1
|
Rajaiah R, Pandey K, Acharya A, Ambikan A, Kumar N, Guda R, Avedissian SN, Montaner LJ, Cohen SM, Neogi U, Byrareddy SN. Differential immunometabolic responses to Delta and Omicron SARS-CoV-2 variants in golden syrian hamsters. iScience 2024; 27:110501. [PMID: 39171289 PMCID: PMC11338146 DOI: 10.1016/j.isci.2024.110501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 02/07/2024] [Accepted: 07/10/2024] [Indexed: 08/23/2024] Open
Abstract
Delta (B.1.617.2) and Omicron (B.1.1.529) variants of SARS-CoV-2 represents unique clinical characteristics. However, their role in altering immunometabolic regulations during acute infection remains convoluted. Here, we evaluated the differential immunopathogenesis of Delta vs. Omicron variants in Golden Syrian hamsters (GSH). The Delta variant resulted in higher virus titers in throat swabs and the lungs and exhibited higher lung damage with immune cell infiltration than the Omicron variant. The gene expression levels of immune mediators and metabolic enzymes, Arg-1 and IDO1 in the Delta-infected lungs were significantly higher compared to Omicron. Further, Delta/Omicron infection perturbed carbohydrates, amino acids, nucleotides, and TCA cycle metabolites and was differentially regulated compared to uninfected lungs. Collectively, our data provide a novel insight into immunometabolic/pathogenic outcomes for Delta vs. Omicron infection in the GSH displaying concordance with COVID-19 patients associated with inflammation and tissue injury during acute infection that offered possible new targets to develop potential therapeutics.
Collapse
Affiliation(s)
- Rajesh Rajaiah
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Kabita Pandey
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Arpan Acharya
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Anoop Ambikan
- The Systems Virology Lab, Department of Laboratory Medicine, Division of Clinical Microbiology, ANA Futura, Karolinska Institutet, 141 52 Stockholm, Sweden
| | - Narendra Kumar
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Reema Guda
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Sean N. Avedissian
- Antiviral Pharmacology Laboratory, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, USA
| | - Luis J. Montaner
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Samuel M. Cohen
- Havlik Wall Professor of Oncology, Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Ujjwal Neogi
- The Systems Virology Lab, Department of Laboratory Medicine, Division of Clinical Microbiology, ANA Futura, Karolinska Institutet, 141 52 Stockholm, Sweden
| | - Siddappa N. Byrareddy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
- Havlik Wall Professor of Oncology, Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
2
|
Sivagurunathan N, Calivarathan L. SARS-CoV-2 Infection to Premature Neuronal Aging and Neurodegenerative Diseases: Is there any Connection with Hypoxia? CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:431-448. [PMID: 37073650 DOI: 10.2174/1871527322666230418114446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 01/28/2023] [Accepted: 02/09/2023] [Indexed: 04/20/2023]
Abstract
The pandemic of coronavirus disease-2019 (COVID-19), caused by SARS-CoV-2, has become a global concern as it leads to a spectrum of mild to severe symptoms and increases death tolls around the world. Severe COVID-19 results in acute respiratory distress syndrome, hypoxia, and multi- organ dysfunction. However, the long-term effects of post-COVID-19 infection are still unknown. Based on the emerging evidence, there is a high possibility that COVID-19 infection accelerates premature neuronal aging and increases the risk of age-related neurodegenerative diseases in mild to severely infected patients during the post-COVID period. Several studies correlate COVID-19 infection with neuronal effects, though the mechanism through which they contribute to the aggravation of neuroinflammation and neurodegeneration is still under investigation. SARS-CoV-2 predominantly targets pulmonary tissues and interferes with gas exchange, leading to systemic hypoxia. The neurons in the brain require a constant supply of oxygen for their proper functioning, suggesting that they are more vulnerable to any alteration in oxygen saturation level that results in neuronal injury with or without neuroinflammation. We hypothesize that hypoxia is one of the major clinical manifestations of severe SARS-CoV-2 infection; it directly or indirectly contributes to premature neuronal aging, neuroinflammation, and neurodegeneration by altering the expression of various genes responsible for the survival of the cells. This review focuses on the interplay between COVID-19 infection, hypoxia, premature neuronal aging, and neurodegenerative diseases and provides a novel insight into the molecular mechanisms of neurodegeneration.
Collapse
Affiliation(s)
- Narmadhaa Sivagurunathan
- Molecular Pharmacology & Toxicology Laboratory, Department of Life Sciences, School of Life Sciences, Central University of Tamil Nadu, Thiruvarur - 610005, Tamil Nadu, India
| | - Latchoumycandane Calivarathan
- Molecular Pharmacology & Toxicology Laboratory, Department of Life Sciences, School of Life Sciences, Central University of Tamil Nadu, Thiruvarur - 610005, Tamil Nadu, India
| |
Collapse
|
3
|
Rao SS, Parthasarathy K, Sounderrajan V, Neelagandan K, Anbazhagan P, Chandramouli V. Susceptibility of SARS Coronavirus-2 infection in domestic and wild animals: a systematic review. 3 Biotech 2023; 13:5. [PMID: 36514483 PMCID: PMC9741861 DOI: 10.1007/s13205-022-03416-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 11/26/2022] [Indexed: 12/14/2022] Open
Abstract
Animals and viruses have constantly been co-evolving under natural circumstances and pandemic like situations. They harbour harmful viruses which can spread easily. In the recent times we have seen pandemic like situations being created as a result of the spread of deadly and fatal viruses. Coronaviruses (CoVs) are one of the wellrecognized groups of viruses. There are four known genera of Coronavirus family namely, alpha (α), beta (β), gamma (γ), and delta (δ). Animals have been infected with CoVs belonging to all four genera. In the last few decades the world has witnessed an emergence of severe acute respiratory syndromes which had created a pandemic like situation such as SARS CoV, MERS-CoV. We are currently in another pandemic like situation created due to the uncontrolled spread of a similar coronavirus namely SARSCoV-2. These findings are based on a small number of animals and do not indicate whether animals can transmit disease to humans. Several mammals, including cats, dogs, bank voles, ferrets, fruit bats, hamsters, mink, pigs, rabbits, racoon dogs, and white-tailed deer, have been found to be infected naturally by the virus. Certain laboratory discoveries revealed that animals such as cats, ferrets, fruit bats, hamsters, racoon dogs, and white-tailed deer can spread the illness to other animals of the same species. This review article gives insights on the current knowledge about SARS-CoV-2 infection and development in animals on the farm and in domestic community and their impact on society.
Collapse
Affiliation(s)
- Sudhanarayani S. Rao
- Centre for Drug Discovery and Development, Sathyabama Institute of Science and Technology, Chennai, 600119 India
| | - Krupakar Parthasarathy
- Centre for Drug Discovery and Development, Sathyabama Institute of Science and Technology, Chennai, 600119 India
| | - Vignesh Sounderrajan
- Centre for Drug Discovery and Development, Sathyabama Institute of Science and Technology, Chennai, 600119 India
| | - K. Neelagandan
- Centre for Chemical Biology and Therapeutics, Institute for Stem Cell Science and Regenerative Medicine, Bengaluru, India
| | | | | |
Collapse
|
4
|
Devadoss D, Acharya A, Manevski M, Houserova D, Cioffi MD, Pandey K, Nair M, Chapagain P, Mirsaeidi M, Borchert GM, Byrareddy SN, Chand HS. Immunomodulatory LncRNA on antisense strand of ICAM-1 augments SARS-CoV-2 infection-associated airway mucoinflammatory phenotype. iScience 2022; 25:104685. [PMID: 35789750 PMCID: PMC9242679 DOI: 10.1016/j.isci.2022.104685] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 04/25/2022] [Accepted: 06/23/2022] [Indexed: 01/20/2023] Open
Abstract
Noncoding RNAs are important regulators of mucoinflammatory response, but little is known about the contribution of airway long noncoding RNAs (lncRNAs) in COVID-19. RNA-seq analysis showed a more than 4-fold increased expression of IL-6, ICAM-1, CXCL-8, and SCGB1A1 inflammatory factors; MUC5AC and MUC5B mucins; and SPDEF, FOXA3, and FOXJ1 transcription factors in COVID-19 patient nasal samples compared with uninfected controls. A lncRNA on antisense strand to ICAM-1 or LASI was induced 2-fold in COVID-19 patients, and its expression was directly correlated with viral loads. A SARS-CoV-2-infected 3D-airway model largely recapitulated these clinical findings. RNA microscopy and molecular modeling indicated a possible interaction between viral RNA and LASI lncRNA. Notably, blocking LASI lncRNA reduced the SARS-CoV-2 replication and suppressed MUC5AC mucin levels and associated inflammation, and select LASI-dependent miRNAs (e.g., let-7b-5p and miR-200a-5p) were implicated. Thus, LASI lncRNA represents an essential facilitator of SARS-CoV-2 infection and associated airway mucoinflammatory response.
Collapse
Affiliation(s)
- Dinesh Devadoss
- Department of Immunology and Nano-Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| | - Arpan Acharya
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Marko Manevski
- Department of Immunology and Nano-Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| | - Dominika Houserova
- Department of Pharmacology, University of South Alabama, Mobile, AL 36688, USA
| | - Michael D. Cioffi
- Department of Physics, Florida International University, Miami, FL 33199, USA
| | - Kabita Pandey
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Madhavan Nair
- Department of Immunology and Nano-Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| | - Prem Chapagain
- Department of Physics, Florida International University, Miami, FL 33199, USA
- Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, USA
| | - Mehdi Mirsaeidi
- Miller School of Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, University of Miami, Miami, FL 33136, USA
| | - Glen M. Borchert
- Department of Pharmacology, University of South Alabama, Mobile, AL 36688, USA
| | - Siddappa N. Byrareddy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Hitendra S. Chand
- Department of Immunology and Nano-Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| |
Collapse
|
5
|
Abdelkader A, Elzemrany AA, El-Nadi M, Elsabbagh SA, Shehata MA, Eldehna WM, El-Hadidi M, Ibrahim TM. In-Silico targeting of SARS-CoV-2 NSP6 for drug and natural products repurposing. Virology 2022; 573:96-110. [PMID: 35738174 PMCID: PMC9212324 DOI: 10.1016/j.virol.2022.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 06/11/2022] [Accepted: 06/12/2022] [Indexed: 11/04/2022]
Abstract
Non-Structural Protein 6 (NSP6) has a protecting role for SARS-CoV-2 replication by inhibiting the expansion of autophagosomes inside the cell. NSP6 is involved in the endoplasmic reticulum stress response by binding to Sigma receptor 1 (SR1). Nevertheless, NSP6 crystal structure is not solved yet. Therefore, NSP6 is considered a challenging target in Structure-Based Drug Discovery. Herein, we utilized the high quality NSP6 model built by AlphaFold in our study. Targeting a putative NSP6 binding site is believed to inhibit the SR1-NSP6 protein-protein interactions. Three databases were virtually screened, namely FDA-approved drugs (DrugBank), Northern African Natural Products Database (NANPDB) and South African Natural Compounds Database (SANCDB) with a total of 8158 compounds. Further validation for 9 candidates via molecular dynamics simulations for 100 ns recommended potential binders to the NSP6 binding site. The proposed candidates are recommended for biological testing to cease the rapidly growing pandemic.
Collapse
Affiliation(s)
- Ahmed Abdelkader
- Bioinformatics Group, Center for Informatics Sciences (CIS), School of Information Technology and Computer Science (ITCS), Nile University, Giza, Egypt; Department of Pharmacognosy, Faculty of Pharmacy, Misr University for Science and Technology, Giza, Egypt
| | - Amal A Elzemrany
- Bioinformatics Group, Center for Informatics Sciences (CIS), School of Information Technology and Computer Science (ITCS), Nile University, Giza, Egypt
| | - Mennatullah El-Nadi
- Bioinformatics Group, Center for Informatics Sciences (CIS), School of Information Technology and Computer Science (ITCS), Nile University, Giza, Egypt; Department of Chemistry, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Sherif A Elsabbagh
- Biochemistry Department, Institute of Pharmacy, Eberhard-Karls University, Auf der Morgenstelle 8, 72076, Tuebingen, Germany
| | - Moustafa A Shehata
- Department of Chemistry, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Wagdy M Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt
| | - Mohamed El-Hadidi
- Bioinformatics Group, Center for Informatics Sciences (CIS), School of Information Technology and Computer Science (ITCS), Nile University, Giza, Egypt
| | - Tamer M Ibrahim
- Bioinformatics Group, Center for Informatics Sciences (CIS), School of Information Technology and Computer Science (ITCS), Nile University, Giza, Egypt; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt.
| |
Collapse
|
6
|
Acharya A, Kutateladze TG, Byrareddy SN. Combining antiviral drugs with BET inhibitors is beneficial in combatting SARS-CoV-2 infection. CLINICAL AND TRANSLATIONAL DISCOVERY 2022; 2:e66. [PMID: 35633739 PMCID: PMC9137278 DOI: 10.1002/ctd2.66] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/15/2023]
Abstract
The COVID-19 pandemic caused by the novel coronavirus SARS-CoV-2 has resulted in more than 500 million cases and 6 million deaths. Several antiviral therapies and vaccines have been developed to mitigate the spread of this infection. However, new approaches are required to battle emerging SARS-CoV-2 variants containing mutations that can reduce the vaccines' efficacy. The use of a combination of viral drugs with inhibitors of the mTOR signaling pathways has emerged as one of the promising novel approaches. We recently showed that SF2523, a dual activity small molecule that inhibits PI3K and BRD4, acts synergistically with the antiviral drugs remdesivir and MU-UNMC-2. Our findings suggest that the mTOR pathways are necessary for SARS-CoV-2 pathogenesis in human cells and targeting PI3K/BET (bromodomain and extra-terminal domain proteins) alone or combined with antiviral therapies is beneficial in mitigating SARS-CoV-2 and its variants of concern (VOCs).
Collapse
Affiliation(s)
- Arpan Acharya
- Department of Pharmacology and Experimental NeuroscienceUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| | | | - Siddappa N. Byrareddy
- Department of Pharmacology and Experimental NeuroscienceUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| |
Collapse
|
7
|
Gutiérrez-Bautista JF, Rodriguez-Nicolas A, Rosales-Castillo A, López-Ruz MÁ, Martín-Casares AM, Fernández-Rubiales A, Anderson P, Garrido F, Ruiz-Cabello F, López-Nevot MÁ. Study of HLA-A, -B, -C, -DRB1 and -DQB1 polymorphisms in COVID-19 patients. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2022; 55:421-427. [PMID: 34475005 PMCID: PMC8384756 DOI: 10.1016/j.jmii.2021.08.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 07/29/2021] [Accepted: 08/05/2021] [Indexed: 01/08/2023]
Abstract
BACKGROUND Human leukocyte antigen (HLA) plays an important role in immune responses to infections, especially in the development of acquired immunity. Given the high degree of polymorphisms that HLA molecules present, some will be more or less effective in controlling SARS-CoV-2 infection. We wanted to analyze whether certain polymorphisms may be involved in the protection or susceptibility to COVID-19. METHODS We studied the polymorphisms in HLA class I (HLA-A, -B and -C) and II (HLA-DRB1 and HLA-DQB1) molecules in 450 patients who required hospitalization for COVID-19, creating one of the largest HLA-typed patient cohort to date. RESULTS Our results show that there is no relationship between HLA polymorphisms or haplotypes and susceptibility or protection to COVID-19. CONCLUSION Our results may contribute to resolve the contradictory data on the role of HLA polymorphisms in COVID-19 infection.
Collapse
Affiliation(s)
- Juan Francisco Gutiérrez-Bautista
- Servicio de Análisis Clínicos e Inmunología, Hospital Universitario Virgen de Las Nieves, Granada, Spain; Programa de Doctorado en Biomedicina, University of Granada, Spain.
| | - Antonio Rodriguez-Nicolas
- Servicio de Análisis Clínicos e Inmunología, Hospital Universitario Virgen de Las Nieves, Granada, Spain.
| | | | - Miguel Ángel López-Ruz
- Servicio de Enfermedades Infecciosas, Hospital Universitario Virgen de Las Nieves, Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain; Departamento de Medicina, University of Granada, Granada, Spain.
| | | | - Alonso Fernández-Rubiales
- Servicio de Análisis Clínicos e Inmunología, Hospital Universitario Virgen de Las Nieves, Granada, Spain.
| | - Per Anderson
- Servicio de Análisis Clínicos e Inmunología, Hospital Universitario Virgen de Las Nieves, Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain.
| | - Federico Garrido
- Servicio de Análisis Clínicos e Inmunología, Hospital Universitario Virgen de Las Nieves, Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain; Departamento Bioquímica, Biología Molecular e Inmunología III, University of Granada, Granada, Spain.
| | - Francisco Ruiz-Cabello
- Servicio de Análisis Clínicos e Inmunología, Hospital Universitario Virgen de Las Nieves, Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain; Departamento Bioquímica, Biología Molecular e Inmunología III, University of Granada, Granada, Spain.
| | - Miguel Ángel López-Nevot
- Servicio de Análisis Clínicos e Inmunología, Hospital Universitario Virgen de Las Nieves, Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain; Departamento Bioquímica, Biología Molecular e Inmunología III, University of Granada, Granada, Spain.
| |
Collapse
|
8
|
RodanSarohan A, Akelma H, Araç E, Aslan Ö, Cen O. Retinol Depletion in COVID-19. CLINICAL NUTRITION OPEN SCIENCE 2022; 43:85-94. [PMID: 35664529 PMCID: PMC9142171 DOI: 10.1016/j.nutos.2022.05.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 05/23/2022] [Indexed: 11/30/2022] Open
Abstract
Background and aims COVID-19 has been a devastating pandemic. There are indications that vitamin A is depleted during infections. Vitamin A is important in development and immune homeostasis. It has been used successfully in measles, RSV and AIDS infections. In this study, we aimed to measure the serum retinol levels in severe COVID-19 patients to assess the importance of vitamin A in the COVID-19 pathogenesis. Methods The serum retinol level was measured in two groups of patients: the COVID-19 group, which consisted of 27 severe COVID-19 patients hospitalized in the intensive care unit with respiratory failure, and the control group, which consisted of 23 patients without COVID-19 symptoms. Results The mean serum retinol levels were 0.37 mg/L in the COVID-19 group and 0.52 mg/L in the control group. The difference between the serum retinol levels in the two groups was statistically significant. There was no significant difference in retinol levels between different ages and genders within the COVID-19 group. Comorbidity did not affect serum retinol levels. Conclusion The serum retinol level was significantly lower in patients with severe COVID-19, and this difference was independent of age or underlying comorbidity. Our data show that retinol and retinoic acid signaling might be important in immunopathogenesis of COVID-19.
Collapse
|
9
|
Darand M, Hassanizadeh S, Marzban A, Mirzaei M, Hosseinzadeh M. The association between dairy products and the risk of COVID-19. Eur J Clin Nutr 2022; 76:1583-1589. [PMID: 35488069 PMCID: PMC9051497 DOI: 10.1038/s41430-022-01149-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 11/09/2022]
Abstract
BACKGROUND The fast spread of the coronavirus disease 2019 (COVID-19) epidemic and its high mortality were quickly noticed by the health community. Dairy products have been recognized as part of a healthy diet that helps strengthen body immunity and prevent infections. The present study can provide a comprehensive picture of the associations between dairy products consumption and COVID-19 incidence. METHODS This study was undertaken on 8801 adults participants of Yazd Health Study (YaHS) and Taghzieh Mardom-e-Yazd (TAMIZ) study aged 20 to 70 years. Data on dietary intakes were obtained using a validated food frequency questionnaire (FFQ). Multivariable logistic regression analysis was used to assess the association between dairy consumption and COVID-19. RESULT Our finding indicated that moderate intake of total dairy (OR: 0.63, 95% CI 0.46-0.87, P-trend = 0.97) could reduce the odds of COVID-19 and higher intake of low-fat dairy products (OR: 0.51 CI: 0.37-0.69, p-trend < 0.001) and low-fat milk (OR: 0.47 CI: 0.35-0.64, p-trend < 0.001) had a protective effect on COVID-19 after adjusting for confounders. However, higher intake of high-fat-dairy-product (OR: 1.40 CI: 1.09-1.92, p-trend = 0.03), high-fat milk (OR: 1.54 CI: 1.20-1.97, p-trend < 0.001), total yogurt (OR: 1.40 CI: 1.04-1.89, p-trend = 0.01), cheese (OR: 1.80 CI: 1.27-2.56, p-trend = 0.001), and butter (OR: 1.80 CI: 1.04-3.11, p-trend = 0.02) were related to increase the odds of COVID-19. CONCLUSIONS Moderate intake of total dairy could reduce odds of COVID-19 by 37% and, a higher intake of low-fat dairy products had a protective role on COVID-19. Although our study has promising results, stronger clinical studies are needed.
Collapse
Affiliation(s)
- Mina Darand
- Department of Clinical Nutrition, School of Nutrition and Food Science, Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shirin Hassanizadeh
- Department of Clinical Nutrition, School of Nutrition and Food Science, Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ameneh Marzban
- Department of Health in Disasters and Emergencies, School of Health Management and Information Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Masoud Mirzaei
- Yazd Cardiovascular Research Centre, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mahdieh Hosseinzadeh
- Nutrition and Food Security Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran. .,Department of Nutrition, School of public health, Shahid Sadughi University of Medical Sciences, Yazd, Iran.
| |
Collapse
|
10
|
Murugan C, Ramamoorthy S, Kuppuswamy G, Murugan RK, Sivalingam Y, Sundaramurthy A. COVID-19: A review of newly formed viral clades, pathophysiology, therapeutic strategies and current vaccination tasks. Int J Biol Macromol 2021; 193:1165-1200. [PMID: 34710479 PMCID: PMC8545698 DOI: 10.1016/j.ijbiomac.2021.10.144] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/17/2021] [Accepted: 10/19/2021] [Indexed: 02/07/2023]
Abstract
Today, the world population is facing an existential threat by an invisible enemy known as severe acute respiratory syndrome coronavirus 2 (SARS-COV-2) or COVID-19. It is highly contagious and has infected a larger fraction of human population across the globe on various routes of transmission. The detailed knowledge of the SARS-CoV-2 structure and clinical aspects offers an important insight into the evolution of infection, disease progression and helps in executing the different therapies effectively. Herein, we have discussed in detail about the genome structure of SARS-CoV-2 and its role in the proteomic rational spread of different muted species and pathogenesis in infecting the host cells. The mechanisms behind the viral outbreak and its immune response, the availability of existing diagnostics techniques, the treatment efficacy of repurposed drugs and the emerging vaccine trials for the SARS-CoV-2 outbreak also have been highlighted. Furthermore, the possible antiviral effects of various herbal products and their extracted molecules in inhibiting SARS-CoV-2 replication and cellular entry are also reported. Finally, we conclude our opinion on current challenges involved in the drug development, bulk production of drug/vaccines and their storage requirements, logistical procedures and limitations related to dosage trials for larger population.
Collapse
Affiliation(s)
- Chandran Murugan
- SRM Research Institute, SRM Institute of Science and Technology, Chengalpattu 603203, Tamil Nadu, India
| | - Sharmiladevi Ramamoorthy
- Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Chengalpattu 603203, Tamil Nadu, India
| | - Guruprasad Kuppuswamy
- Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Chengalpattu 603203, Tamil Nadu, India
| | - Rajesh Kumar Murugan
- Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Chengalpattu 603203, Tamil Nadu, India
| | - Yuvaraj Sivalingam
- Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Chengalpattu 603203, Tamil Nadu, India
| | - Anandhakumar Sundaramurthy
- SRM Research Institute, SRM Institute of Science and Technology, Chengalpattu 603203, Tamil Nadu, India; Department of Chemical Engineering, SRM Institute of Science and Technology, Chengalpattu 603203, Tamil Nadu, India.
| |
Collapse
|
11
|
Burkert FR, Lanser L, Bellmann-Weiler R, Weiss G. Coronavirus Disease 2019: Clinics, Treatment, and Prevention. Front Microbiol 2021; 12:761887. [PMID: 34858373 PMCID: PMC8631905 DOI: 10.3389/fmicb.2021.761887] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 10/21/2021] [Indexed: 01/08/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic, caused by a novel severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), emerged at the end of 2019 in China and affected the entire world population, either by infection and its health consequences, or by restrictions in daily life as a consequence of hygiene measures and containment strategies. As of September 2021, more than 231,000.000 infections and 4,740.000 deaths due to COVID-19 have been reported. The infections present with varied clinical symptoms and severity, ranging from asymptomatic course to fatal outcome. Several risk factors for a severe course of the disease have been identified, the most important being age, gender, comorbidities, lifestyle, and genetics. While most patients recover within several weeks, some report persistent symptoms restricting their daily lives and activities, termed as post-COVID. Over the past 18months, we have acquired significant knowledge as reflected by an almost uncountable number of publications on the nature of the underlying virus and its evolution, host responses to infection, modes of transmission, and different clinical presentations of the disease. Along this line, new diagnostic tests and algorithms have been developed paralleled by the search for and clinical evaluation of specific treatments for the different stages of the disease. In addition, preventive non-pharmacological measures have been implemented to control the spread of infection in the community. While an effective antiviral therapy is not yet available, numerous vaccines including novel vaccine technologies have been developed, which show high protection from infection and specifically from a severe course or death from COVID-19. In this review, we tried to provide an up-to-date schematic of COVID-19, including aspects of epidemiology, virology, clinical presentation, diagnostics, therapy, and prevention.
Collapse
Affiliation(s)
- Francesco Robert Burkert
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Pneumology, Innsbruck Medical University, Innsbruck, Austria
| | - Lukas Lanser
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Pneumology, Innsbruck Medical University, Innsbruck, Austria
| | - Rosa Bellmann-Weiler
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Pneumology, Innsbruck Medical University, Innsbruck, Austria
| | - Günter Weiss
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Pneumology, Innsbruck Medical University, Innsbruck, Austria
| |
Collapse
|
12
|
Sharma A, Mishra RK, Goud KY, Mohamed MA, Kummari S, Tiwari S, Li Z, Narayan R, Stanciu LA, Marty JL. Optical Biosensors for Diagnostics of Infectious Viral Disease: A Recent Update. Diagnostics (Basel) 2021; 11:2083. [PMID: 34829430 PMCID: PMC8625106 DOI: 10.3390/diagnostics11112083] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 10/26/2021] [Accepted: 11/05/2021] [Indexed: 12/15/2022] Open
Abstract
The design and development of biosensors, analytical devices used to detect various analytes in different matrices, has emerged. Biosensors indicate a biorecognition element with a physicochemical analyzer or detector, i.e., a transducer. In the present scenario, various types of biosensors have been deployed in healthcare and clinical research, for instance, biosensors for blood glucose monitoring. Pathogenic microbes are contributing mediators of numerous infectious diseases that are becoming extremely serious worldwide. The recent outbreak of COVID-19 is one of the most recent examples of such communal and deadly diseases. In efforts to work towards the efficacious treatment of pathogenic viral contagions, a fast and precise detection method is of the utmost importance in biomedical and healthcare sectors for early diagnostics and timely countermeasures. Among various available sensor systems, optical biosensors offer easy-to-use, fast, portable, handy, multiplexed, direct, real-time, and inexpensive diagnosis with the added advantages of specificity and sensitivity. Many progressive concepts and extremely multidisciplinary approaches, including microelectronics, microelectromechanical systems (MEMSs), nanotechnologies, molecular biology, and biotechnology with chemistry, are used to operate optical biosensors. A portable and handheld optical biosensing device would provide fast and reliable results for the identification and quantitation of pathogenic virus particles in each sample. In the modern day, the integration of intelligent nanomaterials in the developed devices provides much more sensitive and highly advanced sensors that may produce the results in no time and eventually help clinicians and doctors enormously. This review accentuates the existing challenges engaged in converting laboratory research to real-world device applications and optical diagnostics methods for virus infections. The review's background and progress are expected to be insightful to the researchers in the sensor field and facilitate the design and fabrication of optical sensors for life-threatening viruses with broader applicability to any desired pathogens.
Collapse
Affiliation(s)
- Atul Sharma
- Department of Pharmaceutical Chemistry, SGT College of Pharmacy, SGT University, Budhera, Gurugram 122505, Haryana, India;
| | - Rupesh Kumar Mishra
- Bindley Bio-Science Center, Lab 222, 1203 W. State St., Purdue University, West Lafayette, IN 47907, USA
- School of Materials Engineering, Purdue University, 701 West Stadium Avenue, West Lafayette, IN 47907, USA
| | - K. Yugender Goud
- Department of NanoEngineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Mona A. Mohamed
- Pharmaceutical Chemistry Department, National Organization for Drug Control and Research (NODCAR), Egyptian Drug Authority, Giza 99999, Egypt;
| | - Shekher Kummari
- Department of Chemistry, National Institute of Technology, Warangal 506004, Telangana, India;
| | - Swapnil Tiwari
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur 492010, Chattisgarh, India;
| | - Zhanhong Li
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Yangpu District, Shanghai 200093, China;
| | - Roger Narayan
- Department of Materials Science and Engineering, NC State University, Raleigh, NC 27695, USA;
- Joint Department of Biomedical Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Lia A. Stanciu
- School of Materials Engineering, Purdue University, 701 West Stadium Avenue, West Lafayette, IN 47907, USA
| | - Jean Louis Marty
- BAE-LBBM Laboratory, University of Perpignan via Domitia, 52 Avenue Paul Alduy, CEDEX 9, 66860 Perpignan, France
| |
Collapse
|
13
|
Sarohan AR, Kızıl M, İnkaya AÇ, Mahmud S, Akram M, Cen O. A novel hypothesis for COVID-19 pathogenesis: Retinol depletion and retinoid signaling disorder. Cell Signal 2021; 87:110121. [PMID: 34438017 PMCID: PMC8380544 DOI: 10.1016/j.cellsig.2021.110121] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 02/08/2023]
Abstract
The SARS-CoV-2 virus has caused a worldwide COVID-19 pandemic. In less than a year and a half, more than 200 million people have been infected and more than four million have died. Despite some improvement in the treatment strategies, no definitive treatment protocol has been developed. The pathogenesis of the disease has not been clearly elucidated yet. A clear understanding of its pathogenesis will help develop effective vaccines and drugs. The immunopathogenesis of COVID-19 is characteristic with acute respiratory distress syndrome and multiorgan involvement with impaired Type I interferon response and hyperinflammation. The destructive systemic effects of COVID-19 cannot be explained simply by the viral tropism through the ACE2 and TMPRSS2 receptors. In addition, the recently identified mutations cannot fully explain the defect in all cases of Type I interferon synthesis. We hypothesize that retinol depletion and resulting impaired retinoid signaling play a central role in the COVID-19 pathogenesis that is characteristic for dysregulated immune system, defect in Type I interferon synthesis, severe inflammatory process, and destructive systemic multiorgan involvement. Viral RNA recognition mechanism through RIG-I receptors can quickly consume a large amount of the body's retinoid reserve, which causes the retinol levels to fall below the normal serum levels. This causes retinoid insufficiency and impaired retinoid signaling, which leads to interruption in Type I interferon synthesis and an excessive inflammation. Therefore, reconstitution of the retinoid signaling may prove to be a valid strategy for management of COVID-19 as well for some other chronic, degenerative, inflammatory, and autoimmune diseases.
Collapse
Affiliation(s)
- Aziz Rodan Sarohan
- Department of Obstetrics and Gynecology, Medicina Plus Medical Center, 75. Yıl Mah., İstiklal Cad. 1305 Sk., No: 16 Sultangazi, İstanbul, Turkey.
| | - Murat Kızıl
- Department of Chemistry, Faculty of Science, Dicle University. Diyarbakır, Turkey
| | - Ahmet Çağkan İnkaya
- Department of Infectious Diseases and Clinical Microbiology, Faculty of Medicine, Hacettepe University, Ankara 06230, Turkey
| | - Shokhan Mahmud
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Kurdistan Region, Iraq
| | - Muhammad Akram
- Department of Eastern Medicine Government College, University Faisalabad, Pakistan
| | - Osman Cen
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States of America; Department of Natural Sciences and Engineering, John Wood College, Quincy, IL, United States of America
| |
Collapse
|
14
|
Cakmak B, Calik A, Inkaya BV. Metaphoric Perceptions of Covid-19 Patients Related to the Disease. Clin Nurs Res 2021; 31:385-394. [PMID: 34615386 DOI: 10.1177/10547738211048312] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
This study aimed to explore metaphoric perceptions of patients with COVID-19 including treatment process, family relationships, and mental health via using metaphors. Purposive sampling was used to include participants. Totally 46 patients diagnosed with COVID-19 were included in the study. The metaphor-based data collection process was carried out with three open-ended questions. The metaphors compiled according to questions and grouped by 13 themes according to analysis. Patients explained to COVID-19 process by using 91 different metaphors. Most frequently used metaphors by patients; black hole/dark for the treatment process of COVID-19, steel for family relationships, sea metaphor for mental health. This study, it was determined that individuals are afraid of death, have a serious perception of uncertainty, and their family relationships and this process negatively affected their family relationships and mental states. Nurses have important responsibilities to increase the quality of patient care.
Collapse
|
15
|
Kaye AD, Cornett EM, Brondeel KC, Lerner ZI, Knight HE, Erwin A, Charipova K, Gress KL, Urits I, Urman RD, Fox CJ, Kevil CG. Biology of COVID-19 and related viruses: Epidemiology, signs, symptoms, diagnosis, and treatment. Best Pract Res Clin Anaesthesiol 2021; 35:269-292. [PMID: 34511219 PMCID: PMC7723419 DOI: 10.1016/j.bpa.2020.12.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 12/01/2020] [Accepted: 12/02/2020] [Indexed: 02/06/2023]
Abstract
Coronaviruses belong to the family Coronaviridae order Nidovirales and are known causes of respiratory and intestinal disease in various mammalian and avian species. Species of coronaviruses known to infect humans are referred to as human coronaviruses (HCoVs). While traditionally, HCoVs have been a significant cause of the common cold, more recently, emergent viruses, including severe acute respiratory syndrome coronavirus (SARS-CoV-2) has caused a global pandemic. Here, we discuss coronavirus disease (COVID-19) biology, pathology, epidemiology, signs and symptoms, diagnosis, treatment, and recent clinical trials involving promising treatments.
Collapse
Affiliation(s)
- Alan D Kaye
- LSU Health Shreveport, 1501 Kings Highway, Shreveport LA 71103, USA.
| | - Elyse M Cornett
- Department of Anesthesiology, LSU Health Shreveport, 1501 Kings Highway, Shreveport LA 71103, USA.
| | - Kimberley C Brondeel
- University of Texas Medical Branch, 301 University Blvd, Galveston TX 77555, USA.
| | - Zachary I Lerner
- LSU Health Sciences Center New Orleans, 1901 Perdido Street, New Orleans, LA 70112, USA.
| | - Haley E Knight
- Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA.
| | - Abigail Erwin
- LSU Health Sciences Center New Orleans, 1901 Perdido Street, New Orleans, LA 70112, USA.
| | - Karina Charipova
- Georgetown University School of Medicine, Washington, D.C., 20007, USA.
| | - Kyle L Gress
- Georgetown University School of Medicine, Washington, D.C., 20007, USA.
| | - Ivan Urits
- Department of Anesthesiology, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| | - Richard D Urman
- Department of Anesthesiology, Perioperative and Pain Medicine, Harvard Medical School, Brigham and Women's Hospital, 75 Francis St, Boston, MA 02115, USA.
| | - Charles J Fox
- Department of Anesthesiology, LSU Health Shreveport, 1501 Kings Highway, Shreveport LA 71103, USA.
| | | |
Collapse
|
16
|
Dyavar SR, Singh R, Emani R, Pawar GP, Chaudhari VD, Podany AT, Avedissian SN, Fletcher CV, Salunke DB. Role of toll-like receptor 7/8 pathways in regulation of interferon response and inflammatory mediators during SARS-CoV2 infection and potential therapeutic options. Biomed Pharmacother 2021; 141:111794. [PMID: 34153851 PMCID: PMC8189763 DOI: 10.1016/j.biopha.2021.111794] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 05/27/2021] [Accepted: 05/29/2021] [Indexed: 12/17/2022] Open
Abstract
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV2) is the causative agent of Corona Virus Disease 2019 (COVID-19). Lower production of type I and III interferons and higher levels of inflammatory mediators upon SARS-CoV2 infection contribute to COVID-19 pathogenesis. Optimal interferon production and controlled inflammation are essential to limit COVID-19 pathogenesis. However, the aggravated inflammatory response observed in COVID-19 patients causes severe damage to the host and frequently advances to acute respiratory distress syndrome (ARDS). Toll-like receptor 7 and 8 (TLR7/8) signaling pathways play a central role in regulating induction of interferons (IFNs) and inflammatory mediators in dendritic cells. Controlled inflammation is possible through regulation of TLR mediated response without influencing interferon production to reduce COVID-19 pathogenesis. This review focuses on inflammatory mediators that contribute to pathogenic effects and the role of TLR pathways in the induction of interferon and inflammatory mediators and their contribution to COVID-19 pathogenesis. We conclude that potential TLR7/8 agonists inducing antiviral interferon response and controlling inflammation are important therapeutic options to effectively eliminate SARS-CoV2 induced pathogenesis. Ongoing and future studies may provide additional evidence on their safety and efficacy to treat COVID-19 pathogenesis.
Collapse
Affiliation(s)
- Shetty Ravi Dyavar
- University of Nebraska Medical Center (UNMC) Center for Drug Discovery, UNMC, Omaha, NE 68198, USA.
| | - Rahul Singh
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | - Rohini Emani
- Buck Institute for Research on Ageing, Novato, CA, USA
| | - Ganesh P Pawar
- Division of Medicinal Chemistry, CSIR-Institute of Microbiology Technology Chandigarh, Sector-39A, Chandigarh,160036, India
| | - Vinod D Chaudhari
- Division of Medicinal Chemistry, CSIR-Institute of Microbiology Technology Chandigarh, Sector-39A, Chandigarh,160036, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Anthony T Podany
- University of Nebraska Medical Center (UNMC) Center for Drug Discovery, UNMC, Omaha, NE 68198, USA
| | - Sean N Avedissian
- University of Nebraska Medical Center (UNMC) Center for Drug Discovery, UNMC, Omaha, NE 68198, USA
| | - Courtney V Fletcher
- University of Nebraska Medical Center (UNMC) Center for Drug Discovery, UNMC, Omaha, NE 68198, USA
| | - Deepak B Salunke
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India; National Interdisciplinary Centre of Vaccine, Immunotherapeutics and Antimicrobials, Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
17
|
Hanna J, Tipparaju P, Mulherkar T, Lin E, Mischley V, Kulkarni R, Bolton A, Byrareddy SN, Jain P. Risk Factors Associated with the Clinical Outcomes of COVID-19 and Its Variants in the Context of Cytokine Storm and Therapeutics/Vaccine Development Challenges. Vaccines (Basel) 2021; 9:938. [PMID: 34452063 PMCID: PMC8402745 DOI: 10.3390/vaccines9080938] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/08/2021] [Accepted: 08/17/2021] [Indexed: 12/17/2022] Open
Abstract
The recent appearance of SARS-CoV-2 is responsible for the ongoing coronavirus disease 2019 (COVID-19) pandemic and has brought to light the importance of understanding this highly pathogenic agent to prevent future pandemics. This virus is from the same single-stranded positive-sense RNA family, Coronaviridae, as two other epidemic-causing viruses, SARS-CoV-1 and MERS-CoV. During this pandemic, one crucial focus highlighted by WHO has been to understand the risk factors that may contribute to disease severity and predict COVID-19 outcomes. In doing so, it is imperative to understand the virology of SARS-CoV-2 and the immunological response eliciting the clinical manifestation and progression of COVID-19. In this review, we provide clinical data-based analyses of how multiple risk factors (such as sex, race, HLA genotypes, blood groups, vitamin D deficiency, obesity, smoking, and asthma) contribute to the inflammatory overactivation and cytokine storm (frequently seen in COVID-19 patients) with a focus on the IL-6 pathway. We also draw comparisons to the virulence and pathophysiology of SARS and MERS to establish parallels in immune response and discuss the potential for therapeutic approaches that may limit disease progression in patients with higher risk profiles than others. Moreover, we cover the latest information on approved or upcoming COVID-19 vaccines. This paper also provides perspective on emerging variants and associated opportunistic infections such as black molds and fungus that have added to mortality in some parts of the world, such as India. This compilation of existing COVID-19 studies and data will provide an excellent referencing tool for the research, clinical, and public health communities.
Collapse
Affiliation(s)
- John Hanna
- Department of Microbiology and Immunology, Drexel University College of Medicine Philadelphia, 2900 Queen Lane, Philadelphia, PA 19129, USA; (J.H.); (P.T.); (T.M.); (E.L.); (V.M.); (R.K.); (A.B.)
| | - Padmavathi Tipparaju
- Department of Microbiology and Immunology, Drexel University College of Medicine Philadelphia, 2900 Queen Lane, Philadelphia, PA 19129, USA; (J.H.); (P.T.); (T.M.); (E.L.); (V.M.); (R.K.); (A.B.)
| | - Tania Mulherkar
- Department of Microbiology and Immunology, Drexel University College of Medicine Philadelphia, 2900 Queen Lane, Philadelphia, PA 19129, USA; (J.H.); (P.T.); (T.M.); (E.L.); (V.M.); (R.K.); (A.B.)
| | - Edward Lin
- Department of Microbiology and Immunology, Drexel University College of Medicine Philadelphia, 2900 Queen Lane, Philadelphia, PA 19129, USA; (J.H.); (P.T.); (T.M.); (E.L.); (V.M.); (R.K.); (A.B.)
| | - Victoria Mischley
- Department of Microbiology and Immunology, Drexel University College of Medicine Philadelphia, 2900 Queen Lane, Philadelphia, PA 19129, USA; (J.H.); (P.T.); (T.M.); (E.L.); (V.M.); (R.K.); (A.B.)
| | - Ratuja Kulkarni
- Department of Microbiology and Immunology, Drexel University College of Medicine Philadelphia, 2900 Queen Lane, Philadelphia, PA 19129, USA; (J.H.); (P.T.); (T.M.); (E.L.); (V.M.); (R.K.); (A.B.)
| | - Aliyah Bolton
- Department of Microbiology and Immunology, Drexel University College of Medicine Philadelphia, 2900 Queen Lane, Philadelphia, PA 19129, USA; (J.H.); (P.T.); (T.M.); (E.L.); (V.M.); (R.K.); (A.B.)
| | - Siddappa N. Byrareddy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Pooja Jain
- Department of Microbiology and Immunology, Drexel University College of Medicine Philadelphia, 2900 Queen Lane, Philadelphia, PA 19129, USA; (J.H.); (P.T.); (T.M.); (E.L.); (V.M.); (R.K.); (A.B.)
| |
Collapse
|
18
|
Pandey K, Acharya A, Mohan M, Ng CL, Reid SP, Byrareddy SN. Animal models for SARS-CoV-2 research: A comprehensive literature review. Transbound Emerg Dis 2021; 68:1868-1885. [PMID: 33128861 PMCID: PMC8085186 DOI: 10.1111/tbed.13907] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 10/09/2020] [Accepted: 10/28/2020] [Indexed: 12/13/2022]
Abstract
Emerging and re-emerging viral diseases can create devastating effects on human lives and may also lead to economic crises. The ongoing COVID-19 pandemic due to the novel coronavirus (nCoV), severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which originated in Wuhan, China, has caused a global public health emergency. To date, the molecular mechanism of transmission of SARS-CoV-2, its clinical manifestations and pathogenesis is not completely understood. The global scientific community has intensified its efforts in understanding the biology of SARS-CoV-2 for development of vaccines and therapeutic interventions to prevent the rapid spread of the virus and to control mortality and morbidity associated with COVID-19. To understand the pathophysiology of SARS-CoV-2, appropriate animal models that mimic the biology of human SARS-CoV-2 infection are urgently needed. In this review, we outline animal models that have been used to study previous human coronaviruses (HCoVs), including severe acute respiratory syndrome coronavirus (SARS-CoV) and middle east respiratory syndrome coronavirus (MERS-CoV). Importantly, we discuss models that are appropriate for SARS-CoV-2 as well as the advantages and disadvantages of various available methods.
Collapse
Affiliation(s)
- Kabita Pandey
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Arpan Acharya
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Mahesh Mohan
- Texas Biomedical Research Institute, Southwest National Primate Research Center, San Antonio, TX, USA
| | - Caroline L Ng
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - St Patrick Reid
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Siddappa N Byrareddy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Centre, Omaha, NE, USA
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Centre, Omaha, NE, USA
| |
Collapse
|
19
|
Kabir H, Merati M, Abdekhodaie MJ. Design of an effective piezoelectric microcantilever biosensor for rapid detection of COVID-19. J Med Eng Technol 2021; 45:423-433. [PMID: 33998955 DOI: 10.1080/03091902.2021.1921067] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Acute respiratory syndrome coronavirus 2 (SARS-CoV-2), also called COVID-19, is one of the most contagious viruses resulting in a progressive pandemic. Since specific antiviral treatments have not been developed yet and its fatal rate is almost high, early and fast detection is critical for controlling the outbreak. In this study, a piezoelectric microcantilever biosensor has been designed for detecting COVID-19 samples directly without requiring preparation steps. The biosensor acts as a transducer and is coated with the related antibody. When the SARS-CoV-2 antigens adsorbed on the microcantilever top surface through their spike proteins, a surface stress due to the mass change would be prompted leading to the measurable tip deflection and floating voltage. To obtain a biosensor with optimum parameters, different shapes and piezoelectric materials have been assessed and it was concluded that a Poly (vinylidene fluoride) (PVDF) biosensor in a shape of a holed punched form triangle, represented the best result. Therefore, the highly sensitive microcantilever biosensor can detect COVID-19 in clinical samples with various viral loads, rapidly. Also, it is selective enough to differentiate SARS-CoV-2 from other viruses with similar symptoms.
Collapse
Affiliation(s)
- Hannaneh Kabir
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Mohsen Merati
- School of Medicine, Tehran University of Medical Science, Tehran, Iran
| | - Mohammad J Abdekhodaie
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran.,Yeates School of Graduate Studies, Ryerson University, Toronto, ON, Canada
| |
Collapse
|
20
|
Byrareddy SN. Meet Our Editorial Board Member. Curr HIV Res 2021. [DOI: 10.2174/1570162x1903210401104648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Siddappa N. Byrareddy
- Department of Pharmacology and Experimental Neurosciences University of Nebraska Medical Center Omaha, NE, United States
| |
Collapse
|
21
|
Pojero F, Candore G, Caruso C, Di Bona D, Groneberg DA, Ligotti ME, Accardi G, Aiello A. The Role of Immunogenetics in COVID-19. Int J Mol Sci 2021; 22:2636. [PMID: 33807915 PMCID: PMC7961811 DOI: 10.3390/ijms22052636] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/26/2021] [Accepted: 03/03/2021] [Indexed: 12/14/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) is induced by SARS-CoV-2 and may arise as a variety of clinical manifestations, ranging from an asymptomatic condition to a life-threatening disease associated with cytokine storm, multiorgan and respiratory failure. The molecular mechanism behind such variability is still under investigation. Several pieces of experimental evidence suggest that genetic variants influencing the onset, maintenance and resolution of the immune response may be fundamental in predicting the evolution of the disease. The identification of genetic variants behind immune system reactivity and function in COVID-19 may help in the elaboration of personalized therapeutic strategies. In the frenetic look for universally shared treatment plans, those genetic variants that are common to other diseases/models may also help in addressing future research in terms of drug repurposing. In this paper, we discuss the most recent updates about the role of immunogenetics in determining the susceptibility to and the history of SARS-CoV-2 infection. We propose a narrative review of available data, speculating about lessons that we have learnt from other viral infections and immunosenescence, and discussing what kind of aspects of research should be deepened in order to improve our knowledge of how host genetic variability impacts the outcome for COVID-19 patients.
Collapse
Affiliation(s)
- Fanny Pojero
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neuroscience and Advanced Diagnostic, University of Palermo, 90134 Palermo, Italy; (F.P.); (G.C.); (M.E.L.); (G.A.)
| | - Giuseppina Candore
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neuroscience and Advanced Diagnostic, University of Palermo, 90134 Palermo, Italy; (F.P.); (G.C.); (M.E.L.); (G.A.)
| | - Calogero Caruso
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neuroscience and Advanced Diagnostic, University of Palermo, 90134 Palermo, Italy; (F.P.); (G.C.); (M.E.L.); (G.A.)
| | - Danilo Di Bona
- Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, 70124 Bari, Italy;
| | - David A. Groneberg
- Institute of Occupational, Social and Environmental Medicine, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60596 Frankfurt, Germany;
| | - Mattia E. Ligotti
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neuroscience and Advanced Diagnostic, University of Palermo, 90134 Palermo, Italy; (F.P.); (G.C.); (M.E.L.); (G.A.)
| | - Giulia Accardi
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neuroscience and Advanced Diagnostic, University of Palermo, 90134 Palermo, Italy; (F.P.); (G.C.); (M.E.L.); (G.A.)
| | - Anna Aiello
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neuroscience and Advanced Diagnostic, University of Palermo, 90134 Palermo, Italy; (F.P.); (G.C.); (M.E.L.); (G.A.)
| |
Collapse
|
22
|
Hartog N, Faber W, Frisch A, Bauss J, Bupp CP, Rajasekaran S, Prokop JW. SARS-CoV-2 infection: molecular mechanisms of severe outcomes to suggest therapeutics. Expert Rev Proteomics 2021; 18:105-118. [PMID: 33779460 PMCID: PMC8022340 DOI: 10.1080/14789450.2021.1908894] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/22/2021] [Indexed: 02/06/2023]
Abstract
Introduction:The year 2020 was defined by the 29,903 base pairs of RNA that codes for the SARS-CoV-2 genome. SARS-CoV-2 infects humans to cause COVID-19, spreading from patient-to-patient yet impacts patients very divergently.Areas covered: Within this review, we address the known molecular mechanisms and supporting data for COVID-19 clinical course and pathology, clinical risk factors and molecular signatures, therapeutics of severe COVID-19, and reinfection/vaccination. Literature and published datasets were reviewed using PubMed, Google Scholar, and NCBI SRA tools. The combination of exaggerated cytokine signaling, pneumonia, NETosis, pyroptosis, thrombocytopathy, endotheliopathy, multiple organ dysfunction syndrome (MODS), and acute respiratory distress syndrome (ARDS) create a positive feedback loop of severe damage in patients with COVID-19 that impacts the entire body and may persist for months following infection. Understanding the molecular pathways of severe COVID-19 opens the door for novel therapeutic design. We summarize the current insights into pathology, risk factors, secondary infections, genetics, omics, and drugs being tested to treat severe COVID-19.Expert opinion: A growing level of support suggests the need for stronger integration of biomarkers and precision medicine to guide treatment strategies of severe COVID-19, where each patient has unique outcomes and thus require guided treatment.
Collapse
Affiliation(s)
- Nicholas Hartog
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI, USA
- Allergy & Immunology, Spectrum Health, Grand Rapids, MI, USA
| | - William Faber
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI, USA
- Department of Chemistry, Grand Rapids Community College, Grand Rapids, MI, USA
| | - Austin Frisch
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI, USA
| | - Jacob Bauss
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI, USA
| | - Caleb P Bupp
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI, USA
- Spectrum Health Medical Genetics, Grand Rapids, MI, USA
| | - Surender Rajasekaran
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI, USA
- Pediatric Intensive Care Unit, Helen DeVos Children’s Hospital, Grand Rapids, MI, USA
- Office of Research, Office of Research, Spectrum Health, Grand Rapids, MI, USA
| | - Jeremy W Prokop
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI, USA
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
23
|
Andryukov BG, Besednova NN, Kuznetsova TA, Fedyanina LN. Laboratory-Based Resources for COVID-19 Diagnostics: Traditional Tools and Novel Technologies. A Perspective of Personalized Medicine. J Pers Med 2021; 11:jpm11010042. [PMID: 33451039 PMCID: PMC7828525 DOI: 10.3390/jpm11010042] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 01/09/2021] [Accepted: 01/12/2021] [Indexed: 01/08/2023] Open
Abstract
The coronavirus infection 2019 (COVID-19) pandemic, caused by the highly contagious SARS-CoV-2 virus, has provoked a global healthcare and economic crisis. The control over the spread of the disease requires an efficient and scalable laboratory-based strategy for testing the population based on multiple platforms to provide rapid and accurate diagnosis. With the onset of the pandemic, the reverse transcription polymerase chain reaction (RT-PCR) method has become a standard diagnostic tool, which has received wide clinical use. In large-scale and repeated examinations, these tests can identify infected patients with COVID-19, with their accuracy, however, dependent on many factors, while the entire process takes up to 6–8 h. Here we also describe a number of serological systems for detecting antibodies against SARS-CoV-2. These are used to assess the level of population immunity in various categories of people, as well as for retrospective diagnosis of asymptomatic and mild COVID-19 in patients. However, the widespread use of traditional diagnostic tools in the context of the rapid spread of COVID-19 is hampered by a number of limitations. Therefore, the sharp increase in the number of patients with COVID-19 necessitates creation of new rapid, inexpensive, sensitive, and specific tests. In this regard, we focus on new laboratory technologies such as loop mediated isothermal amplification (LAMP) and lateral flow immunoassay (LFIA), which have proven to work well in the COVID-19 diagnostics and can become a worthy alternative to traditional laboratory-based diagnostics resources. To cope with the COVID-19 pandemic, the healthcare system requires a combination of various types of laboratory diagnostic testing techniques, whodse sensitivity and specificity increases with the progress in the SARS-CoV-2 research. The testing strategy should be designed in such a way to provide, depending on the timing of examination and the severity of the infection in patients, large-scale and repeated examinations based on the principle: screening–monitoring–control. The search and development of new methods for rapid diagnostics of COVID-19 in laboratory, based on new analytical platforms, is still a highly important and urgent healthcare issue. In the final part of the review, special emphasis is made on the relevance of the concept of personalized medicine to combat the COVID-19 pandemic in the light of the recent studies carried out to identify the causes of variation in individual susceptibility to SARS-CoV-2 and increase the efficiency and cost-effectiveness of treatment.
Collapse
Affiliation(s)
- Boris G. Andryukov
- G.P. Somov Institute of Epidemiology and Microbiology, Russian Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, 690087 Vladivostok, Russia; (N.N.B.); (T.A.K.)
- School of Biomedicine, Far Eastern Federal University (FEFU), 690091 Vladivostok, Russia;
- Correspondence: ; Tel.: +7-4232-304-647
| | - Natalya N. Besednova
- G.P. Somov Institute of Epidemiology and Microbiology, Russian Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, 690087 Vladivostok, Russia; (N.N.B.); (T.A.K.)
| | - Tatyana A. Kuznetsova
- G.P. Somov Institute of Epidemiology and Microbiology, Russian Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, 690087 Vladivostok, Russia; (N.N.B.); (T.A.K.)
| | - Ludmila N. Fedyanina
- School of Biomedicine, Far Eastern Federal University (FEFU), 690091 Vladivostok, Russia;
| |
Collapse
|
24
|
Hossein-Khannazer N, Shokoohian B, Shpichka A, Aghdaei HA, Timashev P, Vosough M. An update to "novel therapeutic approaches for treatment of COVID-19". J Mol Med (Berl) 2021; 99:303-310. [PMID: 33392632 PMCID: PMC7779099 DOI: 10.1007/s00109-020-02027-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/10/2020] [Accepted: 12/14/2020] [Indexed: 11/06/2022]
Affiliation(s)
- Nikoo Hossein-Khannazer
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bahare Shokoohian
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.,Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Anastasia Shpichka
- Institute for Regenerative Medicine, Sechenov University, Moscow, Russia.,Chemistry Department, Lomonosov Moscow State University, Moscow, Russia.,World-Class Research Center "Digital biodesign and personalized healthcare", Sechenov University, Moscow, Russia
| | - Hamid Asadzadeh Aghdaei
- Department of Molecular Biology, Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Peter Timashev
- Institute for Regenerative Medicine, Sechenov University, Moscow, Russia. .,Chemistry Department, Lomonosov Moscow State University, Moscow, Russia. .,World-Class Research Center "Digital biodesign and personalized healthcare", Sechenov University, Moscow, Russia. .,Department of Polymers and Composites, NN Semenov Institute of Chemical Physics, Moscow, Russia.
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| |
Collapse
|
25
|
Chen Z, Ruan P, Wang L, Nie X, Ma X, Tan Y. T and B cell Epitope analysis of SARS-CoV-2 S protein based on immunoinformatics and experimental research. J Cell Mol Med 2021; 25:1274-1289. [PMID: 33325143 PMCID: PMC7812294 DOI: 10.1111/jcmm.16200] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 11/22/2020] [Accepted: 11/28/2020] [Indexed: 12/13/2022] Open
Abstract
COVID-19 caused by SARS-CoV-2 is pandemic with a severe morbidity and mortality rate across the world. Despite the race for effective vaccine and drug against further expansion and fatality rate of this novel coronavirus, there is still lack of effective antiviral therapy. To this effect, we deemed it necessary to identify potential B and T cell epitopes from the envelope S protein. This can be used as potential targets to develop anti-SARS-CoV-2 vaccine preparations. In this study, we used immunoinformatics to identify conservative B and T cell epitopes for S proteins of SARS-CoV-2, which might play roles in the initiation of SARS-CoV-2 infection. We identified the B cell and T cell peptide epitopes of S protein and their antigenicity, as well as the interaction between the peptide epitopes and human leucocyte antigen (HLA). Among the B cell epitopes, 'EILDITPCSFGGVS' has the highest score of antigenicity and great immunogenicity. In T cell epitopes, MHC-I peptide 'KIADYNYKL' and MHC-II peptide 'LEILDITPC' were identified as high antigens. Besides, docking analysis showed that the predicted peptide 'KIADYNYKL' was closely bound to the HLA-A*0201. The results of molecular dynamics simulation through GROMACS software showed that 'HLA-A*0201~peptide' complex was very stable. And the peptide we selected could induce the T cell response similar to that of SARS-CoV-2 infection. Moreover, the predicted peptides were highly conserved in different isolates from different countries. The antigenic epitopes presumed in this study were effective new vaccine targets to prevent SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Ziwei Chen
- Department of Medical MicrobiologyXiangya School of MedicineCentral South UniversityChangshaChina
- Department of Clinical LaboratoryThird Xiangya HospitalCentral South UniversityChangshaChina
- Department of NHC Key Laboratory of Medical Virology and Viral DiseasesNational Institute for Viral Disease Control and PreventionChinese Center for Disease Control and PreventionBeijingChina
| | - Pinglang Ruan
- Department of Medical MicrobiologyXiangya School of MedicineCentral South UniversityChangshaChina
| | - Lili Wang
- Department of Medical MicrobiologyXiangya School of MedicineCentral South UniversityChangshaChina
| | - Xinmin Nie
- Department of Clinical LaboratoryThird Xiangya HospitalCentral South UniversityChangshaChina
| | - Xuejun Ma
- Department of NHC Key Laboratory of Medical Virology and Viral DiseasesNational Institute for Viral Disease Control and PreventionChinese Center for Disease Control and PreventionBeijingChina
| | - Yurong Tan
- Department of Medical MicrobiologyXiangya School of MedicineCentral South UniversityChangshaChina
| |
Collapse
|
26
|
Diagnosing the novel SARS-CoV-2 by quantitative RT-PCR: variations and opportunities. J Mol Med (Berl) 2020; 98:1727-1736. [PMID: 33067676 PMCID: PMC7567654 DOI: 10.1007/s00109-020-01992-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 10/05/2020] [Accepted: 10/07/2020] [Indexed: 12/22/2022]
Abstract
The world is currently facing a novel viral pandemic (SARS-CoV-2), and large-scale testing is central to decision-making for the design of effective policies and control strategies to minimize its impact on the global population. However, testing for the presence of the virus is a major bottleneck in tracking the spreading of the disease. Given its adaptability regarding the nucleotide sequence of target regions, RT-qPCR is a strong ally to reveal the rapid geographical spreading of novel viruses. We assessed PCR variations in the SARS-CoV-2 diagnosis taking into account public genome sequences and diagnosis kits used by different countries. We analyzed 226 SARS-CoV-2 genome sequences from samples collected by March 22, 2020. Our work utilizes a phylogenetic approach that reveals the early evolution of the virus sequence as it spreads around the globe and informs the design of RT-qPCR primers and probes. The quick expansion of testing capabilities of a country during a pandemic is largely impaired by the availability of adequately trained personnel on RNA isolation and PCR analysis, as well as the availability of hardware (thermocyclers). We propose that rapid capacity development can circumvent these bottlenecks by training medical and non-medical personnel with some laboratory experience, such as biology-related graduate students. Furthermore, the use of thermocyclers available in academic and commercial labs can be promptly calibrated and certified to properly conduct testing during a pandemic. A decentralized, fast-acting training and testing certification pipeline will better prepare us to manage future pandemics.
Collapse
|
27
|
Pandey P, Prasad K, Prakash A, Kumar V. Insights into the biased activity of dextromethorphan and haloperidol towards SARS-CoV-2 NSP6: in silico binding mechanistic analysis. J Mol Med (Berl) 2020; 98:1659-1673. [PMID: 32965508 PMCID: PMC7509052 DOI: 10.1007/s00109-020-01980-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 09/09/2020] [Accepted: 09/11/2020] [Indexed: 12/28/2022]
Abstract
Abstract The outbreak of novel coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) virus continually led to infect a large population worldwide. SARS-CoV-2 utilizes its NSP6 and Orf9c proteins to interact with sigma receptors that are implicated in lipid remodeling and ER stress response, to infect cells. The drugs targeting the sigma receptors, sigma-1 and sigma-2, have emerged as effective candidates to reduce viral infectivity, and some of them are in clinical trials against COVID-19. The antipsychotic drug, haloperidol, exerts remarkable antiviral activity, but, at the same time, the sigma-1 benzomorphan agonist, dextromethorphan, showed pro-viral activity. To explore the potential mechanisms of biased binding and activity of the two drugs, haloperidol and dextromethorphan towards NSP6, we herein utilized molecular docking–based molecular dynamics simulation studies. Our extensive analysis of the protein-drug interactions, structural and conformational dynamics, residual frustrations, and molecular switches of NSP6-drug complexes indicates that dextromethorphan binding leads to structural destabilization and increase in conformational dynamics and energetic frustrations. On the other hand, the strong binding of haloperidol leads to minimal structural and dynamical perturbations to NSP6. Thus, the structural insights of stronger binding affinity and favorable molecular interactions of haloperidol towards viral NSP6 suggests that haloperidol can be potentially explored as a candidate drug against COVID-19. Key messages •Inhibitors of sigma receptors are considered as potent drugs against COVID-19. •Antipsychotic drug, haloperidol, binds strongly to NSP6 and induces the minimal changes in structure and dynamics of NSP6. •Dextromethorphan, agonist of sigma receptors, binding leads to overall destabilization of NSP6. •These two drugs bind with NSP6 differently and also induce differences in the structural and conformational changes that explain their different mechanisms of action. •Haloperidol can be explored as a candidate drug against COVID-19. Electronic supplementary material The online version of this article (10.1007/s00109-020-01980-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Preeti Pandey
- Department of Chemistry & Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, OK, 73019-5251, USA
| | - Kartikay Prasad
- Amity Institute of Neuropsychology & Neurosciences (AINN), Amity University, Noida, UP, 201303, India
| | - Amresh Prakash
- Amity Institute of Integrative Sciences and Health (AIISH), Amity University Haryana, Gurgaon, 122413, India.
| | - Vijay Kumar
- Amity Institute of Neuropsychology & Neurosciences (AINN), Amity University, Noida, UP, 201303, India.
| |
Collapse
|