1
|
Burtscher V, Wang L, Cowgill J, Chen ZW, Edge C, Smith E, Chang Y, Delemotte L, Evers AS, Chanda B. A propofol binding site in the voltage sensor domain mediates inhibition of HCN1 channel activity. SCIENCE ADVANCES 2025; 11:eadr7427. [PMID: 39752505 PMCID: PMC11698089 DOI: 10.1126/sciadv.adr7427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 12/02/2024] [Indexed: 01/06/2025]
Abstract
Hyperpolarization-activated and cyclic nucleotide-gated (HCN) ion channels are members of the cyclic nucleotide-binding family and are crucial for regulating cellular automaticity in many excitable cells. HCN channel activation contributes to pain perception, and propofol, a widely used anesthetic, acts as an analgesic by inhibiting the voltage-dependent activity of HCN channels. However, the molecular determinants of propofol action on HCN channels remain unknown. Here, we use a propofol-analog photoaffinity labeling reagent to identify propofol binding sites in the human HCN1 isoform. Mass spectrometry analyses combined with molecular dynamics simulations show that a binding pocket is formed by extracellularly facing residues in the S3 and S4 transmembrane segments in the resting voltage-sensor conformation. Mutations of residues within the putative binding pocket mitigate or eliminate voltage-dependent modulation of HCN1 currents by propofol. Together, these findings reveal a conformation-specific propofol binding site that underlies voltage-dependent inhibition of HCN currents and provides a framework for identifying highly specific modulators of HCN channel gating.
Collapse
Affiliation(s)
- Verena Burtscher
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Center for Membrane Excitability Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Lei Wang
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan 430022, China
| | - John Cowgill
- Department of Biochemistry and Biophysics, SciLifeLab, Stockholm University, 17121 Solna, Sweden
| | - Zi-Wei Chen
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Christopher Edge
- Department of Life Sciences, Imperial College, London SW7 2AZ, UK
| | - Edward Smith
- Department of Biophysics, Imperial College of Science, Medicine and Technology, London SW7 2AZ, UK
| | - Yongchang Chang
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Center for Membrane Excitability Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Lucie Delemotte
- Department of Applied Physics, SciLifeLab, KTH Royal Institute of Technology, 17121 Solna, Sweden
| | - Alex S. Evers
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Baron Chanda
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Center for Membrane Excitability Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
2
|
Liu X, Zhao X, Qiu M, Yang J. Cell surface receptor-mediated signaling in CNS regeneration. Neuroscience 2024; 562:198-208. [PMID: 39486572 DOI: 10.1016/j.neuroscience.2024.10.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/21/2024] [Accepted: 10/25/2024] [Indexed: 11/04/2024]
Abstract
Degenerative diseases and injuries of central nervous system (CNS) often cause nerve cell apoptosis and neural dysfunction. Protection of surviving cells or inducing the differentiation of stem cells into functional cells is considered to be an important way of neurorepair. In addition, transdifferentiation technology emerged recently is expected to provide new solutions for nerve regeneration. Cell surface receptors are transmembrane proteins embedded in cytoplasmic membrane, and play crucial roles in maintaining communication between extracellular signals and intracellular signaling processes. The extracellular microenvironment changed dramatically upon neural lesion, exploring the biological function of signals mediated by cell surface receptors will help to develop molecular strategies for nerve regeneration. An increasing number of studies have reported that cell surface receptor-mediated signaling affects the survival, differentiation, and functioning of neural cells, and even regulate their trans-lineage reprogramming. Here, we provide a review on the roles of cell surface receptors in CNS regeneration, thus providing new cues for better treatment of neurodegenerative diseases or nerve injury.
Collapse
Affiliation(s)
- Xinyu Liu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; Department of Immunology and International Cancer Center, Shenzhen University Medical School, Shenzhen 518000, China
| | - Xiaofeng Zhao
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; Key Laboratory of Organ Development and Regeneration of Zhejiang Province, Hangzhou 311121, China
| | - Mengsheng Qiu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; Key Laboratory of Organ Development and Regeneration of Zhejiang Province, Hangzhou 311121, China.
| | - Junlin Yang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; Key Laboratory of Organ Development and Regeneration of Zhejiang Province, Hangzhou 311121, China.
| |
Collapse
|
3
|
Corlette SJ, Walker SM, Cornelissen L, Brasher C, Bower J, Davidson AJ. Changes in the Term Neonatal Electroencephalogram with General Anesthesia: A Systematic Review with Narrative Synthesis. Anesthesiology 2024; 141:670-680. [PMID: 38775960 PMCID: PMC11389889 DOI: 10.1097/aln.0000000000005088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
BACKGROUND Although effects of general anesthesia on neuronal activity in the human neonatal brain are incompletely understood, electroencephalography provides some insight and may identify age-dependent differences. METHODS A systematic search (MEDLINE, Embase, PubMed, and Cochrane Library to November 2023) retrieved English language publications reporting electroencephalography during general anesthesia for cardiac or noncardiac surgery in term neonates (37 to 44 weeks postmenstrual age). Data were extracted, and risk of bias (ROBINS-I Cochrane tool) and quality of evidence (Grading of Recommendations Assessment, Development, and Evaluation [GRADE] checklist) were assessed. RESULTS From 1,155 abstracts, 9 publications (140 neonates; 55% male) fulfilled eligibility criteria. Data were limited, and study quality was very low. The occurrence of discontinuity, a characteristic pattern of alternating higher and lower amplitude electroencephalography segments, was reported with general anesthesia (94 of 119 neonates, 6 publications) and with hypothermia (23 of 23 neonates, 2 publications). Decreased power in the delta (0.5 to 4 Hz) frequency range was also reported with increasing anesthetic dose (22 neonates; 3 publications). CONCLUSION Although evidence gaps were identified, both increasing sevoflurane concentration and decreasing temperature are associated with increasing discontinuity. EDITOR’S PERSPECTIVE
Collapse
Affiliation(s)
- Sebastian J Corlette
- Department of Anaesthesia and Pain Management, Royal Children's Hospital, Melbourne, Victoria, Australia; Department of Paediatrics, Melbourne Medical School, University of Melbourne, Melbourne, Victoria, Australia; and Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Suellen M Walker
- Paediatric Pain Research Group, Developmental Neurosciences, University College London Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Laura Cornelissen
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Boston, Massachusetts; and Harvard Medical School, Boston, Massachusetts
| | - Christopher Brasher
- Department of Anaesthesia and Pain Management, Royal Children's Hospital, Melbourne, Victoria, Australia; and Department of Critical Care, Melbourne Medical School, University of Melbourne, Melbourne, Victoria, Australia
| | - Janeen Bower
- Royal Children's Hospital, Melbourne, Victoria, Australia; and Faculty of Fine Arts and Music, University of Melbourne, Melbourne, Victoria, Australia
| | - Andrew J Davidson
- Department of Anaesthesia and Pain Management, Royal Children's Hospital, Melbourne, Victoria, Australia; Department of Paediatrics, Melbourne Medical School, University of Melbourne, Melbourne, Victoria, Australia; and Melbourne Children's Trial Centre, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| |
Collapse
|
4
|
Li M, Zhang R, Wu S, Cheng L, Fu H, Qu L. Isoflurane anesthesia decreases excitability of inhibitory neurons in the basolateral amygdala leading to anxiety‑like behavior in aged mice. Exp Ther Med 2024; 28:399. [PMID: 39171147 PMCID: PMC11336806 DOI: 10.3892/etm.2024.12688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 07/18/2024] [Indexed: 08/23/2024] Open
Abstract
Anxiety after surgery can be a major factor leading to postoperative cognitive dysfunction, particularly in elderly patients. The role of inhibitory neurons in the basolateral amygdala (BLA) in anxiety-like behaviors in aged mice following isoflurane anesthesia remains unclear. Therefore, the present study aimed to investigate the role of inhibitory neurons in isoflurane-treated mice. A total of 30 C57BL/6 mice (age, 13 months) were allocated into the control and isoflurane anesthesia groups (15 mice/group) and were then subjected to several neurological assessments. Behavioral testing using an elevated plus maze test showed that aged mice in the isoflurane anesthesia group displayed significant anxiety-like behavior, since they spent more time in the closed arm, exhibited more wall climbing behavior and covered more distance. In addition, whole-cell patch-clamp recording revealed that the excitability of the BLA excitatory neurons was notably increased following mice anesthesia with isoflurane, while that of inhibitory neurons was markedly reduced. Following mice treatment with diazepam, the excitability of the BLA inhibitory neurons was notably increased compared with that of the excitatory neurons, which was significantly attenuated. Overall, the results of the current study indicated that anxiety-like behavior could occur in aged mice after isoflurane anesthesia, which could be caused by a reduced excitability of the inhibitory neurons in the BLA area. This process could enhance excitatory neuronal activity in aged mice, thus ultimately promoting the onset of anxiety-like behaviors.
Collapse
Affiliation(s)
- Mengyuan Li
- Medical Center of Anesthesiology and Pain, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330000, P.R. China
| | - Ruijiao Zhang
- Medical Center of Anesthesiology and Pain, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330000, P.R. China
| | - Shiyin Wu
- Medical Center of Anesthesiology and Pain, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330000, P.R. China
| | - Liqin Cheng
- Medical Center of Anesthesiology and Pain, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330000, P.R. China
| | - Huan Fu
- Medical Center of Anesthesiology and Pain, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330000, P.R. China
| | - Liangchao Qu
- Medical Center of Anesthesiology and Pain, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330000, P.R. China
- Department of Anesthesia and Surgery, People's Hospital of Ganjiang New District, Nanchang, Jiangxi 341099, P.R. China
| |
Collapse
|
5
|
Jalalypour F, Howard RJ, Lindahl E. Allosteric Cholesterol Site in Glycine Receptors Characterized through Molecular Simulations. J Phys Chem B 2024; 128:4996-5007. [PMID: 38747451 PMCID: PMC11129184 DOI: 10.1021/acs.jpcb.4c01703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/29/2024] [Accepted: 05/06/2024] [Indexed: 05/24/2024]
Abstract
Glycine receptors are pentameric ligand-gated ion channels that conduct chloride ions across postsynaptic membranes to facilitate fast inhibitory neurotransmission. In addition to gating by the glycine agonist, interactions with lipids and other compounds in the surrounding membrane environment modulate their function, but molecular details of these interactions remain unclear, in particular, for cholesterol. Here, we report coarse-grained simulations in a model neuronal membrane for three zebrafish glycine receptor structures representing apparent resting, open, and desensitized states. We then converted the systems to all-atom models to examine detailed lipid interactions. Cholesterol bound to the receptor at an outer-leaflet intersubunit site, with a preference for the open and desensitized versus resting states, indicating that it can bias receptor function. Finally, we used short atomistic simulations and iterative amino acid perturbations to identify residues that may mediate allosteric gating transitions. Frequent cholesterol contacts in atomistic simulations clustered with residues identified by perturbation analysis and overlapped with mutations influencing channel function and pathology. Cholesterol binding at this site was also observed in a recently reported pig heteromeric glycine receptor. These results indicate state-dependent lipid interactions relevant to allosteric transitions of glycine receptors, including specific amino acid contacts applicable to biophysical modeling and pharmaceutical design.
Collapse
Affiliation(s)
- Farzaneh Jalalypour
- Science
for Life Laboratory, Department of Applied Physics, KTH Royal Institute of Technology, 17121 Solna, Sweden
| | - Rebecca J. Howard
- Science
for Life Laboratory, Department of Applied Physics, KTH Royal Institute of Technology, 17121 Solna, Sweden
- Science
for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, 17121 Solna, Sweden
| | - Erik Lindahl
- Science
for Life Laboratory, Department of Applied Physics, KTH Royal Institute of Technology, 17121 Solna, Sweden
- Science
for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, 17121 Solna, Sweden
| |
Collapse
|
6
|
Abdoullateef BMT, El-Din Al-Mofty S, Azzazy HME. Nanoencapsulation of general anaesthetics. NANOSCALE ADVANCES 2024; 6:1361-1373. [PMID: 38419874 PMCID: PMC10898439 DOI: 10.1039/d3na01012k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/28/2024] [Indexed: 03/02/2024]
Abstract
General anaesthetics are routinely used to sedate patients during prolonged surgeries and administered via intravenous injection and/or inhalation. All anaesthetics have short half-lives, hence the need for their continuous administration. This causes several side effects such as pain, vomiting, nausea, bradycardia, and on rare occasions death post-administration. Several clinical trials studied the synergetic effect of a combination of anaesthetic drugs to reduce the drug load. Another solution is to encapsulate anaesthetics in nanoparticles to reduce their dose and side effects as well as achieve their sustained release manner. Different types of nanoparticles were developed as carriers of intravenous and intrathecal anaesthetics generating platforms which facilitate drug transport across the blood-brain barrier (BBB). Nanocarriers encapsulating common anaesthetic drugs such as propofol, etomidate, and ketamine were developed and characterized in terms of size, stability, onset and duration of loss of right reflex, and tolerance to pain in small animal models. The review discusses the types of nanocarriers used to reduce the side effects of the anaesthetic drugs while prolonging the sedation time. More rigorous studies are still required to evaluate the nanocarrier formulations regarding their ability to deliver anaesthetic drugs across the BBB, safety, and finally applicability in clinical settings.
Collapse
Affiliation(s)
- Basma M T Abdoullateef
- Department of Chemistry, School of Sciences and Engineering, The American University in Cairo New Cairo, AUC Avenue, SSE # 1184, P.O. Box 74 Cairo 11835 Egypt +20 226152559
| | - Saif El-Din Al-Mofty
- Department of Chemistry, School of Sciences and Engineering, The American University in Cairo New Cairo, AUC Avenue, SSE # 1184, P.O. Box 74 Cairo 11835 Egypt +20 226152559
| | - Hassan M E Azzazy
- Department of Chemistry, School of Sciences and Engineering, The American University in Cairo New Cairo, AUC Avenue, SSE # 1184, P.O. Box 74 Cairo 11835 Egypt +20 226152559
- Department of Nanobiophotonics, Leibniz Institute of Photonic Technology Albert Einstein Str. 9 Jena 07745 Germany
| |
Collapse
|
7
|
Liu J, Lin D, Yau A, Cottrell JE, Kass IS. Early-life propofol exposure does not affect later-life GABAergic inhibition, seizure induction, or social behavior. IBRO Neurosci Rep 2023; 14:483-493. [PMID: 37252630 PMCID: PMC10220478 DOI: 10.1016/j.ibneur.2023.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/13/2023] [Indexed: 05/31/2023] Open
Abstract
The early developing brain is especially vulnerable to anesthesia, which can result in long lasting functional changes. We examined the effects of early-life propofol on adult excitatory-inhibitory balance and behavior. Postnatal day 7 male mice were exposed to propofol (250 mg/kg i.p.) and anesthesia was maintained for 2 h; control mice were given the same volume of isotonic saline and treated identically. The behavior and electrophysiology experiments were conducted when the mice were adults. We found that a 2-h neonatal propofol exposure did not significantly reduce paired pulse inhibition, alter the effect of muscimol (3 µM) to inhibit field excitatory postsynaptic potentials or alter the effect of bicuculline (100 µM) to increase the population spike in the CA1 region of hippocampal slices from adult mice. Neonatal propofol did not alter the evoked seizure response to pentylenetetrazol in adult mice. Neonatal propofol did not affect anxiety, as measured in the open field apparatus, depression-like behavior, as measured by the forced swim test, or social interactions with novel mice, in either the three-chamber or reciprocal social tests. These results were different from those with neonatal sevoflurane which demonstrated reduced adult GABAergic inhibition, increased seizure susceptibility and reduced social interaction. Even though sevoflurane and propofol both prominently enhance GABA inhibition, they have unique properties that alter the long-term effects of early-life exposure. These results indicate that clinical studies grouping several general anesthetic agents in a single group should be interpreted with great caution when examining long-term effects.
Collapse
Affiliation(s)
- Jinyang Liu
- Department of Anesthesiology, State University of New York Downstate Health Sciences University, 450 Clarkson Avenue, Brooklyn, NY 11203-2098, USA
| | - Daisy Lin
- Department of Anesthesiology, State University of New York Downstate Health Sciences University, 450 Clarkson Avenue, Brooklyn, NY 11203-2098, USA
- Department of Physiology and Pharmacology, State University of New York Downstate Health Sciences University, 450 Clarkson Avenue, Brooklyn, NY 11203-2098, USA
| | - Alice Yau
- State University of New York Downstate Health Sciences University College of Medicine, 450 Clarkson Avenue, Brooklyn, NY 11203-2098, USA
| | - James E. Cottrell
- Department of Anesthesiology, State University of New York Downstate Health Sciences University, 450 Clarkson Avenue, Brooklyn, NY 11203-2098, USA
| | - Ira S. Kass
- Department of Anesthesiology, State University of New York Downstate Health Sciences University, 450 Clarkson Avenue, Brooklyn, NY 11203-2098, USA
- Department of Physiology and Pharmacology, State University of New York Downstate Health Sciences University, 450 Clarkson Avenue, Brooklyn, NY 11203-2098, USA
| |
Collapse
|
8
|
Goswami U, Rahman MM, Teng J, Hibbs RE. Structural interplay of anesthetics and paralytics on muscle nicotinic receptors. Nat Commun 2023; 14:3169. [PMID: 37264005 DOI: 10.1038/s41467-023-38827-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/17/2023] [Indexed: 06/03/2023] Open
Abstract
General anesthetics and neuromuscular blockers are used together during surgery to stabilize patients in an unconscious state. Anesthetics act mainly by potentiating inhibitory ion channels and inhibiting excitatory ion channels, with the net effect of dampening nervous system excitability. Neuromuscular blockers act by antagonizing nicotinic acetylcholine receptors at the motor endplate; these excitatory ligand-gated ion channels are also inhibited by general anesthetics. The mechanisms by which anesthetics and neuromuscular blockers inhibit nicotinic receptors are poorly understood but underlie safe and effective surgeries. Here we took a direct structural approach to define how a commonly used anesthetic and two neuromuscular blockers act on a muscle-type nicotinic receptor. We discover that the intravenous anesthetic etomidate binds at an intrasubunit site in the transmembrane domain and stabilizes a non-conducting, desensitized-like state of the channel. The depolarizing neuromuscular blocker succinylcholine also stabilizes a desensitized channel but does so through binding to the classical neurotransmitter site. Rocuronium binds in this same neurotransmitter site but locks the receptor in a resting, non-conducting state. Together, this study reveals a structural mechanism for how general anesthetics work on excitatory nicotinic receptors and further rationalizes clinical observations in how general anesthetics and neuromuscular blockers interact.
Collapse
Affiliation(s)
- Umang Goswami
- Department of Neuroscience and O'Donnell Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Md Mahfuzur Rahman
- Department of Neuroscience and O'Donnell Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- Thermo Fisher Scientific, Rockford, IL, 61101, USA
| | - Jinfeng Teng
- Department of Neurobiology, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Ryan E Hibbs
- Department of Neuroscience and O'Donnell Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
- Department of Neurobiology, University of California, San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
9
|
Pliushcheuskaya P, Künze G. Recent Advances in Computer-Aided Structure-Based Drug Design on Ion Channels. Int J Mol Sci 2023; 24:ijms24119226. [PMID: 37298178 DOI: 10.3390/ijms24119226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/16/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
Ion channels play important roles in fundamental biological processes, such as electric signaling in cells, muscle contraction, hormone secretion, and regulation of the immune response. Targeting ion channels with drugs represents a treatment option for neurological and cardiovascular diseases, muscular degradation disorders, and pathologies related to disturbed pain sensation. While there are more than 300 different ion channels in the human organism, drugs have been developed only for some of them and currently available drugs lack selectivity. Computational approaches are an indispensable tool for drug discovery and can speed up, especially, the early development stages of lead identification and optimization. The number of molecular structures of ion channels has considerably increased over the last ten years, providing new opportunities for structure-based drug development. This review summarizes important knowledge about ion channel classification, structure, mechanisms, and pathology with the main focus on recent developments in the field of computer-aided, structure-based drug design on ion channels. We highlight studies that link structural data with modeling and chemoinformatic approaches for the identification and characterization of new molecules targeting ion channels. These approaches hold great potential to advance research on ion channel drugs in the future.
Collapse
Affiliation(s)
- Palina Pliushcheuskaya
- Institute for Drug Discovery, Medical Faculty, University of Leipzig, Brüderstr. 34, D-04103 Leipzig, Germany
| | - Georg Künze
- Institute for Drug Discovery, Medical Faculty, University of Leipzig, Brüderstr. 34, D-04103 Leipzig, Germany
- Interdisciplinary Center for Bioinformatics, University of Leipzig, Härtelstr. 16-18, D-04107 Leipzig, Germany
| |
Collapse
|
10
|
Sakai DM, Trenholme HN, Torpy FJ, Craig HA, Reed RA. Evaluation of the electroencephalogram in awake, sedated, and anesthetized dogs. Res Vet Sci 2023; 159:66-71. [PMID: 37087922 DOI: 10.1016/j.rvsc.2023.04.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/08/2023] [Accepted: 04/15/2023] [Indexed: 04/25/2023]
Abstract
Sedation and anesthesia alter the raw electroencephalogram (EEG). Interpretation of the EEG is facilitated by measuring the patient state index (PSI), visual inspection of density spectral arrays (DSA), and power density analysis of the delta (0.1-4 Hz), theta (4-8 Hz), alpha (8-12 Hz), and beta plus gamma (12-40 Hz) frequency bands. Baseline data were recorded in six male intact Beagles before sedation with intravenous acepromazine (0.03 mg/kg) and hydromorphone (0.1 mg/kg). Anesthesia was induced and maintained for five minutes with intravenous propofol (1.5 mg/kg over five seconds followed by 12 mg/kg/h). Additional propofol (0.5-1.0 mg/kg and up to 16.7 mg/kg/h) was administered within this time frame if the PSI was above 50. The effects of sedation and anesthesia were evaluated with a mixed-effect model followed by Dunnett's test (alpha = 0.05). The average baseline PSI (95% confidence interval) was 93.0 (91.4-94.6) and decreased on sedation [88.7 (86.0-91.3); p = 0.039] and anesthesia [44.5 (40.8-48.2); p < 0.001]. The awake DSA showed dense power in all bands. The power density decreased with sedation. During anesthesia, the power density was reduced in frequencies above 12 Hz. The baseline power density on the delta, theta, alpha, and beta plus gamma bands was higher than sedation (p < 0.007). Compared to baseline, anesthesia had lower power on delta, and beta plus gamma bands (p < 0.002). The interpretation in awake, sedated, and anesthetized dogs of the EEG can be facilitated by processing and generating PSI and DSA.
Collapse
Affiliation(s)
- Daniel M Sakai
- Department of Small Animal Medicine and Surgery, College of Veterinary Medicine, University of Georgia, 2200 College Station Road, Athens, GA 30605, USA.
| | - H Nicole Trenholme
- Department of Large Animal Medicine, College of Veterinary Medicine, University of Georgia, 2200 College Station Road, Athens, GA 30605, USA
| | - Frederick J Torpy
- Department of Small Animal Medicine and Surgery, College of Veterinary Medicine, University of Georgia, 2200 College Station Road, Athens, GA 30605, USA
| | - Hannah A Craig
- Department of Small Animal Medicine and Surgery, College of Veterinary Medicine, University of Georgia, 2200 College Station Road, Athens, GA 30605, USA
| | - Rachel A Reed
- Department of Large Animal Medicine, College of Veterinary Medicine, University of Georgia, 2200 College Station Road, Athens, GA 30605, USA
| |
Collapse
|
11
|
Rastegarmanesh A, Rostami B, Nasimi A, Hatam M. In the parvocellular part of paraventricular nucleus, glutamatergic and GABAergic neurons mediate cardiovascular responses to AngII. Synapse 2023; 77:e22259. [PMID: 36271777 DOI: 10.1002/syn.22259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 09/03/2022] [Accepted: 09/18/2022] [Indexed: 01/29/2023]
Abstract
Angiotensinergic, GABAergic, and glutamatergic neurons are present in the parvocellular region of the paraventricular nucleus (PVNp). It has been shown that microinjection of AngII into the PVNp increases arterial pressure (AP) and heart rate (HR). The presence of synapses between the angiotensinergic, GABAergic, and glutamatergic neurons has been shown in the PVNp. In this study, we investigated the possible interaction between these three systems of the PVNp for control of AP and HR. All drugs were bilaterally (100 nl/side) microinjected into the PVNp of urethane-anesthetized rats, and AP and HR were recorded continuously. Microinjection of AngII into the PVNp produced pressor and tachycardia responses. Pretreatment of PVNp with AP5 or CNQX, glutamatergic NMDA and AMPA receptors antagonists, attenuated the responses to AngII. Pretreatment of PVNp with bicuculline greatly attenuated the pressor and tachycardia responses to AngII. In conclusion, this study provides the first evidence that pressor and tachycardia responses to microinjection of AngII into the PVNp are partly mediated by both NMDA and non-NMDA receptors of glutamate. Activation of glutamatergic neurons by AngII stimulates the sympathoexcitatory neurons. We also showed that the responses to AngII were strongly mediated by GABAA receptors, probably through activation of GABAergic neurons, which in turn inhibit sympathoinhibitory neurons.
Collapse
Affiliation(s)
- Ali Rastegarmanesh
- Department of Physiology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Bahar Rostami
- Department of Physiology, Shiraz University of Medical Sciences, Shiraz, Iran.,Nanomedicine and Nanobiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Nasimi
- Department of Physiology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Masoumeh Hatam
- Department of Physiology, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
12
|
Alhadyan SK, Sivaraman V, Onyenwoke RU. E-cigarette Flavors, Sensory Perception, and Evoked Responses. Chem Res Toxicol 2022; 35:2194-2209. [PMID: 36480683 DOI: 10.1021/acs.chemrestox.2c00268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The chemosensory experiences evoked by flavors encompass a number of unique sensations that include olfactory stimuli (smell), gustatory stimuli (taste, i.e., salty, sweet, sour, bitter, and umami (also known as "savoriness")), and chemesthesis (touch). As such, the responses evoked by flavors are complex and, as briefly stated above, involve multiple perceptive mechanisms. The practice of adding flavorings to tobacco products dates back to the 17th century but is likely much older. More recently, the electronic cigarette or "e-cigarette" and its accompanying flavored e-liquids emerged on to the global market. These new products contain no combustible tobacco but often contain large concentrations (reported from 0 to more than 50 mg/mL) of nicotine as well as numerous flavorings and/or flavor chemicals. At present, there are more than 400 e-cigarette brands available along with potentially >15,000 different/unique flavored products. However, surprisingly little is known about the flavors/flavor chemicals added to these products, which can account for >1% by weight of some e-liquids, and their resultant chemosensory experiences, and the US FDA has done relatively little, until recently, to regulate these products. This article will discuss e-cigarette flavors and flavor chemicals, their elicited responses, and their sensory effects in some detail.
Collapse
Affiliation(s)
- Shatha K Alhadyan
- Department of Pharmaceutical Sciences, North Carolina Central University, Durham, North Carolina 27707, United States
| | - Vijay Sivaraman
- Department of Biological and Biomedical Sciences, North Carolina Central University, Durham, North Carolina 27707, United States
| | - Rob U Onyenwoke
- Department of Pharmaceutical Sciences, North Carolina Central University, Durham, North Carolina 27707, United States
- Biomanufacturing Research Institute and Technology Enterprise (BRITE), North Carolina Central University, Durham, North Carolina 27707, United States
| |
Collapse
|
13
|
Vellinga R, Valk BI, Absalom AR, Struys MMRF, Barends CRM. What's New in Intravenous Anaesthesia? New Hypnotics, New Models and New Applications. J Clin Med 2022; 11:jcm11123493. [PMID: 35743563 PMCID: PMC9224877 DOI: 10.3390/jcm11123493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/10/2022] [Accepted: 06/14/2022] [Indexed: 02/01/2023] Open
Abstract
New anaesthetic drugs and new methods to administer anaesthetic drugs are continually becoming available, and the development of new PK-PD models furthers the possibilities of using arget controlled infusion (TCI) for anaesthesia. Additionally, new applications of existing anaesthetic drugs are being investigated. This review describes the current situation of anaesthetic drug development and methods of administration, and what can be expected in the near future.
Collapse
Affiliation(s)
- Remco Vellinga
- Department of Anesthesiology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (B.I.V.); (A.R.A.); (M.M.R.F.S.); (C.R.M.B.)
- Correspondence:
| | - Beatrijs I. Valk
- Department of Anesthesiology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (B.I.V.); (A.R.A.); (M.M.R.F.S.); (C.R.M.B.)
- Department of Anesthesiology, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Anthony R. Absalom
- Department of Anesthesiology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (B.I.V.); (A.R.A.); (M.M.R.F.S.); (C.R.M.B.)
| | - Michel M. R. F. Struys
- Department of Anesthesiology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (B.I.V.); (A.R.A.); (M.M.R.F.S.); (C.R.M.B.)
- Department of Basic and Applied Medical Sciences, Ghent University, 9041 Ghent, Belgium
| | - Clemens R. M. Barends
- Department of Anesthesiology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (B.I.V.); (A.R.A.); (M.M.R.F.S.); (C.R.M.B.)
| |
Collapse
|
14
|
Rudge JD. A New Hypothesis for Alzheimer's Disease: The Lipid Invasion Model. J Alzheimers Dis Rep 2022; 6:129-161. [PMID: 35530118 PMCID: PMC9028744 DOI: 10.3233/adr-210299] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 02/05/2022] [Indexed: 02/07/2023] Open
Abstract
This paper proposes a new hypothesis for Alzheimer's disease (AD)-the lipid invasion model. It argues that AD results from external influx of free fatty acids (FFAs) and lipid-rich lipoproteins into the brain, following disruption of the blood-brain barrier (BBB). The lipid invasion model explains how the influx of albumin-bound FFAs via a disrupted BBB induces bioenergetic changes and oxidative stress, stimulates microglia-driven neuroinflammation, and causes anterograde amnesia. It also explains how the influx of external lipoproteins, which are much larger and more lipid-rich, especially more cholesterol-rich, than those normally present in the brain, causes endosomal-lysosomal abnormalities and overproduction of the peptide amyloid-β (Aβ). This leads to the formation of amyloid plaques and neurofibrillary tangles, the most well-known hallmarks of AD. The lipid invasion model argues that a key role of the BBB is protecting the brain from external lipid access. It shows how the BBB can be damaged by excess Aβ, as well as by most other known risk factors for AD, including aging, apolipoprotein E4 (APOE4), and lifestyle factors such as hypertension, smoking, obesity, diabetes, chronic sleep deprivation, stress, and head injury. The lipid invasion model gives a new rationale for what we already know about AD, explaining its many associated risk factors and neuropathologies, including some that are less well-accounted for in other explanations of AD. It offers new insights and suggests new ways to prevent, detect, and treat this destructive disease and potentially other neurodegenerative diseases.
Collapse
Affiliation(s)
- Jonathan D’Arcy Rudge
- School of Biological Sciences, University of Reading, Reading, Berkshire, United Kingdom
| |
Collapse
|
15
|
Propofol and Sevoflurane Anesthesia in Early Childhood Do Not Influence Seizure Threshold in Adult Rats. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182312367. [PMID: 34886095 PMCID: PMC8656979 DOI: 10.3390/ijerph182312367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/13/2021] [Accepted: 11/16/2021] [Indexed: 11/17/2022]
Abstract
Experimental studies have demonstrated that general anesthetics administered during the period of synaptogenesis may induce widespread neurodegeneration, which results in permanent cognitive and behavioral deficits. What remains to be elucidated is the extent of the potential influence of the commonly used hypnotics on comorbidities including epilepsy, which may have resulted from increased neurodegeneration during synaptogenesis. This study aimed to test the hypothesis that neuropathological changes induced by anesthetics during synaptogenesis may lead to changes in the seizure threshold during adulthood. Wistar rat pups were treated with propofol, sevoflurane, or saline on the sixth postnatal day. The long-term effects of prolonged propofol and sevoflurane anesthesia on epileptogenesis were assessed using corneal kindling, pilocarpine-, and pentylenetetrazole-induced seizure models in adult animals. Body weight gain was measured throughout the experiment. No changes in the seizure threshold were observed in the three models. A significant weight gain after exposure to anesthetics during synaptogenesis was observed in the propofol group but not in the sevoflurane group. The results suggest that single prolonged exposure to sevoflurane or propofol during synaptogenesis may have no undesirable effects on epileptogenesis in adulthood.
Collapse
|
16
|
Islam MS, Gaston JP, Baker MAB. Fluorescence Approaches for Characterizing Ion Channels in Synthetic Bilayers. MEMBRANES 2021; 11:857. [PMID: 34832086 PMCID: PMC8619978 DOI: 10.3390/membranes11110857] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 10/25/2021] [Accepted: 10/28/2021] [Indexed: 12/12/2022]
Abstract
Ion channels are membrane proteins that play important roles in a wide range of fundamental cellular processes. Studying membrane proteins at a molecular level becomes challenging in complex cellular environments. Instead, many studies focus on the isolation and reconstitution of the membrane proteins into model lipid membranes. Such simpler, in vitro, systems offer the advantage of control over the membrane and protein composition and the lipid environment. Rhodopsin and rhodopsin-like ion channels are widely studied due to their light-interacting properties and are a natural candidate for investigation with fluorescence methods. Here we review techniques for synthesizing liposomes and for reconstituting membrane proteins into lipid bilayers. We then summarize fluorescence assays which can be used to verify the functionality of reconstituted membrane proteins in synthetic liposomes.
Collapse
Affiliation(s)
- Md. Sirajul Islam
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Kensington, NSW 2052, Australia; (M.S.I.); (J.P.G.)
| | - James P. Gaston
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Kensington, NSW 2052, Australia; (M.S.I.); (J.P.G.)
| | - Matthew A. B. Baker
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Kensington, NSW 2052, Australia; (M.S.I.); (J.P.G.)
- CSIRO Synthetic Biology Future Science Platform, GPO Box 2583, Brisbane, QLD 4001, Australia
| |
Collapse
|
17
|
He E, Xu S, Dai Y, Wang Y, Xiao G, Xie J, Xu S, Fan P, Mo F, Wang M, Song Y, Yin H, Li Y, Wang Y, Cai X. SWCNTs/PEDOT:PSS-Modified Microelectrode Arrays for Dual-Mode Detection of Electrophysiological Signals and Dopamine Concentration in the Striatum under Isoflurane Anesthesia. ACS Sens 2021; 6:3377-3386. [PMID: 34410704 DOI: 10.1021/acssensors.1c01241] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Accurate detection of the degree of isoflurane anesthesia during a surgery is important to avoid the risk of overdose isoflurane anesthesia timely. To address this challenge, a four-shank implantable microelectrode array (MEA) was fabricated for the synchronous real-time detection of dual-mode signals [electrophysiological signal and dopamine (DA) concentration] in rat striatum. The SWCNTs/PEDOT:PSS nanocomposites were modified onto the MEAs, which significantly improved the electrical and electrochemical performances of the MEAs. The electrical performance of the modified MEAs with a low impedance (16.20 ± 1.68 kΩ) and a small phase delay (-27.76 ± 0.82°) enabled the MEAs to detect spike firing with a high signal-to-noise ratio (> 3). The electrochemical performance of the modified MEAs with a low oxidation potential (160 mV), a low detection limit (10 nM), high sensitivity (217 pA/μM), and a wide linear range (10 nM-72 μM) met the specific requirements for DA detection in vivo. The anesthetic effect of isoflurane was mediated by inhibiting the spike firing of D2_SPNs (spiny projection neurons expressing the D2-type DA receptor) and the broadband oscillation rhythm of the local field potential (LFP). Therefore, the spike firing rate of D2_SPNs and the power of LFP could reflect the degree of isoflurane anesthesia together. During the isoflurane anesthesia-induced death procedure, we found that electrophysiological activities and DA release were strongly inhibited, and changes in the DA concentration provided more details regarding this procedure. The dual-mode recording MEA provided a detection method for the degree of isoflurane anesthesia and a prediction method for fatal overdose isoflurane anesthesia.
Collapse
Affiliation(s)
- Enhui He
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shengwei Xu
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuchuan Dai
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yiding Wang
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guihua Xiao
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingyu Xie
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shihong Xu
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Penghui Fan
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fan Mo
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mixia Wang
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yilin Song
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huabing Yin
- Division of Biomedical Engineering, James Watt School of Engineering, University of Glasgow, Oakfield Avenue, Glasgow G12 8LT, United Kingdom
| | - Yinghui Li
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing 100094, China
| | - Ying Wang
- Department of Anesthesiology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, China
| | - Xinxia Cai
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
18
|
Lin D, Liu J, Florveus A, Ganesan V, Cottrell JE, Kass IS. Exposure to Sevoflurane, But Not Ketamine, During Early-life Brain Development has Long-Lasting Effects on GABA A Receptor Mediated Inhibitory Neurotransmission. Neuroscience 2021; 472:116-127. [PMID: 34384844 DOI: 10.1016/j.neuroscience.2021.08.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/30/2021] [Accepted: 08/02/2021] [Indexed: 11/19/2022]
Abstract
Understanding the different mechanisms associated with different anesthetic targeted receptors is critical towards identifying accurate long-term outcome measures as a result of early-life anesthetic exposure. We examined changes in GABAA receptor mediated neurotransmission by a predominately GABAA receptor targeted anesthetic, sevoflurane or a predominately NMDA receptor targeted anesthetic, ketamine. Postnatal day 7 male mice were exposed to sevoflurane or ketamine and examined as adults for changes in inhibitory neurotransmission and its associated change in induced seizure activity. Paired pulse stimulation experiment showed that early-life sevoflurane treated mice had significantly less hippocampal CA1 inhibition later in life. There was significantly increased CA1 excitatory output in the sevoflurane treated group compared to the no sevoflurane treated group after the GABA agonist muscimol. Similar to our previously established data for early-life sevoflurane, here we established early-life ketamine administration resulted in neurodevelopmental behavioral changes later in life. However, muscimol did not produce a significant difference on the excitatory CA1 output between early-life ketamine group and saline group. While sevoflurane treated mice showed significantly higher induced seizure intensities and shorter latency periods to reach seizure intensity stage 5 (Racine score) compared with no sevoflurane treated mice, this phenomenon was not observed in the ketamine vs. saline treated groups. Early-life sevoflurane, but not ketamine, exposure reduced GABAergic inhibition and enhanced seizure activity later in life. The results indicate that early-life exposure to different anesthetics lead to distinct long-term effects and their unique pathways require mechanistic studies to understand induced long-lasting changes in the brain.
Collapse
Affiliation(s)
- Daisy Lin
- Department of Anesthesiology, State University of New York Downstate Health Sciences University, 450 Clarkson Avenue, Brooklyn, NY 11203-2098, USA; Department of Physiology and Pharmacology, State University of New York Downstate Health Sciences University, 450 Clarkson Avenue, Brooklyn, NY 11203-2098, USA
| | - Jinyang Liu
- Department of Anesthesiology, State University of New York Downstate Health Sciences University, 450 Clarkson Avenue, Brooklyn, NY 11203-2098, USA
| | - Alizna Florveus
- Department of Anesthesiology, State University of New York Downstate Health Sciences University, 450 Clarkson Avenue, Brooklyn, NY 11203-2098, USA
| | - Vanathi Ganesan
- Department of Anesthesiology, State University of New York Downstate Health Sciences University, 450 Clarkson Avenue, Brooklyn, NY 11203-2098, USA
| | - James E Cottrell
- Department of Anesthesiology, State University of New York Downstate Health Sciences University, 450 Clarkson Avenue, Brooklyn, NY 11203-2098, USA
| | - Ira S Kass
- Department of Anesthesiology, State University of New York Downstate Health Sciences University, 450 Clarkson Avenue, Brooklyn, NY 11203-2098, USA; Department of Physiology and Pharmacology, State University of New York Downstate Health Sciences University, 450 Clarkson Avenue, Brooklyn, NY 11203-2098, USA.
| |
Collapse
|
19
|
Kłopotowski K, Czyżewska MM, Mozrzymas JW. Glycine substitution of α1F64 residue at the loop D of GABA A receptor impairs gating - Implications for importance of binding site-channel gate linker rigidity. Biochem Pharmacol 2021; 192:114668. [PMID: 34216603 DOI: 10.1016/j.bcp.2021.114668] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 06/27/2021] [Accepted: 06/28/2021] [Indexed: 12/29/2022]
Abstract
GABAA receptors (GABAARs) play a crucial role in mediating inhibition in adult mammalian brains. In the recent years, an impressive progress in revealing the static structure of GABAARs was achieved but the molecular mechanisms underlying their conformational transitions remain elusive. Phenylalanine 64 (α1F64) is located at the loop D of the orthosteric binding site of GABAAR and was found to directly interact with GABA molecule. Mutations of α1F64 were demonstrated to affect not only binding but also some gating properties. Loop D is a rigid β strand which seems to be particularly suitable to convey activatory signaling from the ligand binding site (LBS) to the gate at the channel pore. To test this scenario, we have investigated the substitution of α1F64 with glycine, the smallest amino acid, widely recognized as a rigidity "reducer" of protein structures. To this end, we assessed the impact of the α1F64G mutation in the α1β2γ2L type of GABAARs on gating properties by analyzing both macroscopic responses to rapid agonist applications and single-channel currents. We found that this substitution dramatically altered all gating features of the receptor (opening/closing, preactivation and desensitization) which contrasts with markedly weaker effects of previously considered substitutions (α1F64L and α1F64A). In particular, α1F64G mutation practically abolished the desensitization process. At the same time, the α1F64G mutant maintained gating integrity manifested as single-channel activity in the form of clusters. We conclude that rigidity of the loop D plays a crucial role in conveying the activation signal from the LBS to the channel gate.
Collapse
Affiliation(s)
- Karol Kłopotowski
- Wroclaw Medical University, Department of Biophysics and Neuroscience, Chalubinskiego 3A, Wroclaw, Dolnośląskie PL 50-368, +48 71 784 15 51, Poland.
| | - Marta M Czyżewska
- Wroclaw Medical University, Department of Biophysics and Neuroscience, Chalubinskiego 3A, Wroclaw, Dolnośląskie PL 50-368, +48 71 784 15 51, Poland
| | - Jerzy W Mozrzymas
- Wroclaw Medical University, Department of Biophysics and Neuroscience, Chalubinskiego 3A, Wroclaw, Dolnośląskie PL 50-368, +48 71 784 15 51, Poland.
| |
Collapse
|
20
|
Kim JJ, Hibbs RE. Direct Structural Insights into GABA A Receptor Pharmacology. Trends Biochem Sci 2021; 46:502-517. [PMID: 33674151 DOI: 10.1016/j.tibs.2021.01.011] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 01/08/2021] [Accepted: 01/25/2021] [Indexed: 12/18/2022]
Abstract
GABAA receptors are pentameric ligand-gated ion channels that mediate most fast neuronal inhibition in the brain. In addition to their important physiological roles, they are noteworthy in their rich pharmacology; prominent drugs used for anxiety, insomnia, and general anesthesia act through positive modulation of GABAA receptors. Direct structural information for how these drugs work was absent until recently. Efforts in structural biology over the past few years have revealed how important drug classes and natural products interact with the GABAA receptor, providing a foundation for studies in dynamics and structure-guided drug design. Here, we review recent developments in GABAA receptor structural pharmacology, focusing on subunit assemblies of the receptor found at synapses.
Collapse
Affiliation(s)
- Jeong Joo Kim
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ryan E Hibbs
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
21
|
Wenzel M, Leunig A, Han S, Peterka DS, Yuste R. Prolonged anesthesia alters brain synaptic architecture. Proc Natl Acad Sci U S A 2021; 118:e2023676118. [PMID: 33568534 PMCID: PMC7924219 DOI: 10.1073/pnas.2023676118] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Prolonged medically induced coma (pMIC) is carried out routinely in intensive care medicine. pMIC leads to cognitive impairment, yet the underlying neuromorphological correlates are still unknown, as no direct studies of MIC exceeding ∼6 h on neural circuits exist. Here, we establish pMIC (up to 24 h) in adolescent and mature mice, and combine longitudinal two-photon imaging of cortical synapses with repeated behavioral object recognition assessments. We find that pMIC affects object recognition, and that it is associated with enhanced synaptic turnover, generated by enhanced synapse formation during pMIC, while the postanesthetic period is dominated by synaptic loss. Our results demonstrate major side effects of prolonged anesthesia on neural circuit structure.
Collapse
Affiliation(s)
- Michael Wenzel
- Neurotechnology Center, Department of Biological Sciences, Columbia University, New York, NY 10027
| | - Alexander Leunig
- Neurotechnology Center, Department of Biological Sciences, Columbia University, New York, NY 10027
| | - Shuting Han
- Neurotechnology Center, Department of Biological Sciences, Columbia University, New York, NY 10027
| | - Darcy S Peterka
- Neurotechnology Center, Department of Biological Sciences, Columbia University, New York, NY 10027
| | - Rafael Yuste
- Neurotechnology Center, Department of Biological Sciences, Columbia University, New York, NY 10027
| |
Collapse
|
22
|
Abstract
General anesthesia serves a critically important function in the clinical care of human patients. However, the anesthetized state has foundational implications for biology because anesthetic drugs are effective in organisms ranging from paramecia, to plants, to primates. Although unconsciousness is typically considered the cardinal feature of general anesthesia, this endpoint is only strictly applicable to a select subset of organisms that are susceptible to being anesthetized. We review the behavioral endpoints of general anesthetics across species and propose the isolation of an organism from its environment - both in terms of the afferent arm of sensation and the efferent arm of action - as a generalizable definition. We also consider the various targets and putative mechanisms of general anesthetics across biology and identify key substrates that are conserved, including cytoskeletal elements, ion channels, mitochondria, and functionally coupled electrical or neural activity. We conclude with a unifying framework related to network function and suggest that general anesthetics - from single cells to complex brains - create inefficiency and enhance modularity, leading to the dissociation of functions both within an organism and between the organism and its surroundings. Collectively, we demonstrate that general anesthesia is not restricted to the domain of modern medicine but has broad biological relevance with wide-ranging implications for a diverse array of species.
Collapse
Affiliation(s)
- Max B Kelz
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Perelman School of Medicine, 3620 Hamilton Walk, 334 John Morgan Building, Philadelphia, PA 19104, USA; Center for Sleep and Circadian Neurobiology, University of Pennsylvania, Translational Research Laboratories, 125 S. 31st St., Philadelphia, PA 19104-3403, USA; Mahoney Institute for Neuroscience, University of Pennsylvania, Clinical Research Building, 415 Curie Blvd, Philadelphia, PA 19104, USA.
| | - George A Mashour
- Department of Anesthesiology, University of Michigan, 7433 Medical Science Building 1, 1150 West Medical Center Drive, Ann Arbor, MI 48109, USA; Center for Consciousness Science, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Neuroscience Graduate Program, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| |
Collapse
|
23
|
Kim JJ, Gharpure A, Teng J, Zhuang Y, Howard RJ, Zhu S, Noviello CM, Walsh RM, Lindahl E, Hibbs RE. Shared structural mechanisms of general anaesthetics and benzodiazepines. Nature 2020; 585:303-308. [PMID: 32879488 PMCID: PMC7486282 DOI: 10.1038/s41586-020-2654-5] [Citation(s) in RCA: 200] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 06/01/2020] [Indexed: 01/17/2023]
Abstract
Most general anaesthetics and classical benzodiazepine drugs act through positive modulation of γ-aminobutyric acid type A (GABAA) receptors to dampen neuronal activity in the brain1-5. However, direct structural information on the mechanisms of general anaesthetics at their physiological receptor sites is lacking. Here we present cryo-electron microscopy structures of GABAA receptors bound to intravenous anaesthetics, benzodiazepines and inhibitory modulators. These structures were solved in a lipidic environment and are complemented by electrophysiology and molecular dynamics simulations. Structures of GABAA receptors in complex with the anaesthetics phenobarbital, etomidate and propofol reveal both distinct and common transmembrane binding sites, which are shared in part by the benzodiazepine drug diazepam. Structures in which GABAA receptors are bound by benzodiazepine-site ligands identify an additional membrane binding site for diazepam and suggest an allosteric mechanism for anaesthetic reversal by flumazenil. This study provides a foundation for understanding how pharmacologically diverse and clinically essential drugs act through overlapping and distinct mechanisms to potentiate inhibitory signalling in the brain.
Collapse
Affiliation(s)
- Jeong Joo Kim
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Anant Gharpure
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jinfeng Teng
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yuxuan Zhuang
- Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, Solna, Sweden
| | - Rebecca J Howard
- Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, Solna, Sweden
| | - Shaotong Zhu
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Colleen M Noviello
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Richard M Walsh
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Erik Lindahl
- Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, Solna, Sweden
- Department of Applied Physics, Swedish e-Science Research Center, KTH Royal Institute of Technology, Solna, Sweden
| | - Ryan E Hibbs
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
24
|
Ilczyszyn MM, Ilczyszyn M, Selent M. Structure and stability of p-cresol – xenon clathrate: Raman spectroscopy study. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
25
|
Abstract
Anesthetics are used every day in thousands of hospitals to induce loss of consciousness, yet scientists and the doctors who administer these compounds lack a molecular understanding for their action. The chemical properties of anesthetics suggest that they could target the plasma membrane. Here the authors show anesthetics directly target a subset of plasma membrane lipids to activate an ion channel in a two-step mechanism. Applying the mechanism, the authors mutate a fruit fly to be less sensitive to anesthetics and convert a nonanesthetic-sensitive channel into a sensitive one. These findings suggest a membrane-mediated mechanism will be an important consideration for other proteins of which direct binding of anesthetic has yet to explain conserved sensitivity to chemically diverse anesthetics. Inhaled anesthetics are a chemically diverse collection of hydrophobic molecules that robustly activate TWIK-related K+ channels (TREK-1) and reversibly induce loss of consciousness. For 100 y, anesthetics were speculated to target cellular membranes, yet no plausible mechanism emerged to explain a membrane effect on ion channels. Here we show that inhaled anesthetics (chloroform and isoflurane) activate TREK-1 through disruption of phospholipase D2 (PLD2) localization to lipid rafts and subsequent production of signaling lipid phosphatidic acid (PA). Catalytically dead PLD2 robustly blocks anesthetic TREK-1 currents in whole-cell patch-clamp recordings. Localization of PLD2 renders the TRAAK channel sensitive, a channel that is otherwise anesthetic insensitive. General anesthetics, such as chloroform, isoflurane, diethyl ether, xenon, and propofol, disrupt lipid rafts and activate PLD2. In the whole brain of flies, anesthesia disrupts rafts and PLDnull flies resist anesthesia. Our results establish a membrane-mediated target of inhaled anesthesia and suggest PA helps set thresholds of anesthetic sensitivity in vivo.
Collapse
|
26
|
Li D, Chen M, Meng T, Fei J. Hippocampal microglial activation triggers a neurotoxic-specific astrocyte response and mediates etomidate-induced long-term synaptic inhibition. J Neuroinflammation 2020; 17:109. [PMID: 32264970 PMCID: PMC7140340 DOI: 10.1186/s12974-020-01799-0] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 03/31/2020] [Indexed: 01/06/2023] Open
Abstract
Background Accumulating evidence has highlighted the importance of microglial and astrocyte responses in the pathological development of postoperative cognitive dysfunction (POCD). However, the mechanisms involved are not well understood. Methods A perioperative neurocognitive disorders (PND) mouse model was generated by administering etomidate, and cognitive function was assessed using the Morris water maze and novel object recognition tests. Excitatory and inhibitory postsynaptic currents were recorded to analyze neuronal activity. In addition, microglia and astrocytes were isolated by magnetic-activated cell sorting, and genes that were activated in these cells were identified using quantitative polymerase chain reaction. Results We observed dramatic cognitive impairment at 1 and 3 weeks after etomidate was administered to 18 month-old mice. Microglia and astrocytes isolated from the hippocampus showed significant microglial activation during the early pathological stage (i.e., 1 week after etomidate injection) and an A1-specific astrocyte response during the late pathological stage (i.e., 3 weeks after etomidate injection). Furthermore, when microglia were eliminated before etomidate was injected, the A1-specific astrocyte activation response was significantly reduced, and cognitive function improved. However, when microglia were eliminated after etomidate application, astrocyte activation and cognitive function were not significantly altered. In addition, activating microglia immediately after a sedative dose of etomidate was injected markedly increased A1-specific astrocyte activation and cognitive dysfunction. Conclusions A1-specific astrocyte activation is triggered by activated microglia during the initial pathological stage of PND and induces long-term synaptic inhibition and cognitive deficiencies. These results improve our understanding of how PND develops and may suggest therapeutic targets.
Collapse
Affiliation(s)
- Dongliang Li
- Department of Anesthesiology, Qilu Hospital of Shandong University, Ji'nan, 250012, China
| | - Mingming Chen
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, 210009, China
| | - Tao Meng
- Department of Anesthesiology, Qilu Hospital of Shandong University, Ji'nan, 250012, China
| | - Jianchun Fei
- Department of Anesthesiology, Qilu Hospital of Shandong University, Ji'nan, 250012, China.
| |
Collapse
|
27
|
Jatczak-Śliwa M, Kisiel M, Czyzewska MM, Brodzki M, Mozrzymas JW. GABA A Receptor β 2E155 Residue Located at the Agonist-Binding Site Is Involved in the Receptor Gating. Front Cell Neurosci 2020; 14:2. [PMID: 32116555 PMCID: PMC7026498 DOI: 10.3389/fncel.2020.00002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 01/06/2020] [Indexed: 12/02/2022] Open
Abstract
GABAA receptors (GABAARs) play a crucial role in mediating inhibition in the adult brain. In spite of progress in describing (mainly) the static structures of this receptor, the molecular mechanisms underlying its activation remain unclear. It is known that in the α1β2γ2L receptors, the mutation of the β2E155 residue, at the orthosteric binding site, strongly impairs the receptor activation, but the molecular and kinetic mechanisms of this effect remain elusive. Herein, we investigated the impact of the β2E155C mutation on binding and gating of the α1β2γ2L receptor. To this end, we combined the macroscopic and single-channel analysis, the use of different agonists [GABA and muscimol (MSC)] and flurazepam (FLU) as a modulator. As expected, the β2E155C mutation caused a vast right shift of the dose–response (for GABA and MSC) and, additionally, dramatic changes in the time course of current responses, indicative of alterations in gating. Mutated receptors showed reduced maximum open probability and enhanced receptor spontaneous activity. Model simulations for macroscopic currents revealed that the primary effect of the mutation was the downregulation of the preactivation (flipping) rate. Experiments with MSC and FLU further confirmed a reduction in the preactivation rate. Our single-channel analysis revealed the mutation impact mainly on the second component in the shut times distributions. Based on model simulations, this finding further confirms that this mutation affects mostly the preactivation transition, supporting thus the macroscopic data. Altogether, we provide new evidence that the β2E155 residue is involved in both binding and gating (primarily preactivation).
Collapse
Affiliation(s)
- Magdalena Jatczak-Śliwa
- Laboratory of Neuroscience, Department of Biophysics, Wrocław Medical University, Wrocław, Poland.,Department of Molecular Physiology and Neurobiology, University of Wrocław, Wrocław, Poland
| | - Magdalena Kisiel
- Laboratory of Neuroscience, Department of Biophysics, Wrocław Medical University, Wrocław, Poland
| | | | - Marek Brodzki
- Laboratory of Neuroscience, Department of Biophysics, Wrocław Medical University, Wrocław, Poland.,Department of Molecular Physiology and Neurobiology, University of Wrocław, Wrocław, Poland
| | | |
Collapse
|
28
|
Tanaka R, Tanaka S, Ichino T, Ishida T, Fuseya S, Kawamata M. Differential effects of sevoflurane and propofol on an electroretinogram and visual evoked potentials. J Anesth 2020; 34:298-302. [PMID: 31950267 DOI: 10.1007/s00540-020-02733-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 12/31/2019] [Indexed: 11/25/2022]
Affiliation(s)
- Ryusuke Tanaka
- Department of Anesthesiology and Resuscitology, Shinshu University School of Medicine, 3-1-1, Asahi, Matsumoto, Nagano, 390-8621, Japan
| | - Satoshi Tanaka
- Department of Anesthesiology and Resuscitology, Shinshu University School of Medicine, 3-1-1, Asahi, Matsumoto, Nagano, 390-8621, Japan.
| | - Takashi Ichino
- Department of Anesthesiology and Resuscitology, Shinshu University School of Medicine, 3-1-1, Asahi, Matsumoto, Nagano, 390-8621, Japan
| | - Takashi Ishida
- Department of Anesthesiology and Resuscitology, Shinshu University School of Medicine, 3-1-1, Asahi, Matsumoto, Nagano, 390-8621, Japan
| | - Satoshi Fuseya
- Department of Anesthesiology and Resuscitology, Shinshu University School of Medicine, 3-1-1, Asahi, Matsumoto, Nagano, 390-8621, Japan
| | - Mikito Kawamata
- Department of Anesthesiology and Resuscitology, Shinshu University School of Medicine, 3-1-1, Asahi, Matsumoto, Nagano, 390-8621, Japan
| |
Collapse
|
29
|
Modulation of the MAPKs pathways affects Aβ-induced cognitive deficits in Alzheimer's disease via activation of α7nAChR. Neurobiol Learn Mem 2020; 168:107154. [PMID: 31904546 DOI: 10.1016/j.nlm.2019.107154] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 11/17/2019] [Accepted: 12/31/2019] [Indexed: 01/21/2023]
Abstract
Cognitive impairment in Alzheimer's disease (AD) is characterized by being deficient at learning and memory. Aβ1-42 oligomers have been shown to impair rodent cognitive function. We previously demonstrated that activation of α7nAChR, inhibition of p38 or JNK could alleviate Aβ-induced memory deficits in Y maze test. In this study, we investigated whether the effects of α7nAChR and MAPKs on Y maze test is reproducible with a hippocampus-dependent spatial memory test such as Morris water maze. We also assessed the possible co-existence of hippocampus-independent recognition memory dysfunction using a novel object recognition test and an alternative and stress free hippocampus-dependent recognition memory test such as the novel place recognition. Besides, previous research from our lab has shown that MAPKs pathways regulate Aβ internalization through mediating α7nAChR. In our study, whether MAPKs pathways exert their functions in cognition by modulating α7nAChR through regulating glutamate receptors and synaptic protein, remain little known. Our results showed that activation of α7nAChR restored spatial memory, novel place recognition memory, and short-term and long-term memory in novel object recognition. Inhibition of p38 restored spatial memory and short-term and long-term memory in novel object recognition. Inhibition of ERK restored short-term memory in novel object recognition and novel place recognition memory. Inhibition of JNK restored spatial memory, short-term memory in novel object recognition and novel place recognition memory. Beside this, the activation of α7nAChR, inhibition of p38 or JNK restored Aβ-induced levels of NMDAR1, NMDAR2A, NMDAR2B, GluR1, GluR2 and PSD95 in Aβ-injected mice without influencing synapsin 1. In addition, these treatments also recovered the expression of acetylcholinesterase (AChE). Finally, we found that the inhibition of p38 or JNK resulted in the upregulation of α7nAChR mRNA levels in the hippocampus. Our results indicated that inhibition of p38 or JNK MAPKs could alleviate Aβ-induced spatial memory deficits through regulating activation of α7nAChR via recovering memory-related proteins. Moreover, p38, ERK and JNK MAPKs exert different functions in spatial and recognition memory.
Collapse
|
30
|
Petersen EN, Pavel MA, Wang H, Hansen SB. Disruption of palmitate-mediated localization; a shared pathway of force and anesthetic activation of TREK-1 channels. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2020; 1862:183091. [PMID: 31672538 PMCID: PMC6907892 DOI: 10.1016/j.bbamem.2019.183091] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 09/15/2019] [Accepted: 09/17/2019] [Indexed: 12/22/2022]
Abstract
TWIK related K+ channel (TREK-1) is a mechano- and anesthetic sensitive channel that when activated attenuates pain and causes anesthesia. Recently the enzyme phospholipase D2 (PLD2) was shown to bind to the channel and generate a local high concentration of phosphatidic acid (PA), an anionic signaling lipid that gates TREK-1. In a biological membrane, the cell harnesses lipid heterogeneity (lipid compartments) to control gating of TREK-1 using palmitate-mediated localization of PLD2. Here we discuss the ability of mechanical force and anesthetics to disrupt palmitate-mediated localization of PLD2 giving rise to TREK-1's mechano- and anesthetic-sensitive properties. The likely consequences of this indirect lipid-based mechanism of activation are discussed in terms of a putative model for excitatory and inhibitory mechano-effectors and anesthetic sensitive ion channels in a biological context. Lastly, we discuss the ability of locally generated PA to reach mM concentrations near TREK-1 and the biophysics of localized signaling. Palmitate-mediated localization of PLD2 emerges as a central control mechanism of TREK-1 responding to mechanical force and anesthetic action. This article is part of a Special Issue entitled: Molecular biophysics of membranes and membrane proteins.
Collapse
Affiliation(s)
- E Nicholas Petersen
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33458, USA; Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Mahmud Arif Pavel
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33458, USA; Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Hao Wang
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33458, USA; Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Scott B Hansen
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33458, USA; Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA.
| |
Collapse
|
31
|
Faulkner C, Plant DF, de Leeuw NH. Modulation of the Gloeobacter violaceus Ion Channel by Fentanyl: A Molecular Dynamics Study. Biochemistry 2019; 58:4804-4808. [PMID: 31718178 DOI: 10.1021/acs.biochem.9b00881] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Fentanyl is an opioid analgesic, which is routinely used in general surgery to suppress the sensation of pain and as the analgesic component in the induction and maintenance of anesthesia. Fentanyl is also used as the main component to induce anesthesia and as a potentiator to the general anesthetic propofol. The mechanism by which fentanyl induces its anesthetic action is still unclear, and we have therefore employed fully atomistic molecular dynamics simulations to probe this process by simulating the interactions of fentanyl with the Gloeobacter violaceus ligand-gated ion channel (GLIC). In this paper, we identify multiple extracellular fentanyl binding sites, which are different from the transmembrane general anesthetic binding sites observed for propofol and other general anesthetics. Our simulations identify a novel fentanyl binding site within the GLIC that results in conformational changes that inhibit conduction through the channel.
Collapse
Affiliation(s)
- Christopher Faulkner
- School of Chemistry , Cardiff University , Main Building, Park Place , Cardiff CF10 3AT , United Kingdom
| | - David F Plant
- Atomic Weapons Establishment (AWE) , Aldermaston, Reading RG7 4PR , United Kingdom
| | - Nora H de Leeuw
- School of Chemistry , Cardiff University , Main Building, Park Place , Cardiff CF10 3AT , United Kingdom
| |
Collapse
|
32
|
Hippocampal astrocyte dysfunction contributes to etomidate-induced long-lasting synaptic inhibition. Biochem Biophys Res Commun 2019; 519:803-811. [DOI: 10.1016/j.bbrc.2019.09.053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 09/12/2019] [Indexed: 11/24/2022]
|
33
|
van Alst TM, Wachsmuth L, Datunashvili M, Albers F, Just N, Budde T, Faber C. Anesthesia differentially modulates neuronal and vascular contributions to the BOLD signal. Neuroimage 2019; 195:89-103. [DOI: 10.1016/j.neuroimage.2019.03.057] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 03/06/2019] [Accepted: 03/25/2019] [Indexed: 11/27/2022] Open
|
34
|
Kohtala S, Rantamäki T. Commentary: Commonly Used Anesthesia/Euthanasia Methods for Brain Collection Differentially Impact MAPK Activity in Male and Female C57BL/6 Mice. Front Cell Neurosci 2019; 13:219. [PMID: 31191252 PMCID: PMC6546832 DOI: 10.3389/fncel.2019.00219] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 04/30/2019] [Indexed: 12/31/2022] Open
Affiliation(s)
- Samuel Kohtala
- Division of Pharmacology and Pharmacotherapy, Laboratory of Neurotherapeutics, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland.,SleepWell Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Tomi Rantamäki
- Division of Pharmacology and Pharmacotherapy, Laboratory of Neurotherapeutics, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland.,SleepWell Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
35
|
Weir CJ, Mitchell SJ, Lambert JJ. Role of GABAA receptor subtypes in the behavioural effects of intravenous general anaesthetics. Br J Anaesth 2019; 119:i167-i175. [PMID: 29161398 DOI: 10.1093/bja/aex369] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Since the introduction of general anaesthetics into clinical practice, researchers have been mystified as to how these chemically disparate drugs act to produce their dramatic effects on central nervous system function and behaviour. Scientific advances, particularly during the last 25 years, have now begun to reveal the molecular mechanisms underpinning their behavioural effects. For certain i.v. general anaesthetics, such as etomidate and propofol, a persuasive case can now be made that the GABAA receptor, a major inhibitory receptor in the mammalian central nervous system, is an important target. Advances in molecular pharmacology and in genetic manipulation of rodent genes reveal that different subtypes of the GABAA receptor are responsible for mediating particular aspects of the anaesthetic behavioural repertoire. Such studies provide a better understanding of the neuronal circuitry involved in the various anaesthetic-induced behaviours and, in the future, may result in the development of novel therapeutics with a reduced propensity for side-effects.
Collapse
Affiliation(s)
- C J Weir
- Institute of Academic Anaesthesia
| | - S J Mitchell
- Division of Neuroscience, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - J J Lambert
- Division of Neuroscience, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| |
Collapse
|
36
|
Wu Y, Jin S, Zhang L, Cheng J, Hu X, Chen H, Zhang Y. Minimum Alveolar Concentration-Awake of Sevoflurane Is Decreased in Patients With End-Stage Renal Disease. Anesth Analg 2019; 128:77-82. [DOI: 10.1213/ane.0000000000003676] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
37
|
Jorgensen C, Domene C. Location and Character of Volatile General Anesthetics Binding Sites in the Transmembrane Domain of TRPV1. Mol Pharm 2018; 15:3920-3930. [PMID: 30067911 DOI: 10.1021/acs.molpharmaceut.8b00381] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
It has been proposed that general anesthesia results from direct multisite interactions with multiple and diverse ion channels in the brain. An understanding of the mechanisms by which general anesthetics modulate ion channels is essential to clarify their underlying behavior and their role in reversible immobilization and amnesia. Despite the fact that volatile general anesthetics are drugs that primarily induce insensitivity to pain, they have been reported to sensitize and active the vanilloid-1 receptor, TRPV1, which is known to mediate the response of the nervous system to certain harmful stimuli and which plays a crucial role in the pain pathway. Currently, the mechanism of action of anesthetics is unknown and the precise molecular sites of interaction have not been identified. Here, using ∼2.5 μs of classical molecular dynamics simulations and metadynamics, we explore these enigmas. Binding sites are identified and the strength of the association is further characterized using alchemical free-energy calculations. Anesthetic binding/unbinding proceeds primarily through a membrane-embedded pathway, and subsequently, a complex scenario is established involving multiple binding sites featuring single or multiple occupancy states of two small volatile drugs. One of the five anesthetic binding sites reported was previously identified experimentally, and another one, importantly, is identical to that of capsaicin, one of the chemical stimuli that activate TRPV1. However, in contrast to capsaicin, isoflurane and chloroform binding free-energies render modest to no association compared to capsaicin, suggesting a different activation mechanism. Uncovering chloroform and isoflurane modulatory sites will further our understanding of the TRPV1 molecular machinery and open the possibility of developing site-specific drugs.
Collapse
Affiliation(s)
- Christian Jorgensen
- Department of Chemistry , King's College London , Britannia House, 7 Trinity Street , London SE1 1DB , U.K
| | - Carmen Domene
- Department of Chemistry , King's College London , Britannia House, 7 Trinity Street , London SE1 1DB , U.K.,Department of Chemistry , University of Bath , 1 South Building, Claverton Down , Bath BA2 7AY , U.K.,Chemistry Research Laboratory , University of Oxford , Mansfield Road , Oxford OX1 3TA , U.K
| |
Collapse
|
38
|
Brown PL, Zanos P, Wang L, Elmer GI, Gould TD, Shepard PD. Isoflurane but Not Halothane Prevents and Reverses Helpless Behavior: A Role for EEG Burst Suppression? Int J Neuropsychopharmacol 2018; 21:777-785. [PMID: 29554264 PMCID: PMC6070045 DOI: 10.1093/ijnp/pyy029] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 03/04/2018] [Accepted: 03/14/2018] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND The volatile anesthetic isoflurane may exert a rapid and long-lasting antidepressant effect in patients with medication-resistant depression. The mechanism underlying the putative therapeutic actions of the anesthetic have been attributed to its ability to elicit cortical burst suppression, a distinct EEG pattern with features resembling the characteristic changes that occur following electroconvulsive therapy. It is currently unknown whether the antidepressant actions of isoflurane are shared by anesthetics that do not elicit cortical burst suppression. METHODS In vivo electrophysiological techniques were used to determine the effects of isoflurane and halothane, 2 structurally unrelated volatile anesthetics, on cortical EEG. The effects of anesthesia with either halothane or isoflurane were also compared on stress-induced learned helplessness behavior in rats and mice. RESULTS Isoflurane, but not halothane, anesthesia elicited a dose-dependent cortical burst suppression EEG in rats and mice. Two hours of isoflurane, but not halothane, anesthesia reduced the incidence of learned helplessness in rats evaluated 2 weeks following exposure. In mice exhibiting a learned helplessness phenotype, a 1-hour exposure to isoflurane, but not halothane, reversed escape failures 24 hours following burst suppression anesthesia. CONCLUSIONS These results are consistent with a role for cortical burst suppression in mediating the antidepressant effects of isoflurane. They provide rationale for additional mechanistic studies in relevant animal models as well as a properly controlled clinical evaluation of the therapeutic benefits associated with isoflurane anesthesia in major depressive disorder.
Collapse
Affiliation(s)
- P Leon Brown
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, Maryland,Program in Neuroscience, University of Maryland School of Medicine, Baltimore, Maryland,University of Maryland School of Medicine, Baltimore, Maryland,Neuroscience Program, Maryland Psychiatric Research Center, Catonsville, Maryland
| | - Panos Zanos
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, Maryland
| | - Leiming Wang
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, Maryland,University of Maryland School of Medicine, Baltimore, Maryland,Neuroscience Program, Maryland Psychiatric Research Center, Catonsville, Maryland
| | - Greg I Elmer
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, Maryland,Department of Pharmacology, University of Maryland School of Medicine, Baltimore, Maryland,Program in Neuroscience, University of Maryland School of Medicine, Baltimore, Maryland,University of Maryland School of Medicine, Baltimore, Maryland,Neuroscience Program, Maryland Psychiatric Research Center, Catonsville, Maryland
| | - Todd D Gould
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, Maryland,Department of Pharmacology, University of Maryland School of Medicine, Baltimore, Maryland,Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland,Program in Neuroscience, University of Maryland School of Medicine, Baltimore, Maryland
| | - Paul D Shepard
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, Maryland,Department of Pharmacology, University of Maryland School of Medicine, Baltimore, Maryland,Program in Neuroscience, University of Maryland School of Medicine, Baltimore, Maryland,University of Maryland School of Medicine, Baltimore, Maryland,Neuroscience Program, Maryland Psychiatric Research Center, Catonsville, Maryland,Correspondence: Paul D. Shepard, PhD, Department of Psychiatry, Department of Pharmacology, Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD, Neuroscience Program, Maryland Psychiatric Research Center, Catonsville, MD ()
| |
Collapse
|
39
|
Zeilhofer HU, Acuña MA, Gingras J, Yévenes GE. Glycine receptors and glycine transporters: targets for novel analgesics? Cell Mol Life Sci 2018; 75:447-465. [PMID: 28791431 PMCID: PMC11105467 DOI: 10.1007/s00018-017-2622-x] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 07/14/2017] [Accepted: 08/04/2017] [Indexed: 01/29/2023]
Abstract
Glycinergic neurotransmission has long been known for its role in spinal motor control. During the last two decades, additional functions have become increasingly recognized-among them is a critical contribution to spinal pain processing. Studies in rodent pain models provide proof-of-concept evidence that enhancing inhibitory glycinergic neurotransmission reduces chronic pain symptoms. Apparent strategies for pharmacological intervention include positive allosteric modulators of glycine receptors and modulators or inhibitors of the glial and neuronal glycine transporters GlyT1 and GlyT2. These prospects have led to drug discovery efforts in academia and in industry aiming at compounds that target glycinergic neurotransmission with high specificity. Available data show promising analgesic efficacy. Less is currently known about potential unwanted effects but the presence of glycinergic innervation in CNS areas outside the nociceptive system prompts for a careful evaluation not only of motor function, but also of potential respiratory impairment and addictive properties.
Collapse
Affiliation(s)
- Hanns Ulrich Zeilhofer
- Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) Zürich, Vladimir-Prelog-Weg 1-5/10, 8093, Zurich, Switzerland.
| | - Mario A Acuña
- Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | | | - Gonzalo E Yévenes
- Department of Physiology, University of Concepción, Concepción, Chile
| |
Collapse
|
40
|
Zhang J, Huang Z, Chen Y, Zhang J, Ghinda D, Nikolova Y, Wu J, Xu J, Bai W, Mao Y, Yang Z, Duncan N, Qin P, Wang H, Chen B, Weng X, Northoff G. Breakdown in the temporal and spatial organization of spontaneous brain activity during general anesthesia. Hum Brain Mapp 2018; 39:2035-2046. [PMID: 29377435 DOI: 10.1002/hbm.23984] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 12/23/2017] [Accepted: 01/16/2018] [Indexed: 01/02/2023] Open
Abstract
Which temporal features that can characterize different brain states (i.e., consciousness or unconsciousness) is a fundamental question in the neuroscience of consciousness. Using resting-state functional magnetic resonance imaging (rs-fMRI), we investigated the spatial patterns of two temporal features: the long-range temporal correlations (LRTCs), measured by power-law exponent (PLE), and temporal variability, measured by standard deviation (SD) during wakefulness and anesthetic-induced unconsciousness. We found that both PLE and SD showed global reductions across the whole brain during anesthetic state comparing to wakefulness. Importantly, the relationship between PLE and SD was altered in anesthetic state, in terms of a spatial "decoupling." This decoupling was mainly driven by a spatial pattern alteration of the PLE, rather than the SD, in the anesthetic state. Our results suggest differential physiological grounds of PLE and SD and highlight the functional importance of the topographical organization of LRTCs in maintaining an optimal spatiotemporal configuration of the neural dynamics during normal level of consciousness. The central role of the spatial distribution of LRTCs, reflecting temporo-spatial nestedness, may support the recently introduced temporo-spatial theory of consciousness (TTC).
Collapse
Affiliation(s)
- Jianfeng Zhang
- Center for Cognition and Brain Disorders, Hangzhou Normal University, Hangzhou, 311121, People's Republic of China.,Institutes of Psychological Sciences, Hangzhou Normal University, Hangzhou, 311121, People's Republic of China.,Zhejiang University School of Medicine, Mental Health Center, Hangzhou, Zhejiang Province, China.,College of Biomedical Engineering and Instrument Sciences, Zhejiang University, China
| | - Zirui Huang
- Center for Consciousness Science, Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI, 48105
| | - Yali Chen
- Department of Anesthesiology, Huashan Hospital, Fudan University, Shanghai, 200040, People's Republic of China
| | - Jun Zhang
- Department of Anesthesiology, Huashan Hospital, Fudan University, Shanghai, 200040, People's Republic of China
| | - Diana Ghinda
- Department of Neurosurgery, The Ottawa Hospital, University of Ottawa, Ottawa, Ontario, Canada
| | - Yuliya Nikolova
- Centre for Addiction and Mental Health, University of Toronto, Toronto, Ontario, M5T 1R8, Canada
| | - Jinsong Wu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, 200040, People's Republic of China
| | - Jianghui Xu
- Department of Anesthesiology, Huashan Hospital, Fudan University, Shanghai, 200040, People's Republic of China
| | - Wenjie Bai
- Department of Anesthesiology, Huashan Hospital, Fudan University, Shanghai, 200040, People's Republic of China
| | - Ying Mao
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, 200040, People's Republic of China
| | - Zhong Yang
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, 200040, People's Republic of China
| | - Niall Duncan
- Institute of Mental Health Research, University of Ottawa, Ottawa, Ontario, K1Z 7K4, Canada
| | - Pengmin Qin
- School of Psychology, South China Normal University, Guangzhou, China
| | - Hao Wang
- Center for Cognition and Brain Disorders, Hangzhou Normal University, Hangzhou, 311121, People's Republic of China.,Institutes of Psychological Sciences, Hangzhou Normal University, Hangzhou, 311121, People's Republic of China
| | - Bing Chen
- Center for Cognition and Brain Disorders, Hangzhou Normal University, Hangzhou, 311121, People's Republic of China.,Institutes of Psychological Sciences, Hangzhou Normal University, Hangzhou, 311121, People's Republic of China
| | - Xuchu Weng
- Center for Cognition and Brain Disorders, Hangzhou Normal University, Hangzhou, 311121, People's Republic of China.,Institutes of Psychological Sciences, Hangzhou Normal University, Hangzhou, 311121, People's Republic of China
| | - Georg Northoff
- Center for Cognition and Brain Disorders, Hangzhou Normal University, Hangzhou, 311121, People's Republic of China.,Zhejiang University School of Medicine, Mental Health Center, Hangzhou, Zhejiang Province, China.,Institute of Mental Health Research, University of Ottawa, Ottawa, Ontario, K1Z 7K4, Canada.,Taipei Medical University, Graduate Institute of Humanities in Medicine, Taipei, Taiwan
| |
Collapse
|
41
|
Kishikawa JI, Inoue Y, Fujikawa M, Nishimura K, Nakanishi A, Tanabe T, Imamura H, Yokoyama K. General anesthetics cause mitochondrial dysfunction and reduction of intracellular ATP levels. PLoS One 2018; 13:e0190213. [PMID: 29298324 PMCID: PMC5752027 DOI: 10.1371/journal.pone.0190213] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 12/11/2017] [Indexed: 12/29/2022] Open
Abstract
General anesthetics are indispensable for effective clinical care. Although, the mechanism of action of general anesthetics remains controversial, lipid bilayers and proteins have been discussed as their targets. In this study, we focused on the relationship between cellular ATP levels and general anesthetics. The ATP levels of nematodes and cultured mammalian cells were decreased by exposure to three general anesthetics: isoflurane, pentobarbital, and 1-phenoxy-2-propanol. Furthermore, these general anesthetics abolished mitochondrial membrane potential, resulting in the inhibition of mitochondrial ATP synthesis. These results suggest that the observed decrease of cellular ATP level is a common phenomenon of general anesthetics.
Collapse
Affiliation(s)
- Jun-ichi Kishikawa
- Department of Molecular Biosciences, Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo-Motoyama, Kita-ku, Kyoto, Japan
| | - Yuki Inoue
- Department of Molecular Biosciences, Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo-Motoyama, Kita-ku, Kyoto, Japan
| | - Makoto Fujikawa
- Departmet of Pharmacology Neurobiology, Graduate School of Medicine, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | - Kenji Nishimura
- Department of Molecular Biosciences, Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo-Motoyama, Kita-ku, Kyoto, Japan
| | - Atsuko Nakanishi
- Department of Molecular Biosciences, Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo-Motoyama, Kita-ku, Kyoto, Japan
| | - Tsutomu Tanabe
- Departmet of Pharmacology Neurobiology, Graduate School of Medicine, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | - Hiromi Imamura
- Graduate School of Biostudies, Kyoto University, Yoshida-konoe-cho, Sakyo-ku, Kyoto, Japan
- * E-mail: (HI); (KY)
| | - Ken Yokoyama
- Department of Molecular Biosciences, Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo-Motoyama, Kita-ku, Kyoto, Japan
- * E-mail: (HI); (KY)
| |
Collapse
|
42
|
Gianti E, Carnevale V. Computational Approaches to Studying Voltage-Gated Ion Channel Modulation by General Anesthetics. Methods Enzymol 2018; 602:25-59. [DOI: 10.1016/bs.mie.2018.01.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
43
|
Cioffi CL. Modulation of Glycine-Mediated Spinal Neurotransmission for the Treatment of Chronic Pain. J Med Chem 2017; 61:2652-2679. [PMID: 28876062 DOI: 10.1021/acs.jmedchem.7b00956] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Chronic pain constitutes a significant and expanding worldwide health crisis. Currently available analgesics poorly serve individuals suffering from chronic pain, and new therapeutic agents that are more effective, safer, and devoid of abuse liabilities are desperately needed. Among the myriad of cellular and molecular processes contributing to chronic pain, spinal disinhibition of pain signaling to higher cortical centers plays a critical role. Accumulating evidence shows that glycinergic inhibitory neurotransmission in the spinal cord dorsal horn gates nociceptive signaling, is essential in maintaining physiological pain sensitivity, and is diminished in pathological pain states. Thus, it is hypothesized that agents capable of enhancing glycinergic tone within the dorsal horn could obtund nociceptor signaling to the brain and serve as analgesics for persistent pain. This Perspective highlights the potential that pharmacotherapies capable of increasing inhibitory spinal glycinergic neurotransmission hold in providing new and transformative analgesic therapies for the treatment of chronic pain.
Collapse
Affiliation(s)
- Christopher L Cioffi
- Departments of Basic and Clinical Sciences and Pharmaceutical Sciences , Albany College of Pharmacy and Health Sciences , 106 New Scotland Avenue , Albany , New York 12208 United States
| |
Collapse
|
44
|
Molecular Mechanisms of Anesthetic Neurotoxicity: A Review of the Current Literature. J Neurosurg Anesthesiol 2017; 28:361-372. [PMID: 27564556 DOI: 10.1097/ana.0000000000000348] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Data from epidemiologic studies and animal models have raised a concern that exposure to anesthetic agents during early postnatal life may cause lasting impairments in cognitive function. It is hypothesized that this is due to disruptions in brain development, but the mechanism underlying this toxic effect remains unknown. Ongoing research, particularly in rodents, has begun to address this question. In this review we examine currently postulated molecular mechanisms of anesthetic toxicity in the developing brain, including effects on cell death pathways, growth factor signaling systems, NMDA and GABA receptors, mitochondria, and epigenetic factors. The level of evidence for each putative mechanism is critically evaluated, and we attempt to draw connections between them where it is possible to do so. Although there are many promising avenues of research, at this time no consensus can be reached as to a definitive mechanism of injury.
Collapse
|
45
|
Wollstadt P, Sellers KK, Rudelt L, Priesemann V, Hutt A, Fröhlich F, Wibral M. Breakdown of local information processing may underlie isoflurane anesthesia effects. PLoS Comput Biol 2017; 13:e1005511. [PMID: 28570661 PMCID: PMC5453425 DOI: 10.1371/journal.pcbi.1005511] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 04/11/2017] [Indexed: 02/07/2023] Open
Abstract
The disruption of coupling between brain areas has been suggested as the mechanism underlying loss of consciousness in anesthesia. This hypothesis has been tested previously by measuring the information transfer between brain areas, and by taking reduced information transfer as a proxy for decoupling. Yet, information transfer is a function of the amount of information available in the information source—such that transfer decreases even for unchanged coupling when less source information is available. Therefore, we reconsidered past interpretations of reduced information transfer as a sign of decoupling, and asked whether impaired local information processing leads to a loss of information transfer. An important prediction of this alternative hypothesis is that changes in locally available information (signal entropy) should be at least as pronounced as changes in information transfer. We tested this prediction by recording local field potentials in two ferrets after administration of isoflurane in concentrations of 0.0%, 0.5%, and 1.0%. We found strong decreases in the source entropy under isoflurane in area V1 and the prefrontal cortex (PFC)—as predicted by our alternative hypothesis. The decrease in source entropy was stronger in PFC compared to V1. Information transfer between V1 and PFC was reduced bidirectionally, but with a stronger decrease from PFC to V1. This links the stronger decrease in information transfer to the stronger decrease in source entropy—suggesting reduced source entropy reduces information transfer. This conclusion fits the observation that the synaptic targets of isoflurane are located in local cortical circuits rather than on the synapses formed by interareal axonal projections. Thus, changes in information transfer under isoflurane seem to be a consequence of changes in local processing more than of decoupling between brain areas. We suggest that source entropy changes must be considered whenever interpreting changes in information transfer as decoupling. Currently we do not understand how anesthesia leads to loss of consciousness (LOC). One popular idea is that we loose consciousness when brain areas lose their ability to communicate with each other–as anesthetics might interrupt transmission on nerve fibers coupling them. This idea has been tested by measuring the amount of information transferred between brain areas, and taking this transfer to reflect the coupling itself. Yet, information that isn’t available in the source area can’t be transferred to a target. Hence, the decreases in information transfer could be related to less information being available in the source, rather than to a decoupling. We tested this possibility measuring the information available in source brain areas and found that it decreased under isoflurane anesthesia. In addition, a stronger decrease in source information lead to a stronger decrease of the information transfered. Thus, the input to the connection between brain areas determined the communicated information, not the strength of the coupling (which would result in a stronger decrease in the target). We suggest that interrupted information processing within brain areas has an important contribution to LOC, and should be focused on more in attempts to understand loss of consciousness under anesthesia.
Collapse
Affiliation(s)
- Patricia Wollstadt
- MEG Unit, Brain Imaging Center, Goethe University, Frankfurt/Main, Germany
- * E-mail: (PW); (VP)
| | - Kristin K. Sellers
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Neurobiology Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Lucas Rudelt
- Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany
| | - Viola Priesemann
- Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany
- Bernstein Center for Computational Neuroscience, BCCN, Göttingen, Germany
- * E-mail: (PW); (VP)
| | - Axel Hutt
- Deutscher Wetterdienst, Section FE 12 - Data Assimilation, Offenbach/Main, Germany
- Department of Mathematics and Statistics, University of Reading, Reading, United Kingdom
| | - Flavio Fröhlich
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Neurobiology Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Michael Wibral
- MEG Unit, Brain Imaging Center, Goethe University, Frankfurt/Main, Germany
| |
Collapse
|
46
|
Gąszowski D, Ilczyszyn M. The acid-base character of interactions between xenon and selected carboxylic and sulfonic acids. Chem Phys 2017. [DOI: 10.1016/j.chemphys.2017.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
47
|
Arcario MJ, Mayne CG, Tajkhorshid E. A membrane-embedded pathway delivers general anesthetics to two interacting binding sites in the Gloeobacter violaceus ion channel. J Biol Chem 2017; 292:9480-9492. [PMID: 28420728 PMCID: PMC5465477 DOI: 10.1074/jbc.m117.780197] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 04/10/2017] [Indexed: 12/30/2022] Open
Abstract
General anesthetics exert their effects on the central nervous system by acting on ion channels, most notably pentameric ligand-gated ion channels. Although numerous studies have focused on pentameric ligand-gated ion channels, the details of anesthetic binding and channel modulation are still debated. A better understanding of the anesthetic mechanism of action is necessary for the development of safer and more efficacious drugs. Herein, we present a computational study identifying two anesthetic binding sites in the transmembrane domain of the Gloeobacter violaceus ligand-gated ion channel (GLIC) channel, characterize the putative binding pathway, and observe structural changes associated with channel function. Molecular simulations of desflurane reveal a binding pathway to GLIC via a membrane-embedded tunnel using an intrasubunit protein lumen as the conduit, an observation that explains the Meyer-Overton hypothesis, or why the lipophilicity of an anesthetic and its potency are generally proportional. Moreover, employing high concentrations of ligand led to the identification of a second transmembrane site (TM2) that inhibits dissociation of anesthetic from the TM1 site and is consistent with the high concentrations of anesthetics required to achieve clinical effects. Finally, asymmetric binding patterns of anesthetic to the channel were found to promote an iris-like conformational change that constricts and dehydrates the ion pore, creating a 13.5 kcal/mol barrier to ion translocation. Together with previous studies, the simulations presented herein demonstrate a novel anesthetic binding site in GLIC that is accessed through a membrane-embedded tunnel and interacts with a previously known site, resulting in conformational changes that produce a non-conductive state of the channel.
Collapse
Affiliation(s)
- Mark J Arcario
- From the Center for Biophysics and Quantitative Biology.,Department of Biochemistry, College of Medicine, and.,Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Christopher G Mayne
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Emad Tajkhorshid
- From the Center for Biophysics and Quantitative Biology, .,Department of Biochemistry, College of Medicine, and.,Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| |
Collapse
|
48
|
Effects of bilobalide, ginkgolide B and picrotoxinin on GABA A receptor modulation by structurally diverse positive modulators. Eur J Pharmacol 2017; 806:83-90. [PMID: 28416372 DOI: 10.1016/j.ejphar.2017.04.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 04/11/2017] [Accepted: 04/13/2017] [Indexed: 12/20/2022]
Abstract
Anxiolytics and anticonvulsants generally positively modulate the action of GABA, whereas many convulsants (including the chloride channel blocker picrotoxinin) negatively modulate the action of GABA on GABAA receptors. Like picrotoxinin, bilobalide and ginkgolide B, active constituents of Ginkgo biloba, have been shown to negatively modulate the action of GABA at α1β2γ2L GABAA receptors. However, unlike picrotoxinin, bilobalide and ginkgolide B are not known to cause convulsions. We have assessed the action of bilobalide, ginkgolide B and picrotoxinin on a range of GABAA modulators (etomidate, loreclezole, propofol, thiopentone sodium, diazepam, and allopregnanolone), using two-electrode voltage clamp electrophysiology at recombinant α1β2γ2L GABAA receptors expressed in Xenopus oocytes. The results indicate that bilobalide and ginkgolide B differ from picrotoxinin in their ability to inhibit the actions of a range of these structurally diverse GABAA positive modulators consistent with these modulators acting on a multiplicity of active sites associated with GABAA receptors. In the presence GABA, ginkgolide B was more potent than bilobalide in inhibiting the GABA-potentiating effect of propofol, equipotent against loreclezole and allopregnanolone, and less potent against etomidate, diazepam, and thiopentone sodium. This indicates that in comparison to picrotoxinin, bilobalide and ginkgolide B differ in their effects on the different modulators.
Collapse
|
49
|
General anesthetic actions on GABA A receptors in vivo are reduced in phospholipase C-related catalytically inactive protein knockout mice. J Anesth 2017; 31:531-538. [PMID: 28389811 DOI: 10.1007/s00540-017-2350-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 03/26/2017] [Indexed: 10/19/2022]
Abstract
PURPOSE The aim of this study was to investigate the action of general anesthetics in phospholipase C-related catalytically inactive protein (PRIP)-knockout (KO) mice that alter GABAA receptor signaling. METHODS PRIP regulates the intracellular trafficking of β subunit-containing GABAA receptors in vitro. In this study, we examined the effects of intravenous anesthetics, propofol and etomidate that act via β subunit-containing GABAA receptors, in wild-type and Prip-KO mice. Mice were intraperitoneally injected with a drug, and a loss of righting reflex (LORR) assay and an electroencephalogram analysis were performed. RESULTS The cell surface expression of GABAA receptor β3 subunit detected by immunoblotting was decreased in Prip-knockout brain compared with that in wild-type brain without changing the expression of other GABAA receptor subunits. Propofol-treated Prip-KO mice exhibited significantly shorter duration of LORR and had lower total anesthetic score than wild-type mice in the LORR assay. The average duration of sleep time in an electroencephalogram analysis was shorter in propofol-treated Prip-KO mice than in wild-type mice. The hypnotic action of etomidate was also reduced in Prip-KO mice. However, ketamine, an NMDA receptor antagonist, had similar effects in the two genotypes. CONCLUSION PRIP regulates the cell surface expression of the GABAA receptor β3 subunit and modulates general anesthetic action in vivo. Elucidation of the involved regulatory mechanisms of GABAA receptor-dependent signaling would inform the development of safer anesthetic therapies for clinical applications.
Collapse
|
50
|
GABAergic effect on resting-state functional connectivity: Dynamics under pharmacological antagonism. Neuroimage 2017; 149:53-62. [DOI: 10.1016/j.neuroimage.2017.01.040] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 12/06/2016] [Accepted: 01/17/2017] [Indexed: 11/19/2022] Open
|