1
|
Xu DW, Tate MD. Taking AIM at Influenza: The Role of the AIM2 Inflammasome. Viruses 2024; 16:1535. [PMID: 39459869 PMCID: PMC11512208 DOI: 10.3390/v16101535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/24/2024] [Accepted: 09/26/2024] [Indexed: 10/28/2024] Open
Abstract
Influenza A viruses (IAV) are dynamic and highly mutable respiratory pathogens that present persistent public health challenges. Inflammasomes, as components of the innate immune system, play a crucial role in the early detection and response to infections. They react to viral pathogens by triggering inflammation to promote immune defences and initiate repair mechanisms. While a strong response is necessary for early viral control, overactivation of inflammasomes can precipitate harmful hyperinflammatory responses, a defining characteristic observed during severe influenza infections. The Absent in Melanoma 2 (AIM2) inflammasome, traditionally recognised for its role as a DNA sensor, has recently been implicated in the response to RNA viruses, like IAV. Paradoxically, AIM2 deficiency has been linked to both enhanced and reduced vulnerability to IAV infection. This review synthesises the current understanding of AIM2 inflammasome activation during IAV and explores its clinical implications. Understanding the nuances of AIM2's involvement could unveil novel therapeutic avenues for mitigating severe influenza outcomes.
Collapse
Affiliation(s)
- Dianne W. Xu
- Center for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia
| | - Michelle D. Tate
- Center for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia
- Department of Molecular and Translational Sciences, Monash University, Clayton, VIC 3168, Australia
| |
Collapse
|
2
|
Greenberger JS, Hou W, Shields D, Fisher R, Epperly MW, Sarkaria I, Wipf P, Wang H. SARS-CoV-2 Spike Protein Induces Oxidative Stress and Senescence in Mouse and Human Lung. In Vivo 2024; 38:1546-1556. [PMID: 38936937 PMCID: PMC11215613 DOI: 10.21873/invivo.13605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/04/2024] [Accepted: 03/19/2024] [Indexed: 06/29/2024]
Abstract
BACKGROUND/AIM There is concern that people who had COVID-19 will develop pulmonary fibrosis. Using mouse models, we compared pulmonary inflammation following injection of the spike protein of SARS-CoV-2 (COVID-19) to radiation-induced inflammation to demonstrate similarities between the two models. SARS-CoV-2 (COVID-19) induces inflammatory cytokines and stress responses, which are also common to ionizing irradiation-induced acute pulmonary damage. Cellular senescence, which is a late effect following exposure to SARS-CoV-2 as well as radiation, was investigated. MATERIALS AND METHODS We evaluated the effect of SARS-CoV-2 spike protein compared to ionizing irradiation in K18-hACE2 mouse lung, human lung cell lines, and in freshly explanted human lung. We measured reactive oxygen species, DNA double-strand breaks, stimulation of transforming growth factor-beta pathways, and cellular senescence following exposure to SARS-CoV-2 spike protein, irradiation or SARS-COV-2 and irradiation. We also measured the effects of the antioxidant radiation mitigator MMS350 following irradiation or exposure to SARS-CoV-2. RESULTS SARS-CoV-2 spike protein induced reactive oxygen species, DNA double-strand breaks, transforming growth factor-β signaling pathways, and senescence, which were exacerbated by prior or subsequent ionizing irradiation. The water-soluble radiation countermeasure, MMS350, reduced spike protein-induced changes. CONCLUSION In both the SARS-Co-2 and the irradiation mouse models, similar responses were seen indicating that irradiation or exposure to SARS-CoV-2 virus may lead to similar lung diseases such as pulmonary fibrosis. Combination of irradiation and SARS-CoV-2 may result in a more severe case of pulmonary fibrosis. Cellular senescence may explain some of the late effects of exposure to SARS-CoV-2 spike protein and to ionizing irradiation.
Collapse
Affiliation(s)
- Joel S Greenberger
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, PA, U.S.A.;
| | - Wen Hou
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, PA, U.S.A
| | - Donna Shields
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, PA, U.S.A
| | - Renee Fisher
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, PA, U.S.A
| | - Michael W Epperly
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, PA, U.S.A
| | - Inderpal Sarkaria
- Department of Thoracic Surgery, UPMC-Shadyside, Pittsburgh, PA, U.S.A
| | - Peter Wipf
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, U.S.A
| | - Hong Wang
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA, U.S.A
| |
Collapse
|
3
|
Sharma D, Sharma S, Mandal V, Dhobi M. Unveiling the anti-inflammatory potential of Acalypha indica L. and analyzing its research trend: digging deep to learn deep. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:1935-1956. [PMID: 37796311 DOI: 10.1007/s00210-023-02734-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 09/20/2023] [Indexed: 10/06/2023]
Abstract
The plant Acalypha indica L. is a well-known traditional plant belonging to the family Euphorbiaceae. Traditional practices of the plant claim to treat asthma, pneumonia, wound healing, rheumatoid arthritis, bronchitis, and skin disorders. The major phytochemicals reported are cyanogenic glucosides, tannins, coumarins, flavonoid glycosides, fatty acids, and volatile oils. To summarize the anti-inflammatory potential of Acalypha indica extract and its phytochemicals through preclinical studies. The search terms include anti-inflammatory, Acalypha indica, and Acalypha indica extract independently or in combination with pro-inflammatory markers using various databases, including Scopus, Web of Science, PubMed, ProQuest, and Google Scholar. The results of preclinical studies confirm that Acalypha indica exhibits strong anti-inflammatory activity. Most of the experimental studies that have been conducted on plant extract are protein denaturation, human red blood cell membrane stabilization assay, and carrageenan-induced inflammation models. However, the molecular mechanism in these studies is still unclear to demonstrate its anti-inflammatory effects. Acalypha indica possesses anti-inflammatory effects that may be due to the presence of phenolic compounds especially flavonoids present in the Acalypha indica. Thus, further research is needed, to understand mechanistic insights of the plant phytochemicals to represent anti-inflammatory properties.
Collapse
Affiliation(s)
- Divya Sharma
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, Delhi, 110017, India
| | - Supriya Sharma
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, Delhi, 110017, India
| | - Vivekananda Mandal
- Division of Pharmacognosy, Department of Pharmacy, Guru Ghasidas Central University, Bilaspur, Chattisgarh, 495009, India
| | - Mahaveer Dhobi
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, Delhi, 110017, India.
| |
Collapse
|
4
|
Stirland I, Soares MR, Furtado CLM, Dos Reis RM, Aston KI, Smith RP, Jenkins TG. An assessment of alterations to human sperm methylation patterns in coronavirus disease 2019 infected and healthy control males. F&S SCIENCE 2024; 5:2-15. [PMID: 38070681 DOI: 10.1016/j.xfss.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 12/05/2023] [Accepted: 12/05/2023] [Indexed: 01/06/2024]
Abstract
OBJECTIVE To determine whether severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection affects male reproductive health, considering the many potential factors that contribute to declines in male fertility on a semiglobal scale. DESIGN In total, 64 human semen samples-32 treatment and 32 control-were laboratory processed and bioinformatically analyzed to assess differences in DNA methylation patterns. Implementing multiple bioinformatic tools, the analyses conducted will elicit between-group differences with respect to epigenetic age, epigenetic instability, semiglobal, and regional methylation, in addition to methylation patterns as a function of time since infection. SETTING University hospital. PATIENTS The study cohort of 64 individuals was drawn from a larger population of 94 volunteer participants recruited at the Human Reproduction Center at the Clinical Hospital of the Ribeirao Preto Medical School-University of São Paulo between June 2021 and January 2022 as well as in accordance with the ethical guidelines established by the Declaration of Helsinki. INTERVENTION Exposure to SARS-CoV-2. MAIN OUTCOME MEASURE(S) Effects on male reproductive health were reported as differences in DNA methylation measured using an array. Mean β values at key regulatory loci for human spermatocytes were analyzed and compared between groups. Further analysis of β values using epigenetic age, instability, semiglobal, and regional methylation tools provided an analysis with substantial breadth and depth. RESULTS In all analyses, there were no differences between groups. Considering these results, it can be inferred that infection with SARS-CoV-2 does not alter the epigenome of human spermatocytes in significant and/or persistent ways. Tangentially, these data also suggest that human male reproductive health is minimally altered by the virus, or that it is altered in a way that is independent of epigenetic programming. CONCLUSION Infection with SARS-CoV-2 has been reportedly associated with alterations in male fertility. This study asserts that such alterations do not have an epigenetic basis but are likely a result of concomitant symptomatology, i.e., fever and inflammation. Across the multiple bioinformatic analyses conducted, the results of this test did not detect any differences in DNA methylation patterns between coronavirus disease 2019 and noncoronavirus disease semen donor groups.
Collapse
Affiliation(s)
- Isaac Stirland
- Department of Cell Biology and Physiology, Brigham Young University, Provo, Utah
| | - Murilo Racy Soares
- Department of Obstetrics and Gynecology, Ribeirao Preto Medical School University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Cristiana Libardi Miranda Furtado
- Department of Obstetrics and Gynecology, Ribeirao Preto Medical School University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil; University of Fortaleza, Experimental Biology Center, Fortaleza, Ceara, Brazil
| | - Rosana Maria Dos Reis
- Department of Obstetrics and Gynecology, Ribeirao Preto Medical School University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Kenneth I Aston
- Department of Surgery, University of Utah School of Medicine, Salt Lake City, Utah
| | - R Parker Smith
- Department of Cell Biology and Physiology, Brigham Young University, Provo, Utah
| | - Timothy G Jenkins
- Department of Cell Biology and Physiology, Brigham Young University, Provo, Utah; Department of Surgery, University of Utah School of Medicine, Salt Lake City, Utah.
| |
Collapse
|
5
|
Grand RJ. SARS-CoV-2 and the DNA damage response. J Gen Virol 2023; 104:001918. [PMID: 37948194 PMCID: PMC10768691 DOI: 10.1099/jgv.0.001918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/27/2023] [Indexed: 11/12/2023] Open
Abstract
The recent coronavirus disease 2019 (COVID-19) pandemic was caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). COVID-19 is characterized by respiratory distress, multiorgan dysfunction and, in some cases, death. The virus is also responsible for post-COVID-19 condition (commonly referred to as 'long COVID'). SARS-CoV-2 is a single-stranded, positive-sense RNA virus with a genome of approximately 30 kb, which encodes 26 proteins. It has been reported to affect multiple pathways in infected cells, resulting, in many cases, in the induction of a 'cytokine storm' and cellular senescence. Perhaps because it is an RNA virus, replicating largely in the cytoplasm, the effect of SARS-Cov-2 on genome stability and DNA damage responses (DDRs) has received relatively little attention. However, it is now becoming clear that the virus causes damage to cellular DNA, as shown by the presence of micronuclei, DNA repair foci and increased comet tails in infected cells. This review considers recent evidence indicating how SARS-CoV-2 causes genome instability, deregulates the cell cycle and targets specific components of DDR pathways. The significance of the virus's ability to cause cellular senescence is also considered, as are the implications of genome instability for patients suffering from long COVID.
Collapse
Affiliation(s)
- Roger J. Grand
- Institute for Cancer and Genomic Science, The Medical School, University of Birmingham, Birmingham, UK
| |
Collapse
|
6
|
Jiang H, Zhang Z. Immune response in influenza virus infection and modulation of immune injury by viral neuraminidase. Virol J 2023; 20:193. [PMID: 37641134 PMCID: PMC10463456 DOI: 10.1186/s12985-023-02164-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 08/16/2023] [Indexed: 08/31/2023] Open
Abstract
Influenza A viruses cause severe respiratory illnesses in humans and animals. Overreaction of the innate immune response to influenza virus infection results in hypercytokinemia, which is responsible for mortality and morbidity. The influenza A virus surface glycoprotein neuraminidase (NA) plays a vital role in viral attachment, entry, and virion release from infected cells. NA acts as a sialidase, which cleaves sialic acids from cell surface proteins and carbohydrate side chains on nascent virions. Here, we review progress in understanding the role of NA in modulating host immune response to influenza virus infection. We also discuss recent exciting findings targeting NA protein to interrupt influenza-induced immune injury.
Collapse
Affiliation(s)
- Hongyu Jiang
- The People's Hospital of Dayi Country, Chengdu, Sichuan, China
- Inflammation and Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - Zongde Zhang
- The People's Hospital of Dayi Country, Chengdu, Sichuan, China.
- Inflammation and Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China.
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China.
| |
Collapse
|
7
|
Sun C, Bai S, Liang Y, Liu D, Liao J, Chen Y, Zhao X, Wu B, Huang D, Chen M, Wu D. The role of Sirtuin 1 and its activators in age-related lung disease. Biomed Pharmacother 2023; 162:114573. [PMID: 37018986 DOI: 10.1016/j.biopha.2023.114573] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/10/2023] [Accepted: 03/21/2023] [Indexed: 04/05/2023] Open
Abstract
Aging is a major driving factor in lung diseases. Age-related lung disease is associated with downregulated expression of SIRT1, an NAD+-dependent deacetylase that regulates inflammation and stress resistance. SIRT1 acts by inducing the deacetylation of various substrates and regulates several mechanisms that relate to lung aging, such as genomic instability, lung stem cell exhaustion, mitochondrial dysfunction, telomere shortening, and immune senescence. Chinese herbal medicines have many biological activities, exerting anti-inflammatory, anti-oxidation, anti-tumor, and immune regulatory effects. Recent studies have confirmed that many Chinese herbs have the effect of activating SIRT1. Therefore, we reviewed the mechanism of SIRT1 in age-related lung disease and explored the potential roles of Chinese herbs as SIRT1 activators in the treatment of age-related lung disease.
Collapse
|
8
|
Moise AC, Kay JE, Engelward BP. Transgenic mice harboring direct repeat substrates reveal key underlying causes of homologous recombination in vivo. DNA Repair (Amst) 2022; 120:103419. [DOI: 10.1016/j.dnarep.2022.103419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 10/04/2022] [Accepted: 10/07/2022] [Indexed: 12/01/2022]
|
9
|
Erickson JR, Kalejta RF, Friesen PD. Ataxia Telangiectasia-Mutated Is Activated but Not Required for Productive Autographa californica Multiple Nucleopolyhedrovirus Infection. J Virol 2022; 96:e0126922. [PMID: 36314821 PMCID: PMC9682986 DOI: 10.1128/jvi.01269-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 10/07/2022] [Indexed: 11/05/2022] Open
Abstract
Multiplication of the invertebrate DNA baculoviruses activates the host DNA damage response (DDR), which promotes virus DNA replication. DDR signaling is initiated by the host insect's phosphatidylinositol-3 kinase-related kinases (PIKKs), including ataxia telangiectasia-mutated kinase (ATM). Like other PIKKs, ATM phosphorylates an array of host DDR proteins at serine/threonine glutamine (S/TQ) motifs, the result of which leads to cell cycle arrest, DNA repair, or apoptosis. To define the role of host PIKKs in baculovirus replication, we compared replication levels of the baculovirus prototype species Autographa californica multiple nucleopolyhedrovirus in permissive Spodoptera frugiperda (SF21) cells with and without ATM function. Caffeine, which inhibits multiple DDR kinases, and the ATM-specific inhibitors KU-55933 and KU-60019 each prevented phosphorylation of Spodoptera histone H2AX (SfH2AX), a recognized indicator of ATM activity. However, only caffeine reduced autographa californica multiple nucleopolyhedrovirus (AcMNPV)-induced bulk phosphorylation of S/TQ protein motifs. Furthermore, only caffeine, not KU-55933 or KU-60019, reduced AcMNPV yields, suggesting a limited role for ATM. To investigate further, we identified and edited the Spodoptera ATM gene (sfatm). Consistent with ATM's known functions, CRISPR/Cas9-mediated knockout of sfatm eliminated DNA damage-induced phosphorylation of DDR marker SfH2AX in SF21 cells. However, loss of sfatm failed to affect the levels of AcMNPV multiplication. These findings suggested that in the absence of the kinase SfATM, another caffeine-sensitive host DDR kinase promotes S/TQ phosphorylation and baculovirus multiplication. Thus, baculoviruses activate and utilize the host insect DDR in an ATM-independent manner. IMPORTANCE The DDR, while necessary for the maintenance and fidelity of the host genome, represents an important cellular response to viral infection. The prolific DNA baculoviruses activate and manipulate the invertebrate DDR by using mechanisms that positively impact virus multiplication, including virus DNA replication. As the key DDR initiator kinase, ATM was suspected to play a critical role in this host response. However, we show here that baculovirus AcMNPV activates an ATM-independent DDR. By identifying the insect host ATM ortholog (Spodoptera frugiperda SfATM) and evaluating genetic knockouts, we show that SfATM is dispensable for AcMNPV activation of the DDR and for virus replication. Thus, another PIKK, possibly the closely related kinase ATR (ATM- and Rad3-related kinase), is responsible for efficient baculovirus multiplication. These findings better define the host pathways used by invertebrates to engage viral pathogens, including DNA viruses.
Collapse
Affiliation(s)
- Jared R. Erickson
- Institute for Molecular Virology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Robert F. Kalejta
- Institute for Molecular Virology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Paul D. Friesen
- Institute for Molecular Virology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
10
|
Cheong A, Nagel ZD. Human Variation in DNA Repair, Immune Function, and Cancer Risk. Front Immunol 2022; 13:899574. [PMID: 35935942 PMCID: PMC9354717 DOI: 10.3389/fimmu.2022.899574] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
DNA damage constantly threatens genome integrity, and DNA repair deficiency is associated with increased cancer risk. An intuitive and widely accepted explanation for this relationship is that unrepaired DNA damage leads to carcinogenesis due to the accumulation of mutations in somatic cells. But DNA repair also plays key roles in the function of immune cells, and immunodeficiency is an important risk factor for many cancers. Thus, it is possible that emerging links between inter-individual variation in DNA repair capacity and cancer risk are driven, at least in part, by variation in immune function, but this idea is underexplored. In this review we present an overview of the current understanding of the links between cancer risk and both inter-individual variation in DNA repair capacity and inter-individual variation in immune function. We discuss factors that play a role in both types of variability, including age, lifestyle, and environmental exposures. In conclusion, we propose a research paradigm that incorporates functional studies of both genome integrity and the immune system to predict cancer risk and lay the groundwork for personalized prevention.
Collapse
|
11
|
Tumor-Associated Inflammation: The Tumor-Promoting Immunity in the Early Stages of Tumorigenesis. J Immunol Res 2022; 2022:3128933. [PMID: 35733919 PMCID: PMC9208911 DOI: 10.1155/2022/3128933] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 05/12/2022] [Indexed: 12/12/2022] Open
Abstract
Tumorigenesis is a multistage progressive oncogenic process caused by alterations in the structure and expression level of multiple genes. Normal cells are continuously endowed with new capabilities in this evolution, leading to subsequent tumor formation. Immune cells are the most important components of inflammation, which is closely associated with tumorigenesis. There is a broad consensus in cancer research that inflammation and immune response facilitate tumor progression, infiltration, and metastasis via different mechanisms; however, their protumor effects are equally important in tumorigenesis at earlier stages. Previous studies have demonstrated that during the early stages of tumorigenesis, certain immune cells can promote the formation and proliferation of premalignant cells by inducing DNA damage and repair inhibition, releasing trophic/supporting signals, promoting immune escape, and activating inflammasomes, as well as enhance the characteristics of cancer stem cells. In this review, we focus on the potential mechanisms by which immune cells can promote tumor initiation and promotion in the early stages of tumorigenesis; furthermore, we discuss the interaction of the inflammatory environment and protumor immune cells with premalignant cells and cancer stem cells, as well as the possibility of early intervention in tumor formation by targeting these cellular mechanisms.
Collapse
|
12
|
Su Y, Wu T, Yu XY, Huo WB, Wang SH, Huan C, Liu YM, Liu JM, Cui MN, Li XH, Yu JH. Inhibitory effect of tanshinone IIA, resveratrol and silibinin on enterovirus 68 production through inhibiting ATM and DNA-PK pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 99:153977. [PMID: 35305353 DOI: 10.1016/j.phymed.2022.153977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 01/29/2022] [Accepted: 02/02/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Human enterovirus 68 (EV68) is a primary etiological agent for respiratory illnesses, while no effective drug has yet used in clinics largely because the pathogenesis of EV68 is not clear. DNA damage response (DDR) responds to cellular DNA breaks and is also involved in viral replication. Three DDR pathways includes ataxia telangiectasia mutated (ATM), ATM and Rad3-related (ATR), and DNA-dependent protein kinase (DNA-PK). Natural products proved to be an excellent source for the discovery and isolation of novel antivirals. Among them, tanshinone IIA, resveratrol, silibinin, rutin and quercetin are reported to target DDR, therefore their roles in anti-EV68 are investigated in this study. PURPOSE This study investigated the anti-EV68 ability of various natural compounds related to DDR. STUDY DESIGN AND METHODS The methods include cell counting, flow cytometry, western blot, Immunofluorescence staining, comet assays, quantitative real-time RT PCR and short interfering RNAs (siRNAs) for analysis of cell number, cell cycle, protein expression, protein location, DNA damage, mRNA level and knock down target gene, respectively. RESULTS EV68 infection induced DDR. Down-regulation or inhibition of ATM or DNA-PK lowered DDR in EV68-infected cells and mitigated viral protein expression, however, down-regulation or inhibition of ATR unexpectedly up-regulated DDR, and promoted viral protein expression. Meanwhile tanshinone IIA, resveratrol, and silibinin inhibited ATM and/or DNA-PK activation and decreased viral proliferation, while rutin and quercetin inhibited ATR activation and promoted viral production. The role of them in ATM, DNA-PK and ATR activation was consistent with previous reports. CONCLUSION Tanshinone IIA, resveratrol and silibinin inhibited EV68 proliferation through inhibiting ATM and/or DNA-PK activation, and they were effective anti-EV68 candidates.
Collapse
Affiliation(s)
- Ying Su
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, Jilin University, Changchun, China; Department of Experimental Pharmacology and Toxicology, School of Pharmaceutical Science, Jilin University, Changchun, China
| | - Ting Wu
- Neonatal Intensive Care Unit, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Xiao-Yan Yu
- Department of Experimental Pharmacology and Toxicology, School of Pharmaceutical Science, Jilin University, Changchun, China
| | - Wen-Bo Huo
- Department of Experimental Pharmacology and Toxicology, School of Pharmaceutical Science, Jilin University, Changchun, China
| | - Shao-Hua Wang
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Chen Huan
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Yu-Meng Liu
- Department of Experimental Pharmacology and Toxicology, School of Pharmaceutical Science, Jilin University, Changchun, China
| | - Jin-Ming Liu
- Department of Experimental Pharmacology and Toxicology, School of Pharmaceutical Science, Jilin University, Changchun, China
| | - Min-Na Cui
- Department of Experimental Pharmacology and Toxicology, School of Pharmaceutical Science, Jilin University, Changchun, China
| | - Xin-Hua Li
- Department of Experimental Pharmacology and Toxicology, School of Pharmaceutical Science, Jilin University, Changchun, China
| | - Jing-Hua Yu
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, Jilin University, Changchun, China; Center for Pathogen Biology and Infectious Diseases, The First Hospital of Jilin University, Jilin University, Changchun, China.
| |
Collapse
|
13
|
Warren R, Dylag AM, Behan M, Domm W, Yee M, Mayer-Pröschel M, Martinez-Sobrido L, O'Reilly MA. Ataxia telangiectasia mutated is required for efficient proximal airway epithelial cell regeneration following influenza A virus infection. Am J Physiol Lung Cell Mol Physiol 2022; 322:L581-L592. [PMID: 35196880 PMCID: PMC8993527 DOI: 10.1152/ajplung.00378.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 01/11/2022] [Accepted: 02/21/2022] [Indexed: 11/22/2022] Open
Abstract
Children and young adults with mutant forms of ataxia telangiectasia mutated (ATM), a kinase involved in DNA damage signaling and mitochondrial homeostasis, suffer from recurrent respiratory infections, immune deficiencies, and obstructive airways disease associated with disorganized airway epithelium. We previously showed in mice how Atm was required to mount a protective immune memory response to influenza A virus [IAV; Hong Kong/X31 (HKx31), H3N2]. Here, Atm wildtype (WT) and knockout (Atm-null) mice were used to investigate how Atm is required to regenerate the injured airway epithelium following IAV infection. When compared with WT mice, naive Atm-null mice had increased airway resistance and reduced lung compliance that worsened during infection before returning to naïve levels by 56 days postinfection (dpi). Although Atm-null lungs appeared pathologically normal before infection by histology, they developed an abnormal proximal airway epithelium after infection that contained E-cadherin+, Sox2+, and Cyp2f2+ cells lacking secretoglobin family 1 A member 1 (Scgb1a1) protein expression. Patchy and low expression of Scgb1a1 were eventually observed by 56 dpi. Genetic lineage tracing in HKx31-infected mice revealed club cells require Atm to rapidly and efficiently restore Scgb1a1 expression in proximal airways. Since Scgb1a1 is an immunomodulatory protein that protects the lung against a multitude of respiratory challenges, failure to efficiently restore its expression may contribute to the respiratory diseases seen in individuals with ataxia telangiectasia.
Collapse
Affiliation(s)
- Rachel Warren
- Department of Microbiology and Immunology, School of Medicine and Dentistry, University of Rochester, Rochester, New York
| | - Andrew M Dylag
- Department of Pediatrics, School of Medicine and Dentistry, University of Rochester, Rochester, New York
| | - Molly Behan
- Department of Pediatrics, School of Medicine and Dentistry, University of Rochester, Rochester, New York
| | - William Domm
- Department of Pediatrics, School of Medicine and Dentistry, University of Rochester, Rochester, New York
| | - Min Yee
- Department of Pediatrics, School of Medicine and Dentistry, University of Rochester, Rochester, New York
| | - Margot Mayer-Pröschel
- Biomedical Genetics, School of Medicine and Dentistry, University of Rochester, Rochester, New York
| | - Luis Martinez-Sobrido
- Disease Intervention and Prevention Program, Texas Biomedical Research Institute, San Antonio, Texas
| | - Michael A O'Reilly
- Department of Pediatrics, School of Medicine and Dentistry, University of Rochester, Rochester, New York
| |
Collapse
|
14
|
Lopez A, Nichols Doyle R, Sandoval C, Nisson K, Yang V, Fregoso OI. Viral Modulation of the DNA Damage Response and Innate Immunity: Two Sides of the Same Coin. J Mol Biol 2022; 434:167327. [PMID: 34695379 PMCID: PMC9119581 DOI: 10.1016/j.jmb.2021.167327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/16/2021] [Accepted: 10/18/2021] [Indexed: 11/29/2022]
Abstract
The DDR consists of multiple pathways that sense, signal, and respond to anomalous DNA. To promote efficient replication, viruses have evolved to engage and even modulate the DDR. In this review, we will discuss a select set of diverse viruses and the range of mechanisms they evolved to interact with the DDR and some of the subsequent cellular consequences. There is a dichotomy in that the DDR can be both beneficial for viruses yet antiviral. We will also review the connection between the DDR and innate immunity. Previously believed to be disparate cellular functions, more recent research is emerging that links these processes. Furthermore, we will discuss some discrepancies in the literature that we propose can be remedied by utilizing more consistent DDR-focused assays. By doing so, we hope to obtain a much clearer understanding of how broadly these mechanisms and phenotypes are conserved among all viruses. This is crucial for human health since understanding how viruses manipulate the DDR presents an important and tractable target for antiviral therapies.
Collapse
Affiliation(s)
- Andrew Lopez
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA, USA; Molecular Biology Institute, University of California, Los Angeles, CA, USA
| | - Randilea Nichols Doyle
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA, USA
| | - Carina Sandoval
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA, USA; Molecular Biology Institute, University of California, Los Angeles, CA, USA
| | - Karly Nisson
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA, USA; Molecular Biology Institute, University of California, Los Angeles, CA, USA
| | - Vivian Yang
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA, USA; Molecular Biology Institute, University of California, Los Angeles, CA, USA
| | - Oliver I Fregoso
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA, USA; Molecular Biology Institute, University of California, Los Angeles, CA, USA.
| |
Collapse
|
15
|
Marty FH, Bettamin L, Thouard A, Bourgade K, Allart S, Larrieu G, Malnou CE, Gonzalez-Dunia D, Suberbielle E. Borna disease virus docks on neuronal DNA double-strand breaks to replicate and dampens neuronal activity. iScience 2022; 25:103621. [PMID: 35024577 PMCID: PMC8724971 DOI: 10.1016/j.isci.2021.103621] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 11/11/2021] [Accepted: 12/10/2021] [Indexed: 12/22/2022] Open
Abstract
Borna disease viruses (BoDV) have recently emerged as zoonotic neurotropic pathogens. These persistent RNA viruses assemble nuclear replication centers (vSPOT) in close interaction with the host chromatin. However, the topology of this interaction and its consequences on neuronal function remain unexplored. In neurons, DNA double-strand breaks (DSB) have been identified as novel epigenetic mechanisms regulating neurotransmission and cognition. Activity-dependent DSB contribute critically to neuronal plasticity processes, which could be impaired upon infection. Here, we show that BoDV-1 infection, or the singled-out expression of viral Nucleoprotein and Phosphoprotein, increases neuronal DSB levels. Of interest, inducing DSB promoted the recruitment anew of vSPOT colocalized with DSB and increased viral RNA replication. BoDV-1 persistence decreased neuronal activity and response to stimulation by dampening the surface expression of glutamate receptors. Taken together, our results propose an original mechanistic cross talk between persistence of an RNA virus and neuronal function, through the control of DSB levels. BoDV-1, its Nucleoprotein or Phosphoprotein cause neuronal DNA double-strand breaks (DSB) DNA double-strand breaks co-localize with BoDV-1 replication factories DNA DSB recruits BoDV-1 replication factories and promotes viral replication BoDV-1 inhibits neuronal activity by impeding surface expression of GluN2A receptors
Collapse
Affiliation(s)
| | - Luca Bettamin
- Infinity, Université Toulouse, CNRS, Inserm, UPS, Toulouse, France
- LAAS-CNRS, Toulouse, France
| | - Anne Thouard
- Infinity, Université Toulouse, CNRS, Inserm, UPS, Toulouse, France
| | - Karine Bourgade
- Infinity, Université Toulouse, CNRS, Inserm, UPS, Toulouse, France
| | - Sophie Allart
- Infinity, Université Toulouse, CNRS, Inserm, UPS, Toulouse, France
| | | | | | | | - Elsa Suberbielle
- Infinity, Université Toulouse, CNRS, Inserm, UPS, Toulouse, France
- Corresponding author
| |
Collapse
|
16
|
Wang G, Lv C, Liu C, Shen W. Neutrophil-to-lymphocyte ratio as a potential biomarker in predicting influenza susceptibility. Front Microbiol 2022; 13:1003380. [PMID: 36274727 PMCID: PMC9583527 DOI: 10.3389/fmicb.2022.1003380] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 09/20/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Human population exposed to influenza viruses exhibited wide variation in susceptibility. The ratio of neutrophils to lymphocytes (NLR) has been examined to be a marker of systemic inflammation. We sought to investigate the relationship between influenza susceptibility and the NLR taken before influenza virus infection. METHODS We investigated blood samples from five independent influenza challenge cohorts prior to influenza inoculation at the cellular level by using digital cytometry. We used multi-cohort gene expression analysis to compare the NLR between the symptomatic infected (SI) and asymptomatic uninfected (AU) subjects. We then used a network analysis approach to identify host factors associated with NLR and influenza susceptibility. RESULTS The baseline NLR was significantly higher in the SI group in both discovery and validation cohorts. The NLR achieved an AUC of 0.724 on the H3N2 data, and 0.736 on the H1N1 data in predicting influenza susceptibility. We identified four key modules that were not only significantly correlated with the baseline NLR, but also differentially expressed between the SI and AU groups. Genes within these four modules were enriched in pathways involved in B cell-mediated immune responses, cellular metabolism, cell cycle, and signal transduction, respectively. CONCLUSIONS This study identified the NLR as a potential biomarker for predicting disease susceptibility to symptomatic influenza. An elevated NLR was detected in susceptible hosts, who may have defects in B cell-mediated immunity or impaired function in cellular metabolism, cell cycle or signal transduction. Our work can serve as a comparative model to provide insights into the COVID-19 susceptibility.
Collapse
Affiliation(s)
- Guoyun Wang
- Department of Bioinformatics, Shantou University Medical College, Shantou, China
- Shenzhen Qianhai Shekou Free Trade Zone Hospital, Shenzhen, China
| | - Cheng Lv
- Department of Bioinformatics, Shantou University Medical College, Shantou, China
| | - Cheng Liu
- Department of Computer Science, Shantou University, Shantou, China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou, China
| | - Wenjun Shen
- Department of Bioinformatics, Shantou University Medical College, Shantou, China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou, China
- *Correspondence: Wenjun Shen
| |
Collapse
|
17
|
Faniyi AA, Hughes MJ, Scott A, Belchamber KBR, Sapey E. Inflammation, Ageing and Diseases of the Lung: Potential therapeutic strategies from shared biological pathways. Br J Pharmacol 2021; 179:1790-1807. [PMID: 34826882 DOI: 10.1111/bph.15759] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 10/07/2021] [Accepted: 11/08/2021] [Indexed: 12/15/2022] Open
Abstract
Lung diseases disproportionately affect elderly individuals. The lungs form a unique environment: a highly elastic organ with gaseous exchange requiring the closest proximity of inhaled air containing harmful agents and the circulating blood volume. The lungs are highly susceptible to senescence, with age and "inflammageing" creating a pro-inflammatory environment with a reduced capacity to deal with challenges. Whilst lung diseases may have disparate causes, the burden of ageing and inflammation provides a common process which can exacerbate seemingly unrelated pathologies. However, these shared pathways may also provide a common route to treatment, with increased interest in drugs which target ageing processes across respiratory diseases. In this review, we will examine the evidence for the increased burden of lung disease in older adults, the structural and functional changes seen with advancing age and assess what our expanding knowledge of inflammation and ageing pathways could mean for the treatment of lung disease.
Collapse
Affiliation(s)
- A A Faniyi
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, U.K
| | - M J Hughes
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, U.K
| | - A Scott
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, U.K
| | - K B R Belchamber
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, U.K
| | - E Sapey
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, U.K
| |
Collapse
|
18
|
Hayman TJ, Glazer PM. Regulation of the Cell-Intrinsic DNA Damage Response by the Innate Immune Machinery. Int J Mol Sci 2021; 22:12761. [PMID: 34884568 PMCID: PMC8657976 DOI: 10.3390/ijms222312761] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/19/2021] [Accepted: 11/22/2021] [Indexed: 12/22/2022] Open
Abstract
Maintenance of genomic integrity is crucial for cell survival. As such, elegant DNA damage response (DDR) systems have evolved to ensure proper repair of DNA double-strand breaks (DSBs) and other lesions that threaten genomic integrity. Towards this end, most therapeutic studies have focused on understanding of the canonical DNA DSB repair pathways to enhance the efficacy of DNA-damaging therapies. While these approaches have been fruitful, there has been relatively limited success to date and potential for significant normal tissue toxicity. With the advent of novel immunotherapies, there has been interest in understanding the interactions of radiation therapy with the innate and adaptive immune responses, with the ultimate goal of enhancing treatment efficacy. While a substantial body of work has demonstrated control of the immune-mediated (extrinsic) responses to DNA-damaging therapies by several innate immune pathways (e.g., cGAS-STING and RIG-I), emerging work demonstrates an underappreciated role of the innate immune machinery in directly regulating tumor cell-intrinsic/cell-autonomous responses to DNA damage.
Collapse
Affiliation(s)
- Thomas J. Hayman
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06510, USA;
| | - Peter M. Glazer
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06510, USA;
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
| |
Collapse
|
19
|
Victor J, Deutsch J, Whitaker A, Lamkin EN, March A, Zhou P, Botten JW, Chatterjee N. SARS-CoV-2 triggers DNA damage response in Vero E6 cells. Biochem Biophys Res Commun 2021; 579:141-145. [PMID: 34600299 PMCID: PMC8440005 DOI: 10.1016/j.bbrc.2021.09.024] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 09/10/2021] [Indexed: 12/27/2022]
Abstract
The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus responsible for the current COVID-19 pandemic and has now infected more than 200 million people with more than 4 million deaths globally. Recent data suggest that symptoms and general malaise may continue long after the infection has ended in recovered patients, suggesting that SARS-CoV-2 infection has profound consequences in the host cells. Here we report that SARS-CoV-2 infection can trigger a DNA damage response (DDR) in African green monkey kidney cells (Vero E6). We observed a transcriptional upregulation of the Ataxia telangiectasia and Rad3 related protein (ATR) in infected cells. In addition, we observed enhanced phosphorylation of CHK1, a downstream effector of the ATR DNA damage response, as well as H2AX. Strikingly, SARS-CoV-2 infection lowered the expression of TRF2 shelterin-protein complex, and reduced telomere lengths in infected Vero E6 cells. Thus, our observations suggest SARS-CoV-2 may have pathological consequences to host cells beyond evoking an immunopathogenic immune response.
Collapse
Affiliation(s)
- Joshua Victor
- Department of Microbiology and Molecular Genetics, Larner College of Medicine, University of Vermont, Burlington, VT, 05405, USA
| | - Jamie Deutsch
- Department of Microbiology and Molecular Genetics, Larner College of Medicine, University of Vermont, Burlington, VT, 05405, USA
| | - Annalis Whitaker
- Division of Immunobiology, Department of Medicine, Larner College of Medicine, University of Vermont, Burlington, VT, 05405, USA
| | - Erica N Lamkin
- Department of Microbiology and Molecular Genetics, Larner College of Medicine, University of Vermont, Burlington, VT, 05405, USA
| | - Anthony March
- Department of Microbiology and Molecular Genetics, Larner College of Medicine, University of Vermont, Burlington, VT, 05405, USA
| | - Pei Zhou
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Jason W Botten
- Department of Microbiology and Molecular Genetics, Larner College of Medicine, University of Vermont, Burlington, VT, 05405, USA; Division of Immunobiology, Department of Medicine, Larner College of Medicine, University of Vermont, Burlington, VT, 05405, USA
| | - Nimrat Chatterjee
- Department of Microbiology and Molecular Genetics, Larner College of Medicine, University of Vermont, Burlington, VT, 05405, USA; Division of Immunobiology, Department of Medicine, Larner College of Medicine, University of Vermont, Burlington, VT, 05405, USA; University of Vermont Cancer Center, University of Vermont, Burlington, VT, 05405, USA.
| |
Collapse
|
20
|
Feng J, Liu L, He Y, Wang M, Zhou D, Wang J. Novel insights into the pathogenesis of virus-induced ARDS: review on the central role of the epithelial-endothelial barrier. Expert Rev Clin Immunol 2021; 17:991-1001. [PMID: 34224287 DOI: 10.1080/1744666x.2021.1951233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Introduction: Respiratory viruses can directly or indirectly damage the pulmonary defense barrier, potentially contributing to acute respiratory distress syndrome (ARDS). Despite developments in the understanding of the pathogenesis of ARDS, the underlying pathophysiology still needs to be elucidated.Areas covered: The PubMed database was reviewed for relevant papers published up to 2021. This review summarizes the currently immunological and clinical studies to provide a systemic overview of the epithelial-endothelial barrier, given the recently published immunological profiles upon viral pneumonia, and the potentially detrimental contribution to respiratory function caused by damage to this barrier.Expert opinion: The biophysical structure of host pulmonary defense is intrinsically linked with the ability of alveolar epithelial and capillary endothelial cells, known as the epithelial-endothelial barrier, to respond to, and instruct the delicate immune system to protect the lungs from infections and injuries. Recently published immunological profiles upon viral infection, and its contributions to the damage of respiratory function, suggest a central role for the pulmonary epithelial and endothelial barrier in the pathogenesis of ARDS. We suggest a central role and common pathways by which the epithelial-endothelial barrier contributes to the pathogenesis of ARDS.
Collapse
Affiliation(s)
- Jun Feng
- Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lina Liu
- Department of Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yang He
- Department of Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Min Wang
- Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Daixing Zhou
- Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junshuai Wang
- Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
21
|
Gao X, Chan PKS, Lui GCY, Hui DSC, Chu IMT, Sun X, Tsang MSM, Chan BCL, Lam CWK, Wong CK. Interleukin-38 ameliorates poly(I:C) induced lung inflammation: therapeutic implications in respiratory viral infections. Cell Death Dis 2021; 12:53. [PMID: 33414457 PMCID: PMC7790341 DOI: 10.1038/s41419-020-03283-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 12/11/2022]
Abstract
Interleukin-38 has recently been shown to have anti-inflammatory properties in lung inflammatory diseases. However, the effects of IL-38 in viral pneumonia remains unknown. In the present study, we demonstrate that circulating IL-38 concentrations together with IL-36α increased significantly in influenza and COVID-19 patients, and the level of IL-38 and IL-36α correlated negatively and positively with disease severity and inflammation, respectively. In the co-cultured human respiratory epithelial cells with macrophages to mimic lung microenvironment in vitro, IL-38 was able to alleviate inflammatory responses by inhibiting poly(I:C)-induced overproduction of pro-inflammatory cytokines and chemokines through intracellular STAT1, STAT3, p38 MAPK, ERK1/2, MEK, and NF-κB signaling pathways. Intriguingly, transcriptomic profiling revealed that IL-38 targeted genes were associated with the host innate immune response to virus. We also found that IL-38 counteracts the biological processes induced by IL-36α in the co-culture. Furthermore, the administration of recombinant IL-38 could mitigate poly I:C-induced lung injury, with reduced early accumulation of neutrophils and macrophages in bronchoalveolar lavage fluid, activation of lymphocytes, production of pro-inflammatory cytokines and chemokines and permeability of the alveolar-epithelial barrier. Taken together, our study indicates that IL-38 plays a crucial role in protection from exaggerated pulmonary inflammation during poly(I:C)-induced pneumonia, thereby providing the basis of a novel therapeutic target for respiratory viral infections.
Collapse
Affiliation(s)
- Xun Gao
- Department of Chemical Pathology, The Chinese University of Hong Kong, Hong Kong, China
| | - Paul Kay Sheung Chan
- Department of Microbiology, The Chinese University of Hong Kong, Hong Kong, China.,Stanley Ho Centre for Emerging Infectious Diseases, The Chinese University of Hong Kong, Hong Kong, China
| | - Grace Chung Yan Lui
- Stanley Ho Centre for Emerging Infectious Diseases, The Chinese University of Hong Kong, Hong Kong, China.,Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
| | - David Shu Cheong Hui
- Stanley Ho Centre for Emerging Infectious Diseases, The Chinese University of Hong Kong, Hong Kong, China.,Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
| | - Ida Miu-Ting Chu
- Department of Chemical Pathology, The Chinese University of Hong Kong, Hong Kong, China
| | - Xiaoyu Sun
- Department of Chemical Pathology, The Chinese University of Hong Kong, Hong Kong, China
| | - Miranda Sin-Man Tsang
- Department of Chemical Pathology, The Chinese University of Hong Kong, Hong Kong, China.,Institute of Chinese Medicine and State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Hong Kong, China
| | - Ben Chung Lap Chan
- Institute of Chinese Medicine and State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Hong Kong, China
| | - Christopher Wai-Kei Lam
- Faculty of Medicine and State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, China
| | - Chun-Kwok Wong
- Department of Chemical Pathology, The Chinese University of Hong Kong, Hong Kong, China. .,Institute of Chinese Medicine and State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Hong Kong, China. .,Li Dak Sum Yip Yio Chin R & D Centre for Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
22
|
Irving AT, Ahn M, Goh G, Anderson DE, Wang LF. Lessons from the host defences of bats, a unique viral reservoir. Nature 2021; 589:363-370. [PMID: 33473223 DOI: 10.1038/s41586-020-03128-0] [Citation(s) in RCA: 189] [Impact Index Per Article: 63.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 12/03/2020] [Indexed: 01/30/2023]
Abstract
There have been several major outbreaks of emerging viral diseases, including Hendra, Nipah, Marburg and Ebola virus diseases, severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS)-as well as the current pandemic of coronavirus disease 2019 (COVID-19). Notably, all of these outbreaks have been linked to suspected zoonotic transmission of bat-borne viruses. Bats-the only flying mammal-display several additional features that are unique among mammals, such as a long lifespan relative to body size, a low rate of tumorigenesis and an exceptional ability to host viruses without presenting clinical disease. Here we discuss the mechanisms that underpin the host defence system and immune tolerance of bats, and their ramifications for human health and disease. Recent studies suggest that 64 million years of adaptive evolution have shaped the host defence system of bats to balance defence and tolerance, which has resulted in a unique ability to act as an ideal reservoir host for viruses. Lessons from the effective host defence of bats would help us to better understand viral evolution and to better predict, prevent and control future viral spillovers. Studying the mechanisms of immune tolerance in bats could lead to new approaches to improving human health. We strongly believe that it is time to focus on bats in research for the benefit of both bats and humankind.
Collapse
Affiliation(s)
- Aaron T Irving
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore. .,Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Haining, China. .,Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Matae Ahn
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Geraldine Goh
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Danielle E Anderson
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Lin-Fa Wang
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore. .,SingHealth Duke-NUS Global Health Institute, Singapore, Singapore.
| |
Collapse
|
23
|
Toprani SM, Scheibler C, Nagel ZD. Interplay Between Air Travel, Genome Integrity, and COVID-19 Risk vis-a-vis Flight Crew. Front Public Health 2020; 8:590412. [PMID: 33392133 PMCID: PMC7775589 DOI: 10.3389/fpubh.2020.590412] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 11/16/2020] [Indexed: 01/04/2023] Open
Abstract
During air travel, flight crew (flight attendants, pilots) can be exposed to numerous flight-related environmental DNA damaging agents that may be at the root of an excess risk of cancer and other diseases. This already complex mix of exposures is now joined by SARS-CoV-2, the virus that causes COVID-19. The complex exposures experienced during air travel present a challenge to public health research, but also provide an opportunity to consider new strategies for understanding and countering their health effects. In this article, we focus on threats to genomic integrity that occur during air travel and discuss how these threats and our ability to respond to them may influence the risk of SARS-CoV-2 infection and the development of range of severity of the symptoms. We also discuss how the virus itself may lead to compromised genome integrity. We argue that dauntingly complex public health problems, such as the challenge of protecting flight crews from COVID-19, must be met with interdisciplinary research teams that include epidemiologists, engineers, and mechanistic biologists.
Collapse
Affiliation(s)
- Sneh M. Toprani
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, United States
- John B. Little Center for Radiation Sciences, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Christopher Scheibler
- Environmental and Occupational Medicine and Epidemiology Program, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Zachary D. Nagel
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, United States
- John B. Little Center for Radiation Sciences, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| |
Collapse
|
24
|
Abstract
Environmental exposures have long been known to impact public health and safety. For example, exposures to airborne particulates, heavy metals in water, or certain industrial chemicals can contribute to aging and to risk of developing cancer and other diseases. Environmental factors can impact health in a variety of ways, but a key concern is DNA damage, which can lead to mutations that cause cancer. Cancer can take years to develop following chemical exposure; however, one way to predict carcinogenicity in a more practical time frame is by studying the chemical's ability to induce DNA damage. The comet assay (or single-cell gel electrophoresis assay) has been used successfully for genotoxicity testing. The comet assay allows for the detection of DNA strand breaks via analysis of DNA migration during electrophoresis. Previously, the Engelward laboratory, in collaboration with the Bhatia laboratory, developed the CometChip for measurements of DNA damage and repair. The CometChip is a high-throughput comet assay that improves user reproducibility and significantly shortens total assay time. Here, we describe how the high-throughput CometChip platform can be used to measure DNA damage in established cell lines, animal models, and human samples. We also discuss technical challenges associated with these studies and provide recommendations on how to achieve optimal results for researchers interested in adopting this assay.
Collapse
Affiliation(s)
- Christy Chao
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, Massachusetts, United States
| | - Bevin P. Engelward
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, Massachusetts, United States
| |
Collapse
|
25
|
Chen KK, Minakuchi M, Wuputra K, Ku CC, Pan JB, Kuo KK, Lin YC, Saito S, Lin CS, Yokoyama KK. Redox control in the pathophysiology of influenza virus infection. BMC Microbiol 2020; 20:214. [PMID: 32689931 PMCID: PMC7370268 DOI: 10.1186/s12866-020-01890-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 07/01/2020] [Indexed: 01/07/2023] Open
Abstract
Triggered in response to external and internal ligands in cells and animals, redox homeostasis is transmitted via signal molecules involved in defense redox mechanisms through networks of cell proliferation, differentiation, intracellular detoxification, bacterial infection, and immune reactions. Cellular oxidation is not necessarily harmful per se, but its effects depend on the balance between the peroxidation and antioxidation cascades, which can vary according to the stimulus and serve to maintain oxygen homeostasis. The reactive oxygen species (ROS) that are generated during influenza virus (IV) infection have critical effects on both the virus and host cells. In this review, we outline the link between viral infection and redox control using IV infection as an example. We discuss the current state of knowledge on the molecular relationship between cellular oxidation mediated by ROS accumulation and the diversity of IV infection. We also summarize the potential anti-IV agents available currently that act by targeting redox biology/pathophysiology.
Collapse
Affiliation(s)
- Ker-Kong Chen
- School of Dentistry, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
- Department of Densitory, Kaohisung University Hospital, Kaohisung, 807, Taiwan
| | - Moeko Minakuchi
- Waseda Research Institute for Science and Engineering, Waseca University, Shinjuku, Tokyo, 162-8480, Japan
| | - Kenly Wuputra
- Graduate Institute of Medicine, Kaohsiung Medical University, 100 Shih-Chuan 1st Rd., San-Ming District, Kaohsiung, 80807, Taiwan
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Chia-Chen Ku
- Graduate Institute of Medicine, Kaohsiung Medical University, 100 Shih-Chuan 1st Rd., San-Ming District, Kaohsiung, 80807, Taiwan
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Jia-Bin Pan
- Graduate Institute of Medicine, Kaohsiung Medical University, 100 Shih-Chuan 1st Rd., San-Ming District, Kaohsiung, 80807, Taiwan
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Kung-Kai Kuo
- Department Surgery, Kaohsiung Medical University Hospital, Kaohsiung, 807, Taiwan
| | - Ying-Chu Lin
- School of Dentistry, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Shigeo Saito
- Waseda Research Institute for Science and Engineering, Waseca University, Shinjuku, Tokyo, 162-8480, Japan
- Saito Laboratory of Cell Technology Institute, Yalta, Tochigi, 329-1471, Japan
| | - Chang-Shen Lin
- Graduate Institute of Medicine, Kaohsiung Medical University, 100 Shih-Chuan 1st Rd., San-Ming District, Kaohsiung, 80807, Taiwan.
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan.
| | - Kazunari K Yokoyama
- Waseda Research Institute for Science and Engineering, Waseca University, Shinjuku, Tokyo, 162-8480, Japan.
- Graduate Institute of Medicine, Kaohsiung Medical University, 100 Shih-Chuan 1st Rd., San-Ming District, Kaohsiung, 80807, Taiwan.
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, 807, Taiwan.
- Cell Therapy and Research Center, Kaohsiung Medical University Hospital, Kaohsiung, 807, Taiwan.
| |
Collapse
|
26
|
Zika Virus Infection Induces DNA Damage Response in Human Neural Progenitors That Enhances Viral Replication. J Virol 2019; 93:JVI.00638-19. [PMID: 31375586 DOI: 10.1128/jvi.00638-19] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 07/17/2019] [Indexed: 12/12/2022] Open
Abstract
Zika virus (ZIKV) infection attenuates the growth of human neural progenitor cells (hNPCs). As these hNPCs generate the cortical neurons during early brain development, the ZIKV-mediated growth retardation potentially contributes to the neurodevelopmental defects of the congenital Zika syndrome. Here, we investigate the mechanism by which ZIKV manipulates the cell cycle in hNPCs and the functional consequence of cell cycle perturbation on the replication of ZIKV and related flaviviruses. We demonstrate that ZIKV, but not dengue virus (DENV), induces DNA double-strand breaks (DSBs), triggering the DNA damage response through the ATM/Chk2 signaling pathway while suppressing the ATR/Chk1 signaling pathway. Furthermore, ZIKV infection impedes the progression of cells through S phase, thereby preventing the completion of host DNA replication. Recapitulation of the S-phase arrest state with inhibitors led to an increase in ZIKV replication, but not of West Nile virus or DENV. Our data identify ZIKV's ability to induce DSBs and suppress host DNA replication, which results in a cellular environment favorable for its replication.IMPORTANCE Clinically, Zika virus (ZIKV) infection can lead to developmental defects in the cortex of the fetal brain. How ZIKV triggers this event in developing neural cells is not well understood at a molecular level and likely requires many contributing factors. ZIKV efficiently infects human neural progenitor cells (hNPCs) and leads to growth arrest of these cells, which are critical for brain development. Here, we demonstrate that infection with ZIKV, but not dengue virus, disrupts the cell cycle of hNPCs by halting DNA replication during S phase and inducing DNA damage. We further show that ZIKV infection activates the ATM/Chk2 checkpoint but prevents the activation of another checkpoint, the ATR/Chk1 pathway. These results unravel an intriguing mechanism by which an RNA virus interrupts host DNA replication. Finally, by mimicking virus-induced S-phase arrest, we show that ZIKV manipulates the cell cycle to benefit viral replication.
Collapse
|
27
|
Tan KS, Andiappan AK, Lee B, Yan Y, Liu J, Tang SA, Lum J, He TT, Ong YK, Thong M, Lim HF, Choi HW, Rotzschke O, Chow VT, Wang DY. RNA Sequencing of H3N2 Influenza Virus-Infected Human Nasal Epithelial Cells from Multiple Subjects Reveals Molecular Pathways Associated with Tissue Injury and Complications. Cells 2019; 8:cells8090986. [PMID: 31461941 PMCID: PMC6770044 DOI: 10.3390/cells8090986] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/15/2019] [Accepted: 08/23/2019] [Indexed: 12/15/2022] Open
Abstract
The human nasal epithelium is the primary site of exposure to influenza virus, the initiator of host responses to influenza and the resultant pathologies. Influenza virus may cause serious respiratory infection resulting in major complications, as well as severe impairment of the airways. Here, we elucidated the global transcriptomic changes during H3N2 infection of human nasal epithelial cells from multiple individuals. Using RNA sequencing, we characterized the differentially-expressed genes and pathways associated with changes occurring at the nasal epithelium following infection. We used in vitro differentiated human nasal epithelial cell culture model derived from seven different donors who had no concurrent history of viral infections. Statistical analysis highlighted strong transcriptomic signatures significantly associated with 24 and 48 h after infection, but not at the earlier 8-h time point. In particular, we found that the influenza infection induced in the nasal epithelium early and altered responses in interferon gamma signaling, B-cell signaling, apoptosis, necrosis, smooth muscle proliferation, and metabolic alterations. These molecular events initiated at the infected nasal epithelium may potentially adversely impact the airway, and thus the genes we identified could serve as potential diagnostic biomarkers or therapeutic targets for influenza infection and associated disease management.
Collapse
Affiliation(s)
- Kai Sen Tan
- Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | | | - Bernett Lee
- Singapore Immunology Network (SIgN), A*STAR, Singapore 138648, Singapore
| | - Yan Yan
- Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
- Center for Interventional Medicine, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China
| | - Jing Liu
- Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - See Aik Tang
- Singapore Immunology Network (SIgN), A*STAR, Singapore 138648, Singapore
| | - Josephine Lum
- Singapore Immunology Network (SIgN), A*STAR, Singapore 138648, Singapore
| | - Ting Ting He
- Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Yew Kwang Ong
- Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Mark Thong
- Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Hui Fang Lim
- Division of Respiratory and Critical Care Medicine, National University Hospital, Singapore 119074, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Hyung Won Choi
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- Institute of Molecular and Cell Biology, A*STAR, Singapore 138673, Singapore
| | - Olaf Rotzschke
- Singapore Immunology Network (SIgN), A*STAR, Singapore 138648, Singapore
| | - Vincent T Chow
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore.
| | - De Yun Wang
- Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore.
| |
Collapse
|
28
|
Ong JWJ, Tan KS, Ler SG, Gunaratne J, Choi H, Seet JE, Chow VTK. Insights into Early Recovery from Influenza Pneumonia by Spatial and Temporal Quantification of Putative Lung Regenerating Cells and by Lung Proteomics. Cells 2019; 8:cells8090975. [PMID: 31455003 PMCID: PMC6769472 DOI: 10.3390/cells8090975] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 08/21/2019] [Accepted: 08/21/2019] [Indexed: 12/26/2022] Open
Abstract
During influenza pneumonia, the alveolar epithelial cells of the lungs are targeted by the influenza virus. The distal airway stem cells (DASCs) and proliferating alveolar type II (AT2) cells are reported to be putative lung repair cells. However, their relative spatial and temporal distribution is still unknown during influenza-induced acute lung injury. Here, we investigated the distribution of these cells, and concurrently performed global proteomic analysis of the infected lungs to elucidate and link the cellular and molecular events during influenza pneumonia recovery. BALB/c mice were infected with a sub-lethal dose of influenza H1N1 virus. From 5 to 25 days post-infection (dpi), mouse lungs were subjected to histopathologic and immunofluorescence analysis to probe for global distribution of lung repair cells (using P63 and KRT5 markers for DASCs; SPC and PCNA markers for AT2 cells). At 7 and 15 dpi, infected mouse lungs were also subjected to protein mass spectrometry for relative protein quantification. DASCs appeared only in the damaged area of the lung from 7 dpi onwards, reaching a peak at 21 dpi, and persisted until 25 dpi. However, no differentiation of DASCs to AT2 cells was observed by 25 dpi. In contrast, AT2 cells began proliferating from 7 dpi to replenish their population, especially within the boundary area between damaged and undamaged areas of the infected lungs. Mass spectrometry and gene ontology analysis revealed prominent innate immune responses at 7 dpi, which shifted towards adaptive immune responses by 15 dpi. Hence, proliferating AT2 cells but not DASCs contribute to AT2 cell regeneration following transition from innate to adaptive immune responses during the early phase of recovery from influenza pneumonia up to 25 dpi.
Collapse
Affiliation(s)
- Joe Wee Jian Ong
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore
- Correspondence: (J.W.J.O.); (V.T.-K.C.); Tel.: +65-6516-3691 (J.W.J.O.)
| | - Kai Sen Tan
- Department of Otolaryngology, National University of Singapore, Singapore 119228, Singapore
| | - Siok Ghee Ler
- Institute of Molecular and Cell Biology, Singapore 138673, Singapore
| | | | - Hyungwon Choi
- Institute of Molecular and Cell Biology, Singapore 138673, Singapore
- Department of Medicine, National University of Singapore, Singapore 117599, Singapore
| | - Ju Ee Seet
- Department of Pathology, National University of Singapore, Singapore 119074, Singapore
| | - Vincent Tak-Kwong Chow
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore
- Correspondence: (J.W.J.O.); (V.T.-K.C.); Tel.: +65-6516-3691 (J.W.J.O.)
| |
Collapse
|
29
|
DNA mismatch repair is required for the host innate response and controls cellular fate after influenza virus infection. Nat Microbiol 2019; 4:1964-1977. [PMID: 31358986 PMCID: PMC6814535 DOI: 10.1038/s41564-019-0509-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 06/07/2019] [Indexed: 02/07/2023]
Abstract
Despite the cytopathic nature of influenza A virus (IAV) replication, we
recently reported that a subset of lung epithelial club cells is able to
intrinsically clear virus and survive infection. However, the mechanisms that
drive cell survival during a normally lytic infection remained unclear. Using a
loss-of-function screening approach, we discovered that the DNA mismatch repair
(MMR) pathway is essential for club cell survival of IAV infection. Repair of
virally-induced oxidative damage by the DNA MMR pathway not only allowed cell
survival of infection but also facilitated host gene transcription, including
the expression of antiviral and stress response genes. Enhanced viral
suppression of the DNA MMR pathway prevented club cell survival and increased
the severity of viral disease in vivo. Altogether, these
results identify previously unappreciated roles for DNA MMR as a central
modulator of cellular fate and a contributor to the innate antiviral response,
which together, control influenza viral disease severity.
Collapse
|
30
|
Noh H, Shoemaker JE, Gunawan R. Network perturbation analysis of gene transcriptional profiles reveals protein targets and mechanism of action of drugs and influenza A viral infection. Nucleic Acids Res 2019; 46:e34. [PMID: 29325153 PMCID: PMC5887474 DOI: 10.1093/nar/gkx1314] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 12/22/2017] [Indexed: 12/12/2022] Open
Abstract
Genome-wide transcriptional profiling provides a global view of cellular state and how this state changes under different treatments (e.g. drugs) or conditions (e.g. healthy and diseased). Here, we present ProTINA (Protein Target Inference by Network Analysis), a network perturbation analysis method for inferring protein targets of compounds from gene transcriptional profiles. ProTINA uses a dynamic model of the cell-type specific protein-gene transcriptional regulation to infer network perturbations from steady state and time-series differential gene expression profiles. A candidate protein target is scored based on the gene network's dysregulation, including enhancement and attenuation of transcriptional regulatory activity of the protein on its downstream genes, caused by drug treatments. For benchmark datasets from three drug treatment studies, ProTINA was able to provide highly accurate protein target predictions and to reveal the mechanism of action of compounds with high sensitivity and specificity. Further, an application of ProTINA to gene expression profiles of influenza A viral infection led to new insights of the early events in the infection.
Collapse
Affiliation(s)
- Heeju Noh
- Institute for Chemical and Bioengineering, ETH Zurich, Zurich 8093, Switzerland.,Swiss Institute of Bioinformatics, Lausanne 1015, Switzerland
| | - Jason E Shoemaker
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA.,Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Rudiyanto Gunawan
- Institute for Chemical and Bioengineering, ETH Zurich, Zurich 8093, Switzerland.,Swiss Institute of Bioinformatics, Lausanne 1015, Switzerland
| |
Collapse
|
31
|
Kay J, Thadhani E, Samson L, Engelward B. Inflammation-induced DNA damage, mutations and cancer. DNA Repair (Amst) 2019; 83:102673. [PMID: 31387777 DOI: 10.1016/j.dnarep.2019.102673] [Citation(s) in RCA: 199] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 06/15/2019] [Accepted: 07/18/2019] [Indexed: 12/22/2022]
Abstract
The relationships between inflammation and cancer are varied and complex. An important connection linking inflammation to cancer development is DNA damage. During inflammation reactive oxygen and nitrogen species (RONS) are created to combat pathogens and to stimulate tissue repair and regeneration, but these chemicals can also damage DNA, which in turn can promote mutations that initiate and promote cancer. DNA repair pathways are essential for preventing DNA damage from causing mutations and cytotoxicity, but RONS can interfere with repair mechanisms, reducing their efficacy. Further, cellular responses to DNA damage, such as damage signaling and cytotoxicity, can promote inflammation, creating a positive feedback loop. Despite coordination of DNA repair and oxidative stress responses, there are nevertheless examples whereby inflammation has been shown to promote mutagenesis, tissue damage, and ultimately carcinogenesis. Here, we discuss the DNA damage-mediated associations between inflammation, mutagenesis and cancer.
Collapse
Affiliation(s)
- Jennifer Kay
- Department of Biological Engineering, United States.
| | | | - Leona Samson
- Department of Biological Engineering, United States; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, United States
| | | |
Collapse
|
32
|
A Homeostasis Hypothesis of Avian Influenza Resistance in Chickens. Genes (Basel) 2019; 10:genes10070543. [PMID: 31319606 PMCID: PMC6678902 DOI: 10.3390/genes10070543] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 07/04/2019] [Accepted: 07/11/2019] [Indexed: 12/13/2022] Open
Abstract
Avian influenza has caused significant damage to the poultry industry globally. Consequently, efforts have been made to elucidate the disease mechanisms as well as the mechanisms of disease resistance. Here, by investigating two chicken breeds with distinct responses to avian influenza virus (AIV), Leghorn GB2 and Fayoumi M43, we compared their genome, methylation, and transcriptome differences. MX1, HSP90AB1, and HSP90B1 exhibited high degrees of genetic differentiation (FST) between the two species. Except for the MX1-involved direct anti-virus mechanism, we found that at the methylation and transcriptome levels, the more AIV-resistant breed, Fayoumi, exhibited less variation compared with Leghorn after AIV inoculation, which included change trends in differentially expressed regions, top-fold change genes with FDR-corrected p < 0.05, immune response related genes, and housekeeping genes. Fayoumi also showed better consistency regarding changes in methylation and changes at the transcriptome level. Our results suggest a homeostasis hypothesis for avian influenza resistance, with Fayoumi maintaining superior homeostasis at both the epigenetic and gene expression levels. Three candidate genes—MX1, HSP90AB1, and HSP90B1—showed genetic differentiation and altered gene expression, methylation, and protein expression, which merit attention in further functional studies.
Collapse
|
33
|
Laske T, Bachmann M, Dostert M, Karlas A, Wirth D, Frensing T, Meyer TF, Hauser H, Reichl U. Model-based analysis of influenza A virus replication in genetically engineered cell lines elucidates the impact of host cell factors on key kinetic parameters of virus growth. PLoS Comput Biol 2019; 15:e1006944. [PMID: 30973879 PMCID: PMC6478349 DOI: 10.1371/journal.pcbi.1006944] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 04/23/2019] [Accepted: 03/11/2019] [Indexed: 12/25/2022] Open
Abstract
The best measure to limit spread of contagious diseases caused by influenza A viruses (IAVs) is annual vaccination. The growing global demand for low-cost vaccines requires the establishment of high-yield production processes. One possible option to address this challenge is the engineering of novel vaccine producer cell lines by manipulating gene expression of host cell factors relevant for virus replication. To support detailed characterization of engineered cell lines, we fitted an ordinary differential equation (ODE)-based model of intracellular IAV replication previously established by our group to experimental data obtained from infection studies in human A549 cells. Model predictions indicate that steps of viral RNA synthesis, their regulation and particle assembly and virus budding are promising targets for cell line engineering. The importance of these steps was confirmed in four of five single gene overexpression cell lines (SGOs) that showed small, but reproducible changes in early dynamics of RNA synthesis and virus release. Model-based analysis suggests, however, that overexpression of the selected host cell factors negatively influences specific RNA synthesis rates. Still, virus yield was rescued by an increase in the virus release rate. Based on parameter estimations obtained for SGOs, we predicted that there is a potential benefit associated with overexpressing multiple host cell genes in one cell line, which was validated experimentally. Overall, this model-based study on IAV replication in engineered cell lines provides a step forward in the dynamic and quantitative characterization of IAV-host cell interactions. Furthermore, it suggests targets for gene editing and indicates that overexpression of multiple host cell factors may be beneficial for the design of novel producer cell lines.
Collapse
Affiliation(s)
- Tanja Laske
- Department of Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| | - Mandy Bachmann
- Department of Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| | - Melanie Dostert
- Department of Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| | - Alexander Karlas
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Dagmar Wirth
- Research Group Model Systems for Infection and Immunity, Helmholtz Center for Infection Research, Braunschweig, Germany
- Division of Experimental Hematology, Medical University Hannover, Hannover, Germany
| | - Timo Frensing
- Department of Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| | - Thomas F. Meyer
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Hansjörg Hauser
- Department of Gene Regulation and Differentiation, Helmholtz Center for Infection Research, Braunschweig, Germany
| | - Udo Reichl
- Department of Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
- Chair of Bioprocess Engineering, Faculty of Process and Systems Engineering, Otto von Guericke University, Magdeburg, Germany
| |
Collapse
|
34
|
Tan KS, Yan Y, Koh WLH, Li L, Choi H, Tran T, Sugrue R, Wang DY, Chow VT. Comparative Transcriptomic and Metagenomic Analyses of Influenza Virus-Infected Nasal Epithelial Cells From Multiple Individuals Reveal Specific Nasal-Initiated Signatures. Front Microbiol 2018; 9:2685. [PMID: 30487780 PMCID: PMC6246735 DOI: 10.3389/fmicb.2018.02685] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 10/22/2018] [Indexed: 12/25/2022] Open
Abstract
In vitro and in vivo research based on cell lines and animals are likely to be insufficient in elucidating authentic biological and physiological phenomena mimicking human systems, especially for generating pre-clinical data on targets and biomarkers. There is an obvious need for a model that can further bridge the gap in translating pre-clinical findings into clinical applications. We have previously generated a model of in vitro differentiated human nasal epithelial cells (hNECs) which elucidated the nasal-initiated repertoire of immune responses against respiratory viruses such as influenza A virus and rhinovirus. To assess their clinical utility, we performed a microarray analysis of influenza virus-infected hNECs to elucidate nasal epithelial-initiated responses. This was followed by a metagenomic analysis which revealed transcriptomic changes comparable with clinical influenza datasets. The primary target of influenza infection was observed to be the initiator of innate and adaptive immune genes, leaning toward type-1 inflammatory activation. In addition, the model also elucidated a down-regulation of metabolic processes specific to the nasal epithelium, and not present in other models. Furthermore, the hNEC model detected all 11 gene signatures unique to influenza infection identified from a previous study, thus supporting the utility of nasal-based diagnosis in clinical settings. In conclusion, this study highlights that hNECs can serve as a model for nasal-based clinical translational studies and diagnosis to unravel nasal epithelial responses to influenza in the population, and as a means to identify novel molecular diagnostic markers of severity.
Collapse
Affiliation(s)
- Kai Sen Tan
- Department of Otolaryngology, National University of Singapore, Singapore, Singapore
| | - Yan Yan
- Department of Otolaryngology, National University of Singapore, Singapore, Singapore.,Center for Interventional Medicine, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Wai Ling Hiromi Koh
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
| | - Liang Li
- Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Hyungwon Choi
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore.,Institute of Molecular and Cell Biology, A∗STAR, Singapore, Singapore
| | - Thai Tran
- Department of Physiology, National University of Singapore, Singapore, Singapore
| | - Richard Sugrue
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - De Yun Wang
- Department of Otolaryngology, National University of Singapore, Singapore, Singapore
| | - Vincent T Chow
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
35
|
Krischuns T, Günl F, Henschel L, Binder M, Willemsen J, Schloer S, Rescher U, Gerlt V, Zimmer G, Nordhoff C, Ludwig S, Brunotte L. Phosphorylation of TRIM28 Enhances the Expression of IFN-β and Proinflammatory Cytokines During HPAIV Infection of Human Lung Epithelial Cells. Front Immunol 2018; 9:2229. [PMID: 30323812 PMCID: PMC6172303 DOI: 10.3389/fimmu.2018.02229] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 09/07/2018] [Indexed: 01/28/2023] Open
Abstract
Human infection with highly pathogenic avian influenza viruses (HPAIV) is often associated with severe tissue damage due to hyperinduction of interferons and proinflammatory cytokines. The reasons for this excessive cytokine expression are still incompletely understood, which has hampered the development of efficient immunomodulatory treatment options. The host protein TRIM28 associates to the promoter regions of over 13,000 genes and is recognized as a genomic corepressor and negative immune regulator. TRIM28 corepressor activity is regulated by post-translational modifications, specifically phosphorylation of S473, which modulates binding of TRIM28 to the heterochromatin-binding protein HP1. Here, we identified TRIM28 as a key immune regulator leading to increased IFN-β and proinflammatory cytokine levels during infection with HPAIV. Using influenza A virus strains of the subtype H1N1 as well as HPAIV of subtypes H7N7, H7N9, and H5N1, we could demonstrate that strain-specific phosphorylation of TRIM28 S473 is induced by a signaling cascade constituted of PKR, p38 MAPK, and MSK1 in response to RIG-I independent sensing of viral RNA. Furthermore, using chemical inhibitors as well as knockout cell lines, our results suggest that phosphorylation of S473 facilitates a functional switch leading to increased levels of IFN-β, IL-6, and IL-8. In summary, we have identified TRIM28 as a critical factor controlling excessive expression of type I IFNs as well as proinflammatory cytokines during infection with H5N1, H7N7, and H7N9 HPAIV. In addition, our data indicate a novel mechanism of PKR-mediated IFN-β expression, which could lay the ground for novel treatment options aiming at rebalancing dysregulated immune responses during severe HPAIV infection.
Collapse
Affiliation(s)
- Tim Krischuns
- Institute of Virology Muenster, Westfaelische Wilhelms-University Muenster, Muenster, Germany
- Cluster of Excellence “Cells in Motion”, Westfaelische Wilhelms-University Muenster, Muenster, Germany
| | - Franziska Günl
- Institute of Virology Muenster, Westfaelische Wilhelms-University Muenster, Muenster, Germany
- Cluster of Excellence “Cells in Motion”, Westfaelische Wilhelms-University Muenster, Muenster, Germany
| | - Lea Henschel
- Institute of Virology Muenster, Westfaelische Wilhelms-University Muenster, Muenster, Germany
- Cluster of Excellence “Cells in Motion”, Westfaelische Wilhelms-University Muenster, Muenster, Germany
| | - Marco Binder
- Research Group “Dynamics of Early Viral Infection and the Innate Antiviral Response”, Division Virus-Associated Carcinogenesis (F170), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Joschka Willemsen
- Research Group “Dynamics of Early Viral Infection and the Innate Antiviral Response”, Division Virus-Associated Carcinogenesis (F170), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sebastian Schloer
- Cluster of Excellence “Cells in Motion”, Westfaelische Wilhelms-University Muenster, Muenster, Germany
- Center for Molecular Biology of Inflammation, Institute of Medical Biochemistry, Westfaelische Wilhelms-University Muenster, Muenster, Germany
| | - Ursula Rescher
- Cluster of Excellence “Cells in Motion”, Westfaelische Wilhelms-University Muenster, Muenster, Germany
- Center for Molecular Biology of Inflammation, Institute of Medical Biochemistry, Westfaelische Wilhelms-University Muenster, Muenster, Germany
| | - Vanessa Gerlt
- Institute of Virology Muenster, Westfaelische Wilhelms-University Muenster, Muenster, Germany
- Cluster of Excellence “Cells in Motion”, Westfaelische Wilhelms-University Muenster, Muenster, Germany
| | - Gert Zimmer
- Institute of Virology and Immunology (IVI), Bern, Switzerland
- Department of Infectious Diseases and Pathobiology (DIP), Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Carolin Nordhoff
- Institute of Virology Muenster, Westfaelische Wilhelms-University Muenster, Muenster, Germany
- Cluster of Excellence “Cells in Motion”, Westfaelische Wilhelms-University Muenster, Muenster, Germany
| | - Stephan Ludwig
- Institute of Virology Muenster, Westfaelische Wilhelms-University Muenster, Muenster, Germany
- Cluster of Excellence “Cells in Motion”, Westfaelische Wilhelms-University Muenster, Muenster, Germany
| | - Linda Brunotte
- Institute of Virology Muenster, Westfaelische Wilhelms-University Muenster, Muenster, Germany
- Cluster of Excellence “Cells in Motion”, Westfaelische Wilhelms-University Muenster, Muenster, Germany
| |
Collapse
|
36
|
Mandl JN, Schneider C, Schneider DS, Baker ML. Going to Bat(s) for Studies of Disease Tolerance. Front Immunol 2018; 9:2112. [PMID: 30294323 PMCID: PMC6158362 DOI: 10.3389/fimmu.2018.02112] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 08/28/2018] [Indexed: 12/31/2022] Open
Abstract
A majority of viruses that have caused recent epidemics with high lethality rates in people, are zoonoses originating from wildlife. Among them are filoviruses (e.g., Marburg, Ebola), coronaviruses (e.g., SARS, MERS), henipaviruses (e.g., Hendra, Nipah) which share the common features that they are all RNA viruses, and that a dysregulated immune response is an important contributor to the tissue damage and hence pathogenicity that results from infection in humans. Intriguingly, these viruses also all originate from bat reservoirs. Bats have been shown to have a greater mean viral richness than predicted by their phylogenetic distance from humans, their geographic range, or their presence in urban areas, suggesting other traits must explain why bats harbor a greater number of zoonotic viruses than other mammals. Bats are highly unusual among mammals in other ways as well. Not only are they the only mammals capable of powered flight, they have extraordinarily long life spans, with little detectable increases in mortality or senescence until high ages. Their physiology likely impacted their history of pathogen exposure and necessitated adaptations that may have also affected immune signaling pathways. Do our life history traits make us susceptible to generating damaging immune responses to RNA viruses or does the physiology of bats make them particularly tolerant or resistant? Understanding what immune mechanisms enable bats to coexist with RNA viruses may provide critical fundamental insights into how to achieve greater resilience in humans.
Collapse
Affiliation(s)
- Judith N. Mandl
- Department of Physiology, McGill University, Montreal, QC, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
- McGill Research Center for Complex Traits, McGill University, Montreal, QC, Canada
| | - Caitlin Schneider
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
- McGill Research Center for Complex Traits, McGill University, Montreal, QC, Canada
| | - David S. Schneider
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, United States
| | - Michelle L. Baker
- Australian Animal Health Laboratory, Health and Biosecurity Business Unit, Commonwealth Scientific and Industrial Research Organisation, Geelong, VIC, Australia
| |
Collapse
|
37
|
Redox Biology of Respiratory Viral Infections. Viruses 2018; 10:v10080392. [PMID: 30049972 PMCID: PMC6115776 DOI: 10.3390/v10080392] [Citation(s) in RCA: 257] [Impact Index Per Article: 42.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 07/17/2018] [Accepted: 07/24/2018] [Indexed: 12/16/2022] Open
Abstract
Respiratory viruses cause infections of the upper or lower respiratory tract and they are responsible for the common cold—the most prevalent disease in the world. In many cases the common cold results in severe illness due to complications, such as fever or pneumonia. Children, old people, and immunosuppressed patients are at the highest risk and require fast diagnosis and therapeutic intervention. However, the availability and efficiencies of existing therapeutic approaches vary depending on the virus. Investigation of the pathologies that are associated with infection by respiratory viruses will be paramount for diagnosis, treatment modalities, and the development of new therapies. Changes in redox homeostasis in infected cells are one of the key events that is linked to infection with respiratory viruses and linked to inflammation and subsequent tissue damage. Our review summarizes current knowledge on changes to redox homeostasis, as induced by the different respiratory viruses.
Collapse
|
38
|
Induction of Oxidative DNA Damage in Bovine Herpesvirus 1 Infected Bovine Kidney Cells (MDBK Cells) and Human Tumor Cells (A549 Cells and U2OS Cells). Viruses 2018; 10:v10080393. [PMID: 30049996 PMCID: PMC6115950 DOI: 10.3390/v10080393] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 07/23/2018] [Indexed: 01/06/2023] Open
Abstract
Bovine herpesvirus 1 (BoHV-1) is an important pathogen of cattle that causes lesions in mucosal surfaces, genital tracts and nervous systems. As a novel oncolytic virus, BoHV-1 infects and kills numerous human tumor cells. However, the mechanisms underlying the virus-induced cell damages are not fully understood. In this study, we demonstrated that virus infection of MDBK cells induced high levels of DNA damage, because the percentage of comet tail DNA (tailDNA%) determined by comet assay, a direct indicator of DNA damage, and the levels of 8-hydroxyguanine (8-oxoG) production, an oxidative DNA damage marker, consistently increased following the virus infection. The expression of 8-oxoguanine DNA glycosylase (OGG-1), an enzyme responsible for the excision of 8-oxoG, was significantly decreased due to the virus infection, which corroborated with the finding that BoHV-1 infection stimulated 8-oxoG production. Furthermore, the virus replication in human tumor cells such as in A549 cells and U2OS cells also induced DNA damage. Chemical inhibition of reactive oxidative species (ROS) production by either ROS scavenger N-Acetyl-l-cysteine or NOX inhibitor diphenylene iodonium (DPI) significantly decreased the levels of tailDNA%, suggesting the involvement of ROS in the virus induced DNA lesions. Collectively, these results indicated that BoHV-1 infection of these cells elicits oxidative DNA damages, providing a perspective in understanding the mechanisms by which the virus induces cell death in both native host cells and human tumor cells.
Collapse
|
39
|
Moorthy AN, Rai P, Jiao H, Wang S, Tan KB, Qin L, Watanabe H, Zhang Y, Teluguakula N, Chow VTK. Capsules of virulent pneumococcal serotypes enhance formation of neutrophil extracellular traps during in vivo pathogenesis of pneumonia. Oncotarget 2017; 7:19327-40. [PMID: 27034012 PMCID: PMC4991386 DOI: 10.18632/oncotarget.8451] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 03/18/2016] [Indexed: 11/25/2022] Open
Abstract
Neutrophil extracellular traps (NETs) are released by activated neutrophils to ensnare and kill microorganisms. NETs have been implicated in tissue injury since they carry cytotoxic components of the activated neutrophils. We have previously demonstrated the generation of NETs in infected murine lungs during both primary pneumococcal pneumonia and secondary pneumococcal pneumonia after primary influenza. In this study, we assessed the correlation of pneumococcal capsule size with pulmonary NETs formation and disease severity. We compared NETs formation in the lungs of mice infected with three pneumococcal strains of varying virulence namely serotypes 3, 4 and 19F, as well as a capsule-deficient mutant of serotype 4. In primary pneumonia, NETs generation was strongly associated with the pneumococcal capsule thickness, and was proportional to the disease severity. Interestingly, during secondary pneumonia after primary influenza infection, intense pulmonary NETs generation together with elevated myeloperoxidase activity and cytokine dysregulation determined the disease severity. These findings highlight the crucial role played by the size of pneumococcal capsule in determining the extent of innate immune responses such as NETs formation that may contribute to the severity of pneumonia.
Collapse
Affiliation(s)
- Anandi Narayana Moorthy
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Kent Ridge, Singapore
| | - Prashant Rai
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Kent Ridge, Singapore.,Infectious Diseases Interdisciplinary Research Group, Singapore-Massachusetts Institute of Technology Alliance in Research and Technology, Singapore
| | - Huipeng Jiao
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Kent Ridge, Singapore
| | - Shi Wang
- Department of Pathology, National University Hospital, Singapore
| | - Kong Bing Tan
- Department of Pathology, National University Hospital, Singapore
| | - Liang Qin
- Department of Infection Control and Prevention, Kurume University School of Medicine, Fukuoka, Japan
| | - Hiroshi Watanabe
- Department of Infection Control and Prevention, Kurume University School of Medicine, Fukuoka, Japan
| | - Yongliang Zhang
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Kent Ridge, Singapore
| | | | - Vincent Tak Kwong Chow
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Kent Ridge, Singapore.,Infectious Diseases Interdisciplinary Research Group, Singapore-Massachusetts Institute of Technology Alliance in Research and Technology, Singapore
| |
Collapse
|
40
|
Zhou B, Li J, Liang X, Yang Z, Jiang Z. Transcriptome profiling of influenza A virus-infected lung epithelial (A549) cells with lariciresinol-4-β-D-glucopyranoside treatment. PLoS One 2017; 12:e0173058. [PMID: 28273165 PMCID: PMC5342222 DOI: 10.1371/journal.pone.0173058] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 02/14/2017] [Indexed: 12/12/2022] Open
Abstract
The influenza A virus is an acute contagious pathogen that affects the human respiratory system and can cause severe lung disease and even death. Lariciresinol-4-β-D-glucopyranoside is a lignan that is extracted from Isatis indigotica, which is a medicinal herb plant that was commonly applied to treat infections, the common cold, fever and inflammatory diseases. Our previous study demonstrated that lariciresinol-4-β-D-glucopyranoside possesses anti-viral and anti-inflammatory properties. However, the comprehensive and detailed mechanisms that underlie the effect of lariciresinol-4-β-D-glucopyranoside interventions against influenza virus infection remain to be elucidated. In this study, we employed high-throughput RNA sequencing (RNA-seq) to investigate the transcriptomic responses of influenza A virus-infected lung epithelial (A549) cells with lariciresinol-4-β-D-glucopyranoside treatment. The transcriptome data show that infection with influenza A virus prompted the activation of 368 genes involved in RIG-I signalling, the inflammatory response, interferon α/β signalling and gene expression that was not affected by lariciresinol-4-β-D-glucopyranoside treatment. Lariciresinol-4-β-D-glucopyranoside exerted its pharmacological actions on the immune system, signal transduction, cell cycle and metabolism, which may be an underlying defense mechanism against influenza virus infection. In addition, 166 differentially expressed genes (DEGs) were uniquely expressed in lariciresinol-4-β-D-glucopyranoside-treated cells, which were concentrated in the cell cycle, DNA repair, chromatin organization, gene expression and biosynthesis domains. Among them, six telomere-associated genes were up-regulated by lariciresinol-4-β-D-glucopyranoside treatment, which have been implicated in telomere regulation and stability. Collectively, we employed RNA-seq analysis to provide comprehensive insight into the mechanism of lariciresinol-4-β-D-glucopyranoside against influenza virus infection.
Collapse
Affiliation(s)
- Beixian Zhou
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau, China
| | - Jing Li
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, National Clinical Centre of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Xiaoli Liang
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, National Clinical Centre of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Zifeng Yang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau, China
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, National Clinical Centre of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, People’s Republic of China
- * E-mail: (ZFY); (ZHJ)
| | - Zhihong Jiang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau, China
- * E-mail: (ZFY); (ZHJ)
| |
Collapse
|
41
|
Pociask DA, Robinson KM, Chen K, McHugh KJ, Clay ME, Huang GT, Benos PV, Janssen-Heininger YMW, Kolls JK, Anathy V, Alcorn JF. Epigenetic and Transcriptomic Regulation of Lung Repair during Recovery from Influenza Infection. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 187:851-863. [PMID: 28193481 DOI: 10.1016/j.ajpath.2016.12.012] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 12/07/2016] [Accepted: 12/21/2016] [Indexed: 11/28/2022]
Abstract
Seasonal and pandemic influenza is a cause of morbidity and mortality worldwide. Most people infected with influenza virus display mild-to-moderate disease phenotypes and recover within a few weeks. Influenza is known to cause persistent alveolitis in animal models; however, little is known about the molecular pathways involved in this phenotype. We challenged C57BL/6 mice with influenza A/PR/8/34 and examined lung pathologic processes and inflammation, as well as transcriptomic and epigenetic changes at 21 to 60 days after infection. Influenza induced persistent parenchymal lung inflammation, alveolar epithelial metaplasia, and epithelial endoplasmic reticulum stress that were evident after the clearance of virus and resolution of morbidity. Influenza infection induced robust changes in the lung transcriptome, including a significant impact on inflammatory and extracellular matrix protein expression. Despite the robust changes in lung gene expression, preceding influenza (21 days) did not exacerbate secondary Staphylococcus aureus infection. Finally, we examined the impact of influenza on miRNA expression in the lung and found an increase in miR-155. miR-155 knockout mice recovered from influenza infection faster than controls and had decreased lung inflammation and endoplasmic reticulum stress. These data illuminate the dynamic molecular changes in the lung in the weeks after influenza infection and characterize the repair process, identifying a novel role for miR-155.
Collapse
Affiliation(s)
- Derek A Pociask
- Department of Pulmonary Critical Care and Environmental Medicine, Tulane University School of Medicine, New Orleans, Louisiana; Richard K. Mellon Foundation Institute, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania
| | - Keven M Robinson
- Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Kong Chen
- Richard K. Mellon Foundation Institute, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania
| | - Kevin J McHugh
- Department of Pediatrics, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania
| | - Michelle E Clay
- Department of Pediatrics, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania
| | - Grace T Huang
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania; PhD Program in Computational Biology, Carnegie Mellon University and University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Panayiotis V Benos
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | | | - Jay K Kolls
- Richard K. Mellon Foundation Institute, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania
| | - Vikas Anathy
- Department of Pathology, University of Vermont, Burlington, Vermont
| | - John F Alcorn
- Department of Pediatrics, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania.
| |
Collapse
|
42
|
Goodman J, Lynch H. Improving the International Agency for Research on Cancer's consideration of mechanistic evidence. Toxicol Appl Pharmacol 2017; 319:39-46. [PMID: 28162991 DOI: 10.1016/j.taap.2017.01.020] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 01/10/2017] [Accepted: 01/27/2017] [Indexed: 01/16/2023]
Abstract
BACKGROUND The International Agency for Research on Cancer (IARC) recently developed a framework for evaluating mechanistic evidence that includes a list of 10 key characteristics of carcinogens. This framework is useful for identifying and organizing large bodies of literature on carcinogenic mechanisms, but it lacks sufficient guidance for conducting evaluations that fully integrate mechanistic evidence into hazard assessments. OBJECTIVES We summarize the framework, and suggest approaches to strengthen the evaluation of mechanistic evidence using this framework. DISCUSSION While the framework is useful for organizing mechanistic evidence, its lack of guidance for implementation limits its utility for understanding human carcinogenic potential. Specifically, it does not include explicit guidance for evaluating the biological significance of mechanistic endpoints, inter- and intra-individual variability, or study quality and relevance. It also does not explicitly address how mechanistic evidence should be integrated with other realms of evidence. Because mechanistic evidence is critical to understanding human cancer hazards, we recommend that IARC develop transparent and systematic guidelines for the use of this framework so that mechanistic evidence will be evaluated and integrated in a robust manner, and concurrently with other realms of evidence, to reach a final human cancer hazard conclusion. CONCLUSIONS IARC does not currently provide a standardized approach to evaluating mechanistic evidence. Incorporating the recommendations discussed here will make IARC analyses of mechanistic evidence more transparent, and lead to assessments of cancer hazards that reflect the weight of the scientific evidence and allow for scientifically defensible decision-making.
Collapse
Affiliation(s)
- Julie Goodman
- Gradient, 20 University Road, Cambridge, MA 02138, United States.
| | - Heather Lynch
- Gradient, 20 University Road, Cambridge, MA 02138, United States
| |
Collapse
|
43
|
Weight-of-evidence evaluation of associations between particulate matter exposure and biomarkers of lung cancer. Regul Toxicol Pharmacol 2016; 82:53-93. [DOI: 10.1016/j.yrtph.2016.10.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 10/10/2016] [Accepted: 10/16/2016] [Indexed: 12/16/2022]
|
44
|
Tavares LP, Teixeira MM, Garcia CC. The inflammatory response triggered by Influenza virus: a two edged sword. Inflamm Res 2016; 66:283-302. [PMID: 27744631 DOI: 10.1007/s00011-016-0996-0] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 10/03/2016] [Accepted: 10/06/2016] [Indexed: 02/06/2023] Open
Abstract
Influenza A virus (IAV) is a relevant respiratory tract pathogen leading to a great number of deaths and hospitalizations worldwide. Secondary bacterial infections are a very common cause of IAV associated morbidity and mortality. The robust inflammatory response that follows infection is important for the control of virus proliferation but is also associated with lung damage, morbidity and death. The role of the different components of immune response underlying protection or disease during IAV infection is not completely elucidated. Overall, in the context of IAV infection, inflammation is a 'double edge sword' necessary to control infection but causing disease. Therefore, a growing number of studies suggest that immunomodulatory strategies may improve disease outcome without affecting the ability of the host to deal with infection. This review summarizes recent aspects of the inflammatory responses triggered by IAV that are preferentially involved in causing severe pulmonary disease and the anti-inflammatory strategies that have been suggested to treat influenza induced immunopathology.
Collapse
Affiliation(s)
- Luciana P Tavares
- Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, ICB Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Mauro M Teixeira
- Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, ICB Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Cristiana C Garcia
- Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, ICB Universidade Federal de Minas Gerais, Belo Horizonte, Brazil. .,Laboratório de Vírus Respiratórios e do Sarampo, Instituto Oswaldo Cruz, Fiocruz, Avenida Brasil, 4365, 21040360, Rio de Janeiro, Brazil.
| |
Collapse
|
45
|
Colaço HG, Moita LF. Initiation of innate immune responses by surveillance of homeostasis perturbations. FEBS J 2016; 283:2448-57. [PMID: 27037950 DOI: 10.1111/febs.13730] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 03/20/2016] [Accepted: 04/01/2016] [Indexed: 01/01/2023]
Abstract
Pathogen recognition, signaling transduction pathways, and effector mechanisms are necessary steps of innate immune responses that play key roles in the early phase of defense and in the stimulation of the later specific response of adaptive immunity. Here, we argue that in addition to the direct recognition of conserved common structural and functional molecular signatures of microorganisms using pattern recognition receptors, hosts can mount an immune response following the sensing of disruption in homeostasis as proximal reporters for infections. Surveillance of disruption of core cellular activities leading to defense responses is a flexible strategy that requires few additional components and that can effectively detect relevant threats. It is likely to be evolutionarily very conserved and ancient because it is operational in organisms that lack pattern recognition triggered immunity. A homeostasis disruption model of immune response initiation and modulation has broad implications for pathophysiology and treatment of disease and might constitute an often overlooked but central component of a comprehensive conceptual framework for innate immunity.
Collapse
Affiliation(s)
- Henrique G Colaço
- Innate Immunity and Inflammation Laboratory, Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Luis F Moita
- Innate Immunity and Inflammation Laboratory, Instituto Gulbenkian de Ciência, Oeiras, Portugal
| |
Collapse
|
46
|
Rai P, He F, Kwang J, Engelward BP, Chow VTK. Pneumococcal Pneumolysin Induces DNA Damage and Cell Cycle Arrest. Sci Rep 2016; 6:22972. [PMID: 27026501 PMCID: PMC4812240 DOI: 10.1038/srep22972] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 02/22/2016] [Indexed: 01/24/2023] Open
Abstract
Streptococcus pneumoniae produces pneumolysin toxin as a key virulence factor against host cells. Pneumolysin is a cholesterol-dependent cytolysin (CDC) toxin that forms lytic pores in host membranes and mediates pneumococcal disease pathogenesis by modulating inflammatory responses. Here, we show that pneumolysin, which is released during bacterial lysis, induces DNA double strand breaks (DSBs), as indicated by ataxia telangiectasia mutated (ATM)-mediated H2AX phosphorylation (γH2AX). Pneumolysin-induced γH2AX foci recruit mediator of DNA damage checkpoint 1 (MDC1) and p53 binding protein 1 (53BP1), to sites of DSBs. Importantly, results show that toxin-induced DNA damage precedes cell cycle arrest and causes apoptosis when DNA-dependent protein kinase (DNA-PK)-mediated non-homologous end joining is inhibited. Further, we observe that cells that were undergoing DNA replication harbored DSBs in greater frequency during pneumolysin treatment. This observation raises the possibility that DSBs might be arising as a result of replication fork breakdown. Additionally, neutralizing the oligomerization domain of pneumolysin with monoclonal antibody suppresses DNA damage and also cell cycle arrest, indicating that pneumolysin oligomerization is important for causing DNA damage. Taken together, this study reveals a previously unidentified ability of pneumolysin to induce cytotoxicity via DNA damage, with implications in the pathophysiology of S. pneumoniae infection.
Collapse
Affiliation(s)
- Prashant Rai
- Infectious Diseases Group, Singapore-MIT Alliance for Research &Technology, Singapore 138602.,Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545
| | - Fang He
- Animal Health Biotechnology, Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117604
| | - Jimmy Kwang
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545.,Animal Health Biotechnology, Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117604
| | - Bevin P Engelward
- Infectious Diseases Group, Singapore-MIT Alliance for Research &Technology, Singapore 138602.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Vincent T K Chow
- Infectious Diseases Group, Singapore-MIT Alliance for Research &Technology, Singapore 138602.,Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545
| |
Collapse
|
47
|
Unique Loss of the PYHIN Gene Family in Bats Amongst Mammals: Implications for Inflammasome Sensing. Sci Rep 2016; 6:21722. [PMID: 26906452 PMCID: PMC4764838 DOI: 10.1038/srep21722] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 01/29/2016] [Indexed: 12/19/2022] Open
Abstract
Recent genomic analysis of two bat species (Pteropus alecto and Myotis davidii) revealed the absence of the PYHIN gene family. This family is recognized as important immune sensors of intracellular self and foreign DNA and activators of the inflammasome and/or interferon pathways. Further assessment of a wider range of bat genomes was necessary to determine if this is a universal pattern for this large mammalian group. Here we expanded genomic analysis of this gene family to include ten bat species. We confirmed the complete loss of this gene family, with only a truncated AIM2 remaining in one species (Pteronotus parnellii). Divergence of the PYHIN gene loci between the bat lineages infers different loss-of-function histories during bat evolution. While all other major groups of placental mammals have at least one gene member, only bats have lost the entire family. This removal of inflammasome DNA sensors may indicate an important adaptation that is flight-induced and related, at least in part, to pathogen-host co-existence.
Collapse
|
48
|
Activation of the DNA Damage Response by RNA Viruses. Biomolecules 2016; 6:2. [PMID: 26751489 PMCID: PMC4808796 DOI: 10.3390/biom6010002] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 11/17/2015] [Accepted: 11/24/2015] [Indexed: 12/11/2022] Open
Abstract
RNA viruses are a genetically diverse group of pathogens that are responsible for some of the most prevalent and lethal human diseases. Numerous viruses introduce DNA damage and genetic instability in host cells during their lifecycles and some species also manipulate components of the DNA damage response (DDR), a complex and sophisticated series of cellular pathways that have evolved to detect and repair DNA lesions. Activation and manipulation of the DDR by DNA viruses has been extensively studied. It is apparent, however, that many RNA viruses can also induce significant DNA damage, even in cases where viral replication takes place exclusively in the cytoplasm. DNA damage can contribute to the pathogenesis of RNA viruses through the triggering of apoptosis, stimulation of inflammatory immune responses and the introduction of deleterious mutations that can increase the risk of tumorigenesis. In addition, activation of DDR pathways can contribute positively to replication of viral RNA genomes. Elucidation of the interactions between RNA viruses and the DDR has provided important insights into modulation of host cell functions by these pathogens. This review summarises the current literature regarding activation and manipulation of the DDR by several medically important RNA viruses.
Collapse
|