1
|
Yan Z, Zheng H, Feng J, Li Y, Hu Z, Wu Y, Liao G, Miao T, Qiu Z, Mo Q, Li J, Lai A, Lu Y, Chen B. Causal links between circulatory inflammatory cytokines and risk of digestive polyps: a Mendelian randomization analysis. Front Pharmacol 2024; 15:1405503. [PMID: 39439893 PMCID: PMC11493649 DOI: 10.3389/fphar.2024.1405503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 09/24/2024] [Indexed: 10/25/2024] Open
Abstract
Background There is a high morbidity of polyps in the digestive tract, and certain subtypes of polyps are thought to induce cancer progression and often recur, which may be associated with chronic inflammation. Mendelian randomization (MR) can help identify potential causative relationships and inform early treatment action. Methods We performed a bidirectional two-sample MR analysis implementing the results from genome-wide association studies for 41 serum cytokines from 8,293 Finnish individuals, and three types of polyps from European ancestry, respectively, including gastric polyp (6,155 cases vs. 341,871 controls), colonic polyp (22,049 cases vs. 332,368 controls) and gallbladder polyp (458 cases vs. 340,083 controls). Inverse-variance weighted (IVW), weight median (WM), and MR-Egger methods were used for calculating causal estimates. Furthermore, Bayesian model averaging MR (MR-BMA) method was employed to detect the dominant causal circulatory cytokines with adjustment for pleiotropy effects. Results Our univariable MR using inverse-variance weight method identified causal associations of IL-2ra (OR: 0.892, 95%CI: 0.828-0.961, p = 0.003), MIG (OR: 1.124, 95%CI: 1.046-1.207, p = 0.001) and IL-18 (OR: 0.912, 95%CI: 0.852-0.977, p = 0.008) with gastric polyp, MIP1b (OR: 0.956, 95%CI: 0.927-0.987, p = 0.005) and IL-6 (OR: 0.931, 95%CI: 0.870-0.995, p = 0.035) with colonic polyp and IL-9 (OR: 0.523, 95%CI: 0.345-0.794, p = 0.0007) with gallbladder polyp. Finally, our MR-BMA analysis prioritized MIG (MIP = 0.332, MACE = 0.022; PP: 0.264, MSCE = 0.059), IL-18 (MIP = 0.302, MACE = -0.020; PP: 0.243, MSCE = -0.059) and IL-2ra (MIP: 0.129; MACE: -0.005; PP: 0.112, MSCE: -0.031) for gastric polyp, and MIP1b (MIP = 0.752, MACE = -0.033; PP: 0.665, MSCE = -0.044) and IL-6 (MIP: 0.196; MACE: -0.012; PP: 0.140, MSCE: -0.064) for colonic polyp, and IL-9 (MIP = 0.936, MACE = -0.446; PP: 0.781, MSCE = -0.478) for gallbladder polyp as the top-ranked protective factors. Conclusion Our research advances the current understanding of the function of certain inflammatory biomarker pathways in the genesis and malignant mutation of polyps in the digestive tract. Deeper substantiation is necessary to assess the potential of these cytokines as pharmacological or lifestyle targets for digestive polyps prevention.
Collapse
Affiliation(s)
- Ziqi Yan
- Department of Gastroenterology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- The First Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hongming Zheng
- Department of Gastroenterology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- The First Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jieni Feng
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yiting Li
- Department of Gastroenterology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- The First Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhifan Hu
- Department of Gastroenterology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- The First Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yuan Wu
- Department of Gastroenterology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- The First Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Guibin Liao
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
| | - Taosheng Miao
- Department of Gastroenterology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- The First Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zexin Qiu
- Department of Gastroenterology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- The First Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qiaolan Mo
- Department of Gastroenterology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- The First Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jia Li
- Department of Gastroenterology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- The First Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ailin Lai
- Department of Gastroenterology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- The First Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yue Lu
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
| | - Bin Chen
- Department of Gastroenterology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
2
|
Koukourikis P, Papaioannou M, Pervana S, Apostolidis A. Exploring the DNA Methylation Profile of Genes Associated with Bladder Cancer in Bladder Tissue of Patients with Neurogenic Lower Urinary Tract Dysfunction. Int J Mol Sci 2024; 25:5660. [PMID: 38891848 PMCID: PMC11171624 DOI: 10.3390/ijms25115660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/12/2024] [Accepted: 05/19/2024] [Indexed: 06/21/2024] Open
Abstract
DNA methylation is an epigenetic process that commonly occurs in genes' promoters and results in the transcriptional silencing of genes. DNA methylation is a frequent event in bladder cancer, participating in tumor initiation and progression. Bladder cancer is a major health issue in patients suffering from neurogenic lower urinary tract dysfunction (NLUTD), although the pathogenetic mechanisms of the disease remain unclear. In this population, bladder cancer is characterized by aggressive histopathology, advanced stage during diagnosis, and high mortality rates. To assess the DNA methylation profiles of five genes' promoters previously known to be associated with bladder cancer in bladder tissue of NLUTD patients, we conducted a prospective study recruiting NLUTD patients from the neuro-urology unit of a public teaching hospital. Cystoscopy combined with biopsy for bladder cancer screening was performed in all patients following written informed consent being obtained. Quantitative methylation-specific PCR was used to determine the methylation status of RASSF1, RARβ, DAPK, hTERT, and APC genes' promoters in bladder tissue samples. Twenty-four patients suffering from mixed NLUTD etiology for a median duration of 10 (IQR: 12) years were recruited in this study. DNA hypermethylation was detected in at least one gene of the panel in all tissue samples. RAR-β was hypermethylated in 91.7% samples, RASSF and DAPK were hypermethylated in 83.3% samples, APC 37.5% samples, and TERT in none of the tissue samples. In 45.8% of the samples, three genes of the panel were hypermethylated, in 29.2% four genes were hypermethylated, and in 16.7% and in 8.3% of the samples, two and one gene were hypermethylated, respectively. The number of hypermethylated genes of the panel was significantly associated with recurrent UTIs (p = 0.0048). No other significant association was found between DNA hypermethylation or the number of hypermethylated genes and the clinical characteristics of the patients. Histopathological findings were normal in 8.3% of patients, while chronic inflammation was found in 83.3% of patients and squamous cell metaplasia in 16.7% of patients. In this study, we observed high rates of DNA hypermethylation of genes associated with bladder cancer in NLUTD patients, suggesting an epigenetic field effect and possible risk of bladder cancer development. Recurrent UTIs seem to be associated with increased DNA hypermethylation. Further research is needed to evaluate the impact of recurrent UTIs and chronic inflammation in DNA hypermethylation and bladder cancer etiopathogenesis in NLUTD patients.
Collapse
Affiliation(s)
- Periklis Koukourikis
- 2nd Department of Urology, Aristotle University of Thessaloniki, General Hospital ‘Papageorgiou’, 56403 Thessaloniki, Greece;
| | - Maria Papaioannou
- Department of Biological Chemistry, Medical School, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Stavroula Pervana
- Department of Pathology, General Hospital ‘Papageorgiou’, 56403 Thessaloniki, Greece;
| | - Apostolos Apostolidis
- 2nd Department of Urology, Aristotle University of Thessaloniki, General Hospital ‘Papageorgiou’, 56403 Thessaloniki, Greece;
| |
Collapse
|
3
|
Bostanci E, Kirkik D, Kalkanli Tas S, Uyeturk U. Genetic insights into bladder cancer: the impact of SIRT1 gene polymorphism. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2024:1-12. [PMID: 38305254 DOI: 10.1080/15257770.2024.2310710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 01/22/2024] [Indexed: 02/03/2024]
Abstract
Bladder cancer (BC) has shown a significant global health concern with distinct pathological, genetic, and epigenetic characteristics. Its prevalence is influenced by various risk factors, including age, gender, and genetic predisposition. This study investigates the association between BC and the Sirtuin 1 (SIRT1) gene polymorphism rs369274325 in the Turkish population. Genomic DNA was isolated from peripheral blood samples and genotyping of rs369274325 polymorphism in SIRT 1 was investigated in 200 individuals (in 100 Turkish bladder cancer patients and 100 healthy individuals as the control group.) by real-time PCR. Demographic information, smoking and alcohol consumption status was analyzed by statistical analysis. Statistical analysis was performed by Pearson's Chi-square test. Smoking and alcohol consumption were significantly higher in BC patients compared to controls (p < 0.00018 and p < 0.0001, respectively). The genotypic distribution of SIRT1 rs369274325 did not show a significant difference between BC patients and controls (p = 0.5550). BC, influenced by genetic and environmental factors, has been linked to various gene mutations. SIRT1, involved in diverse physiological processes, is proposed to play a role in BC. However, our study did not find a significant association between SIRT1 rs369274325 polymorphism and BC in the Turkish population.
Collapse
Affiliation(s)
- Emre Bostanci
- Medicine Faculty, Department of Urology, Abant Izzet Baysal University, Bolu, Turkey
| | - Duygu Kirkik
- Hamidiye Medicine Faculty, Department of Medical Biology, University of Health Sciences, Istanbul, Turkey
| | - Sevgi Kalkanli Tas
- Hamidiye Medicine Faculty, Department of Immunology, University of Health Sciences, Istanbul, Turkey
| | - Ugur Uyeturk
- Medicine Faculty, Department of Urology, Abant Izzet Baysal University, Bolu, Turkey
| |
Collapse
|
4
|
Koukourikis P, Papaioannou M, Georgopoulos P, Apostolidis I, Pervana S, Apostolidis A. A Study of DNA Methylation of Bladder Cancer Biomarkers in the Urine of Patients with Neurogenic Lower Urinary Tract Dysfunction. BIOLOGY 2023; 12:1126. [PMID: 37627010 PMCID: PMC10452268 DOI: 10.3390/biology12081126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/03/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023]
Abstract
Background: Bladder cancer (BCa) in patients suffering from neurogenic lower urinary tract dysfunction (NLUTD) is a significant concern due to its advanced stage at diagnosis and high mortality rate. Currently, there is a scarcity of specific guidelines for BCa screening in these patients. The development of urine biomarkers for BCa seems to be an attractive non-invasive method of screening or risk stratification in this patient population. DNA methylation is an epigenetic modification, resulting in the transcriptional silencing of tumor suppression genes, that is frequently detected in the urine of BCa patients. Objectives: We aimed to investigate DNA hypermethylation in five gene promoters, previously associated with BCa, in the urine of NLUTD patients, and in comparison with healthy controls. Design, setting and participants: This was a prospective case-control study that recruited neurourology outpatients from a public teaching hospital who had suffered from NLUTD for at least 5 years. They all underwent cystoscopy combined with biopsy for BCa screening following written informed consent. DNA was extracted and DNA methylation was assessed for the RASSF1, RARβ, DAPK, TERT and APC gene promoters via quantitative methylation-specific PCR in urine specimens from the patients and controls. Results: Forty-one patients of mixed NLUTD etiology and 35 controls were enrolled. DNA was detected in 36 patients' urine specimens and in those of 22 controls. In the urine specimens, DNA was hypermethylated in at least one of five gene promoters in 17/36 patients and in 3/22 controls (47.22% vs. 13.64%, respectively, p = 0.009). RASSF1 was hypermethylated in 10/17 (58.82%) specimens with detected methylation, APC in 7/17 (41.18%), DAPK in 4/17 (23.53%), RAR-β2 in 3/17 (17.56%) and TERT in none. According to a multivariate logistic regression analysis, NLUTD and male gender were significantly associated with hypermethylation (OR = 7.43, p = 0.007 and OR = 4.21; p = 0.04, respectively). In the tissue specimens, histology revealed TaLG BCa in two patients and urothelial squamous metaplasia in five patients. Chronic bladder inflammation was present in 35/41 bladder biopsies. Conclusions: DNA hypermethylation in a panel of five BCa-associated genes in the urine was significantly more frequent in NLUTD patients than in the controls. Our results warrant further evaluation in longitudinal studies assessing the clinical implications and possible associations between DNA hypermethylation, chronic inflammation and BCa in the NLUTD population.
Collapse
Affiliation(s)
- Periklis Koukourikis
- 2nd Department of Urology, Aristotle University of Thessaloniki, General Hospital ‘Papageorgiou’, 56403 Thessaloniki, Greece; (P.K.); (P.G.); (I.A.)
| | - Maria Papaioannou
- Department of Biological Chemistry, Medical School, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Petros Georgopoulos
- 2nd Department of Urology, Aristotle University of Thessaloniki, General Hospital ‘Papageorgiou’, 56403 Thessaloniki, Greece; (P.K.); (P.G.); (I.A.)
- Pelvic Floor Unit, Department of Urology, Aarhus University Hospital, 8200 Aarhus, Denmark
| | - Ioannis Apostolidis
- 2nd Department of Urology, Aristotle University of Thessaloniki, General Hospital ‘Papageorgiou’, 56403 Thessaloniki, Greece; (P.K.); (P.G.); (I.A.)
| | - Stavroula Pervana
- Department of Pathology, General Hospital Papageorgiou, 56429 Thessaloniki, Greece;
| | - Apostolos Apostolidis
- 2nd Department of Urology, Aristotle University of Thessaloniki, General Hospital ‘Papageorgiou’, 56403 Thessaloniki, Greece; (P.K.); (P.G.); (I.A.)
| |
Collapse
|
5
|
Eun Y, Hwang J, Seo GH, Ahn JK. Risk of cancer in Korean patients with psoriatic arthritis: a nationwide population-based cohort study. RMD Open 2023; 9:rmdopen-2022-002874. [PMID: 36958767 PMCID: PMC10040019 DOI: 10.1136/rmdopen-2022-002874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 03/08/2023] [Indexed: 03/25/2023] Open
Abstract
OBJECTIVE While many studies on the increased risk of cancer in patients with psoriasis are available, data on the risk of cancer in patients with psoriatic arthritis (PsA) are still scarce. We assessed the risk of cancer in patients with PsA in a nationwide population-based cohort in Korea. METHODS From 2010 to June 2021, patients newly diagnosed with PsA and 1:10 age-matched and sex-matched controls were included in this study. The outcome was the incidence of overall and specific cancers. RESULTS Total 162 cancers occurred in 4688 PsA patients (incidence rate 83.2 (95% CI 70.8 to 97.0) per 10 000 person-years) and 1307 cancers occurred in 46 880 controls (incidence rate 66.9 (95% CI 63.3 to 70.6) per 10 000 person-years). The adjusted HR (aHR) of overall cancer in PsA patients was 1.20 (95% CI 1.02 to 1.41). However, this significance disappeared when non-melanoma skin cancer (NMSC) was excluded (aHR 1.16, 95% CI 0.98 to 1.37). Among specific cancers, the risk of NMSC (aHR 3.64 (95% CI 1.61 to 8.23)), lymphoma (aHR 2.63 (95% CI 1.30 to 5.30)) and thyroid cancer (aHR 1.83 (95% CI 1.18 to 2.85)) was higher in patients with PsA than in controls. CONCLUSION The risk of overall cancer was higher in patients with PsA than in the general population. Patients with PsA had increased risks of NMSC, lymphoma and thyroid cancer compared with the general population. Our findings suggest a need to conduct cancer screening by a detailed history and comprehensive clinical examination in patients with PsA.
Collapse
Affiliation(s)
- Yeonghee Eun
- Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Jiwon Hwang
- Department of Internal Medicine, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, South Korea
| | - Gi Hyeon Seo
- Healthcare Review and Assessment Committee, Health Insurance Review & Assessment Service, Wonju, South Korea
| | - Joong Kyong Ahn
- Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, South Korea
| |
Collapse
|
6
|
de Ruiter RD, Wisse LE, Schoenmaker T, Yaqub M, Sánchez-Duffhues G, Eekhoff EMW, Micha D. TGF-Beta Induces Activin A Production in Dermal Fibroblasts Derived from Patients with Fibrodysplasia Ossificans Progressiva. Int J Mol Sci 2023; 24:ijms24032299. [PMID: 36768622 PMCID: PMC9916423 DOI: 10.3390/ijms24032299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/13/2023] [Accepted: 01/20/2023] [Indexed: 01/26/2023] Open
Abstract
Fibrodysplasia ossificans progressiva (FOP) is a catastrophic, ultra-rare disease of heterotopic ossification caused by genetic defects in the ACVR1 gene. The mutant ACVR1 receptor, when triggered by an inflammatory process, leads to heterotopic ossification of the muscles and ligaments. Activin A has been discovered as the main osteogenic ligand of the FOP ACVR1 receptor. However, the source of Activin A itself and the trigger of its production in FOP individuals have remained elusive. We used primary dermal fibroblasts from five FOP patients to investigate Activin A production and how this is influenced by inflammatory cytokines in FOP. FOP fibroblasts showed elevated Activin A production compared to healthy controls, both in standard culture and osteogenic transdifferentiation conditions. We discovered TGFβ1 to be an FOP-specific stimulant of Activin A, shown by the upregulation of the INHBA gene and protein expression. Activin A and TGFβ1 were both induced by BMP4 in FOP and control fibroblasts. Treatment with TNFα and IL6 produced negligible levels of Activin A and TGFβ1 in both cell groups. We present for the first time TGFβ1 as a triggering factor of Activin A production in FOP. As TGFβ1 can promote the induction of the main driver of FOP, TGFβ1 could also be considered a possible therapeutic target in FOP treatment.
Collapse
Affiliation(s)
- Ruben D. de Ruiter
- Department of Internal Medicine, Endocrinology Section, Amsterdam UMC, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Lisanne E. Wisse
- Department of Human Genetics, Amsterdam UMC, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Ton Schoenmaker
- Department of Periodontology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University, 1012 WX Amsterdam, The Netherlands
| | - Maqsood Yaqub
- Department of Radiology and Nuclear Medicine Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Gonzalo Sánchez-Duffhues
- Department of Cell and Chemical Biology, Leiden University Medical Centre, Universiteit Leiden, 2311 EZ Leiden, The Netherlands
- Nanomaterials and Nanotechnology Research Center (CINN-CSIC), Health Research Institute of Asturias (ISPA), 33011 Oviedo, Spain
| | - E. Marelise W. Eekhoff
- Department of Internal Medicine, Endocrinology Section, Amsterdam UMC, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Dimitra Micha
- Department of Human Genetics, Amsterdam UMC, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
- Correspondence:
| |
Collapse
|
7
|
Meng Q, Sun H, Wu S, Familiari G, Relucenti M, Aschner M, Li X, Chen R. Epstein-Barr Virus-Encoded MicroRNA-BART18-3p Promotes Colorectal Cancer Progression by Targeting De Novo Lipogenesis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2202116. [PMID: 36307872 PMCID: PMC9762317 DOI: 10.1002/advs.202202116] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 07/29/2022] [Indexed: 05/14/2023]
Abstract
The Epstein-Barr virus (EBV) genome encodes a cluster of 22 viral microRNAs, called miR-BamHI-A rightward transcripts (miR-BARTs), which are shown to promote the development of cancer. Here, this study reports that EBV-miR-BART18-3p is highly expressed in colorectal cancer (CRC) and is closely associated with the pathological and advanced clinical stages of CRC. Ectopic expression of EBV-miR-BART18-3p leads to increased migration and invasion capacities of CRC cells in vitro and causes tumor metastasis in vivo. Mechanistically, EBV-miR-BART18-3p activates the hypoxia inducible factor 1 subunit alpha/lactate dehydrogenase A axis by targeting Sirtuin, which promotes lactate accumulation and acetyl-CoA production in CRC cells under hypoxic condition. Increased acetyl-CoA utilization subsequently leads to histone acetylation of fatty acid synthase and fatty acid synthase-dependent fat synthesis, which in turn drives de novo lipogenesis. The oncogenic role of EBV-miR-BART18-3p is confirmed in the patient-derived tumor xenograft mouse model. Altogether, the findings define a novel mechanism of EBV-miR-BART18-3p in CRC development through the lipogenesis pathway and provide a potential clinical intervention target for CRC.
Collapse
Affiliation(s)
- Qingtao Meng
- Beijing Key Laboratory of Environmental Toxicology, School of Public HealthCapital Medical UniversityBeijing100069P. R. China
- Department of OncologyCapital Medical UniversityBeijing100069P. R. China
| | - Hao Sun
- Department of Occupational HealthSchool of Public HealthShanxi Medical UniversityTaiyuan030001China
- Key Laboratory of Environmental Medicine EngineeringMinistry of EducationSchool of Public HealthSoutheast UniversityNanjing210009P. R. China
| | - Shenshen Wu
- Beijing Key Laboratory of Environmental Toxicology, School of Public HealthCapital Medical UniversityBeijing100069P. R. China
| | - Giuseppe Familiari
- Laboratory of Electron Microscopy “Pietro Motta”SAIMLAL DepartmentFaculty of Pharmacy and MedicineSapienza University of Romevia Alfonso Borelli 50Rome00161Italy
| | - Michela Relucenti
- Laboratory of Electron Microscopy “Pietro Motta”SAIMLAL DepartmentFaculty of Pharmacy and MedicineSapienza University of Romevia Alfonso Borelli 50Rome00161Italy
| | - Michael Aschner
- Department of Molecular PharmacologyAlbert Einstein College of MedicineForchheimer 209, 1300 Morris Park AvenueBronxNY10461USA
| | - Xiaobo Li
- Beijing Key Laboratory of Environmental Toxicology, School of Public HealthCapital Medical UniversityBeijing100069P. R. China
- Key Laboratory of Environmental Medicine EngineeringMinistry of EducationSchool of Public HealthSoutheast UniversityNanjing210009P. R. China
| | - Rui Chen
- Beijing Key Laboratory of Environmental Toxicology, School of Public HealthCapital Medical UniversityBeijing100069P. R. China
- Department of OncologyCapital Medical UniversityBeijing100069P. R. China
- Advanced Innovation Center for Human Brain ProtectionCapital Medical UniversityBeijing100069P. R. China
- Institute for Chemical CarcinogenesisGuangzhou Medical UniversityGuangzhou511436P. R. China
| |
Collapse
|
8
|
Song Z, He C, Wen J, Yang J, Chen P. Long Non-coding RNAs: Pivotal Epigenetic Regulators in Diabetic Retinopathy. Curr Genomics 2022; 23:246-261. [PMID: 36777876 PMCID: PMC9875540 DOI: 10.2174/1389202923666220531105035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/07/2022] [Accepted: 05/16/2022] [Indexed: 11/22/2022] Open
Abstract
Diabetic retinopathy (DR) is a severe complication of diabetes; however, its mechanism is not fully understood. Evidence has recently revealed that long non-coding RNAs (lncRNAs) are abnormally expressed in DR, and lncRNAs may function as pivotal regulators. LncRNAs are able to modulate gene expression at the epigenetic level by acting as scaffolds of histone modification complexes and sponges of binding with microRNAs (miRNAs). LncRNAs are believed to be important epigenetic regulators, which may become beneficial in the diagnosis and therapy of DR. However, the mechanisms of lncRNAs in DR are still unclear. In this review, we summarize the possible functions and mechanisms of lncRNAs in epigenetic regulation to target genes in the progression of DR.
Collapse
Affiliation(s)
- Zhaoxia Song
- Department of Genetics, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Chang He
- Department of Molecular Biology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Jianping Wen
- Department of Genetics, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Jianli Yang
- Department of Genetics, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Peng Chen
- Department of Genetics, College of Basic Medical Sciences, Jilin University, Changchun, China;,Address correspondence to this author at the Department of Medical Genetics, College of Basic Medical Sciences, Jilin University. Address: Room 413, 126 Xinmin Street, Changchun, Jilin 130021, China; Tel/Fax: 0086-18584362191; E-mail:
| |
Collapse
|
9
|
Bouras E, Karhunen V, Gill D, Huang J, Haycock PC, Gunter MJ, Johansson M, Brennan P, Key T, Lewis SJ, Martin RM, Murphy N, Platz EA, Travis R, Yarmolinsky J, Zuber V, Martin P, Katsoulis M, Freisling H, Nøst TH, Schulze MB, Dossus L, Hung RJ, Amos CI, Ahola-Olli A, Palaniswamy S, Männikkö M, Auvinen J, Herzig KH, Keinänen-Kiukaanniemi S, Lehtimäki T, Salomaa V, Raitakari O, Salmi M, Jalkanen S, Jarvelin MR, Dehghan A, Tsilidis KK. Circulating inflammatory cytokines and risk of five cancers: a Mendelian randomization analysis. BMC Med 2022; 20:3. [PMID: 35012533 PMCID: PMC8750876 DOI: 10.1186/s12916-021-02193-0] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 11/18/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Epidemiological and experimental evidence has linked chronic inflammation to cancer aetiology. It is unclear whether associations for specific inflammatory biomarkers are causal or due to bias. In order to examine whether altered genetically predicted concentration of circulating cytokines are associated with cancer development, we performed a two-sample Mendelian randomisation (MR) analysis. METHODS Up to 31,112 individuals of European descent were included in genome-wide association study (GWAS) meta-analyses of 47 circulating cytokines. Single nucleotide polymorphisms (SNPs) robustly associated with the cytokines, located in or close to their coding gene (cis), were used as instrumental variables. Inverse-variance weighted MR was used as the primary analysis, and the MR assumptions were evaluated in sensitivity and colocalization analyses and a false discovery rate (FDR) correction for multiple comparisons was applied. Corresponding germline GWAS summary data for five cancer outcomes (breast, endometrial, lung, ovarian, and prostate), and their subtypes were selected from the largest cancer-specific GWASs available (cases ranging from 12,906 for endometrial to 133,384 for breast cancer). RESULTS There was evidence of inverse associations of macrophage migration inhibitory factor with breast cancer (OR per SD = 0.88, 95% CI 0.83 to 0.94), interleukin-1 receptor antagonist with endometrial cancer (0.86, 0.80 to 0.93), interleukin-18 with lung cancer (0.87, 0.81 to 0.93), and beta-chemokine-RANTES with ovarian cancer (0.70, 0.57 to 0.85) and positive associations of monokine induced by gamma interferon with endometrial cancer (3.73, 1.86 to 7.47) and cutaneous T-cell attracting chemokine with lung cancer (1.51, 1.22 to 1.87). These associations were similar in sensitivity analyses and supported in colocalization analyses. CONCLUSIONS Our study adds to current knowledge on the role of specific inflammatory biomarker pathways in cancer aetiology. Further validation is needed to assess the potential of these cytokines as pharmacological or lifestyle targets for cancer prevention.
Collapse
Affiliation(s)
- Emmanouil Bouras
- Department of Hygiene and Epidemiology, University of Ioannina School of Medicine, Ioannina, Greece
| | - Ville Karhunen
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, St Mary's Campus, London, W2 1PG, UK
- Center for Life Course Health Research, Faculty of Medicine, University of Oulu, Oulu, Finland
- Research Unit of Mathematical Sciences, University of Oulu, Oulu, Finland
| | - Dipender Gill
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, St Mary's Campus, London, W2 1PG, UK
- Novo Nordisk Research Centre Oxford, Old Road Campus, Oxford, UK
- Clinical Pharmacology Group, Pharmacy and Medicines Directorate, St George's University Hospitals NHS Foundation Trust, London, UK
- Clinical Pharmacology and Therapeutics Section, Institute for Infection and Immunity, St George's, University of London, London, UK
| | - Jian Huang
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, St Mary's Campus, London, W2 1PG, UK
- Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Philip C Haycock
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Marc J Gunter
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Mattias Johansson
- Genomics Branch, International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Paul Brennan
- Genomics Branch, International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Tim Key
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Sarah J Lewis
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Department of Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Richard M Martin
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Department of Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- National Institute for Health Research (NIHR) Bristol Biomedical Research Centre, University Hospitals Bristol NHS Foundation Trust and the University of Bristol, Bristol, UK
| | - Neil Murphy
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Elizabeth A Platz
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Ruth Travis
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - James Yarmolinsky
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| | - Verena Zuber
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, St Mary's Campus, London, W2 1PG, UK
| | - Paul Martin
- School of Biochemistry, University of Bristol, Bristol, UK
| | - Michail Katsoulis
- Institute of Health Informatics, University College London, London, UK
- Health Data Research UK, London, UK
| | - Heinz Freisling
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Therese Haugdahl Nøst
- Department of Community Medicine, Faculty of Health Sciences, Arctic University of Norway, Tromsø, Norway
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Norwegian University of Science and Technology, Trondheim, Norway
| | - Matthias B Schulze
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nutehtal, Germany
- Institute of Nutritional Science, University of Potsdam, Potsdam, Germany
| | - Laure Dossus
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Rayjean J Hung
- Prosserman Centre for Population Health Research, Lunenfeld-Tanenbaum Research Institute of Sinai Health System, Toronto, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, Canada
| | | | - Ari Ahola-Olli
- The Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Analytical and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
| | - Saranya Palaniswamy
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, St Mary's Campus, London, W2 1PG, UK
| | - Minna Männikkö
- Northern Finland Birth Cohorts, Infrastructure for Population Studies, Faculty of Medicine, University of Oulu, Oulu, Finland
| | - Juha Auvinen
- Center for Life Course Health Research, Faculty of Medicine, University of Oulu, Oulu, Finland
| | - Karl-Heinz Herzig
- Research Unit of Biomedicine, Medical Research Center, Faculty of Medicine, University of Oulu, and Oulu University Hospital, Oulu, Finland
| | | | - Terho Lehtimäki
- Department of Clinical Chemistry, Finnish Cardiovascular Research Center - Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Veikko Salomaa
- Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Olli Raitakari
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland
- Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital, Turku, Finland
| | - Marko Salmi
- MediCity Research Laboratory, University of Turku, Turku, Finland
- Institute of Biomedicine, University of Turku, Turku, Finland
| | - Sirpa Jalkanen
- MediCity Research Laboratory, University of Turku, Turku, Finland
- Institute of Biomedicine, University of Turku, Turku, Finland
| | - Marjo-Riitta Jarvelin
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, St Mary's Campus, London, W2 1PG, UK
- Center for Life Course Health Research, Faculty of Medicine, University of Oulu, Oulu, Finland
- Unit of Primary Care, Oulu University Hospital, Oulu, Finland
| | - Abbas Dehghan
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, St Mary's Campus, London, W2 1PG, UK
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
- UK Dementia Research Institute at Imperial College London, London, UK
| | - Konstantinos K Tsilidis
- Department of Hygiene and Epidemiology, University of Ioannina School of Medicine, Ioannina, Greece.
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, St Mary's Campus, London, W2 1PG, UK.
| |
Collapse
|
10
|
Hu X, Wang X, Liang Y, Chen X, Zhou S, Fei W, Yang Y, Que H. Cancer Risk in Hashimoto's Thyroiditis: a Systematic Review and Meta-Analysis. Front Endocrinol (Lausanne) 2022; 13:937871. [PMID: 35903279 PMCID: PMC9318815 DOI: 10.3389/fendo.2022.937871] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 06/09/2022] [Indexed: 01/04/2023] Open
Abstract
OBJECTIVE Research data suggest that patients with Hashimoto's thyroiditis may increase the risk of cancer. However, existing research is inconsistent with this view. Therefore, to investigate the effect of Hashimoto's thyroiditis on the risk of developing cancer, we conducted this study. METHODS We searched the PubMed and Embase databases from database establishment until March 2022. After rigorous literature screening by two authors, 23 studies that met the inclusion criteria were identified, and the required data were independently extracted. RESULTS We retrieved 3591 records, and after the screening, 11 case-control studies and 12 cohort studies were included in the analysis. Data analysis suggested that patients with Hashimoto's thyroiditis had an increased risk of developing breast cancer, urogenital cancer, digestive organs cancer, hematologic cancer, and a low risk of respiratory cancers. CONCLUSIONS This systematic review and meta-analysis showed that patients with HT may have a significantly increased risk of thyroid cancer, breast cancers, lung cancer, digestive system cancer, urogenital cancers, blood cancers, and prolactinoma people without HT. SYSTEMATIC REVIEW REGISTRATION https://www.crd.york.ac.uk/prospero/, identifier CRD 42022320741.
Collapse
Affiliation(s)
- Xiaojie Hu
- Department of Traditional Chinese Surgery, Longhua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xuanyu Wang
- Department of Traditional Chinese Surgery, Longhua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yue Liang
- Department of Traditional Chinese Surgery, Longhua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xin Chen
- Department of Traditional Chinese Surgery, Longhua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Siyuan Zhou
- Department of Traditional Chinese Surgery, Longhua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wenting Fei
- Department of Traditional Chinese Surgery, Longhua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuxin Yang
- Department of Traditional Chinese Surgery, Longhua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Huafa Que
- Department of Traditional Chinese Surgery, Longhua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Huafa Que,
| |
Collapse
|
11
|
Liu Z, Ren Y, Meng L, Li L, Beatson R, Deng J, Zhang T, Liu J, Han X. Epigenetic Signaling of Cancer Stem Cells During Inflammation. Front Cell Dev Biol 2021; 9:772211. [PMID: 34722553 PMCID: PMC8554148 DOI: 10.3389/fcell.2021.772211] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 09/21/2021] [Indexed: 12/12/2022] Open
Abstract
Malignant tumors pose a great challenge to human health, which has led to many studies increasingly elucidating the tumorigenic process. Cancer Stem Cells (CSCs) have profound impacts on tumorigenesis and development of drug resistance. Recently, there has been increased interest in the relationship between inflammation and CSCs but the mechanism underlying this relationship has not been fully elucidated. Inflammatory cytokines produced during chronic inflammation activate signaling pathways that regulate the generation of CSCs through epigenetic mechanisms. In this review, we focus on the effects of inflammation on cancer stem cells, particularly the role of signaling pathways such as NF-κB pathway, STAT3 pathway and Smad pathway involved in regulating epigenetic changes. We hope to provide a novel perspective for improving strategies for tumor treatment.
Collapse
Affiliation(s)
- Zaoqu Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Interventional Institute of Zhengzhou University, Zhengzhou, China.,Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, China
| | - Yuqing Ren
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lingfang Meng
- Department of Ultrasound, Zhengzhou Sixth People's Hospital, Henan Infectious Disease Hospital, Zhengzhou, China
| | - Lifeng Li
- Internet Medical and System Applications of National Engineering Laboratory, Zhengzhou, China
| | - Richard Beatson
- School of Cancer and Pharmaceutical Sciences, King's College London, London, United Kingdom
| | - Jinhai Deng
- Richard Dimbleby Laboratory of Cancer Research, School of Cancer and Pharmaceutical Sciences, King's College London, London, United Kingdom
| | - Tengfei Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Junqi Liu
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xinwei Han
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Interventional Institute of Zhengzhou University, Zhengzhou, China.,Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, China
| |
Collapse
|
12
|
Radulescu R, Totan AR, Imre MM, Miricescu D, Didilescu A, Greabu M. Mediators of extracellular matrix degradation and inflammation: A new team of possible biomarkers for oral squamous cell carcinoma stage. Exp Ther Med 2021; 22:877. [PMID: 34194555 PMCID: PMC8237384 DOI: 10.3892/etm.2021.10309] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 01/26/2021] [Indexed: 12/15/2022] Open
Abstract
Oral cancer represents one of the most common types of cancer worldwide, with oral squamous cell carcinoma (OSCC) being the most frequently diagnosed. Cytokines play a crucial role in inflammation, apoptosis and metastasis. Interleukin (IL)-8 promotes the direct migration of inflammatory cells. IL-6 induces tumor cell proliferation, increases expression of invasiveness and angiogenetic factors or matrix metalloproteinases (MMPs), promoting metastasis. Tissue inhibitor of metalloproteinases (TIMPs) blocks the action of MMPs controlling extracellular matrix degradation and inhibiting metastasis. The aim of our study was to analyze the existence of correlations between inflammation markers (IL-6 and IL-8) and extracellular degradation protection markers such as TIMP-1 in OSCC tumors. Our study included 20 patients (12 females and 8 males) diagnosed with OSCC, recruited from January to April, 2020. IL-8, IL-6 and TIMP-1 levels were measured in the tumor cell lysates by ELISA technique, using relevant assay kits. Our results showed a positive and significant correlation between IL-6 and IL-8 (P=0.005, R=0.517) indicating that high IL-8 levels can be associated with high IL-6 levels. We also found a significant and high negative correlation (P<0.001, R=-0.673) between IL-6 and TIMP-1 and a significant and high negative correlation (P<0.001, R=-0.684) between IL-8 and TIMP-1 indicating that high levels of IL-8 and IL-6 are significantly associated with lower levels of TIMP-1. In conclusion, our study confirms the available literature data on IL-6 and IL-8 as potential markers for oral cancers such as OSCC and affect the tumor microenvironment by decreasing TIMPs. All three biomarkers included in this study have the potential to be used as detection or prognostic factors for oral cancer.
Collapse
Affiliation(s)
- Radu Radulescu
- Department of Biochemistry, Faculty of Dental Medicine, 'Carol Davila' University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Alexandra Ripszky Totan
- Department of Biochemistry, Faculty of Dental Medicine, 'Carol Davila' University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Marina Melescanu Imre
- Department of Complete Denture, Faculty of Dental Medicine, 'Carol Davila' University of Medicine and Pharmacy, 032799 Bucharest, Romania
| | - Daniela Miricescu
- Department of Biochemistry, Faculty of Dental Medicine, 'Carol Davila' University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Andreea Didilescu
- Department of Embryology, Faculty of Dental Medicine, 'Carol Davila' University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Maria Greabu
- Department of Biochemistry, Faculty of Dental Medicine, 'Carol Davila' University of Medicine and Pharmacy, 050474 Bucharest, Romania
| |
Collapse
|
13
|
Snow A, Ring A, Struycken L, Mack W, Koç M, Lang JE. Incidence of radiation induced sarcoma attributable to radiotherapy in adults: A retrospective cohort study in the SEER cancer registries across 17 primary tumor sites. Cancer Epidemiol 2021; 70:101857. [PMID: 33249363 PMCID: PMC7856279 DOI: 10.1016/j.canep.2020.101857] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 10/13/2020] [Accepted: 11/01/2020] [Indexed: 01/05/2023]
Abstract
BACKGROUND Previous studies have noted the incidence of radiation-induced sarcomas (RIS) but have not investigated the relative risk (RR) of developing RIS based on primary tumor organ disease site. By examining data from the Surveillance, Epidemiology, and End Results (SEER) database, we hypothesized that breast cancer would have a higher incidence of RIS compared to seventeen other primary cancer sites. METHODS This was a retrospective cohort study that examined patients from SEER registries between 1973 and 2013. We included patients aged 18 years or older who were diagnosed with cancer and those diagnosed with a cancer who subsequently developed a sarcoma. We excluded patients with missing information on initial radiotherapy treatment or stage. RIS was defined as those who developed a secondary sarcoma near the site of their original malignancy and after a 24-month latency period. RESULTS Our patients had a mean age of 60 years and follow up time of 9.2 years. Breast cancer comprised the majority with 693,701(36.8%) patients of which 161 (0.02%) had a secondary sarcoma. Of the 359 patients with secondary sarcomas, 242 (67.4%) had RIS. Breast cancer had the highest number of RIS patients at 126 compared to all combined non-breast cancer sites at 116. The RR of RIS in breast cancer versus 19 other primary cancer sites was 1.21 (CI: 1.01-1.45, p < 0.03, adjusted for age at primary diagnosis, gender, and latency). CONCLUSIONS Our study demonstrated that breast cancer has a higher risk of developing RIS compared to other solid cancers.
Collapse
Affiliation(s)
- Anson Snow
- Division of Medical Oncology, Department of Medicine, University of Southern California, Los Angeles, CA, USA; USC California Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| | - Alexander Ring
- Department of Medical Oncology and Haematology, University Hospital Zurich, and University of Zurich, Zurich, Switzerland
| | - Lucas Struycken
- Division of Medical Oncology, Department of Medicine, University of Southern California, Los Angeles, CA, USA; Division of Radiology, Department of Medical Imaging, University of Arizona Banner University Medical Center, Tucson, Arizona, USA
| | - Wendy Mack
- Department of Preventive Medicine, SC Clinical Translational Science Institute, University of Southern California, Los Angeles, CA, USA
| | - Melissa Koç
- Department of Preventive Medicine, SC Clinical Translational Science Institute, University of Southern California, Los Angeles, CA, USA
| | - Julie E Lang
- USC California Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA; Division of Surgical Oncology, Department of Surgery and University of Southern California Norris Cancer Center, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
14
|
Han Q, Kono TJY, Knutson CG, Parry NM, Seiler CL, Fox JG, Tannenbaum SR, Tretyakova NY. Multi-Omics Characterization of Inflammatory Bowel Disease-Induced Hyperplasia/Dysplasia in the Rag2-/-/ Il10-/- Mouse Model. Int J Mol Sci 2020; 22:E364. [PMID: 33396408 PMCID: PMC7795000 DOI: 10.3390/ijms22010364] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 12/23/2020] [Accepted: 12/28/2020] [Indexed: 12/26/2022] Open
Abstract
Epigenetic dysregulation is hypothesized to play a role in the observed association between inflammatory bowel disease (IBD) and colon tumor development. In the present work, DNA methylome, hydroxymethylome, and transcriptome analyses were conducted in proximal colon tissues harvested from the Helicobacter hepaticus (H. hepaticus)-infected murine model of IBD. Reduced representation bisulfite sequencing (RRBS) and oxidative RRBS (oxRRBS) analyses identified 1606 differentially methylated regions (DMR) and 3011 differentially hydroxymethylated regions (DhMR). These DMR/DhMR overlapped with genes that are associated with gastrointestinal disease, inflammatory disease, and cancer. RNA-seq revealed pronounced expression changes of a number of genes associated with inflammation and cancer. Several genes including Duox2, Tgm2, Cdhr5, and Hk2 exhibited changes in both DNA methylation/hydroxymethylation and gene expression levels. Overall, our results suggest that chronic inflammation triggers changes in methylation and hydroxymethylation patterns in the genome, altering the expression of key tumorigenesis genes and potentially contributing to the initiation of colorectal cancer.
Collapse
Affiliation(s)
- Qiyuan Han
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Thomas J. Y. Kono
- Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Charles G. Knutson
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; (C.G.K.); (J.G.F.); (S.R.T.)
| | - Nicola M. Parry
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA 02139, USA;
| | - Christopher L. Seiler
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, USA;
| | - James G. Fox
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; (C.G.K.); (J.G.F.); (S.R.T.)
| | - Steven R. Tannenbaum
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; (C.G.K.); (J.G.F.); (S.R.T.)
| | - Natalia Y. Tretyakova
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, USA;
| |
Collapse
|
15
|
Tian Y, Arai E, Makiuchi S, Tsuda N, Kuramoto J, Ohara K, Takahashi Y, Ito N, Ojima H, Hiraoka N, Gotoh M, Yoshida T, Kanai Y. Aberrant DNA methylation results in altered gene expression in non-alcoholic steatohepatitis-related hepatocellular carcinomas. J Cancer Res Clin Oncol 2020; 146:2461-2477. [PMID: 32685988 PMCID: PMC7467955 DOI: 10.1007/s00432-020-03298-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 06/20/2020] [Indexed: 12/12/2022]
Abstract
PURPOSE The aim of this study was to investigate DNA methylation alterations in non-alcoholic steatohepatitis (NASH)-related hepatocellular carcinomas (HCCs). METHODS Genome-wide DNA methylation analysis was performed using the Infinium Human Methylation 450 K BeadChip, and levels of mRNA expression were analyzed by quantitative reverse transcription-PCR. RESULTS Compared to 36 samples of normal control liver tissue (C), DNA methylation alterations were observed on 19,281 probes in 22 samples of cancerous tissue (T) obtained from patients showing histological features compatible with NASH in their non-cancerous liver tissue (N). Among those probes, 1396 were located within CpG islands or their shores and shelves, designed around the transcription start sites of 726 genes. In representative genes, such as DCAF4L2, CKLF, TRIM4, PRC1, UBE2C and TUBA1B, both DNA hypomethylation and mRNA overexpression were observed in T samples relative to C samples, and the levels of DNA methylation and mRNA expression were inversely correlated with each other. DNA hypomethylation occurred even in N samples at the precancerous NASH stage, and this was inherited by or further strengthened in T samples. DNA hypomethylation of DCAF4L2, CKLF and UBE2C was observed in both NASH-related and viral hepatitis-related HCCs, whereas that of TRIM4, PRC1 and TUBA1B occurred in a NASH-related HCC-specific manner. DNA hypomethylation and/or mRNA overexpression of these genes was frequently associated with the necroinflammatory grade of NASH and was correlated with poorer tumor differentiation. CONCLUSION DNA methylation alterations may occur under the necroinflammatory conditions characteristic of NASH and participate in NASH-related hepatocarcinogenesis through aberrant expression of tumor-related genes.
Collapse
Affiliation(s)
- Ying Tian
- Department of Pathology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Eri Arai
- Department of Pathology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.
| | - Satomi Makiuchi
- Department of Pathology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Noboru Tsuda
- Department of Pathology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Junko Kuramoto
- Department of Pathology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Kentaro Ohara
- Department of Pathology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Yoriko Takahashi
- Bioscience Department, Solution Knowledge Center, Mitsui Knowledge Industry Co., Ltd, Tokyo, 105-6215, Japan
| | - Nanako Ito
- Department of Pathology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Hidenori Ojima
- Department of Pathology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Nobuyoshi Hiraoka
- Pathology Division, Department of Pathology and Clinical Laboratories, National Cancer Center Hospital, Tokyo, 104-0045, Japan
| | - Masahiro Gotoh
- Fundamental Innovative Oncology Core Center, National Cancer Center Research Institute, Tokyo, 104-0045, Japan
| | - Teruhiko Yoshida
- Fundamental Innovative Oncology Core Center, National Cancer Center Research Institute, Tokyo, 104-0045, Japan
| | - Yae Kanai
- Department of Pathology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| |
Collapse
|
16
|
The interplay of the oral microbiome and alcohol consumption in oral squamous cell carcinomas. Oral Oncol 2020; 110:105011. [PMID: 32980528 DOI: 10.1016/j.oraloncology.2020.105011] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/11/2020] [Accepted: 09/11/2020] [Indexed: 12/24/2022]
Abstract
Oral cancer (OC) is among the top twenty occurring cancers in the world, with a mortality rate of 50%. A shift to a functionally inflammatory or a 'disease state' oral microbiome composition has been observed amongst patients with premalignant disorders and OC, with evidence suggesting alcohol could be exacerbating the inflammatory influence of the oral microorganisms. Alcohol dehydrogenase (ADH, EC 1.1.1.1) converts alcohol into a known carcinogenic metabolite, acetaldehyde and while ADH levels in oral mucosa are low, several oral commensal species possess ADH and could produce genotoxic levels of acetaldehyde. With a direct association between oral microbiome status, alcohol and poor oral health status combining to induce chronic inflammation with increased acetaldehyde levels - this leads to a tumour promoting environment. This new disease state increases the production of reactive oxygen species (ROS), while impairing anti-oxidant systems thus activating the redox signalling required for the promotion and survival of tumours. This review aims to highlight the evidence linking these processes in the progression of oral cancer.
Collapse
|
17
|
Yang WJ, Zhang GL, Cao KX, Liu XN, Wang XM, Yu MW, Li JP, Yang GW. Heparanase from triple‑negative breast cancer and platelets acts as an enhancer of metastasis. Int J Oncol 2020; 57:890-904. [PMID: 32945393 PMCID: PMC7473754 DOI: 10.3892/ijo.2020.5115] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 07/02/2020] [Indexed: 12/11/2022] Open
Abstract
Triple-negative breast cancer (TNBC), which is characterized by inherently aggressive behavior and lack of recognized molecular targets for therapy, poses a serious threat to women's health worldwide. However, targeted treatments have yet to be made available. A crosstalk between tumor cells and platelets (PLT) contributing to growth, angiogenesis and metastasis has been reported in numerous cancers. Heparanase (Hpa), the only mammalian endoglycosidase that cleaves heparan sulfate, has been demonstrated to contribute to the growth, angiogenesis and metastasis of numerous cancers. Hypoxia affects the growth, angiogenesis and metastasis of nearly all solid tumors, and the ability of Hpa to promote invasion is enhanced in hypoxia. However, whether Hpa can strengthen the crosstalk between tumor cells and PLT, and whether enhancing the biological function of Hpa in TNBC promotes malignant progression, have yet to be fully elucidated. The present study, based on bioinformatics analysis and experimental studies in vivo and in vitro, demonstrated that Hpa enhanced the crosstalk between TNBC cells and PLT to increase the supply of oxygen and nutrients, while also conferring tolerance of TNBC cells to oxygen and nutrient shortage, both of which are important for overcoming the stress of hypoxia and nutritional deprivation in the tumor microenvironment, thereby promoting malignant progression, including growth, angiogenesis and metastasis in TNBC. In addition, the hypoxia-inducible factor-1a (HIF-1a)/vascular endothelial growth factor-a (VEGF- a)/phosphorylated protein kinase B (p-)Akt axis may be the key pathway involved in the effects of Hpa on the biological processes mentioned above. Therefore, improving local hypoxia, anti-Hpa treatment and inhibiting PLT activation may improve the prognosis of TNBC.
Collapse
Affiliation(s)
- Wen-Jing Yang
- Department of Oncology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, P.R. China
| | - Gan-Lin Zhang
- Department of Oncology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, P.R. China
| | - Ke-Xin Cao
- Department of Oncology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, P.R. China
| | - Xiao-Ni Liu
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing 100069, P.R. China
| | - Xiao-Min Wang
- Department of Oncology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, P.R. China
| | - Ming-Wei Yu
- Department of Oncology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, P.R. China
| | - Jin-Ping Li
- Biomedical Center, Uppsala University, Uppsala 75123, Sweden
| | - Guo-Wang Yang
- Department of Oncology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, P.R. China
| |
Collapse
|
18
|
Isoprenylcysteine Carboxyl Methyltransferase and Its Substrate Ras Are Critical Players Regulating TLR-Mediated Inflammatory Responses. Cells 2020; 9:cells9051216. [PMID: 32422978 PMCID: PMC7291029 DOI: 10.3390/cells9051216] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 05/03/2020] [Accepted: 05/11/2020] [Indexed: 12/12/2022] Open
Abstract
In this study, we investigated the functional role of isoprenylcysteine carboxyl methyltransferase (ICMT) and its methylatable substrate Ras in Toll-like receptor (TLR)-activated macrophages and in mouse inflammatory disease conditions. ICMT and RAS expressions were strongly increased in macrophages under the activation conditions of TLRs by lipopolysaccharide (LPS, a TLR4 ligand), pam3CSK (TLR2), or poly(I:C) (TLR3) and in the colons, stomachs, and livers of mice with colitis, gastritis, and hepatitis. The inhibition and activation of ICMT and Ras through genetic and pharmacological approaches significantly affected the activation of interleukin-1 receptor-associated kinase (IRAK)s, tumor necrosis factor receptor associated factor 6 (TRAF6), transforming growth factor-β-activated kinase 1 (TAK1), mitogen-activated protein kinase (MAPK), and MAPK kinases (MAPKKs); translocation of the AP-1 family; and the expressions of inflammation-related genes that depend on both MyD88 and TRIF. Interestingly, the Ras/ICMT-mediated inflammatory reaction critically depends on the TIR domains of myeloid differentiation primary response 88 (MyD88) and TIR-domain-containing adapter-inducing interferon-β (TRIF). Taken together, these results suggest that ICMT and its methylated Ras play important roles in the regulation of inflammatory responses through cooperation with the TIR domain of adaptor molecules.
Collapse
|
19
|
Lambrou GI, Hatziagapiou K, Vlahopoulos S. Inflammation and tissue homeostasis: the NF-κB system in physiology and malignant progression. Mol Biol Rep 2020; 47:4047-4063. [PMID: 32239468 DOI: 10.1007/s11033-020-05410-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 03/26/2020] [Indexed: 02/07/2023]
Abstract
Disruption of tissue function activates cellular stress which triggers a number of mechanisms that protect the tissue from further damage. These mechanisms involve a number of homeostatic modules, which are regulated at the level of gene expression by the transactivator NF-κB. This transcription factor shifts between activation and repression of discrete, cell-dependent gene expression clusters. Some of its target genes provide feedback to NF-κB itself, thereby strengthening the inflammatory response of the tissue and later terminating inflammation to facilitate restoration of tissue homeostasis. Disruption of key feedback modules for NF-κB in certain cell types facilitates the survival of clones with genomic aberrations, and protects them from being recognized and eliminated by the immune system, to enable thereby carcinogenesis.
Collapse
Affiliation(s)
- George I Lambrou
- First Department of Pediatrics, National and Kapodistrian University of Athens, Thivon & Levadeias 8, 11527, Goudi-Athens, Greece
| | - Kyriaki Hatziagapiou
- First Department of Pediatrics, National and Kapodistrian University of Athens, Thivon & Levadeias 8, 11527, Goudi-Athens, Greece
| | - Spiros Vlahopoulos
- First Department of Pediatrics, National and Kapodistrian University of Athens, Thivon & Levadeias 8, 11527, Goudi-Athens, Greece.
| |
Collapse
|
20
|
Hrzic R, Simons CCJM, Schouten LJ, van Engeland M, Brandt PVD, Weijenberg MP. Investigation of sirtuin 1 polymorphisms in relation to the risk of colorectal cancer by molecular subtype. Sci Rep 2020; 10:3359. [PMID: 32098999 PMCID: PMC7042277 DOI: 10.1038/s41598-020-60300-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 02/11/2020] [Indexed: 01/07/2023] Open
Abstract
Sirtuin 1 (SIRT1), a histone deacetylase, is involved in maintenance of genetic stability, inflammation, immune response, metabolism (energy-sensing molecule) and colorectal tumorigenesis. We investigated SIRT1's specific role in colorectal tumorigenesis by studying SIRT1 polymorphisms in relation to colorectal cancer (CRC) risk by microsatellite instability (MSI) and CpG island methylator phenotype (CIMP) status. The Netherlands Cohort study (NLCS) was initiated in 1986 and includes 120,852 participants in a case-cohort design. CRC tumour samples were available for incident cases between 1989 and 1993. Toenail deoxyribonucleic acid (DNA) was used for genotyping of two SIRT1 tagging variants (rs10997870 and rs12778366). Excluding the first 2.3 years of follow-up, subcohort members and CRC cases with no toenail DNA available and those with low sample call rates, and CRC cases with no tumour DNA available left 3478 subcohort members and 533 CRC cases. Cox regression was utilised to estimate hazard ratios (HRs) for MSI and CIMP positive and negative tumours by SIRT1 genotypes. The results were that the rs12778366 TC/CC versus TT genotype was inversely associated with MSI CRC (HR = 0.41, 95% confidence interval: 0.20, 0.88), while no association was found with the risk of an MSS tumour (TC/CC versus TT carriers: HR = 1.13, 95% CI: 0.89, 1.44). No significant associations were found between other SIRT1 genotypes and CRC subtypes. In conclusion, the results suggest a role for SIRT1 polymorphisms in colorectal tumorigenesis, particularly MSI CRC.
Collapse
Affiliation(s)
- Rok Hrzic
- Department of Epidemiology, GROW - School for Oncology and Developmental Biology, Maastricht University, Maastricht, the Netherlands.,Department of International Health, Care and Public Health Research Institute, Maastricht University, Maastricht, the Netherlands
| | - Colinda C J M Simons
- Department of Epidemiology, GROW - School for Oncology and Developmental Biology, Maastricht University, Maastricht, the Netherlands
| | - Leo J Schouten
- Department of Epidemiology, GROW - School for Oncology and Developmental Biology, Maastricht University, Maastricht, the Netherlands
| | - Manon van Engeland
- Department of Pathology, GROW - School for Oncology and Developmental Biology, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Piet van den Brandt
- Department of Epidemiology, GROW - School for Oncology and Developmental Biology, Maastricht University, Maastricht, the Netherlands.,Department of Epidemiology, CAPHRI - School for Public Health and Primary Care, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Matty P Weijenberg
- Department of Epidemiology, GROW - School for Oncology and Developmental Biology, Maastricht University, Maastricht, the Netherlands.
| |
Collapse
|
21
|
Ferro E, Enrico Bena C, Grigolon S, Bosia C. From Endogenous to Synthetic microRNA-Mediated Regulatory Circuits: An Overview. Cells 2019; 8:E1540. [PMID: 31795372 PMCID: PMC6952906 DOI: 10.3390/cells8121540] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/22/2019] [Accepted: 11/25/2019] [Indexed: 12/13/2022] Open
Abstract
MicroRNAs are short non-coding RNAs that are evolutionarily conserved and are pivotal post-transcriptional mediators of gene regulation. Together with transcription factors and epigenetic regulators, they form a highly interconnected network whose building blocks can be classified depending on the number of molecular species involved and the type of interactions amongst them. Depending on their topology, these molecular circuits may carry out specific functions that years of studies have related to the processing of gene expression noise. In this review, we first present the different over-represented network motifs involving microRNAs and their specific role in implementing relevant biological functions, reviewing both theoretical and experimental studies. We then illustrate the recent advances in synthetic biology, such as the construction of artificially synthesised circuits, which provide a controlled tool to test experimentally the possible microRNA regulatory tasks and constitute a starting point for clinical applications.
Collapse
Affiliation(s)
- Elsi Ferro
- IIGM—Italian Institute for Genomic Medicine, c/o IRCCS, 10060 Candiolo (Torino), Italy
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo (Torino), Italy
| | - Chiara Enrico Bena
- IIGM—Italian Institute for Genomic Medicine, c/o IRCCS, 10060 Candiolo (Torino), Italy
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo (Torino), Italy
| | - Silvia Grigolon
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Carla Bosia
- IIGM—Italian Institute for Genomic Medicine, c/o IRCCS, 10060 Candiolo (Torino), Italy
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| |
Collapse
|
22
|
Epigenetic Regulation of Inflammatory Cytokine-Induced Epithelial-To-Mesenchymal Cell Transition and Cancer Stem Cell Generation. Cells 2019; 8:cells8101143. [PMID: 31557902 PMCID: PMC6829508 DOI: 10.3390/cells8101143] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 09/20/2019] [Accepted: 09/24/2019] [Indexed: 12/12/2022] Open
Abstract
The neoplastic transformation of normal to metastatic cancer cells is a complex multistep process involving the progressive accumulation of interacting genetic and epigenetic changes that alter gene function and affect cell physiology and homeostasis. Epigenetic changes including DNA methylation, histone modifications and changes in noncoding RNA expression, and deregulation of epigenetic processes can alter gene expression during the multistep process of carcinogenesis. Cancer progression and metastasis through an ‘invasion–metastasis cascade’ involving an epithelial-to-mesenchymal cell transition (EMT), the generation of cancer stem cells (CSCs), invasion of adjacent tissues, and dissemination are fueled by inflammation, which is considered a hallmark of cancer. Chronic inflammation is generated by inflammatory cytokines secreted by the tumor and the tumor-associated cells within the tumor microenvironment. Inflammatory cytokine signaling initiates signaling pathways leading to the activation of master transcription factors (TFs) such as Smads, STAT3, and NF-κB. Moreover, the same inflammatory responses also activate EMT-inducing TF (EMT-TF) families such as Snail, Twist, and Zeb, and epigenetic regulators including DNA and histone modifying enzymes and micoRNAs, through complex interconnected positive and negative feedback loops to regulate EMT and CSC generation. Here, we review the molecular regulatory feedback loops and networks involved in inflammatory cytokine-induced EMT and CSC generation.
Collapse
|
23
|
Tong P, Peng QH, Gu LM, Xie WW, Li WJ. LncRNA-MEG3 alleviates high glucose induced inflammation and apoptosis of retina epithelial cells via regulating miR-34a/SIRT1 axis. Exp Mol Pathol 2018; 107:102-109. [PMID: 30529346 DOI: 10.1016/j.yexmp.2018.12.003] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 11/22/2018] [Accepted: 12/06/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND Diabetic retinopathy (DR) is the serious complication of diabetes, which could lead to blindness. Inflammation and apoptosis are hallmark of DR, but mechanism of their regulation is little known. LncRNA-MEG3 is associated with multiple biological processes including proliferation, apoptosis and inflammation response, and is dramatically decreased in DR. However, the role and underlying mechanism of MEG3 in DR is unclear. This study is aimed to reveal the signaling mechanisms of MEG3 in inflammation and apoptosis of DR. METHODS ARPE-19 cells were applied for this research. MEG3 was cloned into pcDNA3.1. miR-34a was overexpressed and inhibited by transfecting with mimics and inhibitor, respectively. The expression level was detected by qRT-PCR and western blotting. The targeted regulatory relationship was analyzed by dual luciferase assay. Cytokine secretion, cell viability and apoptosis were detected by ELISA assay, MTT assay and flow cytometry analysis, respectively. RESULTS High glucose (HG) inhibited MEG3 and SIRT1 expression and enhanced miR-34a expression. MEG3 could promote SIRT1 expression by targeting miR-34a. MEG3 overexpression and miR-34a knockdown could inhibit HG-induced apoptosis and secretion of inflammation cytokines including IL-1β, IL-6 and TNF-α, but miR-34a overexpression alleviated such effects of MEG3. Furthermore, MEG3 overexpression also inhibited NF-κB signaling pathway and increased Bcl-2/Bax ratio via down-regulating miR-34a. CONCLUSION MEG3 could alleviate HG-inducing apoptosis and inflammation via inhibiting NF-κB signaling pathway by targeting miR-34a/SIRT1 axis. This finding illustrated the function and mechanism of MEG3 in DR, and MEG3 might serve as potential therapeutic target for DR.
Collapse
Affiliation(s)
- Ping Tong
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha 410011, PR China
| | - Qing-Hua Peng
- Hunan Provincial Key Laboratory of Ophthalmology and Otorhinolaryngology in Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410208, PR China
| | - Li-Min Gu
- Department of Ophthalmology, The Third Affiliated Hospital of Second Military Medical University, Shanghai 200438, PR China
| | - Wei-Wei Xie
- Ningbo Eye Hospital, Ningbo 315040, PR China
| | - Wen-Jie Li
- Department of Ophthalmology, The Third Xiangya Hospital of Central South University, Changsha 410013, PR China.
| |
Collapse
|
24
|
Chen L, Jiang B, Zhong C, Guo J, Zhang L, Mu T, Zhang Q, Bi X. Chemoprevention of colorectal cancer by black raspberry anthocyanins involved the modulation of gut microbiota and SFRP2 demethylation. Carcinogenesis 2018; 39:471-481. [PMID: 29361151 DOI: 10.1093/carcin/bgy009] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Accepted: 01/13/2018] [Indexed: 12/12/2022] Open
Abstract
Freeze-dried black raspberry (BRB) powder is considered as a potential cancer chemopreventive agent. In this study, we fed azoxymethane (AOM)/dextran sodium sulfate (DSS)-treated C57BL/6J mice with a diet containing BRB anthocyanins for 12 weeks, and this led to a reduction in colon carcinogenesis. These animals had consistently lower tumor multiplicity compared with AOM/DSS-treated mice not receiving BRB anthocyanins. In AOM/DSS-treated mice, the number of pathogenic bacteria, including Desulfovibrio sp. and Enterococcus spp., was increased significantly, whereas probiotics such as Eubacterium rectale, Faecalibacterium prausnitzii and Lactobacillus were dramatically decreased, but BRB anthocyanins supplement could reverse this imbalance in gut microbiota. BRB anthocyanins also caused the demethylation of the SFRP2 gene promoter, resulting in increased expression of SFRP2, both at the mRNA and protein levels. Furthermore, the expression levels of DNMT31 and DNMT3B, as well as of p-STAT3 were downregulated by BRB anthocyanins in these animals. Taken together, these results suggested that BRB anthocyanins could modulate the composition of gut commensal microbiota, and changes in inflammation and the methylation status of the SFRP2 gene may play a central role in the chemoprevention of CRC.
Collapse
Affiliation(s)
- Lili Chen
- Department of Biotechnology, College of Life Science, Liaoning University, Shenyang, China
| | - Bowen Jiang
- Department of Biotechnology, College of Life Science, Liaoning University, Shenyang, China
| | - Chunge Zhong
- Department of Biotechnology, College of Life Science, Liaoning University, Shenyang, China
| | - Jun Guo
- Department of Biotechnology, College of Life Science, Liaoning University, Shenyang, China
| | - Lihao Zhang
- Department of Biotechnology, College of Life Science, Liaoning University, Shenyang, China
| | - Teng Mu
- Department of Biotechnology, College of Life Science, Liaoning University, Shenyang, China
| | - Qiuhua Zhang
- Department of Pharmacology, Liaoning University of Traditional Chinese Medicine, Shenyang, PR China
| | - Xiuli Bi
- Department of Biotechnology, College of Life Science, Liaoning University, Shenyang, China.,Department of Biotechnology, Research Center for Computer Simulating and Information Processing of Bio-macromolecules of Liaoning Province, Liaoning University, Shenyang, China
| |
Collapse
|
25
|
Abstract
Infection and inflammation account for approximately 25% of cancer-causing factors. Inflammation-related cancers are characterized by mutagenic DNA lesions, such as 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) and 8-nitroguanine. Our previous studies demonstrated the formation of 8-oxodG and 8-nitroguanine in the tissues of cancer and precancerous lesions due to infection (e.g., Opisthorchis viverrini-related cholangiocarcinoma, Schistosoma haematobium-associated bladder cancer, Helicobacter pylori-infected gastric cancer, human papillomavirus-related cervical cancer, Epstein-Barr virus-infected nasopharyngeal carcinoma) and pro-inflammatory factors (e.g., asbestos, nanomaterials, and inflammatory diseases such as Barrett's esophagus and oral leukoplakia). Interestingly, several of our studies suggested that inflammation-associated DNA damage in cancer stem-like cells leads to cancer development with aggressive clinical features. Reactive oxygen/nitrogen species from inflammation damage not only DNA but also other biomacromolecules, such as proteins and lipids, resulting in their dysfunction. We identified oxidatively damaged proteins in cancer tissues by 2D Oxyblot followed by MALDI-TOF/TOF. As an example, oxidatively damaged transferrin released iron ion, which may mediate Fenton reactions and generate additional reactive oxygen species. Dysfunction of anti-oxidative proteins due to this damage might increase oxidative stress. Such damage in biomacromolecules may form a vicious cycle of oxidative stress, leading to cancer development. Epigenetic alterations such as DNA methylation and microRNA dysregulation play vital roles in carcinogenesis, especially in inflammation-related cancers. We examined epigenetic alterations, DNA methylation and microRNA dysregulation, in Epstein-Barr virus-related nasopharyngeal carcinoma in the endemic area of Southern China and found several differentially methylated tumor suppressor gene candidates by using a next-generation sequencer. Among these candidates, we revealed higher methylation rates of RAS-like estrogen-regulated growth inhibitor (RERG) in biopsy specimens of nasopharyngeal carcinoma more conveniently by using restriction enzyme-based real-time PCR. This result may help to improve cancer screening strategies. We profiled microRNAs of nasopharyngeal carcinoma tissues using microarrays. Quantitative RT-PCR analysis confirmed the concordant downregulation of miR-497 in cancer tissues and plasma, suggesting that plasma miR-497 could be used as a diagnostic biomarker for nasopharyngeal carcinoma. Chronic inflammation promotes genetic and epigenetic aberrations, with various pathogeneses. These changes may be useful biomarkers in liquid biopsy for early detection and prevention of cancer.
Collapse
Affiliation(s)
- Mariko Murata
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan.
| |
Collapse
|
26
|
Abstract
Infection and inflammation account for approximately 25% of cancer-causing factors. Inflammation-related cancers are characterized by mutagenic DNA lesions, such as 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) and 8-nitroguanine. Our previous studies demonstrated the formation of 8-oxodG and 8-nitroguanine in the tissues of cancer and precancerous lesions due to infection (e.g., Opisthorchis viverrini-related cholangiocarcinoma, Schistosoma haematobium-associated bladder cancer, Helicobacter pylori-infected gastric cancer, human papillomavirus-related cervical cancer, Epstein-Barr virus-infected nasopharyngeal carcinoma) and pro-inflammatory factors (e.g., asbestos, nanomaterials, and inflammatory diseases such as Barrett's esophagus and oral leukoplakia). Interestingly, several of our studies suggested that inflammation-associated DNA damage in cancer stem-like cells leads to cancer development with aggressive clinical features. Reactive oxygen/nitrogen species from inflammation damage not only DNA but also other biomacromolecules, such as proteins and lipids, resulting in their dysfunction. We identified oxidatively damaged proteins in cancer tissues by 2D Oxyblot followed by MALDI-TOF/TOF. As an example, oxidatively damaged transferrin released iron ion, which may mediate Fenton reactions and generate additional reactive oxygen species. Dysfunction of anti-oxidative proteins due to this damage might increase oxidative stress. Such damage in biomacromolecules may form a vicious cycle of oxidative stress, leading to cancer development. Epigenetic alterations such as DNA methylation and microRNA dysregulation play vital roles in carcinogenesis, especially in inflammation-related cancers. We examined epigenetic alterations, DNA methylation and microRNA dysregulation, in Epstein-Barr virus-related nasopharyngeal carcinoma in the endemic area of Southern China and found several differentially methylated tumor suppressor gene candidates by using a next-generation sequencer. Among these candidates, we revealed higher methylation rates of RAS-like estrogen-regulated growth inhibitor (RERG) in biopsy specimens of nasopharyngeal carcinoma more conveniently by using restriction enzyme-based real-time PCR. This result may help to improve cancer screening strategies. We profiled microRNAs of nasopharyngeal carcinoma tissues using microarrays. Quantitative RT-PCR analysis confirmed the concordant downregulation of miR-497 in cancer tissues and plasma, suggesting that plasma miR-497 could be used as a diagnostic biomarker for nasopharyngeal carcinoma. Chronic inflammation promotes genetic and epigenetic aberrations, with various pathogeneses. These changes may be useful biomarkers in liquid biopsy for early detection and prevention of cancer.
Collapse
Affiliation(s)
- Mariko Murata
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan.
| |
Collapse
|
27
|
Itoh H, Kadomatsu T, Tanoue H, Yugami M, Miyata K, Endo M, Morinaga J, Kobayashi E, Miyamoto T, Kurahashi R, Terada K, Mizuta H, Oike Y. TET2-dependent IL-6 induction mediated by the tumor microenvironment promotes tumor metastasis in osteosarcoma. Oncogene 2018. [DOI: 10.1038/s41388-018-0160-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
28
|
Zhen Y, Wu Q, Ding Y, Zhang W, Zhai Y, Lin X, Weng Y, Guo R, Zhang Y, Feng J, Lei Y, Chen J. Exogenous hydrogen sulfide promotes hepatocellular carcinoma cell growth by activating the STAT3-COX-2 signaling pathway. Oncol Lett 2018; 15:6562-6570. [PMID: 29725404 DOI: 10.3892/ol.2018.8154] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Accepted: 04/21/2017] [Indexed: 12/20/2022] Open
Abstract
The effects of hydrogen sulfide (H2S) on cancer are controversial. Our group previously demonstrated that exogenous H2S promotes the development of cancer via amplifying the activation of the nuclear factor-κB signaling pathway in hepatocellular carcinoma (HCC) cells (PLC/PRF/5). The present study aimed to further investigate the hypothesis that exogenous H2S promotes PLC/PRF/5 cell proliferation and migration, and inhibits apoptosis by activating the signal transducer and activator of transcription 3 (STAT3)-cyclooxygenase-2 (COX-2) signaling pathway. PLC/PRF/5 cells were treated with 500 µmol/l NaHS (a donor of H2S) for 24 h. The expression levels of phosphorylated (p)-STAT3, STAT3, cleaved caspase-3 and COX-2 were measured by western blot assay. Cell viability was detected by Cell Counting kit-8 assay. Apoptotic cells were observed by Hoechst 33258 staining. The expression of STAT3 and COX-2 messenger RNA (mRNA) was detected by semiquantitative reverse transcription-polymerase chain reaction. The production of vascular endothelial growth factor (VEGF) was evaluated by ELISA. The results indicated that treatment of PLC/PRF/5 cells with 500 µmol/l NaHS for 24 h markedly increased the expression levels of p-STAT3 and STAT3 mRNA, leading to COX-2 and COX-2 mRNA overexpression, VEGF induction, decreased cleaved caspase-3 production, increased cell viability and migration, and decreased number of apoptotic cells. However, co-treatment of PLC/PRF/5 cells with 500 µmol/l NaHS and 30 µmol/l AG490 (an inhibitor of STAT3) or 20 µmol/l NS-398 (an inhibitor of COX-2) for 24 h significantly reverted the effects induced by NaHS. Furthermore, co-treatment of PLC/PRF/5 cells with 500 µmol/l NaHS and 30 µmol/l AG490 markedly decreased the NaHS-induced increase in the expression level of COX-2. By contrast, co-treatment of PLC/PRF/5 cells with 500 µmol/l NaHS and 20 µmol/l NS-398 inhibited the NaHS-induced increase in the expression level of p-STAT3. In conclusion, the findings of the present study provide evidence that the STAT3-COX-2 signaling pathway is involved in NaHS-induced cell proliferation, migration, angiogenesis and anti-apoptosis in PLC/PRF/5 cells, and suggest that the positive feedback between STAT3 and COX-2 may serve a crucial role in hepatocellular carcinoma carcinogenesis.
Collapse
Affiliation(s)
- Yulan Zhen
- Department of Oncology, The Third People's Hospital of Dongguan Dongguan City, Guangdong 523326, P.R. China
| | - Qiaomei Wu
- Department of Anesthesiology, Oral Subsidiary Sun Yat-Sen University Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510700, P.R. China
| | - Yiqian Ding
- Grade 2013, Medical Imaging, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong 510000, P.R. China
| | - Wei Zhang
- Department of Cardiovasology and Cardiac Care Unit, Huangpu Division of The First Affiliated Hospital, Guangzhou, Guangdong 510080, P.R. China
| | - Yuansheng Zhai
- Department of Cardiovasology and Cardiac Care Unit, Huangpu Division of The First Affiliated Hospital, Guangzhou, Guangdong 510080, P.R. China
| | - Xiaoxiong Lin
- Department of Cardiovasology and Cardiac Care Unit, Huangpu Division of The First Affiliated Hospital, Guangzhou, Guangdong 510080, P.R. China
| | - Yunxia Weng
- Department of Cardiovasology and Cardiac Care Unit, Huangpu Division of The First Affiliated Hospital, Guangzhou, Guangdong 510080, P.R. China
| | - Ruixian Guo
- Department of Physiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510700, P.R. China
| | - Ying Zhang
- Department of Oncology, Affiliated Hospital, Guangdong Medical College, Zhanjiang, Guangdong 524001, P.R. China
| | - Jianqiang Feng
- Department of Physiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510700, P.R. China
| | - Yiyan Lei
- Department of Thoracic Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Jingfu Chen
- Department of Cardiovascular Medicine and Dongguan Cardiovascular Institute, The Third People's Hospital of Dongguan City, Dongguan, Guangdong 523326, P.R. China
| |
Collapse
|
29
|
Assenov Y, Brocks D, Gerhäuser C. Intratumor heterogeneity in epigenetic patterns. Semin Cancer Biol 2018; 51:12-21. [PMID: 29366906 DOI: 10.1016/j.semcancer.2018.01.010] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 11/24/2017] [Accepted: 01/17/2018] [Indexed: 02/08/2023]
Abstract
Analogous to life on earth, tumor cells evolve through space and time and adapt to different micro-environmental conditions. As a result, tumors are composed of millions of genetically diversified cells at the time of diagnosis. Profiling these variants contributes to understanding tumors' clonal origins and might help to better understand response to therapy. However, even genetically homogenous cell populations show remarkable diversity in their response to different environmental stimuli, suggesting that genetic heterogeneity does not explain the full spectrum of tumor plasticity. Understanding epigenetic diversity across cancer cells provides important additional information about the functional state of subclones and therefore allows better understanding of tumor evolution and resistance to current therapies.
Collapse
Affiliation(s)
- Yassen Assenov
- Epigenomics and Cancer Risk Factors, German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - David Brocks
- Epigenomics and Cancer Risk Factors, German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Clarissa Gerhäuser
- Epigenomics and Cancer Risk Factors, German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.
| |
Collapse
|
30
|
Abstract
Initial research on vitamin E and cancer has focused on α-tocopherol (αT), but recent clinical studies on cancer-preventive effects of αT supplementation have shown disappointing results, which has led to doubts about the role of vitamin E, including different vitamin E forms, in cancer prevention. However, accumulating mechanistic and preclinical animal studies show that other forms of vitamin E, such as γ-tocopherol (γT), δ-tocopherol (δT), γ-tocotrienol (γTE), and δ-tocotrienol (δTE), have far superior cancer-preventive activities than does αT. These vitamin E forms are much stronger than αT in inhibiting multiple cancer-promoting pathways, including cyclo-oxygenase (COX)- and 5-lipoxygenase (5-LOX)-catalyzed eicosanoids, and transcription factors such as nuclear transcription factor κB (NF-κB) and signal transducer and activator of transcription factor 3 (STAT3). These vitamin E forms, but not αT, cause pro-death or antiproliferation effects in cancer cells via modulating various signaling pathways, including sphingolipid metabolism. Unlike αT, these vitamin E forms are quickly metabolized to various carboxychromanols including 13'-carboxychromanols, which have even stronger anti-inflammatory and anticancer effects than some vitamin precursors. Consistent with mechanistic findings, γT, δT, γTE, and δTE, but not αT, have been shown to be effective for preventing the progression of various types of cancer in preclinical animal models. This review focuses on cancer-preventive effects and mechanisms of γT, δT, γTE, and δTE in cells and preclinical models and discusses current progress in clinical trials. The existing evidence strongly indicates that these lesser-known vitamin E forms are effective agents for cancer prevention or as adjuvants for improving prevention, therapy, and control of cancer.
Collapse
Affiliation(s)
- Qing Jiang
- Department of Nutrition Science, Purdue University, West Lafayette, IN
| |
Collapse
|
31
|
Zhang C, Wang C, Li W, Wu R, Guo Y, Cheng D, Yang Y, Androulakis IP, Kong AN. Pharmacokinetics and Pharmacodynamics of the Triterpenoid Ursolic Acid in Regulating the Antioxidant, Anti-inflammatory, and Epigenetic Gene Responses in Rat Leukocytes. Mol Pharm 2017; 14:3709-3717. [PMID: 29035547 PMCID: PMC5697757 DOI: 10.1021/acs.molpharmaceut.7b00469] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The triterpenoid ursolic acid (UA) has been proposed as a potential cancer chemopreventive agent in many preclinical and clinical studies. In the present work, we aimed to characterize the pharmacokinetics (PK) of UA and to quantitatively assess the antioxidative and anti-inflammatory effects of UA, which are potentially linked to its chemopreventive efficacy. UA was administered intravenously (i.v., 20 mg/kg) or by oral gavage (100 mg/kg) to male Sprague-Dawley rats, and blood samples were collected at a series of designated time points. The plasma concentration of UA was determined using a validated liquid chromatography-mass spectrometry (LC-MS) approach. A biexponential decline in the UA plasma concentration was observed after i.v. dosing and was fitted to a two-compartmental model. The expression levels of phase II drug metabolism (DM)/antioxidant genes and the inflammatory iNos gene in corresponding treatment arms were measured using qPCR as a pharmacodynamic (PD) marker. The expression of phase II DM/antioxidant genes increased and peaked approximately 3 h after 20 mg/kg UA treatment. In a lipopolysaccharide (LPS)-induced acute inflammation model, UA inhibited LPS-stimulated iNos expression and that of the epigenetic markers the DNA methyltransferases (DNMTs) and histone deacetylases (HDACs) in leukocytes. A PK-PD model using Jusko's indirect response model (IDR) with transition compartments (TC) was established to describe the time delay and magnitude of the gene expression elicited by UA. The PK-PD model provided reasonable fitting linking the plasma concentration of UA simultaneously with the PD response based on leukocyte mRNA expression. Overall, our results indicate that UA is effective at inducing various phase II DM/antioxidant genes and inhibiting pro-inflammatory genes in vivo. This PK-PD modeling approach may provide a conceptual framework for the future clinical evaluation of dietary chemopreventive agents in humans.
Collapse
Affiliation(s)
- Chengyue Zhang
- Center for Phytochemical Epigenome Studies, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Chao Wang
- Center for Phytochemical Epigenome Studies, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Wenji Li
- Center for Phytochemical Epigenome Studies, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Renyi Wu
- Center for Phytochemical Epigenome Studies, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Yue Guo
- Center for Phytochemical Epigenome Studies, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - David Cheng
- Center for Phytochemical Epigenome Studies, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Yuqing Yang
- Center for Phytochemical Epigenome Studies, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Ioannis P. Androulakis
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Ah-Ng Kong
- Center for Phytochemical Epigenome Studies, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| |
Collapse
|
32
|
Schupp J, Krebs FK, Zimmer N, Trzeciak E, Schuppan D, Tuettenberg A. Targeting myeloid cells in the tumor sustaining microenvironment. Cell Immunol 2017; 343:103713. [PMID: 29129292 DOI: 10.1016/j.cellimm.2017.10.013] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 10/26/2017] [Accepted: 10/26/2017] [Indexed: 12/24/2022]
Abstract
Myeloid cells are the most abundant cells in the tumor microenvironment (TME). The tumor recruits and modulates endogenous myeloid cells to tumor-associated macrophages (TAM), dendritic cells (DC), myeloid-derived suppressor cells (MDSC) and neutrophils (TAN), to sustain an immunosuppressive environment. Pathologically overexpressed mediators produced by cancer cells like granulocyte-macrophage colony-stimulating- and vascular endothelial growth factor induce myelopoiesis in the bone marrow. Excess of myeloid cells in the blood, periphery and tumor has been associated with tumor burden. In cancer, myeloid cells are kept at an immature state of differentiation to be diverted to an immunosuppressive phenotype. Here, we review human myeloid cells in the TME and the mechanisms for sustaining the hallmarks of cancer. Simultaneously, we provide an introduction into current and novel therapeutic approaches to redirect myeloid cells from a cancer promoting to a rather inflammatory, cancer inhibiting phenotype. In addition, the role of platelets for tumor promotion is discussed.
Collapse
Affiliation(s)
- Jonathan Schupp
- Department of Dermatology, University Medical Center, Mainz, Germany
| | - Franziska K Krebs
- Department of Dermatology, University Medical Center, Mainz, Germany; German Cancer Consortium (DKTK), partner site Mainz, and German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Niklas Zimmer
- Department of Dermatology, University Medical Center, Mainz, Germany
| | - Emily Trzeciak
- The Edison Biotechnology Institute, Ohio University, Athens, OH, USA
| | - Detlef Schuppan
- Institute of Translational Immunology, University Medical Center, Mainz, Germany; Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
33
|
Mathot P, Grandin M, Devailly G, Souaze F, Cahais V, Moran S, Campone M, Herceg Z, Esteller M, Juin P, Mehlen P, Dante R. DNA methylation signal has a major role in the response of human breast cancer cells to the microenvironment. Oncogenesis 2017; 6:e390. [PMID: 29058695 PMCID: PMC5668886 DOI: 10.1038/oncsis.2017.88] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 08/07/2017] [Accepted: 08/22/2017] [Indexed: 02/06/2023] Open
Abstract
Breast cancer-associated fibroblasts (CAFs) have a crucial role in tumor initiation, metastasis and therapeutic resistance by secreting various growth factors, cytokines, protease and extracellular matrix components. Soluble factors secreted by CAFs are involved in many pathways including inflammation, metabolism, proliferation and epigenetic modulation, suggesting that CAF-dependent reprograming of cancer cells affects a large set of genes. This paracrine signaling has an important role in tumor progression, thus deciphering some of these processes could lead to relevant discoveries with subsequent clinical implications. Here, we investigated the mechanisms underlying the changes in gene expression patterns associated with the cross-talk between breast cancer cells and the stroma. From RNAseq data obtained from breast cancer cell lines grown in presence of CAF-secreted factors, we identified 372 upregulated genes, exhibiting an expression level positively correlated with the stromal content of breast cancer specimens. Furthermore, we observed that gene expression changes were not mediated through significant DNA methylation changes. Nevertheless, CAF-secreted factors but also stromal content of the tumors remarkably activated specific genes characterized by a DNA methylation pattern: hypermethylation at transcription start site and shore regions. Experimental approaches (inhibition of DNA methylation, knockdown of methyl-CpG-binding domain protein 2 and chromatin immunoprecipitation assays) indicated that this set of genes was epigenetically controlled. These data elucidate the importance of epigenetics marks in the cancer cell reprogramming induced by stromal cell and indicated that the interpreters of the DNA methylation signal have a major role in the response of the cancer cells to the microenvironment.
Collapse
Affiliation(s)
- P Mathot
- Dependence Receptors, Cancer and Development Laboratory, Centre de Recherche en Cancérologie de Lyon (CRCL), Inserm U1052-CNRS UMR5286, Université de Lyon, Centre Léon Bérard, Lyon, France
| | - M Grandin
- Dependence Receptors, Cancer and Development Laboratory, Centre de Recherche en Cancérologie de Lyon (CRCL), Inserm U1052-CNRS UMR5286, Université de Lyon, Centre Léon Bérard, Lyon, France
| | - G Devailly
- Department of Developmental Biology, The Roslin Institute, University of Edinburgh, Easter Bush Campus, Midlothian, UK
| | - F Souaze
- Cell survival and tumor escape in breast cancer Laboratory, Center for Cancer Research Nantes-Angers UMR 892 Inserm-6299 CNRS/Université de Nantes, Nantes, France
| | - V Cahais
- Epigenetics Group, IARC, Lyon, France
| | - S Moran
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet, Barcelona, Spain
| | - M Campone
- Cell survival and tumor escape in breast cancer Laboratory, Center for Cancer Research Nantes-Angers UMR 892 Inserm-6299 CNRS/Université de Nantes, Nantes, France
| | - Z Herceg
- Epigenetics Group, IARC, Lyon, France
| | - M Esteller
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet, Barcelona, Spain
- Physiological Sciences Department, School of Medicine and Health Sciences, University of Barcelona (UB), Barcelona, Spain
- Institucio Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - P Juin
- Cell survival and tumor escape in breast cancer Laboratory, Center for Cancer Research Nantes-Angers UMR 892 Inserm-6299 CNRS/Université de Nantes, Nantes, France
| | - P Mehlen
- Dependence Receptors, Cancer and Development Laboratory, Centre de Recherche en Cancérologie de Lyon (CRCL), Inserm U1052-CNRS UMR5286, Université de Lyon, Centre Léon Bérard, Lyon, France
| | - R Dante
- Dependence Receptors, Cancer and Development Laboratory, Centre de Recherche en Cancérologie de Lyon (CRCL), Inserm U1052-CNRS UMR5286, Université de Lyon, Centre Léon Bérard, Lyon, France
| |
Collapse
|
34
|
Li H, Rokavec M, Jiang L, Horst D, Hermeking H. Antagonistic Effects of p53 and HIF1A on microRNA-34a Regulation of PPP1R11 and STAT3 and Hypoxia-induced Epithelial to Mesenchymal Transition in Colorectal Cancer Cells. Gastroenterology 2017; 153:505-520. [PMID: 28435028 DOI: 10.1053/j.gastro.2017.04.017] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 03/24/2017] [Accepted: 04/12/2017] [Indexed: 01/26/2023]
Abstract
BACKGROUND & AIMS In colorectal tumors, hypoxia causes resistance to therapy and promotes metastasis. Loss of the tumor suppressor p53 (encoded by TP53) provides cancer cells with a selective advantage under conditions of hypoxia, but little is known about the mediators of this effect. METHODS Isogenic colorectal cancer (CRC) cell lines with different TP53 genotypes were placed under conditions of hypoxia. We examined the effects on levels and activity of microRNA-34a (MIR34A) in CRC cells. We determined the expression and localization of protein phosphatase 1 regulatory inhibitor subunit 11 (PPP1R11, also called INH3, HCGV, IPP3, HCGV, TCTE5, TCTEX5, or CFAP255) in 82 human colon cancers. We analyzed data on human colorectal carcinomas from the Cancer Genome Atlas collection to determine whether expression of PPP1R11 was affected by altered level or activity of p53, markers of epithelial-to-mesenchymal transition (EMT), or MIR34A or was associated with metastasis. We determined the effects of disruption Mir34a, Mir34b, and Mir34c in ApcMin/+ mice. DLD-1 cells were transfected with small inhibitor RNAs against PPP1R1, injected into the tail veins of immune-compromised mice, and followed by noninvasive bioluminescence imaging. RESULTS The hypoxia inducible factor 1 alpha subunit (HIF1A) directly repressed the MIR34A gene in p53-defective CRC cells, whereas expression of MIR34A was induced in p53-proficient CRC cells exposed to hypoxia. Down-regulation of MIR34A was required for hypoxia-induced EMT, invasion and migration, and activation of STAT3 in CRC cells. We identified PPP1R11, whose product inhibits PP1, as a target of MIR34A. PPP1R11 mediates phosphorylation (activation) of STAT3, so expression of MIR34A reduced activation of STAT3 in p53-deficient CRC cells. Ectopic expression of PPP1R11 in CRC cells induced EMT, invasion, and migration, which all required STAT3. Increased expression of PPP1R11 in p53-deficient CRC cells was required for hypoxia-induced EMT, invasion, migration, and resistance to 5-fluorouracil, as well as metastasis of xenograft tumors to lungs of mice. Adenomas and derived tumoroids of ApcMin/+ mice with disruption of Mir34a, Mir34b, and Mir34c had increased levels of PPP1R11. Colorectal tumors from patients had increased levels of PPP1R11 at areas of invasion, compared with other areas of the tumor; increased level PPP1R11 associated with TP53 mutations and metastasis to the liver. CONCLUSIONS HIF1A represses, whereas p53 increases, expression of MIR34A in CRC cells. MIR34A reduces expression of PPP1R11 to prevent activation of STAT3 and inhibit the EMT and metastasis. Strategies to target this pathway might be developed to inhibit CRC metastasis and overcome resistance to therapy associated with hypoxia.
Collapse
Affiliation(s)
- Huihui Li
- Experimental and Molecular Pathology, Institute of Pathology, Ludwig-Maximilians-University Munich, Germany
| | - Matjaz Rokavec
- Experimental and Molecular Pathology, Institute of Pathology, Ludwig-Maximilians-University Munich, Germany
| | - Longchang Jiang
- Experimental and Molecular Pathology, Institute of Pathology, Ludwig-Maximilians-University Munich, Germany
| | - David Horst
- Institute of Pathology, Ludwig-Maximilians-University Munich, Germany; German Cancer Consortium (DKTK), Partner Site Munich, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Heiko Hermeking
- Experimental and Molecular Pathology, Institute of Pathology, Ludwig-Maximilians-University Munich, Germany; German Cancer Consortium (DKTK), Partner Site Munich, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
35
|
Markopoulos GS, Roupakia E, Tokamani M, Chavdoula E, Hatziapostolou M, Polytarchou C, Marcu KB, Papavassiliou AG, Sandaltzopoulos R, Kolettas E. A step-by-step microRNA guide to cancer development and metastasis. Cell Oncol (Dordr) 2017; 40:303-339. [DOI: 10.1007/s13402-017-0341-9] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/04/2017] [Indexed: 01/17/2023] Open
|
36
|
Pan-cancer EMT-signature identifies RBM47 down-regulation during colorectal cancer progression. Sci Rep 2017; 7:4687. [PMID: 28680090 PMCID: PMC5498532 DOI: 10.1038/s41598-017-04234-2] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 05/11/2017] [Indexed: 12/30/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) plays an important role in tumor invasion and metastasis. A comprehensive, bioinformatics analysis of CCLE and TCGA datasets of seven tumor types allowed us to identify a novel pan-cancer EMT-associated gene expression signature consisting of 16 epithelial and 4 mesenchymal state-associated mRNAs. Among the identified epithelial cell state-associated factors, down-regulation of the RBM47 (RNA binding motif protein 47) mRNA displayed the most significant association with metastasis and poor survival in multiple cohorts of colorectal cancer (CRC) patients. Moreover, decreased RBM47 protein expression was associated with metastasis in a cohort of primary CRCs. RBM47 was directly suppressed during EMT induced by IL6-activated STAT3 or ectopic SNAIL and SLUG expression via conserved binding motifs of these factors within the RBM47 promoter. Moreover, RNAi-mediated down-regulation of RBM47 in CRC lines resulted in increased cell migration, invasion and metastases formation. As demonstrated by the example of RBM47, the EMT-associated signature characterized here allows to identify biomarkers for predicting clinical outcome of CRC and presumably other cancer entities. In addition, our functional analysis of RBM47 shows that the down-regulation of RBM47 during CRC progression may promote EMT and metastasis.
Collapse
|
37
|
Montalvo AM, Tse-Dinh YC, Liu Y, Swartzon M, Hechtman KS, Myer GD. Precision Sports Medicine: The Future of Advancing Health and Performance in Youth and Beyond. Strength Cond J 2017. [DOI: 10.1519/ssc.0000000000000292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
38
|
Rokavec M, Horst D, Hermeking H. Cellular Model of Colon Cancer Progression Reveals Signatures of mRNAs, miRNA, lncRNAs, and Epigenetic Modifications Associated with Metastasis. Cancer Res 2017; 77:1854-1867. [DOI: 10.1158/0008-5472.can-16-3236] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 01/11/2017] [Indexed: 11/16/2022]
|
39
|
Abstract
Osteoarthritis (OA) was once defined as a non-inflammatory arthropathy, but it is now well-recognized that there is a major inflammatory component to this disease. In addition to synovial cells, articular chondrocytes and other cells of diarthrodial joints are also known to express inflammatory mediators. It has been proposed that targeting inflammation pathways could be a promising strategy to treat OA. There have been many reports of cross-talk between inflammation and epigenetic factors in cartilage. Specifically, inflammatory mediators have been shown to regulate levels of enzymes that catalyze changes in DNA methylation and histone structure, as well as alter levels of non-coding RNAs. In addition, expression levels of a number of these epigenetic factors have been shown to be altered in OA, thereby suggesting potential interplay between inflammation and epigenetics in this disease. This review provides information on inflammatory pathways in arthritis and summarizes published research on how epigenetic regulators are affected by inflammation in chondrocytes. Furthermore, we discuss data showing how altered expression of some of these epigenetic factors can induce either catabolic or anti-catabolic effects in response to inflammatory signals. A better understanding of how inflammation affects epigenetic factors in OA may provide us with novel therapeutic strategies to treat this condition.
Collapse
Affiliation(s)
- Jie Shen
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Yousef Abu-Amer
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO, USA,Department of Cell Biology & Physiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Regis J. O'Keefe
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Audrey McAlinden
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO, USA,Department of Cell Biology & Physiology, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
40
|
Phookphan P, Navasumrit P, Waraprasit S, Promvijit J, Chaisatra K, Ngaotepprutaram T, Ruchirawat M. Hypomethylation of inflammatory genes (COX2, EGR1, and SOCS3) and increased urinary 8-nitroguanine in arsenic-exposed newborns and children. Toxicol Appl Pharmacol 2016; 316:36-47. [PMID: 28025110 DOI: 10.1016/j.taap.2016.12.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 12/16/2016] [Accepted: 12/21/2016] [Indexed: 02/06/2023]
Abstract
Early-life exposure to arsenic increases risk of developing a variety of non-malignant and malignant diseases. Arsenic-induced carcinogenesis may be mediated through epigenetic mechanisms and pathways leading to inflammation. Our previous study reported that prenatal arsenic exposure leads to increased mRNA expression of several genes related to inflammation, including COX2, EGR1, and SOCS3. This study aimed to investigate the effects of arsenic exposure on promoter DNA methylation and mRNA expression of these inflammatory genes (COX2, EGR1, and SOCS3), as well as the generation of 8-nitroguanine, which is a mutagenic DNA lesion involved in inflammation-related carcinogenesis. Prenatally arsenic-exposed newborns had promoter hypomethylation of COX2, EGR1, and SOCS3 in cord blood lymphocytes (p<0.01). A follow-up study in these prenatally arsenic-exposed children showed a significant hypomethylation of these genes in salivary DNA (p<0.01). In vitro experiments confirmed that arsenite treatment at short-term high doses (10-100μM) and long-term low doses (0.5-1μM) in human lymphoblasts (RPMI 1788) caused promoter hypomethylation of these genes, which was in concordance with an increase in their mRNA expression. Additionally, the level of urinary 8-nitroguanine was significantly higher (p<0.01) in exposed newborns and children, by 1.4- and 1.8-fold, respectively. Arsenic accumulation in toenails was negatively correlated with hypomethylation of these genes and positively correlated with levels of 8-nitroguanine. These results indicated that early-life exposure to arsenic causes hypomethylation of COX2, EGR1, and SOCS3, increases mRNA expression of these genes, and increases 8-nitroguanine formation. These effects may be linked to mechanisms of arsenic-induced inflammation and cancer development later in life.
Collapse
Affiliation(s)
- Preeyaphan Phookphan
- Laboratory of Environmental Toxicology, Chulabhorn Research Institute, Laksi, Bangkok, Thailand; Post-graduate Program in Environmental Toxicology, Chulabhorn Graduate Institute, Laksi, Bangkok, Thailand; Center of Excellence on Environmental Health, Toxicology (EHT), Office of the Higher Education Commission, Ministry of Education, Thailand
| | - Panida Navasumrit
- Laboratory of Environmental Toxicology, Chulabhorn Research Institute, Laksi, Bangkok, Thailand; Post-graduate Program in Environmental Toxicology, Chulabhorn Graduate Institute, Laksi, Bangkok, Thailand; Center of Excellence on Environmental Health, Toxicology (EHT), Office of the Higher Education Commission, Ministry of Education, Thailand
| | - Somchamai Waraprasit
- Laboratory of Environmental Toxicology, Chulabhorn Research Institute, Laksi, Bangkok, Thailand
| | - Jeerawan Promvijit
- Laboratory of Environmental Toxicology, Chulabhorn Research Institute, Laksi, Bangkok, Thailand
| | - Krittinee Chaisatra
- Laboratory of Environmental Toxicology, Chulabhorn Research Institute, Laksi, Bangkok, Thailand
| | | | - Mathuros Ruchirawat
- Laboratory of Environmental Toxicology, Chulabhorn Research Institute, Laksi, Bangkok, Thailand; Center of Excellence on Environmental Health, Toxicology (EHT), Office of the Higher Education Commission, Ministry of Education, Thailand.
| |
Collapse
|