1
|
Ramos SV, Distefano G, Lui LY, Cawthon PM, Kramer P, Sipula IJ, Bello FM, Mau T, Jurczak MJ, Molina AJ, Kershaw EE, Marcinek DJ, Shankland E, Toledo FG, Newman AB, Hepple RT, Kritchevsky SB, Goodpaster BH, Cummings SR, Coen PM. Role of Cardiorespiratory Fitness and Mitochondrial Oxidative Capacity in Reduced Walk Speed of Older Adults With Diabetes. Diabetes 2024; 73:1048-1057. [PMID: 38551899 PMCID: PMC11189829 DOI: 10.2337/db23-0827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 03/26/2024] [Indexed: 04/09/2024]
Abstract
Cardiorespiratory fitness and mitochondrial oxidative capacity are associated with reduced walking speed in older adults, but their impact on walking speed in older adults with diabetes has not been clearly defined. We examined differences in cardiorespiratory fitness and skeletal muscle mitochondrial oxidative capacity between older adults with and without diabetes, as well as determined their relative contribution to slower walking speed in older adults with diabetes. Participants with diabetes (n = 159) had lower cardiorespiratory fitness and mitochondrial respiration in permeabilized fiber bundles compared with those without diabetes (n = 717), following adjustments for covariates including BMI, chronic comorbid health conditions, and physical activity. Four-meter and 400-m walking speeds were slower in those with diabetes. Mitochondrial oxidative capacity alone or combined with cardiorespiratory fitness mediated ∼20-70% of the difference in walking speed between older adults with and without diabetes. Additional adjustments for BMI and comorbidities further explained the group differences in walking speed. Cardiorespiratory fitness and skeletal muscle mitochondrial oxidative capacity contribute to slower walking speeds in older adults with diabetes. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
| | | | - Li-Yung Lui
- San Francisco Coordinating Center, California Pacific Medical Center Research Institute, San Francisco, CA
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA
| | - Peggy M. Cawthon
- San Francisco Coordinating Center, California Pacific Medical Center Research Institute, San Francisco, CA
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA
| | - Philip Kramer
- Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC
| | - Ian J. Sipula
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Fiona M. Bello
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Theresa Mau
- San Francisco Coordinating Center, California Pacific Medical Center Research Institute, San Francisco, CA
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA
| | - Michael J. Jurczak
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Anthony J. Molina
- Department of Medicine, University of California, San Diego, La Jolla, CA
| | - Erin E. Kershaw
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - David J. Marcinek
- Department of Radiology, University of Washington School of Medicine, Seattle, WA
| | - Eric Shankland
- Department of Radiology, University of Washington School of Medicine, Seattle, WA
| | - Frederico G.S. Toledo
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Anne B. Newman
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Russell T. Hepple
- Department of Physical Therapy, University of Florida, Gainesville, FL
| | - Stephen B. Kritchevsky
- Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC
| | | | - Steven R. Cummings
- San Francisco Coordinating Center, California Pacific Medical Center Research Institute, San Francisco, CA
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA
| | - Paul M. Coen
- Translational Research Institute, AdventHealth, Orlando, FL
| |
Collapse
|
2
|
Ramos SV, Distefano G, Lui LY, Cawthon PM, Kramer P, Sipula IJ, Bello FM, Mau T, Jurczak MJ, Molina AJ, Kershaw EE, Marcinek DJ, Toledo FGS, Newman AB, Hepple RT, Kritchevsky SB, Goodpaster BH, Cummings SR, Coen PM. Role of Cardiorespiratory Fitness and Mitochondrial Energetics in Reduced Walk Speed of Older Adults with Diabetes in the Study of Muscle, Mobility and Aging (SOMMA). MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.11.03.23297992. [PMID: 37986814 PMCID: PMC10659460 DOI: 10.1101/2023.11.03.23297992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Rationale Cardiorespiratory fitness and mitochondrial energetics are associated with reduced walking speed in older adults. The impact of cardiorespiratory fitness and mitochondrial energetics on walking speed in older adults with diabetes has not been clearly defined. Objective To examine differences in cardiorespiratory fitness and skeletal muscle mitochondrial energetics between older adults with and without diabetes. We also assessed the contribution of cardiorespiratory fitness and skeletal muscle mitochondrial energetics to slower walking speed in older adults with diabetes. Findings Participants with diabetes had lower cardiorespiratory fitness and mitochondrial energetics when compared to those without diabetes, following adjustments for covariates including BMI, chronic comorbid health conditions, and physical activity. 4-m and 400-m walking speeds were slower in those with diabetes. Mitochondrial oxidative capacity alone or combined with cardiorespiratory fitness mediated ∼20-70% of the difference in walk speed between older adults with and without diabetes. Further adjustments of BMI and co-morbidities further explained the group differences in walk speed. Conclusions Skeletal muscle mitochondrial energetics and cardiorespiratory fitness contribute to slower walking speeds in older adults with diabetes. Cardiorespiratory fitness and mitochondrial energetics may be therapeutic targets to maintain or improve mobility in older adults with diabetes. ARTICLE HIGHLIGHTS Why did we undertake this study? To determine if mitochondrial energetics and cardiorespiratory fitness contribute to slower walking speed in older adults with diabetes. What is the specific question(s) we wanted to answer? Are mitochondrial energetics and cardiorespiratory fitness in older adults with diabetes lower than those without diabetes? How does mitochondrial energetics and cardiorespiratory fitness impact walking speed in older adults with diabetes? What did we find? Mitochondrial energetics and cardiorespiratory fitness were lower in older adults with diabetes compared to those without diabetes, and energetics, and cardiorespiratory fitness, contributed to slower walking speed in those with diabetes. What are the implications of our findings? Cardiorespiratory fitness and mitochondrial energetics may be key therapeutic targets to maintain or improve mobility in older adults with diabetes.
Collapse
|
3
|
Macedo ACPD, Schaan CW, Bock PM, Pinto MBD, Botton CE, Umpierre D, Schaan BD. Cardiorespiratory fitness in individuals with type 2 diabetes mellitus: a systematic review and meta-analysis. ARCHIVES OF ENDOCRINOLOGY AND METABOLISM 2023; 67:e230040. [PMID: 37738467 PMCID: PMC10665050 DOI: 10.20945/2359-4292-2023-0040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 05/30/2023] [Indexed: 09/24/2023]
Abstract
Objective To conduct a systematic review and meta-analysis assessing the cardiorespiratory fitness (CRF) among individuals with and without type 2 diabetes. Materials and methods The current review was registered in PROSPERO under the number CRD42018082718. MEDLINE, EMBASE, and Cochrane Library databases were searched from inception through February 2022. Eligibility criteria consisted of observational or interventional studies that evaluated CRF through cardiopulmonary exercise testing or six-minute walk test in individuals with type 2 diabetes compared with individuals without type 2 diabetes. For data extraction, we used baseline CRF assessments of randomized clinical trials or follow-up CRF assessments in observational studies. We performed a meta-analysis using maximal oxygen consumption (VO2 max), and distance walked in the 6MWT as primary outcomes. They were extracted and expressed as mean differences (MDs) and 95% CIs between treatment and comparator groups. The meta-analysis was conducted using Review Manager (RevMan) software. Results Out of 8,347 studies retrieved, 77 were included. Compared with individuals without type 2 diabetes, individuals with diabetes achieved a lower VO2 max (-5.84 mL.kg-1.min-1, 95% CI -6.93, -4.76 mL.kg-1.min-1, p = <0.0001; I2 = 91%, p for heterogeneity < 0.0001), and a smaller distance walked in 6MWT (-93.30 meters, 95% CI -141.2, -45.4 meters, p > 0.0001; I2: 94%, p for heterogeneity < 0.0001). Conclusion Type 2 diabetes was associated with lower cardiorespiratory fitness, as observed by lower VO2 max on maximal tests, and smaller distance walked in 6MWT, however the quality of studies was low.
Collapse
Affiliation(s)
- Aline Chagastelles Pinto de Macedo
- Universidade Federal do Rio Grande do Sul, Programa de Pós-graduaçÃo em Ciências Médicas: Endocrinologia, Porto Alegre, RS, Brasil
- Laboratório de Atividade Física, Diabetes e Doença Cardiovascular (LADD), Centro de Pesquisa Clínica, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brasil
| | - Camila Wohlgemuth Schaan
- Laboratório de Atividade Física, Diabetes e Doença Cardiovascular (LADD), Centro de Pesquisa Clínica, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brasil
| | - Patricia Martins Bock
- Laboratório de Atividade Física, Diabetes e Doença Cardiovascular (LADD), Centro de Pesquisa Clínica, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brasil,
- Faculdades Integradas de Taquara, Taquara, RS, Brasil
- Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| | - Mariana Brutto de Pinto
- Laboratório de Atividade Física, Diabetes e Doença Cardiovascular (LADD), Centro de Pesquisa Clínica, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brasil
| | - Cintia Ehlers Botton
- Instituto de AvaliaçÃo de Tecnologia em Saúde (IATS) - CNPq/Brasil, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brasil
- Universidade Federal do Ceará, Instituto de EducaçÃo Física e Esportes, Fortaleza, CE, Brasil
- Programa de Mestrado em Fisioterapia e Funcionalidade, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| | - Daniel Umpierre
- Laboratório de Atividade Física, Diabetes e Doença Cardiovascular (LADD), Centro de Pesquisa Clínica, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brasil
- Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
- Instituto de AvaliaçÃo de Tecnologia em Saúde (IATS) - CNPq/Brasil, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brasil
| | - Beatriz D Schaan
- Universidade Federal do Rio Grande do Sul, Programa de Pós-graduaçÃo em Ciências Médicas: Endocrinologia, Porto Alegre, RS, Brasil
- Laboratório de Atividade Física, Diabetes e Doença Cardiovascular (LADD), Centro de Pesquisa Clínica, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brasil
- Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
- Instituto de AvaliaçÃo de Tecnologia em Saúde (IATS) - CNPq/Brasil, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brasil
| |
Collapse
|
4
|
Waldman HS, Bryant AR, Knight SN, Killen LG, Davis BA, Robinson MA, O'Neal EK. Assessment of Metabolic Flexibility by Substrate Oxidation Responses and Blood Lactate in Women Expressing Varying Levels of Aerobic Fitness and Body Fat. J Strength Cond Res 2023; 37:581-588. [PMID: 35836305 DOI: 10.1519/jsc.0000000000004316] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
ABSTRACT Waldman, HS, Bryant, AR, Knight, SN, Killen, LG, Davis, BA, Robinson, MA, and O'Neal, EK. Assessment of metabolic flexibility by substrate oxidation responses and blood lactate in women expressing varying levels of aerobic fitness and body fat. J Strength Cond Res 37(3): 581-588, 2023-Collection of substrate oxidation responses during exercise is proposed as a noninvasive means for assessing metabolic flexibility in male subjects. However, because of hormonal and metabolic differences between sexes, this method may not be applicable to female subjects. This study assessed metabolic flexibility through indirect calorimetry across female subjects with different maximal oxidative capacities. Thirty-eight (18-45 years) eumenorrheic female subjects were stratified ( p < 0.05) based on V̇ o2 peak (mL·kg -1 ·min -1 ) into (1) endurance-trained (ET, n = 12, 42.6 ± 5.3), (2) recreationally active (RA, n = 13, 32.3 ± 1.6), or (3) overweight female subjects (OW, n = 13, 21.0 ± 4.0). Subjects completed the same 5-stage graded exercise test with intensities of 30, 45, 60, 75, and 90 W. Lactate [La - ], carbohydrate (CHOox), and fat (FATox) oxidation rates were assessed during the last min of each 5-minute stage. Subjects then cycled to exhaustion to determine V̇ o2 peak. Endurance-trained and RA female subjects expressed significantly ( p ≤ 0.05) higher absolute rates and rates scaled to fat-free mass of CHOox and FATox compared with OW female subjects during multiple stages. [La - ] failed to consistently differentiate the 3 groups with higher [La - ] for OW only found during stage 4; however, RER differed by 0.09 units or more at each stage for OW vs. ET. It seems that RER was more sensitive to cohort characteristics than [La - ] contrasting recent findings in male cohorts. In conclusion, indirect calorimetry is a practical and noninvasive method for assessing metabolic flexibility in eumenorrheic female subjects of varying aerobic fitness levels.
Collapse
Affiliation(s)
- Hunter S Waldman
- Human Performance Research Laboratory, Department of Kinesiology, University of North Alabama, Florence, Alabama; and
| | - Andrea R Bryant
- Human Performance Research Laboratory, Department of Kinesiology, University of North Alabama, Florence, Alabama; and
| | - Savanna N Knight
- Human Performance Research Laboratory, Department of Kinesiology, University of North Alabama, Florence, Alabama; and
| | - Lauren G Killen
- Human Performance Research Laboratory, Department of Kinesiology, University of North Alabama, Florence, Alabama; and
| | - Brett A Davis
- Department of Kinesiology, Auburn University at Montgomery, Montgomery, Alabama
| | - Marcus A Robinson
- Department of Kinesiology, Auburn University at Montgomery, Montgomery, Alabama
| | - Eric K O'Neal
- Human Performance Research Laboratory, Department of Kinesiology, University of North Alabama, Florence, Alabama; and
| |
Collapse
|
5
|
Favretto MA, Andreis FR, Cossul S, Negro F, Oliveira AS, Marques JLB. Differences in motor unit behavior during isometric contractions in patients with diabetic peripheral neuropathy at various disease severities. J Electromyogr Kinesiol 2023; 68:102725. [PMID: 36436278 DOI: 10.1016/j.jelekin.2022.102725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 09/14/2022] [Accepted: 11/16/2022] [Indexed: 11/23/2022] Open
Abstract
The aim of this study was to determine whether HD-sEMG is sensitive to detecting changes in motor unit behavior amongst healthy adults and type 2 diabetes mellitus (T2DM) patients presenting diabetic peripheral neuropathy (DPN) at different levels. Healthy control subjects (CON, n = 8) and T2DM patients presenting no DPN symptoms (ABS, n = 8), moderate DPN (MOD, n = 18), and severe DPN (SEV, n = 12) performed isometric ankle dorsiflexion at 30 % maximum voluntary contraction while high-density surface EMG (HD-sEMG) was recorded from the tibialis anterior muscle. HD-sEMG signals were decomposed, providing estimates of discharge rate, motor unit conduction velocity (MUCV), and motor unit territory area (MUTA). As a result, the ABS group presented reduced MUCV compared to CON. The groups with diabetes presented significantly larger MUTA compared to the CON group (p < 0.01), and the SEV group presented a significantly lower discharge rate compared to CON and ABS (p < 0.01). In addition, the SEV group presented significantly higher CoVforce compared to CON and MOD. These results support the use of HD-SEMG as a method to detect peripheral and central changes related to DPN.
Collapse
Affiliation(s)
- Mateus André Favretto
- Institute of Biomedical Engineering, Department of Electrical and Electronic Engineering, Federal University of Santa Catarina, Florianopolis, Santa Catarina, Brazil.
| | - Felipe Rettore Andreis
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Aalborg, Denmark
| | - Sandra Cossul
- Institute of Biomedical Engineering, Department of Electrical and Electronic Engineering, Federal University of Santa Catarina, Florianopolis, Santa Catarina, Brazil
| | - Francesco Negro
- Department of Clinical and Experimental Sciences, Università degli Studi di Brescia, Brescia, Italy
| | | | - Jefferson Luiz Brum Marques
- Institute of Biomedical Engineering, Department of Electrical and Electronic Engineering, Federal University of Santa Catarina, Florianopolis, Santa Catarina, Brazil
| |
Collapse
|
6
|
Martín-Manjarrés S, Leal-Martín J, Granados C, Mata E, Gil-Agudo Á, Rodríguez-Gómez I, Ara I. Fat Oxidation during Exercise in People with Spinal Cord Injury, and Protocols Used: A Systematic Review. Healthcare (Basel) 2022; 10:healthcare10122402. [PMID: 36553926 PMCID: PMC9778437 DOI: 10.3390/healthcare10122402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/20/2022] [Accepted: 11/23/2022] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND The aim of this study was to summarize evidence on energy metabolism through peak fat oxidation (PFO) and maximum fat oxidation (Fatmax), as well as to analyze the protocols used in people with spinal cord injury (SCI) and to examine the main factors related to fat oxidation ability (i.e., age, sex, level of physical activity, and level and degree of injury). METHODS Studies to determine PFO and Fatmax using indirect calorimetry with an arm exercise protocol for SCI patients were included after a systematic search. Other endpoints included study design, sample size, control group, demographic data, level of injury, physical condition, protocol, outcomes measured, and statistical findings. RESULTS Eight studies (n = 560) were included. The mean value of VO2peak was 1.86 L∙min-1 (range 0.75-2.60 L∙min-1) (lowest value in the tetraplegic subjects). The PFO ranged between 0.06 and 0.30 g∙min-1 (lowest rates: the non-trained subjects with cervical SCI; highest: the tetraplegic subjects). Two types of exercise protocol were found: arm cycle ergometer, and wheelchair propulsion with a computerized ergometer. Five studies used an incremental protocol (2-3 min/stage, different load increments); the rest performed tests of 20 min/stage at three intensities. CONCLUSION There are few existing studies measuring fat oxidation in SCI, many of which used small and heterogeneous samples. PFO was lower in SCI subjects when compared with non-injured people performing lower-limb exercise; however, comparing upper-limb exercise, people with SCI showed higher values.
Collapse
Affiliation(s)
- Soraya Martín-Manjarrés
- Hospital Nacional de Parapléjicos, SESCAM, 45004 Toledo, Spain
- GENUD-Toledo Research Group, Universidad de Castilla-La Mancha, 45071 Toledo, Spain
| | - Javier Leal-Martín
- GENUD-Toledo Research Group, Universidad de Castilla-La Mancha, 45071 Toledo, Spain
- CIBER on Frailty and Healthy Aging, Instituto de Salud Carlos III (CIBERFES, ISCIII), 28029 Madrid, Spain
| | - Cristina Granados
- Departamento de Educación Física y Deporte, Facultad de Educación y Deporte, Universidad del País Vasco (UPV/EHU), 01007 Vitoria, Spain
| | - Esmeralda Mata
- Facultad Ciencias del Deporte, Universidad de Castilla-La Mancha, 45071 Toledo, Spain
| | - Ángel Gil-Agudo
- Departamento de Medicina Física y Rehabilitación, Hospital Nacional de Parapléjicos, SESCAM, 45004 Toledo, Spain
| | - Irene Rodríguez-Gómez
- GENUD-Toledo Research Group, Universidad de Castilla-La Mancha, 45071 Toledo, Spain
- CIBER on Frailty and Healthy Aging, Instituto de Salud Carlos III (CIBERFES, ISCIII), 28029 Madrid, Spain
- Correspondence: ; Tel.: +34-925-268-800 (ext. 96808)
| | - Ignacio Ara
- GENUD-Toledo Research Group, Universidad de Castilla-La Mancha, 45071 Toledo, Spain
- CIBER on Frailty and Healthy Aging, Instituto de Salud Carlos III (CIBERFES, ISCIII), 28029 Madrid, Spain
| |
Collapse
|
7
|
Price M, Bottoms L, Hill M, Eston R. Maximal Fat Oxidation during Incremental Upper and Lower Body Exercise in Healthy Young Males. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:15311. [PMID: 36430032 PMCID: PMC9691189 DOI: 10.3390/ijerph192215311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/12/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
The aim of this study is to determine the magnitude of maximal fat oxidation (MFO) during incremental upper and lower body exercise. Thirteen non-specifically trained male participants (19.3 ± 0.5 y, 78.1 ± 9.1 kg body mass) volunteered for this repeated-measures study, which had received university ethics committee approval. Participants undertook two incremental arm crank (ACE) and cycle ergometry (CE) exercise tests to volitional exhaustion. The first test for each mode served as habituation. The second test was an individualised protocol, beginning at 40% of the peak power output (POpeak) achieved in the first test, with increases of 10% POpeak until volitional exhaustion. Expired gases were recorded at the end of each incremental stage, from which fat and carbohydrate oxidation rates were calculated. MFO was taken as the greatest fat oxidation value during incremental exercise and expressed relative to peak oxygen uptake (%V˙O2peak). MFO was lower during ACE (0.44 ± 0.24 g·min-1) than CE (0.77 ± 0.31 g·min-1; respectively, p < 0.01) and occurred at a lower exercise intensity (53 ± 21 vs. 67 ± 18%V˙O2peak; respectively, p < 0.01). Inter-participant variability for MFO was greatest during ACE. These results suggest that weight loss programs involving the upper body should occur at lower exercise intensities than for the lower body.
Collapse
Affiliation(s)
- Mike Price
- Centre for Sport, Exercise and Life Sciences, School of Life Sciences, Coventry University, Coventry CV1 5FB, UK
| | - Lindsay Bottoms
- Department of Psychology, Sport and Geography, University of Hertfordshire, Hatfield AL10 9AB, UK
| | - Matthew Hill
- Centre for Sport, Exercise and Life Sciences, School of Life Sciences, Coventry University, Coventry CV1 5FB, UK
| | - Roger Eston
- Alliance for Research in Exercise, Nutrition and Activity, Campus Central—City East, University of South Australia, GPO Box 2471, Adelaide 5001, Australia
| |
Collapse
|
8
|
Avram VF, Merce AP, Hâncu IM, Bătrân AD, Kennedy G, Rosca MG, Muntean DM. Impairment of Mitochondrial Respiration in Metabolic Diseases: An Overview. Int J Mol Sci 2022; 23:8852. [PMID: 36012137 PMCID: PMC9408127 DOI: 10.3390/ijms23168852] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/05/2022] [Accepted: 08/06/2022] [Indexed: 11/16/2022] Open
Abstract
Mitochondrial dysfunction has emerged as a central pathomechanism in the setting of obesity and diabetes mellitus, linking these intertwined pathologies that share insulin resistance as a common denominator. High-resolution respirometry (HRR) is a state-of-the-art research method currently used to study mitochondrial respiration and its impairment in health and disease. Tissue samples, cells or isolated mitochondria are exposed to various substrate-uncoupler-inhibitor-titration protocols, which allows the measurement and calculation of several parameters of mitochondrial respiration. In this review, we discuss the alterations of mitochondrial bioenergetics in the main dysfunctional organs that contribute to the development of the obese and diabetic phenotypes in both animal models and human subjects. Herein we review data regarding the impairment of oxidative phosphorylation as integrated mitochondrial function assessed by means of HRR. We acknowledge the critical role of this method in determining the alterations in oxidative phosphorylation occurring in the early stages of metabolic pathologies. We conclude that there is a mutual two-way relationship between mitochondrial dysfunction and insulin insensitivity that characterizes these diseases.
Collapse
Affiliation(s)
- Vlad Florian Avram
- Department VII Internal Medicine—Diabetes, Nutrition and Metabolic Diseases, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania
- Center for Molecular Research in Nephrology and Vascular Disease, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania
| | - Adrian Petru Merce
- Doctoral School Medicine—Pharmacy, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania
- Center for Translational Research and Systems Medicine, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania
| | - Iasmina Maria Hâncu
- Doctoral School Medicine—Pharmacy, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania
- Center for Translational Research and Systems Medicine, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania
| | - Alina Doruța Bătrân
- Doctoral School Medicine—Pharmacy, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania
- Center for Translational Research and Systems Medicine, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania
| | - Gabrielle Kennedy
- Department of Foundational Sciences, Central Michigan University College of Medicine, Mount Pleasant, MI 48858, USA
| | - Mariana Georgeta Rosca
- Department of Foundational Sciences, Central Michigan University College of Medicine, Mount Pleasant, MI 48858, USA
| | - Danina Mirela Muntean
- Center for Translational Research and Systems Medicine, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania
- Department III Functional Sciences—Pathophysiology, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania
| |
Collapse
|
9
|
Favretto MA, Cossul S, Andreis FR, Nakamura LR, Ronsoni MF, Tesfaye S, Selvarajah D, Marques JLB. Alterations of tibialis anterior muscle activation pattern in subjects with type 2 diabetes and diabetic peripheral neuropathy. Biomed Phys Eng Express 2022; 8. [PMID: 34933285 DOI: 10.1088/2057-1976/ac455b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 12/21/2021] [Indexed: 11/11/2022]
Abstract
Diabetic peripheral neuropathy (DPN) is associated with loss of motor units (MUs), which can cause changes in the activation pattern of muscle fibres. This study investigated the pattern of muscle activation using high-density surface electromyography (HD-sEMG) signals from subjects with type 2 diabetes mellitus (T2DM) and DPN. Thirty-five adults participated in the study: 12 healthy subjects (HV), 12 patients with T2DM without DPN (No-DPN) and 11 patients with T2DM with DPN (DPN). HD-sEMG signals were recorded in the tibialis anterior muscle during an isometric contraction of ankle dorsiflexion at 50% of the maximum voluntary isometric contraction (MVIC) during 30-s. The calculated HD-sEMG signals parameters were the normalised root mean square (RMS), normalised median frequency (MDF), coefficient of variation (CoV) and modified entropy (ME). The RMS increased significantly (p = 0.001) with time only for the DPN group, while the MDF decreased significantly (p < 0.01) with time for the three groups. Moreover, the ME was significantly lower (p = 0.005), and CoV was significantly higher (p = 0.003) for the DPN group than the HV group. Using HD-sEMG, we have demonstrated a reduction in the number of MU recruited by individuals with DPN. This study provides proof of concept for the clinical utility of this technique for identifying neuromuscular impairment caused by DPN.
Collapse
Affiliation(s)
- M A Favretto
- Institute of Biomedical Engineering, Department of Electrical and Electronic Engineering, Federal University of Santa Catarina, Florianopolis, Santa Catarina, Brazil
| | - S Cossul
- Institute of Biomedical Engineering, Department of Electrical and Electronic Engineering, Federal University of Santa Catarina, Florianopolis, Santa Catarina, Brazil
| | - F R Andreis
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - L R Nakamura
- Department of Informatics and Statistics, Federal University of Santa Catarina, Florianopolis, Santa Catarina, Brazil
| | - M F Ronsoni
- Department of Endocrinology and Metabolism, University Hospital, Federal University of Santa Catarina, Florianopolis, Santa Catarina, Brazil
| | - S Tesfaye
- Diabetes Research Department, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, United Kingdom
| | - D Selvarajah
- Department of Oncology and Human Metabolism, University of Sheffield, Sheffield, United Kingdom
| | - J L B Marques
- Institute of Biomedical Engineering, Department of Electrical and Electronic Engineering, Federal University of Santa Catarina, Florianopolis, Santa Catarina, Brazil
| |
Collapse
|
10
|
Szczerbinski L, Taylor MA, Puchta U, Konopka P, Paszko A, Citko A, Szczerbinski K, Goscik J, Gorska M, Larsen S, Kretowski A. The Response of Mitochondrial Respiration and Quantity in Skeletal Muscle and Adipose Tissue to Exercise in Humans with Prediabetes. Cells 2021; 10:cells10113013. [PMID: 34831236 PMCID: PMC8616473 DOI: 10.3390/cells10113013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/28/2021] [Accepted: 11/03/2021] [Indexed: 12/22/2022] Open
Abstract
Background: Mitochondrial dysfunction has been implicated in the pathogenesis of type 2 diabetes, but its contribution to the early stages of dysglycemia remains poorly understood. By collecting a high-resolution stage-based spectrum of dysglycemia, our study fills this gap by evaluating derangement in both the function and quantity of mitochondria. We sampled mitochondria in skeletal muscle and subcutaneous adipose tissues of subjects with progressive advancement of dysglycemia under a three-month exercise intervention. Methods: We measured clinical metabolic parameters and gathered skeletal muscle and adipose tissue biopsies before and after the three-month exercise intervention. We then assayed the number of mitochondria via citrate synthase (CS) activity and functional parameters with high-resolution respirometry. Results: In muscle, there were no differences in mitochondrial quantity or function at baseline between normoglycemics and prediabetics. However, the intervention caused improvement in CS activity, implying an increase in mitochondrial quantity. By contrast in adipose tissue, baseline differences in CS activity were present, with the lowest CS activity coincident with impaired fasting glucose and impaired glucose tolerance (IFG + IGT). Finally, CS activity, but few of the functional metrics, improved under the intervention. Conclusions: We show that in prediabetes, no differences in the function or amount of mitochondria (measured by CS activity) in skeletal muscle are apparent, but in adipose tissue of subjects with IFG + IGT, a significantly reduced activity of CS was observed. Finally, metabolic improvements under the exercise correlate to improvements in the amount, rather than function, of mitochondria in both tissues.
Collapse
Affiliation(s)
- Lukasz Szczerbinski
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, Sklodowskiej-Curie 24A, 15-276 Bialystok, Poland; (U.P.); (K.S.); (M.G.); (A.K.)
- Clinical Research Centre, Medical University of Bialystok, Sklodowskiej-Curie 24A, 15-276 Bialystok, Poland; (M.A.T.); (P.K.); (A.P.); (A.C.); (J.G.); (S.L.)
- Correspondence: ; Tel.: +48-85-831-8150
| | - Mark Alan Taylor
- Clinical Research Centre, Medical University of Bialystok, Sklodowskiej-Curie 24A, 15-276 Bialystok, Poland; (M.A.T.); (P.K.); (A.P.); (A.C.); (J.G.); (S.L.)
- Helen Diller Family Comprehensive Cancer Center, University of California at San Francisco, 1450 3rd St., San Francisco, CA 94158, USA
| | - Urszula Puchta
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, Sklodowskiej-Curie 24A, 15-276 Bialystok, Poland; (U.P.); (K.S.); (M.G.); (A.K.)
| | - Paulina Konopka
- Clinical Research Centre, Medical University of Bialystok, Sklodowskiej-Curie 24A, 15-276 Bialystok, Poland; (M.A.T.); (P.K.); (A.P.); (A.C.); (J.G.); (S.L.)
| | - Adam Paszko
- Clinical Research Centre, Medical University of Bialystok, Sklodowskiej-Curie 24A, 15-276 Bialystok, Poland; (M.A.T.); (P.K.); (A.P.); (A.C.); (J.G.); (S.L.)
| | - Anna Citko
- Clinical Research Centre, Medical University of Bialystok, Sklodowskiej-Curie 24A, 15-276 Bialystok, Poland; (M.A.T.); (P.K.); (A.P.); (A.C.); (J.G.); (S.L.)
| | - Karol Szczerbinski
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, Sklodowskiej-Curie 24A, 15-276 Bialystok, Poland; (U.P.); (K.S.); (M.G.); (A.K.)
| | - Joanna Goscik
- Clinical Research Centre, Medical University of Bialystok, Sklodowskiej-Curie 24A, 15-276 Bialystok, Poland; (M.A.T.); (P.K.); (A.P.); (A.C.); (J.G.); (S.L.)
| | - Maria Gorska
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, Sklodowskiej-Curie 24A, 15-276 Bialystok, Poland; (U.P.); (K.S.); (M.G.); (A.K.)
| | - Steen Larsen
- Clinical Research Centre, Medical University of Bialystok, Sklodowskiej-Curie 24A, 15-276 Bialystok, Poland; (M.A.T.); (P.K.); (A.P.); (A.C.); (J.G.); (S.L.)
- Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark
| | - Adam Kretowski
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, Sklodowskiej-Curie 24A, 15-276 Bialystok, Poland; (U.P.); (K.S.); (M.G.); (A.K.)
- Clinical Research Centre, Medical University of Bialystok, Sklodowskiej-Curie 24A, 15-276 Bialystok, Poland; (M.A.T.); (P.K.); (A.P.); (A.C.); (J.G.); (S.L.)
| |
Collapse
|
11
|
Tsilingiris D, Tzeravini E, Koliaki C, Dalamaga M, Kokkinos A. The Role of Mitochondrial Adaptation and Metabolic Flexibility in the Pathophysiology of Obesity and Insulin Resistance: an Updated Overview. Curr Obes Rep 2021; 10:191-213. [PMID: 33840072 DOI: 10.1007/s13679-021-00434-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/30/2021] [Indexed: 12/27/2022]
Abstract
PURPOSE OF REVIEW The term "metabolic flexibility" denotes the dynamic responses of the cellular oxidative machinery in order to adapt to changes in energy substrate availability. A progressive loss of this adaptive capacity has been implicated in the development of obesity-related comorbidities. Mitochondria are dynamic intracellular organelles which play a fundamental role in energy metabolism, and the mitochondrial adaptation to environmental challenges may be viewed as the functional component of metabolic flexibility. Herein, we attempt to comprehensively review the available evidence regarding the role of mitochondrial adaptation and metabolic flexibility in the pathogenesis of obesity and related morbidities, namely insulin resistance states and non-alcoholic fatty liver disease (NAFLD). RECENT FINDINGS Overall, there is a concrete body of evidence to support the presence of impaired mitochondrial adaptation as a principal component of systemic metabolic inflexibility in conditions related to obesity. There are still many unresolved questions regarding the relationship between the gradual loss of mitochondrial adaptability and the progression of obesity-related complications, such as causality issues, the timely appearance and reversibility of the described disturbances, and the generalizability of the findings to the mitochondrial content of every affected tissue or organ. The evidence regarding the causality between the observed associations remains inconclusive, although most of the available data points towards a bidirectional, potentially mutually amplifying relationship. The spectrum of NAFLD is of particular interest, since functional and pathological changes in the course of its development closely mirror the progression of dysmetabolism, if not constituting a dynamic component of the latter.
Collapse
Affiliation(s)
- Dimitrios Tsilingiris
- First Department of Propaedeutic Internal Medicine, School of Medicine, Laiko General Hospital, National and Kapodistrian University of Athens, Athens, Greece.
- Department of Internal Medicine I and Clinical Chemistry, University of Heidelberg, Heidelberg, Germany.
| | - Evangelia Tzeravini
- First Department of Propaedeutic Internal Medicine, School of Medicine, Laiko General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Chrysi Koliaki
- First Department of Propaedeutic Internal Medicine, School of Medicine, Laiko General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria Dalamaga
- Department of Biological Chemistry, School of Medicine, National and Kapodistrian University of Athens, Mikras Asias 75, 11527, Athens, Greece
| | - Alexander Kokkinos
- First Department of Propaedeutic Internal Medicine, School of Medicine, Laiko General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
12
|
Hansen C, Olsen K, Pilegaard H, Bangsbo J, Gliemann L, Hellsten Y. High metabolic substrate load induces mitochondrial dysfunction in rat skeletal muscle microvascular endothelial cells. Physiol Rep 2021; 9:e14855. [PMID: 34288561 PMCID: PMC8290479 DOI: 10.14814/phy2.14855] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/01/2021] [Accepted: 03/03/2021] [Indexed: 12/21/2022] Open
Abstract
The influence of glucose and palmitic acid (PA) on mitochondrial respiration and emission of hydrogen peroxide (H2 O2 ) was determined in skeletal muscle-derived microvascular endothelial cells. Measurements were assessed in intact and permeabilized (cells treated with 0.025% saponin) low passage endothelial cells with acute-or prolonged (3 days) incubation with regular (1.7 mM) or elevated (2.2 mM) PA concentrations and regular (5 mM) or elevated (11 mM) glucose concentrations. In intact cells, acute incubation with 1.7 mM PA alone or with 1.7 mM PA + 5 mM glucose (p < .001) led to a lower mitochondrial respiration (p < 0.01) and markedly higher H2 O2 /O2 emission (p < 0.05) than with 5 mM glucose alone. Prolonged incubation of intact cells with 1.7 mM PA +5 mM glucose led to 34% (p < 0.05) lower respiration and 2.5-fold higher H2 O2 /O2 emission (p < 0.01) than incubation with 5 mM glucose alone. Prolonged incubation of intact cells with elevated glucose led to 60% lower (p < 0.05) mitochondrial respiration and 4.6-fold higher H2 O2 /O2 production than incubation with 5 mM glucose in intact cells (p < 0.001). All effects observed in intact cells were present also in permeabilized cells (State 2). In conclusion, our results show that acute and prolonged lipid availability, as well as prolonged hyperglycemia, induces mitochondrial dysfunction as evidenced by lower mitochondrial respiration and enhanced H2 O2/ O2 emission. Elevated plasma substrate availability may lead to microvascular dysfunction in skeletal muscle by impairing endothelial mitochondrial function.
Collapse
Affiliation(s)
- Camilla Hansen
- Department of Nutrition, Exercise and SportsCardiovascular Physiology GroupSection of Integrative PhysiologyUniversity of CopenhagenCopenhagenDenmark
| | - Karina Olsen
- Department of Nutrition, Exercise and SportsCardiovascular Physiology GroupSection of Integrative PhysiologyUniversity of CopenhagenCopenhagenDenmark
| | - Henriette Pilegaard
- Department of BiologySection of Cell Biology and PhysiologyUniversity of CopenhagenCopenhagenDenmark
| | - Jens Bangsbo
- Department of Nutrition, Exercise and SportsSection of Integrative PhysiologyUniversity of CopenhagenCopenhagenDenmark
| | - Lasse Gliemann
- Department of Nutrition, Exercise and SportsCardiovascular Physiology GroupSection of Integrative PhysiologyUniversity of CopenhagenCopenhagenDenmark
| | - Ylva Hellsten
- Department of Nutrition, Exercise and SportsCardiovascular Physiology GroupSection of Integrative PhysiologyUniversity of CopenhagenCopenhagenDenmark
| |
Collapse
|
13
|
Pileggi CA, Parmar G, Harper ME. The lifecycle of skeletal muscle mitochondria in obesity. Obes Rev 2021; 22:e13164. [PMID: 33442950 DOI: 10.1111/obr.13164] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/10/2020] [Accepted: 10/12/2020] [Indexed: 12/12/2022]
Abstract
Skeletal muscle possesses dramatic metabolic plasticity that allows for the rapid adaptation in cellular energy transduction to meet the demands of the organism. Obesity elicits changes in skeletal muscle structure and function, resulting in the accumulation of intramuscular lipids. The accumulation of intramuscular lipids in obesity is associated with impaired skeletal muscle mitochondrial content and function. Mitochondria exist as a dynamic network that is regulated by the processes of biogenesis, fusion, fission, and mitophagy. In this review, we outline adaptations in molecular pathways that regulate mitochondrial structure and function in obesity. We highlight the emerging role of dysregulated skeletal muscle macroautophagy and mitochondrial turnover in obesity. Future research should further elucidate the role of mitophagy in observed reductions in mitochondrial content and function during obesity.
Collapse
Affiliation(s)
- Chantal A Pileggi
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada.,Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - Gaganvir Parmar
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada.,Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - Mary-Ellen Harper
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada.,Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| |
Collapse
|
14
|
Jacobs RA, Lundby C. Contextualizing the biological relevance of standardized high-resolution respirometry to assess mitochondrial function in permeabilized human skeletal muscle. Acta Physiol (Oxf) 2021; 231:e13625. [PMID: 33570804 PMCID: PMC8047922 DOI: 10.1111/apha.13625] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 12/16/2022]
Abstract
Aim This study sought to provide a statistically robust reference for measures of mitochondrial function from standardized high‐resolution respirometry with permeabilized human skeletal muscle (ex vivo), compare analogous values obtained via indirect calorimetry, arterial‐venous O2 differences and 31P magnetic resonance spectroscopy (in vivo) and attempt to resolve differences across complementary methodologies as necessary. Methods Data derived from 831 study participants across research published throughout March 2009 to November 2019 were amassed to examine the biological relevance of ex vivo assessments under standard conditions, ie physiological temperatures of 37°C and respiratory chamber oxygen concentrations of ~250 to 500 μmol/L. Results Standard ex vivo‐derived measures are lower (Z ≥ 3.01, P ≤ .0258) en masse than corresponding in vivo‐derived values. Correcting respiratory values to account for mitochondrial temperatures 10°C higher than skeletal muscle temperatures at maximal exercise (~50°C): (i) transforms data to resemble (Z ≤ 0.8, P > .9999) analogous yet context‐specific in vivo measures, eg data collected during maximal 1‐leg knee extension exercise; and (ii) supports the position that maximal skeletal muscle respiratory rates exceed (Z ≥ 13.2, P < .0001) those achieved during maximal whole‐body exercise, e.g. maximal cycling efforts. Conclusion This study outlines and demonstrates necessary considerations when actualizing the biological relevance of human skeletal muscle respiratory control, metabolic flexibility and bioenergetics from standard ex vivo‐derived assessments using permeabilized human muscle. These findings detail how cross‐procedural comparisons of human skeletal muscle mitochondrial function may be collectively scrutinized in their relationship to human health and lifespan.
Collapse
Affiliation(s)
- Robert A. Jacobs
- Department of Human Physiology & Nutrition University of Colorado Colorado Springs (UCCS) Colorado Springs CO USA
| | - Carsten Lundby
- Innland University of Applied Sciences Lillehammer Norway
| |
Collapse
|
15
|
Ives SJ, Zaleski KS, Slocum C, Escudero D, Sheridan C, Legesse S, Vidal K, Lagalwar S, Reynolds TH. The effect of succinic acid on the metabolic profile in high-fat diet-induced obesity and insulin resistance. Physiol Rep 2020; 8:e14630. [PMID: 33185326 PMCID: PMC7663994 DOI: 10.14814/phy2.14630] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 10/07/2020] [Indexed: 12/16/2022] Open
Abstract
Obesity, insulin resistance, and poor metabolic profile are hallmarks of a high-fat diet (HFD), highlighting the need to understand underlying mechanisms. Therefore, we sought to determine the effect of succinic acid (SA) on metabolism in high-fat diet (HFD)-induced obesity. Animals were randomly assigned to either low-fat diet (LFD) or a high-fat diet (HFD). Mice consumed their respective diets for 4.5 months and then assigned to the following groups: (LFD)+vehicle, LFD + SA (0.75 mg/ml), HFD + vehicle, or HFD + SA. Body weight (BW), food, and water intake, were tracked weekly. After 6 weeks, insulin, glucose, and pyruvate tolerance tests were completed, and spontaneous physical activity was assessed. Epididymal white adipose tissue (EWAT) mass and in vitro measurements of oxidative skeletal muscle (soleus) respiration were obtained. Expectedly, the HFD increased BW and EWAT mass, and reduced glucose and insulin tolerance. SA significantly reduced EWAT mass, more so in HFD (p < .05), but had no effect on any in vivo measurements (BW, insulin, glucose, or pyruvate tolerance, nor physical activity, all p > .05). A significant (p < .05) interaction was observed between mitochondrial respiration and treatment, where SA increased respiration, likely owed to greater mitochondrial content, as assessed by complex IV activity in both LFD and HFD. In HFD-induced obesity, coupled with insulin desensitization, we found no favorable effect of succinic acid on glucose regulation, though adiposity was attenuated. In oxidative skeletal muscle, there was a tendency for increased respiratory capacity, likely owed to greater mitochondrial content, suggestive of a succinic acid-induced mitochondrial biogenesis.
Collapse
Affiliation(s)
- Stephen J. Ives
- Health and Human Physiological SciencesSkidmore CollegeSaratoga SpringsNYUSA
| | - Kendall S. Zaleski
- Health and Human Physiological SciencesSkidmore CollegeSaratoga SpringsNYUSA
| | - Cheyanne Slocum
- Health and Human Physiological SciencesSkidmore CollegeSaratoga SpringsNYUSA
| | - Daniela Escudero
- Health and Human Physiological SciencesSkidmore CollegeSaratoga SpringsNYUSA
| | - Caty Sheridan
- Health and Human Physiological SciencesSkidmore CollegeSaratoga SpringsNYUSA
| | - Saada Legesse
- Health and Human Physiological SciencesSkidmore CollegeSaratoga SpringsNYUSA
| | - Kavey Vidal
- Health and Human Physiological SciencesSkidmore CollegeSaratoga SpringsNYUSA
| | - Sarita Lagalwar
- Health and Human Physiological SciencesSkidmore CollegeSaratoga SpringsNYUSA
| | - Thomas H. Reynolds
- Health and Human Physiological SciencesSkidmore CollegeSaratoga SpringsNYUSA
| |
Collapse
|
16
|
Buch BT, Halling JF, Ringholm S, Gudiksen A, Kjøbsted R, Olsen MA, Wojtaszewski JFP, Pilegaard H. Colchicine treatment impairs skeletal muscle mitochondrial function and insulin sensitivity in an age‐specific manner. FASEB J 2020; 34:8653-8670. [DOI: 10.1096/fj.201903113rr] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 04/16/2020] [Accepted: 04/17/2020] [Indexed: 12/20/2022]
Affiliation(s)
| | | | - Stine Ringholm
- Department of Biology University of Copenhagen Copenhagen Denmark
| | - Anders Gudiksen
- Department of Biology University of Copenhagen Copenhagen Denmark
| | - Rasmus Kjøbsted
- Department of Nutrition, Exercise and Sports University of Copenhagen Copenhagen Denmark
| | | | | | | |
Collapse
|
17
|
Arad AD, Basile AJ, Albu J, DiMenna FJ. No Influence of Overweight/Obesity on Exercise Lipid Oxidation: A Systematic Review. Int J Mol Sci 2020; 21:ijms21051614. [PMID: 32120832 PMCID: PMC7084725 DOI: 10.3390/ijms21051614] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 02/21/2020] [Accepted: 02/24/2020] [Indexed: 12/16/2022] Open
Abstract
Compared to lean counterparts, overweight/obese individuals rely less on lipid during fasting. This deficiency has been implicated in the association between overweight/obesity and blunted insulin signaling via elevated intramuscular triglycerides. However, the capacity for overweight/obese individuals to use lipid during exercise is unclear. This review was conducted to formulate a consensus regarding the influence of overweight/obesity on exercise lipid use. PubMed, ProQuest, ISI Web of Science, and Cochrane Library databases were searched. Articles were included if they presented original research on the influence of overweight/obesity on exercise fuel use in generally healthy sedentary adults. Articles were excluded if they assessed older adults, individuals with chronic disease, and/or exercise limitations or physically-active individuals. The search identified 1205 articles with 729 considered for inclusion after duplicate removal. Once titles, abstracts, and/or manuscripts were assessed, 24 articles were included. The preponderance of evidence from these articles indicates that overweight/obese individuals rely on lipid to a similar extent during exercise. However, conflicting findings were found in eight articles due to the outcome measure cited, participant characteristics other than overweight/obesity and characteristics of the exercise bout(s). We also identified factors other than body fatness which can influence exercise lipid oxidation that should be controlled in future research.
Collapse
Affiliation(s)
- Avigdor D. Arad
- Division of Endocrinology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (A.D.A.); (A.J.B.); (J.A.)
| | - Anthony J. Basile
- Division of Endocrinology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (A.D.A.); (A.J.B.); (J.A.)
| | - Jeanine Albu
- Division of Endocrinology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (A.D.A.); (A.J.B.); (J.A.)
| | - Fred J. DiMenna
- Division of Endocrinology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (A.D.A.); (A.J.B.); (J.A.)
- Department of Biobehavioral Sciences, Columbia University Teachers College, New York, NY 10027, USA
- Correspondence:
| |
Collapse
|
18
|
Kras KA, Hoffman N, Roust LR, Benjamin TR, DE Filippis EA, Katsanos CS. Adenosine Triphosphate Production of Muscle Mitochondria after Acute Exercise in Lean and Obese Humans. Med Sci Sports Exerc 2019; 51:445-453. [PMID: 30363008 DOI: 10.1249/mss.0000000000001812] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
INTRODUCTION Current evidence indicates mitochondrial dysfunction in humans with obesity. Acute exercise appears to enhance mitochondrial function in the muscle of nonobese humans, but its effects on mitochondrial function in muscle of humans with obesity are not known. We sought to determine whether acute aerobic exercise stimulates mitochondrial function in subsarcolemmal (SS) and intermyofibrillar (IMF) mitochondria in humans with obesity. METHODS We assessed maximal adenosine triphosphate production rate (MAPR) and citrate synthase (CS) activity in isolated SS and IMF mitochondria from subjects with body mass index < 27 kg·m (median age, 25 yr; interquartile range, 22-39 yr) and subjects with body mass index > 32 kg·m (median age, 29 yr; interquartile range, 20-39 yr) before and 3 h after a 45-min cycling exercise at an intensity corresponding to 65% HR reserve. The SS and IMF mitochondria were isolated from muscle biopsies using differential centrifugation. Maximal adenosine triphosphate production rate and CS activities were determined using luciferase-based and spectrophotometric enzyme-based assays, respectively. RESULTS Exercise increased MAPR in IMF mitochondria in both nonobese subjects and subjects with obesity (P < 0.05), but CS-specific activity did not change in either group (P > 0.05). Exercise increased MAPR supported by complex II in SS mitochondria, in both groups (P < 0.05), but MAPR supported by complex I or palmitate did not increase by exercise in the subjects with obesity (P > 0.05). Citrate synthase-specific activity increased in SS mitochondria in response to exercise only in nonobese subjects (P < 0.05). CONCLUSIONS In nonobese humans, acute aerobic exercise increases MAPR in both SS and IMF mitochondria. In humans with obesity, the exercise increases MAPR in IMF mitochondria, but this response is less evident in SS mitochondria.
Collapse
Affiliation(s)
- Katon A Kras
- Center for Metabolic and Vascular Biology, Arizona State University, Scottsdale, AZ
| | - Nyssa Hoffman
- Center for Metabolic and Vascular Biology, Arizona State University, Scottsdale, AZ
| | - Lori R Roust
- College of Medicine, Mayo Clinic in Arizona, Scottsdale, AZ
| | | | | | - Christos S Katsanos
- Center for Metabolic and Vascular Biology, Arizona State University, Scottsdale, AZ.,College of Medicine, Mayo Clinic in Arizona, Scottsdale, AZ
| |
Collapse
|
19
|
Lewis MT, Kasper JD, Bazil JN, Frisbee JC, Wiseman RW. Quantification of Mitochondrial Oxidative Phosphorylation in Metabolic Disease: Application to Type 2 Diabetes. Int J Mol Sci 2019; 20:E5271. [PMID: 31652915 PMCID: PMC6862501 DOI: 10.3390/ijms20215271] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 10/17/2019] [Accepted: 10/22/2019] [Indexed: 12/17/2022] Open
Abstract
Type 2 diabetes (T2D) is a growing health concern with nearly 400 million affected worldwide as of 2014. T2D presents with hyperglycemia and insulin resistance resulting in increased risk for blindness, renal failure, nerve damage, and premature death. Skeletal muscle is a major site for insulin resistance and is responsible for up to 80% of glucose uptake during euglycemic hyperglycemic clamps. Glucose uptake in skeletal muscle is driven by mitochondrial oxidative phosphorylation and for this reason mitochondrial dysfunction has been implicated in T2D. In this review we integrate mitochondrial function with physiologic function to present a broader understanding of mitochondrial functional status in T2D utilizing studies from both human and rodent models. Quantification of mitochondrial function is explained both in vitro and in vivo highlighting the use of proper controls and the complications imposed by obesity and sedentary lifestyle. This review suggests that skeletal muscle mitochondria are not necessarily dysfunctional but limited oxygen supply to working muscle creates this misperception. Finally, we propose changes in experimental design to address this question unequivocally. If mitochondrial function is not impaired it suggests that therapeutic interventions and drug development must move away from the organelle and toward the cardiovascular system.
Collapse
Affiliation(s)
- Matthew T Lewis
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA.
| | - Jonathan D Kasper
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA.
- Present address: Molecular Physiology Institute, Duke University, Durham, NC 27701, USA.
| | - Jason N Bazil
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA.
| | - Jefferson C Frisbee
- Department of Medical Biophysics, University of Western Ontario, London, ON N6A 3K7, Canada.
| | - Robert W Wiseman
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA.
- Department of Radiology, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
20
|
Amaro-Gahete FJ, Sanchez-Delgado G, Jurado-Fasoli L, De-la-O A, Castillo MJ, Helge JW, Ruiz JR. Assessment of maximal fat oxidation during exercise: A systematic review. Scand J Med Sci Sports 2019; 29:910-921. [PMID: 30929281 DOI: 10.1111/sms.13424] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 03/06/2019] [Accepted: 03/20/2019] [Indexed: 11/27/2022]
Abstract
Maximal fat oxidation during exercise (MFO) and the exercise intensity eliciting MFO (Fatmax ) are considered biological markers of metabolic health and performance. A wide range of studies have been performed to increase our knowledge about their regulation by exercise and/or nutritional intervention. However, numerous data collection and analysis approaches have been applied, which may have affected the MFO and Fatmax estimation. We aimed to systematically review the available studies describing and/or comparing different data collection and analysis approach factors that could affect MFO and Fatmax estimation in healthy individuals and patients. Two independent researchers performed the search. We included all original studies in which MFO and/or Fatmax were estimated by indirect calorimetry through an incremental graded exercise protocol published from 2002 to 2019. This systematic review provides key information about the factors that could affect MFO and Fatmax estimation: ergometer type, metabolic cart used, warm-up duration and intensity, stage duration and intensities imposed in the graded exercise protocol, time interval selected for data analysis, stoichiometric equation selected to estimate fat oxidation, data analysis approach, time of the day when the test was performed, fasting time/previous meal before the test, and testing days for MFO/Fatmax and maximal oxygen uptake assessment. We suggest that researchers measuring MFO and Fatmax should take into account these key methodological issues that can considerably affect the accuracy, validity, and reliability of the measurement. Likewise, when comparing different studies, it is important to check whether the above-mentioned key methodological issues are similar in such studies to avoid ambiguous and unacceptable comparisons.
Collapse
Affiliation(s)
- Francisco J Amaro-Gahete
- EFFECTS-262, Department of Medical Physiology, School of Medicine, University of Granada, Granada, Spain.,PROmoting FITness and Health through Physical Activity Research Group (PROFITH), Department of Physical Education and Sports, Faculty of Sport Sciences, University of Granada, Granada, Spain
| | - Guillermo Sanchez-Delgado
- PROmoting FITness and Health through Physical Activity Research Group (PROFITH), Department of Physical Education and Sports, Faculty of Sport Sciences, University of Granada, Granada, Spain
| | - Lucas Jurado-Fasoli
- EFFECTS-262, Department of Medical Physiology, School of Medicine, University of Granada, Granada, Spain
| | - Alejandro De-la-O
- EFFECTS-262, Department of Medical Physiology, School of Medicine, University of Granada, Granada, Spain
| | - Manuel J Castillo
- EFFECTS-262, Department of Medical Physiology, School of Medicine, University of Granada, Granada, Spain
| | - Jørn W Helge
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jonatan R Ruiz
- PROmoting FITness and Health through Physical Activity Research Group (PROFITH), Department of Physical Education and Sports, Faculty of Sport Sciences, University of Granada, Granada, Spain
| |
Collapse
|
21
|
Larsen S, Dandanell S, Kristensen KB, Jørgensen SD, Dela F, Helge JW. Influence of exercise amount and intensity on long-term weight loss maintenance and skeletal muscle mitochondrial ROS production in humans. Appl Physiol Nutr Metab 2019; 44:958-964. [PMID: 30664360 DOI: 10.1139/apnm-2018-0577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Sustaining a weight loss after a lifestyle intervention is challenging. The objective of the present study was to investigate if mitochondrial function is associated with the ability to maintain a weight loss. Sixty-eight former participants in an 11-12-week lifestyle intervention were recruited into 2 groups; weight loss maintenance (WLM; body mass index (BMI): 32 ± 1 kg/m2) and weight regain (WR; BMI: 43 ± 2 kg/m2) based on weight loss measured at a follow-up visit (WLM: 4.8 ± 0.4; WR: 7.6 ± 0.8 years after lifestyle intervention). Maximal oxygen consumption rate, physical activity level, and blood and muscle samples were obtained at the follow-up experiment. Mitochondrial respiratory capacity and reactive oxygen species (ROS) production were measured. Fasting blood samples were used to calculate glucose homeostasis index. WR had impaired glucose homeostasis and decreased maximal oxygen uptake and physical activity level compared with WLM. The decreased physical activity in WR was due to a lower activity level at vigorous and moderate intensities. Mitochondrial respiratory capacity and citrate synthase (CS) activity was higher in WLM, but intrinsic mitochondrial respiratory capacity (mitochondrial respiratory capacity corrected for mitochondrial content (CS activity)) was similar. ROS production was higher in WR compared with WLM, which was accompanied by a decreased content of antioxidant proteins in WR. Intrinsic mitochondrial respiratory capacity in skeletal muscle is not associated with the ability to maintain a long-term weight loss. WLM had a higher maximal oxygen uptake, physical activity level, mitochondrial respiratory capacity and CS activity compared with WR. The reduced glucose tolerance was concurrent with increased ROS production per mitochondria in WR, and could also be associated with the lower physical activity level in this group.
Collapse
Affiliation(s)
- Steen Larsen
- Center for Healthy Aging, Department of Biomedical Sciences, XLab, University of Copenhagen, Copenhagen 2200, Denmark.,Clinical Research Centre, Medical University of Bialystok, Bialystok 15-089, Poland
| | - Sune Dandanell
- Center for Healthy Aging, Department of Biomedical Sciences, XLab, University of Copenhagen, Copenhagen 2200, Denmark.,Metropolitan University College, Copenhagen 2200, Denmark
| | - Kasper Birch Kristensen
- Center for Healthy Aging, Department of Biomedical Sciences, XLab, University of Copenhagen, Copenhagen 2200, Denmark
| | - Sofie Drevsholt Jørgensen
- Center for Healthy Aging, Department of Biomedical Sciences, XLab, University of Copenhagen, Copenhagen 2200, Denmark
| | - Flemming Dela
- Center for Healthy Aging, Department of Biomedical Sciences, XLab, University of Copenhagen, Copenhagen 2200, Denmark.,Department of Geriatrics, Bispebjerg University Hospital, Copenhagen 2400, Denmark
| | - Jørn W Helge
- Center for Healthy Aging, Department of Biomedical Sciences, XLab, University of Copenhagen, Copenhagen 2200, Denmark
| |
Collapse
|
22
|
Fealy CE, Mulya A, Axelrod CL, Kirwan JP. Mitochondrial dynamics in skeletal muscle insulin resistance and type 2 diabetes. Transl Res 2018; 202:69-82. [PMID: 30153426 DOI: 10.1016/j.trsl.2018.07.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 07/08/2018] [Accepted: 07/23/2018] [Indexed: 01/09/2023]
Abstract
The traditional view of mitochondria as isolated, spherical, energy producing organelles, is undergoing a revolutionary change. Emerging data show that mitochondria form a dynamic reticulum that is regulated by cycles of fission and fusion. The discovery of proteins that modulate these activities has led to important advances in understanding human disease. Here, we review the latest evidence that connects the emerging field of mitochondrial dynamics to skeletal muscle insulin resistance and propose some potential mechanisms that may explain the long debated link between mitochondria and the development of type 2 diabetes.
Collapse
Affiliation(s)
- CiarÁn E Fealy
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Anny Mulya
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Christopher L Axelrod
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio; Integrated Physiology and Molecular Metabolism Laboratory, Pennington Biomedical Research Center, Baton Rouge, Louisiana
| | - John P Kirwan
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio; Integrated Physiology and Molecular Metabolism Laboratory, Pennington Biomedical Research Center, Baton Rouge, Louisiana.
| |
Collapse
|
23
|
Chrzanowski-Smith OJ, Edinburgh RM, Betts JA, Stokes KA, Gonzalez JT. Evaluation of a graded exercise test to determine peak fat oxidation in individuals with low cardiorespiratory fitness. Appl Physiol Nutr Metab 2018; 43:1288-1297. [DOI: 10.1139/apnm-2018-0098] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The maximal capacity to utilise fat (peak fat oxidation, PFO) may have implications for health and ultra-endurance performance and is commonly determined by incremental exercise tests employing 3-min stages. However, 3-min stages may be insufficient to attain steady-state gas kinetics, compromising test validity. We assessed whether 4-min stages produce steady-state gas exchange and reliable PFO estimates in adults with peak oxygen consumption < 40 mL·kg−1·min−1. Fifteen participants (9 females) completed a graded test to determine PFO and the intensity at which this occurred (FATMAX). Three short continuous exercise sessions (SCE) were then completed in a randomised order, involving completion of the graded test to the stage (i) preceding, (ii) equal to (SCEequal), or (iii) after the stage at which PFO was previously attained, whereupon participants then continued to cycle for 10 min at that respective intensity. Expired gases were sampled at minutes 3–4, 5–6, 7–8, and 9–10. Individual data showed steady-state gas exchange was achieved within 4 min during SCEequal. Mean fat oxidation rates were not different across time within SCEequal nor compared with the graded test at FATMAX (both p > 0.05). However, the graded test displayed poor surrogate validity (SCEequal, minutes 3–4 vs. 5–6, 7–8, and 9–10) and day-to-day reliability (minutes 3–4, SCEequal vs. graded test) to determine PFO, as evident by correlations (range: 0.47–0.83) and typical errors and 95% limits of agreement (ranges: 0.03–0.05 and ±0.09–0.15 g·min−1, respectively). In conclusion, intraindividual variation in PFO is substantial despite 4-min stages establishing steady-state gas exchange in individuals with low fitness. Individual assessment of PFO may require multiple assessments.
Collapse
Affiliation(s)
- Oliver J. Chrzanowski-Smith
- Department for Health, University of Bath, Bath, BA2 7AY, UK
- Department for Health, University of Bath, Bath, BA2 7AY, UK
| | - Robert M. Edinburgh
- Department for Health, University of Bath, Bath, BA2 7AY, UK
- Department for Health, University of Bath, Bath, BA2 7AY, UK
| | - James A. Betts
- Department for Health, University of Bath, Bath, BA2 7AY, UK
- Department for Health, University of Bath, Bath, BA2 7AY, UK
| | - Keith A. Stokes
- Department for Health, University of Bath, Bath, BA2 7AY, UK
- Department for Health, University of Bath, Bath, BA2 7AY, UK
| | - Javier T. Gonzalez
- Department for Health, University of Bath, Bath, BA2 7AY, UK
- Department for Health, University of Bath, Bath, BA2 7AY, UK
| |
Collapse
|
24
|
DiMenna FJ, Arad AD. Exercise as 'precision medicine' for insulin resistance and its progression to type 2 diabetes: a research review. BMC Sports Sci Med Rehabil 2018; 10:21. [PMID: 30479775 PMCID: PMC6251139 DOI: 10.1186/s13102-018-0110-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 11/13/2018] [Indexed: 02/08/2023]
Abstract
Type 2 diabetes and obesity epidemics are in effect in the United States and the two pathologies are linked. In accordance with the growing appreciation that ‘exercise is medicine,’ it is intuitive to suggest that exercise can play an important role in the prevention and/or treatment of these conditions. However, if exercise is to truly be considered as a viable alternative to conventional healthcare prevention/treatment strategies involving pharmaceuticals, it must be prescribed with similar scrutiny. Indeed, it seems reasonable to posit that the recent initiative calling for ‘precision medicine’ in the US standard healthcare system should also be applied in the exercise setting. In this narrative review, we consider a number of explanations that have been forwarded regarding the pathological progression to type 2 diabetes both with and without the concurrent influence of overweight/obesity. Our goal is to provide insight regarding exercise strategies that might be useful as ‘precision medicine’ to prevent/treat this disease. Although the etiology of type 2 diabetes is complex and cause/consequence characteristics of associated dysfunctions have been debated, it is well established that impaired insulin action plays a critical early role. Consequently, an exercise strategy to prevent/treat this disease should be geared toward improving insulin sensitivity both from an acute and chronic standpoint. However, research suggests that a chronic improvement in insulin sensitivity only manifests when weight loss accompanies an exercise intervention. This has resonance because ectopic fat accumulation appears to represent a central component of disease progression regardless of whether obesity is also part of the equation. The cause/consequence characteristics of the relationship between insulin resistance, pathological fat deposition and/or mobilsation, elevated and/or poorly-distributed lipid within myocytes and an impaired capacity to use lipid as fuel remains to be clarified as does the role of muscle mitochondria in the metabolic decline. Until these issues are resolved, a multidimensional exercise strategy (e.g., aerobic exercise at a range of intensities and resistance training for muscular hypertrophy) could provide the best alternative for prevention/treatment.
Collapse
Affiliation(s)
- Fred J DiMenna
- 1Division of Endocrinology, Diabetes and Bone Disease, Icahn School of Medicine at Mount Sinai, 1111 Amsterdam Avenue, Babcock 10th Floor, Suite 1020, New York, 10025 New York USA.,2Department of Biobehavioral Sciences, Columbia University Teachers College, 525 W. 120th Street, New York, 10027 New York USA
| | - Avigdor D Arad
- 1Division of Endocrinology, Diabetes and Bone Disease, Icahn School of Medicine at Mount Sinai, 1111 Amsterdam Avenue, Babcock 10th Floor, Suite 1020, New York, 10025 New York USA
| |
Collapse
|
25
|
Larsen S, Lundby AM, Dandanell S, Oberholzer L, Keiser S, Andersen AB, Haider T, Lundby C. Four days of bed rest increases intrinsic mitochondrial respiratory capacity in young healthy males. Physiol Rep 2018; 6:e13793. [PMID: 30221830 PMCID: PMC6139706 DOI: 10.14814/phy2.13793] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 06/18/2018] [Accepted: 06/19/2018] [Indexed: 11/24/2022] Open
Abstract
Bed rest leads to impaired glucose tolerance. Whether this is linked to maladaptation's in skeletal muscle mitochondrial function and in particular to the level of reactive oxygen species (ROS) is at present unknown. The aim of this longitudinal study was to quantify skeletal muscle mitochondrial function (respiratory capacity and ROS production) together with glucose tolerance after 4 days of strict bed rest in healthy young male subjects (n = 14). Mitochondrial function was determined in permeabilized muscle fibers using high-resolution respirometry and fluorometry, mitochondrial content (citrate synthase [CS] activity) and antioxidant protein expression levels were assessed in parallel to this. Glucose tolerance was determined by means of oral glucose tolerance tests. Intrinsic mitochondrial respiratory capacity was augmented after the bed rest period (CI + IIP : 0.43 ± 0.12 vs. 0.55 ± 0.14 [pmol/sec/mg]/CS activity), due to a decreased CS activity (158 ± 39 vs. 129 ± 25 mU/mg dw.). No differences were observed in ROS production (per mg of tissue or when normalized to CS activity). Furthermore, the protein content for catalase was increased while superoxide dismutase and glutathione peroxidase remained unaffected. These findings were accompanied by an impaired glucose tolerance after the bed rest period (Matsuda index: 12 ± 6 vs. 9 ± 5). The change in intrinsic mitochondrial respiratory capacity could be an early indication in the development of impaired glucose tolerance. The increased catalase protein content might explain that no change was seen in ROS production after 4 days of bed rest. Whether these findings can be extrapolated to lifestyle-dependent decrements in physical activity and the development of type-2-diabetes remains unknown.
Collapse
Affiliation(s)
- Steen Larsen
- XlabCenter for Healthy AgingDepartment of Biomedical SciencesFaculty of Health SciencesUniversity of CopenhagenCopenhagenDenmark
- Clinical Research CentreMedical University of BialystokBialystokPoland
| | | | - Sune Dandanell
- XlabCenter for Healthy AgingDepartment of Biomedical SciencesFaculty of Health SciencesUniversity of CopenhagenCopenhagenDenmark
- Institute of PhysiologyUniversity of ZürichZürichSwitzerland
| | | | - Stefanie Keiser
- Institute of PhysiologyUniversity of ZürichZürichSwitzerland
| | | | - Thomas Haider
- Institute of PhysiologyUniversity of ZürichZürichSwitzerland
| | - Carsten Lundby
- Institute of PhysiologyUniversity of ZürichZürichSwitzerland
| |
Collapse
|
26
|
Lund MT, Larsen S, Hansen M, Courraud J, Floyd AK, Støckel M, Helge JW, Dela F. Mitochondrial respiratory capacity remains stable despite a comprehensive and sustained increase in insulin sensitivity in obese patients undergoing gastric bypass surgery. Acta Physiol (Oxf) 2018; 223:e13032. [PMID: 29330917 DOI: 10.1111/apha.13032] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Revised: 01/05/2018] [Accepted: 01/05/2018] [Indexed: 12/15/2022]
Abstract
AIM It has been proposed, but not yet demonstrated by convincing evidence in published articles, that insulin resistance and mitochondrial respiratory function are causally related physiological phenomena. Here, we tested the prediction that weight loss-induced increase in insulin sensitivity will correlate with a corresponding change in mitochondrial respiratory capacity over the same time period. METHODS Insulin sensitivity was evaluated using the hyperinsulinaemic-euglycaemic clamp technique, and skeletal muscle mitochondrial respiratory capacity was evaluated by high-resolution respirometry in 26 patients with obesity. Each experiment was performed ~2 months and 1-2 weeks before, and ~4 and ~19 months after Roux-en-Y gastric bypass (RYGB) surgery. RESULTS A substantial weight loss was observed in all patients, and insulin sensitivity increased in all patients over the 21-months time period of the study. In contrast, skeletal muscle mitochondrial respiratory capacity, intrinsic mitochondrial respiratory capacity and mitochondrial content remained unchanged over the same time period. CONCLUSION Among obese patients with and without type 2 diabetes undergoing RYGB surgery, intrinsic mitochondrial respiratory capacity in skeletal muscle is not correlated with insulin sensitivity before or after the surgical intervention. Mitochondrial respiratory function may not be germane to the pathophysiology and/or aetiology of obesity and/or type 2 diabetes.
Collapse
Affiliation(s)
- M. T. Lund
- Xlab; Center for Healthy Aging; Department of Biomedical Sciences; University of Copenhagen; Copenhagen Denmark
- Department of Surgery; Holbak Hospital; Holbak Denmark
| | - S. Larsen
- Xlab; Center for Healthy Aging; Department of Biomedical Sciences; University of Copenhagen; Copenhagen Denmark
| | - M. Hansen
- Xlab; Center for Healthy Aging; Department of Biomedical Sciences; University of Copenhagen; Copenhagen Denmark
| | - J. Courraud
- Xlab; Center for Healthy Aging; Department of Biomedical Sciences; University of Copenhagen; Copenhagen Denmark
- Danish Center for Newborn screening; Department of Congenital Disorders; Statens Serum Institut; Copenhagen Denmark
| | - A. K. Floyd
- Department of Surgery; Holbak Hospital; Holbak Denmark
| | - M. Støckel
- Department of Surgery; Herlev University Hospital; Herlev Denmark
| | - J. W. Helge
- Xlab; Center for Healthy Aging; Department of Biomedical Sciences; University of Copenhagen; Copenhagen Denmark
| | - F. Dela
- Xlab; Center for Healthy Aging; Department of Biomedical Sciences; University of Copenhagen; Copenhagen Denmark
- Department of Geriatrics; Bispebjerg University Hospital; Copenhagen Denmark
| |
Collapse
|
27
|
Larsen S, Vigelsø A, Dandanell S, Prats C, Dela F, Helge JW. Simvastatin-Induced Insulin Resistance May Be Linked to Decreased Lipid Uptake and Lipid Synthesis in Human Skeletal Muscle: the LIFESTAT Study. J Diabetes Res 2018; 2018:9257874. [PMID: 30276217 PMCID: PMC6157137 DOI: 10.1155/2018/9257874] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 04/26/2018] [Accepted: 05/13/2018] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND A prevalent side-effect of simvastatin is attenuated glucose homeostasis. The underlying mechanism is unknown, but impaired lipid metabolism may provide the link. The aim of this study was to investigate whether simvastatin-treated patients had a lower capacity to oxidize lipids and reduced expression of the major proteins regulating lipid uptake, synthesis, lipolysis, and storage in skeletal muscle than matched controls. MATERIALS AND METHODS Ten men were treated with simvastatin (HbA1c: 5.7 ± 0.1%), and 10 healthy men (HbA1c: 5.2 ± 0.1%) underwent an oral glucose tolerance test and a muscle biopsy was obtained. Fat oxidation rates were measured at rest and during exercise. Western blotting was used to assess protein content. RESULTS Patients treated with simvastatin had impaired glucose tolerance compared with control subjects, but fat oxidation at rest and during exercise was compatible. Skeletal muscle protein content of CD36, lipoprotein lipase (LPL), and diacylglycerol acyltransferase (DGAT) 1 were lower, and DGAT 2 tended to be lower in patients treated with simvastatin. CONCLUSIONS Patients treated with simvastatin had a reduced capacity to synthesize FA and diacylglycerol (DAG) into triacylglycerol in skeletal muscle compared to matched controls. Decreased lipid synthesis capacity may lead to accumulation of lipotoxic intermediates (FA and DAG) and hence impair glucose tolerance.
Collapse
Affiliation(s)
- Steen Larsen
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Andreas Vigelsø
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sune Dandanell
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Physiotherapy and Occupational Therapy, Metropolitan University College, Copenhagen, Denmark
| | - Clara Prats
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Flemming Dela
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Geriatrics, Bispebjerg University Hospital, Copenhagen, Denmark
| | - Jørn Wulff Helge
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
28
|
Kenny HC, Rudwill F, Breen L, Salanova M, Blottner D, Heise T, Heer M, Blanc S, O'Gorman DJ. Bed rest and resistive vibration exercise unveil novel links between skeletal muscle mitochondrial function and insulin resistance. Diabetologia 2017; 60:1491-1501. [PMID: 28500394 DOI: 10.1007/s00125-017-4298-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 04/07/2017] [Indexed: 10/19/2022]
Abstract
AIMS/HYPOTHESIS Physical inactivity has broad implications for human disease including insulin resistance, sarcopenia and obesity. The present study tested the hypothesis that (1) impaired mitochondrial respiration is linked with blunted insulin sensitivity and loss of muscle mass in healthy young men, and (2) resistive vibration exercise (RVE) would mitigate the negative metabolic effects of bed rest. METHODS Participants (n = 9) were maintained in energy balance during 21 days of bed rest with RVE and without (CON) in a crossover study. Mitochondrial respiration was determined by high-resolution respirometry in permeabilised fibre bundles from biopsies of the vastus lateralis. A hyperinsulinaemic-euglycaemic clamp was used to determine insulin sensitivity, and body composition was assessed by dual-energy x-ray absorptiometry (DEXA). RESULTS Body mass (-3.2 ± 0.5 kg vs -2.8 ± 0.4 kg for CON and RVE, respectively, p < 0.05), fat-free mass (-2.9 ± 0.5 kg vs -2.7 ± 0.5 kg, p < 0.05) and peak oxygen consumption ([Formula: see text]) (10-15%, p < 0.05) were all reduced following bed rest. Bed rest decreased insulin sensitivity in the CON group (0.04 ± 0.002 mg kgFFM-1 [pmol l-1] min-1 vs 0.03 ± 0.002 mg kgFFM-1 [pmol l-1] min-1 for baseline vs post-CON), while RVE mitigated this response (0.04 ± 0.003 mg kgFFM-1 [pmol l-1] min-1). Mitochondrial respiration (oxidative phosphorylation and electron transport system capacity) decreased in the CON group but not in the RVE group when expressed relative to tissue weight but not when normalised for citrate synthase activity. LEAK respiration, indicating a decrease in mitochondrial uncoupling, was the only component to remain significantly lower in the CON group after normalisation for citrate synthase. This was accompanied by a significant decrease in adenine nucleotide translocase protein content. CONCLUSIONS/INTERPRETATION Reductions in muscle mitochondrial respiration occur concomitantly with insulin resistance and loss of muscle mass during bed rest and may play a role in the adaptations to physical inactivity. Significantly, we show that RVE is an effective strategy to partially prevent some of the deleterious metabolic effects of bed rest.
Collapse
Affiliation(s)
- Helena C Kenny
- 3U Diabetes Consortium, School of Health and Human Performance, Dublin City University, Glasnevin, Dublin 9, D09 NR58, Ireland
- National Institute for Cellular and Biotechnology, Dublin City University, Dublin, Ireland
| | - Floriane Rudwill
- Université de Strasbourg, Institut Pluridisiplinaire Hubert Curien, Départment d'Ecologie, Physiologie et Ethologie, CNRS, UMR7178, Strasbourg, France
| | - Laura Breen
- National Institute for Cellular and Biotechnology, Dublin City University, Dublin, Ireland
| | | | | | | | - Martina Heer
- Profil, Neuss, Germany
- Institute of Nutrition and Food Sciences, University of Bonn, Bonn, Germany
| | - Stephane Blanc
- Université de Strasbourg, Institut Pluridisiplinaire Hubert Curien, Départment d'Ecologie, Physiologie et Ethologie, CNRS, UMR7178, Strasbourg, France
| | - Donal J O'Gorman
- 3U Diabetes Consortium, School of Health and Human Performance, Dublin City University, Glasnevin, Dublin 9, D09 NR58, Ireland.
- National Institute for Cellular and Biotechnology, Dublin City University, Dublin, Ireland.
| |
Collapse
|
29
|
Dandanell S, Elbe AM, Pfister G, Elsborg P, W Helge J. Relationship between volition, physical activity and weight loss maintenance: Study rationale, design, methods and baseline characteristics. Scand J Public Health 2017; 45:299-304. [PMID: 28443489 DOI: 10.1177/1403494816682378] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
AIMS To investigate the relationship between volition, physical activity and weight loss maintenance. METHODS We recruited 84 sedentary (maximal oxygen uptake: 25 ± 5 ml/min), overweight and obese (Body mass index (BMI) 38 ± 7 m/h2, fat 44 ± 7 %) women ( n = 55) and men ( n = 29) for an interdisciplinary prospective study with follow-up. The change in lifestyle and weight loss is promoted via a 3-month intensive lifestyle intervention at a private health school. The intervention consists of supervised training (1-3 hours/day), a healthy hypo-caloric diet (-500 to -700 kCal/day) and education in healthy lifestyle in classes/groups. The participants' body weight and composition (Dual Energy X-ray absorptiometry), volitional skills (questionnaire), physical activity level (heart rate accelerometer/questionnaire) and maximal oxygen uptake (indirect calorimetry) are to be monitored before, after, and 3 and 12 months after the intervention. RESULTS At the 12-month follow-up, three different groups will be established: Clinical weight loss maintenance (> 10% weight loss from baseline), moderate weight loss maintenance (1-10% weight loss) and no weight loss (or weight regain). A linear mixed model analysis will be used to compare levels of volitional skills, physical activity and maximal oxygen uptake over time, between the three groups. Correlational analyses will be used to investigate possible associations between volition, maximal oxygen uptake, physical activity level and weight loss maintenance. CONCLUSIONS If specific volitional skills are identified as predictors of adherence to physical activity and success in clinical weight loss maintenance, these can be trained in future intensive lifestyle interventions in order to optimize the success rate.
Collapse
Affiliation(s)
- Sune Dandanell
- 1 Center of Healthy Aging, Department of Biomedical Sciences, University of Copenhagen, Denmark.,3 Department of Physiotherapy and Occupational Therapy, Metropolitan University College, Copenhagen, Denmark
| | - Anne-Marie Elbe
- 2 Department of Nutrition, Exercise and Sports, University of Copenhagen, Denmark
| | - Gertrud Pfister
- 2 Department of Nutrition, Exercise and Sports, University of Copenhagen, Denmark
| | - Peter Elsborg
- 2 Department of Nutrition, Exercise and Sports, University of Copenhagen, Denmark
| | - Jørn W Helge
- 1 Center of Healthy Aging, Department of Biomedical Sciences, University of Copenhagen, Denmark
| |
Collapse
|
30
|
Suda EY, Gomes AA, Butugan MK, Sacco ICN. Muscle fiber conduction velocity in different gait phases of early and late-stage diabetic neuropathy. J Electromyogr Kinesiol 2016; 30:263-71. [PMID: 27567140 DOI: 10.1016/j.jelekin.2016.08.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Revised: 08/11/2016] [Accepted: 08/13/2016] [Indexed: 01/07/2023] Open
Abstract
We investigated the muscle fiber conduction velocity (MFCV) during gait phases of the lower limb muscles in individuals with various degrees of diabetic peripheral neuropathy (DPN). Forty-five patients were classified into severity degrees of DPN by a fuzzy model. The stages were absent (n=11), mild (n=14), moderate (n=11) and severe (n=9), with 10 matched healthy controls. While walking, all subjects had their sEMG (4 linear electrode arrays) recorded for tibialis anterior (TA), gastrocnemius medialis (GM), vastus lateralis (VL) and biceps femoris (BF). MFCV was calculated using a maximum likelihood algorithm with 30ms standard deviation Gaussian windows. In general, individuals in the earlier stages of DPN showed lower MFCV of TA, GM and BF, whilst individuals with severe DPN presented higher MFCV of the same muscles. We observed that mild patients already showed lower MFCV of TA at early stance and swing, and lower MFCV of BF at swing. All diabetic groups showed a markedly reduction in MFCV of VL, irrespective of DPN. Severe patients presented higher MFCV mainly in distal muscles, TA at early and swing phases and GM at propulsion and midstance. The absent group already showed MFCV of VL and GM reductions at the propulsion phase and of VL at early stance. Although MFCV changes were not as progressive as the DPN was, we clearly distinguished diabetic patients from controls, and severe patients from all others.
Collapse
Affiliation(s)
- Eneida Yuri Suda
- Laboratory of Biomechanics of Human Movement, Dept. Physical Therapy, Speech and Occupational Therapy, School of Medicine, University of Sao Paulo, Sao Paulo, Brazil
| | - Aline A Gomes
- Laboratory of Biomechanics of Human Movement, Dept. Physical Therapy, Speech and Occupational Therapy, School of Medicine, University of Sao Paulo, Sao Paulo, Brazil; Human Performance Laboratory, School of Physical Education and Physiotherapy, Federal University of Amazonas, Amazonas, Brazil
| | - Marco Kenji Butugan
- Laboratory of Biomechanics of Human Movement, Dept. Physical Therapy, Speech and Occupational Therapy, School of Medicine, University of Sao Paulo, Sao Paulo, Brazil
| | - Isabel C N Sacco
- Laboratory of Biomechanics of Human Movement, Dept. Physical Therapy, Speech and Occupational Therapy, School of Medicine, University of Sao Paulo, Sao Paulo, Brazil.
| |
Collapse
|
31
|
Porter C, Reidy PT, Bhattarai N, Sidossis LS, Rasmussen BB. Resistance Exercise Training Alters Mitochondrial Function in Human Skeletal Muscle. Med Sci Sports Exerc 2016; 47:1922-31. [PMID: 25539479 DOI: 10.1249/mss.0000000000000605] [Citation(s) in RCA: 179] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
INTRODUCTION Loss of mitochondrial competency is associated with several chronic illnesses. Therefore, strategies that maintain or increase mitochondrial function will likely be of benefit in numerous clinical settings. Endurance exercise has long been known to increase mitochondrial function in the skeletal muscle. Comparatively little is known regarding the effect of resistance exercise training (RET) on skeletal muscle mitochondrial respiratory function. PURPOSE The purpose of the current study was to determine the effect of chronic resistance training on skeletal muscle mitochondrial respiratory capacity and function. METHODS Here, we studied the effect of a 12-wk RET program on skeletal muscle mitochondrial function in 11 young healthy men. Muscle biopsies were collected before and after the 12-wk training program, and mitochondrial respiratory capacity was determined in permeabilized myofibers by high-resolution respirometry. RESULTS RET increased lean body mass and quadriceps muscle strength by 4% and 15%, respectively (P < 0.001). Coupled mitochondrial respiration supported by complex I, and complex I and II substrates increased by 2- and 1.4-fold, respectively (P < 0.01). The ratio of coupled complex I-supported respiration to maximal respiration increased with RET (P < 0.05), as did complex I protein abundance (P < 0.05), whereas the substrate control ratio for succinate was reduced after RET (P < 0.001). Transcripts responsible for proteins critical to electron transfer and NAD production increased with training (P < 0.05), whereas transcripts involved in mitochondrial biogenesis were unaltered. CONCLUSIONS Collectively, 12 wk of RET resulted in qualitative and quantitative changes in skeletal muscle mitochondrial respiration. This adaptation was accompanied by modest changes in mitochondrial proteins and transcript expression. RET seems to be a means to augment the respiratory capacity and intrinsic function of skeletal muscle mitochondria.
Collapse
Affiliation(s)
- Craig Porter
- 1Metabolism Unit, Shriners Hospitals for Children, Galveston, TX; 2Department of Surgery, University of Texas Medical Branch, Galveston, TX; 3Rehabilitation Sciences, University of Texas Medical Branch, Galveston, TX; 4Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX; and 5Department of Nutrition and Metabolism, University of Texas Medical Branch, Galveston, TX
| | | | | | | | | |
Collapse
|
32
|
Hansen M, Lund MT, Gregers E, Kraunsøe R, Van Hall G, Helge JW, Dela F. Adipose tissue mitochondrial respiration and lipolysis before and after a weight loss by diet and RYGB. Obesity (Silver Spring) 2015; 23:2022-9. [PMID: 26337597 DOI: 10.1002/oby.21223] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 06/22/2015] [Indexed: 01/06/2023]
Abstract
OBJECTIVE To study adipose tissue mitochondrial respiration and lipolysis following a massive weight loss. METHODS High resolution respirometry of adipose tissue biopsies and tracer determined whole body lipolysis. Sixteen obese patients with type 2 diabetes (T2DM) and 27 without (OB) were studied following a massive weight loss by diet and Roux-en-Y gastric bypass (RYGB). RESULTS The mitochondrial respiratory rates were similar in OB and T2DM, and the mass-specific oxygen flux increased significantly 4 and 18 months post-surgery (P < 0.05). With normalization to mitochondrial content, no differences in oxidative capacity after RYGB were seen. The ratio between the oxidative phosphorylation system capacity (P) and the capacity of the electron transfer system (E) increased 18 months after RYGB in both groups (P < 0.05). Lipolysis per fat mass was similar in the two groups and was increased (P < 0.05) and lipid oxidation during hyperinsulinemia decreased 4 months post-surgery. In T2DM, visceral fat mass was always higher relative to the body fat mass (%) compared to OB. CONCLUSIONS Adipose tissue mitochondrial respiratory capacity increases with RYGB. Adipocytes adapt to massive weight loss by increasing the phosphorylation system ratio (P/E), suggesting an increased ability to oxidize substrates after RYGB. Lipolysis increases in the short term post-surgery, and insulin sensitivity for suppression of lipolysis increases with RYGB.
Collapse
Affiliation(s)
- Merethe Hansen
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Michael T Lund
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Surgery, Koege Hospital, Koege, Denmark
| | - Emilie Gregers
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Regitze Kraunsøe
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Gerrit Van Hall
- Clinical Metabolomics Core Facility, Rigshospitalet, Copenhagen, Denmark
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jørn W Helge
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Flemming Dela
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
33
|
Effect of regional muscle location but not adiposity on mitochondrial biogenesis-regulating proteins. Eur J Appl Physiol 2015; 116:11-8. [DOI: 10.1007/s00421-015-3232-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 07/31/2015] [Indexed: 01/06/2023]
|
34
|
Suk MH, Moon YJ, Park SW, Park CY, Shin YA. Maximal Fat Oxidation Rate during Exercise in Korean Women with Type 2 Diabetes Mellitus. Diabetes Metab J 2015; 39:328-34. [PMID: 26301195 PMCID: PMC4543197 DOI: 10.4093/dmj.2015.39.4.328] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 09/26/2014] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND The purpose of this study was to determine the appropriate exercise intensity associated with maximum fat oxidation, improvement of body composition, and metabolic status in Korean women with type 2 diabetes mellitus (T2DM). METHODS The study included a T2DM group (12 women) and a control group (12 women). The groups were matched in age and body mass index. The subjects performed a graded exercise test on a cycle ergometer to measure their maximal fat oxidation (Fatmax). We also measured their body composition, metabolic profiles, and mitochondrial DNA (mtDNA). RESULTS The exercise intensity for Fatmax was significantly lower in the T2DM group (34.19% maximal oxygen uptake [VO2 max]) than the control group (51.80% VO2 max). Additionally, the rate of fat oxidation during exercise (P<0.05) and mtDNA (P<0.05) were significantly lower in the T2DM group than the control group. The VO2 max level (P<0.001) and the insulin level (P<0.05) were positively correlated with the rate of fat oxidation. CONCLUSION The results of this study suggest lower exercise intensity that achieves Fatmax is recommended for improving fat oxidation and enhancing fitness levels in Korean women with T2DM. Our data could be useful when considering an exercise regimen to improve health and fitness.
Collapse
Affiliation(s)
- Min Hwa Suk
- Department of Kinesiology and Medical Science, Dankook University College of Medicine, Cheonan, Korea
| | - Yeo-Jin Moon
- Diabetes Center, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Sung Woo Park
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Cheol-Young Park
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Yun A Shin
- Department of Kinesiology and Medical Science, Dankook University College of Medicine, Cheonan, Korea
| |
Collapse
|
35
|
Larsen S, Scheede-Bergdahl C, Whitesell T, Boushel R, Bergdahl A. Increased intrinsic mitochondrial respiratory capacity in skeletal muscle from rats with streptozotocin-induced hyperglycemia. Physiol Rep 2015. [PMID: 26197936 PMCID: PMC4552542 DOI: 10.14814/phy2.12467] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Type I diabetes mellitus (T1DM) is a chronic disorder, characterized by an almost or complete insulin deficiency. Widespread tissue dysfunction and deleterious diabetes-complications are associated with long-term elevations of blood glucose. The aim of this study was to investigate the effects of type I diabetes, as induced by streptozotocin, on the mitochondria in skeletal muscles that predominantly consist of either slow or fast twitch fibers. Soleus (primarily slow twitch fiber type) and the plantaris muscle (mainly fast twitch fiber type) were removed in order to measure mitochondrial protein expression and integrated mitochondrial respiratory function. Mitochondrial capacity for oxidative phosphorylation (OXPHOS) was found to be higher in the slow (more oxidative) soleus muscle from STZ rats when evaluating lipid and complex I linked OXPHOS capacity, whereas no difference was detected between the groups when evaluating the more physiological complex I and II linked OXPHOS capacity. These findings indicate that chronic hyperglycemia results in an elevated intrinsic mitochondrial respiratory capacity in both soleus and, at varying degree, plantaris muscle, findings that are consistent with human T1DM patients.
Collapse
Affiliation(s)
- Steen Larsen
- Centre for Healthy Aging, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Thomas Whitesell
- Department of Exercise Science, Concordia University, Montreal, Quebec, Canada
| | - Robert Boushel
- Department of Exercise Science, Concordia University, Montreal, Quebec, Canada The Swedish School of Sport and Health Sciences, Stockholm, Sweden
| | - Andreas Bergdahl
- Department of Exercise Science, Concordia University, Montreal, Quebec, Canada
| |
Collapse
|
36
|
Konopka AR, Asante A, Lanza IR, Robinson MM, Johnson ML, Dalla Man C, Cobelli C, Amols MH, Irving BA, Nair KS. Defects in mitochondrial efficiency and H2O2 emissions in obese women are restored to a lean phenotype with aerobic exercise training. Diabetes 2015; 64:2104-15. [PMID: 25605809 PMCID: PMC4439568 DOI: 10.2337/db14-1701] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 01/13/2015] [Indexed: 01/06/2023]
Abstract
The notion that mitochondria contribute to obesity-induced insulin resistance is highly debated. Therefore, we determined whether obese (BMI 33 kg/m(2)), insulin-resistant women with polycystic ovary syndrome had aberrant skeletal muscle mitochondrial physiology compared with lean, insulin-sensitive women (BMI 23 kg/m(2)). Maximal whole-body and mitochondrial oxygen consumption were not different between obese and lean women. However, obese women exhibited lower mitochondrial coupling and phosphorylation efficiency and elevated mitochondrial H2O2 (mtH2O2) emissions compared with lean women. We further evaluated the impact of 12 weeks of aerobic exercise on obesity-related impairments in insulin sensitivity and mitochondrial energetics in the fasted state and after a high-fat mixed meal. Exercise training reversed obesity-related mitochondrial derangements as evidenced by enhanced mitochondrial bioenergetics efficiency and decreased mtH2O2 production. A concomitant increase in catalase antioxidant activity and decreased DNA oxidative damage indicate improved cellular redox status and a potential mechanism contributing to improved insulin sensitivity. mtH2O2 emissions were refractory to a high-fat meal at baseline, but after exercise, mtH2O2 emissions increased after the meal, which resembles previous findings in lean individuals. We demonstrate that obese women exhibit impaired mitochondrial bioenergetics in the form of decreased efficiency and impaired mtH2O2 emissions, while exercise effectively restores mitochondrial physiology toward that of lean, insulin-sensitive individuals.
Collapse
Affiliation(s)
- Adam R Konopka
- Division of Endocrinology, Diabetes, Metabolism, and Nutrition Research, Mayo Clinic College of Medicine, Rochester, MN
| | - Albert Asante
- Division of Endocrinology, Diabetes, Metabolism, and Nutrition Research, Mayo Clinic College of Medicine, Rochester, MN
| | - Ian R Lanza
- Division of Endocrinology, Diabetes, Metabolism, and Nutrition Research, Mayo Clinic College of Medicine, Rochester, MN
| | - Matthew M Robinson
- Division of Endocrinology, Diabetes, Metabolism, and Nutrition Research, Mayo Clinic College of Medicine, Rochester, MN
| | - Matthew L Johnson
- Division of Endocrinology, Diabetes, Metabolism, and Nutrition Research, Mayo Clinic College of Medicine, Rochester, MN
| | - Chiara Dalla Man
- Department of Information Engineering, University of Padova, Padova, Italy
| | - Claudio Cobelli
- Department of Information Engineering, University of Padova, Padova, Italy
| | - Mark H Amols
- Division of Endocrinology, Diabetes, Metabolism, and Nutrition Research, Mayo Clinic College of Medicine, Rochester, MN
| | - Brian A Irving
- Division of Endocrinology, Diabetes, Metabolism, and Nutrition Research, Mayo Clinic College of Medicine, Rochester, MN
| | - K S Nair
- Division of Endocrinology, Diabetes, Metabolism, and Nutrition Research, Mayo Clinic College of Medicine, Rochester, MN
| |
Collapse
|
37
|
Lanzi S, Codecasa F, Cornacchia M, Maestrini S, Capodaglio P, Brunani A, Fanari P, Salvadori A, Malatesta D. Long maximal incremental tests accurately assess aerobic fitness in class II and III obese men. PLoS One 2015; 10:e0124180. [PMID: 25875746 PMCID: PMC4395407 DOI: 10.1371/journal.pone.0124180] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 02/26/2015] [Indexed: 01/14/2023] Open
Abstract
This study aimed to compare two different maximal incremental tests with different time durations [a maximal incremental ramp test with a short time duration (8-12 min) (STest) and a maximal incremental test with a longer time duration (20-25 min) (LTest)] to investigate whether an LTest accurately assesses aerobic fitness in class II and III obese men. Twenty obese men (BMI≥35 kg.m-2) without secondary pathologies (mean±SE; 36.7±1.9 yr; 41.8±0.7 kg*m-2) completed an STest (warm-up: 40 W; increment: 20 W*min-1) and an LTest [warm-up: 20% of the peak power output (PPO) reached during the STest; increment: 10% PPO every 5 min until 70% PPO was reached or until the respiratory exchange ratio reached 1.0, followed by 15 W.min-1 until exhaustion] on a cycle-ergometer to assess the peak oxygen uptake V˙O2peak and peak heart rate (HRpeak) of each test. There were no significant differences in V˙O2peak (STest: 3.1±0.1 L*min-1; LTest: 3.0±0.1 L*min-1) and HRpeak (STest: 174±4 bpm; LTest: 173±4 bpm) between the two tests. Bland-Altman plot analyses showed good agreement and Pearson product-moment and intra-class correlation coefficients showed a strong correlation between V˙O2peak (r=0.81 for both; p≤0.001) and HRpeak (r=0.95 for both; p≤0.001) during both tests. V˙O2peak and HRpeak assessments were not compromised by test duration in class II and III obese men. Therefore, we suggest that the LTest is a feasible test that accurately assesses aerobic fitness and may allow for the exercise intensity prescription and individualization that will lead to improved therapeutic approaches in treating obesity and severe obesity.
Collapse
Affiliation(s)
- Stefano Lanzi
- Institute of Sport Sciences University of Lausanne (ISSUL), University of Lausanne, Lausanne, Switzerland
- Department of Physiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
- * E-mail:
| | - Franco Codecasa
- Pulmonary Rehabilitation Department, San Giuseppe Hospital, Istituto Auxologico Italiano Piancavallo, Verbania, Italy
| | - Mauro Cornacchia
- Pulmonary Rehabilitation Department, San Giuseppe Hospital, Istituto Auxologico Italiano Piancavallo, Verbania, Italy
| | - Sabrina Maestrini
- Molecolar Biology Laboratory, San Giuseppe Hospital, Istituto Auxologico Italiano Piancavallo, Verbania, Italy
| | - Paolo Capodaglio
- Orthopaedic Rehabilitation Unit and Clinical Lab for Gait and Posture Analysis, San Giuseppe Hospital, Istituto Auxologico Italiano Piancavallo, Verbania, Italy
| | - Amelia Brunani
- Medicine Rehabilitation Department, San Giuseppe Hospital, Istituto Auxologico Italiano Piancavallo, Verbania, Italy
| | - Paolo Fanari
- Pulmonary Rehabilitation Department, San Giuseppe Hospital, Istituto Auxologico Italiano Piancavallo, Verbania, Italy
| | - Alberto Salvadori
- Pulmonary Rehabilitation Department, San Giuseppe Hospital, Istituto Auxologico Italiano Piancavallo, Verbania, Italy
| | - Davide Malatesta
- Institute of Sport Sciences University of Lausanne (ISSUL), University of Lausanne, Lausanne, Switzerland
- Department of Physiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
38
|
Gao AW, Cantó C, Houtkooper RH. Mitochondrial response to nutrient availability and its role in metabolic disease. EMBO Mol Med 2014; 6:580-9. [PMID: 24623376 PMCID: PMC4023882 DOI: 10.1002/emmm.201303782] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Metabolic inflexibility is defined as an impaired capacity to switch between different energy substrates and is a hallmark of insulin resistance and type 2 diabetes mellitus (T2DM). Hence, understanding the mechanisms underlying proper metabolic flexibility is key to prevent the development of metabolic disease and physiological deterioration. An important downstream player in the effects of metabolic flexibility is the mitochondrion. The objective of this review was to describe how mitochondrial metabolism adapts to limited nutrient situations or caloric excess by changes in mitochondrial function or biogenesis, as well as to define the mechanisms propelling these changes. Altogether, this should pinpoint key regulatory points by which metabolic flexibility might be ameliorated in situations of metabolic disease.
Collapse
Affiliation(s)
- Arwen W Gao
- Laboratory Genetic Metabolic Diseases, Academic Medical Center, Amsterdam, The Netherlands
| | | | | |
Collapse
|
39
|
Larsen S, Skaaby S, Helge JW, Dela F. Effects of exercise training on mitochondrial function in patients with type 2 diabetes. World J Diabetes 2014; 5:482-492. [PMID: 25126394 PMCID: PMC4127583 DOI: 10.4239/wjd.v5.i4.482] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 04/24/2014] [Accepted: 06/11/2014] [Indexed: 02/05/2023] Open
Abstract
Type 2 diabetes is characterized by a decreased ability of insulin to facilitate glucose uptake into insulin sensitive tissue, i.e., skeletal muscle. The mechanism behind this is at the moment unresolved. It has been suggested that increased amount of lipids inside the skeletal muscle (intramuscular triglyceride, diacylglycerol and ceramides) will impair insulin action in skeletal muscle, but data are not consistent in the human literature. It has also been hypothesized that the impaired insulin sensitivity is due to a dysfunction in the mitochondria resulting in an impaired ability to oxidize lipids, but the majority of the literature is not supporting this hypothesis. Recently it has been suggested that the production of reactive oxygen species play an essential role in skeletal muscle insulin sensitivity. It is well accepted that physical activity (endurance, strength and high intensity training) improves insulin sensitivity in healthy humans and in patients with type 2 diabetes. Whether patients with type 2 diabetes have the same beneficial effects (same improvement) as control subjects, when it comes to regular physical activity in regard to mitochondrial function, is not established in the literature. This review will focus only on the effect of physical activity on skeletal muscle (mitochondrial function) in patients with type 2 diabetes.
Collapse
|
40
|
Mora-Rodriguez R, Ortega JF, Hamouti N, Fernandez-Elias VE, Cañete Garcia-Prieto J, Guadalupe-Grau A, Saborido A, Martin-Garcia M, Guio de Prada V, Ara I, Martinez-Vizcaino V. Time-course effects of aerobic interval training and detraining in patients with metabolic syndrome. Nutr Metab Cardiovasc Dis 2014; 24:792-798. [PMID: 24656853 DOI: 10.1016/j.numecd.2014.01.011] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2013] [Revised: 12/20/2013] [Accepted: 01/07/2014] [Indexed: 01/11/2023]
Abstract
BACKGROUND AND AIMS Exercise training can improve health of patients with metabolic syndrome (MetS). However, which MetS factors are most responsive to exercise training remains unclear. We studied the time-course of changes in MetS factors in response to training and detraining. METHODS AND RESULTS Forty eight MetS patients (52 ± 8.8 yrs old; 33 ± 4 BMI) underwent 4 months (3 days/week) of supervised aerobic interval training (AIT) program. After 1 month of training, there were progressive increases in high density lipoprotein cholesterol (HDL-c) and reductions in waist circumference and blood pressure (12 ± 3, -3.9 ± 0.4, and -12 ± 1%, respectively after 4 months; all P < 0.05). However, fasting plasma concentration of triglycerides and glucose were not reduced by training. Insulin sensitivity (HOMA), cardiorespiratory fitness (VO2peak) and exercise maximal fat oxidation (FOMAx) also progressively improved with training (-17 ± 5; 21 ± 2 and 31 ± 8%, respectively, after 4 months; all P < 0.05). Vastus lateralis samples from seven subjects revealed that mitochondrial O2 flux was markedly increased with training (71 ± 11%) due to increased mitochondrial content. After 1 month of detraining, the training-induced improvements in waist circumference and blood pressure were maintained. HDL-c and VO2peak returned to the values found after 1-2 months of training while HOMA and FOMAx returned to pre-training values. CONCLUSIONS The health related variables most responsive to aerobic interval training in MetS patients are waist circumference, blood pressure and the muscle and systemic adaptations to consume oxygen and fat. However, the latter reverse with detraining while blood pressure and waist circumference are persistent to one month of detraining.
Collapse
Affiliation(s)
- R Mora-Rodriguez
- Exercise Physiology Laboratory and GENUD Group University of Castilla-La Mancha, Toledo, Spain.
| | - J F Ortega
- Exercise Physiology Laboratory and GENUD Group University of Castilla-La Mancha, Toledo, Spain
| | - N Hamouti
- Exercise Physiology Laboratory and GENUD Group University of Castilla-La Mancha, Toledo, Spain
| | - V E Fernandez-Elias
- Exercise Physiology Laboratory and GENUD Group University of Castilla-La Mancha, Toledo, Spain
| | | | - A Guadalupe-Grau
- Xlab, Center for Healthy Aging, University of Copenhagen, Copenhagen, Denmark
| | - A Saborido
- Departamento de Bioquímica y Biología Molecular I, University Complutense, Madrid, Spain
| | - M Martin-Garcia
- Exercise Physiology Laboratory and GENUD Group University of Castilla-La Mancha, Toledo, Spain
| | | | - I Ara
- Exercise Physiology Laboratory and GENUD Group University of Castilla-La Mancha, Toledo, Spain
| | - V Martinez-Vizcaino
- Social and Health Care Research Center, University of Castilla-La-Mancha, Cuenca, Spain
| |
Collapse
|
41
|
Sacco ICN, Hamamoto AN, Onodera AN, Gomes AA, Weiderpass HA, Pachi CGF, Yamamoto JF, von Tscharner V. Motor strategy patterns study of diabetic neuropathic individuals while walking. A wavelet approach. J Biomech 2014; 47:2475-82. [PMID: 24816334 DOI: 10.1016/j.jbiomech.2014.04.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2013] [Revised: 04/02/2014] [Accepted: 04/03/2014] [Indexed: 11/29/2022]
Abstract
The aim of this study was to investigate muscle׳s energy patterns and spectral properties of diabetic neuropathic individuals during gait cycle using wavelet approach. Twenty-one diabetic patients diagnosed with peripheral neuropathy, and 21 non-diabetic individuals were assessed during the whole gait cycle. Activation patterns of vastus lateralis, medial gastrocnemius and tibialis anterior were studied by means of bipolar surface EMG. The signal׳s energy and frequency were compared between groups using t-test. The energy was compared in each frequency band (7-542 Hz) using ANOVAs for repeated measures for each group and each muscle. The diabetic individuals displayed lower energies in lower frequency bands for all muscles and higher energies in higher frequency bands for the extensors׳ muscles. They also showed lower total energy of gastrocnemius and a higher total energy of vastus, considering the whole gait cycle. The overall results suggest a change in the neuromuscular strategy of the main extensor muscles of the lower limb of diabetic patients to compensate the ankle extensor deficit to propel the body forward and accomplish the walking task.
Collapse
Affiliation(s)
- I C N Sacco
- University of São Paulo, School of Medicine, Physical Therapy, Speech and Occupational Therapy Department, Brazil.
| | - A N Hamamoto
- University of São Paulo, School of Medicine, Physical Therapy, Speech and Occupational Therapy Department, Brazil
| | - A N Onodera
- University of São Paulo, School of Medicine, Physical Therapy, Speech and Occupational Therapy Department, Brazil
| | - A A Gomes
- Federal University of Amazonas, School of Physical Education and Physiotherapy, Brazil
| | | | - C G F Pachi
- University of São Paulo, School of Medicine, Medical Informatics Department, Brazil
| | - J F Yamamoto
- University of São Paulo, Hospital das Clínicas, Brazil
| | - V von Tscharner
- Human Performance Laboratory, Faculty of Kinesiology, The University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
42
|
Lanzi S, Codecasa F, Cornacchia M, Maestrini S, Salvadori A, Brunani A, Malatesta D. Fat oxidation, hormonal and plasma metabolite kinetics during a submaximal incremental test in lean and obese adults. PLoS One 2014; 9:e88707. [PMID: 24523934 PMCID: PMC3921204 DOI: 10.1371/journal.pone.0088707] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 01/09/2014] [Indexed: 12/29/2022] Open
Abstract
This study aimed to compare fat oxidation, hormonal and plasma metabolite kinetics during exercise in lean (L) and obese (O) men. Sixteen L and 16 O men [Body Mass Index (BMI): 22.9 ± 0.3 and 39.0 ± 1.4 kg · m(-2)] performed a submaximal incremental test (Incr) on a cycle-ergometer. Fat oxidation rates (FORs) were determined using indirect calorimetry. A sinusoidal model, including 3 independent variables (dilatation, symmetry, translation), was used to describe fat oxidation kinetics and determine the intensity (Fat(max)) eliciting maximal fat oxidation. Blood samples were drawn for the hormonal and plasma metabolite determination at each step of Incr. FORs (mg · FFM(-1) · min(-1)) were significantly higher from 20 to 30% of peak oxygen uptake (VO2peak) in O than in L and from 65 to 85% VO2peak in L than in O (p ≤ 0.05). FORs were similar in O and in L from 35 to 60% VO2peak. Fat max was 17% significantly lower in O than in L (p<0.01). Fat oxidation kinetics were characterized by similar translation, significantly lower dilatation and left-shift symmetry in O compared with L (p<0.05). During whole exercise, a blunted lipolysis was found in O [lower glycerol/fat mass (FM) in O than in L (p ≤ 0.001)], likely associated with higher insulin concentrations in O than in L (p<0.01). Non-esterified fatty acids (NEFA) were significantly higher in O compared with L (p<0.05). Despite the blunted lipolysis, O presented higher NEFA availability, likely due to larger amounts of FM. Therefore, a lower Fat(max), a left-shifted and less dilated curve and a lower reliance on fat oxidation at high exercise intensities suggest that the difference in the fat oxidation kinetics is likely linked to impaired muscular capacity to oxidize NEFA in O. These results may have important implications for the appropriate exercise intensity prescription in training programs designed to optimize fat oxidation in O.
Collapse
Affiliation(s)
- Stefano Lanzi
- Institute of Sport Sciences University of Lausanne (ISSUL), University of Lausanne, Lausanne, Switzerland
- Department of Physiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Franco Codecasa
- Pulmonary rehabilitation department, San Giuseppe Hospital, Istituto Auxologico Italiano Piancavallo, Verbania, Italy
| | - Mauro Cornacchia
- Pulmonary rehabilitation department, San Giuseppe Hospital, Istituto Auxologico Italiano Piancavallo, Verbania, Italy
| | - Sabrina Maestrini
- Molecolar biology laboratory, San Giuseppe Hospital, Istituto Auxologico Italiano Piancavallo, Verbania, Italy
| | - Alberto Salvadori
- Pulmonary rehabilitation department, San Giuseppe Hospital, Istituto Auxologico Italiano Piancavallo, Verbania, Italy
| | - Amelia Brunani
- Medicine rehabilitation department, San Giuseppe Hospital, Istituto Auxologico Italiano Piancavallo, Verbania, Italy
| | - Davide Malatesta
- Institute of Sport Sciences University of Lausanne (ISSUL), University of Lausanne, Lausanne, Switzerland
- Department of Physiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
43
|
Increased intrinsic mitochondrial function in humans with mitochondrial haplogroup H. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1837:226-31. [DOI: 10.1016/j.bbabio.2013.10.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 10/21/2013] [Accepted: 10/25/2013] [Indexed: 01/16/2023]
|
44
|
Fisher-Wellman KH, Weber TM, Cathey BL, Brophy PM, Gilliam LA, Kane CL, Maples JM, Gavin TP, Houmard JA, Neufer PD. Mitochondrial respiratory capacity and content are normal in young insulin-resistant obese humans. Diabetes 2014; 63:132-41. [PMID: 23974920 PMCID: PMC3868052 DOI: 10.2337/db13-0940] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Considerable debate exists about whether alterations in mitochondrial respiratory capacity and/or content play a causal role in the development of insulin resistance during obesity. The current study was undertaken to determine whether such alterations are present during the initial stages of insulin resistance in humans. Young (∼23 years) insulin-sensitive lean and insulin-resistant obese men and women were studied. Insulin resistance was confirmed through an intravenous glucose tolerance test. Measures of mitochondrial respiratory capacity and content as well as H(2)O(2) emitting potential and the cellular redox environment were performed in permeabilized myofibers and primary myotubes prepared from vastus lateralis muscle biopsy specimens. No differences in mitochondrial respiratory function or content were observed between lean and obese subjects, despite elevations in H(2)O(2) emission rates and reductions in cellular glutathione. These findings were apparent in permeabilized myofibers as well as in primary myotubes. The results suggest that reductions in mitochondrial respiratory capacity and content are not required for the initial manifestation of peripheral insulin resistance.
Collapse
Affiliation(s)
- Kelsey H. Fisher-Wellman
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC
- Department of Physiology, East Carolina University, Greenville, NC
| | - Todd M. Weber
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC
- Department of Kinesiology, East Carolina University, Greenville, NC
| | - Brook L. Cathey
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC
- Department of Physiology, East Carolina University, Greenville, NC
| | - Patricia M. Brophy
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC
- Department of Physiology, East Carolina University, Greenville, NC
| | - Laura A.A. Gilliam
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC
- Department of Physiology, East Carolina University, Greenville, NC
| | - Constance L. Kane
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC
- Department of Physiology, East Carolina University, Greenville, NC
| | - Jill M. Maples
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC
- Department of Kinesiology, East Carolina University, Greenville, NC
| | - Timothy P. Gavin
- Department of Health and Kinesiology, Purdue University, West Lafayette, IN
| | - Joseph A. Houmard
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC
- Department of Physiology, East Carolina University, Greenville, NC
- Department of Kinesiology, East Carolina University, Greenville, NC
| | - P. Darrell Neufer
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC
- Department of Physiology, East Carolina University, Greenville, NC
- Department of Kinesiology, East Carolina University, Greenville, NC
- Corresponding author: P. Darrell Neufer,
| |
Collapse
|
45
|
Stephenson EJ, Hawley JA. Mitochondrial function in metabolic health: a genetic and environmental tug of war. Biochim Biophys Acta Gen Subj 2013; 1840:1285-94. [PMID: 24345456 DOI: 10.1016/j.bbagen.2013.12.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 11/09/2013] [Accepted: 12/10/2013] [Indexed: 01/27/2023]
Abstract
BACKGROUND The increased prevalence of obesity and its co-morbidities and their strong association with inactivity have produced an 'exercise-deficient phenotype' in which individuals with a particular combination of disease-susceptible genes collide with environmental influences to cross a biological 'threshold' that ultimately manifests as overt clinical conditions (i.e., risk-factors for disease states). These risk-factors have been linked to impairments in skeletal muscle mitochondrial function. SCOPE OF REVIEW The question of whether 'inborn' mitochondrial deficiencies and/or defective mitochondrial metabolism contribute to metabolic disease, or if environmental factors are the major determinant, will be examined. MAJOR CONCLUSIONS We contend that impaired whole-body insulin resistance along with impaired skeletal muscle handling of carbohydrate and lipid fuels (i.e., metabolic inflexibility) is associated with a reduced skeletal muscle mitochondrial content which, in large part, is a maladaptive response to an 'inactivity cycle' which predisposes to a reduced level of habitual physical activity. While genetic components play a role in the pathogenesis of metabolic disease, exercise is a powerful environmental stimulus capable of restoring the metabolic flexibility of fuel selection and reduces risk-factors for metabolic disease in genetically-susceptible individuals. GENERAL SIGNIFICANCE Given the apathy towards voluntary physical activity in most Western societies, it is clear that there is an urgent need for innovative, clinically-effective exercise strategies, coupled with changes in current attitudes and methods of delivering exercise prescription and dietary advice, in order to improve metabolic health and reduce metabolic disease risk at the population level. This article is part of a Special Issue entitled Frontiers of Mitochondrial Research.
Collapse
Affiliation(s)
- Erin J Stephenson
- Children's Foundation Research Institute, Le Bonheur Children's Hospital, Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee, U.S.A..
| | - John A Hawley
- Faculty of Health Sciences, Australian Catholic University, Fitzroy, Australia; Research Institute for Sports and Exercise, Liverpool John Moores University, Liverpool United Kingdom.
| |
Collapse
|
46
|
Abstract
This paper describes the interactions between ventilation and acid-base balance under a variety of conditions including rest, exercise, altitude, pregnancy, and various muscle, respiratory, cardiac, and renal pathologies. We introduce the physicochemical approach to assessing acid-base status and demonstrate how this approach can be used to quantify the origins of acid-base disorders using examples from the literature. The relationships between chemoreceptor and metaboreceptor control of ventilation and acid-base balance summarized here for adults, youth, and in various pathological conditions. There is a dynamic interplay between disturbances in acid-base balance, that is, exercise, that affect ventilation as well as imposed or pathological disturbances of ventilation that affect acid-base balance. Interactions between ventilation and acid-base balance are highlighted for moderate- to high-intensity exercise, altitude, induced acidosis and alkalosis, pregnancy, obesity, and some pathological conditions. In many situations, complete acid-base data are lacking, indicating a need for further research aimed at elucidating mechanistic bases for relationships between alterations in acid-base state and the ventilatory responses.
Collapse
Affiliation(s)
- Michael I Lindinger
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada.
| | | |
Collapse
|
47
|
Croci I, Byrne NM, Choquette S, Hills AP, Chachay VS, Clouston AD, O'Moore-Sullivan TM, Macdonald GA, Prins JB, Hickman IJ. Whole-body substrate metabolism is associated with disease severity in patients with non-alcoholic fatty liver disease. Gut 2013; 62:1625-33. [PMID: 23077135 DOI: 10.1136/gutjnl-2012-302789] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVES In non-alcoholic fatty liver disease (NAFLD), hepatic steatosis is intricately linked with a number of metabolic alterations. We studied substrate utilisation in NAFLD during basal, insulin-stimulated and exercise conditions, and correlated these outcomes with disease severity. METHODS 20 patients with NAFLD (mean ± SD body mass index (BMI) 34.1 ± 6.7 kg/m(2)) and 15 healthy controls (BMI 23.4 ± 2.7 kg/m(2)) were assessed. Respiratory quotient (RQ), whole-body fat (Fat ox) and carbohydrate (CHO ox) oxidation rates were determined by indirect calorimetry in three conditions: basal (resting and fasted), insulin-stimulated (hyperinsulinaemic-euglycaemic clamp) and exercise (cycling at an intensity to elicit maximal Fat ox). Severity of disease and steatosis were determined by liver histology, hepatic Fat ox from plasma β-hydroxybutyrate concentrations, aerobic fitness expressed as VO2 peak, and visceral adipose tissue (VAT) measured by computed tomography. RESULTS Within the overweight/obese NAFLD cohort, basal RQ correlated positively with steatosis (r=0.57, p=0.01) and was higher (indicating smaller contribution of Fat ox to energy expenditure) in patients with NAFLD activity score (NAS) ≥ 5 vs <5 (p=0.008). Both results were independent of VAT, % body fat and BMI. Compared with the lean control group, patients with NAFLD had lower basal whole-body Fat ox (1.2 ± 0.3 vs 1.5 ± 0.4 mg/kg FFM/min, p=0.024) and lower basal hepatic Fat ox (ie, β-hydroxybutyrate, p=0.004). During exercise, they achieved lower maximal Fat ox (2.5 ± 1.4 vs. 5.8 ± 3.7 mg/kg FFM/min, p=0.002) and lower VO2 peak (p<0.001) than controls. Fat ox during exercise was not associated with disease severity (p=0.79). CONCLUSIONS Overweight/obese patients with NAFLD had reduced hepatic Fat ox and reduced whole-body Fat ox under basal and exercise conditions. There was an inverse relationship between ability to oxidise fat in basal conditions and histological features of NAFLD including severity of steatosis and NAS.
Collapse
Affiliation(s)
- Ilaria Croci
- The University of Queensland Diamantina Institute, University of Queensland, Brisbane, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Kristensen D, Prats C, Larsen S, Ara I, Dela F, Helge JW. Ceramide content is higher in type I compared to type II fibers in obesity and type 2 diabetes mellitus. Acta Diabetol 2013; 50:705-12. [PMID: 22350135 DOI: 10.1007/s00592-012-0379-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2011] [Accepted: 01/30/2012] [Indexed: 01/03/2023]
Abstract
This study investigated fiber-type-specific muscle ceramide content in obese subjects and type 2 diabetes patients. Two substudies, one which compared type 2 diabetes patients to both lean- and obese BMI-matched subjects and the other study which compared lean body-matched post-obese, obese, and control subjects, were performed. A fasting blood sample was obtained and plasma insulin and glucose determined. A muscle biopsy was obtained from deltoideus and vastus lateralis, and fiber-type ceramide content was determined by fluorescence immunohistochemistry. Insulin sensitivity estimated by Quicki index was higher in lean compared to type 2 diabetes patients and obese controls. Also in control and post-obese subjects, a higher insulin sensitivity was observed compared to obese subjects. Ceramide content was consistently higher in type I than in type II muscle fibers and higher in deltoideus than vastus lateralis across all groups. No significant differences between groups were observed in ceramide content in either of the two substudies. In human skeletal muscle, ceramide content was higher in type I than in type II fibers in patients with type 2 diabetes and in obese subjects, but overall ceramide muscle fiber content was not different compared to controls.
Collapse
Affiliation(s)
- Ditte Kristensen
- Center of Healthy Aging, Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, 2200, Copenhagen, Denmark
| | | | | | | | | | | |
Collapse
|
49
|
Watanabe K, Gazzoni M, Holobar A, Miyamoto T, Fukuda K, Merletti R, Moritani T. Motor unit firing pattern of vastus lateralis muscle in type 2 diabetes mellitus patients. Muscle Nerve 2013; 48:806-13. [PMID: 23447092 DOI: 10.1002/mus.23828] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/22/2013] [Indexed: 12/31/2022]
Affiliation(s)
- Kohei Watanabe
- School of International Liberal Studies, Chukyo University, Yagotohonmachi, Showa-ku, Nagoya, 466-8666, Japan; Laboratory of Applied Physiology, Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, Japan
| | | | | | | | | | | | | |
Collapse
|
50
|
Increased skeletal muscle mitochondrial efficiency in rats with fructose-induced alteration in glucose tolerance. Br J Nutr 2013; 110:1996-2003. [PMID: 23693085 DOI: 10.1017/s0007114513001566] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In the present study, the effect of long-term fructose feeding on skeletal muscle mitochondrial energetics was investigated. Measurements in isolated tissue were coupled with the determination of whole-body energy expenditure and insulin sensitivity. A significant increase in plasma NEFA, as well as in skeletal muscle TAG and ceramide, was found in fructose-fed rats compared with the controls, together with a significantly higher plasma insulin response to a glucose load, while no significant variation in plasma glucose levels was found. Significantly lower RMR values were found in fructose-fed rats starting from week 4 of the dietary treatment. Skeletal muscle mitochondrial mass and degree of coupling were found to be significantly higher in fructose-fed rats compared with the controls. Significantly higher lipid peroxidation was found in fructose-fed rats, together with a significant decrease in superoxide dismutase activity. Phosphorylated Akt levels normalised to plasma insulin levels were significantly lower in fructose-fed rats compared with the controls. In conclusion, a fructose-rich diet has a deep impact on a metabolically relevant tissue such as skeletal muscle. In this tissue, the consequences of high fructose feeding are altered glucose tolerance, elevated mitochondrial biogenesis and increased mitochondrial coupling. This latter modification could have a detrimental metabolic effect by causing oxidative stress and energy sparing that contribute to the high metabolic efficiency of fructose-fed rats.
Collapse
|