1
|
Dashti M, Ali NM, Alsaleh H, John SE, Nizam R, Thanaraj TA, Al-Mulla F. Association of mitochondrial haplogroup H with reduced risk of type 2 Diabetes among Gulf Region Arabs. Front Endocrinol (Lausanne) 2024; 15:1443737. [PMID: 39659613 PMCID: PMC11628290 DOI: 10.3389/fendo.2024.1443737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 11/01/2024] [Indexed: 12/12/2024] Open
Abstract
Background Numerous studies have linked mitochondrial dysfunction to the development of type 2 diabetes (T2D) by affecting glucose-stimulated insulin secretion in pancreatic beta cells and reducing oxidative phosphorylation in insulin-responsive tissues. Given the strong genetic underpinnings of T2D, research has explored the connection between mitochondrial DNA haplogroups, specific variants, and the risk and comorbidities of T2D. For example, haplogroups F, D, M9, and N9a have been linked to an elevated risk of T2D across various populations. Additionally, specific mitochondrial DNA variants, such as the rare mtDNA 3243 A>G and the more prevalent mtDNA 16189 T>C, have also been implicated in heightened T2D risk. Notably, these associations vary among different populations. Given the high incidence of T2D in the Gulf Cooperation Council countries, this study investigates the correlation between T2D and mitochondrial haplogroups and variants in Arab populations from the Gulf region. Methods This analysis involved mitochondrial haplogroup and variant testing in a cohort of 1,112 native Kuwaiti and Qatari individuals, comprising 685 T2D patients and 427 controls. Complete mitochondrial genomes were derived from whole exome sequencing data to examine the associations between T2D and haplogroups and mitochondrial DNA variants. Results The analysis revealed a significant protective effect of haplogroup H against T2D (odds ratio [OR] = 0.65; P = 0.022). This protective association persisted when adjusted for age, sex, body mass index (BMI) and population group, with an OR of 0.607 (P = 0.021). Furthermore, specific mitochondrial variants showed significant associations with T2D risk after adjustment for relevant covariates, and some variants were exclusively found in T2D patients. Conclusion Our findings confirm that the maternal haplogroup H, previously identified as protective against obesity in Kuwaiti Arabs, also serves as a protective factor against T2D in Arabs from the Gulf region. The study also identifies mitochondrial DNA variants that either increase or decrease the risk of T2D, underscoring their role in cellular energy metabolism.
Collapse
Affiliation(s)
- Mohammed Dashti
- Genetics and Bioinformatics Department, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Naser M. Ali
- Department of Medical Laboratories, Ahmadi Hospital, Kuwait Oil Company (KOC), Ahmadi, Kuwait
| | - Hussain Alsaleh
- Saad Al-Abdullah Academy for Security Sciences, Ministry of Interior, Shuwaikh, Kuwait
| | - Sumi Elsa John
- Genetics and Bioinformatics Department, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Rasheeba Nizam
- Genetics and Bioinformatics Department, Dasman Diabetes Institute, Kuwait City, Kuwait
| | | | - Fahd Al-Mulla
- Genetics and Bioinformatics Department, Dasman Diabetes Institute, Kuwait City, Kuwait
| |
Collapse
|
2
|
Lorca R, Aparicio A, Gómez J, Álvarez-Velasco R, Pascual I, Avanzas P, González-Urbistondo F, Alen A, Vázquez-Coto D, González-Fernández M, García-Lago C, Cuesta-Llavona E, Morís C, Coto E. Mitochondrial Heteroplasmy as a Marker for Premature Coronary Artery Disease: Analysis of the Poly-C Tract of the Control Region Sequence. J Clin Med 2023; 12:jcm12062133. [PMID: 36983136 PMCID: PMC10053235 DOI: 10.3390/jcm12062133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/26/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023] Open
Abstract
Mitochondrial DNA (mtDNA) differs from the nuclear genome in many aspects: a maternal inheritance pattern; being more prone to acquire somatic de novo mutations, accumulative with age; and the possible coexistence of different mtDNA alleles (heteroplasmy). Mitochondria are key cellular organelles responsible for energy production and involved in complex mechanisms, including atherosclerosis. In this scenario, we aimed to evaluate mtDNA variants that could be associated with premature cardiovascular disease. We evaluated 188 consecutive patients presenting with premature myocardial infarction with ST elevation (STEMI) confirmed by coronary angiogram. mtDNA polymorphisms and clinical data were evaluated and compared with 271 individuals from the same population (control group). Tobacco consumption (80.85% vs. 21.21%, p < 0.01) and dyslipidemia (38.83% vs. 28.41%, p = 0.02) were significantly more frequent among STEMI patients. Moreover, C16223T mtDNA mutation and poly-C heteroplasmy were significantly more frequent among premature STEMI male patients than in controls. The OR associated C16223T mtDNA with the increased presence of cardiovascular risk factors. Our data suggest that mtDNA 16223T and heteroplasmy may be associated with unstable premature atherosclerosis disease in men. Moreover, the presence of cardiovascular risk factors (CVRFs) was associated with C16223T mtDNA, with a cumulative effect. Protective mitochondrial pathways are potential therapeutic targets. Preventing exposure to the damaging mechanisms associated with CVRFs is of utmost importance.
Collapse
Affiliation(s)
- Rebeca Lorca
- Área del Corazón, Hospital Universitario Central Asturias, 33011 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias, ISPA, 33011 Oviedo, Spain
- Departamento de Morfología y Biología Celular, Universidad de Oviedo, 33003 Oviedo, Spain
- Unidad de Cardiopatías Familiares, Área del Corazón y Departamento de Genética Molecular, Hospital Universitario Central Asturias, 33011 Oviedo, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORs), 28029 Madrid, Spain
| | - Andrea Aparicio
- Área del Corazón, Hospital Universitario Central Asturias, 33011 Oviedo, Spain
| | - Juan Gómez
- Instituto de Investigación Sanitaria del Principado de Asturias, ISPA, 33011 Oviedo, Spain
- Unidad de Cardiopatías Familiares, Área del Corazón y Departamento de Genética Molecular, Hospital Universitario Central Asturias, 33011 Oviedo, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORs), 28029 Madrid, Spain
- CIBER-Enfermedades Respiratorias, 28029 Madrid, Spain
- Laboratorio de Genética, Hospital Universitario Central Asturias, 33011 Oviedo, Spain
- Correspondence:
| | - Rut Álvarez-Velasco
- Área del Corazón, Hospital Universitario Central Asturias, 33011 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias, ISPA, 33011 Oviedo, Spain
| | - Isaac Pascual
- Área del Corazón, Hospital Universitario Central Asturias, 33011 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias, ISPA, 33011 Oviedo, Spain
- Departamento de Medicina, Universidad de Oviedo, 33003 Oviedo, Spain
| | - Pablo Avanzas
- Área del Corazón, Hospital Universitario Central Asturias, 33011 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias, ISPA, 33011 Oviedo, Spain
- Departamento de Medicina, Universidad de Oviedo, 33003 Oviedo, Spain
- CIBER-Enfermedades Cardiovasculares, 28029 Madrid, Spain
| | | | - Alberto Alen
- Área del Corazón, Hospital Universitario Central Asturias, 33011 Oviedo, Spain
| | - Daniel Vázquez-Coto
- Laboratorio de Genética, Hospital Universitario Central Asturias, 33011 Oviedo, Spain
| | | | - Claudia García-Lago
- Laboratorio de Genética, Hospital Universitario Central Asturias, 33011 Oviedo, Spain
| | - Elías Cuesta-Llavona
- Instituto de Investigación Sanitaria del Principado de Asturias, ISPA, 33011 Oviedo, Spain
- Laboratorio de Genética, Hospital Universitario Central Asturias, 33011 Oviedo, Spain
| | - César Morís
- Área del Corazón, Hospital Universitario Central Asturias, 33011 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias, ISPA, 33011 Oviedo, Spain
- Unidad de Cardiopatías Familiares, Área del Corazón y Departamento de Genética Molecular, Hospital Universitario Central Asturias, 33011 Oviedo, Spain
- Departamento de Medicina, Universidad de Oviedo, 33003 Oviedo, Spain
| | - Eliecer Coto
- Instituto de Investigación Sanitaria del Principado de Asturias, ISPA, 33011 Oviedo, Spain
- Unidad de Cardiopatías Familiares, Área del Corazón y Departamento de Genética Molecular, Hospital Universitario Central Asturias, 33011 Oviedo, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORs), 28029 Madrid, Spain
- Laboratorio de Genética, Hospital Universitario Central Asturias, 33011 Oviedo, Spain
- Departamento de Medicina, Universidad de Oviedo, 33003 Oviedo, Spain
| |
Collapse
|
3
|
Memon AA, Vats S, Sundquist J, Li Y, Sundquist K. Mitochondrial DNA Copy Number: Linking Diabetes and Cancer. Antioxid Redox Signal 2022; 37:1168-1190. [PMID: 36169625 DOI: 10.1089/ars.2022.0100] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Recent Advances: Various studies have suggested that mitochondrial DNA copy number (mtDNA-CN), a surrogate biomarker of mitochondrial dysfunction, is an easily quantifiable biomarker for chronic diseases, including diabetes and cancer. However, current knowledge is limited, and the results are controversial. This has been attributed mainly to methodology and study design. Critical Issues: The incidence of diabetes and cancer has increased significantly in recent years. Moreover, type 2 diabetes (T2D) has been shown to be a risk factor for cancer. mtDNA-CN has been associated with both T2D and cancer. However, it is not known whether mtDNA-CN plays any role in the association between T2D and cancer. Significance: In this review, we have discussed mtDNA-CN in diabetes and cancer, and reviewed the literature and methodology used in published studies so far. Based on the literature review, we have speculated how mtDNA-CN may act as a link between diabetes and cancer. Furthermore, we have provided some recommendations for reliable translation of mtDNA-CN as a biomarker. Future Directions: Further research is required to elucidate the role of mtDNA-CN in the association between T2D and cancer. If established, early lifestyle interventions, such as physical activity and diet control that improve mitochondrial function, may help preventing cancer in patients with T2D. Antioxid. Redox Signal. 37, 1168-1190.
Collapse
Affiliation(s)
- Ashfaque A Memon
- Center for Primary Health Care Research, Lund University/Region Skåne, Malmö, Sweden
| | - Sakshi Vats
- Center for Primary Health Care Research, Lund University/Region Skåne, Malmö, Sweden
| | - Jan Sundquist
- Center for Primary Health Care Research, Lund University/Region Skåne, Malmö, Sweden
| | - Yanni Li
- Center for Primary Health Care Research, Lund University/Region Skåne, Malmö, Sweden
| | - Kristina Sundquist
- Center for Primary Health Care Research, Lund University/Region Skåne, Malmö, Sweden
| |
Collapse
|
4
|
A preliminary analysis of mitochondrial DNA atlas in the type 2 diabetes patients. Int J Diabetes Dev Ctries 2022. [DOI: 10.1007/s13410-021-01031-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
5
|
Pham VH, Nguyen VL, Jung HE, Cho YS, Shin JG. The frequency of the known mitochondrial variants associated with drug-induced toxicity in a Korean population. BMC Med Genomics 2022; 15:3. [PMID: 34980117 PMCID: PMC8722126 DOI: 10.1186/s12920-021-01153-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/16/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Few studies have annotated the whole mitochondrial DNA (mtDNA) genome associated with drug responses in Asian populations. This study aimed to characterize mtDNA genetic profiles, especially the distribution and frequency of well-known genetic biomarkers associated with diseases and drug-induced toxicity in a Korean population. METHOD Whole mitochondrial genome was sequenced for 118 Korean subjects by using a next-generation sequencing approach. The bioinformatic pipeline was constructed for variant calling, haplogroup classification and annotation of mitochondrial mutation. RESULTS A total of 681 variants was identified among all subjects. The MT-TRNP gene and displacement loop showed the highest numbers of variants (113 and 74 variants, respectively). The m.16189T > C allele, which is known to reduce the mtDNA copy number in human cells was detected in 25.4% of subjects. The variants (m.2706A > G, m.3010A > G, and m.1095T > C), which are associated with drug-induced toxicity, were observed with the frequency of 99.15%, 30.51%, and 0.08%, respectively. The m.2150T > A, a genotype associated with highly disruptive effects on mitochondrial ribosomes, was identified in five subjects. The D and M groups were the most dominant groups with the frequency of 34.74% and 16.1%, respectively. CONCLUSIONS Our finding was consistent with Korean Genome Project and well reflected the unique profile of mitochondrial haplogroup distribution. It was the first study to annotate the whole mitochondrial genome with drug-induced toxicity to predict the ADRs event in clinical implementation for Korean subjects. This approach could be extended for further study for validation of the potential ethnic-specific mitochondrial genetic biomarkers in the Korean population.
Collapse
Affiliation(s)
- Vinh Hoa Pham
- Department of Pharmacology and Pharmacogenomics Research Center, Inje University, College of Medicine, 633-165 Gaegum-Dong, Jin-Gu, Busan, Republic of Korea
| | - Van Lam Nguyen
- Department of Pharmacology and Pharmacogenomics Research Center, Inje University, College of Medicine, 633-165 Gaegum-Dong, Jin-Gu, Busan, Republic of Korea
| | - Hye-Eun Jung
- Department of Pharmacology and Pharmacogenomics Research Center, Inje University, College of Medicine, 633-165 Gaegum-Dong, Jin-Gu, Busan, Republic of Korea.,Department of Precision Medicine, SPMED Co., Ltd., Busan, 46508, Republic of Korea
| | - Yong-Soon Cho
- Department of Pharmacology and Pharmacogenomics Research Center, Inje University, College of Medicine, 633-165 Gaegum-Dong, Jin-Gu, Busan, Republic of Korea.,Department of Pharmacology and Clinical Pharmacology, PharmacoGenomics Research Center, Inje University College of Medicine, Busan, 47392, Republic of Korea.,Center for Personalized Precision Medicine of Tuberculosis, Inje University College of Medicine, Busan, Republic of Korea
| | - Jae-Gook Shin
- Department of Pharmacology and Pharmacogenomics Research Center, Inje University, College of Medicine, 633-165 Gaegum-Dong, Jin-Gu, Busan, Republic of Korea. .,Department of Pharmacology and Clinical Pharmacology, PharmacoGenomics Research Center, Inje University College of Medicine, Busan, 47392, Republic of Korea. .,Center for Personalized Precision Medicine of Tuberculosis, Inje University College of Medicine, Busan, Republic of Korea.
| |
Collapse
|
6
|
Sammy MJ, Connelly AW, Brown JA, Holleman C, Habegger KM, Ballinger SW. Mito-Mendelian interactions alter in vivo glucose metabolism and insulin sensitivity in healthy mice. Am J Physiol Endocrinol Metab 2021; 321:E521-E529. [PMID: 34370595 PMCID: PMC8560378 DOI: 10.1152/ajpendo.00069.2021] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The regulation of euglycemia is essential for human health with both chronic hypoglycemia and hyperglycemia having detrimental effects. It is well documented that the incidence of type 2 diabetes increases with age and exhibits racial disparity. Interestingly, mitochondrial DNA (mtDNA) damage also accumulates with age and its sequence varies with geographic maternal origins (maternal race). From these two observations, we hypothesized that mtDNA background may contribute to glucose metabolism and insulin sensitivity. Pronuclear transfer was used to generate mitochondrial-nuclear eXchange (MNX) mice to directly test this hypothesis, by assessing physiologic parameters of glucose metabolism in nuclear isogenic C57BL/6J mice harboring either a C57BL/6J (C57n:C57mt wild type-control) or C3H/HeN mtDNA (C57n:C3Hmt-MNX). All mice were fed normal chow diets. MNX mice were significantly leaner, had lower leptin levels, and were more insulin sensitive, with lower modified Homeostatic Model Assessment of Insulin Resistance (mHOMA-IR) values and enhanced insulin action when compared with their control counterparts. Further interrogation of muscle insulin signaling revealed higher phosphorylated Akt/total Akt ratios in MNX animals relative to control, consistent with greater insulin sensitivity. Overall, these results are consistent with the hypothesis that different mtDNA combinations on the same nuclear DNA (nDNA) background can significantly impact glucose metabolism and insulin sensitivity in healthy mice.NEW & NOTEWORTHY Different mitochondrial DNAs on the same nuclear genetic background can significantly impact body composition, glucose metabolism, and insulin sensitivity in healthy mice.
Collapse
Affiliation(s)
- Melissa J Sammy
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama
- Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Ashley W Connelly
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Jamelle A Brown
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama
- Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Cassie Holleman
- Division of Endocrinology, Diabetes & Metabolism, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Kirk M Habegger
- Division of Endocrinology, Diabetes & Metabolism, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Scott W Ballinger
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama
- Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
7
|
Saha SK, Saba AA, Hasib M, Rimon RA, Hasan I, Alam MS, Mahmud I, Nabi AN. Evaluation of D-loop hypervariable region I variations, haplogroups and copy number of mitochondrial DNA in Bangladeshi population with type 2 diabetes. Heliyon 2021; 7:e07573. [PMID: 34377852 PMCID: PMC8327661 DOI: 10.1016/j.heliyon.2021.e07573] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/01/2021] [Accepted: 07/12/2021] [Indexed: 10/24/2022] Open
Abstract
The profound impact of mitochondrion in cellular metabolism has been well documented. Since type 2 diabetes (T2D) is a metabolic disorder, mitochondrial dysfunction is intricately linked with the disease pathogenesis. Mitochondrial DNA (mtDNA) variants are involved with functional dysfunction of mitochondrion and play a pivotal role in the susceptibility to T2D. In this study, we opted to find the association of mtDNA variants within the D-loop hypervariable region I (HVI), haplogroups and mtDNA copy number with T2D in Bangladeshi population. A total of 300 unrelated Bangladeshi individuals (150 healthy and 150 patients with T2D) were recruited in the present study, their HVI regions were amplified and sequenced using Sanger chemistry. Haplogrep2 and Phylotree17 tools were employed to determine the haplogroups. MtDNA copy number was measured using primers of mitochondrial tRNALeu (UUR) gene and nuclear β2-microglobulin gene. Variants G16048A (OR:0.12, p = 0.04) and G16129A (OR: 0.42, p = 0.007) were found to confer protective role against T2D according to logistic regression analysis. However along with G16129A, two new variants C16294T and T16325C demonstrated protective role against T2D when age and gender were adjusted. Haplogroups A and H showed significant association with the risk of T2D after adjustments out of total 19 major haplogroups identified. The mtDNA copy numbers were stratified into 4 groups according to the quartiles (groups with lower, medium, upper and higher mtDNA copy numbers were respectively designated as LCN, MCN, UCN and HCN). Patients with T2D had significantly lower mtDNA copy number compared to their healthy counterparts in HCN group. Moreover, six mtDNA variants were significantly associated with mtDNA copy number in the participants. Thus, our study confers that certain haplogroups and novel variants of mtDNA are significantly associated with T2D while decreased mtDNA copy number (though not significant) has been observed in patients with T2D. However, largescale studies are warranted to establish association of novel variants and haplogroup with type 2 diabetes.
Collapse
Affiliation(s)
- Sajoy Kanti Saha
- Laboratory of Population Genetics, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka 1000, Bangladesh
| | - Abdullah Al Saba
- Laboratory of Population Genetics, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka 1000, Bangladesh
| | - Md. Hasib
- Laboratory of Population Genetics, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka 1000, Bangladesh
| | - Razoan Al Rimon
- Laboratory of Population Genetics, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka 1000, Bangladesh
| | - Imrul Hasan
- Laboratory of Population Genetics, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka 1000, Bangladesh
| | - Md. Sohrab Alam
- Department of Immunology, Institute of Research and Rehabilitation in Diabetes, Endocrine and Metabolic Disorders, Shahbagh, Dhaka, Bangladesh
| | - Ishtiaq Mahmud
- Laboratory of Population Genetics, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka 1000, Bangladesh
| | - A.H.M. Nurun Nabi
- Laboratory of Population Genetics, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka 1000, Bangladesh
| |
Collapse
|
8
|
Association Study Between Genetic Variation in Whole Mitochondrial Genome and Ischemic Stroke. J Mol Neurosci 2021; 71:2152-2162. [PMID: 33447902 DOI: 10.1007/s12031-020-01778-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 12/11/2020] [Indexed: 10/22/2022]
Abstract
Mitochondrial DNA (mtDNA) affects the mitochondrial function, which is potentially related to susceptibility to ischemic stroke (IS). However, study on IS genetics by whole mitochondrial genome sequencing has not been extensively explored. Therefore, a two-stage study was designed to explore the relationship between the whole mitochondrial genome variants and IS. In the first stage, whole mitochondrial genomes of 52 IS patients and 55 controls were sequenced by next-generation sequencing. Fifty-three mtDNA mutation sites which may be related to the pathogenesis of IS were discovered. Nine unreported mtDNA variation sites were found for the first time. In the second larger Chinese cohort, we confirmed that m.T195C and m.T12338C in the mitochondrial D-loop region were the protective factors of IS, especially m.T195C and m.C311T in the LAA subtype. In conclusion, our study provided population genetic information and a reference for IS-relevant research, with wide applications in diagnosis, therapeutic treatments and prediction of IS.
Collapse
|
9
|
ElHefnawi M, Hegazy E, Elfiky A, Jeon Y, Jeon S, Bhak J, Mohamed Metwally F, Sugano S, Horiuchi T, Kazumi A, Blazyte A. Complete genome sequence and bioinformatics analysis of nine Egyptian females with clinical information from different geographic regions in Egypt. Gene 2020; 769:145237. [PMID: 33127537 DOI: 10.1016/j.gene.2020.145237] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 08/03/2020] [Accepted: 10/11/2020] [Indexed: 10/23/2022]
Abstract
Egyptians are at a crossroad between Africa and Eurasia, providing useful genomic resources for analyzing both genetic and environmental factors for future personalized medicine. Two personal Egyptian whole genomes have been published previously by us and here nine female whole genome sequences with clinical information have been added to expand the genomic resource of Egyptian personal genomes. Here we report the analysis of whole genomes of nine Egyptian females from different regions using Illumina short-read sequencers. At 30x sequencing coverage, we identified 12 SNPs that were shared in most of the subjects associated with obesity which are concordant with their clinical diagnosis. Also, we found mtDNA mutation A4282G is common in all the samples and this is associated with chronic progressive external ophthalmoplegia (CPEO). Haplogroup and Admixture analyses revealed that most Egyptian samples are close to the other north Mediterranean, Middle Eastern, and European, respectively, possibly reflecting the into-Africa influx of human migration. In conclusion, we present whole-genome sequences of nine Egyptian females with personal clinical information that cover the diverse regions of Egypt. Although limited in sample size, the whole genomes data provides possible geno-phenotype candidate markers that are relevant to the region's diseases.
Collapse
Affiliation(s)
- Mahmoud ElHefnawi
- School of Information Technology and Computer Science, Nile University, Giza 12588, Egypt; Informatics & Systems Department, the National Research Centre, Cairo, Egypt; Biomedical Informatics and Chemoinformatics Group, Center of Excellence for Medical Research, National Research Centre, Cairo, Egypt.
| | - Elsayed Hegazy
- School of Information Technology and Computer Science, Nile University, Giza 12588, Egypt
| | - Asmaa Elfiky
- Environmental and Occupational Medicine Department, Environmental Research Division, National Research Centre, Cairo, Egypt
| | - Yeonsu Jeon
- Korean Genomics Center (KOGIC), UNIST, Republic of Korea; Department of Biomedical Engineering, School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| | - Sungwon Jeon
- Korean Genomics Center (KOGIC), UNIST, Republic of Korea; Department of Biomedical Engineering, School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| | - Jong Bhak
- Korean Genomics Center (KOGIC), UNIST, Republic of Korea; Department of Biomedical Engineering, School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea; Personal Genomics Institute, Genome Research Foundation, Osong, Republic of Korea
| | - Fateheya Mohamed Metwally
- Environmental and Occupational Medicine Department, Environmental Research Division, National Research Centre, Cairo, Egypt
| | - Sumio Sugano
- The Institute of Medical Science, University of Tokyo, Japan
| | - Terumi Horiuchi
- Graduate School of Frontier Sciences, University of Tokyo, Chiba, Japan
| | - Abe Kazumi
- The Institute of Medical Science, University of Tokyo, Japan
| | - Asta Blazyte
- Korean Genomics Center (KOGIC), UNIST, Republic of Korea; Department of Biomedical Engineering, School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| |
Collapse
|
10
|
Lalrohlui F, Zohmingthanga J, Hruaii V, Vanlallawma A, Senthil Kumar N. Whole exome sequencing identifies the novel putative gene variants related with type 2 diabetes in Mizo population, northeast India. Gene 2020; 769:145229. [PMID: 33059026 DOI: 10.1016/j.gene.2020.145229] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 09/30/2020] [Accepted: 10/07/2020] [Indexed: 11/30/2022]
Abstract
The contribution of genes towards T2D development varies among different population groups across the world. It has been reported that a number of loci involved in T2D susceptibility are common across certain population groups, but ethnicity specific variants are also observed. The population of Mizoram has an independent ethnic identity and there are no scientific records about the history of the Mizo people; which makes this ethnic group unique and interesting to study. The aim of the study focuses on the identification of the gene variants which may contribute to T2D susceptibility in Mizo-Mongloid ethnic tribe of North east India through whole exome sequencing. The variants like 328G > C (KRT18), 997G > T (CYP4A11), 2368 T > C (SLC4A3), 508G > A (SLC26A5), 1659C > T (KCNS1), 650C > A (ABCD1) 821A > T (YTHDC2), 931G > T (PINX1), 3280C > A (TNRC6A), 48C > A(TACO1), 6035A > T(LAMA1), 805C > A(ACP7) and 806A > G(ACP7) variants were not reported for any disease in the database and were found to be pathogenic in different insilico analysis softwares. The changes in protein stability upon mutation has been predicted where 35.71% increases the stability of the protein, while 64.28% of the variants decrease the stability of the protein. These findings present the population specific variants which might involve in the susceptibility to T2D in Mizo population. Further, in this study some gene variants have contribution as a possible diagnostic or prognostic marker for other diseases as well, which suggests the need for performing association analysis for different disease manifestations in Mizo population in the near future.
Collapse
Affiliation(s)
- Freda Lalrohlui
- Department of Biotechnology, Mizoram University, Aizawl 796004, Mizoram, India
| | | | - Vanlal Hruaii
- Department of Medicine, Zoram Medical College, Aizawl 796005, Mizoram, India
| | - Andrew Vanlallawma
- Department of Biotechnology, Mizoram University, Aizawl 796004, Mizoram, India
| | | |
Collapse
|
11
|
Dolinko AH, Chwa M, Atilano SR, Kenney MC. African and Asian Mitochondrial DNA Haplogroups Confer Resistance Against Diabetic Stresses on Retinal Pigment Epithelial Cybrid Cells In Vitro. Mol Neurobiol 2020; 57:1636-1655. [PMID: 31811564 PMCID: PMC7123578 DOI: 10.1007/s12035-019-01834-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 11/12/2019] [Indexed: 01/09/2023]
Abstract
Diabetic retinopathy (DR) is the most common cause of blindness for individuals under the age of 65. This loss of vision can be due to ischemia, neovascularization, and/or diabetic macular edema, which are caused by breakdown of the blood-retina barrier at the level of the retinal pigment epithelium (RPE) and inner retinal vasculature. The prevalence of diabetes and its complications differ between Caucasian-Americans and certain minority populations, such as African-Americans and Asian-Americans. Individuals can be classified by their mitochondrial haplogroups, which are collections of single nucleotide polymorphisms (SNPs) in mitochondrial DNA (mtDNA) representing ancient geographic origins of populations. In this study, we compared the responses of diabetic human RPE cybrids, cell lines containing identical nuclei but mitochondria from either European (maternal European) or maternal African or Asian individuals, to hypoxia and high glucose levels. The African and Asian diabetic ([Afr+Asi]/DM) cybrids showed (1) resistance to both hyperglycemic and hypoxic stresses; (2) downregulation of pro-apoptotic indicator BAX; (3) upregulation of DNA methylation genes, such as DNMT3A and DNMT3B; and (4) resistance to DNA demethylation by the methylation inhibitor 5-Aza-2'-deoxycytidine (5-Aza-dC) compared to European diabetic (Euro/DM) cybrids. Our findings suggest that mitochondria from African and Asian diabetic subjects possess a "metabolic memory" that confers resistance against hyperglycemia, hypoxia, and demethylation, and that this "metabolic memory" can be transferred into the RPE cybrid cell lines in vitro.
Collapse
Affiliation(s)
- Andrew H Dolinko
- Department of Pathology and Laboratory Medicine, University of California Irvine, Irvine, CA, 92697, USA
- Department of Ophthalmology Research, Gavin Herbert Eye Institute, University of California Irvine, Hewitt Hall, Room 2028, 843 Health Science Road, Irvine, CA, 92697, USA
| | - Marilyn Chwa
- Department of Pathology and Laboratory Medicine, University of California Irvine, Irvine, CA, 92697, USA
| | - Shari R Atilano
- Department of Pathology and Laboratory Medicine, University of California Irvine, Irvine, CA, 92697, USA
| | - M Cristina Kenney
- Department of Pathology and Laboratory Medicine, University of California Irvine, Irvine, CA, 92697, USA.
- Department of Ophthalmology Research, Gavin Herbert Eye Institute, University of California Irvine, Hewitt Hall, Room 2028, 843 Health Science Road, Irvine, CA, 92697, USA.
| |
Collapse
|
12
|
The alterations of mitochondrial DNA in coronary heart disease. Exp Mol Pathol 2020; 114:104412. [PMID: 32113905 DOI: 10.1016/j.yexmp.2020.104412] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 02/24/2020] [Accepted: 02/27/2020] [Indexed: 12/17/2022]
Abstract
Coronary heart disease (CHD) is the major cause of death in modern society. CHD is characterized by atherosclerosis, which could lead to vascular cavity stenosis or obstruction, resulting in ischemic cardiac conditions such as angina and myocardial infarction. In terms of the mitochondrion, the main function is to produce adenosine triphosphate (ATP) for cells. And the alterations (including mutations, altered copy number and haplogroups) of mitochondrial DNA (mtDNA) are associated with the abnormal expression of oxidative phosphorylation (OXPHOS) system, resulting in mitochondrial dysfunction, then leading to perturbation on the electron transport chain and increased ROS generation and reduction in ATP level, contributing to ATP-producing disorders and oxidative stress, which may further accelerate development or vulnerability of atherosclerosis and myocardial ischemic injury. Therefore, the mtDNA defects may play an important role in making an early diagnosis, identifying disease-specific biomarkers and therapeutic targets, and predicting outcomes for patients with atherosclerosis and CHD. In this review, we aim to summarize the contribution of mtDNA mutations, altered mtDNA copy number and mtDNA haplogroups on the occurrence and development of CHD.
Collapse
|
13
|
Hasturk B, Yilmaz Y, Eren F. Potential clinical variants detected in mitochondrial DNA D-loop hypervariable region I of patients with non-alcoholic steatohepatitis. Hormones (Athens) 2019; 18:463-475. [PMID: 31656024 DOI: 10.1007/s42000-019-00137-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 09/22/2019] [Indexed: 12/30/2022]
Abstract
PURPOSE Non-alcoholic steatohepatitis (NASH) is a mitochondrial disease. However, the underlying role of mitochondrial genetics has not yet been completely elucidated. Evaluation of D-loop nucleotide variations with respect to statistical significance and clinical data distribution. METHODS Genomic DNAs were extracted from the peripheral blood samples of patients with biopsy-proven 150 NASH as well as from 150 healthy individuals to explore the functional D-loop region responsible for the replication and transcription of the mitochondrial genome. DNA sequencing by capillary electrophoresis analysis was performed for the D-loop region of mitochondrial DNA containing the hypervariable region I, and restriction fragment length polymorphism with MnlI analysis was performed for the m.16189 T/C D-loop variant. RESULTS The m.A16318C variant was detected only in patients with NASH and approached significance level. Based on clinical data, six variants associated with histological subgroups of NASH and NASH-complicated diseases were identified. In patients with NASH, the m.16129 AA genotype was associated with advanced-stage fibrosis; the m.16249 CC genotype was associated with advanced lobular inflammation and advanced-stage histological steatosis; the m.16296 TT genotype was associated with hypothyroidism; the m.16163 GG and m.16294 TT genotypes were associated with metabolic syndrome; and the m.16256 TT+CT genotypes were associated with type II diabetes. In patients with NASH, microRNAs were estimated by targeting the significant variants identified in this study. CONCLUSION These findings suggest that NASH may be associated with D-loop nucleotide variations and that microRNA-based in vitro and/or in vivo studies may be developed by targeting the D-loop variants.
Collapse
Affiliation(s)
- Burcu Hasturk
- Department of Medical Biology and Genetics, Institute of Health Sciences, Marmara University, Istanbul, Turkey
| | - Yusuf Yilmaz
- Department of Gastroenterology, School of Medicine, Marmara University, Istanbul, Turkey
- Institute of Gastroenterology, Marmara University, Istanbul, Turkey
| | - Fatih Eren
- Institute of Gastroenterology, Marmara University, Istanbul, Turkey.
- Department of Medical Biology, School of Medicine, Marmara University, Maltepe Basibuyuk Yolu Road No: 9/2, 34854, Istanbul, Turkey.
| |
Collapse
|
14
|
Zhao D, Ding Y, Lin H, Chen X, Shen W, Gao M, Wei Q, Zhou S, Liu X, He N. Mitochondrial Haplogroups N9 and G Are Associated with Metabolic Syndrome Among Human Immunodeficiency Virus-Infected Patients in China. AIDS Res Hum Retroviruses 2019; 35:536-543. [PMID: 30950284 DOI: 10.1089/aid.2018.0151] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Increasing evidence shows that mitochondrial DNA (mtDNA) variations have an important effect on metabolic disorders, but such studies have not been conducted in HIV-infected patients in Asia. We investigated the distribution of mtDNA haplogroups and their correlation with metabolic disorders in HIV-infected patients. A cross-sectional survey was performed among 296 HIV patients older than the age of 40 years in a rural prefecture, Eastern China. The entire mtDNA sequence was amplified by polymerase chain reaction using four overlapping pairs of primers that have been standardly used. In this sample, mtDNA haplogroups B, D, M7, and F were the most dominant haplogroups. The overall prevalence of metabolic syndrome (MetS) was 36.1%, and was highest (77.8%) among those with haplogroup G and lowest (21.4%) among those with haplogroup M8. In multivariable analysis, haplogroups G and N9 were significantly associated with the presence of MetS [adjusted odds ratio (aOR) = 13.5, 95% confidence interval (CI): 1.9-94.7; aOR = 8.1, 95% CI: 1.8-36.1; respectively]. Moreover, patients with haplogroup G had increased odds of elevated glycated hemoglobin (HbA1c) (aOR = 10.1, 95% CI: 1.4-71.1), patients with haplogroup N9 had increased odds of elevated triglycerides (aOR = 13.5, 95% CI: 2.4-76.8). No significant association between mtDNA haplogroups and other MetS components was observed. Our data demonstrate the association between mtDNA haplogroups and MetS in HIV-infected patients. The Asian-specific mtDNA haplogroups G and N9 may confer higher risk for the development of MetS in HIV-infected patients, which requires further longitudinal investigation.
Collapse
Affiliation(s)
- Dan Zhao
- School of Public Health, Fudan University, Shanghai, China
- Key Laboratory of Public Health Safety of Ministry of Education, Fudan University, Shanghai, China
- Key Laboratory of Health Technology Assessment of Ministry of Health, Fudan University, Shanghai, China
| | - Yingying Ding
- School of Public Health, Fudan University, Shanghai, China
- Key Laboratory of Public Health Safety of Ministry of Education, Fudan University, Shanghai, China
| | - Haijiang Lin
- School of Public Health, Fudan University, Shanghai, China
- Key Laboratory of Public Health Safety of Ministry of Education, Fudan University, Shanghai, China
- Taizhou City Center for Disease Control and Prevention, Taizhou, China
| | - Xiaoxiao Chen
- Taizhou City Center for Disease Control and Prevention, Taizhou, China
| | - Weiwei Shen
- Taizhou City Center for Disease Control and Prevention, Taizhou, China
| | - Meiyang Gao
- School of Public Health, Fudan University, Shanghai, China
- Key Laboratory of Public Health Safety of Ministry of Education, Fudan University, Shanghai, China
| | - Qian Wei
- School of Public Health, Fudan University, Shanghai, China
- Key Laboratory of Public Health Safety of Ministry of Education, Fudan University, Shanghai, China
| | - Sujuan Zhou
- School of Public Health, Fudan University, Shanghai, China
- Key Laboratory of Public Health Safety of Ministry of Education, Fudan University, Shanghai, China
| | - Xing Liu
- School of Public Health, Fudan University, Shanghai, China
- Key Laboratory of Public Health Safety of Ministry of Education, Fudan University, Shanghai, China
| | - Na He
- School of Public Health, Fudan University, Shanghai, China
- Key Laboratory of Public Health Safety of Ministry of Education, Fudan University, Shanghai, China
- Key Laboratory of Health Technology Assessment of Ministry of Health, Fudan University, Shanghai, China
| |
Collapse
|
15
|
Laaksonen J, Seppälä I, Raitoharju E, Mononen N, Lyytikäinen LP, Waldenberger M, Illig T, Lepistö M, Almusa H, Ellonen P, Hutri-Kähönen N, Juonala M, Kähönen M, Raitakari O, Salonen JT, Lehtimäki T. Discovery of mitochondrial DNA variants associated with genome-wide blood cell gene expression: a population-based mtDNA sequencing study. Hum Mol Genet 2019; 28:1381-1391. [PMID: 30629177 DOI: 10.1093/hmg/ddz011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 12/14/2018] [Accepted: 01/07/2019] [Indexed: 01/01/2023] Open
Abstract
The effect of mitochondrial DNA (mtDNA) variation on peripheral blood transcriptomics in health and disease is not fully known. Sex-specific mitochondrially controlled gene expression patterns have been shown in Drosophila melanogaster but in humans, evidence is lacking. Functional variation in mtDNA may also have a role in the development of type 2 diabetes and its precursor state, i.e. prediabetes. We examined the associations between mitochondrial single-nucleotide polymorphisms (mtSNPs) and peripheral blood transcriptomics with a focus on sex- and prediabetes-specific effects. The genome-wide blood cell expression data of 19 637 probes, 199 deep-sequenced mtSNPs and nine haplogroups of 955 individuals from a population-based Young Finns Study cohort were used. Significant associations were identified with linear regression and analysis of covariance. The effects of sex and prediabetes on the associations between gene expression and mtSNPs were studied using random-effect meta-analysis. Our analysis identified 53 significant expression probe-mtSNP associations after Bonferroni correction, involving 7 genes and 31 mtSNPs. Eight probe-mtSNP signals remained independent after conditional analysis. In addition, five genes showed differential expression between haplogroups. The meta-analysis did not show any significant differences in linear model effect sizes between males and females but identified the association between the OASL gene and mtSNP C16294T to show prediabetes-specific effects. This study pinpoints new independent mtSNPs associated with peripheral blood transcriptomics and replicates six previously reported associations, providing further evidence of the mitochondrial genetic control of blood cell gene expression. In addition, we present evidence that prediabetes might lead to perturbations in mitochondrial control.
Collapse
Affiliation(s)
- Jaakko Laaksonen
- Department of Clinical Chemistry, Fimlab Laboratories and Finnish Cardiovascular Research Center Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Ilkka Seppälä
- Department of Clinical Chemistry, Fimlab Laboratories and Finnish Cardiovascular Research Center Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Emma Raitoharju
- Department of Clinical Chemistry, Fimlab Laboratories and Finnish Cardiovascular Research Center Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Nina Mononen
- Department of Clinical Chemistry, Fimlab Laboratories and Finnish Cardiovascular Research Center Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Leo-Pekka Lyytikäinen
- Department of Clinical Chemistry, Fimlab Laboratories and Finnish Cardiovascular Research Center Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Melanie Waldenberger
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany.,Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Thomas Illig
- Hannover Unified Biobank, Hannover Medical School, Hannover Germany.,Institute for Human Genetics, Hannover Medical School, Hannover, Germany
| | - Maija Lepistö
- Institute for Molecular Medicine (FIMM), University of Helsinki, Helsinki, Finland
| | - Henrikki Almusa
- Institute for Molecular Medicine (FIMM), University of Helsinki, Helsinki, Finland
| | - Pekka Ellonen
- Institute for Molecular Medicine (FIMM), University of Helsinki, Helsinki, Finland
| | - Nina Hutri-Kähönen
- Department of Pediatrics, Tampere University Hospital and Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Markus Juonala
- Department of Medicine, University of Turku, Turku, Finland.,Division of Medicine, Turku University Hospital, Turku, Finland.,Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | - Mika Kähönen
- Department of Clinical Physiology, Tampere University Hospital and Finnish Cardiovascular Research Center Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Olli Raitakari
- Department of Clinical Physiology and Nuclear Medicine, University of Turku and Turku University Hospital, Turku, Finland.,Research Centre for Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland
| | - Jukka T Salonen
- Department of Public Health, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,MAS-Metabolic Analytical Services Oy, Helsinki, Finland
| | - Terho Lehtimäki
- Department of Clinical Chemistry, Fimlab Laboratories and Finnish Cardiovascular Research Center Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| |
Collapse
|
16
|
Hulgan T, Ramsey BS, Koethe JR, Samuels DC, Gerschenson M, Libutti DE, Sax PE, Daar ES, McComsey GA, Brown TT. Relationships Between Adipose Mitochondrial Function, Serum Adiponectin, and Insulin Resistance in Persons With HIV After 96 Weeks of Antiretroviral Therapy. J Acquir Immune Defic Syndr 2019; 80:358-366. [PMID: 30531304 PMCID: PMC6375746 DOI: 10.1097/qai.0000000000001926] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Some antiretroviral therapy (ART) and HIV itself confer metabolic risk, perhaps through altered mitochondrial function and adipokines. In AIDS Clinical Trials Group study A5224s, adipose mitochondrial DNA (mtDNA) levels decreased on ART, and electron transport chain complex I (CI) and complex IV (CIV) activity decreased. Another study found decreased serum adiponectin on ART with mtDNA mutation m.10398A>G. We hypothesized that decreased adipose tissue mitochondrial function would be associated with lower adiponectin and insulin sensitivity on ART, and m.10398G would influence these changes. DESIGN Retrospective analysis of an ART-naive substudy population from A5224s. METHODS Analyses included adipose mtDNA levels, CI and CIV activity by immunoassay, visceral adipose tissue by computed tomography, and fasting serum glucose at week 0 and week 96 of ART. Fasting insulin and adiponectin were measured from cryopreserved serum using multiplex bead array. Homeostasis model assessment-2 (HOMA2)-IR and HOMA2-%B estimated insulin resistance and β-cell function, respectively. The m.10398A>G mtDNA variant was available from existing genetic data. RESULTS Thirty-seven participants had adipose biopsies at week 0 and week 96. Percent decreases in CIV activity and adiponectin were correlated (Spearman rho 0.41; P = 0.01); this association persisted after controlling for age, sex, body mass index, or visceral adipose tissue in single-covariate regression. HOMA2-IR correlated with decreased CIV (-0.44; P = 0.01) and CI (-0.34; P = 0.05) activity. Among 12 non-Hispanic white persons, m.10398G was associated with decreased adiponectin (P = 0.04). CONCLUSIONS Decreased adipose mitochondrial activity correlated with changes in adiponectin and glucose homeostasis on ART. Previous findings that a mtDNA mutation modulates adiponectin levels in persons with HIV were replicated.
Collapse
Affiliation(s)
- Todd Hulgan
- Vanderbilt University Medical Center, Nashville, TN
- Vanderbilt University School of Medicine, Nashville, TN
| | - Benjamin S Ramsey
- University of South Carolina School of Medicine Greenville, Greenville, SC
| | - John R Koethe
- Vanderbilt University Medical Center, Nashville, TN
- Vanderbilt University School of Medicine, Nashville, TN
| | | | | | - Daniel E Libutti
- John A. Burns School of Medicine, University of Hawaii-Manoa, Honolulu, HI
| | - Paul E Sax
- Harvard University, Brigham and Women's Hospital, Boston, MA
| | - Eric S Daar
- David Geffen School of Medicine at UCLA, Los Angeles Biomedical Research Institute, Harbor-UCLA Medical Center, Los Angeles, CA
| | - Grace A McComsey
- University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, OH
| | | |
Collapse
|
17
|
Pinti MV, Fink GK, Hathaway QA, Durr AJ, Kunovac A, Hollander JM. Mitochondrial dysfunction in type 2 diabetes mellitus: an organ-based analysis. Am J Physiol Endocrinol Metab 2019; 316:E268-E285. [PMID: 30601700 PMCID: PMC6397358 DOI: 10.1152/ajpendo.00314.2018] [Citation(s) in RCA: 246] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 11/27/2018] [Accepted: 12/19/2018] [Indexed: 12/20/2022]
Abstract
Type 2 diabetes mellitus (T2DM) is a systemic disease characterized by hyperglycemia, hyperlipidemia, and organismic insulin resistance. This pathological shift in both circulating fuel levels and energy substrate utilization by central and peripheral tissues contributes to mitochondrial dysfunction across organ systems. The mitochondrion lies at the intersection of critical cellular pathways such as energy substrate metabolism, reactive oxygen species (ROS) generation, and apoptosis. It is the disequilibrium of these processes in T2DM that results in downstream deficits in vital functions, including hepatocyte metabolism, cardiac output, skeletal muscle contraction, β-cell insulin production, and neuronal health. Although mitochondria are known to be susceptible to a variety of genetic and environmental insults, the accumulation of mitochondrial DNA (mtDNA) mutations and mtDNA copy number depletion is helping to explain the prevalence of mitochondrial-related diseases such as T2DM. Recent work has uncovered novel mitochondrial biology implicated in disease progressions such as mtDNA heteroplasmy, noncoding RNA (ncRNA), epigenetic modification of the mitochondrial genome, and epitranscriptomic regulation of the mtDNA-encoded mitochondrial transcriptome. The goal of this review is to highlight mitochondrial dysfunction observed throughout major organ systems in the context of T2DM and to present new ideas for future research directions based on novel experimental and technological innovations in mitochondrial biology. Finally, the field of mitochondria-targeted therapeutics is discussed, with an emphasis on novel therapeutic strategies to restore mitochondrial homeostasis in the setting of T2DM.
Collapse
Affiliation(s)
- Mark V Pinti
- Division of Exercise Physiology, West Virginia University School of Medicine , Morgantown, West Virginia
- Mitochondria, Metabolism, and Bioenergetics Working Group, West Virginia University School of Medicine , Morgantown, West Virginia
- West Virginia University School of Pharmacy , Morgantown, West Virginia
| | - Garrett K Fink
- Division of Exercise Physiology, West Virginia University School of Medicine , Morgantown, West Virginia
| | - Quincy A Hathaway
- Division of Exercise Physiology, West Virginia University School of Medicine , Morgantown, West Virginia
- Mitochondria, Metabolism, and Bioenergetics Working Group, West Virginia University School of Medicine , Morgantown, West Virginia
- Toxicology Working Group, West Virginia University School of Medicine , Morgantown, West Virginia
| | - Andrya J Durr
- Division of Exercise Physiology, West Virginia University School of Medicine , Morgantown, West Virginia
- Mitochondria, Metabolism, and Bioenergetics Working Group, West Virginia University School of Medicine , Morgantown, West Virginia
| | - Amina Kunovac
- Division of Exercise Physiology, West Virginia University School of Medicine , Morgantown, West Virginia
- Mitochondria, Metabolism, and Bioenergetics Working Group, West Virginia University School of Medicine , Morgantown, West Virginia
| | - John M Hollander
- Division of Exercise Physiology, West Virginia University School of Medicine , Morgantown, West Virginia
- Mitochondria, Metabolism, and Bioenergetics Working Group, West Virginia University School of Medicine , Morgantown, West Virginia
| |
Collapse
|
18
|
Koo BS, Song Y, Lee S, Sung Y, Shin K, Cho NH, Jun J. Association of Asian mitochondrial DNA haplogroup B with new development of knee osteoarthritis in Koreans. Int J Rheum Dis 2018; 22:411-416. [DOI: 10.1111/1756-185x.13453] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 10/12/2018] [Accepted: 11/08/2018] [Indexed: 01/18/2023]
Affiliation(s)
- Bon San Koo
- Department of Internal Medicine, Inje University College of Medicine Inje University Seoul Paik Hospital Seoul Korea
| | - Yoonah Song
- Department of Radiology Hanyang University Hospital for Rheumatic Diseases Seoul Korea
| | - Seunghun Lee
- Department of Radiology Hanyang University Hospital for Rheumatic Diseases Seoul Korea
| | - Yoon‐Kyoung Sung
- Department of Rheumatology Hanyang University Hospital for Rheumatic Diseases Seoul Korea
| | - Kyoung‐Jin Shin
- Department of Forensic Medicine, College of Medicine Yonsei University Seoul Korea
| | - Nam H. Cho
- Department of Preventive Medicine Ajou University School of Medicine Suwon Korea
| | - Jae‐Bum Jun
- Department of Rheumatology Hanyang University Hospital for Rheumatic Diseases Seoul Korea
| |
Collapse
|
19
|
Diaz-Morales N, Lopez-Domenech S, Iannantuoni F, Lopez-Gallardo E, Sola E, Morillas C, Rocha M, Ruiz-Pesini E, Victor VM. Mitochondrial DNA Haplogroup JT is Related to Impaired Glycaemic Control and Renal Function in Type 2 Diabetic Patients. J Clin Med 2018; 7:jcm7080220. [PMID: 30115863 PMCID: PMC6111716 DOI: 10.3390/jcm7080220] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 08/13/2018] [Accepted: 08/14/2018] [Indexed: 12/25/2022] Open
Abstract
The association between mitochondrial DNA (mtDNA) haplogroup and risk of type 2 diabetes (T2D) is undetermined and controversial. This study aims to evaluate the impact of the main mtDNA haplogroups on glycaemic control and renal function in a Spanish population of 303 T2D patients and 153 healthy controls. Anthropometrical and metabolic parameters were assessed and mtDNA haplogroup was determined in each individual. Distribution of the different haplogroups was similar in diabetic and healthy populations and, as expected, T2D patients showed poorer glycaemic control and renal function than controls. T2D patients belonging to the JT haplogroup (polymorphism m.4216T>C) displayed statistically significant higher levels of fasting glucose and HbA1c than those of the other haplogroups, suggesting a poorer glycaemic control. Furthermore, diabetic patients with the JT haplogroup showed a worse kidney function than those with other haplogroups, evident by higher levels of serum creatinine, lower estimated glomerular filtration rate (eGFR), and slightly higher (although not statistically significant) urinary albumin-to-creatinine ratio. Our results suggest that JT haplogroup (in particular, change at position 4216 of the mtDNA) is associated with poorer glycaemic control in T2D, which can trigger the development of diabetic nephropathy.
Collapse
Affiliation(s)
- Noelia Diaz-Morales
- Service of Endocrinology, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), 46017 Valencia, Spain.
| | - Sandra Lopez-Domenech
- Service of Endocrinology, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), 46017 Valencia, Spain.
| | - Francesca Iannantuoni
- Service of Endocrinology, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), 46017 Valencia, Spain.
| | - Ester Lopez-Gallardo
- Department of Biochemistry and Molecular and Cell Biology, University of Zaragoza, 50013 Zaragoza, Spain.
- Instituto de Investigación Sanitaria de Aragón (IIS Aragón), 50013 Zaragoza, Spain.
- Centro de Investigaciones Biomédicas En Red de Enfermedades Raras (CIBERER), 50013 Zaragoza, Spain.
| | - Eva Sola
- Service of Endocrinology, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), 46017 Valencia, Spain.
| | - Carlos Morillas
- Service of Endocrinology, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), 46017 Valencia, Spain.
| | - Milagros Rocha
- Service of Endocrinology, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), 46017 Valencia, Spain.
- CIBERehd-Department of Pharmacology and Physiology, University of Valencia, 46010 Valencia, Spain.
| | - Eduardo Ruiz-Pesini
- Department of Biochemistry and Molecular and Cell Biology, University of Zaragoza, 50013 Zaragoza, Spain.
- Instituto de Investigación Sanitaria de Aragón (IIS Aragón), 50013 Zaragoza, Spain.
- Centro de Investigaciones Biomédicas En Red de Enfermedades Raras (CIBERER), 50013 Zaragoza, Spain.
- Fundación ARAID, 50018 Zaragoza, Spain.
| | - Victor M Victor
- Service of Endocrinology, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), 46017 Valencia, Spain.
- CIBERehd-Department of Pharmacology and Physiology, University of Valencia, 46010 Valencia, Spain.
| |
Collapse
|
20
|
Meta-analysis of mitochondrial T16189C polymorphism for cancer and Type 2 diabetes risk. Clin Chim Acta 2018; 482:136-143. [PMID: 29627487 DOI: 10.1016/j.cca.2018.03.041] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 03/30/2018] [Accepted: 03/30/2018] [Indexed: 11/23/2022]
Abstract
AIM Whereas many previous studies have revealed that mitochondrial DNA (mtDNA) polymorphism T16189C is associated with the risk of cancer and Type 2 diabetes mellitus (T2DM), there are others that have disputed the same. As a result, clarity on the role of mitochondrial T16189C in these disorders is missing. The aim of this study is to evaluate the association of T16189C polymorphism with the risk of cancer and T2DM development by pooling all case-control studies available. METHODS Published studies till November 2017 were searched from PubMed, Google scholar, Google and EMBASE and isolated a total of 36 studies having 44,203 subjects (20,439 cases and 23,764 controls) based on strict inclusion and exclusion criteria. We used the statistical software "R" to calculate the Pooled Odds Ratios and 95% confidence intervals to evaluate the association of T16189C polymorphism with a possible risk towards cancer and T2DM development. RESULT From the meta-analysis, we obtained Pooled Odds Ratios using Random effect model for cancer (OR: 1.20, 95% CI: 0.96-1.49, P = 0.104) and for T2DM (OR: 1.22, 95% CI: 1.09-1.36, P = 0.0004). In the subgroup analysis with Random effect model, we found that both Asians and Caucasians were at a statistically significant risk (OR: 1.25, P < 0.0001 and OR: 1.20, P < 0.0001, respectively) for the development of T2DM, whereas, a statistically non-significant risk (OR: 1.28 P = 0.1965 and OR: 1.16, P = 0.1148) emerged for the development of cancer. There was no evidence of a significant publication bias (Egger's and Begg's test) in this meta-analysis. Further sensitivity analysis also demonstrated that our meta-analysis was relatively stable and credible. CONCLUSION Individuals with 'C' allele at position 16,189 within the mitochondrial D-loop are seemingly at a higher risk of developing T2DM and cancer. However, before arriving at generalizations, it would be pertinent to conduct similar studies in different populations with larger numbers to corroborate these results, especially in cancer.
Collapse
|
21
|
Gosling AL, Boocock J, Dalbeth N, Harré Hindmarsh J, Stamp LK, Stahl EA, Choi HK, Matisoo-Smith EA, Merriman TR. Mitochondrial genetic variation and gout in Māori and Pacific people living in Aotearoa New Zealand. Ann Rheum Dis 2018; 77:571-578. [PMID: 29247128 DOI: 10.1136/annrheumdis-2017-212416] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 11/22/2017] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Mitochondria have an important role in the induction of the NLRP3 inflammasome response central in gout. The objective was to test whether mitochondrial genetic variation and copy number in New Zealand Māori and Pacific (Polynesian) people in Aotearoa New Zealand associate with susceptibility to gout. METHODS 437 whole mitochondrial genomes from Māori and Pacific people (predominantly men) from Aotearoa New Zealand (327 people with gout, 110 without gout) were sequenced. Mitochondrial DNA copy number variation was determined by assessing relative read depth using data produced from whole genome sequencing (32 cases, 43 controls) and targeted resequencing of urate loci (151 cases, 222 controls). Quantitative PCR was undertaken for replication of copy number findings in an extended sample set of 1159 Māori and Pacific men and women (612 cases, 547 controls). RESULTS There was relatively little mitochondrial genetic diversity, with around 96% of those sequenced in this study belonging to the B4a1a and derived sublineages. A B haplogroup heteroplasmy in hypervariable region I was found to associate with a higher risk of gout among the mitochondrial sequenced sample set (position 16181: OR=1.57, P=0.001). Increased copies of mitochondrial DNA were found to protect against gout risk with the effect being consistent when using hyperuricaemic controls across each of the three independent sample sets (OR=0.89, P=0.007; OR=0.90, P=0.002; OR=0.76, P=0.03). Paradoxically, an increase of mitochondrial DNA also associated with an increase in gout flare frequency in people with gout in the two larger sample sets used for the copy number analysis (β=0.003, P=7.1×10-7; β=0.08, P=1.2×10-4). CONCLUSION Association of reduced copy number with gout in hyperuricaemia was replicated over three Polynesian sample sets. Our data are consistent with emerging research showing that mitochondria are important for the colocalisation of the NLRP3 and ASC inflammasome subunits, a process essential for the generation of interleukin-1β in gout.
Collapse
Affiliation(s)
- Anna L Gosling
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - James Boocock
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - Nicola Dalbeth
- Department of Medicine, University of Auckland, Auckland, New Zealand
| | | | - Lisa K Stamp
- Department of Medicine, University of Otago, Christchurch, New Zealand
| | - Eli A Stahl
- Department of Psychiatry, Mount Sinai School of Medicine, New York, New York, USA
| | - Hyon K Choi
- Section of Rheumatology and Clinical Epidemiology Unit, Boston University School of Medicine, Boston, Massachusetts, USA
| | | | - Tony R Merriman
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| |
Collapse
|
22
|
Mitochondrial T16189C Polymorphism Is Associated with Metabolic Syndrome in the Mexican Population. DISEASE MARKERS 2018; 2018:3981315. [PMID: 29765483 PMCID: PMC5889888 DOI: 10.1155/2018/3981315] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Accepted: 02/11/2018] [Indexed: 01/02/2023]
Abstract
Genetic factors, such as the mitochondrial DNA (mtDNA) T16189C polymorphism, have been associated with metabolic syndrome (MetS), but this association has not been studied in Mexico to date. The aim of the present study was to determine whether this polymorphism contributes to MetS in the Mexican population. We recruited 100 unrelated volunteer subjects who were divided into 2 groups: with MetS (MetS group) and without MetS (control group). All subjects were genotyped for the mtDNA T16189C polymorphism by polymerase chain reaction and sequencing. The mitochondrial T16189C polymorphism was detected in 24 (24%) of 100 subjects analyzed. The frequency of the mtDNA T16189C polymorphism was higher in the MetS group with 21 (32.3%) of 65 testing positive compared to 3 (8.5%) of 35 in the control group, indicating that this polymorphism is a probable risk factor for MetS in the Mexican population (odds ratio 5.0909, 95% CI 1.3977–18.5424, P = 0.0136). Our results may contribute to early diagnosis of MetS, which is essential for establishing changes in early stages of the disease to avoid further complications and pathologies, thereby preventing the development of type 2 diabetes and cardiovascular disease in Mexico.
Collapse
|
23
|
Mendrick DL, Diehl AM, Topor LS, Dietert RR, Will Y, La Merrill MA, Bouret S, Varma V, Hastings KL, Schug TT, Emeigh Hart SG, Burleson FG. Metabolic Syndrome and Associated Diseases: From the Bench to the Clinic. Toxicol Sci 2018; 162:36-42. [PMID: 29106690 PMCID: PMC6256950 DOI: 10.1093/toxsci/kfx233] [Citation(s) in RCA: 142] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Metabolic Syndrome and Associated Diseases: From the Bench to the Clinic, a Society of Toxicology Contemporary Concepts in Toxicology (CCT) workshop was held on March 11, 2017. The meeting was convened to raise awareness of metabolic syndrome and its associated diseases and serve as a melting pot with scientists of multiple disciplines (eg, toxicologists, clinicians, regulators) so as to spur research and understanding of this condition. The criteria for metabolic syndrome include obesity, dyslipidemia (low high-density lipoprotein and/or elevated triglycerides), elevated blood pressure, and alterations in glucose metabolism. It can lead to a greater potential of type 2 diabetes, lipid disorders, cardiovascular disease, hepatic steatosis, and other circulatory disorders. Although there are no approved drugs specifically for this syndrome, many drugs target diseases associated with this syndrome thus potentially increasing the likelihood of drug-drug interactions. There is currently significant research focusing on understanding the key pathways that control metabolism, which would be likely targets of risk factors (eg, exposure to xenobiotics, genetics) and lifestyle factors (eg, microbiome, nutrition, and exercise) that contribute to metabolic syndrome. Understanding these pathways could also lead to the development of pharmaceutical interventions. As individuals with metabolic syndrome have signs similar to that of toxic responses (eg, oxidative stress and inflammation) and organ dysfunction, these alterations should be taken into account in drug development. With the increasing frequency of metabolic syndrome in the general population, the idea of a "normal" individual may need to be redefined. This paper reports on the substance and outcomes of this workshop.
Collapse
Affiliation(s)
- Donna L Mendrick
- Regulatory Activities, National Center for Toxicological Research, Food and Drug Administration, Silver Spring, Maryland 20993
| | - Anna Mae Diehl
- Division of Gastroenterology, Department of Medicine, Duke University School of Medicine, Durham, North Carolina 27710
| | - Lisa S Topor
- The Warren Alpert Medical School of Brown University; Pediatric Endocrinology Rhode Island Hospital Providence, Rhode Island 02903
| | - Rodney R Dietert
- Department of Microbiology and Immunology, Cornell University College of Veterinary Medicine, Ithaca, New York 14853
| | - Yvonne Will
- Drug Safety Research and Development, Pfizer, Groton, Connecticut 06340
| | - Michele A La Merrill
- Department of Environmental Toxicology, University of California at Davis, Davis, California 95616
| | - Sebastien Bouret
- Kerk School of Medicine, University of Southern California, Los Angeles, California 90027 and Jean-Pierre Aubert Research Center, Jean-Pierre Aubert Research Center, Lille, France
| | - Vijayalaskshmi Varma
- Division of Systems Biology, National Center for Toxicological Research, Food and Drug Administration, Jefferson, Arkansas 72079
| | | | - Thaddeus T Schug
- Division of Extramural Research, National Institute of Environmental Health Sciences, Durham, North Carolina 27709
| | - Susan G Emeigh Hart
- Experimental Pathology, Boehringer Ingelheim Pharmaceuticals Inc, Ridgefield, Connecticut 06877
| | | |
Collapse
|
24
|
Kwak SH, Park KS. Pathophysiology of Type 2 Diabetes in Koreans. Endocrinol Metab (Seoul) 2018; 33:9-16. [PMID: 29589384 PMCID: PMC5874201 DOI: 10.3803/enm.2018.33.1.9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 02/26/2018] [Accepted: 03/06/2018] [Indexed: 01/09/2023] Open
Abstract
The pathophysiology of type 2 diabetes is characterized by variable degrees of insulin resistance and impaired insulin secretion. Both genetic and environmental factors serve as etiologic factors. Recent genetic studies have identified at least 83 variants associated with diabetes. A significant number of these loci are thought to be involved in insulin secretion, either through β-cell development or β-cell dysfunction. Environmental factors have changed rapidly during the past half century, and the increased prevalence of obesity and diabetes can be attributed to these changes. Environmental factors may affect epigenetic changes and alter susceptibility to diabetes. A recent epidemiologic study revealed that Korean patients with type 2 diabetes already had impaired insulin secretion and insulin resistance 10 years before the onset of diabetes. Those who developed diabetes showed impaired β-cell compensation with an abrupt decrease in insulin secretion during the last 2 years before diabetes developed. The retrograde trajectory of the disposition index differed according to the baseline subgroups of insulin secretion and insulin sensitivity. We hope that obtaining a more detailed understanding of the perturbations in the major pathophysiologic process of diabetes on the individual level will eventually lead to the implementation of precision medicine and improved patient outcomes.
Collapse
Affiliation(s)
- Soo Heon Kwak
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
| | - Kyong Soo Park
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Korea.
| |
Collapse
|
25
|
Alexandar SP, Dhinakaran I, Ravi V, Parthasarathy N, Ganesan S, Bhaskaran M, Arun Kumar GP. Meta-Analysis of Association of Mitochondrial DNA Mutations with Type 2 Diabetes and Gestational Diabetes Mellitus. INT J HUM GENET 2018. [DOI: 10.1080/09723757.2018.1430110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Soundarya Priya Alexandar
- Human Genomics Laboratory, School of Chemical & Biotechnology, SASTRA University Thanjavur, Thanjavur 613 401, Tamil Nadu, India
| | - Indhumathi Dhinakaran
- Human Genomics Laboratory, School of Chemical & Biotechnology, SASTRA University Thanjavur, Thanjavur 613 401, Tamil Nadu, India
| | - Vidhya Ravi
- K.A.P. Viswanatham Govt. Medical College, Trichy, 620 001, Tamil Nadu, India
| | - Nandhini Parthasarathy
- Human Genomics Laboratory, School of Chemical & Biotechnology, SASTRA University Thanjavur, Thanjavur 613 401, Tamil Nadu, India
| | - Somasundari Ganesan
- Human Genomics Laboratory, School of Chemical & Biotechnology, SASTRA University Thanjavur, Thanjavur 613 401, Tamil Nadu, India
| | - Muthumeenakshi Bhaskaran
- Human Genomics Laboratory, School of Chemical & Biotechnology, SASTRA University Thanjavur, Thanjavur 613 401, Tamil Nadu, India
| | - Ganesh Prasad Arun Kumar
- Human Genomics Laboratory, School of Chemical & Biotechnology, SASTRA University Thanjavur, Thanjavur 613 401, Tamil Nadu, India
| |
Collapse
|
26
|
Thyagarajan B, Guan W, Fedirko V, Barcelo H, Ramasubramaian R, Gross M, Goodman M, Bostick RM. Associations of mitochondrial polymorphisms with sporadic colorectal adenoma. Mol Carcinog 2018; 57:598-605. [PMID: 29323753 DOI: 10.1002/mc.22783] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 01/09/2018] [Indexed: 11/12/2022]
Abstract
Somatic mutations in mitochondrial DNA have been reported in colorectal adenomatous polyps (adenomas), the precursors to most colorectal cancers. However, there are no reports of associations of germline variation in mitochondrial DNA with adenoma risk. We investigated associations of germline polymorphisms in the displacement loop (D-loop) and non-D-loop region of the mitochondrial genome with incident, sporadic colorectal adenoma in three pooled colonoscopy-based case-control studies (n = 327 adenoma cases, 420 controls) that used identical methods for case and risk factor ascertainment. We sequenced a 1124 bp fragment to identify all genetic variation in the mitochondrial D-loop region, and used the Sequenom platform to genotype 64 tagSNPs in the non-D-loop region. We used multivariable unconditional logistic regression to estimate associations of the polymorphisms with adenoma. The odds ratios (OR) for associations of four polymorphisms in the HV1 region (mt16294, mt16296, mt16278, mt16069) with adenoma were 2.30, 2.63, 3.34, and 0.56, respectively; all 95% confidence intervals (CI) excluded 1.0, however, after correction for multiple comparisons, none of the findings remained statistically significant. Similar results were found for six polymorphisms in the non-D-loop region. In the HV1 region poly C tract, relative to those with 5 repeats, the ORs for those with fewer or more repeats were, respectively, 2.29 (95%CI 1.07-4.89) and 0.63 (95%CI 0.36-1.08), but repeat numbers in the HV2 region were not associated with adenoma. These findings suggest that mitochondrial D-loop HV1 region polymorphisms may be associated with colorectal adenoma risk and support further investigation.
Collapse
Affiliation(s)
- Bharat Thyagarajan
- Department of Laboratory Medicine and Pathology, Medical School, University of Minnesota, Minneapolis, Minnesota
| | - Weihua Guan
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota
| | - Veronika Fedirko
- Department of Epidemiology, Rollins School of Public Health, Winship Cancer Institute, Emory University, Atlanta, Georgia
| | - Helene Barcelo
- Department of Laboratory Medicine and Pathology, Medical School, University of Minnesota, Minneapolis, Minnesota
| | - Ramya Ramasubramaian
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, Minnesota
| | - Myron Gross
- Department of Laboratory Medicine and Pathology, Medical School, University of Minnesota, Minneapolis, Minnesota
| | - Michael Goodman
- Department of Epidemiology, Rollins School of Public Health, Winship Cancer Institute, Emory University, Atlanta, Georgia
| | - Roberd M Bostick
- Department of Epidemiology, Rollins School of Public Health, Winship Cancer Institute, Emory University, Atlanta, Georgia
| |
Collapse
|
27
|
Kim JT, Lee HK. Childhood obesity and endocrine disrupting chemicals. Ann Pediatr Endocrinol Metab 2017; 22:219-225. [PMID: 29301181 PMCID: PMC5769835 DOI: 10.6065/apem.2017.22.4.219] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 09/26/2017] [Accepted: 10/12/2017] [Indexed: 01/07/2023] Open
Abstract
The prevalence of obesity around the world has increased sharply. Strong evidence has emerged over the last decades that human exposure to numerous endocrine disrupting chemicals (EDCs) is the cause of obesity and obesity-related metabolic diseases. Many EDCs are manmade chemicals that are released into the environment. EDCs are exogenous compounds that interfere with hormonal regulation and normal endocrine systems, thereby affecting the health of animals and humans. The number of chemicals belonging to EDCs is increasing and some of them are very stable; they persist in the environment (persistent organic pollutants). Although they are banned, their concentrations have been continuously increasing over time. This review gives a brief introduction to common EDCs, and evidence of harmful effects of EDCs on obesity-related diseases; we focus in particular on EDCs' role in causing mitochondrial dysfunction.
Collapse
Affiliation(s)
- Jin Taek Kim
- Department of Internal Medicine, Eulji General Hospital, Eulji University School of Medicine, Seoul, Korea
| | - Hong Kyu Lee
- Department of Internal Medicine, Eulji General Hospital, Eulji University School of Medicine, Seoul, Korea
| |
Collapse
|
28
|
Kumar B, Bhat ZI, Bansal S, Saini S, Naseem A, Wahabi K, Burman A, Kumar GT, Saluja SS, Rizvi MMA. Association of mitochondrial copy number variation and T16189C polymorphism with colorectal cancer in North Indian population. Tumour Biol 2017; 39:1010428317740296. [PMID: 29182103 DOI: 10.1177/1010428317740296] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Globally, colorectal cancer is the third most common type of cancer. Genetic instability leading to cancer development is one of the major causes for development of cancer. Alterations in mitochondrial genome, that is, mutations, single-nucleotide polymorphisms, and copy number variations are known to contribute in cancer development. The aim of our study was to investigate association of mitochondrial T16189C polymorphism and copy number variation with colorectal cancer in North Indian population. DNA isolated from peripheral blood of 126 colorectal cancer patients and 114 healthy North Indian subjects was analyzed for T16189C polymorphism and half of them for mitochondrial copy number variation. Genotyping was done using polymerase chain reaction-restriction fragment length polymorphism, and copy number variation was estimated using real-time polymerase chain reaction, numbers of mitochondrial copies and found to be significantly higher in colorectal cancer patients than healthy controls (88 (58-154), p = 0.001). In the regression analysis, increased mitochondrial copy number variation was associated with risk of colorectal cancer (odds ratio = 2.885, 95% confidence interval = 1.3-6.358). However, T16189C polymorphism was found to be significantly associated with the risk of rectal cancer (odds ratio = 5.213, p = 0.001) and non-significantly with colon cancer (odds ratio = 0.867, p = 0.791). Also, false-positive report probability analysis was done to validate the significant findings. Our results here indicate that mitochondrial copy number variation may be playing an important role in the development of colorectal cancer, and detection of mitochondrial copy number variation can be used as a biomarker for predicting the risk of colorectal cancer in North Indian subjects.
Collapse
Affiliation(s)
- Bhupender Kumar
- 1 Department of Biochemistry, Institute of Home Economics, University of Delhi, New Delhi, India
| | - Zafar Iqbal Bhat
- 2 Genome Biology Laboratory, Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | - Savita Bansal
- 1 Department of Biochemistry, Institute of Home Economics, University of Delhi, New Delhi, India
| | - Sunil Saini
- 3 School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Afreen Naseem
- 2 Genome Biology Laboratory, Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | - Khushnuma Wahabi
- 2 Genome Biology Laboratory, Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | - Archana Burman
- 1 Department of Biochemistry, Institute of Home Economics, University of Delhi, New Delhi, India
| | - Geeta Trilok Kumar
- 1 Department of Biochemistry, Institute of Home Economics, University of Delhi, New Delhi, India
| | - Sundeep Singh Saluja
- 4 Department of Gastrointestinal Surgery, Govind Ballabh Pant Hospital and Maulana Azad Medical College, New Delhi, India
| | - M Moshahid Alam Rizvi
- 2 Genome Biology Laboratory, Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
29
|
Abate N, Chandalia M. Risk of Obesity-Related Cardiometabolic Complications in Special Populations: A Crisis in Asians. Gastroenterology 2017; 152:1647-1655. [PMID: 28192110 DOI: 10.1053/j.gastro.2017.01.046] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 01/12/2017] [Accepted: 01/13/2017] [Indexed: 02/07/2023]
Abstract
The prospect of a significant increase in global health-related costs associated with high cardiometabolic complications of obesity in Asians has encouraged more attention to be focused on the problem of growing obesity prevalence in these populations. Although these studies have shown that cardiometabolic complications occur more frequently and at a lower body mass index (BMI) in Asians than in European populations, the mechanisms involved have yet to be discovered. Ethnic/racial differences in body composition and fat distribution have been studied extensively. Although these studies have shown that increasing BMI is associated with larger increases in body fat content in Asians, growing evidence points to factors other than body fat content and fat distribution in determining a higher prevalence of cardiometabolic complications in these populations. Here, we provide support to our view that earlier onset of adipocyte maturation arrest/insulin resistance during weight gain could be a major factor in increasing the cardiometabolic risk of Asian populations at a lower BMI.
Collapse
Affiliation(s)
- Nicola Abate
- Division of Endocrinology, Department of Internal Medicine, University of Texas Medical Branch, Galveston.
| | | |
Collapse
|
30
|
Cisplatin selects short forms of the mitochondrial DNA OriB variant (16184-16193 poly-cytosine tract), which confer resistance to cisplatin. Sci Rep 2017; 7:46240. [PMID: 28393913 PMCID: PMC5385546 DOI: 10.1038/srep46240] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 03/14/2017] [Indexed: 11/09/2022] Open
Abstract
A number of alternations in mitochondrial DNA (mtDNA) have been reported in different types of cancers, and the role of mtDNA in cancer has been attracting increasing interest. In order to investigate the relationship between mtDNA alternations and chemosensitivity, we constructed cybrid (trans-mitochondrial hybrid) cell lines carrying a HeLa nucleus and the mtDNA of healthy individuals because of the presence of somatic alternations in the mtDNA of many cancer cells. After a treatment with 1.0 μg/mL cisplatin for 10 days, we isolated 100 cisplatin-resistant clones, 70 of which carried the shorter mtDNA OriB variant (16184–16193 poly-cytosine tract), which was located in the control region of mtDNA. Whole mtDNA sequencing of 10 clones revealed no additional alternations. Re-construction of the HeLa nucleus and mtDNA from cisplatin-resistant cells showed that cisplatin resistance was only acquired by mtDNA alternations in the control region, and not by possible alternation(s) in the nuclear genome.
Collapse
|
31
|
Falah M, Farhadi M, Kamrava SK, Mahmoudian S, Daneshi A, Balali M, Asghari A, Houshmand M. Association of genetic variations in the mitochondrial DNA control region with presbycusis. Clin Interv Aging 2017; 12:459-465. [PMID: 28424544 PMCID: PMC5344408 DOI: 10.2147/cia.s123278] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Background The prominent role of mitochondria in the generation of reactive oxygen species, cell death, and energy production contributes to the importance of this organelle in the intracellular mechanism underlying the progression of the common sensory disorder of the elderly, presbycusis. Reduced mitochondrial DNA (mtDNA) gene expression and coding region variation have frequently been reported as being associated with the development of presbycusis. The mtDNA control region regulates gene expression and replication of the genome of this organelle. To comprehensively understand of the role of mitochondria in the progression of presbycusis, we compared variations in the mtDNA control region between subjects with presbycusis and controls. Methods A total of 58 presbycusis patients and 220 control subjects were enrolled in the study after examination by the otolaryngologist and audiology tests. Variations in the mtDNA control region were investigated by polymerase chain reaction and Sanger sequencing. Results A total of 113 sequence variants were observed in mtDNA, and variants were detected in 100% of patients, with 84% located in hypervariable regions. The frequencies of the variants, 16,223 C>T, 16,311 T>C, 16,249 T>C, and 15,954 A>C, were significantly different between presbycusis and control subjects. Conclusion The statistically significant difference in the frequencies of four nucleotide variants in the mtDNA control region of presbycusis patients and controls is in agreement with previous experimental evidence and supports the role of mitochondria in the intracellular mechanism underlying presbycusis development. Moreover, these variants have potential as diagnostic markers for individuals at a high risk of developing presbycusis. The data also suggest the possible presence of changes in the mtDNA control region in presbycusis, which could alter regulatory factor binding sites and influence mtDNA gene expression and copy number.
Collapse
Affiliation(s)
- Masoumeh Falah
- ENT and Head & Neck Research Center and Department, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Farhadi
- ENT and Head & Neck Research Center and Department, Iran University of Medical Sciences, Tehran, Iran
| | - Seyed Kamran Kamrava
- ENT and Head & Neck Research Center and Department, Iran University of Medical Sciences, Tehran, Iran
| | - Saeid Mahmoudian
- ENT and Head & Neck Research Center and Department, Iran University of Medical Sciences, Tehran, Iran
| | - Ahmad Daneshi
- ENT and Head & Neck Research Center and Department, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Balali
- ENT and Head & Neck Research Center and Department, Iran University of Medical Sciences, Tehran, Iran
| | - Alimohamad Asghari
- Skull Base Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Massoud Houshmand
- ENT and Head & Neck Research Center and Department, Iran University of Medical Sciences, Tehran, Iran.,Department of Medical Genetics, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| |
Collapse
|
32
|
MtDNA meta-analysis reveals both phenotype specificity and allele heterogeneity: a model for differential association. Sci Rep 2017; 7:43449. [PMID: 28230165 PMCID: PMC5322532 DOI: 10.1038/srep43449] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 01/23/2017] [Indexed: 12/13/2022] Open
Abstract
Human mtDNA genetic variants have traditionally been considered markers for ancient population migrations. However, during the past three decades, these variants have been associated with altered susceptibility to various phenotypes, thus supporting their importance for human health. Nevertheless, mtDNA disease association has frequently been supported only in certain populations, due either to population stratification or differential epistatic compensations among populations. To partially overcome these obstacles, we performed meta-analysis of the multiple mtDNA association studies conducted until 2016, encompassing 53,975 patients and 63,323 controls. Our findings support the association of mtDNA haplogroups and recurrent variants with specific phenotypes such as Parkinson’s disease, type 2 diabetes, longevity, and breast cancer. Strikingly, our assessment of mtDNA variants’ involvement with multiple phenotypes revealed significant impact for Caucasian haplogroups H, J, and K. Therefore, ancient mtDNA variants could be divided into those that affect specific phenotypes, versus others with a general impact on phenotype combinations. We suggest that the mtDNA could serve as a model for phenotype specificity versus allele heterogeneity.
Collapse
|
33
|
Skuratovskaia D, Sofronova J, Zatolokin P, Vasilenko M, Litvinova L, Mazunin I. The association of the mitochondrial DNA oriB variants with metabolic syndrome. ACTA ACUST UNITED AC 2017; 63:533-538. [DOI: 10.18097/pbmc20176306533] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Different genes are involved in the development of pathology and formation the metabolic syndrome (MS) phenotype. In the literature, there is a data connection to the site oriB polymorphisms of mitochondrial DNA (mtDNA), known as 16184-16193 polycytosine tract, with insulin resistance, type 2 diabetes (T2DM) and other metabolic abnormalities in different ethnic populations. It is supposed that for certain polymorphisms at this site decreases mtDNA copy number in the cells. In this study, we have identified different allelic variants of the mtDNA oriB site in MS patients (n=106) and healthy individuals (n=71) using capillary sequencing, and determined the amount of mtDNA copy blood leukocytes by droplet digital polymerase chain reaction (ddPCR). The continuous polycytosine tract was significantly more common in MS patients, and such a link was particularly strong in MS patients with type 2 diabetes (p<0.01). No significant correlation has been found between mtDNA copy number and the oriB site variants, but in general there is a tendency to decreased mtDNA copy number in MS patients.
Collapse
Affiliation(s)
| | - J.K. Sofronova
- Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| | | | - M.A. Vasilenko
- Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| | - L.S. Litvinova
- Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| | - I.O. Mazunin
- Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| |
Collapse
|
34
|
Charoute H, Kefi R, Bounaceur S, Benrahma H, Reguig A, Kandil M, Rouba H, Bakhchane A, Abdelhak S, Barakat A. Novel variants of mitochondrial DNA associated with Type 2 diabetes mellitus in Moroccan population. Mitochondrial DNA A DNA Mapp Seq Anal 2016; 29:9-13. [PMID: 27728995 DOI: 10.1080/24701394.2016.1233530] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
In this study, we investigated the association of mtDNA variants and haplogroups with Type 2 diabetes (T2D) in Moroccan patients. The Hypervariable Segments 1 of the mtDNA was sequenced in 108 diabetic patients and 97 controls. Association analyses were performed using Fisher's exact test and multivariate logistic regression. The prevalence of five mtDNA variants (C16187T, C16270T, T16172C, A16293G, and C16320T) was significantly higher in cases than in controls. Among these variants, only C16270T (p = .02) and C16320T (p = .03) remains significant after adjusting by age and gender. We showed that C16270T and C16320T variants were strongly associated with increased risk of T2D in Moroccan patients.
Collapse
Affiliation(s)
- Hicham Charoute
- a Institut Pasteur, Human Molecular Genetic Laboratory , Casablanca , Morocco
| | - Rym Kefi
- b Biomedical Genomics and Oncogenetics Laboratory (LR 11 IPT 05) , Institut Pasteur de Tunis, Université de Tunis El Manar , Tunis , Tunisia
| | - Safaa Bounaceur
- a Institut Pasteur, Human Molecular Genetic Laboratory , Casablanca , Morocco
| | - Houda Benrahma
- a Institut Pasteur, Human Molecular Genetic Laboratory , Casablanca , Morocco
| | - Ahmed Reguig
- a Institut Pasteur, Human Molecular Genetic Laboratory , Casablanca , Morocco
| | - Mostafa Kandil
- c Equipe d'Anthropogénétique et Biotechnologies, Faculté des Sciences , Université Chouaïb Doukkali , El Jadida , Morocco
| | - Hassan Rouba
- a Institut Pasteur, Human Molecular Genetic Laboratory , Casablanca , Morocco
| | - Amina Bakhchane
- a Institut Pasteur, Human Molecular Genetic Laboratory , Casablanca , Morocco
| | - Sonia Abdelhak
- b Biomedical Genomics and Oncogenetics Laboratory (LR 11 IPT 05) , Institut Pasteur de Tunis, Université de Tunis El Manar , Tunis , Tunisia
| | - Abdelhamid Barakat
- a Institut Pasteur, Human Molecular Genetic Laboratory , Casablanca , Morocco
| |
Collapse
|
35
|
Muir R, Diot A, Poulton J. Mitochondrial content is central to nuclear gene expression: Profound implications for human health. Bioessays 2016; 38:150-6. [PMID: 26725055 PMCID: PMC4819685 DOI: 10.1002/bies.201500105] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
We review a recent paper in Genome Research by Guantes et al. showing that nuclear gene expression is influenced by the bioenergetic status of the mitochondria. The amount of energy that mitochondria make available for gene expression varies considerably. It depends on: the energetic demands of the tissue; the mitochondrial DNA (mtDNA) mutant load; the number of mitochondria; stressors present in the cell. Hence, when failing mitochondria place the cell in energy crisis there are major effects on gene expression affecting the risk of degenerative diseases, cancer and ageing. In 2015 the UK parliament approved a change in the regulation of IVF techniques, allowing "Mitochondrial replacement therapy" to become a reproductive choice for women at risk of transmitting mitochondrial disease to their children. This is the first time that this technique will be available. Therefore understanding the interaction between mitochondria and the nucleus has never been more important.
Collapse
Affiliation(s)
- Rebecca Muir
- Nuffield Department of Obstetrics and Gynaecology, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Alan Diot
- Nuffield Department of Obstetrics and Gynaecology, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Joanna Poulton
- Nuffield Department of Obstetrics and Gynaecology, University of Oxford, John Radcliffe Hospital, Oxford, UK
| |
Collapse
|
36
|
Golubenko MV, Salakhov RR, Makeeva OA, Goncharova IA, Kashtalap VV, Barbarash OL, Puzyrev VP. Association of mitochondrial DNA polymorphism with myocardial infarction and prognostic signs for atherosclerosis. Mol Biol 2015. [DOI: 10.1134/s0026893315050088] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
37
|
Niu Q, Zhang W, Wang H, Guan X, Lu J, Li W. Effects of mitochondrial haplogroup N9a on type 2 diabetes mellitus and its associated complications. Exp Ther Med 2015; 10:1918-1924. [PMID: 26640573 DOI: 10.3892/etm.2015.2751] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 07/13/2015] [Indexed: 11/05/2022] Open
Abstract
A case-control study was conducted with the aim of identifying the predominant haplogroups associated with type 2 diabetes mellitus (T2DM) and its complications. In addition, the role of N9a in T2DM risk and complications was analyzed. Sequencing of the entire mitochondrial DNA was conducted in 235 patients and 244 controls in cohort 1, and six haplogroups (F, B4, D4, D5, M8a and N9a) associated with T2DM were classified. The frequency of N9a was further determined in cohort 2 (440 patients and 244 controls) and examined in two combined cohorts, including 675 patients with T2DM and 649 non-diabetic controls. Multivariate logistic regression analysis and association analysis were performed to investigate the association between genotypes, T2DM and diabetic nephropathy. M8a [P=0.011; odds ratio (OR), 3.49; 95% confidence interval (CI), 1.26-9.69] and haplogroup N9a (P=0.023; OR, 2.60; 95% CI, 1.11-6.05) were associated with an increased risk of T2DM. The frequency of N9a was higher in T2DM patients compared with that in the controls (6.2% vs. 4.3%) and associated with a mild risk (P=0.10; OR, 1.51; 95% CI, 0.92-2.49). N9a was significantly associated with an increased risk of diabetic nephropathy (P=0.024; OR, 2.15; 95% CI, 1.11-4.19). Previous findings of N9a being protective against T2DM were not replicated in the present study, although this haplogroup was associated with an increased risk of diabetic nephropathy.
Collapse
Affiliation(s)
- Qing Niu
- Zhejiang Provincial Key Laboratory of Medical Genetics, Department of Biochemistry and Molecular Biology, Wenzhou Medical University School of Laboratory Medicine and Life Sciences, Wenzhou, Zhejiang 325025, P.R. China
| | - Wanlin Zhang
- Zhejiang Provincial Key Laboratory of Medical Genetics, Department of Biochemistry and Molecular Biology, Wenzhou Medical University School of Laboratory Medicine and Life Sciences, Wenzhou, Zhejiang 325025, P.R. China
| | - Hailing Wang
- Zhejiang Provincial Key Laboratory of Medical Genetics, Department of Biochemistry and Molecular Biology, Wenzhou Medical University School of Laboratory Medicine and Life Sciences, Wenzhou, Zhejiang 325025, P.R. China
| | - Xiaomin Guan
- Zhejiang Provincial Key Laboratory of Medical Genetics, Department of Biochemistry and Molecular Biology, Wenzhou Medical University School of Laboratory Medicine and Life Sciences, Wenzhou, Zhejiang 325025, P.R. China
| | - Jianxin Lu
- Zhejiang Provincial Key Laboratory of Medical Genetics, Department of Biochemistry and Molecular Biology, Wenzhou Medical University School of Laboratory Medicine and Life Sciences, Wenzhou, Zhejiang 325025, P.R. China
| | - Wei Li
- Zhejiang Provincial Key Laboratory of Medical Genetics, Department of Biochemistry and Molecular Biology, Wenzhou Medical University School of Laboratory Medicine and Life Sciences, Wenzhou, Zhejiang 325025, P.R. China
| |
Collapse
|
38
|
Hsouna S, Ben Halim N, Lasram K, Meiloud G, Arfa I, Kerkeni E, Romdhane L, Jamoussi H, Bahri S, Ben Ammar S, Abid A, Barakat A, Houmeida A, Abdelhak S, Kefi R. Study of the T16189C variant and mitochondrial lineages in Tunisian and overall Mediterranean region. Mitochondrial DNA A DNA Mapp Seq Anal 2015; 27:1558-63. [PMID: 25208176 DOI: 10.3109/19401736.2014.953136] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The mitochondrial DNA (mtDNA) variant T16189C has been investigated in several metabolic diseases. In this study, we aimed to estimate the frequency of the T16189C variant in Tunisian and other Mediterranean populations and to evaluate the impact of this variant on the phylogeny of Mediterranean populations. Blood sample of 240 unrelated Tunisian subjects were recruited from several Tunisian localities. The hypervariable region 1 of the mtDNA were amplified and sequenced. Additional sequences (N = 4921) from Mediterranean populations were compiled from previous studies. The average frequency of T16189C variant in Tunisia (29%) is similar to that observed in North African and Near Eastern populations. Our findings showed positive correlation of the T16189C variant with Sub-Saharan and North African lineages, while a negative correlation was found with the Eurasian haplogroups, reaching its maximum with the Eurasian haplogroup H. The principal component analyses showed a high internal heterogeneity between Tunisian localities. At the Mediterranean scale, Tunisians are closer to North African (Algerian and Moroccan) and Near Eastern populations (Syrians and Palestinians) than to Europeans.
Collapse
Affiliation(s)
- Sana Hsouna
- a Biomedical Genomics and Oncogenetics laboratory (LR 11 IPT 05), Institut Pasteur de Tunis, Université El Manar de Tunis , Tunis , Tunisia
| | - Nizar Ben Halim
- a Biomedical Genomics and Oncogenetics laboratory (LR 11 IPT 05), Institut Pasteur de Tunis, Université El Manar de Tunis , Tunis , Tunisia
| | - Khaled Lasram
- a Biomedical Genomics and Oncogenetics laboratory (LR 11 IPT 05), Institut Pasteur de Tunis, Université El Manar de Tunis , Tunis , Tunisia
| | - Ghlana Meiloud
- b Laboratoire de Biochimie et Biologie Moléculaire , Faculté des Sciences et Techniques , Nouakchott , Mauritania
| | - Imen Arfa
- a Biomedical Genomics and Oncogenetics laboratory (LR 11 IPT 05), Institut Pasteur de Tunis, Université El Manar de Tunis , Tunis , Tunisia
| | - Emna Kerkeni
- c Genetics Laboratory, Faculté de Médecine de Monastir , Monastir , Tunisia
| | - Lilia Romdhane
- a Biomedical Genomics and Oncogenetics laboratory (LR 11 IPT 05), Institut Pasteur de Tunis, Université El Manar de Tunis , Tunis , Tunisia
| | - Henda Jamoussi
- a Biomedical Genomics and Oncogenetics laboratory (LR 11 IPT 05), Institut Pasteur de Tunis, Université El Manar de Tunis , Tunis , Tunisia
| | - Sonia Bahri
- e Department of Biochemistry , Institut Pasteur de Tunis , Tunis , Tunisia , and
| | - Slim Ben Ammar
- e Department of Biochemistry , Institut Pasteur de Tunis , Tunis , Tunisia , and
| | - Abdelmajid Abid
- a Biomedical Genomics and Oncogenetics laboratory (LR 11 IPT 05), Institut Pasteur de Tunis, Université El Manar de Tunis , Tunis , Tunisia .,d Service de Consultation Externe et Exploration Fonctionnelle, Institut National de Nutrition , Tunis , Tunisia
| | - Abdelhamid Barakat
- f Laboratoire de Génétique Moléculaire Humaine, Département de Recherche Scientifique , Institut Pasteur du Maroc , Casablanca , Morocco
| | - Ahmed Houmeida
- b Laboratoire de Biochimie et Biologie Moléculaire , Faculté des Sciences et Techniques , Nouakchott , Mauritania
| | - Sonia Abdelhak
- a Biomedical Genomics and Oncogenetics laboratory (LR 11 IPT 05), Institut Pasteur de Tunis, Université El Manar de Tunis , Tunis , Tunisia
| | - Rym Kefi
- a Biomedical Genomics and Oncogenetics laboratory (LR 11 IPT 05), Institut Pasteur de Tunis, Université El Manar de Tunis , Tunis , Tunisia
| |
Collapse
|
39
|
Ebner S, Mangge H, Langhof H, Halle M, Siegrist M, Aigner E, Paulmichl K, Paulweber B, Datz C, Sperl W, Kofler B, Weghuber D. Mitochondrial Haplogroup T Is Associated with Obesity in Austrian Juveniles and Adults. PLoS One 2015; 10:e0135622. [PMID: 26322975 PMCID: PMC4556186 DOI: 10.1371/journal.pone.0135622] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 07/24/2015] [Indexed: 12/20/2022] Open
Abstract
Background Recent publications have reported contradictory data regarding mitochondrial DNA (mtDNA) variation and its association with body mass index. The aim of the present study was to compare the frequencies of mtDNA haplogroups as well as control region (CR) polymorphisms of obese juveniles (n = 248) and obese adults (n = 1003) versus normal weight controls (njuvenile = 266, nadults = 595) in a well-defined, ethnically homogenous, age-matched comparative cohort of Austrian Caucasians. Methodology and Principal Findings Using SNP analysis and DNA sequencing, we identified the nine major European mitochondrial haplogroups and CR polymorphisms. Of these, only the T haplogroup frequency was increased in the juvenile obese cohort versus the control subjects [11.7% in obese vs. 6.4% in controls], although statistical significance was lost after adjustment for sex and age. Similar data were observed in a local adult cohort, in which haplogroup T was found at a significantly higher frequency in the overweight and obese subjects than in the normal weight group [9.7% vs. 6.2%, p = 0.012, adjusted for sex and age]. When all obese subjects were considered together, the difference in the frequency of haplogroup T was even more clearly seen [10.1% vs. 6.3%, p = 0.002, OR (95% CI) 1.71 (1.2–2.4), adjusted for sex and age]. The frequencies of the T haplogroup-linked CR polymorphisms C16294T and the C16296T were found to be elevated in both the juvenile and the adult obese cohort compared to the controls. Nevertheless, no mtDNA haplogroup or CR polymorphism was robustly associated with any of several investigated metabolic and cardiovascular parameters (e.g., blood pressure, blood glucose concentration, triglycerides, cholesterol) in all obese subjects. Conclusions and Significance By investigation of this large ethnically and geographically homogenous cohort of Middle European Caucasians, only mtDNA haplogroup T was identified as an obesity risk factor.
Collapse
Affiliation(s)
- Sabine Ebner
- Department of Pediatrics, Paracelsus Medical University, Salzburg, Austria
| | - Harald Mangge
- Clinical Institute for Medical and Chemical Laboratory Diagnostics, Medical University Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | | | - Martin Halle
- Department of Prevention, Rehabilitation and Sports Medicine, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
- Else Kröner-Fresenius-Zentrum, Klinikum rechts der Isar, Munich, Germany
| | - Monika Siegrist
- Department of Prevention, Rehabilitation and Sports Medicine, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Elmar Aigner
- Department of Internal Medicine, Paracelsus Medical University, Salzburg, Austria
- Obesity Research Unit, Paracelsus Medical University and Salzburger Landeskliniken, Salzburg, Austria
| | - Katharina Paulmichl
- Department of Pediatrics, Paracelsus Medical University, Salzburg, Austria
- Obesity Research Unit, Paracelsus Medical University and Salzburger Landeskliniken, Salzburg, Austria
| | - Bernhard Paulweber
- Department of Internal Medicine, Paracelsus Medical University, Salzburg, Austria
| | - Christian Datz
- Department of Internal Medicine, General Hospital Oberndorf, Oberndorf, Austria
| | - Wolfgang Sperl
- Department of Pediatrics, Paracelsus Medical University, Salzburg, Austria
| | - Barbara Kofler
- Department of Pediatrics, Paracelsus Medical University, Salzburg, Austria
| | - Daniel Weghuber
- Department of Pediatrics, Paracelsus Medical University, Salzburg, Austria
- Obesity Research Unit, Paracelsus Medical University and Salzburger Landeskliniken, Salzburg, Austria
- * E-mail:
| |
Collapse
|
40
|
The prevalence of an interrupted poly-C tract variant harboring mitochondrial DNA haplogroup B and its association with reduced susceptibility to type 2 diabetes in Korea. Genes Genomics 2015. [DOI: 10.1007/s13258-015-0323-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
41
|
Hafizi Abu Bakar M, Kian Kai C, Wan Hassan WN, Sarmidi MR, Yaakob H, Zaman Huri H. Mitochondrial dysfunction as a central event for mechanisms underlying insulin resistance: the roles of long chain fatty acids. Diabetes Metab Res Rev 2015; 31:453-75. [PMID: 25139820 DOI: 10.1002/dmrr.2601] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 04/19/2014] [Accepted: 07/23/2014] [Indexed: 12/25/2022]
Abstract
Insulin resistance is characterized by hyperglycaemia, dyslipidaemia and oxidative stress prior to the development of type 2 diabetes mellitus. To date, a number of mechanisms have been proposed to link these syndromes together, but it remains unclear what the unifying condition that triggered these events in the progression of this metabolic disease. There have been a steady accumulation of data in numerous experimental studies showing the strong correlations between mitochondrial dysfunction, oxidative stress and insulin resistance. In addition, a growing number of studies suggest that the raised plasma free fatty acid level induced insulin resistance with the significant alteration of oxidative metabolism in various target tissues such as skeletal muscle, liver and adipose tissue. In this review, we herein propose the idea of long chain fatty acid-induced mitochondrial dysfunctions as one of the key events in the pathophysiological development of insulin resistance and type 2 diabetes. The accumulation of reactive oxygen species, lipotoxicity, inflammation-induced endoplasmic reticulum stress and alterations of mitochondrial gene subset expressions are the most detrimental that lead to the developments of aberrant intracellular insulin signalling activity in a number of peripheral tissues, thereby leading to insulin resistance and type 2 diabetes.
Collapse
Affiliation(s)
- Mohamad Hafizi Abu Bakar
- Department of Bioprocess Engineering, Faculty of Chemical Engineering, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
| | - Cheng Kian Kai
- Department of Bioprocess Engineering, Faculty of Chemical Engineering, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
| | - Wan Najihah Wan Hassan
- Department of Bioprocess Engineering, Faculty of Chemical Engineering, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
| | - Mohamad Roji Sarmidi
- Institute of Bioproduct Development, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
| | - Harisun Yaakob
- Institute of Bioproduct Development, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
| | - Hasniza Zaman Huri
- Department of Pharmacy, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
- Clinical Investigation Centre, 13th Floor Main Tower, University Malaya Medical Centre, Lembah Pantai, Kuala Lumpur, Malaysia
| |
Collapse
|
42
|
Chiaratti MR, Malik S, Diot A, Rapa E, Macleod L, Morten K, Vatish M, Boyd R, Poulton J. Is Placental Mitochondrial Function a Regulator that Matches Fetal and Placental Growth to Maternal Nutrient Intake in the Mouse? PLoS One 2015; 10:e0130631. [PMID: 26132581 PMCID: PMC4488591 DOI: 10.1371/journal.pone.0130631] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 05/21/2015] [Indexed: 12/18/2022] Open
Abstract
Background Effective fetal growth requires adequate maternal nutrition coupled to active transport of nutrients across the placenta, which, in turn requires ATP. Epidemiological and experimental evidence has shown that impaired maternal nutrition in utero results in an adverse postnatal phenotype for the offspring. Placental mitochondrial function might link maternal food intake to fetal growth since impaired placental ATP production, in response to poor maternal nutrition, could be a pathway linking maternal food intake to reduced fetal growth. Method We assessed the effects of maternal diet on placental water content, ATP levels and mitochondrial DNA (mtDNA) content in mice at embryonic (E) day 18 (E18). Females maintained on either low- (LPD) or normal- (NPD) protein diets were mated with NPD males. Results To investigate the possibility of an underlying mitochondrial stress response, we studied cultured human trophoblast cells (BeWos). High throughput imaging showed that amino acid starvation induces changes in mitochondrial morphology that suggest stress-induced mitochondrial hyperfusion. This is a defensive response, believed to increase mitochondrial efficiency, that could underlie the increase in ATP observed in placenta. Conclusions These findings reinforce the pathophysiological links between maternal diet and conceptus mitochondria, potentially contributing to metabolic programming. The quiet embryo hypothesis proposes that pre-implantation embryo survival is best served by a relatively low level of metabolism. This may extend to post-implantation trophoblast responses to nutrition.
Collapse
Affiliation(s)
- Marcos R. Chiaratti
- Nuffield Department of Obstetrics and Gynaecology, The Women’s Centre, University of Oxford, Oxford, OX3 9DU, United Kingdom
- Departamento de Genética e Evolução, Universidade Federal de São Carlos Rod. Washington Luís, km 235, Jardim Guanabara, São Carlos, SP, CEP 13.565–905, Brazil
| | - Sajida Malik
- Nuffield Department of Obstetrics and Gynaecology, The Women’s Centre, University of Oxford, Oxford, OX3 9DU, United Kingdom
| | - Alan Diot
- Nuffield Department of Obstetrics and Gynaecology, The Women’s Centre, University of Oxford, Oxford, OX3 9DU, United Kingdom
| | - Elizabeth Rapa
- Nuffield Department of Obstetrics and Gynaecology, The Women’s Centre, University of Oxford, Oxford, OX3 9DU, United Kingdom
| | - Lorna Macleod
- Nuffield Department of Obstetrics and Gynaecology, The Women’s Centre, University of Oxford, Oxford, OX3 9DU, United Kingdom
| | - Karl Morten
- Nuffield Department of Obstetrics and Gynaecology, The Women’s Centre, University of Oxford, Oxford, OX3 9DU, United Kingdom
| | - Manu Vatish
- Nuffield Department of Obstetrics and Gynaecology, The Women’s Centre, University of Oxford, Oxford, OX3 9DU, United Kingdom
| | - Richard Boyd
- Department of Physiology Anatomy and Genetics, University of Oxford, Oxford, OX1 3QX, United Kingdom
| | - Joanna Poulton
- Nuffield Department of Obstetrics and Gynaecology, The Women’s Centre, University of Oxford, Oxford, OX3 9DU, United Kingdom
- * E-mail:
| |
Collapse
|
43
|
Shi M, Zheng J, Tan Y, Tan G, Li J, Li Y, Li X, Zhou Z, Yang R. Ultrasensitive Detection of Single Nucleotide Polymorphism in Human Mitochondrial DNA Utilizing Ion-Mediated Cascade Surface-Enhanced Raman Spectroscopy Amplification. Anal Chem 2015; 87:2734-40. [DOI: 10.1021/ac504000p] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Muling Shi
- State
Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry
and Chemical Engineering, College of Biology, Hunan University, Changsha, 410082, China
| | - Jing Zheng
- State
Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry
and Chemical Engineering, College of Biology, Hunan University, Changsha, 410082, China
| | - Yongjun Tan
- State
Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry
and Chemical Engineering, College of Biology, Hunan University, Changsha, 410082, China
| | - Guixiang Tan
- State
Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry
and Chemical Engineering, College of Biology, Hunan University, Changsha, 410082, China
| | - Jishan Li
- State
Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry
and Chemical Engineering, College of Biology, Hunan University, Changsha, 410082, China
| | - Yinhui Li
- State
Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry
and Chemical Engineering, College of Biology, Hunan University, Changsha, 410082, China
| | - Xia Li
- Xiangya Second Hospital of Central South University, Changsha, 410082, China
| | - Zhiguang Zhou
- Xiangya Second Hospital of Central South University, Changsha, 410082, China
| | - Ronghua Yang
- State
Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry
and Chemical Engineering, College of Biology, Hunan University, Changsha, 410082, China
- School
of Chemistry and Biological Engineering, Changsha University of Science and Technology, Changsha, 410004, China
| |
Collapse
|
44
|
Abstract
The worldwide epidemic of diabetes and metabolic syndrome in the last few decades cannot be fully accounted for only by changes in the lifestyle factors, such as sedentary lifestyle and overeating. Besides genetic factors, there must be other causes to explain this rapid change. They could not be infectious in nature and induce insulin resistance as key biochemical abnormality. Mitochondrial dysfunction could be underlying mechanism behind the insulin resistance, thus metabolic syndrome. Then there have been increasing number of reports suggesting that chronic exposure to and accumulation of endocrine disrupting chemicals (EDCs), especially so-called the persistent organic pollutants (POPs) within the body might be associated with metabolic syndrome. Combining two concepts, we developed new "EDCs-induced mitochondrial dysfunction hypothesis of metabolic syndrome". In this review we suggest that classifying those chemicals into 5 groups might be clinically useful considering their removal or avoidance; POPs, non-persistent organic pollutants, heavy metals, air pollutants and drugs. We will also discuss briefly how those insights could be applied to clinical medicine.
Collapse
Affiliation(s)
- Jin Taek Kim
- Department of Internal Medicine, College of Medicine, Eulji University, Seoul, South Korea
| | | |
Collapse
|
45
|
Huang XY, Li H, Xu XM, Wang LX. Mitochondrial DNA mutation screening of male patients with obstructive sleep apnea-hypopnea syndrome. Exp Ther Med 2014; 8:519-524. [PMID: 25009612 PMCID: PMC4079429 DOI: 10.3892/etm.2014.1748] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Accepted: 05/01/2014] [Indexed: 12/31/2022] Open
Abstract
The aim of the present study was to analyze the differences between the genes of the mitochondrial DNA (mtDNA) displacement loop (D-loop) region and the Cambridge Reference sequence, in order to screen the mutation sites and investigate the correlation between mutations, clinical parameters and complications associated with obstructive sleep apnea-hypopnea syndrome (OSAHS). mtDNA was obtained from male patients with OSAHS in the Zhejiang Province. In total, 60 male patients with OSAHS and 102 healthy adults were assessed to determine the levels of fasting blood glucose, total cholesterol, triglyceride (TG) and high-density and low-density lipoproteins (LDL). Furthermore, peripheral mtDNA was extracted and bidirectional sequencing was conducted to enable mutation screening. In the mtDNA D-loop region, 178 mutation sites were identified, of which 115 sites were present in the two groups. The number of non-common sites in the OSAHS group was significantly higher compared with the control group (P<0.05). No statistically significant difference was observed in the mutations among the mild, moderate and severe OSAHS groups (P>0.05). A total of 21 cases in the severe OSAHS group exhibited mutation rates of >10%. In the control group, there were 24 cases where the np73A-G and np263A-G mutations were predominant. The np303–np315 region was identified to be the highly variable region and various mutation forms were observed. Statistically significant differences were observed in the neck perimeter, TG and LDL levels among the OSAHS-no-mutation subgroups (P<0.05) and LDL was shown to be associated with an mtDNA mutation in the OSAHS group. Numerous polymorphic mutation sites were identified in the mtDNA D-loop region of the OSAHS group. Therefore, mtDNA mutation sites may be closely associated with the clinical manifestations and complications of OSAHS.
Collapse
Affiliation(s)
- Xiao-Ying Huang
- Department of Respiratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325003, P.R. China
| | - Hong Li
- Department of Respiratory Disease, Hospital of Huabei Petroleum Administration Bureau, Renqiu, Hebei 062552, P.R. China
| | - Xiao-Mei Xu
- Department of Respiratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325003, P.R. China
| | - Liang-Xing Wang
- Department of Respiratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325003, P.R. China
| |
Collapse
|
46
|
Abstract
The oversupply of calories and sedentary lifestyle has resulted in a rapid increase of diabetes prevalence worldwide. During the past two decades, lines of evidence suggest that mitochondrial dysfunction plays a key role in the pathophysiology of diabetes. Mitochondria are vital to most of the eukaryotic cells as they provide energy in the form of adenosine triphosphate by oxidative phosphorylation. In addition, mitochondrial function is an integral part of glucose-stimulated insulin secretion in pancreatic β-cells. In the present article, we will briefly review the major functions of mitochondria in regard to energy metabolism, and discuss the genetic and environmental factors causing mitochondrial dysfunction in diabetes. In addition, the pathophysiological role of mitochondrial dysfunction in insulin resistance and β-cell dysfunction are discussed. We argue that mitochondrial dysfunction could be the central defect causing the abnormal glucose metabolism in the diabetic state. A deeper understanding of the role of mitochondria in diabetes will provide us with novel insights in the pathophysiology of diabetes. (J Diabetes Invest, doi: 10.1111/j.2040-1124.2010.00047.x, 2010).
Collapse
Affiliation(s)
| | - Kyong Soo Park
- Departments of Internal Medicine ; Molecular Medicine and Biopharmaceutical Sciences, Seoul National University College of Medicine
| | - Ki-Up Lee
- Department of Internal Medicine, University of Ulsan College of Medicine
| | - Hong Kyu Lee
- Department of Internal Medicine, Eulji University College of Medicine, Seoul, Korea
| |
Collapse
|
47
|
Mitchell SL, Hall JB, Goodloe RJ, Boston J, Farber-Eger E, Pendergrass SA, Bush WS, Crawford DC. Investigating the relationship between mitochondrial genetic variation and cardiovascular-related traits to develop a framework for mitochondrial phenome-wide association studies. BioData Min 2014; 7:6. [PMID: 24731735 PMCID: PMC4021623 DOI: 10.1186/1756-0381-7-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 04/05/2014] [Indexed: 11/12/2022] Open
Abstract
Background Mitochondria play a critical role in the cell and have DNA independent of the nuclear genome. There is much evidence that mitochondrial DNA (mtDNA) variation plays a role in human health and disease, however, this area of investigation has lagged behind research into the role of nuclear genetic variation on complex traits and phenotypic outcomes. Phenome-wide association studies (PheWAS) investigate the association between a wide range of traits and genetic variation. To date, this approach has not been used to investigate the relationship between mtDNA variants and phenotypic variation. Herein, we describe the development of a PheWAS framework for mtDNA variants (mt-PheWAS). Using the Metabochip custom genotyping array, nuclear and mitochondrial DNA variants were genotyped in 11,519 African Americans from the Vanderbilt University biorepository, BioVU. We employed both polygenic modeling and association testing with mitochondrial single nucleotide polymorphisms (mtSNPs) to explore the relationship between mtDNA variants and a group of eight cardiovascular-related traits obtained from de-identified electronic medical records within BioVU. Results Using polygenic modeling we found evidence for an effect of mtDNA variation on total cholesterol and type 2 diabetes (T2D). After performing comprehensive mitochondrial single SNP associations, we identified an increased number of single mtSNP associations with total cholesterol and T2D compared to the other phenotypes examined, which did not have more significantly associated SNPs than would be expected by chance. Among the mtSNPs significantly associated with T2D we identified variant mt16189, an association previously reported only in Asian and European-descent populations. Conclusions Our replication of previous findings and identification of novel associations from this initial study suggest that our mt-PheWAS approach is robust for investigating the relationship between mitochondrial genetic variation and a range of phenotypes, providing a framework for future mt-PheWAS.
Collapse
Affiliation(s)
- Sabrina L Mitchell
- Center for Human Genetics Research, Vanderbilt University Medical Center, Nashville, TN 37232, USA.,Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Jacob B Hall
- Center for Human Genetics Research, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Robert J Goodloe
- Center for Human Genetics Research, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Jonathan Boston
- Center for Human Genetics Research, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Eric Farber-Eger
- Center for Human Genetics Research, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Sarah A Pendergrass
- Center for Systems Genomics, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - William S Bush
- Center for Human Genetics Research, Vanderbilt University Medical Center, Nashville, TN 37232, USA.,Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Dana C Crawford
- Center for Human Genetics Research, Vanderbilt University Medical Center, Nashville, TN 37232, USA.,Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| |
Collapse
|
48
|
Ma RCW, Lee HM, Lam VKL, Tam CHT, Ho JSK, Zhao HL, Guan J, Kong APS, Lau E, Zhang G, Luk A, Wang Y, Tsui SKW, Chan TF, Hu C, Jia WP, Park KS, Lee HK, Furuta H, Nanjo K, Tai ES, Ng DPK, Tang NLS, Woo J, Leung PC, Xue H, Wong J, Leung PS, Lau TCK, Tong PCY, Xu G, Ng MCY, So WY, Chan JCN. Familial young-onset diabetes, pre-diabetes and cardiovascular disease are associated with genetic variants of DACH1 in Chinese. PLoS One 2014; 9:e84770. [PMID: 24465431 PMCID: PMC3896349 DOI: 10.1371/journal.pone.0084770] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Accepted: 11/19/2013] [Indexed: 01/02/2023] Open
Abstract
In Asia, young-onset type 2 diabetes (YOD) is characterized by obesity and increased risk for cardiovascular disease (CVD). In a genome-wide association study (GWAS) of 99 Chinese obese subjects with familial YOD diagnosed before 40-year-old and 101 controls, the T allele of rs1408888 in intron 1 of DACH1(Dachshund homolog 1) was associated with an odds ratio (OR) of 2.49(95% confidence intervals:1.57-3.96, P = 8.4 × 10(-5)). Amongst these subjects, we found reduced expression of DACH1 in peripheral blood mononuclear cells (PBMC) from 63 cases compared to 65 controls (P = 0.02). In a random cohort of 1468 cases and 1485 controls, amongst top 19 SNPs from GWAS, rs1408888 was associated with type 2 diabetes with a global P value of 0.0176 and confirmation in a multiethnic Asian case-control cohort (7370/7802) with an OR of 1.07(1.02-1.12, P(meta) = 0.012). In 599 Chinese non-diabetic subjects, rs1408888 was linearly associated with systolic blood pressure and insulin resistance. In a case-control cohort (n = 953/953), rs1408888 was associated with an OR of 1.54(1.07-2.22, P = 0.019) for CVD in type 2 diabetes. In an autopsy series of 173 non-diabetic cases, TT genotype of rs1408888 was associated with an OR of 3.31(1.19-9.19, P = 0.0214) and 3.27(1.25-11.07, P = 0.0184) for coronary heart disease (CHD) and coronary arteriosclerosis. Bioinformatics analysis revealed that rs1408888 lies within regulatory elements of DACH1 implicated in islet development and insulin secretion. The T allele of rs1408888 of DACH1 was associated with YOD, prediabetes and CVD in Chinese.
Collapse
Affiliation(s)
- Ronald Ching Wan Ma
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, The Prince of Wales Hospital, Shatin, Hong Kong SAR, People’s Republic of China
- Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Hong Kong SAR, People’s Republic of China
- Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, The Prince of Wales Hospital, Shatin, Hong Kong SAR, People’s Republic of China
| | - Heung Man Lee
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, The Prince of Wales Hospital, Shatin, Hong Kong SAR, People’s Republic of China
- Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, The Prince of Wales Hospital, Shatin, Hong Kong SAR, People’s Republic of China
| | - Vincent Kwok Lim Lam
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, The Prince of Wales Hospital, Shatin, Hong Kong SAR, People’s Republic of China
- Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, The Prince of Wales Hospital, Shatin, Hong Kong SAR, People’s Republic of China
| | - Claudia Ha Ting Tam
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, The Prince of Wales Hospital, Shatin, Hong Kong SAR, People’s Republic of China
| | - Janice Siu Ka Ho
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, The Prince of Wales Hospital, Shatin, Hong Kong SAR, People’s Republic of China
| | - Hai-Lu Zhao
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, The Prince of Wales Hospital, Shatin, Hong Kong SAR, People’s Republic of China
| | - Jing Guan
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, The Prince of Wales Hospital, Shatin, Hong Kong SAR, People’s Republic of China
| | - Alice Pik Shan Kong
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, The Prince of Wales Hospital, Shatin, Hong Kong SAR, People’s Republic of China
- Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Hong Kong SAR, People’s Republic of China
- Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, The Prince of Wales Hospital, Shatin, Hong Kong SAR, People’s Republic of China
| | - Eric Lau
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, The Prince of Wales Hospital, Shatin, Hong Kong SAR, People’s Republic of China
| | - Guozhi Zhang
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, The Prince of Wales Hospital, Shatin, Hong Kong SAR, People’s Republic of China
| | - Andrea Luk
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, The Prince of Wales Hospital, Shatin, Hong Kong SAR, People’s Republic of China
| | - Ying Wang
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, The Prince of Wales Hospital, Shatin, Hong Kong SAR, People’s Republic of China
| | - Stephen Kwok Wing Tsui
- School of Biomedical Science, The Chinese University of Hong Kong, The Prince of Wales Hospital, Shatin, Hong Kong SAR, People’s Republic of China
| | - Ting Fung Chan
- School of Life Science, The Chinese University of Hong Kong, The Prince of Wales Hospital, Shatin, Hong Kong SAR, People’s Republic of China
| | - Cheng Hu
- Department of Endocrinology and Metabolism, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Diabetes, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, People’s Republic of China
| | - Wei Ping Jia
- Department of Endocrinology and Metabolism, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Diabetes, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, People’s Republic of China
| | - Kyong Soo Park
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology and Department of Internal Medicine, College of Medicine, Seoul National University, Chongno-gu, Seoul, Korea
| | - Hong Kyu Lee
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology and Department of Internal Medicine, College of Medicine, Seoul National University, Chongno-gu, Seoul, Korea
| | - Hiroto Furuta
- First Department of Medicine, Wakayama Medical University, Wakayama, Japan
| | - Kishio Nanjo
- First Department of Medicine, Wakayama Medical University, Wakayama, Japan
| | - E. Shyong Tai
- Department of Epidemiology and Public Health, National University of Singapore, Singapore, Singapore
| | - Daniel Peng-Keat Ng
- Department of Epidemiology and Public Health, National University of Singapore, Singapore, Singapore
| | - Nelson Leung Sang Tang
- Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, The Prince of Wales Hospital, Shatin, Hong Kong SAR, People’s Republic of China
- Department of Chemical Pathology, The Chinese University of Hong Kong, The Prince of Wales Hospital, Shatin, Hong Kong SAR, People’s Republic of China
| | - Jean Woo
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, The Prince of Wales Hospital, Shatin, Hong Kong SAR, People’s Republic of China
| | - Ping Chung Leung
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, The Prince of Wales Hospital, Shatin, Hong Kong SAR, People’s Republic of China
| | - Hong Xue
- Department of Biochemistry, Hong Kong University of Science and Technology, Hong Kong SAR, People’s Republic of China
| | - Jeffrey Wong
- Department of Biochemistry, Hong Kong University of Science and Technology, Hong Kong SAR, People’s Republic of China
| | - Po Sing Leung
- School of Biomedical Science, The Chinese University of Hong Kong, The Prince of Wales Hospital, Shatin, Hong Kong SAR, People’s Republic of China
| | - Terrence C. K. Lau
- School of Biomedical Science, The Chinese University of Hong Kong, The Prince of Wales Hospital, Shatin, Hong Kong SAR, People’s Republic of China
| | - Peter Chun Yip Tong
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, The Prince of Wales Hospital, Shatin, Hong Kong SAR, People’s Republic of China
- Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Hong Kong SAR, People’s Republic of China
| | - Gang Xu
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, The Prince of Wales Hospital, Shatin, Hong Kong SAR, People’s Republic of China
- Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Hong Kong SAR, People’s Republic of China
- Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, The Prince of Wales Hospital, Shatin, Hong Kong SAR, People’s Republic of China
| | - Maggie Chor Yin Ng
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, The Prince of Wales Hospital, Shatin, Hong Kong SAR, People’s Republic of China
| | - Wing Yee So
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, The Prince of Wales Hospital, Shatin, Hong Kong SAR, People’s Republic of China
- Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Hong Kong SAR, People’s Republic of China
- Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, The Prince of Wales Hospital, Shatin, Hong Kong SAR, People’s Republic of China
| | - Juliana Chung Ngor Chan
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, The Prince of Wales Hospital, Shatin, Hong Kong SAR, People’s Republic of China
- Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Hong Kong SAR, People’s Republic of China
- Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, The Prince of Wales Hospital, Shatin, Hong Kong SAR, People’s Republic of China
- * E-mail:
| |
Collapse
|
49
|
Weng SW, Lin TK, Wang PW, Chen SD, Chuang YC, Liou CW. Single nucleotide polymorphisms in the mitochondrial control region are associated with metabolic phenotypes and oxidative stress. Gene 2013; 531:370-6. [DOI: 10.1016/j.gene.2013.08.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 08/02/2013] [Accepted: 08/05/2013] [Indexed: 12/22/2022]
|
50
|
Hsouna S, Ben Halim N, Lasram K, Arfa I, Jamoussi H, Bahri S, Ammar SB, Miladi N, Abid A, Abdelhak S, Kefi R. Association study of mitochondrial DNA polymorphisms with type 2 diabetes in Tunisian population. ACTA ACUST UNITED AC 2013; 26:367-72. [PMID: 24102601 DOI: 10.3109/19401736.2013.836508] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Mitochondrial DNA (mtDNA) variation may play an important role in the pathogenesis of type 2 diabetes (T2Ds). In this study, we aimed to explore whether mtDNA variants contribute to the susceptibility to T2Ds in a Tunisian population. The hypervariable region 1 (HVS1) of the mtDNA of 64 T2Ds patients and 77 healthy controls was amplified and sequenced. Statistical analysis was performed using the STATA program. Analysis of the total screened variants (N = 88) from the HVS1 region showed no significant difference in the distribution of all polymorphisms between T2Ds and controls, except for the variant G16390A which was more frequent in T2Ds (15.9%) than in controls (5.4%) (p = 0.04). The association of G16390A was not detected after multivariate regression analysis. Similarly, analysis of the distribution of mitochondrial haplogroups within our dataset showed 18 distinct major haplogroups with no significant difference between T2Ds and controls. Except, the weakly association found for the G16390A variant, our results showed that none of the tested polymorphisms from the HVS1 region have a major role in T2Ds pathogenesis in the studied Tunisian population even when taking into account the population stratification.
Collapse
Affiliation(s)
- Sana Hsouna
- Biomedical Genomics and Oncogenetics Laboratory (LR 11 IPT 05), Institut Pasteur de Tunis, Université El Manar de Tunis , Tunis , Tunisia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|