Henan, China
| | - Yun Jing
- School of Pharmacy, Xinxiang Medical University, Xinxiang, 453002, Henan, China
| | - Jianjun Yuan
- Department of Ultrasonography, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Henan University People's Hospital, NO. 7 Weiwu Road, Zhengzhou, 450003, Henan, China.
| |
Collapse
|
12
|
Kanamori H, Naruse G, Yoshida A, Minatoguchi S, Watanabe T, Kawaguchi T, Tanaka T, Yamada Y, Takasugi H, Mikami A, Minatoguchi S, Miyazaki T, Okura H. Morphological characteristics in diabetic cardiomyopathy associated with autophagy. J Cardiol 2020; 77:30-40. [PMID: 32907780 DOI: 10.1016/j.jjcc.2020.05.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 05/11/2020] [Indexed: 12/28/2022]
Abstract
Diabetic cardiomyopathy, clinically diagnosed as ventricular dysfunction in the absence of coronary atherosclerosis or hypertension in diabetic patients, is a cardiac muscle-specific disease that increases the risk of heart failure and mortality. Its clinical course is characterized initially by diastolic dysfunction, later by systolic dysfunction, and eventually by clinical heart failure from an uncertain mechanism. Light microscopic features such as interstitial fibrosis, inflammation, and cardiomyocyte hypertrophy are observed in diabetic cardiomyopathy, but are common to failing hearts generally and are not specific to diabetic cardiomyopathy. Electron microscopic studies of biopsy samples from diabetic patients with heart failure have revealed that the essential mechanism underlying diabetic cardiomyopathy involves thickening of the capillary basement membrane, accumulation of lipid droplets, and glycogen as well as increased numbers of autophagic vacuoles within cardiomyocytes. Autophagy is a conserved mechanism that contributes to maintaining intracellular homeostasis by degrading long-lived proteins and damaged organelles and is observed more often in cardiomyocytes within failing hearts. Diabetes mellitus (DM) impairs cardiac metabolism and leads to dysregulation of energy substrates that contribute to cardiac autophagy. However, a "snapshot" showing greater numbers of autophagic vacuoles within cardiomyocytes may indicate that autophagy is activated into phagophore formation or is suppressed due to impairment of the lysosomal degradation step. Recent in vivo studies have shed light on the underlying molecular mechanism governing autophagy and its essential meaning in the diabetic heart. Autophagic responses to diabetic cardiomyopathy differ between diabetic types: they are enhanced in type 1 DM, but are suppressed in type 2 DM. This difference provides important insight into the pathophysiology of diabetic cardiomyopathy. Here, we review recent advances in our understanding of the pathophysiology of diabetic cardiomyopathy, paying particular attention to autophagy in the heart, and discuss the therapeutic potential of interventions modulating autophagy in diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Hiromitsu Kanamori
- Department of Cardiology, Gifu University Graduate School of Medicine, Gifu, Japan.
| | - Genki Naruse
- Department of Cardiology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Akihiro Yoshida
- Department of Cardiology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Shingo Minatoguchi
- Department of Cardiology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Takatomo Watanabe
- Department of Cardiology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Tomonori Kawaguchi
- Department of Cardiology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Toshiki Tanaka
- Department of Cardiology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Yoshihisa Yamada
- Department of Cardiology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Hironobu Takasugi
- Department of Cardiology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Atsushi Mikami
- Department of Cardiology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Shinya Minatoguchi
- Department of Cardiology, Gifu University Graduate School of Medicine, Gifu, Japan
| | | | - Hiroyuki Okura
- Department of Cardiology, Gifu University Graduate School of Medicine, Gifu, Japan
| |
Collapse
|
13
|
Ng ACT, Prevedello F, Dolci G, Roos CJ, Djaberi R, Bertini M, Ewe SH, Allman C, Leung DY, Marsan NA, Delgado V, Bax JJ. Impact of Diabetes and Increasing Body Mass Index Category on Left Ventricular Systolic and Diastolic Function. J Am Soc Echocardiogr 2019; 31:916-925. [PMID: 29773243 DOI: 10.1016/j.echo.2018.02.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Indexed: 12/21/2022]
Abstract
BACKGROUND Diabetes and obesity are both worldwide growing epidemics, and both are independently associated with increased risk for heart failure and death. The aim of this study was to examine the additive detrimental effect of both diabetes and increasing body mass index (BMI) category on left ventricular (LV) myocardial systolic and diastolic function. METHODS The present retrospective multicenter study included 653 patients (337 with type 2 diabetes and 316 without diabetes) of increasing BMI category. All patients had normal LV ejection fractions. LV myocardial systolic (peak systolic global longitudinal strain and peak systolic global longitudinal strain rate) and diastolic (average mitral annular e' velocity and early diastolic global longitudinal strain rate) function was quantified using echocardiography. RESULTS Increasing BMI category was associated with progressively more impaired LV myocardial function in patients with diabetes (P < .001). Patients with diabetes had significantly more impaired LV myocardial function for all BMI categories compared with those without diabetes (P < .001). On multivariate analysis, both diabetes and obesity were independently associated with an additive detrimental effect on LV myocardial systolic and diastolic function. However, obesity was associated with greater LV myocardial dysfunction than diabetes. CONCLUSION Both diabetes and increasing BMI category had an additive detrimental effect on LV myocardial systolic and diastolic function. Furthermore, increasing BMI category was associated with greater LV myocardial dysfunction than diabetes. As they frequently coexist together, future studies on patients with diabetes should also focus on obesity.
Collapse
Affiliation(s)
- Arnold C T Ng
- Department of Cardiology, Princess Alexandra Hospital, The University of Queensland, Woolloongabba, Australia; Translational Research Institute, Brisbane, Australia; Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Francesca Prevedello
- Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands; University of Padua, Department of Cardiac, Thoracic and Vascular Sciences, Padova, Italy
| | - Giulia Dolci
- Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands; Section of Cardiology, Department of Medicine, University of Verona, Verona, Italy
| | - Cornelis J Roos
- Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Roxana Djaberi
- Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Matteo Bertini
- Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
| | - See Hooi Ewe
- Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Dominic Y Leung
- Department of Cardiology, Liverpool Hospital, Sydney, Australia
| | - Nina Ajmone Marsan
- Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Victoria Delgado
- Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jeroen J Bax
- Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
14
|
Wakisaka M, Kamouchi M, Kitazono T. Lessons from the Trials for the Desirable Effects of Sodium Glucose Co-Transporter 2 Inhibitors on Diabetic Cardiovascular Events and Renal Dysfunction. Int J Mol Sci 2019; 20:E5668. [PMID: 31726765 PMCID: PMC6888253 DOI: 10.3390/ijms20225668] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 11/07/2019] [Accepted: 11/10/2019] [Indexed: 12/31/2022] Open
Abstract
Recent large placebo-controlled trials of sodium glucose co-transporter 2 (SGLT2) inhibitors revealed desirable effects on heart failure (HF) and renal dysfunction; however, the mechanisms underlying these effects are unknown. The characteristic changes in the early stage of diabetic cardiomyopathy (DCM) are myocardial and interstitial fibrosis, resulting in diastolic and subsequent systolic dysfunction, which leads to clinical HF. Pericytes are considered to play crucial roles in myocardial and interstitial fibrosis. In both DCM and diabetic retinopathy (DR), microaneurysm formation and a decrease in capillaries occur, triggered by pericyte loss. Furthermore, tubulointerstitial fibrosis develops in early diabetic nephropathy (DN), in which pericytes and mesangial cells are thought to play important roles. Previous reports indicate that pericytes and mesangial cells play key roles in the pathogenesis of DCM, DR and DN. SGLT2 is reported to be functionally expressed in pericytes and mesangial cells, and excessive glucose and Na+ entry through SGLT2 causes cellular dysfunction in a diabetic state. Since SGLT2 inhibitors can attenuate the high glucose-induced dysfunction of pericytes and mesangial cells, the desirable effects of SGLT2 inhibitors on HF and renal dysfunction might be explained by their direct actions on these cells in the heart and kidney microvasculature.
Collapse
Affiliation(s)
- Masanori Wakisaka
- Wakisaka Naika (Wakisaka Internal Medicine Clinic), Internal medicine, Fukuoka 814-0013, Japan
| | - Masahiro Kamouchi
- Department of Health Care Administration and Management, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Takanari Kitazono
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| |
Collapse
|
15
|
Zheng X, Peng M, Li Y, Wang X, Lu W, Wang X, Shan Y, Li R, Gao L, Qiu C. Cathelicidin-related antimicrobial peptide protects against cardiac fibrosis in diabetic mice heart by regulating endothelial-mesenchymal transition. Int J Biol Sci 2019; 15:2393-2407. [PMID: 31595157 PMCID: PMC6775320 DOI: 10.7150/ijbs.35736] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Accepted: 07/25/2019] [Indexed: 12/19/2022] Open
Abstract
Cathelicidin-related antimicrobial peptide (CRAMP), antimicrobial peptide, was reported to protect against myocardial ischemia/reperfusion injury. In the pathology of diabetic cardiomyopathy, endothelial-to-mesenchymal transition (EndMT) results from hyperglycemia-induced endothelial injury, leading to cardiac fibrosis. This study aims to evaluate the effect of CRAMP on EndMT and cardiac fibrosis on diabetic mice heart. Mice were subjected to streptozotocin to induce diabetes. CRAMP was administered by intraperitoneal injection (1 or 8 mg/kg/d) for 4 weeks from 12 weeks till 16 weeks after final streptozotocin injection. Cardiac dysfunction was observed in diabetic mice. Only 8 mg/kg/d CRAMP treatment proved cardiac function. Increased EndMT and fibrosis level were also observed in diabetic mice heart. 8mg/kg CRAMP inhibited EndMT and fibrosis level in diabetic mice. Mouse heart endothelial cells (MHECs) were treated with CRAMP and exposed to high glucose. Hyperglycemia-induced EndMT in MHECs was also attenuated by CRAMP treatment. Activation of TGFβ/Smad signalling was increased in diabetic mice heart tissue and hyperglycemia stimulated MHECs, which was prevented following CRAMP treatment. Activation of AMPKa1/mTOR showed similar changes. AMPKa1 siRNA abrogated the effects of CRAMP in MHECs. TGFβ/Smad inhibitor LY2109761 and AMPKa agonist AIRCA mimic the effect of CRAMP. In summary, CRAMP can inhibit EndMT, cardiac fibrosis and protect against diabetic cardiomyopathy by regulating AMPKa1/TGFβ signalling.
Collapse
Affiliation(s)
- Xiaolin Zheng
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Meng Peng
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yan Li
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xule Wang
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wenjie Lu
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xi Wang
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yingguang Shan
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ran Li
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lu Gao
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Chunguang Qiu
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
16
|
Sorop O, Heinonen I, van Kranenburg M, van de Wouw J, de Beer VJ, Nguyen ITN, Octavia Y, van Duin RWB, Stam K, van Geuns RJ, Wielopolski PA, Krestin GP, van den Meiracker AH, Verjans R, van Bilsen M, Danser AHJ, Paulus WJ, Cheng C, Linke WA, Joles JA, Verhaar MC, van der Velden J, Merkus D, Duncker DJ. Multiple common comorbidities produce left ventricular diastolic dysfunction associated with coronary microvascular dysfunction, oxidative stress, and myocardial stiffening. Cardiovasc Res 2019; 114:954-964. [PMID: 29432575 PMCID: PMC5967461 DOI: 10.1093/cvr/cvy038] [Citation(s) in RCA: 151] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 02/07/2018] [Indexed: 12/12/2022] Open
Abstract
Aims More than 50% of patients with heart failure have preserved ejection fraction characterized by diastolic dysfunction. The prevalance of diastolic dysfunction is higher in females and associates with multiple comorbidities such as hypertension (HT), obesity, hypercholesterolemia (HC), and diabetes mellitus (DM). Although its pathophysiology remains incompletely understood, it has been proposed that these comorbidities induce systemic inflammation, coronary microvascular dysfunction, and oxidative stress, leading to myocardial fibrosis, myocyte stiffening and, ultimately, diastolic dysfunction. Here, we tested this hypothesis in a swine model chronically exposed to three common comorbidities. Methods and results DM (induced by streptozotocin), HC (produced by high fat diet), and HT (resulting from renal artery embolization), were produced in 10 female swine, which were followed for 6 months. Eight female healthy swine on normal pig-chow served as controls. The DM + HC + HT group showed hyperglycemia, HC, hypertriglyceridemia, renal dysfunction and HT, which were associated with systemic inflammation. Myocardial superoxide production was markedly increased, due to increased NOX activity and eNOS uncoupling, and associated with reduced NO production, and impaired coronary small artery endothelium-dependent vasodilation. These abnormalities were accompanied by increased myocardial collagen content, reduced capillary/fiber ratio, and elevated passive cardiomyocyte stiffness, resulting in an increased left ventricular end-diastolic stiffness (measured by pressure–volume catheter) and a trend towards a reduced E/A ratio (measured by cardiac MRI), while ejection fraction was maintained. Conclusions The combination of three common comorbidities leads to systemic inflammation, myocardial oxidative stress, and coronary microvascular dysfunction, which associate with myocardial stiffening and LV diastolic dysfunction with preserved ejection fraction.
Collapse
Affiliation(s)
- Oana Sorop
- Division of Experimental Cardiology, Department of Cardiology, The Thoraxcentre, Cardiovascular Research School COEUR, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Ilkka Heinonen
- Division of Experimental Cardiology, Department of Cardiology, The Thoraxcentre, Cardiovascular Research School COEUR, Erasmus University Medical Center, Rotterdam, The Netherlands.,Turku PET Centre, University of Turku and Turku University Hospital, Turku, Finland
| | - Matthijs van Kranenburg
- Division of Experimental Cardiology, Department of Cardiology, The Thoraxcentre, Cardiovascular Research School COEUR, Erasmus University Medical Center, Rotterdam, The Netherlands.,Department of Radiology, Cardiovascular Research School COEUR, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Jens van de Wouw
- Division of Experimental Cardiology, Department of Cardiology, The Thoraxcentre, Cardiovascular Research School COEUR, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Vincent J de Beer
- Division of Experimental Cardiology, Department of Cardiology, The Thoraxcentre, Cardiovascular Research School COEUR, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Isabel T N Nguyen
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Yanti Octavia
- Division of Experimental Cardiology, Department of Cardiology, The Thoraxcentre, Cardiovascular Research School COEUR, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Richard W B van Duin
- Division of Experimental Cardiology, Department of Cardiology, The Thoraxcentre, Cardiovascular Research School COEUR, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Kelly Stam
- Division of Experimental Cardiology, Department of Cardiology, The Thoraxcentre, Cardiovascular Research School COEUR, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Robert-Jan van Geuns
- Division of Experimental Cardiology, Department of Cardiology, The Thoraxcentre, Cardiovascular Research School COEUR, Erasmus University Medical Center, Rotterdam, The Netherlands.,Department of Radiology, Cardiovascular Research School COEUR, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Piotr A Wielopolski
- Department of Radiology, Cardiovascular Research School COEUR, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Gabriel P Krestin
- Department of Radiology, Cardiovascular Research School COEUR, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Anton H van den Meiracker
- Department of Internal Medicine, Cardiovascular Research School COEUR, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Robin Verjans
- Department of Cardiology, Maastricht University, Maastricht, The Netherlands
| | - Marc van Bilsen
- Department of Cardiology, Maastricht University, Maastricht, The Netherlands.,Department of Physiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - A H Jan Danser
- Department of Internal Medicine, Cardiovascular Research School COEUR, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Walter J Paulus
- Department of Physiology, Amsterdam Cardiovascular Sciences (ACS), VU University Medical Center Amsterdam, Amsterdam, The Netherlands
| | - Caroline Cheng
- Division of Experimental Cardiology, Department of Cardiology, The Thoraxcentre, Cardiovascular Research School COEUR, Erasmus University Medical Center, Rotterdam, The Netherlands.,Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Wolfgang A Linke
- Institute of Physiology II, University of Muenster, Muenster, Germany
| | - Jaap A Joles
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Marianne C Verhaar
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jolanda van der Velden
- Department of Physiology, Amsterdam Cardiovascular Sciences (ACS), VU University Medical Center Amsterdam, Amsterdam, The Netherlands.,Netherlands Heart Institute, Utrecht, The Netherlands
| | - Daphne Merkus
- Division of Experimental Cardiology, Department of Cardiology, The Thoraxcentre, Cardiovascular Research School COEUR, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Dirk J Duncker
- Division of Experimental Cardiology, Department of Cardiology, The Thoraxcentre, Cardiovascular Research School COEUR, Erasmus University Medical Center, Rotterdam, The Netherlands.,Netherlands Heart Institute, Utrecht, The Netherlands
| |
Collapse
|
17
|
Eid RA, Eleawa SM, Alkhateeb MA, Aldera H, Zaki MSA, Al-Shraim M, Saeed MA, El-Kott AF, Alaa Eldeen M, Alassiri M, Alshehri MM, Salem Al-Shudiefat AAR, Khalil MA. Chronic consumption of a high-fat diet rich in corn oil activates intrinsic cell death pathway and induces several ultrastructural changes in the atria of healthy and type 1 diabetic rat. Clin Exp Pharmacol Physiol 2019; 46:1111-1123. [PMID: 31398260 DOI: 10.1111/1440-1681.13158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/28/2019] [Accepted: 08/04/2019] [Indexed: 11/27/2022]
Abstract
This study investigates the effect of chronic consumption of a high-fat diet rich in corn oil (CO-HFD) on atrial cells ultrastructure, antioxidant levels and markers of intrinsic cell death of both control and type 1 diabetes mellitus (T1DM)-induced rats. Adult male rats (10 rats/group) were divided into four groups: control fed standard diet (STD) (3.82 kcal/g, 9.4% fat), CO-HFD (5.4 kcal/g, 40% fat), T1DM fed STD, and T1DM + CO-HFD. CO-HFD and T1DM alone or in combination impaired systolic and diastolic functions of rats and significantly reduced levels of GSH and the activity of SOD, enhanced lipid peroxidation, increased protein levels of P53, Bax, cleaved caspase-3, and ANF and decreased levels of Bcl-2 in their atria. Concomitantly, atrial cells exhibited fragmentation of the myofibrils, disorganized mitochondria, decreased number of atrionatriuretic factor (ANF) granules, and loss of gap junctions accompanied by changes in capillary walls. Among all treatments, the severity of all these findings was more severe in T1DM and most profound in the atria of T1DM + CO-HFD. In conclusion, chronic consumption of CO-HFD by T1DM-induced rats elicits significant biochemical and ultrastructural damage to rat atrial cells accompanied by elevated oxidative stress and mitochondria-mediated cell death.
Collapse
Affiliation(s)
- Refaat A Eid
- Department of Pathology, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Samy M Eleawa
- Department of Applied Medical Sciences, College of Health Sciences, PAAET, Shuwaikh, Kuwait
| | - Mahmoud A Alkhateeb
- Department of Basic Medical Sciences, College of Medicine, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Hussain Aldera
- Department of Basic Medical Sciences, College of Medicine, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia.,King Abdullah International Medical Research Center (KAIMRC), Riyadh, Saudi Arabia
| | - Mohamed Samir Ahmed Zaki
- Department of Anatomy, College of Medicine, King Khalid University, Abha, Saudi Arabia.,Department of Histology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Mubarak Al-Shraim
- Department of Pathology, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Mansour A Saeed
- Department of Anatomy, College of Medicine, King Khalid University, Abha, Saudi Arabia.,Department of Histology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Attalla Farag El-Kott
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia.,Department of Zoology, Faculty of Science, Damanhour University, Damanhour, Egypt
| | - Muhammad Alaa Eldeen
- Physiology Section, Biology Department, Faculty of Science, Zagazig University, Zagazig, Egypt
| | - Mohammed Alassiri
- Department of Basic Medical Sciences, College of Medicine, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia.,King Abdullah International Medical Research Center (KAIMRC), Riyadh, Saudi Arabia
| | - Majed M Alshehri
- Central Laboratories, King Faisal Medical City (Southern Region), Abha, Saudi Arabia
| | | | - Mohammad A Khalil
- Department of Basic Medical Science, Faculty of Medicine, King Fahad Medical City, Riyadh, Saudi Arabia
| |
Collapse
|
18
|
MiR-451 antagonist protects against cardiac fibrosis in streptozotocin-induced diabetic mouse heart. Life Sci 2019; 224:12-22. [DOI: 10.1016/j.lfs.2019.02.059] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 02/25/2019] [Accepted: 02/27/2019] [Indexed: 01/30/2023]
|
19
|
Murtaza G, Virk HUH, Khalid M, Lavie CJ, Ventura H, Mukherjee D, Ramu V, Bhogal S, Kumar G, Shanmugasundaram M, Paul TK. Diabetic cardiomyopathy - A comprehensive updated review. Prog Cardiovasc Dis 2019; 62:315-326. [PMID: 30922976 DOI: 10.1016/j.pcad.2019.03.003] [Citation(s) in RCA: 204] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 03/21/2019] [Indexed: 01/04/2023]
Abstract
Diabetes causes cardiomyopathy and increases the risk of heart failure independent of hypertension and coronary heart disease. This condition called "Diabetic Cardiomyopathy" (DCM) is becoming a well- known clinical entity. Recently, there has been substantial research exploring its molecular mechanisms, structural and functional changes, and possible development of therapeutic approaches for the prevention and treatment of DCM. This review summarizes the recent advancements to better understand fundamental molecular abnormalities that promote this cardiomyopathy and novel therapies for future research. Additionally, different diagnostic modalities, up to date screening tests to guide clinicians with early diagnosis and available current treatment options has been outlined.
Collapse
Affiliation(s)
- Ghulam Murtaza
- Department of Internal Medicine, Division of Cardiology, East Tennessee State University, Johnson City, TN, USA
| | | | - Muhammad Khalid
- Department of Internal Medicine, Division of Cardiology, East Tennessee State University, Johnson City, TN, USA
| | - Carl J Lavie
- Department of Cardiology, Ochsner Clinic, New Orleans, LA, USA
| | - Hector Ventura
- Department of Cardiology, Ochsner Clinic, New Orleans, LA, USA
| | - Debabrata Mukherjee
- Division of Cardiology, Department of Internal Medicine, Texas Tech University, TX, USA
| | - Vijay Ramu
- Department of Internal Medicine, Division of Cardiology, East Tennessee State University, Johnson City, TN, USA
| | - Sukhdeep Bhogal
- Department of Internal Medicine, Division of Cardiology, East Tennessee State University, Johnson City, TN, USA
| | - Gautam Kumar
- Emory University School of Medicine, Atlanta VA Medical Center, Atlanta, GA, USA
| | | | - Timir K Paul
- Department of Internal Medicine, Division of Cardiology, East Tennessee State University, Johnson City, TN, USA.
| |
Collapse
|
20
|
Grisanti LA. Diabetes and Arrhythmias: Pathophysiology, Mechanisms and Therapeutic Outcomes. Front Physiol 2018; 9:1669. [PMID: 30534081 PMCID: PMC6275303 DOI: 10.3389/fphys.2018.01669] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 11/06/2018] [Indexed: 12/17/2022] Open
Abstract
The prevalence of diabetes is rapidly increasing and closely associated with cardiovascular morbidity and mortality. While the major cardiovascular complication associated with diabetes is coronary artery disease, it is becoming increasingly apparent that diabetes impacts the electrical conduction system in the heart, resulting in atrial fibrillation, and ventricular arrhythmias. The relationship between diabetes and arrhythmias is complex and multifactorial including autonomic dysfunction, atrial and ventricular remodeling and molecular alterations. This review will provide a comprehensive overview of the link between diabetes and arrhythmias with insight into the common molecular mechanisms, structural alterations and therapeutic outcomes.
Collapse
Affiliation(s)
- Laurel A Grisanti
- Department of Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, United States
| |
Collapse
|
21
|
Vichit P, Rungsipipat A, Surachetpong SD. Changes of cardiac function in diabetic dogs. J Vet Cardiol 2018; 20:438-450. [PMID: 30217497 DOI: 10.1016/j.jvc.2018.08.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 07/24/2018] [Accepted: 08/07/2018] [Indexed: 12/11/2022]
Abstract
OBJECTIVE This study aimed to evaluate cardiac function and compare the concentration of cardiac biomarkers including cardiac troponin I (cTnI), galectin-3 (Gal-3), and N-terminal pro B-type natriuretic peptides (NT-proBNP) in diabetic and control dogs. ANIMALS Thirty-nine dogs were included. The diabetic and control groups consisted of 19 and 20 dogs, respectively. METHODS Plasma cTnI, Gal-3, and NT-proBNP concentrations were measured in the diabetic and control groups. Echocardiography was performed in all dogs to evaluate cardiac structure and function. Echocardiographic values and cardiac biomarker concentrations between the two groups were compared with the Mann-Whitney U test. The p-value < 0.05 was considered statistical significance. RESULTS No evidence of cardiac structural changes was detected in diabetic dogs on two-dimensional echocardiography. The echocardiographic values of diabetic and control dogs were within reference intervals. Echocardiographic changes indicating diastolic dysfunction assessed by spectral flow Doppler echocardiography and tissue Doppler imaging were found in diabetic dogs (42.10%) compared with control dogs (10.00%; p = 0.022). Diabetic dogs with durations of diabetes mellitus > 1 year had an increased left ventricular wall thickness and echocardiographic changes suggesting diastolic dysfunction compared with those with duration of diabetes mellitus < 1 year. No evidence of systolic dysfunction was detected in diabetic dogs. No significant difference in plasma cTnI, Gal-3, and NT-proBNP concentrations was found between the two groups. CONCLUSIONS Echocardiographic changes suggested that left ventricular diastolic dysfunction was detected in diabetic dogs without changes in the concentration of cardiac biomarkers including cTnI, Gal-3, and NT-proBNP compared with the age- and breed-matched control dogs.
Collapse
Affiliation(s)
- P Vichit
- Department of Veterinary Medicine, Faculty of Veterinary Science, Chulalongkorn University, 10330, Thailand
| | - A Rungsipipat
- Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, 10330, Thailand
| | - S D Surachetpong
- Department of Veterinary Medicine, Faculty of Veterinary Science, Chulalongkorn University, 10330, Thailand.
| |
Collapse
|
22
|
Al-Badri A, Hashmath Z, Oldland GH, Miller R, Javaid K, Syed AA, Ansari B, Gaddam S, Witschey WR, Akers SR, Chirinos JA. Poor Glycemic Control Is Associated With Increased Extracellular Volume Fraction in Diabetes. Diabetes Care 2018; 41:2019-2025. [PMID: 30002196 PMCID: PMC6105326 DOI: 10.2337/dc18-0324] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 06/18/2018] [Indexed: 02/03/2023]
Abstract
OBJECTIVE We assessed whether poor glycemic control is associated with an increase in myocardial fibrosis among adults with diabetes. RESEARCH DESIGN AND METHODS We studied 47 adults with type 2 diabetes and stratified them into three groups according to their hemoglobin A1c (HbA1c) level: <6.5% (group 1; n = 12), 6.5-7.5% (group 2; n = 20), and >7.5% (group 3; n = 15). Left ventricular (LV) mass was assessed using cardiac MRI. The extracellular volume fraction (ECVF), an index of myocardial fibrosis, was measured by using myocardial T1 mapping before and after the administration of a gadolinium-based contrast agent. RESULTS Mean HbA1c was 5.84 ± 0.16%, 6.89 ± 0.14%, and 8.57 ± 0.2% in groups 1, 2, and 3, respectively. LV mass was not significantly different between the groups. The myocardial ECVF was significantly greater in groups 2 (mean 27.6% [95% CI 24.8-30.3]) and 3 (27.6% [24.4-30.8]) than in group 1 (21.1% [17.5-24.7]; P = 0.015). After adjusting for age, sex, BMI, blood pressure, and estimated glomerular filtration rate, the myocardial ECVF was significantly greater in groups 2 (27.4% [24.4-30.4]) and 3 (28% [24.5-31.5]) than in group 1 (20.9% [17.1-24.6]; P = 0.0156, ANCOVA). CONCLUSIONS An increased myocardial ECVF, suggesting myocardial fibrosis, is independently associated with poor glycemic control among adults with diabetes. Further research should assess whether tight glycemic control can revert fibrosis to healthy myocardium or ameliorate it and its adverse clinical consequences.
Collapse
Affiliation(s)
| | - Zeba Hashmath
- Hospital of the University of Pennsylvania, Philadelphia, PA
| | - Garrett H Oldland
- Hospital of the University of Pennsylvania, Philadelphia, PA
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA
| | - Rachana Miller
- Hospital of the University of Pennsylvania, Philadelphia, PA
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA
| | - Khuzaima Javaid
- Hospital of the University of Pennsylvania, Philadelphia, PA
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA
| | - Amer Ahmed Syed
- Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Bilal Ansari
- Hospital of the University of Pennsylvania, Philadelphia, PA
| | - Swetha Gaddam
- Hospital of the University of Pennsylvania, Philadelphia, PA
| | - Walter R Witschey
- Hospital of the University of Pennsylvania, Philadelphia, PA
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Scott R Akers
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA
| | - Julio A Chirinos
- Hospital of the University of Pennsylvania, Philadelphia, PA
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA
| |
Collapse
|
23
|
Philip L, Poole R. Double trouble: managing diabetic emergencies in patients with heart failure. PRACTICAL DIABETES 2018. [DOI: 10.1002/pdi.2181] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
| | - Ruth Poole
- Poole Hospital NHS Trust; Poole, Dorset UK
| |
Collapse
|
24
|
Pepe M, Zanna D, Cafaro A, Marchese A, Addabbo F, Navarese EP, Napodano M, Cecere A, Resta F, Paradies V, Bortone AS, Favale S. Role of plasma glucose level on myocardial perfusion in ST-segment elevation myocardial infarction patients. J Diabetes Complications 2018; 32:764-769. [PMID: 29937139 DOI: 10.1016/j.jdiacomp.2018.05.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 05/18/2018] [Accepted: 05/19/2018] [Indexed: 01/08/2023]
Abstract
AIMS Hyperglycemia is frequent in patients with ST elevation myocardial infarction (STEMI) and is associated with adverse outcome. Aim of our study was to evaluate the correlation between admission plasma glucose level (PGL) and coronary arteries flow velocity. METHODS We enrolled 149 STEMI patients successfully treated with primary percutaneous coronary intervention (pPCI). The study population was divided into two groups based on PGL (< or >140 mg/dl) and on history of diabetes, and the groups compared in terms of corrected TIMI frame count (cTFC). RESULTS Hyperglycemic patients had a significantly higher cTFC in both the culprit (p < 0.0001) and non-culprit vessel (p: 0.0002); diabetes history impairs as well cTFC of the culprit (p < 0.0001) and non-culprit vessel (p: 0.0001). Within the subpopulation of diabetic patients hyperglycemic ones showed higher cTFC in both the culprit (p 0.0013) and non-culprit vessel (p: 0.0006). Moreover in the whole population cTFC values of both arteries increase linearly with the increment of admission PGL. CONCLUSIONS Admission PGL affects coronary flow of both culprit and non-culprit vessel. The impairment of coronary flow is also demonstrated in known diabetic patients, suggesting to consider hyperglycemia an additional risk factor. We finally demonstrated for the first time a positive linear relationship between PGL and cTFC.
Collapse
Affiliation(s)
- Martino Pepe
- Cardiovascular Diseases Section, Department of Emergency and Organ Transplantation (DETO), University of Bari, Bari, Italy
| | - Domenico Zanna
- Cardiovascular Diseases Section, Department of Emergency and Organ Transplantation (DETO), University of Bari, Bari, Italy
| | - Alessandro Cafaro
- Department of Cardiology, General Hospital "F. Miulli", Acquaviva delle Fonti, Bari, Italy
| | - Alfredo Marchese
- Department of Cardiology, Anthea Hospital, GVM Care & Research, Bari, Italy
| | - Francesco Addabbo
- Department of Biomedical Sciences & Human Oncology, University of Bari Medical School, Bari, Italy
| | - Eliano Pio Navarese
- Department of Internal Medicine, Division of Cardiology, Pulmonology and Vascular Medicine, Heinrich-Heine-University, Düsseldorf, Germany
| | - Massimo Napodano
- Department of Cardiac, Thoracic and Vascular Sciences, Hospital-University of Padova, Padova, Italy
| | - Annagrazia Cecere
- Cardiovascular Diseases Section, Department of Emergency and Organ Transplantation (DETO), University of Bari, Bari, Italy.
| | - Fabrizio Resta
- Department of Cardiology, "Santa Maria" Hospital, GVM Care & Research, Bari, Italy
| | - Valeria Paradies
- Department of Cardiology, Maasstad Ziekenhuis Hospital, Rotterdam, Netherlands
| | - Alessandro Santo Bortone
- Division of Heart Surgery, Department of Emergency and Organ Transplantation (DETO), University of Bari, Bari, Italy
| | - Stefano Favale
- Cardiovascular Diseases Section, Department of Emergency and Organ Transplantation (DETO), University of Bari, Bari, Italy
| |
Collapse
|
25
|
The Effects of Diabetes Induction on the Rat Heart: Differences in Oxidative Stress, Inflammatory Cells, and Fibrosis between Subendocardial and Interstitial Myocardial Areas. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:5343972. [PMID: 28781721 PMCID: PMC5525092 DOI: 10.1155/2017/5343972] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 05/08/2017] [Indexed: 12/26/2022]
Abstract
Diabetic cardiomyopathy (DCM) is characterized by cardiac remodeling and impaired diastolic function that may lead to heart failure. The aim of this study was to evaluate oxidative stress, inflammatory cells, and fibrosis in both subendocardial (SEN) and interstitial (INT) areas of the myocardium. Male Wistar rats were allocated to 2 groups of 9 animals, a control (CT) group and streptozotocin-induced diabetes (DM). After 8 weeks, echocardiography morphometry, protein expression, and confocal microscopy in SEN and INT areas of the left ventricle (LV) were performed. The echocardiographic analysis showed that diabetes induction leads to cardiac dilation, hypertrophy, and LV diastolic dysfunction. As compared to CT, the induction of diabetes increased inflammatory cells and fibrosis in both SEN and INT areas of DM myocardium and increased ROS generation only in SEN. Comparing the SEN and INT areas in the DM group, inflammatory cells and fibrosis in SEN were greater than in INT. In conclusion, diabetic myocardium SEN area, wherein oxidative stress was more pronounced, is more susceptible to cardiac dysfunction than INT area. This finding can be important for the understanding of the heart remodeling process occurring in DCM and perhaps to engender targeted therapies to attenuate or revert DCM-related diastolic dysfunction.
Collapse
|
26
|
Effoe VS, McClendon EE, Rodriguez CJ, Wagenknecht LE, Evans GW, Chang PP, Bertoni AG. Diabetes status modifies the association between carotid intima-media thickness and incident heart failure: The Atherosclerosis Risk in Communities study. Diabetes Res Clin Pract 2017; 128:58-66. [PMID: 28448893 PMCID: PMC5501651 DOI: 10.1016/j.diabres.2017.04.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 03/21/2017] [Accepted: 04/07/2017] [Indexed: 11/21/2022]
Abstract
AIMS Increasing carotid intima-media thickness (CIMT) is associated with incident heart failure (HF). We investigated whether this association differs by diabetes status. METHODS We characterized 13,590 Atherosclerosis Risk in Communities Study participants free of baseline HF into normal fasting glucose (NFG, glucose <100mg/dl), impaired fasting glucose (IFG, glucose 100-125mg/dl), and type 2 diabetes (T2D, glucose ≥126mg/dl, self-report, or use of diabetes drugs). CIMT was assessed by B-mode ultrasound. Incident HF was defined using ICD-9 or 10 codes from hospitalizations and death certificates. Cox regression was used to estimate hazard ratios (HR) for incident HF, adjusting for age, sex, race, education, hypertension medication, blood pressure, BMI, waist circumference, HDL, LDL, triglycerides, lipid-lowering medication, smoking, alcohol, serum creatinine, and interim CHD. RESULTS T2D participants had higher mean CIMT (0.79±0.20mm), compared to IFG (0.75±0.19mm) and NFG (0.70±0.17mm) (p<0.0001). Over 20.6years of median follow-up, 15% developed HF. Rates of HF (per 1000 person-years) were substantially higher for those with T2D (24.7), compared to IFG (7.7) and NFG (5.8). In adjusted analyses, the CIMT-HF association was significantly modified by diabetes status (Pinteraction=0.015): for NFG (HR per SD increase in CIMT: 1.27; 95%CI: 1.20-1.34), IFG (HR 1.18; 95%CI: 1.11-1.25) and T2D (HR 1.12; 95%CI: 1.05-1.21). CONCLUSIONS CIMT is associated with increased risk of HF, particularly among persons without diabetes. Due to a high absolute risk of HF among adults with T2D, CIMT may be a less reliable predictor.
Collapse
Affiliation(s)
- Valery S Effoe
- Division of General Internal Medicine, Morehouse School of Medicine, Atlanta, GA, USA; Department of Epidemiology and Prevention, Wake Forest School of Medicine, Winston Salem, NC, USA.
| | - Eric E McClendon
- Division of Cardiology, University of Mississippi Medical Centre, Jackson, MS, USA
| | - Carlos J Rodriguez
- Department of Epidemiology and Prevention, Wake Forest School of Medicine, Winston Salem, NC, USA
| | - Lynne E Wagenknecht
- Department of Epidemiology and Prevention, Wake Forest School of Medicine, Winston Salem, NC, USA
| | - Gregory W Evans
- Department of Biostatistical Sciences, Wake Forest School of Medicine, Winston Salem, NC, USA
| | - Patricia P Chang
- Department of Medicine, Division of Cardiology, University of North Carolina, Chapel Hill, NC, USA
| | - Alain G Bertoni
- Department of Epidemiology and Prevention, Wake Forest School of Medicine, Winston Salem, NC, USA
| |
Collapse
|
27
|
Mizamtsidi M, Paschou SA, Grapsa J, Vryonidou A. Diabetic cardiomyopathy: a clinical entity or a cluster of molecular heart changes? Eur J Clin Invest 2016; 46:947-953. [PMID: 27600276 DOI: 10.1111/eci.12673] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 09/04/2016] [Indexed: 12/22/2022]
Abstract
BACKGROUND Although the increasing rate of cardiovascular mortality in patients with diabetes is thought to be due to the coronary atherosclerosis caused mainly by compounding factors such as dyslipidaemia and hypertension, it is now well documented that diabetes alone can lead to a vast array of molecular changes in the heart. DESIGN The aim of this article was to comprehensively review the pathophysiological and molecular changes leading to diabetic cardiomyopathy (DCM), as well as to critically analyse the literature that offers evidence in favour and against the existence of the overt clinical expression of this entity. RESULTS We included in the discussion studies that have revealed the existence of diabetic cardiomyopathy with unique remodelling pattern when compared to other types of cardiomyopathies. On the other hand, several studies debate the existence of clinically discernible cardiomyopathy caused only by diabetes and were also presented and discussed in details. CONCLUSION Clinicians should be aware of DCM when facing patients with diabetes in order both to recognize on time relevant symptoms and to intensively look for and treat other compounding factors, apart from optimal glucose control. Furthermore, the elucidation of the pathophysiological mechanisms leading to DCM could provide new therapeutic targets for heart disease, which will be wonderful for the good of our patients.
Collapse
Affiliation(s)
- Maria Mizamtsidi
- Department of Endocrinology and Diabetes, Hellenic Red Cross Hospital, Athens, Greece
| | - Stavroula A Paschou
- Department of Endocrinology and Diabetes, Hellenic Red Cross Hospital, Athens, Greece
| | - Julia Grapsa
- Department of Cardiovascular Sciences, Imperial College of London, London, UK
| | - Andromachi Vryonidou
- Department of Endocrinology and Diabetes, Hellenic Red Cross Hospital, Athens, Greece.
| |
Collapse
|
28
|
Zhao YZ, Zhang M, Tian XQ, Zheng L, Lu CT. Using basic fibroblast growth factor nanoliposome combined with ultrasound-introduced technology to early intervene the diabetic cardiomyopathy. Int J Nanomedicine 2016; 11:675-86. [PMID: 26937188 PMCID: PMC4762584 DOI: 10.2147/ijn.s99376] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Basic fibroblast growth factor (bFGF)-loaded liposome (bFGF-lip) combined with ultrasound-targeted microbubble destruction (UTMD) technique was investigated to prevent diabetic cardiomyopathy (DCM). Cardiac function and myocardial ultrastructure were assessed. Terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick-end labeling (TUNEL) staining, immunohistochemistry staining, and Western blot assay were used to investigate the signal pathway underlying the expression of bFGF in DCM treatment. From Mason staining and TUNEL staining, bFGF-lip + UTMD group showed significant differences from the diabetes group and other groups treated with bFGF or bFGF-lip. The diabetes group showed similar results (myocardial capillary density, collagen volume fraction, and cardiac myocyte apoptosis index) to other bFGF treatment groups. Indexes from transthoracic echocardiography and hemodynamic evaluation also proved the same conclusion. These results confirmed that the abnormalities including diastolic dysfunctions, myocardial fibrosis, and metabolic disturbances could be suppressed by the different extents of twice-weekly bFGF treatments for 12 consecutive weeks (free bFGF or bFGF-lip +/− UTMD), with the strongest improvements observed in the bFGF-lip + UTMD group. The group combining bFGF-lip with UTMD demonstrated the highest level of bFGF expression among all the groups. The bFGF activated the PI3K/AKT signal pathway, causing the reduction of myocardial cell apoptosis and increase of microvascular density. This strategy using bFGF-lip and UTMD is a potential strategy in early intervention of DCM in diabetes.
Collapse
Affiliation(s)
- Ying-Zheng Zhao
- College of Pharmaceutical Sciences, Wenzhou Medical University, Zhejiang, People's Republic of China; Department of Ultrasonography, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Ming Zhang
- College of Pharmaceutical Sciences, Wenzhou Medical University, Zhejiang, People's Republic of China
| | - Xin-Qiao Tian
- Department of Ultrasonic Diagnosis, Henan Provincial People's Hospital, Zhengzhou City, Henan, People's Republic of China
| | - Lei Zheng
- Department of Ultrasonography, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Cui-Tao Lu
- College of Pharmaceutical Sciences, Wenzhou Medical University, Zhejiang, People's Republic of China; Department of Ultrasonography, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| |
Collapse
|
29
|
Zhao YZ, Zhang M, Wong HL, Tian XQ, Zheng L, Yu XC, Tian FR, Mao KL, Fan ZL, Chen PP, Li XK, Lu CT. Prevent diabetic cardiomyopathy in diabetic rats by combined therapy of aFGF-loaded nanoparticles and ultrasound-targeted microbubble destruction technique. J Control Release 2016; 223:11-21. [DOI: 10.1016/j.jconrel.2015.12.030] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Revised: 12/10/2015] [Accepted: 12/16/2015] [Indexed: 01/01/2023]
|
30
|
Lim SL, Lam CSP. Breakthrough in heart failure with preserved ejection fraction: are we there yet? Korean J Intern Med 2016; 31:1-14. [PMID: 26767852 PMCID: PMC4712413 DOI: 10.3904/kjim.2016.31.1.1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 10/13/2015] [Indexed: 01/09/2023] Open
Abstract
Heart failure with preserved ejection fraction (HFPEF) is a global health problem of considerable socioeconomic burden. It is projected to worsen with the aging population worldwide. The lack of effective therapies underscores our incomplete understanding of this complex heterogeneous syndrome. A novel paradigm has recently emerged, in which central roles are ascribed to systemic inflammation and generalized endothelial dysfunction in the pathophysiology of HFPEF. In this review, we discuss the role of the endothelium in cardiovascular homeostasis and how deranged endothelial-related signaling pathways contribute to the development of HFPEF. We also review the novel therapies in various stages of research and development that target different components of this signaling pathway.
Collapse
Affiliation(s)
- Shir Lynn Lim
- Department of Cardiology, National University Heart Center, Singapore
| | - Carolyn Su Ping Lam
- Department of Cardiology, National Heart Center Singapore, Singapore
- Cardiovascular and Metabolic Disorders Program, Duke-NUS Graduate Medical School, Singapore
| |
Collapse
|
31
|
Russo I, Frangogiannis NG. Diabetes-associated cardiac fibrosis: Cellular effectors, molecular mechanisms and therapeutic opportunities. J Mol Cell Cardiol 2015; 90:84-93. [PMID: 26705059 DOI: 10.1016/j.yjmcc.2015.12.011] [Citation(s) in RCA: 341] [Impact Index Per Article: 34.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 12/13/2015] [Accepted: 12/14/2015] [Indexed: 02/07/2023]
Abstract
Both type 1 and type 2 diabetes are associated with cardiac fibrosis that may reduce myocardial compliance, contribute to the pathogenesis of heart failure, and trigger arrhythmic events. Diabetes-associated fibrosis is mediated by activated cardiac fibroblasts, but may also involve fibrogenic actions of macrophages, cardiomyocytes and vascular cells. The molecular basis responsible for cardiac fibrosis in diabetes remains poorly understood. Hyperglycemia directly activates a fibrogenic program, leading to accumulation of advanced glycation end-products (AGEs) that crosslink extracellular matrix proteins, and transduce fibrogenic signals through reactive oxygen species generation, or through activation of Receptor for AGEs (RAGE)-mediated pathways. Pro-inflammatory cytokines and chemokines may recruit fibrogenic leukocyte subsets in the cardiac interstitium. Activation of transforming growth factor-β/Smad signaling may activate fibroblasts inducing deposition of structural extracellular matrix proteins and matricellular macromolecules. Adipokines, endothelin-1 and the renin-angiotensin-aldosterone system have also been implicated in the diabetic myocardium. This manuscript reviews our current understanding of the cellular effectors and molecular pathways that mediate fibrosis in diabetes. Based on the pathophysiologic mechanism, we propose therapeutic interventions that may attenuate the diabetes-associated fibrotic response and discuss the challenges that may hamper clinical translation.
Collapse
Affiliation(s)
- Ilaria Russo
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY, USA
| | - Nikolaos G Frangogiannis
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
32
|
Chettibi M, Benghezel S, Bertal S, Nedjar R, Bouraghda MA, Bouafia MTC. [No reflow: What are the predictors?]. Ann Cardiol Angeiol (Paris) 2015; 64:472-80. [PMID: 26530330 DOI: 10.1016/j.ancard.2015.09.059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
INTRODUCTION During the past 20 years, significant progress has been made in the recanalization of ACS with ST elevation. It is now accepted that the reopening of the large coronary vessels in the acute phase of infarction by thrombolysis or angioplasty is necessary but not sufficient, because in 20-50% of cases, the coronary recanalization is an illusion of reperfusion. This phenomenon is called "no reflow". OBJECTIVE The main objective of our study was to identify predictors of poor perfusion or "no reflow" in the acute phase of myocardial infarction. METHODS Observational prospective study, in the department of cardiology and internal medicine, university hospital of Blida, over a period of 28 months from 1st September 2010 to 31st January 2013. We identified all patients hospitalized for myocardial infarction in acute phase, who underwent primary angioplasty or thrombolysis with angiographic control during a good TIMI flow. The endpoint was regression of ST segment (regression<50% ST-segment defined no reflow). RESULTS Three hundred and seventy-nine patients were included. The mean age was 56.3±2.1, 87.8% of patients were male. In total, 35.9% hypertensive, 27.1% diabetic type 2, 50.1% and 10.8% dyslipidemia, smoking. One hundred and forty-seven (38.8%) developed a no reflow. Mortality was 3.9%, strongly correlated with no reflow (P=0.001). Predictors of no reflow after multivariate analysis were: age (OR 98, 0.961-0.996 95%, P=0.02), heart rate (1.01, 95% CI 0.998-1.02, P=0.035), the type 2 diabetes (odds ratio 1.87, CI 1.2-3.0, P=0.08), reaching the core (OR 7, 95% CI 1.2-18.4, P=0.027), direct stenting (OR 0.48, 95% CI 0.31-0.78, P=0.003). An interesting subgroup of patients was identified namely the subgroup strategy deferred primary angioplasty with stenting best reperfusion (OR 3.7, 95% CI 1.5-8.8, P=0.04), a lower rate of reocclusion of culprit artery and a lower rate of stenting with 23/51 (45.1%) versus 136/136 (100%) of immediate stenting group with a P<0.001. CONCLUSION No reflow is a common phenomenon, strongly correlated with mortality predictors are age, heart rate, diabetes, achieving the core and direct stenting. The distal embolization in primary angioplasty is an important phenomenon, a delayed stenting strategy appears to limit this phenomenon.
Collapse
Affiliation(s)
- M Chettibi
- Service de cardiologie et de médecine interne, CHU Frantz-Fanon, Blida, Algérie; Université Saad Dahleb, Blida, Algérie.
| | - S Benghezel
- Service de cardiologie et de médecine interne, CHU Frantz-Fanon, Blida, Algérie; Université Saad Dahleb, Blida, Algérie
| | - S Bertal
- Service de cardiologie et de médecine interne, CHU Frantz-Fanon, Blida, Algérie; Université Saad Dahleb, Blida, Algérie
| | - R Nedjar
- Service de cardiologie et de médecine interne, CHU Frantz-Fanon, Blida, Algérie; Université Saad Dahleb, Blida, Algérie
| | - M A Bouraghda
- Service de cardiologie et de médecine interne, CHU Frantz-Fanon, Blida, Algérie; Université Saad Dahleb, Blida, Algérie
| | - M T C Bouafia
- Service de cardiologie et de médecine interne, CHU Frantz-Fanon, Blida, Algérie; Université Saad Dahleb, Blida, Algérie
| |
Collapse
|
33
|
Kuznetsova T, Thijs L, Knez J, Cauwenberghs N, Petit T, Gu YM, Zhang Z, Staessen JA. Longitudinal Changes in Left Ventricular Diastolic Function in a General Population. Circ Cardiovasc Imaging 2015; 8:CIRCIMAGING.114.002882. [DOI: 10.1161/circimaging.114.002882] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Tatiana Kuznetsova
- From the Research Unit Hypertension and Cardiovascular Epidemiology, KU Leuven Department of Cardiovascular Sciences, University of Leuven, Leuven, Belgium (T.K., L.T., J.K., N.C., T.P., Y-M.G., Z.Z., J.A.S.)
| | - Lutgarde Thijs
- From the Research Unit Hypertension and Cardiovascular Epidemiology, KU Leuven Department of Cardiovascular Sciences, University of Leuven, Leuven, Belgium (T.K., L.T., J.K., N.C., T.P., Y-M.G., Z.Z., J.A.S.)
| | - Judita Knez
- From the Research Unit Hypertension and Cardiovascular Epidemiology, KU Leuven Department of Cardiovascular Sciences, University of Leuven, Leuven, Belgium (T.K., L.T., J.K., N.C., T.P., Y-M.G., Z.Z., J.A.S.)
| | - Nicholas Cauwenberghs
- From the Research Unit Hypertension and Cardiovascular Epidemiology, KU Leuven Department of Cardiovascular Sciences, University of Leuven, Leuven, Belgium (T.K., L.T., J.K., N.C., T.P., Y-M.G., Z.Z., J.A.S.)
| | - Thibault Petit
- From the Research Unit Hypertension and Cardiovascular Epidemiology, KU Leuven Department of Cardiovascular Sciences, University of Leuven, Leuven, Belgium (T.K., L.T., J.K., N.C., T.P., Y-M.G., Z.Z., J.A.S.)
| | - Yu-Mei Gu
- From the Research Unit Hypertension and Cardiovascular Epidemiology, KU Leuven Department of Cardiovascular Sciences, University of Leuven, Leuven, Belgium (T.K., L.T., J.K., N.C., T.P., Y-M.G., Z.Z., J.A.S.)
| | - Zhenyu Zhang
- From the Research Unit Hypertension and Cardiovascular Epidemiology, KU Leuven Department of Cardiovascular Sciences, University of Leuven, Leuven, Belgium (T.K., L.T., J.K., N.C., T.P., Y-M.G., Z.Z., J.A.S.)
| | - Jan A. Staessen
- From the Research Unit Hypertension and Cardiovascular Epidemiology, KU Leuven Department of Cardiovascular Sciences, University of Leuven, Leuven, Belgium (T.K., L.T., J.K., N.C., T.P., Y-M.G., Z.Z., J.A.S.)
| |
Collapse
|
34
|
Abstract
Diabetes mellitus (DM) is a major metabolic disorder currently affecting over 250 million people globally. It costs the worldwide health services almost £800 billion annually to diagnose, treat and care for patients with diabetes. DM is predicted to rise to 350 million by 2030. If left unmanaged, DM can lead to numerous long-term complications including micro- and macro-angiopathy and heart failure (HF). Most diabetics usually die as a result of HF resulting from diabetes-induced coronary artery disease and cardiomyopathy. Coronary artery disease and cardiomyopathy are normally preceded by hyperglycaemia (HG). This review examines the structural changes, which occur within the myocardium and cardiomyocytes during exposure of the heart to diabetes-induced HG and HG-induced oxidative stress. HG and the resulting oxidative stress are associated with marked myocardial hypertrophy and fibrosis compared to control heart. At the ultrastructural level, cardiomyocytes subjected to chronic HG and subsequent oxidative stress display swollen mitochondria, reduced mitochondrial number and defective myofibrils and intercalated discs. Evidence from many studies shows that both type 1 and type 2 diabetes-induced HG can cause myocardial fibrosis, mitochondriopathy, myocyte hypertrophy and deranged myofibrils. All of these structural changes may eventually result in HF if left untreated.
Collapse
Affiliation(s)
- Ernest Adeghate
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates,
| | | |
Collapse
|
35
|
Zhao W, Katzmarzyk PT, Horswell R, Li W, Wang Y, Johnson J, Heymsfield SB, Cefalu WT, Ryan DH, Hu G. Blood pressure and heart failure risk among diabetic patients. Int J Cardiol 2014; 176:125-32. [PMID: 25037690 DOI: 10.1016/j.ijcard.2014.06.051] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 06/25/2014] [Accepted: 06/28/2014] [Indexed: 01/22/2023]
Abstract
BACKGROUND Blood pressure (BP) control has been shown to reduce the risk of heart failure (HF) among diabetic patients; however, it is not known whether the lowest clinical BP achieved ultimately results in the lowest risk of HF in diabetic patients. METHODS We performed a prospective cohort study which included 17,181 African American and 12,446 white diabetic patients without established coronary heart disease and HF at diabetes diagnosis. Cox proportional hazards regression models were used to estimate the association of different levels of BP stratification with incident HF. RESULTS During a mean follow up of 6.5 years, 5,089 incident HF cases were identified. The multivariable-adjusted hazard ratios of HF associated with different levels of systolic/diastolic BP (<110/65, 110-119/65-69, 120-129/70-80, 130-139/80-90 [reference group], 140-159/90-100, and ≥ 160/100 mmHg) were 1.79 (95% confidence interval [CI] 1.53-2.11), 1.34 (95% CI 1.16-1.53), 1.02 (95% CI 0.92-1.13), 1.00, 1.04 (95% CI 0.95-1.12), and 1.26 (95% CI 1.16-1.37) using baseline BP measurements, and 2.63 (95% CI 2.02-3.41), 1.84 (95% CI 1.59-2.13), 1.25 (95% CI 1.14-1.37), 1.00, 1.11 (95% CI 1.03-1.19), and 1.32 (95% CI 1.20-1.44) using an updated mean value of BP during follow-up, respectively. The U-shaped association was confirmed in both patients who were and were not taking antihypertensive drugs, and in incident systolic HF (ejection fraction ≤ 40%) and incident HF with a preserved ejection fraction (ejection fraction >40%). CONCLUSIONS The current study suggests a U-shaped association between observed BP and the risk of HF among diabetic patients.
Collapse
Affiliation(s)
- Wenhui Zhao
- Pennington Biomedical Research Center, Baton Rouge, LA, USA; China Japan Friendship Hospital, Beijing, China
| | | | | | - Weiqin Li
- Pennington Biomedical Research Center, Baton Rouge, LA, USA; Tianjin Women's and Children's Health Center, Tianjin, China
| | - Yujie Wang
- Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | | | | | | | - Donna H Ryan
- Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | - Gang Hu
- Pennington Biomedical Research Center, Baton Rouge, LA, USA.
| |
Collapse
|
36
|
Kasznicki J, Drzewoski J. Heart failure in the diabetic population - pathophysiology, diagnosis and management. Arch Med Sci 2014; 10:546-56. [PMID: 25097587 PMCID: PMC4107260 DOI: 10.5114/aoms.2014.43748] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Revised: 10/14/2013] [Accepted: 11/04/2013] [Indexed: 01/08/2023] Open
Abstract
Evidence from clinical trials repeatedly confirms the association of diabetes with heart failure, independent of hypertension, atherosclerosis, coronary artery disease and valvular heart disease. However, the importance of coexistence of diabetes and heart failure is not universally recognized, despite the fact that it may significantly contribute to morbidity and mortality of the diabetic population. It seems that prevention of heart failure, early diagnosis, and appropriate management could improve the outcome. Unfortunately, the etiology of heart failure in diabetic patients is still to be elucidated. It is multifactorial in nature and several cellular, molecular and metabolic factors are implicated. Additionally, there are still no definite guidelines on either the diagnosis and treatment of heart failure in diabetic patients or on the therapy of diabetes in subjects with heart failure. This review focuses on the pathophysiology, diagnosis, and prevention of heart failure in the diabetic population as well as management of both comorbidities.
Collapse
Affiliation(s)
- Jacek Kasznicki
- Department of Internal Disease, Diabetology and Clinical Pharmacology, Medical University of Lodz, Poland
| | - Jozef Drzewoski
- Department of Internal Disease, Diabetology and Clinical Pharmacology, Medical University of Lodz, Poland
| |
Collapse
|
37
|
Myocardial Dysfunction in Early Diabetes Patients with Microalbuminuria: A 2-Dimensional Speckle Tracking Strain Study. Cell Biochem Biophys 2014; 70:573-8. [DOI: 10.1007/s12013-014-9958-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
38
|
Hawi R, Bazi L, Farkouh ME, Aneja A. Imaging in diabetic cardiomyopathy. Expert Rev Cardiovasc Ther 2014. [DOI: 10.1586/14779072.2014.899903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
39
|
Joshi M, Kotha SR, Malireddy S, Selvaraju V, Satoskar AR, Palesty A, McFadden DW, Parinandi NL, Maulik N. Conundrum of pathogenesis of diabetic cardiomyopathy: role of vascular endothelial dysfunction, reactive oxygen species, and mitochondria. Mol Cell Biochem 2013; 386:233-49. [PMID: 24307101 DOI: 10.1007/s11010-013-1861-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 10/09/2013] [Indexed: 12/11/2022]
Abstract
Diabetic cardiomyopathy and heart failure have been recognized as the leading causes of mortality among diabetics. Diabetic cardiomyopathy has been characterized primarily by the manifestation of left ventricular dysfunction that is independent of coronary artery disease and hypertension among the patients affected by diabetes mellitus. A complex array of contributing factors including the hypertrophy of left ventricle, alterations of metabolism, microvascular pathology, insulin resistance, fibrosis, apoptotic cell death, and oxidative stress have been implicated in the pathogenesis of diabetic cardiomyopathy. Nevertheless, the exact mechanisms underlying the pathogenesis of diabetic cardiomyopathy are yet to be established. The critical involvement of multifarious factors including the vascular endothelial dysfunction, microangiopathy, reactive oxygen species (ROS), oxidative stress, mitochondrial dysfunction has been identified in the mechanism of pathogenesis of diabetic cardiomyopathy. Although it is difficult to establish how each factor contributes to disease, the involvement of ROS and mitochondrial dysfunction are emerging as front-runners in the mechanism of pathogenesis of diabetic cardiomyopathy. This review highlights the role of vascular endothelial dysfunction, ROS, oxidative stress, and mitochondriopathy in the pathogenesis of diabetic cardiomyopathy. Furthermore, the review emphasizes that the puzzle has to be solved to firmly establish the mitochondrial and/or ROS mechanism(s) by identifying their most critical molecular players involved at both spatial and temporal levels in diabetic cardiomyopathy as targets for specific and effective pharmacological/therapeutic interventions.
Collapse
Affiliation(s)
- Mandip Joshi
- Department of Surgery, University of Connecticut Health Center, Farmington Avenue, Farmington, CT, 06032, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Protective effect of lycopene on cardiac function and myocardial fibrosis after acute myocardial infarction in rats via the modulation of p38 and MMP-9. J Mol Histol 2013; 45:113-20. [PMID: 24213878 DOI: 10.1007/s10735-013-9535-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2013] [Accepted: 08/19/2013] [Indexed: 01/19/2023]
Abstract
Extracellular matrix (ECM) plays an important role in maintaining the left ventricular geometry and ventricular function, and the inhibition of ECM remodeling has therapeutic benefits that could alleviate the progression of ventricular remodeling. Recent studies have indicated that lycopene has cardioprotective effects. In this study, a rat myocardial infarction (MI) model was established by left anterior descending coronary artery ligation. After the operation, the rats received lycopene or saline. After 28 days, the rats underwent echocardiography detection and were sacrificed. Myocardial fibrosis was observed by Masson staining. Type I collagen, MMP-9, and MAPK protein expression were detected in the ischemic zone surrounding the MI by western blot. Treatment with lycopene increased the EF from 45.2 ± 3.12 % to 51.1 ± 4.63, and it decreased the LVEDd from 6.52 ± 0.37 mm to 6.18 ± 0.41 mm and the LVESd from 4.29 ± 0.63 to 3.94 ± 0.37 at 28 days post-myocardial infarction. Lycopene attenuated the MI-induced increase in MMP-9 and type I collagen expression, and inhibited p38 activation. Moreover, lycopene decreased the collagen volume fraction in the peri-infarcted zone. The data indicated that lycopene improved the cardiac function and ventricular remodeling by inhibiting p38 activation and MMP-9 expression.
Collapse
|
41
|
Abstract
Since diabetic cardiomyopathy was first reported four decades ago, substantial information on its pathogenesis and clinical features has accumulated. In the heart, diabetes enhances fatty acid metabolism, suppresses glucose oxidation, and modifies intracellular signaling, leading to impairments in multiple steps of excitation–contraction coupling, inefficient energy production, and increased susceptibility to ischemia/reperfusion injury. Loss of normal microvessels and remodeling of the extracellular matrix are also involved in contractile dysfunction of diabetic hearts. Use of sensitive echocardiographic techniques (tissue Doppler imaging and strain rate imaging) and magnetic resonance spectroscopy enables detection of diabetic cardiomyopathy at an early stage, and a combination of the modalities allows differentiation of this type of cardiomyopathy from other organic heart diseases. Circumstantial evidence to date indicates that diabetic cardiomyopathy is a common but frequently unrecognized pathological process in asymptomatic diabetic patients. However, a strategy for prevention or treatment of diabetic cardiomyopathy to improve its prognosis has not yet been established. Here, we review both basic and clinical studies on diabetic cardiomyopathy and summarize problems remaining to be solved for improving management of this type of cardiomyopathy.
Collapse
Affiliation(s)
- Takayuki Miki
- Division of Cardiology, Second Department of Internal Medicine, School of Medicine, Sapporo Medical University, South-1 West-16, Chuo-ku, Sapporo, 060-8543, Japan
| | | | | | | |
Collapse
|
42
|
Zhao CT, Wang M, Siu CW, Hou YL, Wang T, Tse HF, Yiu KH. Myocardial dysfunction in patients with type 2 diabetes mellitus: role of endothelial progenitor cells and oxidative stress. Cardiovasc Diabetol 2012; 11:147. [PMID: 23217199 PMCID: PMC3537556 DOI: 10.1186/1475-2840-11-147] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2012] [Accepted: 11/27/2012] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Endothelial progenitor cells (EPCs) are responsible for angiogenesis and maintenance of microvascular integrity, the number of EPCs is correlated with oxidative stress. Their relation to myocardial dysfunction in patients with type 2 diabetes mellitus (T2DM) is nonetheless unknown. METHODS Eighty-seven patients with T2DM and no history of coronary artery disease were recruited. Transthoracic echocardiography and detailed evaluation of left ventricular (LV) systolic function by 2-dimensional (2D) speckle tracking derived strain analysis in 3 orthogonal directions was performed. Four subpopulations of EPCs, including CD34+, CD133+, CD34+/kinase insert domain-containing receptor (KDR) + and CD133+/KDR + EPCs, were measured by flow cytometry. Oxidative stress was assessed by superoxide dismutase (SOD). RESULTS The mean age of the patients was 62 ± 9 years and 39.6% were male. Those with an impaired longitudinal strain had a lower number of CD34+ EPCs (2.82 ± 1.87% vs. 3.74 ± 2.12%, P < 0.05) than those with preserved longitudinal strain. When compared with those with preserved circumferential strain, patients with an impaired circumferential strain had a lower number of CD34+ EPCs (2.63 ± 1.80% vs. 3.87 ± 2.10%, P < 0.01) and SOD level (0.13 ± 0.06U/ml vs. 0.20 ± 0.08U/ml, P < 0.01). Patients with an impaired radial strain nonetheless had a lower number of CD34+ EPCs (2.62 ± 2.08% vs. 3.69 ± 1.99%, P < 0.05). Multivariate analysis demonstrated that only impaired global circumferential strain remained significantly associated with CD34 + EPCs and SOD. CONCLUSIONS LV global circumferential strain was independently associated with number of CD34+ EPCs and SOD. These findings suggest that myocardial dysfunction in patients with T2DM is related to depletion of EPCs and increased oxidative stress.
Collapse
Affiliation(s)
- Chun Ting Zhao
- Shan Dong University School of Medicine, Shandong, China
| | | | | | | | | | | | | |
Collapse
|
43
|
Goyal BR, Mehta AA. Diabetic cardiomyopathy: pathophysiological mechanisms and cardiac dysfuntion. Hum Exp Toxicol 2012; 32:571-90. [PMID: 23174745 DOI: 10.1177/0960327112450885] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Several experimental, pathological, epidemiological, and clinical studies have clearly depicted that diabetes mellitus results in cardiac functional and structural changes. Diabetic cardiomyopathy results in both structural and functional alterations in the myocardium. Several mechanisms have been implicated in the pathophysiology of diabetic cardiomyopathy. Of these, metabolic disturbances, myocardial fibrosis, small vessel disease, and cardiac autonomic neuropathy are the major players in the pathophysiology of diabetic cardiomyopathy. This review is intended to discuss various such pathophysiological mechanisms of diabetic cardiomyopathy. We have also described the systolic and diastolic dysfunctioning and its corelation to structural changes in diabetes.
Collapse
Affiliation(s)
- B R Goyal
- Department of Pharmacology, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat, India
| | | |
Collapse
|
44
|
Zhang Y, Edgley AJ, Cox AJ, Powell AK, Wang B, Kompa AR, Stapleton DI, Zammit SC, Williams SJ, Krum H, Gilbert RE, Kelly DJ. FT011, a new anti-fibrotic drug, attenuates fibrosis and chronic heart failure in experimental diabetic cardiomyopathy. Eur J Heart Fail 2012; 14:549-62. [PMID: 22417655 DOI: 10.1093/eurjhf/hfs011] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
AIMS Cardiac remodelling in diabetes includes pathological accumulation of extracellular matrix and myocyte hypertrophy that contribute to heart dysfunction. Attenuation of remodelling represents a potential therapeutic target. We tested this hypothesis using a new anti-fibrotic drug, FT011 (Fibrotech Therapeutics Pty Ltd), on diabetic Ren-2 rats, a model which replicates many of the structural and functional manifestations of diabetic cardiomyopathy in humans. METHODS AND RESULTS Homozygous Ren-2 rats were randomized to receive streptozotocin or vehicle then further randomized to FT011 (200 mg/kg/day) or vehicle treatment for 6 weeks. Prior to tissue collection, cardiac function was assessed via echocardiography and cardiac catheterization. Total collagen deposition and cardiomyocyte hypertrophy were assessed by picrosirius red and haematoxylin and eosin staining, respectively. Macrophage interstitial infiltration and type I and III collagen were quantitated by immunostaining. Without affecting blood pressure or hyperglycaemia, treatment of diabetic rats with FT011 significantly attenuated interstitial fibrosis (total collagen, 5.09 ±1.28 vs, 2.42 ±0.43%/area; type I collagen, 4.09 ±1.16 vs. 1.42 ±0.38%/area; type III collagen, 1.52 ±0.33 vs. 0.71 ±0.14 %/area; P < 0.05), cardiomyocyte hypertrophy (882 ±38 vs. 659 ±28 µm(2); P < 0.05), and interstitial macrophage influx (66 ±5.3 vs, 44 ±7.9 number/section; P < 0.05). Cardiac myopathic dilatation was normalized, as evidenced by reduced left ventricular inner diameter at diastole (0.642 ±0.016 vs. 0.577 ±0.024 cm), increased ejection fraction (75 ±1.1 vs. 83 ±1.2%) and preload recruitable stroke work relationship (44 ±6.7 vs. 77 ±6.3 slope-mmHg; P < 0.05), and reduced end-diastolic pressure-volume relationship (0.059 ±0.011 vs. 0.02 ±0.003 slope-mmHg/μL; P < 0.05). CONCLUSIONS A direct anti-fibrotic agent, FT011, attenuates cardiac remodelling and dysfunction in experimental diabetic cardiomyopathy. This represents a novel therapy for the treatment of diabetic cardiomyopathy associated with cardiac fibrosis and hypertrophy.
Collapse
Affiliation(s)
- Yuan Zhang
- Department of Medicine, St Vincent's Hospital, University of Melbourne, Australia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
Prevalence of diabetes and heart failure are increasing exponentially worldwide. Diabetes is well-known to increase the risk of heart failure independent of other traditional risk factors and ischemia. Current evidence indicates the presence of several biochemical and molecular changes associated with diabetes that lead to diastolic dysfunction or American Heart Association stage B heart failure. Some, if not all, changes may also predate the development of frank diabetes. In this review, the authors present some of the epidemiologic evidence and a brief description of major mechanistic pathways that favor the development of heart failure in prediabetic and diabetic states.
Collapse
Affiliation(s)
- Ravi Dhingra
- Section of Cardiology, Heart and Vascular Center, Dartmouth Hitchcock Medical Center, One Medical Center Drive, Lebanon, NH 03756, USA
| | | |
Collapse
|
46
|
Campbell DJ, Somaratne JB, Jenkins AJ, Prior DL, Yii M, Kenny JF, Newcomb AE, Schalkwijk CG, Black MJ, Kelly DJ. Impact of type 2 diabetes and the metabolic syndrome on myocardial structure and microvasculature of men with coronary artery disease. Cardiovasc Diabetol 2011; 10:80. [PMID: 21929744 PMCID: PMC3182888 DOI: 10.1186/1475-2840-10-80] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2011] [Accepted: 09/19/2011] [Indexed: 12/14/2022] Open
Abstract
Background Type 2 diabetes and the metabolic syndrome are associated with impaired diastolic function and increased heart failure risk. Animal models and autopsy studies of diabetic patients implicate myocardial fibrosis, cardiomyocyte hypertrophy, altered myocardial microvascular structure and advanced glycation end-products (AGEs) in the pathogenesis of diabetic cardiomyopathy. We investigated whether type 2 diabetes and the metabolic syndrome are associated with altered myocardial structure, microvasculature, and expression of AGEs and receptor for AGEs (RAGE) in men with coronary artery disease. Methods We performed histological analysis of left ventricular biopsies from 13 control, 10 diabetic and 23 metabolic syndrome men undergoing coronary artery bypass graft surgery who did not have heart failure or atrial fibrillation, had not received loop diuretic therapy, and did not have evidence of previous myocardial infarction. Results All three patient groups had similar extent of coronary artery disease and clinical characteristics, apart from differences in metabolic parameters. Diabetic and metabolic syndrome patients had higher pulmonary capillary wedge pressure than controls, and diabetic patients had reduced mitral diastolic peak velocity of the septal mitral annulus (E'), consistent with impaired diastolic function. Neither diabetic nor metabolic syndrome patients had increased myocardial interstitial fibrosis (picrosirius red), or increased immunostaining for collagen I and III, the AGE Nε-(carboxymethyl)lysine, or RAGE. Cardiomyocyte width, capillary length density, diffusion radius, and arteriolar dimensions did not differ between the three patient groups, whereas diabetic and metabolic syndrome patients had reduced perivascular fibrosis. Conclusions Impaired diastolic function of type 2 diabetic and metabolic syndrome patients was not dependent on increased myocardial fibrosis, cardiomyocyte hypertrophy, alteration of the myocardial microvascular structure, or increased myocardial expression of Nε-(carboxymethyl)lysine or RAGE. These findings suggest that the increased myocardial fibrosis and AGE expression, cardiomyocyte hypertrophy, and altered microvasculature structure described in diabetic heart disease were a consequence, rather than an initiating cause, of cardiac dysfunction.
Collapse
Affiliation(s)
- Duncan J Campbell
- Department of Molecular Cardiology, St. Vincent's Institute of Medical Research, Fitzroy, Australia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
Diabetic heart disease is currently defined as left ventricular dysfunction that occurs independently of coronary artery disease and hypertension. Its underlying etiology is likely to be multifactorial, acting synergistically together to cause myocardial dysfunction. Multimodality cardiac imaging, such as echocardiography, nuclear, computed tomography, and magnetic resonance imaging, can provide invaluable insight into different aspects of the disease process, from imaging at the cellular level for altered myocardial metabolism to microvascular and endothelial dysfunction, autonomic neuropathy, coronary atherosclerosis, and finally, interstitial fibrosis with scar formation. Furthermore, cardiac imaging is pivotal in diagnosing diabetic heart disease. Thus, the aim of the present review is to illustrate the role of multimodality cardiac imaging in elucidating the underlying pathophysiologic mechanisms of diabetic heart disease.
Collapse
|
48
|
Koivistoinen T, Jula A, Aatola H, Kööbi T, Moilanen L, Lehtimäki T, Kähönen M. Systemic hemodynamics in relation to glucose tolerance: the Health 2000 Survey. Metabolism 2011; 60:557-63. [PMID: 20580036 DOI: 10.1016/j.metabol.2010.05.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Revised: 05/18/2010] [Accepted: 05/20/2010] [Indexed: 10/19/2022]
Abstract
The influence of impaired glucose metabolism--that is, impaired fasting glucose, impaired glucose tolerance (IGT), and type 2 diabetes mellitus diabetes (DM2)--on systemic hemodynamics is largely unknown. Therefore, we investigated the associations of glucose metabolism disturbances with stroke index (SI), cardiac index, systemic vascular resistance index (SVRI), arterial pulse wave velocity (PWV), and heart rate among Finnish adults (N = 389; mean age, 58.3 ± 7.9 years) participating in the Health 2000 Survey. Systemic hemodynamic parameters were measured using the whole-body impedance cardiography device, and an oral glucose tolerance test (OGTT) was performed to evaluate glucose tolerance status. We found a decreasing trend for SI and increasing trends for SVRI and PWV according to the worsening of glucose tolerance (P for trend < .003 for all). In pairwise comparisons, SI was lower in the impaired fasting glucose group (P = .041) and the IGT group (P < .001) as compared with the normal glucose tolerance (NGT) group. Systemic vascular resistance index was higher in the IGT group (P = .045) and the DM2 group (P = .043) than in the NGT group. Subjects with IGT or DM2 had higher arterial PWV (10.7 ± 0.2 m/s, P < .001 and 11.7 ± 0.5 m/s, P = .001, respectively) than subjects with NGT (9.5 ± 0.1 m/s). Moreover, 2-hour glucose in OGTT was an independent determinant of SVRI and PWV (P < .001 and P = .005, respectively) in multivariable linear regression models. In conclusion, the present study demonstrates that glucose intolerance, even without DM2, associates with several adverse changes in systemic hemodynamics and that 2-hour glucose in OGTT is an independent determinant of SVRI and PWV. These findings support the systematic evaluation of glucose tolerance status in the estimation of cardiovascular risk among the middle-aged population.
Collapse
Affiliation(s)
- Teemu Koivistoinen
- Department of Clinical Physiology, Tampere University Hospital, PO Box 2000, FI-33521 Tampere, Finland.
| | | | | | | | | | | | | |
Collapse
|
49
|
Voulgari C, Papadogiannis D, Tentolouris N. Diabetic cardiomyopathy: from the pathophysiology of the cardiac myocytes to current diagnosis and management strategies. Vasc Health Risk Manag 2010; 6:883-903. [PMID: 21057575 PMCID: PMC2964943 DOI: 10.2147/vhrm.s11681] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Diabetic cardiomyopathy (DCM), although a distinct clinical entity, is also a part of the diabetic atherosclerosis process. It may be independent of the coexistence of ischemic heart disease, hypertension, or other macrovascular complications. Its pathological substrate is characterized by the presence of myocardial damage, reactive hypertrophy, and intermediary fibrosis, structural and functional changes of the small coronary vessels, disturbance of the management of the metabolic cardiovascular load, and cardiac autonomic neuropathy. These alterations make the diabetic heart susceptible to ischemia and less able to recover from an ischemic attack. Arterial hypertension frequently coexists with and exacerbates cardiac functioning, leading to the premature appearance of heart failure. Classical and newer echocardiographic methods are available for early diagnosis. Currently, there is no specific treatment for DCM; targeting its pathophysiological substrate by effective risk management protects the myocardium from further damage and has a recognized primary role in its prevention. Its pathophysiological substrate is also the objective for the new therapies and alternative remedies.
Collapse
Affiliation(s)
- Christina Voulgari
- First Department of Propaedeutic and Internal Medicine, Athens University Medical School, Laiko General Hospital, Athens, Greece.
| | | | | |
Collapse
|
50
|
Edgley AJ, Krum H, Kelly DJ. Targeting fibrosis for the treatment of heart failure: a role for transforming growth factor-β. Cardiovasc Ther 2010; 30:e30-40. [PMID: 21883991 DOI: 10.1111/j.1755-5922.2010.00228.x] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Chronic heart failure (CHF) is a growing health problem in developed nations. The pathological accumulation of extracellular matrix is a key contributor to CHF in both diabetic and nondiabetic states, resulting in progressive stiffening of the ventricular walls and loss of contractility. Proinflammatory disease processes, including inflammatory cytokine activation, contribute to accumulation of extracellular matrix in the heart. Transforming growth factor-β is a key profibrotic cytokine mediating fibrosis. Current therapeutic strategies do not directly target the profibrotic inflammatory processes occurring in the heart and hence there is a clear unmet clinical need to develop new therapeutic agents targeting fibrosis. Accordingly, strategies that inhibit proinflammatory cytokine activation and pathological accumulation of extracellular matrix (ECM) provide a potential therapeutic target for prevention of heart failure. This review focuses on the therapeutic targeting of TGF-β in the prevention of pathological fibrosis in the heart.
Collapse
Affiliation(s)
- Amanda J Edgley
- Department of Medicine, St. Vincent's Hospital, University of Melbourne, Victoria, Australia
| | | | | |
Collapse
|