1
|
Date S, Bhatt LK. Targeting high-mobility-group-box-1-mediated inflammation: a promising therapeutic approach for myocardial infarction. Inflammopharmacology 2024:10.1007/s10787-024-01586-w. [PMID: 39487941 DOI: 10.1007/s10787-024-01586-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 10/11/2024] [Indexed: 11/04/2024]
Abstract
Myocardial ischemia, resulting from coronary artery blockage, precipitates cardiac arrhythmias, myocardial structural changes, and heart failure. The pathophysiology of MI is mainly based on inflammation and cell death, which are essential in aggravating myocardial ischemia and reperfusion injury. Emerging research highlights the functionality of high mobility group box-1, a non-histone nucleoprotein functioning as a chromosomal stabilizer and inflammatory mediator. HMGB1's release into the extracellular compartment during ischemia acts as damage-associated molecular pattern, triggering immune reaction by pattern recognition receptors and exacerbating tissue inflammation. Its involvement in signaling pathways like PI3K/Akt, TLR4/NF-κB, and RAGE/HMGB1 underscores its significance in promoting angiogenesis, apoptosis, and reducing inflammation, which is crucial for MI treatment strategies. This review highlights the complex function of HMGB1 in the pathogenesis of myocardial infarction by summarizing novel findings on the protein in ischemic situations. Understanding the mechanisms underlying HMGB1 could widen the way to specific treatments that minimize the severity of MI and enhance patient outcomes.
Collapse
Affiliation(s)
- Shrutika Date
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai, India
| | - Lokesh Kumar Bhatt
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai, India.
| |
Collapse
|
2
|
Mendes EP, Ianzer D, Peruchetti DB, Santos RAS, Vieira MAR. Interaction of Angiotensin-(1-7) with kinins in the kidney circulation: Role of B 1 receptors. Peptides 2024; 179:171246. [PMID: 38821119 DOI: 10.1016/j.peptides.2024.171246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/19/2024] [Accepted: 05/22/2024] [Indexed: 06/02/2024]
Abstract
Changes in renal hemodynamics impact renal function during physiological and pathological conditions. In this context, renal vascular resistance (RVR) is regulated by components of the Renin-Angiotensin System (RAS) and the Kallikrein-Kinin System (KKS). However, the interaction between these vasoactive peptides on RVR is still poorly understood. Here, we studied the crosstalk between angiotensin-(1-7) and kinins on RVR. The right kidneys of Wistar rats were isolated and perfused in a closed-circuit system. The perfusion pressure and renal perfusate flow were continuously monitored. Ang-(1-7) (1.0-25.0 nM) caused a sustained, dose-dependent reduction of relative RVR (rRVR). This phenomenon was sensitive to 10 nM A-779, a specific Mas receptor (MasR) antagonist. Bradykinin (BK) promoted a sustained and transient reduction in rRVR at 1.25 nM and 125 nM, respectively. The transient effect was abolished by 4 μM des-Arg9-Leu8-bradykinin (DALBK), a specific kinin B1 receptor (B1R) antagonist. Accordingly, des-Arg9-bradykinin (DABK) 1 μM (a B1R agonist) increased rRVR. Interestingly, pre-perfusion of Ang-(1-7) changed the sustained reduction of rRVR triggered by 1.25 nM BK into a transient effect. On the other hand, pre-perfusion of Ang-(1-7) primed and potentiated the DABK response, this mechanism being sensitive to A-779 and DALBK. Binding studies performed with CHO cells stably transfected with MasR, B1R, and kinin B2 receptor (B2R) showed no direct interaction between Ang-(1-7) with B1R or B2R. In conclusion, our findings suggest that Ang-(1-7) differentially modulates kinin's effect on RVR in isolated rat kidneys. These results help to expand the current knowledge regarding the crosstalk between the RAS and KKS complex network in RVR.
Collapse
Affiliation(s)
| | - Danielle Ianzer
- Department of Physiological Sciences, ICB, UFG, Goiania, GO, Brazil; National Institute of Science and Technology in Nanobiopharmaceutics, INCT-Nanobiofar, Belo Horizonte, MG, Brazil
| | - Diogo Barros Peruchetti
- Department of Physiology and Biophysics, ICB, UFMG, Belo Horizonte, MG, Brazil; National Institute of Science and Technology in Nanobiopharmaceutics, INCT-Nanobiofar, Belo Horizonte, MG, Brazil
| | - Robson Augusto Souza Santos
- Department of Physiology and Biophysics, ICB, UFMG, Belo Horizonte, MG, Brazil; National Institute of Science and Technology in Nanobiopharmaceutics, INCT-Nanobiofar, Belo Horizonte, MG, Brazil
| | | |
Collapse
|
3
|
Wan TT, Li Y, Li JX, Xiao X, Liu L, Li HH, Guo SB. ACE2 activation alleviates sepsis-induced cardiomyopathy by promoting MasR-Sirt1-mediated mitochondrial biogenesis. Arch Biochem Biophys 2024; 752:109855. [PMID: 38097099 DOI: 10.1016/j.abb.2023.109855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/17/2023] [Accepted: 12/08/2023] [Indexed: 12/20/2023]
Abstract
Sepsis-induced cardiomyopathy (SIC), caused by a dysregulated host response to infection, is a major contributor to high mortality. Angiotensin-converting enzyme 2 (ACE2), a crucial component of the renin-angiotensin system (RAS), has protective effects against several cardiovascular diseases, such as myocardial infarction and heart failure. However, the role of ACE2 in the pathogenesis of SIC and underlying mechanisms remain unknown. The present study was designed to examine the effects of ACE2 activation or inhibition on SIC in C57BL/6 mice. The ACE2 activator diminazene aceturate (DIZE) and ACE2 inhibitor MLN-4760 were applied for treatment. Myocardial function, inflammatory response, oxidative stress, apoptosis and mitochondrial biogenesis were investigated. Major assays were echocardiography, H&E staining, immunofluorescence staining, DHE staining, TUNEL staining, Western blot, qPCR analysis, ELISA and corresponding kits. We confirmed that ACE2 was markedly downregulated in septic heart tissues. Pharmacological activation of ACE2 by DIZE ameliorated cecal ligation puncture (CLP)-induced mortality, cardiac dysfunction, inflammatory response, oxidative stress and the cardiomyocyte apoptosis by promoting MasR-Sirt1-mediated mitochondrial biogenesis. In contrast, SIC was aggravated via inhibiting MasR-Sirt1-mediated mitochondrial biogenesis by the use of ACE2 inhibitor MLN-4760. Consequently, activation of ACE2 may protect against SIC by promoting MasR-Sirt1-mediated mitochondrial biogenesis.
Collapse
Affiliation(s)
- Tian-Tian Wan
- Department of Emergency Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China; Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing, China
| | - Ya Li
- Department of Emergency Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China; Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing, China
| | - Jia-Xin Li
- Department of Emergency Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China; Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing, China
| | - Xue Xiao
- Department of Emergency Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China; Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing, China
| | - Lei Liu
- Department of Emergency Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China; Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing, China
| | - Hui-Hua Li
- Department of Emergency Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China; Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing, China.
| | - Shu-Bin Guo
- Department of Emergency Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China; Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing, China.
| |
Collapse
|
4
|
Cheng J, Yang H, Chen F, Qiu L, Chen F, Du Y, Meng X. The ACE2/Ang-(1-7)/MasR axis alleviates brain injury after cardiopulmonary resuscitation in rabbits by activating PI3K/Akt signaling. Transl Neurosci 2024; 15:20220334. [PMID: 38623573 PMCID: PMC11017183 DOI: 10.1515/tnsci-2022-0334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/12/2023] [Accepted: 01/03/2024] [Indexed: 04/17/2024] Open
Abstract
Background Death among resuscitated patients is mainly caused by brain injury after cardiac arrest/cardiopulmonary resuscitation (CA/CPR). The angiotensin converting enzyme 2 (ACE2)/angiotensin (Ang)-(1-7)/Mas receptor (MasR) axis has beneficial effects on brain injury. Therefore, we examined the roles of the ACE2/Ang-(1-7)/MasR axis in brain injury after CA/CPR. Method We used a total of 76 male New Zealand rabbits, among which 10 rabbits underwent sham operation and 66 rabbits received CA/CPR. Neurological functions were determined by assessing serum levels of neuron-specific enolase and S100 calcium-binding protein B and neurological deficit scores. Brain water content was estimated. Neuronal apoptosis in the hippocampus was assessed by terminal deoxynucleotidyl transferase dUTP nick end labeling assays. The expression levels of various genes were measured by enzyme-linked immunosorbent assay and western blotting. Results Ang-(1-7) (MasR activator) alleviated CA/CPR-induced neurological deficits, brain edema, and neuronal damage, and A779 (MasR antagonist) had the opposite functions. The stimulation of ACE2/Ang-(1-7)/MasR inactivated the ACE/Ang II/AT1R axis and activated PI3K/Akt signaling. Inhibiting PI3K/Akt signaling inhibited Ang-(1-7)-mediated protection against brain damage after CA/CPR. Conclusion Collectively, the ACE2/Ang-(1-7)/MasR axis alleviates CA/CPR-induced brain injury through attenuating hippocampal neuronal apoptosis by activating PI3K/Akt signaling.
Collapse
Affiliation(s)
- Jing Cheng
- Department of Emergency, Wuhan Fourth Hospital, Wuhan430030, China
| | - Hong Yang
- Department of Emergency, Wuhan Fourth Hospital, Wuhan430030, China
| | - Fang Chen
- Department of Emergency, Wuhan Fourth Hospital, Wuhan430030, China
| | - Li Qiu
- Department of Emergency, Wuhan Fourth Hospital, Wuhan430030, China
| | - Fang Chen
- Department of Emergency, Wuhan Fourth Hospital, Wuhan430030, China
| | - Yanhua Du
- General Practice Ward, Wuhan Fourth Hospital, No. 473 Hanzheng Street, Qiaokou District, Wuhan430030, Hubei, China
| | - Xiangping Meng
- General Practice Ward, Wuhan Fourth Hospital, No. 473 Hanzheng Street, Qiaokou District, Wuhan430030, Hubei, China
| |
Collapse
|
5
|
Swiderski J, Gadanec LK, Apostolopoulos V, Moore GJ, Kelaidonis K, Matsoukas JM, Zulli A. Role of Angiotensin II in Cardiovascular Diseases: Introducing Bisartans as a Novel Therapy for Coronavirus 2019. Biomolecules 2023; 13:787. [PMID: 37238657 PMCID: PMC10216788 DOI: 10.3390/biom13050787] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/26/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
Cardiovascular diseases (CVDs) are the main contributors to global morbidity and mortality. Major pathogenic phenotypes of CVDs include the development of endothelial dysfunction, oxidative stress, and hyper-inflammatory responses. These phenotypes have been found to overlap with the pathophysiological complications of coronavirus disease 2019 (COVID-19). CVDs have been identified as major risk factors for severe and fatal COVID-19 states. The renin-angiotensin system (RAS) is an important regulatory system in cardiovascular homeostasis. However, its dysregulation is observed in CVDs, where upregulation of angiotensin type 1 receptor (AT1R) signaling via angiotensin II (AngII) leads to the AngII-dependent pathogenic development of CVDs. Additionally, the interaction between the spike protein of severe acute respiratory syndrome coronavirus 2 with angiotensin-converting enzyme 2 leads to the downregulation of the latter, resulting in the dysregulation of the RAS. This dysregulation favors AngII/AT1R toxic signaling pathways, providing a mechanical link between cardiovascular pathology and COVID-19. Therefore, inhibiting AngII/AT1R signaling through angiotensin receptor blockers (ARBs) has been indicated as a promising therapeutic approach to the treatment of COVID-19. Herein, we review the role of AngII in CVDs and its upregulation in COVID-19. We also provide a future direction for the potential implication of a novel class of ARBs called bisartans, which are speculated to contain multifunctional targeting towards COVID-19.
Collapse
Affiliation(s)
- Jordan Swiderski
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia; (J.S.); (L.K.G.); (V.A.)
| | - Laura Kate Gadanec
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia; (J.S.); (L.K.G.); (V.A.)
| | - Vasso Apostolopoulos
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia; (J.S.); (L.K.G.); (V.A.)
- Immunology Program, Australian Institute for Musculoskeletal Science, Melbourne, VIC 3021, Australia
| | - Graham J. Moore
- Pepmetics Incorporated, 772 Murphy Place, Victoria, BC V8Y 3H4, Canada;
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | | | - John M. Matsoukas
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia; (J.S.); (L.K.G.); (V.A.)
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- NewDrug PC, Patras Science Park, 26500 Patras, Greece;
- Department of Chemistry, University of Patras, 26504 Patras, Greece
| | - Anthony Zulli
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia; (J.S.); (L.K.G.); (V.A.)
| |
Collapse
|
6
|
Şik N, Duman M, Küme T, Gürsoy Doruk Ö, Yilmaz D, Ören H. Roles of Vitamin-K-dependent Factors Protein S and GAS6 With TAM Receptors and HMGB1 in Pediatric COVID-19 Disease. J Pediatr Hematol Oncol 2023; 45:e298-e303. [PMID: 35973116 DOI: 10.1097/mph.0000000000002528] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 06/17/2022] [Indexed: 11/27/2022]
Abstract
OBJECTIVE This study was designed to evaluate serum high-mobility group box 1 (HMGB1), protein S (PS), growth arrest-specific gene 6 (GAS6), and TAM receptor (TYRO3, AXL, and MERTK) levels in children with COVID-19 disease. METHODS A prospective case-control study was conducted in our pediatric emergency department and 57 patients with SARS-CoV-2 polymerase chain reaction (PCR) positivity, 6 patients with multisystem inflammatory syndrome in children (MIS-C), and 17 healthy children were included. Demographic data, clinical findings, laboratory and radiologic data, the need for hospitalization, and prognosis were recorded. Serum HMGB1, PS, GAS6, and TAM receptor levels were studied by enzyme-linked immunosorbent assay method. RESULTS While SARS-CoV-2 PCR-positive patients and healthy controls were similar in terms of gender and age, GAS6 and MERTK levels were significantly lower in SARS-CoV-2 PCR-positive patients compared with healthy controls. Among SARS-CoV-2 PCR-positive patients, no difference was found in terms of serum markers in those with and without gastrointestinal or respiratory system symptoms. However, in patients with respiratory distress at admission, PS and TYRO3 levels were significantly lower. AXL levels were lower in patients diagnosed with MIS-C compared with healthy controls. Activated partial thromboplastin time was negatively correlated with HMGB1, PS, GAS6, and AXL levels. CONCLUSION Our results suggest that such measurements may be informative and warranted in children with COVID-19 who show evidence of coagulopathy and respiratory distress. Further studies are needed to clarify the roles of these markers in diagnosis, to predict clinical severity, and to evaluate their roles in treatment approaches for COVID-19 disease.
Collapse
Affiliation(s)
- Nihan Şik
- Division of Pediatric Emergency Care; Department of Pediatrics
| | - Murat Duman
- Division of Pediatric Emergency Care; Department of Pediatrics
| | - Tuncay Küme
- Division of Pediatric Hematology, Department of Biochemistry
| | | | - Durgül Yilmaz
- Division of Pediatric Emergency Care; Department of Pediatrics
| | - Hale Ören
- Department of Pediatrics, Dokuz Eylul University Faculty of Medicine, Izmir, Turkey
| |
Collapse
|
7
|
Vogel SN, Richard K, Shirey KA, Sylla FY, Boukhvalova MS, Blanco JC. Evidence for Interplay Between the Renin-Angiotensin System and Toll-Like Receptor 4 Signaling Pathways in the Induction of Virus-Induced Acute Lung Injury. J Interferon Cytokine Res 2022; 42:618-623. [PMID: 36206057 PMCID: PMC9805881 DOI: 10.1089/jir.2022.0081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 04/24/2022] [Indexed: 01/13/2023] Open
Abstract
Dedication: This article is dedicated to Howard Young, an exceptional scientist who has provided outstanding mentorship to many postbaccalaureates, graduate students, and postdoctoral fellows during his career. Howard has been a colleague to many and was never tired of learning new things. He has brought "thinking out of the box" to the level of an art form and has always provided thoughtful and constructive suggestions to those who have sought his counsel. I am personally greatly indebted to Howard for his guidance in molecular biology over the past 30 years, and hope that we will continue to share a passion for learning and mentoring others for years to come. Thank you, Howard! -Stephanie N. Vogel The SARS-CoV-2 pandemic has led to an unprecedented explosion in studies that have sought to identify key mechanisms that underlie the ravaging aspects of this disease on individuals. SARS-CoV-2 virus gains access to cells by (1) binding of the viral spike (S) protein to cell-associated angiotensin-converting enzyme 2 (ACE2), a key receptor in the renin-angiotensin system (RAS), followed by (2) cleavage of S protein by a cellular serine protease ("S protein priming") to facilitate viral entry. Dysregulation of the RAS system has been implicated in the spectrum of clinical symptoms associated with SARS-CoV-2, including hypercytokinemia, elevated markers of endothelial injury and thrombosis, and both localized and systemic inflammation. However, the underlying mechanisms have yet to be fully delineated.
Collapse
Affiliation(s)
- Stefanie N. Vogel
- Department of Microbiology and Immunology, University of Maryland, School of Medicine, Baltimore, Maryland, USA
| | - Katharina Richard
- Department of Microbiology and Immunology, University of Maryland, School of Medicine, Baltimore, Maryland, USA
| | - Kari Ann Shirey
- Department of Microbiology and Immunology, University of Maryland, School of Medicine, Baltimore, Maryland, USA
| | | | | | | |
Collapse
|
8
|
Al-Kuraishy HM, Al-Gareeb AI, Alkazmi L, Habotta OA, Batiha GES. High-mobility group box 1 (HMGB1) in COVID-19: extrapolation of dangerous liaisons. Inflammopharmacology 2022; 30:811-820. [PMID: 35471628 PMCID: PMC9040700 DOI: 10.1007/s10787-022-00988-y] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 03/30/2022] [Indexed: 02/06/2023]
Abstract
High-mobility group box 1 (HMGB1), a multifunctional nuclear protein, exists mainly within the nucleus of all mammal eukaryotic cells. It is actively secreted by the necrotic cells as a response to the inflammatory signaling pathway. HMGB1 binds to receptor ligands as RAGE, and TLR and becomes a pro-inflammatory cytokine with a robust capacity to trigger inflammatory response. It is a critical mediator of the pathogenesis of systemic inflammation in numerous inflammatory disorders. Release of HMGB1 is associated with different viral infections and strongly participates in the regulation of viral replication cycles. In COVID-19 era, high HMGB1 serum levels were observed in COVID-19 patients and linked with the disease severity, development of cytokine storm (CS), acute lung injury (ALI) and acute respiratory distress syndrome (ARDS). SARS-CoV-2-induced cytolytic effect may encourage release of HMGB1 due to nuclear damage. Besides, HMGB1 activates release of pro-inflammatory cytokines from immune cells and up-regulation of angiotensin I-converting enzyme 2 (ACE2). Therefore, targeting of the HMGB1 pathway by anti-HMGB1 agents, such as heparin, resveratrol and metformin, may decrease COVID-19 severity. HMGB1 signaling pathway has noteworthy role in the pathogenesis of SARS-CoV-2 infections and linked with development of ALI and ARDS in COVID-19 patients. Different endogenous and exogenous agents may affect release and activation of HMGB1 pathway. Targeting of HMGB1-mediated TLR2/TLR4, RAGE and MAPK signaling, might be a new promising drug candidate against development of ALI and/or ARDS in severely affected COVID-19 patients.
Collapse
Affiliation(s)
- Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, Al-Mustansiriyah University, Baghdad, 14132, Iraq
| | - Ali I Al-Gareeb
- Department of Clinical Pharmacology and Medicine, College of Medicine, Al-Mustansiriyah University, Baghdad, 14132, Iraq
| | - Luay Alkazmi
- Biology Department, Faculty of Applied Sciences, Umm Al-Qura University, Makkah, 21955, Saudi Arabia
| | - Ola A Habotta
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt.
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, AlBeheira, Egypt
| |
Collapse
|
9
|
Coutinho DCO, Santos-Miranda A, Joviano-Santos JV, Foureaux G, Santos A, Rodrigues-Ferreira C, Martins-Júnior PA, Resende RR, Medei E, Vieyra A, Santos RAS, Cruz JS, Ferreira AJ. Diminazene Aceturate, an angiotensin converting enzyme 2 (ACE2) activator, promotes cardioprotection in ischemia/reperfusion-induced cardiac injury. Peptides 2022; 151:170746. [PMID: 35033621 DOI: 10.1016/j.peptides.2022.170746] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 01/06/2022] [Accepted: 01/12/2022] [Indexed: 01/03/2023]
Abstract
This study aimed to investigate whether the Diminazene Aceturate (DIZE), an angiotensin-converting enzyme 2 (ACE2) activator, can revert cardiac dysfunction in ischemia reperfusion-induced (I/R) injury in animals and examine the mechanism underlying this effect. Wistar rats systemically received DIZE (1 mg/kg) for thirty days. Cardiac function in isolated rat hearts was evaluated using the Langendorff technique. After I/R, ventricular non-I/R and I/R samples were used to evaluate ATP levels. Mitochondrial function was assessed using cardiac permeabilized fibers and isolated cardiac mitochondria. Cardiac cellular electrophysiology was evaluated using the patch clamp technique. DIZE protected the heart after I/R from arrhythmia and cardiac dysfunction by preserving ATP levels, independently of any change in coronary flow and heart rate. DIZE improved mitochondrial function, increasing the capacity for generating ATP and reducing proton leak without changing the specific citrate synthase activity. The activation of the ACE2 remodeled cardiac electrical profiles, shortening the cardiac action potential duration at 90 % repolarization. Additionally, cardiomyocytes from DIZE-treated animals exhibited reduced sensibility to diazoxide (KATP agonist) and a higher KATP current compared to the controls. DIZE was able to improve mitochondrial function and modulate cardiac electrical variables with a cardio-protective profile, resulting in direct myocardial cell protection from I/R injury.
Collapse
Affiliation(s)
| | - Artur Santos-Miranda
- Laboratory of CardioBiology, Department of Biophysics, Federal University of Sao Paulo, Brazil
| | | | - Giselle Foureaux
- Department of Morphology, Federal University of Minas Gerais, Brazil
| | - Anderson Santos
- Department of Biochemistry and Immunology, Federal University of Minas Gerais, Brazil
| | - Clara Rodrigues-Ferreira
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Paulo A Martins-Júnior
- Department of Child and Adolescent Oral Health, Federal University of Minas Gerais, Brazil
| | - Rodrigo R Resende
- Department of Biochemistry and Immunology, Federal University of Minas Gerais, Brazil
| | - Emiliano Medei
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Adalberto Vieyra
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Robson A S Santos
- Department of Physiology and Biophysics, Federal University of Minas Gerais, Brazil; National Institute of Science and Technology in Nanobiopharmaceutics, Federal University of Minas Gerais, Brazil
| | - Jader S Cruz
- Department of Biochemistry and Immunology, Federal University of Minas Gerais, Brazil
| | | |
Collapse
|
10
|
Štros M, Polanská EV, Hlaváčová T, Skládal P. Progress in Assays of HMGB1 Levels in Human Plasma-The Potential Prognostic Value in COVID-19. Biomolecules 2022; 12:544. [PMID: 35454134 PMCID: PMC9031208 DOI: 10.3390/biom12040544] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/01/2022] [Accepted: 04/02/2022] [Indexed: 12/26/2022] Open
Abstract
Extracellular HMGB1 protein is known to induce inflammatory responses leading to an inflammatory storm. The outbreak of the Severe Acute Respiratory Syndrome COVID-19 due to the SARS-CoV-2 virus has resulted in a huge health concern worldwide. Recent data revealed that plasma/serum HMGB1 levels of patients suffering from inflammation-mediated disorders-such as COVID-19, cancer, and autoimmune disorders-correlate positively with disease severity and vice versa. A late release of HMGB1 in sepsis suggests the existence of a wide therapeutic window for treating sepsis. Rapid and accurate methods for the detection of HMGB1 levels in plasma/serum are, therefore, of great importance for monitoring the occurrence, treatment success, and survival prediction of patients with inflammation-mediated diseases. In this review, we briefly explain the role of HMGB1 in the cell, and particularly the involvement of extracellular HMGB1 (released from the cells) in inflammation-mediated diseases, with an emphasis on COVID-19. The current assays to measure HMGB1 levels in human plasma-Western blotting, ELISA, EMSA, and a new approach based on electrochemical immunosensors, including some of our preliminary results-are presented and thoroughly discussed.
Collapse
Affiliation(s)
- Michal Štros
- Institute of Biophysics of the Czech Academy of Sciences, 61200 Brno, Czech Republic;
| | - Eva Volfová Polanská
- Institute of Biophysics of the Czech Academy of Sciences, 61200 Brno, Czech Republic;
| | - Tereza Hlaváčová
- Department of Biochemistry, Faculty of Science, Masaryk University, 60177 Brno, Czech Republic; (T.H.); (P.S.)
| | - Petr Skládal
- Department of Biochemistry, Faculty of Science, Masaryk University, 60177 Brno, Czech Republic; (T.H.); (P.S.)
| |
Collapse
|
11
|
Armenta-Medina D, Brambila-Tapia AJL, Miranda-Jiménez S, Rodea-Montero ER. A Web Application for Biomedical Text Mining of Scientific Literature Associated with Coronavirus-Related Syndromes: Coronavirus Finder. Diagnostics (Basel) 2022; 12:887. [PMID: 35453935 PMCID: PMC9028729 DOI: 10.3390/diagnostics12040887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/10/2022] [Accepted: 02/11/2022] [Indexed: 12/10/2022] Open
Abstract
In this study, a web application was developed that comprises scientific literature associated with the Coronaviridae family, specifically for those viruses that are members of the Genus Betacoronavirus, responsible for emerging diseases with a great impact on human health: Middle East Respiratory Syndrome-Related Coronavirus (MERS-CoV) and Severe Acute Respiratory Syndrome-Related Coronavirus (SARS-CoV, SARS-CoV-2). The information compiled on this webserver aims to understand the basics of these viruses' infection, and the nature of their pathogenesis, enabling the identification of molecular and cellular components that may function as potential targets on the design and development of successful treatments for the diseases associated with the Coronaviridae family. Some of the web application's primary functions are searching for keywords within the scientific literature, natural language processing for the extraction of genes and words, the generation and visualization of gene networks associated with viral diseases derived from the analysis of latent semantic space, and cosine similarity measures. Interestingly, our gene association analysis reveals drug targets in understudies, and new targets suggested in the scientific literature to treat coronavirus.
Collapse
Affiliation(s)
- Dagoberto Armenta-Medina
- Consejo Nacional de Ciencia y Tecnología (CONACyT), Ciudad de México 03940, Mexico;
- Centro de Investigación e Innovación en Tecnologías de la Información y Comunicación (INFOTEC), Aguascalientes 20326, Mexico
| | | | - Sabino Miranda-Jiménez
- Consejo Nacional de Ciencia y Tecnología (CONACyT), Ciudad de México 03940, Mexico;
- Centro de Investigación e Innovación en Tecnologías de la Información y Comunicación (INFOTEC), Aguascalientes 20326, Mexico
| | | |
Collapse
|
12
|
Before the "cytokine storm": Boosting efferocytosis as an effective strategy against SARS-CoV-2 infection and associated complications. Cytokine Growth Factor Rev 2022; 63:108-118. [PMID: 35039221 PMCID: PMC8741331 DOI: 10.1016/j.cytogfr.2022.01.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 01/06/2022] [Indexed: 12/13/2022]
Abstract
The Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is responsible for the ongoing COVID-19 pandemic, and causes many health complications, including major lung diseases. Besides investigations into the virology of SARS-CoV-2, understanding the immunological routes underlying the clinical manifestations of COVID-19 is important for developing effective therapeutic interventions. The clearance of SARS-CoV-2-infected apoptotic cells by professional efferocytes, through a process termed as 'efferocytosis', is essential for maintaining tissue homeostasis, and reducing the chances of health complications caused by SARS-CoV-2 infection. In this review, we focus on the cellular events leading to engagement of the SARS-CoV-2 with type 2 alveolar cells, and how SARS-COV-2 infection impairs the macrophage anti-inflammatory programming. We also discuss accounts of impaired efferocytosis, and the “cytokine storm” which occur concomitantly with the SARS-CoV-2 infection. Finally, we propose how targeting impaired efferocytosis, due to the SARS-CoV-2 infection, may be a beneficial therapeutic strategy to combat COVID-19, and its complications.
Collapse
|
13
|
Zhang X, Meng Y, Gong B, Wang T, Lu Y, Zhang L, Xue J. Electrospun Nanofibers for Manipulating the Soft Tissue Regeneration. J Mater Chem B 2022; 10:7281-7308. [DOI: 10.1039/d2tb00609j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Soft tissue damage is a common clinical problem that affects the lives of a large number of patients all over the world. It is of great importance to develop functional...
Collapse
|
14
|
Pagliaro P, Thairi C, Alloatti G, Penna C. Angiotensin-converting enzyme 2: a key enzyme in key organs. J Cardiovasc Med (Hagerstown) 2022; 23:1-11. [PMID: 34091532 DOI: 10.2459/jcm.0000000000001218] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
2020 marked the 20th anniversary of the discovery of the angiotensin-converting enzyme 2 (ACE2). This major event that changed the way we see the renin-angiotensin system today could have passed quietly. Instead, the discovery that ACE2 is a major player in the severe acute respiratory syndrome coronavirus 2 pandemic has blown up the literature regarding this enzyme. ACE2 connects the classical arm renin-angiotensin system, consisting mainly of angiotensin II peptide and its AT1 receptor, with a protective arm, consisting mainly of the angiotensin 1-7 peptide and its Mas receptor. In this brief article, we have reviewed the literature to describe how ACE2 is a key protective arm enzyme in the function of many organs, particularly in the context of brain and cardiovascular function, as well as in renal, pulmonary and digestive homeostasis. We also very briefly review and refer to recent literature to present an insight into the role of ACE2 in determining the course of coronavirus diseases 2019.
Collapse
Affiliation(s)
- Pasquale Pagliaro
- Department of Clinical and Biological Sciences, University of Turin, Turin
| | - Cecilia Thairi
- Department of Clinical and Biological Sciences, University of Turin, Turin
| | | | - Claudia Penna
- Department of Clinical and Biological Sciences, University of Turin, Turin
| |
Collapse
|
15
|
Myocardial fibrosis reversion via rhACE2-electrospun fibrous patch for ventricular remodeling prevention. NPJ Regen Med 2021; 6:44. [PMID: 34376690 PMCID: PMC8355140 DOI: 10.1038/s41536-021-00154-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 07/22/2021] [Indexed: 01/09/2023] Open
Abstract
Myocardial fibrosis and ventricular remodeling were the key pathology factors causing undesirable consequence after myocardial infarction. However, an efficient therapeutic method remains unclear, partly due to difficulty in continuously preventing neurohormonal overactivation and potential disadvantages of cell therapy for clinical practice. In this study, a rhACE2-electrospun fibrous patch with sustained releasing of rhACE2 to shape an induction transformation niche in situ was introduced, through micro-sol electrospinning technologies. A durable releasing pattern of rhACE2 encapsulated in hyaluronic acid (HA)—poly(L-lactic acid) (PLLA) core-shell structure was observed. By multiple in vitro studies, the rhACE2 patch demonstrated effectiveness in reducing cardiomyocytes apoptosis under hypoxia stress and inhibiting cardiac fibroblasts proliferation, which gave evidence for its in vivo efficacy. For striking mice myocardial infarction experiments, a successful prevention of adverse ventricular remodeling has been demonstrated, reflecting by improved ejection fraction, normal ventricle structure and less fibrosis. The rhACE2 patch niche showed clear superiority in long term function and structure preservation after ischemia compared with intramyocardial injection. Thus, the micro-sol electrospun rhACE2 fibrous patch niche was proved to be efficient, cost-effective and easy-to-use in preventing ventricular adverse remodeling.
Collapse
|
16
|
Qi Y, Dasa O, Maden M, Vohra R, Batra A, Walter G, Yarrow JF, Aranda JM, Raizada MK, Pepine CJ. Functional heart recovery in an adult mammal, the spiny mouse. Int J Cardiol 2021; 338:196-203. [PMID: 34126132 DOI: 10.1016/j.ijcard.2021.06.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/27/2021] [Accepted: 06/09/2021] [Indexed: 12/22/2022]
Abstract
BACKGROUND Ischemic heart disease and the resulting heart failure continue to carry high morbidity and mortality, and a breakthrough in our understanding of this disorder is needed. The adult spiny mouse (Acomys cahirinus) has evolved the remarkable capacity to regenerate full-thickness skin tissue, including microvasculature and cartilage, without fibrosis or scarring. We hypothesized that lack of scarring and resulting functional regeneration also applies to the adult Acomys heart. METHODS AND RESULTS We compared responses of the Acomys heart to CD1 outbred Mus heart following acute left anterior descending coronary artery ligation to induce myocardial infarction. Both Acomys and Mus hearts showed decreased ejection fraction (EF) after ligation. However, Acomys hearts showed significant EF recovery to pre-ligation values over four weeks. Histological analysis showed comparable infarct area 24-h after ligation with a similar collateral flow in both species' hearts, but subsequently, Acomys displayed reduced infarct size, regenerated microvasculature, and increased cell proliferative activity in the infarcted area. CONCLUSIONS These observations suggest that adult Acomys displays remarkable cardiac recovery properties after acute coronary artery occlusion and may be a useful model to understand functional recovery better. TRANSLATIONAL PERSPECTIVE Adult Acomys provides a novel mammalian model to further investigate the cardioprotective and regenerative signaling mechanisms in adult mammals. This opens the door to breakthrough treatment strategies for the injured myocardium and help millions of patients with heart failure secondary to tissue injury with irreversible damage.
Collapse
Affiliation(s)
- Yanfei Qi
- Division of Cardiovascular Medicine, Department of Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Osama Dasa
- Department of Internal Medicine, University of Florida, Gainesville, FL, USA
| | - Malcolm Maden
- UF Genetics Institute and Department of Biology, University of Florida, Gainesville, FL, USA
| | - Ravneet Vohra
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Abhinandan Batra
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Glenn Walter
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville, FL, USA
| | | | - Juan M Aranda
- Division of Cardiovascular Medicine, Department of Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Mohan K Raizada
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Carl J Pepine
- Division of Cardiovascular Medicine, Department of Medicine, College of Medicine, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
17
|
Emathinger JM, Nelson JW, Gurley SB. Advances in use of mouse models to study the renin-angiotensin system. Mol Cell Endocrinol 2021; 529:111255. [PMID: 33789143 PMCID: PMC9119406 DOI: 10.1016/j.mce.2021.111255] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 01/19/2021] [Accepted: 03/20/2021] [Indexed: 12/28/2022]
Abstract
The renin-angiotensin system (RAS) is a highly complex hormonal cascade that spans multiple organs and cell types to regulate solute and fluid balance along with cardiovascular function. Much of our current understanding of the functions of the RAS has emerged from a series of key studies in genetically-modified animals. Here, we review key findings from ground-breaking transgenic models, spanning decades of research into the RAS, with a focus on their use in studying blood pressure. We review the physiological importance of this regulatory system as evident through the examination of mouse models for several major RAS components: angiotensinogen, renin, ACE, ACE2, and the type 1 A angiotensin receptor. Both whole-animal and cell-specific knockout models have permitted critical RAS functions to be defined and demonstrate how redundancy and multiplicity within the RAS allow for compensatory adjustments to maintain homeostasis. Moreover, these models present exciting opportunities for continued discovery surrounding the role of the RAS in disease pathogenesis and treatment for cardiovascular disease and beyond.
Collapse
MESH Headings
- Angiotensin-Converting Enzyme 2/deficiency
- Angiotensin-Converting Enzyme 2/genetics
- Angiotensinogen/deficiency
- Angiotensinogen/genetics
- Animals
- Blood Pressure/genetics
- Cardiovascular Diseases/genetics
- Cardiovascular Diseases/metabolism
- Cardiovascular Diseases/pathology
- Disease Models, Animal
- Gene Expression Regulation
- Humans
- Kidney/cytology
- Kidney/metabolism
- Mice
- Mice, Knockout
- Receptor, Angiotensin, Type 1/deficiency
- Receptor, Angiotensin, Type 1/genetics
- Receptor, Angiotensin, Type 2/deficiency
- Receptor, Angiotensin, Type 2/genetics
- Renin/deficiency
- Renin/genetics
- Renin-Angiotensin System/genetics
- Signal Transduction
- Water-Electrolyte Balance/genetics
Collapse
Affiliation(s)
- Jacqueline M Emathinger
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University, Portland, OR, USA.
| | - Jonathan W Nelson
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University, Portland, OR, USA.
| | - Susan B Gurley
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University, Portland, OR, USA.
| |
Collapse
|
18
|
Hussain A, Tang O, Sun C, Jia X, Selvin E, Nambi V, Folsom A, Heiss G, Zannad F, Mosley T, Virani SS, Coresh J, Boerwinkle E, Yu B, Cunningham JW, Shah AM, Solomon SD, de Lemos JA, Hoogeveen RC, Ballantyne CM. Soluble Angiotensin-Converting Enzyme 2, Cardiac Biomarkers, Structure, and Function, and Cardiovascular Events (from the Atherosclerosis Risk in Communities Study). Am J Cardiol 2021; 146:15-21. [PMID: 33539861 PMCID: PMC8038970 DOI: 10.1016/j.amjcard.2021.01.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/13/2021] [Accepted: 01/19/2021] [Indexed: 12/13/2022]
Abstract
Membrane-bound angiotensin-converting enzyme 2 is important in regulation of the renin-angiotensin-aldosterone system, but the association of cleaved soluble ACE2 (sACE2) with cardiovascular disease (CVD) is unclear. We evaluated the association of sACE2 with cardiac biomarkers, structure, and function and cardiovascular events in the Atherosclerosis Risk in Communities Study. sACE2 was measured in a subset of 497 participants (mean age 78±5.4 years, 53% men, 27% black); Cox regression analyses assessed prospective associations of sACE2 with time to first CVD event at median 6.1-year follow-up. sACE2 was higher in men, blacks, and participants with prevalent CVD, diabetes, or hypertension. Higher sACE2 levels were associated with significantly higher biomarkers of cardiac injury (high-sensitivity cardiac troponin I and T, N-terminal pro-B-type natriuretic peptide), greater left ventricular mass index, and impaired diastolic function in linear regression analyses, and with increased risk for heart failure hospitalization (adjusted hazard ratio per natural log unit increase [HR] 1.32, 95% confidence interval [CI] 1.10 to 1.58), CVD events (HR 1.34, 95% CI 1.13 to 1.60), and all-cause death (HR 1.26, 95% CI 1.01 to 1.57). In an elderly biracial cohort, sACE2 was positively associated with biomarkers reflecting myocardial injury and neurohormonal activation, left ventricular mass index, impaired diastolic function, CVD, events and all-cause death.
Collapse
Affiliation(s)
- Aliza Hussain
- Department of Medicine, Baylor College of Medicine, Houston, Texax; Center for Cardiometabolic Disease Prevention, Baylor College of Medicine, Houston, Texas
| | - Olive Tang
- Department of Epidemiology and Welch Center for Prevention, Epidemiology and Clinical Research, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Caroline Sun
- Department of Medicine, Baylor College of Medicine, Houston, Texax
| | - Xiaoming Jia
- Department of Medicine, Baylor College of Medicine, Houston, Texax
| | - Elizabeth Selvin
- Department of Epidemiology and Welch Center for Prevention, Epidemiology and Clinical Research, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Vijay Nambi
- Department of Medicine, Baylor College of Medicine, Houston, Texax; Center for Cardiometabolic Disease Prevention, Baylor College of Medicine, Houston, Texas; Department of Medicine, Michael E. DeBakey Veterans Affairs Medical Center, Houston, Texas
| | - Aaron Folsom
- Division of Epidemiology and Community Health, University of Minnesota, Minneapolis, Minnesota
| | - Gerardo Heiss
- Department of Epidemiology, University of North Carolina, Chapel Hill, North Carolina
| | - Faiez Zannad
- French Clinical Research Infrastructure Network Investigation Network Initiative-Cardiovascular and Renal Clinical Trialists, Université de Lorraine, Nancy, France
| | - Thomas Mosley
- Memory Impairment and Neurodegenerative Dementia Center, University of Mississippi Medical Center, Jackson, Mississippi
| | - Salim S Virani
- Department of Medicine, Baylor College of Medicine, Houston, Texax; Center for Cardiometabolic Disease Prevention, Baylor College of Medicine, Houston, Texas; Department of Medicine, Michael E. DeBakey Veterans Affairs Medical Center, Houston, Texas
| | - Josef Coresh
- Department of Epidemiology and Welch Center for Prevention, Epidemiology and Clinical Research, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Eric Boerwinkle
- School of Public Health, University of Texas Health Science Center at Houston, Houston, Texas
| | - Bing Yu
- School of Public Health, University of Texas Health Science Center at Houston, Houston, Texas
| | - Jonathan W Cunningham
- Cardiovascular Division, Brigham and Women's Hospital, and Harvard Medical School, Boston, Massachusetts
| | - Amil M Shah
- Cardiovascular Division, Brigham and Women's Hospital, and Harvard Medical School, Boston, Massachusetts
| | - Scott D Solomon
- Cardiovascular Division, Brigham and Women's Hospital, and Harvard Medical School, Boston, Massachusetts
| | - James A de Lemos
- Division of Cardiology, University of Texas-Southwestern Medical Center, Dallas, Texas
| | - Ron C Hoogeveen
- Department of Medicine, Baylor College of Medicine, Houston, Texax; Center for Cardiometabolic Disease Prevention, Baylor College of Medicine, Houston, Texas
| | - Christie M Ballantyne
- Department of Medicine, Baylor College of Medicine, Houston, Texax; Center for Cardiometabolic Disease Prevention, Baylor College of Medicine, Houston, Texas.
| |
Collapse
|
19
|
Diabetes, inflammation, and the adiponectin paradox: Therapeutic targets in SARS-CoV-2. Drug Discov Today 2021; 26:2036-2044. [PMID: 33775925 PMCID: PMC7997138 DOI: 10.1016/j.drudis.2021.03.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 02/22/2021] [Accepted: 03/16/2021] [Indexed: 12/16/2022]
Abstract
Aging and pre-existing conditions in older patients increase severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) severity and its complications, although the causes remain unclear. Apart from acute pulmonary syndrome, Coronavirus 2019 (COVID-19) can increasingly induce chronic conditions. Importantly, SARS-CoV-2 triggers de novo type 2 diabetes mellitus (T2DM) linked to age-associated cardiovascular disease (CVD), cancers, and neurodegeneration. Mechanistically, SARS-CoV-2 induces inflammation, possibly through damage-associated molecular pattern (DAMP) signaling and ‘cytokine storm,’ causing insulin resistance and the adiponectin (APN) paradox, a phenomenon linking metabolic dysfunction to chronic disease. Accordingly, preventing the APN paradox by suppressing APN-related inflammatory signaling might prove beneficial. A better understanding could uncover novel therapies for SARS-CoV-2 and its chronic disorders.
Collapse
|
20
|
Vieira C, Nery L, Martins L, Jabour L, Dias R, Simões E Silva AC. Downregulation of Membrane-bound Angiotensin Converting Enzyme 2 (ACE2) Receptor has a Pivotal Role in COVID-19 Immunopathology. Curr Drug Targets 2021; 22:254-281. [PMID: 33081670 DOI: 10.2174/1389450121666201020154033] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 09/06/2020] [Accepted: 09/22/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND The Coronavirus Disease 2019 (COVID-19) is becoming the major health issue in recent human history with thousands of deaths and millions of cases worldwide. Newer research and old experience with other coronaviruses highlighted a probable underlying mechanism of disturbance of the renin-angiotensin system (RAS) that is associated with the intrinsic effects of SARS-CoV-2 infection. OBJECTIVE In this review, we aimed to describe the intimate connections between the RAS components, the immune system and COVID-19 pathophysiology. METHODS This non-systematic review article summarizes recent evidence on the relationship between COVID-19 and the RAS. RESULTS Several studies have indicated that the downregulation of membrane-bound ACE2 may exert a key role for the impairment of immune functions and for COVID-19 patients' outcomes. The downregulation may occur by distinct mechanisms, particularly: (1) the shedding process induced by the SARS-CoV-2 fusion pathway, which reduces the amount of membrane-bound ACE2, stimulating more shedding by the high levels of Angiotensin II; (2) the endocytosis of ACE2 receptor with the virus itself and (3) by the interferon inhibition caused by SARS-CoV-2 effects on the immune system, which leads to a reduction of ACE2 receptor expression. CONCLUSION Recent research provides evidence of a reduction of the components of the alternative RAS axis, including ACE2 and Angiotensin-(1-7). In contrast, increased levels of Angiotensin II can activate the AT1 receptor in several organs. Consequently, increased inflammation, thrombosis and angiogenesis occur in patients infected with SARS-COV-2. Attention should be paid to the interactions of the RAS and COVID-19, mainly in the context of novel vaccines and proposed medications.
Collapse
Affiliation(s)
- Cristina Vieira
- Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Lucas Nery
- Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Ludimila Martins
- Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Luiz Jabour
- Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Raphael Dias
- Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Ana Cristina Simões E Silva
- Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| |
Collapse
|
21
|
Pathangey G, Fadadu PP, Hospodar AR, Abbas AE. Angiotensin-converting enzyme 2 and COVID-19: patients, comorbidities, and therapies. Am J Physiol Lung Cell Mol Physiol 2021; 320:L301-L330. [PMID: 33237815 PMCID: PMC7938645 DOI: 10.1152/ajplung.00259.2020] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 11/19/2020] [Accepted: 11/24/2020] [Indexed: 02/07/2023] Open
Abstract
On March 11, 2020, the World Health Organization declared coronavirus disease 2019 (COVID-19) a pandemic, and the reality of the situation has finally caught up to the widespread reach of the disease. The presentation of the disease is highly variable, ranging from asymptomatic carriers to critical COVID-19. The availability of angiotensin-converting enzyme 2 (ACE2) receptors may reportedly increase the susceptibility and/or disease progression of COVID-19. Comorbidities and risk factors have also been noted to increase COVID-19 susceptibility. In this paper, we hereby review the evidence pertaining to ACE2's relationship to common comorbidities, risk factors, and therapies associated with the susceptibility and severity of COVID-19. We also highlight gaps of knowledge that require further investigation. The primary comorbidities of respiratory disease, cardiovascular disease, renal disease, diabetes, obesity, and hypertension had strong evidence. The secondary risk factors of age, sex, and race/genetics had limited-to-moderate evidence. The tertiary factors of ACE inhibitors and angiotensin II receptor blockers had limited-to-moderate evidence. Ibuprofen and thiazolidinediones had limited evidence.
Collapse
Affiliation(s)
- Girish Pathangey
- William Beaumont School of Medicine, Oakland University, Rochester, Michigan
| | | | | | - Amr E Abbas
- William Beaumont School of Medicine, Oakland University, Rochester, Michigan
- Department of Cardiovascular Medicine, Beaumont Hospital Royal Oak, Royal Oak, Michigan
| |
Collapse
|
22
|
Suh SH, Ma SK, Kim SW, Bae EH. Angiotensin-converting enzyme 2 and kidney diseases in the era of coronavirus disease 2019. Korean J Intern Med 2021; 36:247-262. [PMID: 33617712 PMCID: PMC7969072 DOI: 10.3904/kjim.2020.355] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 09/19/2020] [Indexed: 01/08/2023] Open
Abstract
In the decades since the discovery of angiotensin-converting enzyme 2 (ACE2), its protective role in terms of antagonizing activation of the classical renin-angiotensin system (RAS) axis has been recognized in clinical and experimental studies on kidney and cardiovascular diseases. The effects of ACE inhibitor/angiotensin type 1 receptor blockers (ACEi/ARBs) on ACE2-angiotensin-(1-7) (Ang- (1-7))-Mas receptor (MasR) axis activation has encouraged the use of such blockers in patients with kidney and cardiovascular diseases, until the emergence of coronavirus disease 2019 (COVID-19). The previously unchallenged functions of the ACE2-Ang-(1-7)-MasR axis and ACEi/ARBs are being re-evaluated in the era of COVID-19; the hypothesis is that ACEi/ARBs may increase the risk of severe acute respiratory syndrome coronavirus 2 infection by upregulating the human ACE2 receptor expression level. In this review, we examine ACE2 molecular structure, function (as an enzyme of the RAS), and distribution. We explore the roles played by ACE2 in kidney, cardiovascular, and pulmonary diseases, highlighting studies that defined the benefits imparted when ACEi/ARBs activated the local ACE2- Ang-(1-7)-MasR axis. Finally, the question of whether ACEi/ARBs therapies should be stopped in COVID-19-infected patients will be reviewed by reference to the available evidence.
Collapse
Affiliation(s)
- Sang Heon Suh
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju, Korea
| | - Seong Kwon Ma
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju, Korea
| | - Soo Wan Kim
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju, Korea
| | - Eun Hui Bae
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju, Korea
- Correspondence to Eun Hui Bae, M.D. Department of Internal Medicine, Chonnam National University Medical School, 42 Jebong-ro, Dong-gu, Gwangju 61469, Korea Tel: +82-62-220-6503 Fax: +82-62-225-8578 E-mail:
| |
Collapse
|
23
|
Cai L, Guo X, Cao Y, Ying P, Hong L, Zhang Y, Yi G, Fu M. Determining available strategies for prevention and therapy: Exploring COVID‑19 from the perspective of ACE2 (Review). Int J Mol Med 2021; 47:43. [PMID: 33576441 PMCID: PMC7891831 DOI: 10.3892/ijmm.2021.4876] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 12/07/2020] [Indexed: 01/08/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) is an acute infectious pneumonia caused by a novel type of coronavirus infection. There are currently no clinically available specific drugs for the treatment of this virus. The process of host invasion is the key to viral infection, and it is a mechanism that needs to be considered when exploring antiviral drugs. At present, studies have confirmed that angiotensin-converting enzyme II (ACE2) is the main functional receptor through which severe acute respiratory syndrome coronavirus (SARS-CoV-2) invades host cells. Therefore, a number of studies have focused on this field. However, as ACE2 may play a dual role in mediating susceptibility and immunity to SARS-CoV-2 infection, the role of ACE2 in viral infection is controversial. Beginning with the physiological function of ACE2, the present review article summarizes the influence of the ACE2 content on the susceptibility to the virus and acute lung injury. Drug mechanisms were taken as the starting point, combined with the results of clinical trials, specifically elaborating upon and analyzing the efficacy of several ACE2-centered therapeutic drugs and their potential effects. In addition, the current status of ACE2 as a targeted therapy for COVID-19 is discussed in order to provide new insight into the clinical prevention and treatment of COVID-19.
Collapse
Affiliation(s)
- Liyang Cai
- The Second Clinical School, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Xi Guo
- Medical College of Rehabilitation, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Yuchen Cao
- The Second Clinical School, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Peixi Ying
- The Second Clinical School, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Libing Hong
- The Second Clinical School, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Yuxi Zhang
- The Second Clinical School, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Guoguo Yi
- Department of Ophthalmology, The Sixth Affiliated Hospital of Sun‑Yat‑Sen University, Guangzhou, Guangdong 510655, P.R. China
| | - Min Fu
- Department of Ophthalmology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong 510282, P.R. China
| |
Collapse
|
24
|
Thankam FG, Agrawal DK. Molecular chronicles of cytokine burst in patients with coronavirus disease 2019 (COVID-19) with cardiovascular diseases. J Thorac Cardiovasc Surg 2021; 161:e217-e226. [PMID: 32631657 PMCID: PMC7834736 DOI: 10.1016/j.jtcvs.2020.05.083] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 05/12/2020] [Accepted: 05/16/2020] [Indexed: 02/02/2023]
Affiliation(s)
| | - Devendra K. Agrawal
- Address for reprints: Devendra K. Agrawal, PhD (Biochem), PhD (Med Sci), MBA, Department of Translational Research, Western University of Health Sciences, 309 E Second St, Pomona, CA 91766
| |
Collapse
|
25
|
Magadum A, Kishore R. Cardiovascular Manifestations of COVID-19 Infection. Cells 2020; 9:E2508. [PMID: 33228225 PMCID: PMC7699571 DOI: 10.3390/cells9112508] [Citation(s) in RCA: 128] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/13/2020] [Accepted: 11/18/2020] [Indexed: 01/08/2023] Open
Abstract
SARS-CoV-2 induced the novel coronavirus disease (COVID-19) outbreak, the most significant medical challenge in the last century. COVID-19 is associated with notable increases in morbidity and death worldwide. Preexisting conditions, like cardiovascular disease (CVD), diabetes, hypertension, and obesity, are correlated with higher severity and a significant increase in the fatality rate of COVID-19. COVID-19 induces multiple cardiovascular complexities, such as cardiac arrest, myocarditis, acute myocardial injury, stress-induced cardiomyopathy, cardiogenic shock, arrhythmias and, subsequently, heart failure (HF). The precise mechanisms of how SARS-CoV-2 may cause myocardial complications are not clearly understood. The proposed mechanisms of myocardial injury based on current knowledge are the direct viral entry of the virus and damage to the myocardium, systemic inflammation, hypoxia, cytokine storm, interferon-mediated immune response, and plaque destabilization. The virus enters the cell through the angiotensin-converting enzyme-2 (ACE2) receptor and plays a central function in the virus's pathogenesis. A systematic understanding of cardiovascular effects of SARS-CoV2 is needed to develop novel therapeutic tools to target the virus-induced cardiac damage as a potential strategy to minimize permanent damage to the cardiovascular system and reduce the morbidity. In this review, we discuss our current understanding of COVID-19 mediated damage to the cardiovascular system.
Collapse
Affiliation(s)
- Ajit Magadum
- Center for Translational Medicine, Temple University, Philadelphia, PA 19140, USA;
| | - Raj Kishore
- Center for Translational Medicine, Temple University, Philadelphia, PA 19140, USA;
- Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| |
Collapse
|
26
|
Jia H, Yue X, Lazartigues E. ACE2 mouse models: a toolbox for cardiovascular and pulmonary research. Nat Commun 2020; 11:5165. [PMID: 33057007 PMCID: PMC7560817 DOI: 10.1038/s41467-020-18880-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 09/18/2020] [Indexed: 12/13/2022] Open
Abstract
Angiotensin-converting enzyme 2 (ACE2) has been identified as the host entry receptor for the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) responsible for the COVID-19 pandemic. ACE2 is a regulatory enzyme of the renin-angiotensin system and has protective functions in many cardiovascular, pulmonary and metabolic diseases. This review summarizes available murine models with systemic or organ-specific deletion of ACE2, or with overexpression of murine or human ACE2. The purpose of this review is to provide researchers with the genetic tools available for further understanding of ACE2 biology and for the investigation of ACE2 in the pathogenesis and treatment of COVID-19.
Collapse
Affiliation(s)
- Hongpeng Jia
- Division of Pediatric Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Xinping Yue
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA
| | - Eric Lazartigues
- Department of Pharmacology & Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA. .,Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA. .,Southeast Louisiana Veterans Health Care Systems, New Orleans, LA, 70119, USA.
| |
Collapse
|
27
|
AbdelMassih AF, Ramzy D, Nathan L, Aziz S, Ashraf M, Youssef NH, Hafez N, Saeed R, Agha H. Possible molecular and paracrine involvement underlying the pathogenesis of COVID-19 cardiovascular complications. Cardiovasc Endocrinol Metab 2020; 9:121-124. [PMID: 32803146 PMCID: PMC7410028 DOI: 10.1097/xce.0000000000000207] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 04/14/2020] [Indexed: 12/20/2022]
Abstract
Coronavirus disease 2019 (COVID-19) has been declared a pandemic on 11 March 2020 by the WHO. Despite being mainly a respiratory virus, cardiac complications have been described. These range from sudden cardiac death to subtle diastolic dysfunction after recovery from COVID-19. The commonest cardiac presentation to date is acute heart failure resulting from biventricular or left ventricular hypokinesis and elevation of cardiac troponins. It has been shown that COVID-19 downregulates angiotensin-converting enzyme-2, which has protective effects on the endothelium and cardiomyocytes. It has also been proven that COVID-19 induces a state of hypercytokinaemia, some cytokines such as interleukin-1 and interleukin-6 have an injurious effect on the myocardium and endothelium, respectively. Such pathogenic mechanisms might play a crucial role in induction of cardiomyocyte injury and impaired myocardial perfusion probably through coronary endothelial dysfunction. The understanding and linking of such mechanisms might help in tailoring drug repurposing for treatment or prophylaxis of COVID-19 cardiovascular complications.
Collapse
Affiliation(s)
- Antoine Fakhry AbdelMassih
- Pediatric Cardiology Unit, Pediatrics’ Department, Faculty of Medicine, Cairo University
- Pediatric Cardio-Oncology Department, Children Cancer Hospital of Egypt
| | - David Ramzy
- Students’ and Interns’ Research Program (Research accessibility team)
| | - Lauren Nathan
- Students’ and Interns’ Research Program (Research accessibility team)
| | - Silvia Aziz
- Students’ and Interns’ Research Program (Research accessibility team)
| | - Mirette Ashraf
- Students’ and Interns’ Research Program (Research accessibility team)
| | | | - Nouran Hafez
- Students’ and Interns’ Research Program (Research accessibility team)
| | - Rana Saeed
- Students’ and Interns’ Research Program (Research accessibility team)
| | - Hala Agha
- Pediatric Cardiology Unit, Pediatrics’ Department, Faculty of Medicine, Cairo University
- Head of Pediatric Cardiology unit, Pediatrics’ Department, Faculty of Medicine, Cairo University, Egypt
| |
Collapse
|
28
|
De Francesco EM, Vella V, Belfiore A. COVID-19 and Diabetes: The Importance of Controlling RAGE. Front Endocrinol (Lausanne) 2020; 11:526. [PMID: 32760352 PMCID: PMC7375019 DOI: 10.3389/fendo.2020.00526] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 06/29/2020] [Indexed: 12/13/2022] Open
Affiliation(s)
| | | | - Antonino Belfiore
- Department of Clinical and Experimental Medicine, University of Catania, and ARNAS Garibaldi, P.O. Garibaldi-Nesima, Catania, Italy
| |
Collapse
|
29
|
AbdelMassih AF, AbdelAzeam AS, Ayad A, Kamel AY, Khalil A, Kotb B, Waheed D, Menshawey E, Sefein F, Taha F, Ismail HA, Osman I, Iskander J, El Wakil L, Rashad L, Arsanyous MB, El Shershaby M, Mansour M, Ashraf M, Hafez N, Abuzeid NM, AbdElSalam NMN, Hafez NG, Youssef N, Hozaien R, Saeed R, Kamel D, AbdelHameed MA, Ali S. Unleashing the mysterious link between COVID-19 and a famous childhood vasculitis: Kawasaki disease. EGYPTIAN PEDIATRIC ASSOCIATION GAZETTE 2020. [PMCID: PMC7358563 DOI: 10.1186/s43054-020-00029-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Background Coronavirus disease 2019 (COVID-19) emerged as a small outbreak in Wuhan rapidly progressing into the deadliest pandemic since the Spanish flu of 1918. The disease was deemed trivial in children, until the reporting, few days ago, of an emerging pediatric multi-inflammatory syndrome mimicking Kawasaki disease (KD). Main body This report reveals that coronaviridae were implicated in induction of several post-infectious vasculitides, namely, KD, AHEI, and HSP. This occurs in genetically susceptible individuals to vascular inflammation. Shared genetic susceptibilities between KD and CoV include genes encoding for CD 40, HLAB-15:03, and ACE. This leads to augmented inflammation with hypersecretion of cytokines especially IL-6. Conclusion The revealed relationships between KD and CoV can help to predict the risk of KD in COVID-19 patients through screening levels of upregulated cytokines. It might also signify that classic treatment of KD with IVIG might need to be replaced with anti-cytokine therapy in COVID-19 patients.
Collapse
|
30
|
Sharma RK, Oliveira AC, Yang T, Karas MM, Li J, Lobaton GO, Aquino VP, Robles-Vera I, de Kloet AD, Krause EG, Bryant AJ, Verma A, Li Q, Richards EM, Raizada MK. Gut Pathology and Its Rescue by ACE2 (Angiotensin-Converting Enzyme 2) in Hypoxia-Induced Pulmonary Hypertension. Hypertension 2020; 76:206-216. [PMID: 32418496 PMCID: PMC7505091 DOI: 10.1161/hypertensionaha.120.14931] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 03/31/2020] [Indexed: 02/06/2023]
Abstract
Therapeutic advances for pulmonary hypertension (PH) have been incremental because of the focus on the pulmonary vasculature in PH pathology. Here, we evaluate the concept that PH is, rather, a systemic disorder involving interplay among multiorgan systems, including brain, gut, and lungs. Therefore, the objective of this study was to evaluate the hypothesis that PH is associated with a dysfunctional brain-gut-lung axis and that global overexpression of ACE2 (angiotensin-converting enzyme 2) rebalances this axis and protects against PH. ACE2 knockin and wild-type (WT; C57BL/6) mice were subjected to chronic hypoxia (10% FIO2) or room air for 4 weeks. Cardiopulmonary hemodynamics, histology, immunohistochemistry, and fecal 16S rRNA microbial gene analyses were evaluated. Hypoxia significantly increased right ventricular systolic pressure, sympathetic activity as well as the number and activation of microglia in the paraventricular nucleus of the hypothalamus in WT mice. This was associated with a significant increase in muscularis layer thickening and decreases in both villi length and goblet cells and altered gut microbiota. Global overexpression of ACE2 prevented changes in hypoxia-induced pulmonary and gut pathophysiology and established distinct microbial communities from WT hypoxia mice. Furthermore, WT mice subjected to fecal matter transfer from ACE2 knockin mice were resistant to hypoxia-induced PH compared with their controls receiving WT fecal matter transfer. These observations demonstrate that ACE2 ameliorates these hypoxia-induced pathologies and attenuates PH. The data implicate dysfunctional brain-gut-lung communication in PH and provide novel avenues for therapeutic interventions.
Collapse
Affiliation(s)
- Ravindra K. Sharma
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Aline C. Oliveira
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Tao Yang
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Marianthi M. Karas
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Jing Li
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Gilberto O. Lobaton
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Victor P. Aquino
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Iñaki Robles-Vera
- Department of Pharmacology, School of Pharmacy, University of Granada, Granada, Spain
| | - Annette D. de Kloet
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Eric G. Krause
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, Florida, USA
| | - Andrew J. Bryant
- Division of Pulmonary Critical Care and Sleep Medicine, Department of Medicine, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Amrisha Verma
- Department of Ophthalmology Research, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Qiuhong Li
- Department of Ophthalmology Research, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Elaine M. Richards
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Mohan K. Raizada
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
31
|
Intrauterine RAS programming alteration-mediated susceptibility and heritability of temporal lobe epilepsy in male offspring rats induced by prenatal dexamethasone exposure. Arch Toxicol 2020; 94:3201-3215. [PMID: 32494933 DOI: 10.1007/s00204-020-02796-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 05/28/2020] [Indexed: 12/22/2022]
Abstract
Partial temporal lobe epilepsy (TLE) has an intrauterine developmental origin. This study was aimed at elucidating the heritable effects and programming mechanism of TLE in offspring rats induced by prenatal dexamethasone exposure (PDE). Pregnant Wistar rats were injected subcutaneously with dexamethasone (0.2 mg/kg day) from gestational day 9 to 20. The F1 and F2 generations of male offspring were administered lithium pilocarpine (LiPC) for electroencephalography and video monitoring in epilepsy or behavioral tests. Results showed that the PDE + LiPC group exhibited TLE susceptibility, which continued throughout F2 generation. Expression of hippocampal glucocorticoid receptor (GR), CCAAT enhancer-binding protein α (C/EBPα), intrauterine renin-angiotensin system (RAS) classical pathway related genes, the H3K27ac level in angiotensin-converting enzyme (ACE) promoter, as well as high mobility group box 1 (HMGB1) and toll-like receptor 4 (TLR4) were increased, but glutamate dehydrogenase (GLUD) 1/2 expression were decreased, accompanied by increased glutamate levels in PDE fetal and adult rats, as well as in F1 and F2 offspring of the PDE + LiPC group. These consistent changes were also observed by treating the H19-7 fetal hippocampal cell line with dexamethasone and were reversed by GR inhibitor (RU486) and ACE inhibitor (enalaprilat). Our results confirmed that PDE-induced H3K27ac enrichment in the ACE promoter and enhanced the RAS classic pathway via activating GR-C/EBPα-p300 in utero, which caused changes of the HMGB1 pathway and glutamate excitatory damage. Intrauterine programming mediated by abnormal histone modification of hippocampal ACE could continue to adulthood and even F2 generation, which induced the heritability of TLE in male offspring rats.
Collapse
|
32
|
Gheblawi M, Wang K, Viveiros A, Nguyen Q, Zhong JC, Turner AJ, Raizada MK, Grant MB, Oudit GY. Angiotensin-Converting Enzyme 2: SARS-CoV-2 Receptor and Regulator of the Renin-Angiotensin System: Celebrating the 20th Anniversary of the Discovery of ACE2. Circ Res 2020; 126:1456-1474. [PMID: 32264791 PMCID: PMC7188049 DOI: 10.1161/circresaha.120.317015] [Citation(s) in RCA: 1341] [Impact Index Per Article: 268.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
ACE2 (angiotensin-converting enzyme 2) has a multiplicity of physiological roles that revolve around its trivalent function: a negative regulator of the renin-angiotensin system, facilitator of amino acid transport, and the severe acute respiratory syndrome-coronavirus (SARS-CoV) and SARS-CoV-2 receptor. ACE2 is widely expressed, including, in the lungs, cardiovascular system, gut, kidneys, central nervous system, and adipose tissue. ACE2 has recently been identified as the SARS-CoV-2 receptor, the infective agent responsible for coronavirus disease 2019, providing a critical link between immunity, inflammation, ACE2, and cardiovascular disease. Although sharing a close evolutionary relationship with SARS-CoV, the receptor-binding domain of SARS-CoV-2 differs in several key amino acid residues, allowing for stronger binding affinity with the human ACE2 receptor, which may account for the greater pathogenicity of SARS-CoV-2. The loss of ACE2 function following binding by SARS-CoV-2 is driven by endocytosis and activation of proteolytic cleavage and processing. The ACE2 system is a critical protective pathway against heart failure with reduced and preserved ejection fraction including, myocardial infarction and hypertension, and against lung disease and diabetes mellitus. The control of gut dysbiosis and vascular permeability by ACE2 has emerged as an essential mechanism of pulmonary hypertension and diabetic cardiovascular complications. Recombinant ACE2, gene-delivery of Ace2, Ang 1-7 analogs, and Mas receptor agonists enhance ACE2 action and serve as potential therapies for disease conditions associated with an activated renin-angiotensin system. rhACE2 (recombinant human ACE2) has completed clinical trials and efficiently lowered or increased plasma angiotensin II and angiotensin 1-7 levels, respectively. Our review summarizes the progress over the past 20 years, highlighting the critical role of ACE2 as the novel SARS-CoV-2 receptor and as the negative regulator of the renin-angiotensin system, together with implications for the coronavirus disease 2019 pandemic and associated cardiovascular diseases.
Collapse
Affiliation(s)
- Mahmoud Gheblawi
- From the Department of Physiology (M.G., A.V., G.Y.O.)
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Canada (M.G., K.W., A.V., Q.N., G.Y.O.)
| | - Kaiming Wang
- Division of Cardiology, Department of Medicine, University of Alberta, Edmonton, Canada (K.W., Q.N., G.Y.O.)
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Canada (M.G., K.W., A.V., Q.N., G.Y.O.)
| | - Anissa Viveiros
- From the Department of Physiology (M.G., A.V., G.Y.O.)
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Canada (M.G., K.W., A.V., Q.N., G.Y.O.)
| | - Quynh Nguyen
- Division of Cardiology, Department of Medicine, University of Alberta, Edmonton, Canada (K.W., Q.N., G.Y.O.)
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Canada (M.G., K.W., A.V., Q.N., G.Y.O.)
| | - Jiu-Chang Zhong
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, China (J.-C.Z.)
| | - Anthony J. Turner
- School of Biomedical Sciences, University of Leeds, United Kingdom (A.J.T.)
| | - Mohan K. Raizada
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville (M.K.R.)
| | - Maria B. Grant
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham (M.B.G.)
| | - Gavin Y. Oudit
- From the Department of Physiology (M.G., A.V., G.Y.O.)
- Division of Cardiology, Department of Medicine, University of Alberta, Edmonton, Canada (K.W., Q.N., G.Y.O.)
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Canada (M.G., K.W., A.V., Q.N., G.Y.O.)
| |
Collapse
|
33
|
Street ME. HMGB1: A Possible Crucial Therapeutic Target for COVID-19? Horm Res Paediatr 2020; 93:73-75. [PMID: 32375153 PMCID: PMC7251586 DOI: 10.1159/000508291] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 04/28/2020] [Indexed: 12/11/2022] Open
Affiliation(s)
- Maria Elisabeth Street
- Division of Paediatric Endocrinology and Diabetology and Research Laboratory, Department of Mother and Child, Paediatrics, AUSL-IRCCS di Reggio Emilia, Reggio Emilia, Italy,
| |
Collapse
|
34
|
Correlation between angiotensin 1-7-mediated Mas receptor expression with motor improvement, activated STAT3/SOCS3 cascade, and suppressed HMGB-1/RAGE/NF-κB signaling in 6-hydroxydopamine hemiparkinsonian rats. Biochem Pharmacol 2019; 171:113681. [PMID: 31669235 DOI: 10.1016/j.bcp.2019.113681] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 10/23/2019] [Indexed: 12/21/2022]
Abstract
In the current investigation, a Parkinson's disease (PD) model was established by a single direct right intrastriatal injection of the 6-hydroxydopamine (OHDA) in male Wistar rats followed by 7 daily unilateral injection of angiotensin (Ang) 1-7 in the striatum. To confirm the putative role of Mas receptor (MasR), the selective antagonist A779 was also injected intrastriatally prior to Ang 1-7 injections and a correlation analysis was performed between MasR expression and the assessed parameters. Ang 1-7 upregulated MasR expression to correlate strongly with the improved rotarod (r = 0.95, p = 0.003) and spontaneous activity task (r = 0.99, p < 0.0001). This correlation extends to involve other effects of Ang 1-7, such as the increased striatal dopamine content (r = 0.98, p = 0.0005), substantia nigra pars compacta tyrosine hydroxylase immune-reactivity (r = 0.97, p = 0.001), active pY705-STAT3 (r = 0.99, p < 0.0001) and SOCS3 (r = 0.99, p < 0.0001). Conversely, Ang 1-7 inhibited inflammatory markers to correlate negatively with NF-κBp65 (r = -0.99, p < 0.0003) and its downstream targets, high mobility group box-1 (HMGB-1; r = -0.97, p = 0.002), receptor for advanced glycation end products (RAGE; r = -0.98, p = 0.0004), and TNF-α (r = -0.99, p < 0.0003), besides poly-ADP-ribose polymerase-1 (r = -0.99, p = 0.0002). In confirmation, the pre-administration of the selective MasR antagonist, A779, partially attenuated Ang 1-7-induced alterations towards 6-OHDA neurodegeneration. Collectively, our findings support a novel role for the anti-inflammatory capacity of the MasR axis to prove potential therapeutic relevance in PD via the upregulation/activation of MasR-dependent STAT3/SOCS3 cascade to negatively control the HMGB-1/RAGE/NF-κB axis hindering PD associated neuro-inflammation along with DA depletion and motor deficits.
Collapse
|
35
|
Foglio E, Pellegrini L, Germani A, Russo MA, Limana F. HMGB1-mediated apoptosis and autophagy in ischemic heart diseases. VASCULAR BIOLOGY 2019; 1:H89-H96. [PMID: 32923959 PMCID: PMC7439920 DOI: 10.1530/vb-19-0013] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 08/12/2019] [Indexed: 12/17/2022]
Abstract
Acute myocardial infarction (MI) and its consequences are the most common and lethal heart syndromes worldwide and represent a significant health problem. Following MI, apoptosis has been generally seen as the major contributor of the cardiomyocyte fate and of the resultant myocardial remodeling. However, in recent years, it has been discovered that, following MI, cardiomyocytes could activate autophagy in an attempt to protect themselves against ischemic stress and to preserve cardiac function. Although initially seen as two completely separate responses, recent works have highlighted the intertwined crosstalk between apoptosis and autophagy. Numerous researches have tried to unveil the mechanisms and the molecular players involved in this phenomenon and have identified in high-mobility group box 1 (HMGB1), a highly conserved non-histone nuclear protein with important roles in the heart, one of the major regulator. Thus, the aim of this mini review is to discuss how HMGB1 regulates these two responses in ischemic heart diseases. Indeed, a detailed understanding of the crosstalk between apoptosis and autophagy in these pathologies and how HMGB1 regulates them would be of tremendous help in developing novel therapeutic approaches aimed to promote cardiomyocyte survival and to diminish tissue injury following MI.
Collapse
Affiliation(s)
- Eleonora Foglio
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Laura Pellegrini
- Institute of Oncology Research (IOR), Bellinzona, Switzerland.,Universita' della Svizzera Italiana, Lugano, Switzerland
| | - Antonia Germani
- Laboratory of Vascular Pathology, Istituto Dermopatico dell'Immacolata, IDI-IRCCS, Fondazione Luigi Maria Monti, Rome, Italy
| | - Matteo Antonio Russo
- IRCCS San Raffaele Pisana, San Raffaele Open University, Rome, Italy.,MEBIC Consortium, San Raffaele Open University, Rome, Italy
| | - Federica Limana
- Laboratory of Cellular and Molecular Pathology, IRCCS San Raffaele Pisana, Rome, Italy.,San Raffaele Open University, Rome, Italy
| |
Collapse
|
36
|
Xiao HL, Zhao LX, Yang J, Tong N, An L, Liu QT, Xie MR, Li CS. Imbalance of angiotensin-converting enzymes affects myocardial apoptosis during cardiac arrest induced by acute pulmonary embolism in a porcine model. Int J Mol Med 2019; 43:1575-1584. [PMID: 30816437 PMCID: PMC6414161 DOI: 10.3892/ijmm.2019.4109] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Accepted: 01/15/2019] [Indexed: 12/15/2022] Open
Abstract
Acute pulmonary embolism (APE) with cardiac arrest (CA) is associated with a high mortality rate. Even upon return of the spontaneous circulation (ROSC), APE‑CA survivors are prone to myocardial cell apoptosis, a key cellular mechanism that induces heart failure. A recent study by our group discovered a post‑resuscitation imbalance in the serum angiotensin‑converting enzyme (ACE)2/ACE axis of the renin‑angiotensin system (RAS), as well as regressive cardiac function in a porcine model of APE‑CA. However, it has remained elusive how this imbalance in the ACE2/ACE axis affects myocardial cell apoptosis. In the present study, western blot and immunohistochemical analyses demonstrated that the RAS was only activated in the left myocardium, as evidenced by a decreased ACE2/ACE ratio following APE‑CA and ROSC, but not the right myocardium. Ultrastructural analysis confirmed myocardial apoptosis in the left and right myocardium. Furthermore, B‑cell lymphoma 2 (Bcl‑2)‑associated X protein (Bax) and caspase‑3 levels were elevated and Bcl‑2 levels were decreased in the left myocardium following APE‑CA and ROSC. Treatment with the ACE inhibitor captopril for 30 min after initiation of ROSC prevented the increase in Bax and the decrease in Bcl‑2 in the left myocardium compared with that in saline‑treated pigs. Captopril also inhibited the activation of extracellular signal‑regulated kinase (ERK)1/2 in the left myocardium. The results of the present study suggest that an imbalance in the ACE2/ACE axis has an important role in myocardial apoptosis following APE‑CA, which may be attributed to decreased ERK1/2 activation. In addition, it was indicated that captopril prevents apoptosis in the left myocardium after ROSC.
Collapse
Affiliation(s)
- Hong-Li Xiao
- Department of Emergency Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing 100050
| | | | - Jun Yang
- Department of Emergency Medicine
| | - Nan Tong
- Department of Emergency Medicine
| | - Le An
- Department of Emergency Medicine
| | - Qi-Tong Liu
- Departments of Radiology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, P.R. China
| | - Miao-Rong Xie
- Department of Emergency Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing 100050
- Correspondence to: Professor Chun-Sheng Li or Professor Miao-Rong Xie, Department of Emergency Medicine, Beijing Friendship Hospital, Capital Medical University, 95 Yongan Road, Xicheng, Beijing 100050, P.R. China, E-mail: , E-mail:
| | - Chun-Sheng Li
- Department of Emergency Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing 100050
- Correspondence to: Professor Chun-Sheng Li or Professor Miao-Rong Xie, Department of Emergency Medicine, Beijing Friendship Hospital, Capital Medical University, 95 Yongan Road, Xicheng, Beijing 100050, P.R. China, E-mail: , E-mail:
| |
Collapse
|
37
|
Bauzá MDR, Giménez CS, Locatelli P, De Lorenzi A, Hnatiuk A, Capogrossi MC, Crottogini A, Cuniberti L, Olea FD. High-dose intramyocardial HMGB1 induces long-term cardioprotection in sheep with myocardial infarction. Drug Deliv Transl Res 2019; 9:935-944. [DOI: 10.1007/s13346-019-00628-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
38
|
Badae NM, El Naggar AS, El Sayed SM. Is the cardioprotective effect of the ACE2 activator diminazene aceturate more potent than the ACE inhibitor enalapril on acute myocardial infarction in rats? Can J Physiol Pharmacol 2019; 97:638-646. [PMID: 30840489 DOI: 10.1139/cjpp-2019-0078] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Myocardial infarction is a major cause of cardiac dysfunction. All components of the cardiac renin-angiotensin system (RAS) are upregulated in myocardial infarction. Angiotensin-converting enzyme (ACE) and ACE2 are key enzymes involved in synthesis of components of RAS and provide a counter-regulatory mechanism within RAS. We compared the cardioprotective effect of the ACE2 activator diminazene aceturate (DIZE) versus the ACE inhibitor enalapril on post acute myocardial infarction (AMI) ventricular dysfunction in rats. Adult male rats received subcutaneous injections of either saline (control) or isoproterenol (85 mg/kg) to induce AMI. Rats with AMI confirmed biochemically and by ECG, were either left untreated (AMI) or administered DIZE (AMI + DIZE) or enalapril (AMI + enalapril) daily for 4 weeks. DIZE caused a significant activation of cardiac ACE2 compared with enalapril. DIZE caused a significantly greater enhancement of cardiac hemodynamics. DIZE also caused greater reductions in heart-type fatty acid binding protein (H-FABP), β-myosin heavy chain (β-MYH), and in heart mass to total body mass ratio. These results indicated that activation of cardiac ACE2 by DIZE enhanced the protective axis of RAS and improved myocardial function following AMI, whereas enalapril was not sufficient to restore all cardiac parameters back to normal.
Collapse
Affiliation(s)
- Noha Mohamed Badae
- Department of Medical Physiology, Faculty of Medicine, Alexandria University, Alexandria, Egypt.,Department of Medical Physiology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Asmaa Samy El Naggar
- Department of Medical Physiology, Faculty of Medicine, Alexandria University, Alexandria, Egypt.,Department of Medical Physiology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Samiha Mahmoud El Sayed
- Department of Medical Physiology, Faculty of Medicine, Alexandria University, Alexandria, Egypt.,Department of Medical Physiology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| |
Collapse
|
39
|
Santos RAS. Genetic Models. ANGIOTENSIN-(1-7) 2019. [PMCID: PMC7120897 DOI: 10.1007/978-3-030-22696-1_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Genetically altered rat and mouse models have been instrumental in the functional analysis of genes in a physiological context. In particular, studies on the renin-angiotensin system (RAS) have profited from this technology in the past. In this review, we summarize the existing animal models for the protective axis of the RAS consisting of angiotensin-converting enzyme 2 (ACE2), angiotensin-(1-7)(Ang-(1-7), and its receptor Mas. With the help of models with altered expression of the components of this axis in the brain and cardiovascular organs, its physiological and pathophysiological functions have been elucidated. Thus, novel opportunities for therapeutic interventions in cardiovascular diseases were revealed targeting ACE2 or Mas.
Collapse
|
40
|
Abstract
High-mobility group box 1 (HMGB1) is one of the most abundant proteins in eukaryotes and the best characterized damage-associated molecular pattern (DAMP). The biological activities of HMGB1 depend on its subcellular location, context and post-translational modifications. Inside the nucleus, HMGB1 is engaged in many DNA events such as DNA repair, transcription regulation and genome stability; in the cytoplasm, its main function is to regulate the autophagic flux while in the extracellular environment, it possesses more complicated functions and it is involved in a large variety of different processes such as inflammation, migration, invasion, proliferation, differentiation and tissue regeneration. Due to this pleiotropy, the role of HMGB1 has been vastly investigated in various pathological diseases and a large number of studies have explored its function in cardiovascular pathologies. However, in this contest, the precise mechanism of action of HMGB1 and its therapeutic potential are still very controversial since is debated whether HMGB1 is involved in tissue damage or plays a role in tissue repair and regeneration. The main focus of this review is to provide an overview of the effects of HMGB1 in different ischemic heart diseases and to discuss its functions in these pathological conditions.
Collapse
|
41
|
Alenina N, Bader M. ACE2 in Brain Physiology and Pathophysiology: Evidence from Transgenic Animal Models. Neurochem Res 2018; 44:1323-1329. [PMID: 30443713 PMCID: PMC7089194 DOI: 10.1007/s11064-018-2679-4] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 10/15/2018] [Accepted: 11/08/2018] [Indexed: 12/12/2022]
Abstract
Angiotensin-converting enzyme 2 (ACE2) is a protein consisting of two domains, the N-terminus is a carboxypeptidase homologous to ACE and the C-terminus is homologous to collectrin and responsible for the trafficking of the neutral amino acid transporter B(0)AT1 to the plasma membrane of gut epithelial cells. The carboxypeptidase domain not only metabolizes angiotensin II to angiotensin-(1–7), but also other peptide substrates, such as apelin, kinins and morphins. In addition, the collectrin domain regulates the levels of some amino acids in the blood, in particular of tryptophan. Therefore it is of no surprise that animals with genetic alterations in the expression of ACE2 develop a diverse pattern of phenotypes ranging from hypertension, metabolic and behavioural dysfunctions, to impairments in serotonin synthesis and neurogenesis. This review summarizes the phenotypes of such animals with a particular focus on the central nervous system.
Collapse
Affiliation(s)
- Natalia Alenina
- Max-Delbrück-Center for Molecular Medicine (MDC), Robert-Rössle-Str. 10, 13125, Berlin, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Michael Bader
- Max-Delbrück-Center for Molecular Medicine (MDC), Robert-Rössle-Str. 10, 13125, Berlin, Germany.
- DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin, Germany.
- Berlin Institute of Health (BIH), Berlin, Germany.
- Charité - University Medicine, Berlin, Germany.
- Institute for Biology, University of Lübeck, Lübeck, Germany.
| |
Collapse
|
42
|
Wang LA, de Kloet AD, Smeltzer MD, Cahill KM, Hiller H, Bruce EB, Pioquinto DJ, Ludin JA, Katovich MJ, Raizada MK, Krause EG. Coupling corticotropin-releasing-hormone and angiotensin converting enzyme 2 dampens stress responsiveness in male mice. Neuropharmacology 2018; 133:85-93. [PMID: 29360543 DOI: 10.1016/j.neuropharm.2018.01.025] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 01/08/2018] [Accepted: 01/18/2018] [Indexed: 12/24/2022]
Abstract
This study used mice to evaluate whether coupling expression of corticotropin-releasing hormone (CRH) and angiotensin converting enzyme 2 (ACE2) creates central interactions that blunt endocrine and behavioral responses to psychogenic stress. Central administration of diminazene aceturate, an ACE2 activator, had no effect on restraint-induced activation of the hypothalamic-pituitary-adrenal (HPA) axis; however, mice that ubiquitously overexpress ACE2 had reduced plasma corticosterone (CORT) and pituitary expression of POMC mRNA. The Cre-LoxP system was used to restrict ACE2 overexpression to CRH synthesizing cells and probe whether HPA axis suppression was the result of central ACE2 and CRH interactions. Within the paraventricular nucleus of the hypothalamus (PVN), mice with ACE2 overexpression directed to CRH had a ≈2.5 fold increase in ACE2 mRNA, which co-localized with CRH mRNA. Relative to controls, mice overexpressing ACE2 in CRH cells had a decreased CORT response to restraint as well as decreased CRH mRNA in the PVN and CEA and POMC mRNA in the pituitary. Administration of ACTH similarly increased plasma CORT, indicating that the blunted HPA axis activation that accompanies ACE2 overexpression in CRH cells is centrally mediated. Anxiety-like behavior was assessed to determine whether the decreased HPA axis activation was predictive of anxiolysis. Mice with ACE2 overexpression directed to CRH cells displayed decreased anxiety-like behavior in the elevated plus maze and open field when compared to that of controls. Collectively, these results suggest that exogenous ACE2 suppresses CRH synthesis, which alters the central processing of psychogenic stress, thereby blunting HPA axis activation and attenuating anxiety-like behavior.
Collapse
Affiliation(s)
- Lei A Wang
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, 32611, United States
| | - Annette D de Kloet
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, 32611, United States; Evelyn F. and William L. McKnight Brain Institute, University of Florida, 32611, United States
| | - Michael D Smeltzer
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, 32611, United States
| | - Karlena M Cahill
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, 32611, United States
| | - Helmut Hiller
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, 32611, United States
| | - Erin B Bruce
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, 32611, United States
| | - David J Pioquinto
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, 32611, United States
| | - Jacob A Ludin
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, 32611, United States
| | - Michael J Katovich
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, 32611, United States
| | - Mohan K Raizada
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, 32611, United States; Evelyn F. and William L. McKnight Brain Institute, University of Florida, 32611, United States
| | - Eric G Krause
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, 32611, United States; Evelyn F. and William L. McKnight Brain Institute, University of Florida, 32611, United States.
| |
Collapse
|
43
|
Cardoso AL, Fernandes A, Aguilar-Pimentel JA, de Angelis MH, Guedes JR, Brito MA, Ortolano S, Pani G, Athanasopoulou S, Gonos ES, Schosserer M, Grillari J, Peterson P, Tuna BG, Dogan S, Meyer A, van Os R, Trendelenburg AU. Towards frailty biomarkers: Candidates from genes and pathways regulated in aging and age-related diseases. Ageing Res Rev 2018; 47:214-277. [PMID: 30071357 DOI: 10.1016/j.arr.2018.07.004] [Citation(s) in RCA: 303] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 07/08/2018] [Accepted: 07/10/2018] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Use of the frailty index to measure an accumulation of deficits has been proven a valuable method for identifying elderly people at risk for increased vulnerability, disease, injury, and mortality. However, complementary molecular frailty biomarkers or ideally biomarker panels have not yet been identified. We conducted a systematic search to identify biomarker candidates for a frailty biomarker panel. METHODS Gene expression databases were searched (http://genomics.senescence.info/genes including GenAge, AnAge, LongevityMap, CellAge, DrugAge, Digital Aging Atlas) to identify genes regulated in aging, longevity, and age-related diseases with a focus on secreted factors or molecules detectable in body fluids as potential frailty biomarkers. Factors broadly expressed, related to several "hallmark of aging" pathways as well as used or predicted as biomarkers in other disease settings, particularly age-related pathologies, were identified. This set of biomarkers was further expanded according to the expertise and experience of the authors. In the next step, biomarkers were assigned to six "hallmark of aging" pathways, namely (1) inflammation, (2) mitochondria and apoptosis, (3) calcium homeostasis, (4) fibrosis, (5) NMJ (neuromuscular junction) and neurons, (6) cytoskeleton and hormones, or (7) other principles and an extensive literature search was performed for each candidate to explore their potential and priority as frailty biomarkers. RESULTS A total of 44 markers were evaluated in the seven categories listed above, and 19 were awarded a high priority score, 22 identified as medium priority and three were low priority. In each category high and medium priority markers were identified. CONCLUSION Biomarker panels for frailty would be of high value and better than single markers. Based on our search we would propose a core panel of frailty biomarkers consisting of (1) CXCL10 (C-X-C motif chemokine ligand 10), IL-6 (interleukin 6), CX3CL1 (C-X3-C motif chemokine ligand 1), (2) GDF15 (growth differentiation factor 15), FNDC5 (fibronectin type III domain containing 5), vimentin (VIM), (3) regucalcin (RGN/SMP30), calreticulin, (4) PLAU (plasminogen activator, urokinase), AGT (angiotensinogen), (5) BDNF (brain derived neurotrophic factor), progranulin (PGRN), (6) α-klotho (KL), FGF23 (fibroblast growth factor 23), FGF21, leptin (LEP), (7) miRNA (micro Ribonucleic acid) panel (to be further defined), AHCY (adenosylhomocysteinase) and KRT18 (keratin 18). An expanded panel would also include (1) pentraxin (PTX3), sVCAM/ICAM (soluble vascular cell adhesion molecule 1/Intercellular adhesion molecule 1), defensin α, (2) APP (amyloid beta precursor protein), LDH (lactate dehydrogenase), (3) S100B (S100 calcium binding protein B), (4) TGFβ (transforming growth factor beta), PAI-1 (plasminogen activator inhibitor 1), TGM2 (transglutaminase 2), (5) sRAGE (soluble receptor for advanced glycosylation end products), HMGB1 (high mobility group box 1), C3/C1Q (complement factor 3/1Q), ST2 (Interleukin 1 receptor like 1), agrin (AGRN), (6) IGF-1 (insulin-like growth factor 1), resistin (RETN), adiponectin (ADIPOQ), ghrelin (GHRL), growth hormone (GH), (7) microparticle panel (to be further defined), GpnmB (glycoprotein nonmetastatic melanoma protein B) and lactoferrin (LTF). We believe that these predicted panels need to be experimentally explored in animal models and frail cohorts in order to ascertain their diagnostic, prognostic and therapeutic potential.
Collapse
|
44
|
Angiotensin-converting enzyme 2 overexpression protects against doxorubicin-induced cardiomyopathy by multiple mechanisms in rats. Oncotarget 2018; 8:24548-24563. [PMID: 28445944 PMCID: PMC5421869 DOI: 10.18632/oncotarget.15595] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 02/13/2017] [Indexed: 11/25/2022] Open
Abstract
Angiotensin-converting enzyme 2 (ACE2) is considered a potential therapeutic target of the renin-angiotensin system (RAS) for the treatment of cardiovascular diseases. We aimed to explore the effects of ACE2 overexpression on doxorubicin-induced cardiomyopathy in rats. Rats were randomly divided into treatment and control groups. The rats of treatment group were injected intraperitoneally with 6 doses of doxorubicin (2.5 mg/kg) within a period of two weeks. Two weeks after the initial injection of doxorubicin, these rats were randomly divided into Mock, Ad-EGFP, Ad-ACE2, and Cilazapril groups. The rats of Ad-EGFP and Ad-ACE2 groups received intramyocardial injection of Ad-EGFP and Ad-ACE2, respectively. The rats of Cilazapril group received cilazapril (10 mg/kg/day) via intragastric intubation. Apoptosis, inflammation, oxidative stress, cardiac function, the extent of myocardial fibrosis, and levels of ACE2, ACE, angiotensin II (AngII), and angiotensin (1–7) were evaluated. Four weeks after ACE2 gene transfer, the Ad-ACE2 group showed not only reduced apoptosis, inflammatory response, oxidative stress, left ventricular (LV) volume, extent of myocardial fibrosis and mortality of rats, but also increased LV ejection fraction and ACE2 expression level compared with the Mock and Ad-EGFP groups. ACE2 overexpression was superior to cilazapril in improving doxorubicin-induced cardiomyopathy. The putative mechanisms may involve activation of the AMPK and PI3K-AKT pathways, inhibition of the ERK pathway, decrease of TGF-β1 expression, and interactions of shifting RAS components, such as decreased myocardium AngII levels, increased myocardium Ang (1–7) levels, and reduced ACE expression. Thus, ACE2 may be a novel therapeutic approach to prevent and treat doxorubicin-induced cardiomyopathy.
Collapse
|
45
|
Efficacy of aliskiren supplementation for heart failure : A meta-analysis of randomized controlled trials. Herz 2018; 44:398-404. [PMID: 29470612 DOI: 10.1007/s00059-018-4679-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 01/13/2018] [Accepted: 01/14/2018] [Indexed: 01/08/2023]
Abstract
BACKGROUND Aliskiren might be beneficial for heart failure. However, the results of various studies are controversial. We conducted a systematic review and meta-analysis to explore the efficacy of aliskiren supplementation for heart failure. METHODS PubMed, Embase, Web of Science, EBSCO, and the Cochrane Library databases were systematically searched. Randomized controlled trials (RCTs) assessing the efficacy of aliskiren for heart failure were included. Two investigators independently searched for articles, extracted data, and assessed the quality of included studies. The meta-analysis was performed using the random-effect model. RESULTS Five RCTs comprising 1973 patients were included in the meta-analysis. Compared with control interventions in heart failure, aliskiren supplementation was found to significantly reduce NT-proBNP levels (standardized mean difference [SMD] = -0.12; 95% CI = -0.21 to -0.03 pg/ml; p = 0.008) and plasma renin activity (SMD = -0.66; 95% CI = -0.89 to -0.44 ng/ml.h; p < 0.00001) while increasing plasma renin concentration (SMD = 0.52; 95% CI = 0.30-0.75 ng/l; p < 0.00001); however, it demonstrated no significant influence on BNP levels (SMD = -0.08; 95% CI = -0.31-0.15 pg/ml; p = 0.49), mortality (RR = 0.97; 95% CI = 0.79-1.20; p = 0.79), aldosterone levels (SMD = -0.09; 95% CI = -0.32-0.14 pmol/l; p = 0.44), adverse events (RR = 3.03; 95% CI = 0.18-49.51; p = 0.44), and serious adverse events (RR = 1.34; 95% CI = 0.54-3.33; p = 0.53). CONCLUSION Aliskiren supplementation was found to significantly decrease NT-proBNP levels and plasma renin activity and to improve plasma renin concentration in the setting of heart failure.
Collapse
|
46
|
Goru SK, Kadakol A, Malek V, Pandey A, Sharma N, Gaikwad AB. Diminazene aceturate prevents nephropathy by increasing glomerular ACE2 and AT 2 receptor expression in a rat model of type1 diabetes. Br J Pharmacol 2017; 174:3118-3130. [PMID: 28688122 DOI: 10.1111/bph.13946] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 06/30/2017] [Accepted: 07/05/2017] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND AND PURPOSE One of the protective actions of angiotensin converting enzyme-2 (ACE2) is the inactivation of angiotensin II. Expression and activity of ACE2 was reduced in glomeruli of diabetic patients and in animal models of diabetes. Recently the potential role of recombinant ACE2 administration in preventing diabetic nephropathy (DN) has been shown. Here we have tested the effects of the ACE2 activator, diminazene aceturate (DIZE), in a model of DN. EXPERIMENTAL APPROACH Male Wistar rats were rendered diabetic using a single dose of streptozotocin (55 mg·kg-1 , i.p.). After 4 weeks, diabetic animals were divided into experimental groups and treated with DIZE, at a low dose (5 mg·kg-1 ·day-1 ), a high dose (15 mg·kg-1 ·day-1 ) and the high dose with of the AT2 receptor antagonist PD123319 (10 mg·kg-1 ·day-1 ). At the end of the treatment , kidneys from all the groups were collected and processed separately for glomerular isolation, protein isolation, mRNA extraction and for immunohistochemical studies. KEY RESULTS Treatment with DIZE restored ACE2 expression in glomeruli and increased expression of AT2 receptors in whole kidney and isolated glomeruli of diabetic animals. DIZE administration reduced angiotensin II levels and increased angiotensin-(1-7) levels in diabetic kidney. However, PD123319 treatment reversed all these actions of DIZE. CONCLUSIONS AND IMPLICATIONS DIZE treatment reduced diabetes-induced renal damage as shown by reduction of fibrosis and apoptosis. These protective actions of DIZE were blocked by the AT2 receptor antagonist. Taken together, these results suggest that DIZE protected against DN through the ACE2/angiotensin-(1-7)/ AT2 receptor axis.
Collapse
Affiliation(s)
- Santosh Kumar Goru
- Laboratory of Molecular Pharmacology, Department of Pharmacy, Birla Institute of Technology and Science, Pilani Campus, Pilani, Rajasthan, India
| | - Almesh Kadakol
- Laboratory of Molecular Pharmacology, Department of Pharmacy, Birla Institute of Technology and Science, Pilani Campus, Pilani, Rajasthan, India
| | - Vajir Malek
- Laboratory of Molecular Pharmacology, Department of Pharmacy, Birla Institute of Technology and Science, Pilani Campus, Pilani, Rajasthan, India
| | - Anuradha Pandey
- Laboratory of Molecular Pharmacology, Department of Pharmacy, Birla Institute of Technology and Science, Pilani Campus, Pilani, Rajasthan, India
| | - Nisha Sharma
- Laboratory of Molecular Pharmacology, Department of Pharmacy, Birla Institute of Technology and Science, Pilani Campus, Pilani, Rajasthan, India
| | - Anil Bhanudas Gaikwad
- Laboratory of Molecular Pharmacology, Department of Pharmacy, Birla Institute of Technology and Science, Pilani Campus, Pilani, Rajasthan, India
| |
Collapse
|
47
|
|
48
|
Rocca DGD, Willenberg BJ, Qi Y, Simmons CS, Rubiano A, Ferreira LF, Huo T, Petersen JW, Ruchaya PJ, Wate PS, Wise EA, Handberg EM, Cogle CR, Batich CD, Byrne BJ, Pepine CJ. An injectable capillary-like microstructured alginate hydrogel improves left ventricular function after myocardial infarction in rats. Int J Cardiol 2016; 220:149-54. [PMID: 27379917 DOI: 10.1016/j.ijcard.2016.06.158] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 06/24/2016] [Indexed: 12/23/2022]
Abstract
BACKGROUND A new post-myocardial infarction (MI) therapy is injection of high-water-content polymeric biomaterial gels (hydrogels) into damaged myocardium to modulate cardiac negative remodeling and preserve heart function. METHODS We investigated the therapeutic potential of a novel gelatinized alginate hydrogel with a unique microstructure of uniform capillary-like channels (termed Capgel). Shortly (48h) after induced anterior MI, Sprague Dawley rats received intramyocardial injection of Capgel directly into the antero-septal wall at the infarct border zone (n=12) or no injection (n=10, controls). Echocardiograms were performed at 48h (week 0) and 4weeks (week 4) to evaluate left ventricular function. RESULTS Echocardiograms showed 27% improvement of left ventricular systolic function over time with gel injection: fractional shortening increased from 26±3% at week 0 to 33±2% at week 4 (p=0.001). Capgel was present at the injection site after 4weeks, but was minimal at 8weeks. The remaining gel was heavily populated by CD68(+) macrophages with CD206(+) clusters and blood vessels. An in vitro experiment was performed to assess Angiotensin-(1-7) released from Capgel. Angiotensin-(1-7) was released from the Capgel in a sustained manner for 90days. CONCLUSIONS Use of Capgel, a degradable, bioactive hydrogel composed of gelatinized capillary-alginate gel, appears safe for intramyocardial injection, is associated with improved left ventricular function after MI in rats, and may provide a long-term supply of Angiotensin-(1-7).
Collapse
Affiliation(s)
- Domenico G Della Rocca
- Division of Cardiovascular Medicine, Department of Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Bradley J Willenberg
- Department of Materials Science and Engineering, College of Engineering, University of Florida, Gainesville, FL, USA
| | - Yanfei Qi
- Division of Cardiovascular Medicine, Department of Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Chelsey S Simmons
- Department of Mechanical and Aerospace Engineering, College of Engineering, University of Florida, Gainesville, FL, USA
| | - Andres Rubiano
- Department of Mechanical and Aerospace Engineering, College of Engineering, University of Florida, Gainesville, FL, USA
| | - Leonardo F Ferreira
- Department of Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, Gainesville, FL, USA
| | - Tianyao Huo
- Division of Biostatistics, Department of Epidemiology and Health Policy Research, College of Medicine, University of Florida, Gainesville, FL, USA
| | - John W Petersen
- Division of Cardiovascular Medicine, Department of Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Prashant J Ruchaya
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Prateek S Wate
- Department of Materials Science and Engineering, College of Engineering, University of Florida, Gainesville, FL, USA
| | - Elizabeth A Wise
- Division of Hematology & Oncology, Department of Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Eileen M Handberg
- Division of Cardiovascular Medicine, Department of Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Christopher R Cogle
- Division of Hematology & Oncology, Department of Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Christopher D Batich
- Department of Materials Science and Engineering, College of Engineering, University of Florida, Gainesville, FL, USA
| | - Barry J Byrne
- Division of Cellular and Molecular Therapy, Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Carl J Pepine
- Division of Cardiovascular Medicine, Department of Medicine, College of Medicine, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
49
|
Wang L, de Kloet AD, Pati D, Hiller H, Smith JA, Pioquinto DJ, Ludin JA, Oh SP, Katovich MJ, Frazier CJ, Raizada MK, Krause EG. Increasing brain angiotensin converting enzyme 2 activity decreases anxiety-like behavior in male mice by activating central Mas receptors. Neuropharmacology 2016; 105:114-123. [PMID: 26767952 DOI: 10.1016/j.neuropharm.2015.12.026] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 12/04/2015] [Accepted: 12/31/2015] [Indexed: 12/25/2022]
Abstract
Over-activation of the brain renin-angiotensin system (RAS) has been implicated in the etiology of anxiety disorders. Angiotensin converting enzyme 2 (ACE2) inhibits RAS activity by converting angiotensin-II, the effector peptide of RAS, to angiotensin-(1-7), which activates the Mas receptor (MasR). Whether increasing brain ACE2 activity reduces anxiety by stimulating central MasR is unknown. To test the hypothesis that increasing brain ACE2 activity reduces anxiety-like behavior via central MasR stimulation, we generated male mice overexpressing ACE2 (ACE2 KI mice) and wild type littermate controls (WT). ACE2 KI mice explored the open arms of the elevated plus maze (EPM) significantly more than WT, suggesting increasing ACE2 activity is anxiolytic. Central delivery of diminazene aceturate, an ACE2 activator, to C57BL/6 mice also reduced anxiety-like behavior in the EPM, but centrally administering ACE2 KI mice A-779, a MasR antagonist, abolished their anxiolytic phenotype, suggesting that ACE2 reduces anxiety-like behavior by activating central MasR. To identify the brain circuits mediating these effects, we measured Fos, a marker of neuronal activation, subsequent to EPM exposure and found that ACE2 KI mice had decreased Fos in the bed nucleus of stria terminalis but had increased Fos in the basolateral amygdala (BLA). Within the BLA, we determined that ∼62% of GABAergic neurons contained MasR mRNA and expression of MasR mRNA was upregulated by ACE2 overexpression, suggesting that ACE2 may influence GABA neurotransmission within the BLA via MasR activation. Indeed, ACE2 overexpression was associated with increased frequency of spontaneous inhibitory postsynaptic currents (indicative of presynaptic release of GABA) onto BLA pyramidal neurons and central infusion of A-779 eliminated this effect. Collectively, these results suggest that ACE2 may reduce anxiety-like behavior by activating central MasR that facilitate GABA release onto pyramidal neurons within the BLA.
Collapse
Affiliation(s)
- Lei Wang
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, 32611, USA
| | - Annette D de Kloet
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, 32611, USA
| | - Dipanwita Pati
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, 32611, USA
| | - Helmut Hiller
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, 32611, USA
| | - Justin A Smith
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, 32611, USA
| | - David J Pioquinto
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, 32611, USA
| | - Jacob A Ludin
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, 32611, USA
| | - S Paul Oh
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, 32611, USA
| | - Michael J Katovich
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, 32611, USA
| | - Charles J Frazier
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, 32611, USA
| | - Mohan K Raizada
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, 32611, USA
| | - Eric G Krause
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, 32611, USA.
| |
Collapse
|