1
|
Sullivan AE, Courvan MCS, Aday AW, Wasserman DH, Niswender KD, Shardelow EM, Wells EK, Wells QS, Freiberg MS, Beckman JA. The Role of Serum Free Fatty Acids in Endothelium-Dependent Microvascular Function. Endocrinol Diabetes Metab 2025; 8:e70031. [PMID: 39888728 PMCID: PMC11784902 DOI: 10.1002/edm2.70031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/28/2024] [Accepted: 01/11/2025] [Indexed: 02/02/2025] Open
Abstract
BACKGROUND Elevated serum free fatty acid (FFA) concentration is associated with insulin resistance and is a hallmark of metabolic syndrome. A pathological feature of insulin resistance is impaired endothelial function. OBJECTIVE To investigate the effect of FFA reduction with either acipimox, a nicotinic acid derivative that impairs lipolysis, or salsalate, a salicylate that reduces basal and inflammation-induced lipolysis, on insulin-mediated endothelium-dependent vasodilation. METHODS This was a post hoc, combined analysis of two randomised, double-blind, placebo-controlled crossover trials. Sixteen subjects were recruited (6 with metabolic syndrome and 10 controls) and randomised to acipimox 250 mg orally every 6 h for 7 days or placebo. Nineteen subjects were recruited (13 with metabolic syndrome and 6 controls) and randomised to receive salsalate 4.5 g/day for 4 weeks or placebo. The primary outcome was the association between FFA concentration and insulin-mediated vasodilation, measured by venous-occlusion strain-gauge plethysmography at baseline and following FFA modulation with the study drugs. RESULTS At baseline, FFA concentration (R = -0.35, p = 0.043) and insulin sensitivity (HOMA-IR: R = -0.42, p = 0.016, Adipo-IR: R = -0.39, p = 0.025) predicted insulin-mediated vasodilation. FFA levels were significantly reduced after drug pretreatment (0.604 vs. 0.491 mmol/L, p = 0.036) while insulin levels, insulin sensitivity and inflammatory markers were unchanged. Despite a reduction in circulating FFA with drug therapy, neither insulin-stimulated vasodilation nor insulin sensitivity improved. CONCLUSIONS Short-term reduction of FFA concentration does not improve insulin-stimulated vasodilation in patients with metabolic syndrome. TRIAL REGISTRATION ClinicalTrials.gov identifier: NCT00759291 and NCT00760019 (formerly NCT00762827).
Collapse
Affiliation(s)
- Alexander E. Sullivan
- Division of Cardiovascular Medicine, Department of MedicineVanderbilt University Medical CenterNashvilleTennesseeUSA
| | | | - Aaron W. Aday
- Division of Cardiovascular Medicine, Department of MedicineVanderbilt University Medical CenterNashvilleTennesseeUSA
- Vanderbilt Translational and Clinical Cardiovascular Research Center, Division of Cardiovascular MedicineVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - David H. Wasserman
- Department of Molecular Physiology and BiophysicsVanderbilt University School of MedicineNashvilleTennesseeUSA
| | - Kevin D. Niswender
- Department of MedicineVanderbilt University Medical CenterNashvilleTennesseeUSA
- Department of Veteran AffairsTennessee Valley Healthcare SystemNashvilleTennesseeUSA
| | - Emily M. Shardelow
- Vanderbilt University Medical CenterProgram for Metabolic Bone DisordersNashvilleTennesseeUSA
| | - Emily K. Wells
- Division of Cardiovascular Medicine, Department of MedicineVanderbilt University Medical CenterNashvilleTennesseeUSA
- Vanderbilt Translational and Clinical Cardiovascular Research Center, Division of Cardiovascular MedicineVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Quinn S. Wells
- Division of Cardiovascular Medicine, Department of MedicineVanderbilt University Medical CenterNashvilleTennesseeUSA
- Vanderbilt Translational and Clinical Cardiovascular Research Center, Division of Cardiovascular MedicineVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Matthew S. Freiberg
- Division of Cardiovascular Medicine, Department of MedicineVanderbilt University Medical CenterNashvilleTennesseeUSA
- Geriatric Research Education and Clinical Centers (GRECC)Veterans Affairs Tennessee Valley Healthcare SystemNashvilleTennesseeUSA
| | - Joshua A. Beckman
- Division of Vascular Medicine, Department of MedicineUniversity of Texas SouthwesternDallasTexasUSA
| |
Collapse
|
2
|
Huang Y, Zhu Y, Xia W, Xie H, Yu H, Chen L, Shi L, Yu R. Computed tomography-based body composition indicative of diabetes after hypertriglyceridemic acute pancreatitis. Diabetes Res Clin Pract 2024; 217:111862. [PMID: 39299391 DOI: 10.1016/j.diabres.2024.111862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/27/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
BACKGROUND Post‑acute pancreatitis prediabetes/diabetes mellitus (PPDM‑A) is one of the common sequelae of acute pancreatitis (AP). The aim of our study was to build a machine learning (ML)-based prediction model for PPDM-A in hypertriglyceridemic acute pancreatitis (HTGP). METHODS We retrospectively enrolled 165 patients for our study. Demographic and laboratory data and body composition were collected. Multivariate logistic regression was applied to select features for ML. Support vector machine (SVM), linear discriminant analysis (LDA), and logistic regression (LR) were used to develop prediction models for PPDM-A. RESULTS 65 patients were diagnosed with PPDM-A, and 100 patients were diagnosed with non-PPDM-A. Of the 84 body composition-related parameters, 15 were significant in discriminating between the PPDM-A and non-PPDM-A groups. Using clinical indicators and body composition parameters to develop ML models, we found that the SVM model presented the best predictive ability, obtaining the best AUC=0.796 in the training cohort, and the LDA and LR model showing an AUC of 0.783 and 0.745, respectively. CONCLUSIONS The association between body composition and PPDM-A provides insight into the potential pathogenesis of PPDM-A. Our model is feasible for reliably predicting PPDM-A in the early stages of AP and enables early intervention in patients with potential PPDM-A.
Collapse
Affiliation(s)
- Yingbao Huang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yi Zhu
- School of the First Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Weizhi Xia
- Department of Radiology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Huanhuan Xie
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Huajun Yu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lifang Chen
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Liuzhi Shi
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Risheng Yu
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
3
|
Ouni M, Kovac L, Gancheva S, Jähnert M, Zuljan E, Gottmann P, Kahl S, de Angelis MH, Roden M, Schürmann A. Novel markers and networks related to restored skeletal muscle transcriptome after bariatric surgery. Obesity (Silver Spring) 2024; 32:363-375. [PMID: 38086776 DOI: 10.1002/oby.23954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/16/2023] [Accepted: 10/19/2023] [Indexed: 01/26/2024]
Abstract
OBJECTIVE The aim of this study was to discover novel markers underlying the improvement of skeletal muscle metabolism after bariatric surgery. METHODS Skeletal muscle transcriptome data of lean people and people with obesity, before and 1 year after bariatric surgery, were subjected to weighted gene co-expression network analysis (WGCNA) and least absolute shrinkage and selection operator (LASSO) regression. Results of LASSO were confirmed in a replication cohort. RESULTS The expression levels of 440 genes differing between individuals with and without obesity were no longer different 1 year after surgery, indicating restoration. WGCNA clustered 116 genes with normalized expression in one major module, particularly correlating to weight loss and decreased plasma free fatty acids (FFA), 44 of which showed an obesity-related phenotype upon deletion in mice. Among the genes of the major module, 105 represented prominent markers for reduced FFA concentration, including 55 marker genes for decreased BMI in both the discovery and replication cohorts. CONCLUSIONS Previously unknown gene networks and marker genes underlined the important role of FFA in restoring muscle gene expression after bariatric surgery and further suggest novel therapeutic targets for obesity.
Collapse
Affiliation(s)
- Meriem Ouni
- German Institute of Human Nutrition, Department of Experimental Diabetology, Potsdam, Germany
- German Center for Diabetes Research (DZD), Munich, Germany
| | - Leona Kovac
- German Institute of Human Nutrition, Department of Experimental Diabetology, Potsdam, Germany
- German Center for Diabetes Research (DZD), Munich, Germany
| | - Sofiya Gancheva
- German Center for Diabetes Research (DZD), Munich, Germany
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital, Heinrich Heine University, Düsseldorf, Germany
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University, Düsseldorf, Germany
| | - Markus Jähnert
- German Institute of Human Nutrition, Department of Experimental Diabetology, Potsdam, Germany
- German Center for Diabetes Research (DZD), Munich, Germany
| | - Erika Zuljan
- German Institute of Human Nutrition, Department of Experimental Diabetology, Potsdam, Germany
- German Center for Diabetes Research (DZD), Munich, Germany
| | - Pascal Gottmann
- German Institute of Human Nutrition, Department of Experimental Diabetology, Potsdam, Germany
- German Center for Diabetes Research (DZD), Munich, Germany
| | - Sabine Kahl
- German Center for Diabetes Research (DZD), Munich, Germany
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital, Heinrich Heine University, Düsseldorf, Germany
| | - Martin Hrabĕ de Angelis
- German Center for Diabetes Research (DZD), Munich, Germany
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- School of Life Sciences, Technical University Munich, Freising, Germany
| | - Michael Roden
- German Center for Diabetes Research (DZD), Munich, Germany
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital, Heinrich Heine University, Düsseldorf, Germany
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University, Düsseldorf, Germany
| | - Annette Schürmann
- German Institute of Human Nutrition, Department of Experimental Diabetology, Potsdam, Germany
- German Center for Diabetes Research (DZD), Munich, Germany
- Institute of Nutritional Sciences, University of Potsdam, Nuthetal, Germany
| |
Collapse
|
4
|
Engin AB. Mechanism of Obesity-Related Lipotoxicity and Clinical Perspective. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1460:131-166. [PMID: 39287851 DOI: 10.1007/978-3-031-63657-8_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
The link between cellular exposure to fatty acid species and toxicity phenotypes remains poorly understood. However, structural characterization and functional profiling of human plasma free fatty acids (FFAs) analysis has revealed that FFAs are located either in the toxic cluster or in the cluster that is transcriptionally responsive to lipotoxic stress and creates genetic risk factors. Genome-wide short hairpin RNA screen has identified more than 350 genes modulating lipotoxicity. Hypertrophic adipocytes in obese adipose are both unable to expand further to store excess lipids in the diet and are resistant to the antilipolytic action of insulin. In addition to lipolysis, the inability of packaging the excess lipids into lipid droplets causes circulating fatty acids to reach toxic levels in non-adipose tissues. Deleterious effects of accumulated lipid in non-adipose tissues are known as lipotoxicity. Although triglycerides serve a storage function for long-chain non-esterified fatty acid and their products such as ceramide and diacylglycerols (DAGs), overloading of palmitic acid fraction of saturated fatty acids (SFAs) raises ceramide levels. The excess DAG and ceramide load create harmful effects on multiple organs and systems, inducing chronic inflammation in obesity. Thus, lipotoxic inflammation results in β cells death and pancreatic islets dysfunction. Endoplasmic reticulum stress stimuli induce lipolysis by activating cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA) and extracellular signal-regulated kinase (Erk) 1/2 signaling in adipocytes. However, palmitic acid-induced endoplasmic reticulum stress-c-Jun N-terminal kinase (JNK)-autophagy axis in hypertrophic adipocytes is a pro-survival mechanism against endoplasmic reticulum stress and cell death induced by SFAs. Endoplasmic reticulum-localized acyl-coenzyme A (CoA): glycerol-3-phosphate acyltransferase (GPAT) enzymes are mediators of lipotoxicity, and inhibiting these enzymes has therapeutic potential for lipotoxicity. Lipotoxicity increases the number of autophagosomes, which engulf palmitic acid, and thus suppress the autophagic turnover. Fatty acid desaturation promotes palmitate detoxification and storages into triglycerides. As therapeutic targets of glucolipotoxicity, in addition to caloric restriction and exercise, there are four different pharmacological approaches, which consist of metformin, glucagon-like peptide 1 (GLP-1) receptor agonists, peroxisome proliferator-activated receptor-gamma (PPARγ) ligands thiazolidinediones, and chaperones are still used in clinical practice. Furthermore, induction of the brown fat-like phenotype with the mixture of eicosapentanoic acid and docosahexaenoic acid appears as a potential therapeutic application for treatment of lipotoxicity.
Collapse
Affiliation(s)
- Ayse Basak Engin
- Faculty of Pharmacy, Department of Toxicology, Gazi University, Hipodrom, Ankara, Turkey.
| |
Collapse
|
5
|
Huang C, Luo Y, Zeng B, Chen Y, Liu Y, Chen W, Liao X, Liu Y, Wang Y, Wang X. Branched-chain amino acids prevent obesity by inhibiting the cell cycle in an NADPH-FTO-m 6A coordinated manner. J Nutr Biochem 2023; 122:109437. [PMID: 37666478 DOI: 10.1016/j.jnutbio.2023.109437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 08/15/2023] [Accepted: 08/30/2023] [Indexed: 09/06/2023]
Abstract
Obesity has become a major health crisis in the past decades. Branched-chain amino acids (BCAA), a class of essential amino acids, exerted beneficial health effects with regard to obesity and its related metabolic dysfunction, although the underlying reason is unknown. Here, we show that BCAA supplementation alleviates high-fat diet (HFD)-induced obesity and insulin resistance in mice and inhibits adipogenesis in 3T3-L1 cells. Further, we find that BCAA prevent the mitotic clonal expansion (MCE) of preadipocytes by reducing cyclin A2 (CCNA2) and cyclin-dependent kinase 2 (CDK2) expression. Mechanistically, BCAA decrease the concentration of nicotinamide adenine dinucleotide phosphate (NADPH) in adipose tissue and 3T3-L1 cells by reducing glucose-6-phosphate dehydrogenase (G6PD) expression. The reduced NADPH attenuates the expression of fat mass and obesity-associated (FTO) protein, a well-known m6A demethylase, to increase the N6-methyladenosine (m6A) levels of Ccna2 and Cdk2 mRNA. Meanwhile, the high m6A levels of Ccna2 and Cdk2 mRNA are recognized by YTH N6-methyladenosine RNA binding protein 2 (YTHDF2), which results in mRNA decay and reduction of their protein expressions. Overall, our data demonstrate that BCAA inhibit obesity and adipogenesis by reducing CDK2 and CCNA2 expression via an NADPH-FTO-m6A coordinated manner in vivo and in vitro, which raises a new perspective on the role of m6A in the BCAA regulation of obesity and adipogenesis.
Collapse
Affiliation(s)
- Chaoqun Huang
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang province, China; Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, China; Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, China; Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
| | - Yaojun Luo
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang province, China; Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, China; Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, China; Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
| | - Botao Zeng
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang province, China; Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, China; Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, China; Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
| | - Yushi Chen
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang province, China; Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, China; Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, China; Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
| | - Youhua Liu
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang province, China; Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, China; Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, China; Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
| | - Wei Chen
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang province, China; Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, China; Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, China; Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
| | - Xing Liao
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang province, China; Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, China; Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, China; Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
| | - Yuxi Liu
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang province, China; Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, China; Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, China; Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
| | - Yizhen Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang province, China; Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, China; Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, China; Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
| | - Xinxia Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang province, China; Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, China; Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, China; Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China.
| |
Collapse
|
6
|
Yang W, Jiang W, Guo S. Regulation of Macronutrients in Insulin Resistance and Glucose Homeostasis during Type 2 Diabetes Mellitus. Nutrients 2023; 15:4671. [PMID: 37960324 PMCID: PMC10647592 DOI: 10.3390/nu15214671] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 10/30/2023] [Accepted: 11/02/2023] [Indexed: 11/15/2023] Open
Abstract
Insulin resistance is an important feature of metabolic syndrome and a precursor of type 2 diabetes mellitus (T2DM). Overnutrition-induced obesity is a major risk factor for the development of insulin resistance and T2DM. The intake of macronutrients plays a key role in maintaining energy balance. The components of macronutrients distinctly regulate insulin sensitivity and glucose homeostasis. Precisely adjusting the beneficial food compound intake is important for the prevention of insulin resistance and T2DM. Here, we reviewed the effects of different components of macronutrients on insulin sensitivity and their underlying mechanisms, including fructose, dietary fiber, saturated and unsaturated fatty acids, and amino acids. Understanding the diet-gene interaction will help us to better uncover the molecular mechanisms of T2DM and promote the application of precision nutrition in practice by integrating multi-omics analysis.
Collapse
Affiliation(s)
| | | | - Shaodong Guo
- Department of Nutrition, College of Agriculture and Life Sciences, Texas A&M University, College Station, TX 77843, USA; (W.Y.); (W.J.)
| |
Collapse
|
7
|
Yang H, Song S, Li J, Li Y, Feng J, Sun Q, Qiu X, Chen Z, Bai X, Liu X, Lian H, Liu L, Bai Y, Zhang G, Nie Y. Omentin-1 drives cardiomyocyte cell cycle arrest and metabolic maturation by interacting with BMP7. Cell Mol Life Sci 2023; 80:186. [PMID: 37344704 PMCID: PMC11071824 DOI: 10.1007/s00018-023-04829-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 04/05/2023] [Accepted: 06/04/2023] [Indexed: 06/23/2023]
Abstract
Mammalian cardiomyocytes (CMs) undergo maturation during postnatal heart development to meet the increased demands of growth. Here, we found that omentin-1, an adipokine, facilitates CM cell cycle arrest and metabolic maturation. Deletion of omentin-1 causes mouse heart enlargement and dysfunction in adulthood and CM maturation retardation in juveniles, including delayed cell cycle arrest and reduced fatty acid oxidation. Through RNA sequencing, molecular docking analysis, and proximity ligation assays, we found that omentin-1 regulates CM maturation by interacting directly with bone morphogenetic protein 7 (BMP7). Omentin-1 prevents BMP7 from binding to activin type II receptor B (ActRIIB), subsequently decreasing the downstream pathways mothers against DPP homolog 1 (SMAD1)/Yes-associated protein (YAP) and p38 mitogen-activated protein kinase (p38 MAPK). In addition, omentin-1 is required and sufficient for the maturation of human embryonic stem cell-derived CMs. Together, our findings reveal that omentin-1 is a pro-maturation factor for CMs that is essential for postnatal heart development and cardiac function maintenance.
Collapse
Affiliation(s)
- Huijun Yang
- Department of Geriatric Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 167 Street, Beilishi Road, Xicheng District, Beijing, 100037, People's Republic of China
- Department of Cardiovascular Medicine, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, China
| | - Shen Song
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 167 Street, Beilishi Road, Xicheng District, Beijing, 100037, People's Republic of China
| | - Jiacheng Li
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China
| | - Yandong Li
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 167 Street, Beilishi Road, Xicheng District, Beijing, 100037, People's Republic of China
| | - Jie Feng
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 167 Street, Beilishi Road, Xicheng District, Beijing, 100037, People's Republic of China
| | - Quan Sun
- Department of Geriatric Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- Department of Geriatric Medicine, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 87 Street, Xiangya Road, Kaifu District, Changsha, 410008, People's Republic of China
| | - Xueting Qiu
- Department of Geriatric Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- Department of Geriatric Medicine, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 87 Street, Xiangya Road, Kaifu District, Changsha, 410008, People's Republic of China
| | - Ziwei Chen
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 167 Street, Beilishi Road, Xicheng District, Beijing, 100037, People's Republic of China
| | - Xue Bai
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 167 Street, Beilishi Road, Xicheng District, Beijing, 100037, People's Republic of China
| | - Xinchang Liu
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 167 Street, Beilishi Road, Xicheng District, Beijing, 100037, People's Republic of China
| | - Hong Lian
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 167 Street, Beilishi Road, Xicheng District, Beijing, 100037, People's Republic of China
| | - Lihui Liu
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 167 Street, Beilishi Road, Xicheng District, Beijing, 100037, People's Republic of China
| | - Yongping Bai
- Department of Geriatric Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Department of Geriatric Medicine, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 87 Street, Xiangya Road, Kaifu District, Changsha, 410008, People's Republic of China.
| | - Guogang Zhang
- Department of Geriatric Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Department of Geriatric Medicine, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 87 Street, Xiangya Road, Kaifu District, Changsha, 410008, People's Republic of China.
| | - Yu Nie
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 167 Street, Beilishi Road, Xicheng District, Beijing, 100037, People's Republic of China.
- Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen, 518057, China.
- National Health Commission Key Laboratory of Cardiovascular Regenerative Medicine, Fuwai Central-China Hospital, Central China Branch of National Center for Cardiovascular Diseases, Zhengzhou, 450046, China.
| |
Collapse
|
8
|
Memon AA, Vats S, Sundquist J, Li Y, Sundquist K. Mitochondrial DNA Copy Number: Linking Diabetes and Cancer. Antioxid Redox Signal 2022; 37:1168-1190. [PMID: 36169625 DOI: 10.1089/ars.2022.0100] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Recent Advances: Various studies have suggested that mitochondrial DNA copy number (mtDNA-CN), a surrogate biomarker of mitochondrial dysfunction, is an easily quantifiable biomarker for chronic diseases, including diabetes and cancer. However, current knowledge is limited, and the results are controversial. This has been attributed mainly to methodology and study design. Critical Issues: The incidence of diabetes and cancer has increased significantly in recent years. Moreover, type 2 diabetes (T2D) has been shown to be a risk factor for cancer. mtDNA-CN has been associated with both T2D and cancer. However, it is not known whether mtDNA-CN plays any role in the association between T2D and cancer. Significance: In this review, we have discussed mtDNA-CN in diabetes and cancer, and reviewed the literature and methodology used in published studies so far. Based on the literature review, we have speculated how mtDNA-CN may act as a link between diabetes and cancer. Furthermore, we have provided some recommendations for reliable translation of mtDNA-CN as a biomarker. Future Directions: Further research is required to elucidate the role of mtDNA-CN in the association between T2D and cancer. If established, early lifestyle interventions, such as physical activity and diet control that improve mitochondrial function, may help preventing cancer in patients with T2D. Antioxid. Redox Signal. 37, 1168-1190.
Collapse
Affiliation(s)
- Ashfaque A Memon
- Center for Primary Health Care Research, Lund University/Region Skåne, Malmö, Sweden
| | - Sakshi Vats
- Center for Primary Health Care Research, Lund University/Region Skåne, Malmö, Sweden
| | - Jan Sundquist
- Center for Primary Health Care Research, Lund University/Region Skåne, Malmö, Sweden
| | - Yanni Li
- Center for Primary Health Care Research, Lund University/Region Skåne, Malmö, Sweden
| | - Kristina Sundquist
- Center for Primary Health Care Research, Lund University/Region Skåne, Malmö, Sweden
| |
Collapse
|
9
|
Avram VF, Merce AP, Hâncu IM, Bătrân AD, Kennedy G, Rosca MG, Muntean DM. Impairment of Mitochondrial Respiration in Metabolic Diseases: An Overview. Int J Mol Sci 2022; 23:8852. [PMID: 36012137 PMCID: PMC9408127 DOI: 10.3390/ijms23168852] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/05/2022] [Accepted: 08/06/2022] [Indexed: 11/16/2022] Open
Abstract
Mitochondrial dysfunction has emerged as a central pathomechanism in the setting of obesity and diabetes mellitus, linking these intertwined pathologies that share insulin resistance as a common denominator. High-resolution respirometry (HRR) is a state-of-the-art research method currently used to study mitochondrial respiration and its impairment in health and disease. Tissue samples, cells or isolated mitochondria are exposed to various substrate-uncoupler-inhibitor-titration protocols, which allows the measurement and calculation of several parameters of mitochondrial respiration. In this review, we discuss the alterations of mitochondrial bioenergetics in the main dysfunctional organs that contribute to the development of the obese and diabetic phenotypes in both animal models and human subjects. Herein we review data regarding the impairment of oxidative phosphorylation as integrated mitochondrial function assessed by means of HRR. We acknowledge the critical role of this method in determining the alterations in oxidative phosphorylation occurring in the early stages of metabolic pathologies. We conclude that there is a mutual two-way relationship between mitochondrial dysfunction and insulin insensitivity that characterizes these diseases.
Collapse
Affiliation(s)
- Vlad Florian Avram
- Department VII Internal Medicine—Diabetes, Nutrition and Metabolic Diseases, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania
- Center for Molecular Research in Nephrology and Vascular Disease, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania
| | - Adrian Petru Merce
- Doctoral School Medicine—Pharmacy, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania
- Center for Translational Research and Systems Medicine, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania
| | - Iasmina Maria Hâncu
- Doctoral School Medicine—Pharmacy, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania
- Center for Translational Research and Systems Medicine, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania
| | - Alina Doruța Bătrân
- Doctoral School Medicine—Pharmacy, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania
- Center for Translational Research and Systems Medicine, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania
| | - Gabrielle Kennedy
- Department of Foundational Sciences, Central Michigan University College of Medicine, Mount Pleasant, MI 48858, USA
| | - Mariana Georgeta Rosca
- Department of Foundational Sciences, Central Michigan University College of Medicine, Mount Pleasant, MI 48858, USA
| | - Danina Mirela Muntean
- Center for Translational Research and Systems Medicine, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania
- Department III Functional Sciences—Pathophysiology, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania
| |
Collapse
|
10
|
Vanweert F, Schrauwen P, Phielix E. Role of branched-chain amino acid metabolism in the pathogenesis of obesity and type 2 diabetes-related metabolic disturbances BCAA metabolism in type 2 diabetes. Nutr Diabetes 2022; 12:35. [PMID: 35931683 PMCID: PMC9356071 DOI: 10.1038/s41387-022-00213-3] [Citation(s) in RCA: 93] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 06/15/2022] [Accepted: 07/05/2022] [Indexed: 12/23/2022] Open
Abstract
Branched-chain amino acid (BCAA) catabolism has been considered to have an emerging role in the pathogenesis of metabolic disturbances in obesity and type 2 diabetes (T2D). Several studies showed elevated plasma BCAA levels in humans with insulin resistance and patients with T2D, although the underlying reason is unknown. Dysfunctional BCAA catabolism could theoretically be an underlying factor. In vitro and animal work collectively show that modulation of the BCAA catabolic pathway alters key metabolic processes affecting glucose homeostasis, although an integrated understanding of tissue-specific BCAA catabolism remains largely unknown, especially in humans. Proof-of-concept studies in rodents -and to a lesser extent in humans – strongly suggest that enhancing BCAA catabolism improves glucose homeostasis in metabolic disorders, such as obesity and T2D. In this review, we discuss several hypothesized mechanistic links between BCAA catabolism and insulin resistance and overview current available tools to modulate BCAA catabolism in vivo. Furthermore, this review considers whether enhancing BCAA catabolism forms a potential future treatment strategy to promote metabolic health in insulin resistance and T2D.
Collapse
Affiliation(s)
- Froukje Vanweert
- Department of Nutrition and Movement Sciences, NUTRIM, School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Patrick Schrauwen
- Department of Nutrition and Movement Sciences, NUTRIM, School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Esther Phielix
- Department of Nutrition and Movement Sciences, NUTRIM, School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, The Netherlands.
| |
Collapse
|
11
|
Oncostatin M Induces Lipolysis and Suppresses Insulin Response in 3T3-L1 Adipocytes. Int J Mol Sci 2022; 23:ijms23094689. [PMID: 35563078 PMCID: PMC9104719 DOI: 10.3390/ijms23094689] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/20/2022] [Accepted: 04/21/2022] [Indexed: 12/04/2022] Open
Abstract
Oncostatin M (OSM) is an immune cell-derived cytokine that is upregulated in adipose tissue in obesity. Upon binding its receptor (OSMR), OSM induces the phosphorylation of the p66 subunit of Src homology 2 domain-containing transforming protein 1 (SHC1), called p66Shc, and activates the extracellular signal-related kinase (ERK) pathway. Mice with adipocyte-specific OSMR deletion (OsmrFKO) are insulin resistant and exhibit adipose tissue inflammation, suggesting that intact adipocyte OSM–OSMR signaling is necessary for maintaining adipose tissue health. How OSM affects specific adipocyte functions is still unclear. Here, we examined the effects of OSM on adipocyte lipolysis. We treated 3T3-L1 adipocytes with OSM, insulin, and/or inhibitors of SHC1 and ERK and measured glycerol release. We also measured phosphorylation of p66Shc, ERK, and insulin receptor substrate-1 (IRS1) and the expression of lipolysis-associated genes in OSM-exposed 3T3-L1 adipocytes and primary adipocytes from control and OsmrFKO mice. We found that OSM induces adipocyte lipolysis via a p66Shc-ERK pathway and inhibits the suppression of lipolysis by insulin. Further, OSM induces phosphorylation of inhibitory IRS1 residues. We conclude that OSM is a stimulator of lipolysis and inhibits adipocyte insulin response. Future studies will determine how these roles of OSM affect adipose tissue function in health and disease.
Collapse
|
12
|
Gancheva S, Kahl S, Pesta D, Mastrototaro L, Dewidar B, Strassburger K, Sabah E, Esposito I, Weiß J, Sarabhai T, Wolkersdorfer M, Fleming T, Nawroth P, Zimmermann M, Reichert AS, Schlensak M, Roden M. Impaired Hepatic Mitochondrial Capacity in Nonalcoholic Steatohepatitis Associated With Type 2 Diabetes. Diabetes Care 2022; 45:928-937. [PMID: 35113139 DOI: 10.2337/dc21-1758] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 01/13/2022] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Individuals with type 2 diabetes are at higher risk of progression of nonalcoholic fatty liver (steatosis) to steatohepatitis (NASH), fibrosis, and cirrhosis. The hepatic metabolism of obese individuals adapts by upregulation of mitochondrial capacity, which may be lost during the progression of steatosis. However, the role of type 2 diabetes with regard to hepatic mitochondrial function in NASH remains unclear. RESEARCH DESIGN AND METHODS We therefore examined obese individuals with histologically proven NASH without (OBE) (n = 30; BMI 52 ± 9 kg/m2) or with type 2 diabetes (T2D) (n = 15; 51 ± 7 kg/m2) as well as healthy individuals without liver disease (CON) (n = 14; 25 ± 2 kg/m2). Insulin sensitivity was measured by hyperinsulinemic-euglycemic clamps with d-[6,6-2H2]glucose. Liver biopsies were used for assessing mitochondrial capacity by high-resolution respirometry and protein expression. RESULTS T2D and OBE had comparable hepatic fat content, lobular inflammation, and fibrosis. Oxidative capacity in liver tissue normalized for citrate synthase activity was 59% greater in OBE than in CON, whereas T2D presented with 33% lower complex II-linked oxidative capacity than OBE and higher H2O2 production than CON. Interestingly, those with NASH and hepatic fibrosis score ≥1 had lower oxidative capacity and antioxidant defense than those without fibrosis. CONCLUSIONS Loss of hepatic mitochondrial adaptation characterizes NASH and type 2 diabetes or hepatic fibrosis and may thereby favor accelerated disease progression.
Collapse
Affiliation(s)
- Sofiya Gancheva
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital, Heinrich Heine University, Düsseldorf, Germany.,Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University, Düsseldorf, Germany.,German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany
| | - Sabine Kahl
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital, Heinrich Heine University, Düsseldorf, Germany.,Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University, Düsseldorf, Germany.,German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany
| | - Dominik Pesta
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University, Düsseldorf, Germany.,German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany
| | - Lucia Mastrototaro
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University, Düsseldorf, Germany.,German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany
| | - Bedair Dewidar
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University, Düsseldorf, Germany.,German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany.,Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Klaus Strassburger
- German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany.,Institute for Biometrics and Epidemiology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University, Düsseldorf, Germany
| | - Ehsan Sabah
- Obesity and Reflux Center, Neuwerk Hospital, Mönchengladbach, Germany
| | - Irene Esposito
- Institute of Pathology, Heinrich Heine University, Düsseldorf, Germany
| | - Jürgen Weiß
- German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany.,Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University, Düsseldorf, Germany
| | - Theresia Sarabhai
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital, Heinrich Heine University, Düsseldorf, Germany.,Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University, Düsseldorf, Germany.,German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany
| | | | - Thomas Fleming
- Department of Internal Medicine I, University Hospital Heidelberg, Heidelberg, Germany
| | - Peter Nawroth
- Department of Internal Medicine I, University Hospital Heidelberg, Heidelberg, Germany
| | - Marcel Zimmermann
- Institute of Biochemistry and Molecular Biology I, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - Andreas S Reichert
- Institute of Biochemistry and Molecular Biology I, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | | | - Michael Roden
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital, Heinrich Heine University, Düsseldorf, Germany.,Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University, Düsseldorf, Germany.,German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany
| |
Collapse
|
13
|
Barrett JS, Whytock KL, Strauss JA, Wagenmakers AJM, Shepherd SO. High intramuscular triglyceride turnover rates and the link to insulin sensitivity: influence of obesity, type 2 diabetes and physical activity. Appl Physiol Nutr Metab 2022; 47:343-356. [PMID: 35061523 DOI: 10.1139/apnm-2021-0631] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Large intramuscular triglyceride (IMTG) stores in sedentary, obese individuals have been linked to insulin resistance, yet well-trained athletes exhibit high IMTG levels whilst maintaining insulin sensitivity. Contrary to previous assumptions, it is now known that IMTG content per se does not result in insulin resistance. Rather, insulin resistance is caused, at least in part, by the presence of high concentrations of harmful lipid metabolites, such as diacylglycerols and ceramides in muscle. Several mechanistic differences between obese sedentary individuals and their highly trained counterparts have been identified, which determine the differential capacity for IMTG synthesis and breakdown in these populations. In this review, we first describe the most up-to-date mechanisms by which a low IMTG turnover rate (both breakdown and synthesis) leads to the accumulation of lipid metabolites and results in skeletal muscle insulin resistance. We then explore current and potential exercise and nutritional strategies that target IMTG turnover in sedentary obese individuals, to improve insulin sensitivity. Overall, improving IMTG turnover should be an important component of successful interventions that aim to prevent the development of insulin resistance in the ever-expanding sedentary, overweight and obese populations. Novelty: A description of the most up-to-date mechanisms regulating turnover of the IMTG pool. An exploration of current and potential exercise/nutritional strategies to target and enhance IMTG turnover in obese individuals. Overall, highlights the importance of improving IMTG turnover to prevent the development of insulin resistance.
Collapse
Affiliation(s)
- J S Barrett
- Research Institute for Sport & Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| | - K L Whytock
- Translational Research Institute, AdventHealth, Orlando, FL 32804, USA
| | - J A Strauss
- Research Institute for Sport & Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| | - A J M Wagenmakers
- Research Institute for Sport & Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| | - S O Shepherd
- Research Institute for Sport & Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| |
Collapse
|
14
|
Sarabhai T, Koliaki C, Mastrototaro L, Kahl S, Pesta D, Apostolopoulou M, Wolkersdorfer M, Bönner AC, Bobrov P, Markgraf DF, Herder C, Roden M. Dietary palmitate and oleate differently modulate insulin sensitivity in human skeletal muscle. Diabetologia 2022; 65:301-314. [PMID: 34704121 PMCID: PMC8741704 DOI: 10.1007/s00125-021-05596-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 08/16/2021] [Indexed: 11/23/2022]
Abstract
AIMS/HYPOTHESIS Energy-dense nutrition generally induces insulin resistance, but dietary composition may differently affect glucose metabolism. This study investigated initial effects of monounsaturated vs saturated lipid meals on basal and insulin-stimulated myocellular glucose metabolism and insulin signalling. METHODS In a randomised crossover study, 16 lean metabolically healthy volunteers received single meals containing safflower oil (SAF), palm oil (PAL) or vehicle (VCL). Whole-body glucose metabolism was assessed from glucose disposal (Rd) before and during hyperinsulinaemic-euglycaemic clamps with D-[6,6-2H2]glucose. In serial skeletal muscle biopsies, subcellular lipid metabolites and insulin signalling were measured before and after meals. RESULTS SAF and PAL raised plasma oleate, but only PAL significantly increased plasma palmitate concentrations. SAF and PAL increased myocellular diacylglycerol and activated protein kinase C (PKC) isoform θ (p < 0.05) but only PAL activated PKCɛ. Moreover, PAL led to increased myocellular ceramides along with stimulated PKCζ translocation (p < 0.05 vs SAF). During clamp, SAF and PAL both decreased insulin-stimulated Rd (p < 0.05 vs VCL), but non-oxidative glucose disposal was lower after PAL compared with SAF (p < 0.05). Muscle serine1101-phosphorylation of IRS-1 was increased upon SAF and PAL consumption (p < 0.05), whereas PAL decreased serine473-phosphorylation of Akt more than SAF (p < 0.05). CONCLUSIONS/INTERPRETATION Lipid-induced myocellular insulin resistance is likely more pronounced with palmitate than with oleate and is associated with PKC isoforms activation and inhibitory insulin signalling. TRIAL REGISTRATION ClinicalTrials.gov .NCT01736202. FUNDING German Federal Ministry of Health, Ministry of Culture and Science of the State North Rhine-Westphalia, German Federal Ministry of Education and Research, European Regional Development Fund, German Research Foundation, German Center for Diabetes Research.
Collapse
Affiliation(s)
- Theresia Sarabhai
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Institute for Diabetes Research at Heinrich-Heine-University, Düsseldorf, Germany
- German Center for Diabetes Research, Partner Düsseldorf, Neuherberg, Germany
| | - Chrysi Koliaki
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Institute for Diabetes Research at Heinrich-Heine-University, Düsseldorf, Germany
- German Center for Diabetes Research, Partner Düsseldorf, Neuherberg, Germany
| | - Lucia Mastrototaro
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Institute for Diabetes Research at Heinrich-Heine-University, Düsseldorf, Germany
- German Center for Diabetes Research, Partner Düsseldorf, Neuherberg, Germany
| | - Sabine Kahl
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Institute for Diabetes Research at Heinrich-Heine-University, Düsseldorf, Germany
- German Center for Diabetes Research, Partner Düsseldorf, Neuherberg, Germany
| | - Dominik Pesta
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Institute for Diabetes Research at Heinrich-Heine-University, Düsseldorf, Germany
- German Center for Diabetes Research, Partner Düsseldorf, Neuherberg, Germany
| | - Maria Apostolopoulou
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Institute for Diabetes Research at Heinrich-Heine-University, Düsseldorf, Germany
- German Center for Diabetes Research, Partner Düsseldorf, Neuherberg, Germany
| | - Martin Wolkersdorfer
- Landesapotheke Salzburg, Department of Production, Hospital Pharmacy, Salzburg, Austria
| | - Anna C Bönner
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Institute for Diabetes Research at Heinrich-Heine-University, Düsseldorf, Germany
- German Center for Diabetes Research, Partner Düsseldorf, Neuherberg, Germany
| | - Pavel Bobrov
- German Center for Diabetes Research, Partner Düsseldorf, Neuherberg, Germany
- Institute for Biometrics and Epidemiology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University, Düsseldorf, Germany
| | - Daniel F Markgraf
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Institute for Diabetes Research at Heinrich-Heine-University, Düsseldorf, Germany
- German Center for Diabetes Research, Partner Düsseldorf, Neuherberg, Germany
| | - Christian Herder
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Institute for Diabetes Research at Heinrich-Heine-University, Düsseldorf, Germany
- German Center for Diabetes Research, Partner Düsseldorf, Neuherberg, Germany
| | - Michael Roden
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany.
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Institute for Diabetes Research at Heinrich-Heine-University, Düsseldorf, Germany.
- German Center for Diabetes Research, Partner Düsseldorf, Neuherberg, Germany.
| |
Collapse
|
15
|
A theoretical argument to support the biological benefits for insulin stimulating mitochondrial oxidative phosphorylation. CURRENT OPINION IN PHYSIOLOGY 2022. [DOI: 10.1016/j.cophys.2022.100491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
16
|
GlyNAC (Glycine and N-Acetylcysteine) Supplementation Improves Impaired Mitochondrial Fuel Oxidation and Lowers Insulin Resistance in Patients with Type 2 Diabetes: Results of a Pilot Study. Antioxidants (Basel) 2022; 11:antiox11010154. [PMID: 35052658 PMCID: PMC8773349 DOI: 10.3390/antiox11010154] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/11/2022] [Accepted: 01/11/2022] [Indexed: 02/04/2023] Open
Abstract
Patients with type 2 diabetes (T2D) are known to have mitochondrial dysfunction and increased insulin resistance (IR), but the underlying mechanisms are not well understood. We reported previously that (a) adequacy of the antioxidant glutathione (GSH) is necessary for optimal mitochondrial fatty-acid oxidation (MFO); (b) supplementing the GSH precursors glycine and N-acetylcysteine (GlyNAC) in mice corrected GSH deficiency, reversed impaired MFO, and lowered oxidative stress (OxS) and IR; and (c) supplementing GlyNAC in patients with T2D improved GSH synthesis and concentrations, and lowered OxS. However, the effect of GlyNAC on MFO, MGO (mitochondrial glucose oxidation), IR and plasma FFA (free-fatty acid) concentrations in humans with T2D remains unknown. This manuscript reports the effect of supplementing GlyNAC for 14-days on MFO, MGO, IR and FFA in 10 adults with T2D and 10 unsupplemented non-diabetic controls. Fasted T2D participants had 36% lower MFO (p < 0.001), 106% higher MGO (p < 0.01), 425% higher IR (p < 0.001) and 76% higher plasma FFA (p < 0.05). GlyNAC supplementation significantly improved fasted MFO by 30% (p < 0.001), lowered MGO by 47% (p < 0.01), decreased IR by 22% (p < 0.01) and lowered FFA by 25% (p < 0.01). These results provide proof-of-concept that GlyNAC supplementation could improve mitochondrial dysfunction and IR in patients with T2D, and warrant additional research.
Collapse
|
17
|
Apostolopoulou M, Mastrototaro L, Hartwig S, Pesta D, Straßburger K, de Filippo E, Jelenik T, Karusheva Y, Gancheva S, Markgraf D, Herder C, Nair KS, Reichert AS, Lehr S, Müssig K, Al-Hasani H, Szendroedi J, Roden M. Metabolic responsiveness to training depends on insulin sensitivity and protein content of exosomes in insulin-resistant males. SCIENCE ADVANCES 2021; 7:eabi9551. [PMID: 34623918 PMCID: PMC8500512 DOI: 10.1126/sciadv.abi9551] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
High-intensity interval training (HIIT) improves cardiorespiratory fitness (VO2max), but its impact on metabolism remains unclear. We hypothesized that 12-week HIIT increases insulin sensitivity in males with or without type 2 diabetes [T2D and NDM (nondiabetic humans)]. However, despite identically higher VO2max, mainly insulin-resistant (IR) persons (T2D and IR NDM) showed distinct alterations of circulating small extracellular vesicles (SEVs) along with lower inhibitory metabolic (protein kinase Cε activity) or inflammatory (nuclear factor κB) signaling in muscle of T2D or IR NDM, respectively. This is related to the specific alterations in SEV proteome reflecting down-regulation of the phospholipase C pathway (T2D) and up-regulated antioxidant capacity (IR NDM). Thus, SEV cargo may contribute to modulating the individual metabolic responsiveness to exercise training in humans.
Collapse
Affiliation(s)
- Maria Apostolopoulou
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany
| | - Lucia Mastrototaro
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany
| | - Sonja Hartwig
- German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany
- Institute for Clinical Biochemistry and Pathobiochemistry German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Dominik Pesta
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany
| | - Klaus Straßburger
- German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany
- Institute for Biometrics and Epidemiology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Elisabetta de Filippo
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany
| | - Tomas Jelenik
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany
| | - Yanislava Karusheva
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany
| | - Sofiya Gancheva
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany
| | - Daniel Markgraf
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany
| | - Christian Herder
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany
| | - K. Sreekumaran Nair
- Division of Endocrinology, Diabetes and Nutrition, Mayo Clinic, Rochester, MN, USA
| | - Andreas S. Reichert
- Institute of Biochemistry and Molecular Biology I, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Stefan Lehr
- German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany
- Institute for Clinical Biochemistry and Pathobiochemistry German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Karsten Müssig
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany
| | - Hadi Al-Hasani
- German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany
- Institute for Clinical Biochemistry and Pathobiochemistry German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Julia Szendroedi
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany
- Department of Internal Medicine, Heidelberg University, Heidelberg, Germany
| | - Michael Roden
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany
- Corresponding author.
| |
Collapse
|
18
|
Effects of Subacute Exposure of Dibutyl Phthalate on the Homeostatic Model Assessment, Thyroid Function, and Redox Status in Rats. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5521516. [PMID: 34395617 PMCID: PMC8357475 DOI: 10.1155/2021/5521516] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 07/24/2021] [Indexed: 12/13/2022]
Abstract
Dibutyl phthalate is an endocrine disruptor used in a wide range of industrial and agriculture applications. The present study focuses on elucidating the effect of subacute exposure (4-weeks) of DBP on insulin and its sensitivity indexes, oxidative status, thyroid function, energy metabolites, serum biochemistry, and anthropometry in rats. A total of 64 rats were divided into 4 treatment groups as mg DBP/Kg body weight per day: (a) 0 mg/Kg (control), (b) 10 mg/Kg (DBP-10), (c) 50 mg/Kg (DBP-50), and (d) 100 mg/Kg (DBP-100). The rats in each treatment (n = 16) were further divided into male (n = 8) and female (n = 8) rats for studying treatment and gender interactions. Intraperitoneal glucose tolerance test (IPGTT) was performed on the 21st day. Anthropometry, nutritional determinants, fasting plasma glucose, fasting plasma insulin, homeostatic model assessment (HOMA), thyroid hormones, energy metabolites, and oxidative status were studied during the experimental period. Two-way ANOVA was used to analyze the data (p < 0.05). Tukey's posthoc test was used for pair-wise comparisons. DBP increased body weight gain and feed efficiency in an inverted nonmonotonic U-shaped fashion. Hyperglycemia and increased blood glucose area under the curve were observed in DBP-100 at 120 minutes in IPGTT. The HOMA also showed a linear monotonic contrast. Thyroxin decreased significantly in the DBP-100 rats, whereas malondialdehyde, nonesterified fatty acids, and beta hydroxyl butyrate were increased with the DBP treatments. In conclusion, DBP could be attributed to the development of hyperglycemia and insulin resistance in rats. Further investigations into the lipid peroxidation pathways can improve our understanding of the mechanisms involved in metabolic disruption.
Collapse
|
19
|
Krako Jakovljevic N, Pavlovic K, Jotic A, Lalic K, Stoiljkovic M, Lukic L, Milicic T, Macesic M, Stanarcic Gajovic J, Lalic NM. Targeting Mitochondria in Diabetes. Int J Mol Sci 2021; 22:6642. [PMID: 34205752 PMCID: PMC8233932 DOI: 10.3390/ijms22126642] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 12/18/2022] Open
Abstract
Type 2 diabetes (T2D), one of the most prevalent noncommunicable diseases, is often preceded by insulin resistance (IR), which underlies the inability of tissues to respond to insulin and leads to disturbed metabolic homeostasis. Mitochondria, as a central player in the cellular energy metabolism, are involved in the mechanisms of IR and T2D. Mitochondrial function is affected by insulin resistance in different tissues, among which skeletal muscle and liver have the highest impact on whole-body glucose homeostasis. This review focuses on human studies that assess mitochondrial function in liver, muscle and blood cells in the context of T2D. Furthermore, different interventions targeting mitochondria in IR and T2D are listed, with a selection of studies using respirometry as a measure of mitochondrial function, for better data comparison. Altogether, mitochondrial respiratory capacity appears to be a metabolic indicator since it decreases as the disease progresses but increases after lifestyle (exercise) and pharmacological interventions, together with the improvement in metabolic health. Finally, novel therapeutics developed to target mitochondria have potential for a more integrative therapeutic approach, treating both causative and secondary defects of diabetes.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Nebojsa M. Lalic
- Clinic for Endocrinology, Diabetes and Metabolic Diseases, University Clinical Center of Serbia, Faculty of Medicine, University of Belgrade, Dr Subotica 13, 11000 Belgrade, Serbia; (N.K.J.); (K.P.); (A.J.); (K.L.); (M.S.); (L.L.); (T.M.); (M.M.); (J.S.G.)
| |
Collapse
|
20
|
Insulin rapidly increases skeletal muscle mitochondrial ADP sensitivity in the absence of a high lipid environment. Biochem J 2021; 478:2539-2553. [PMID: 34129667 DOI: 10.1042/bcj20210264] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/07/2021] [Accepted: 06/14/2021] [Indexed: 11/17/2022]
Abstract
Reductions in mitochondrial function have been proposed to cause insulin resistance, however the possibility that impairments in insulin signaling negatively affects mitochondrial bioenergetics has received little attention. Therefore, we tested the hypothesis that insulin could rapidly improve mitochondrial ADP sensitivity, a key process linked to oxidative phosphorylation and redox balance, and if this phenomenon would be lost following high-fat diet (HFD)-induced insulin resistance. Insulin acutely (60 min post I.P.) increased submaximal (100-1000 µM ADP) mitochondrial respiration ∼2-fold without altering maximal (>1000 µM ADP) respiration, suggesting insulin rapidly improves mitochondrial bioenergetics. The consumption of HFD impaired submaximal ADP-supported respiration ∼50%, however, despite the induction of insulin resistance, the ability of acute insulin to stimulate ADP sensitivity and increase submaximal respiration persisted. While these data suggest that insulin mitigates HFD-induced impairments in mitochondrial bioenergetics, the presence of a high intracellular lipid environment reflective of an HFD (i.e. presence of palmitoyl-CoA) completely prevented the beneficial effects of insulin. Altogether, these data show that while insulin rapidly stimulates mitochondrial bioenergetics through an improvement in ADP sensitivity, this phenomenon is possibly lost following HFD due to the presence of intracellular lipids.
Collapse
|
21
|
Lin C, Lin Y, Xiao J, Lan Y, Cao Y, Chen Y. Effect of Momordica saponin- and Cyclocarya paliurus polysaccharide-enriched beverages on oxidative stress and fat accumulation in Caenorhabditis elegans. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:3366-3375. [PMID: 33230856 DOI: 10.1002/jsfa.10966] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 11/14/2020] [Accepted: 11/24/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND As an edible and medicinal herb in Chinese folk medicine, Cyclocarya paliurus (Batal.) Iljinskaja leaves are traditionally widely used in the treatment of metabolic disorders. The vegetable Momordica charantia L. has been consumed worldwide for thousands of years as a traditional drug due to its activities against obesity and diabetes. In view of the therapeutic value of Momordica saponins (MSs) and C. paliurus polysaccharides (CPPs), an independently developed MSs- and CPPs-containing beverage (MC) was evaluated for its efficacy in controlling oxidative stress and obesity in Caenorhabditis elegans. RESULTS First, we found that MC could promote the nuclear localization of DAF-16 and the translation of SOD-3. Further exploring its antioxidant properties, the oxidative stress by-products reactive oxygen species, malondialdehyde, and nonesterified fatty acids were significantly inhibited in C. elegans. Moreover, damage due to diseases related to oxidative stress (age pigments and neurodegenerative diseases) was alleviated. Furthermore, fat accumulation was significantly reduced in normal and high-fat models. Finally, the lipid-lowering effects of MC might involve reductions in the size and number of lipid droplets without impairing basic physiological functions in C. elegans. CONCLUSION These results provide promising data indicating MC as an innovative health beverage for the pharmacological management of oxidative stress and obesity. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Chunxiu Lin
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Yizi Lin
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Jie Xiao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Yaqi Lan
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Yong Cao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Yunjiao Chen
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| |
Collapse
|
22
|
Vanweert F, de Ligt M, Hoeks J, Hesselink MKC, Schrauwen P, Phielix E. Elevated Plasma Branched-Chain Amino Acid Levels Correlate With Type 2 Diabetes-Related Metabolic Disturbances. J Clin Endocrinol Metab 2021; 106:e1827-e1836. [PMID: 33079174 DOI: 10.1210/clinem/dgaa751] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 10/14/2020] [Indexed: 01/14/2023]
Abstract
CONTEXT Patients with type 2 diabetes mellitus (T2DM) have elevated plasma branched-chain amino acid (BCAA) levels. The underlying cause, however, is not known. Low mitochondrial oxidation of BCAA levels could contribute to higher plasma BCAA levels. OBJECTIVE We aimed to investigate ex vivo muscle mitochondrial oxidative capacity and in vivo BCAA oxidation measured by whole-body leucine oxidation rates in patients with T2DM, first-degree relatives (FDRs), and control participants (CONs) with overweight or obesity. DESIGN AND SETTING An observational, community-based study was conducted. PARTICIPANTS Fifteen patients with T2DM, 13 FDR, and 17 CONs were included (age, 40-70 years; body mass index, 27-35 kg/m2). MAIN OUTCOME MEASURES High-resolution respirometry was used to examine ex vivo mitochondrial oxidative capacity in permeabilized muscle fibers. A subgroup of 5 T2DM patients and 5 CONs underwent hyperinsulinemic-euglycemic clamps combined with 1-13C leucine-infusion to determine whole-body leucine oxidation. RESULTS Total BCAA levels were higher in patients with T2DM compared to CONs, but not in FDRs, and correlated negatively with muscle mitochondrial oxidative capacity (r = -0.44, P < .001). Consistently, whole-body leucine oxidation rate was lower in patients with T2DM vs CON under basal conditions (0.202 ± 0.049 vs 0.275 ± 0.043 μmol kg-1 min-1, P < .05) and tended to be lower during high insulin infusion (0.326 ± 0.024 vs 0.382 ± 0.013 μmol kg-1 min-1, P = .075). CONCLUSIONS In patients with T2DM, a compromised whole-body leucine oxidation rate supports our hypothesis that higher plasma BCAA levels may originate at least partly from a low mitochondrial oxidative capacity.
Collapse
Affiliation(s)
- Froukje Vanweert
- Department of Nutrition and Movement Sciences, Maastricht University and Medical Center, Maastricht, the Netherlands
- NUTRIM, School of Nutrition and Translational Research in Metabolism, Maastricht University and Medical Center, Maastricht, the Netherlands
| | - Marlies de Ligt
- Department of Nutrition and Movement Sciences, Maastricht University and Medical Center, Maastricht, the Netherlands
- NUTRIM, School of Nutrition and Translational Research in Metabolism, Maastricht University and Medical Center, Maastricht, the Netherlands
| | - Joris Hoeks
- Department of Nutrition and Movement Sciences, Maastricht University and Medical Center, Maastricht, the Netherlands
- NUTRIM, School of Nutrition and Translational Research in Metabolism, Maastricht University and Medical Center, Maastricht, the Netherlands
| | - Matthijs K C Hesselink
- Department of Nutrition and Movement Sciences, Maastricht University and Medical Center, Maastricht, the Netherlands
- NUTRIM, School of Nutrition and Translational Research in Metabolism, Maastricht University and Medical Center, Maastricht, the Netherlands
| | - Patrick Schrauwen
- Department of Nutrition and Movement Sciences, Maastricht University and Medical Center, Maastricht, the Netherlands
- NUTRIM, School of Nutrition and Translational Research in Metabolism, Maastricht University and Medical Center, Maastricht, the Netherlands
| | - Esther Phielix
- Department of Nutrition and Movement Sciences, Maastricht University and Medical Center, Maastricht, the Netherlands
- NUTRIM, School of Nutrition and Translational Research in Metabolism, Maastricht University and Medical Center, Maastricht, the Netherlands
| |
Collapse
|
23
|
Singh A, Faccenda D, Campanella M. Pharmacological advances in mitochondrial therapy. EBioMedicine 2021; 65:103244. [PMID: 33647769 PMCID: PMC7920826 DOI: 10.1016/j.ebiom.2021.103244] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 01/21/2021] [Accepted: 01/29/2021] [Indexed: 02/06/2023] Open
Abstract
Mitochondria play a vital role in cellular metabolism and are central mediator of intracellular signalling, cell differentiation, morphogenesis and demise. An increasingly higher number of pathologies is linked with mitochondrial dysfunction, which can arise from either genetic defects affecting core mitochondrial components or malfunctioning pathways impairing mitochondrial homeostasis. As such, mitochondria are considered an important target in several pathologies spanning from neoplastic to neurodegenerative diseases as well as metabolic syndromes. In this review we provide an overview of the state-of-the-art in mitochondrial pharmacology, focusing on the novel compounds that have been generated in the bid to correct mitochondrial aberrations. Our work aims to serve the scientific community working on translational medical science by highlighting the most promising pharmacological approaches to target mitochondrial dysfunction in disease.
Collapse
Affiliation(s)
- Aarti Singh
- Department of Comparative Biomedical Sciences, The Royal Veterinary College, University of London, 4 Royal College Street, NW1 0TU, London, United Kingdom
| | - Danilo Faccenda
- Department of Comparative Biomedical Sciences, The Royal Veterinary College, University of London, 4 Royal College Street, NW1 0TU, London, United Kingdom
| | - Michelangelo Campanella
- Department of Comparative Biomedical Sciences, The Royal Veterinary College, University of London, 4 Royal College Street, NW1 0TU, London, United Kingdom; Consortium for Mitochondrial Research (CfMR), University College London, Gower Street, WC1E 6BT, London, United Kingdom; Department of Biology, University of Rome TorVergata, Via della Ricerca Scientifica, Rome, 00133, Italy.
| |
Collapse
|
24
|
Non-esterified fatty acids and telomere length in older adults: The Cardiovascular Health Study. Metabol Open 2020; 8:100058. [PMID: 32995737 PMCID: PMC7502331 DOI: 10.1016/j.metop.2020.100058] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/17/2020] [Accepted: 09/04/2020] [Indexed: 12/25/2022] Open
Abstract
Background Telomeres shorten as organisms age, placing limits on cell proliferation and serving as a marker of biological aging. Non-esterified fatty acids (NEFAs) are a key mediator of age-related metabolic abnormalities. We aimed to determine if NEFAs are associated with telomere length in community-living older adults. Material and methods We cross-sectionally studied 1648 participants of the Cardiovascular Health Study (CHS) who underwent concomitant telomere length measurement from a sample of 4715 participants who underwent measurement of circulating total fasting NEFAs in stored specimens from their 1992-3 clinic visit. We used linear regression and inverse probability weighting to model telomere length as a function of NEFAs with adjustment for age, gender, race, clinic, BMI, marital status, smoking status, alcohol intake, diabetes status, years of education, hypertension status, prevalent cardiovascular disease, C-reactive protein, total adiponectin, albumin, fetuin-A, fasting insulin, eGFR, total cholesterol, HDL-cholesterol, triglycerides, and general health status. Results Higher NEFAs were significantly associated with shorter telomere length, after adjusting for age, gender, race, and clinic site (β = −0.034; SE = 0.015; P = 0.02). Estimates remained similar in fully adjusted models where each SD of NEFA increment was associated with 0.042 kilobase (kb) pairs shorter telomere length (standard error = 0.016; P = 0.007); for comparison the coefficient for a single year of age in the same model was −0.017. These results were similar in strata of sex, and waist circumference although they tended to be strongest among participants in the youngest tertile of age (β = -0.079; SE = 0.029; P = 0.01). Conclusions In this population-based cohort of community-living elders, we observed a significant inverse association between NEFAs and telomere length. If confirmed, NEFAs may represent a promising target for interventions to slow biological aging. Shorter telomere lengths have been linked to accelerated aging and disease. Oxidative stress and inflammation drives telomere length shortening. Non-esterified fatty acids induce oxidative stress and inflammation. Higher levels of non-esterified fatty acids were associated with shorter telomeres. Non-esterified fatty acids may be an intervention target to slow biological aging.
Collapse
|
25
|
Fan L, Cacicedo JM, Ido Y. Impaired nicotinamide adenine dinucleotide (NAD + ) metabolism in diabetes and diabetic tissues: Implications for nicotinamide-related compound treatment. J Diabetes Investig 2020; 11:1403-1419. [PMID: 32428995 PMCID: PMC7610120 DOI: 10.1111/jdi.13303] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 05/13/2020] [Accepted: 05/14/2020] [Indexed: 01/08/2023] Open
Abstract
One of the biochemical abnormalities found in diabetic tissues is a decrease in the cytosolic oxidized to reduced forms of the nicotinamide adenine dinucleotide ratio (NAD+/NADH also known as pseudohypoxia) caused by oxidation of excessive substrates (glucose through the polyol pathway, free fatty acids and lactate). Subsequently, a decline in NAD+ levels as a result of the activation of poly adenine nucleotide diphosphate‐ribose polymerase (mainly in type 1 diabetes) or the inhibition of adenine nucleotide monophosphate‐activated protein kinase (in type 2 diabetes). Thus, replenishment of NAD+ levels by nicotinamide‐related compounds could be beneficial. However, these compounds also increase nicotinamide catabolites that cause oxidative stress. This is particularly troublesome for patients with diabetes, because they have impaired nicotinamide salvage pathway reactions at the level of nicotinamide phosphoribosyl transferase and phosphoribosyl pyrophosphate, which occurs by the following mechanisms. First, phosphoribosyl pyrophosphate synthesis from pentose phosphate pathway is compromised by a decrease in plasma thiamine and transketolase activity. Second, nicotinamide phosphoribosyl transferase expression is decreased because of reduced adenosine monophosphate‐activated protein kinase activity, which occurs in type 2 diabetes. The adenosine monophosphate‐activated protein kinase inhibition is caused by an activation of protein kinase C and D1 as a result of enhanced diacylglycerol synthesis caused by pseudohypoxia and increased fatty acids levels. In this regard, nicotinamide‐related compounds should be given with caution to treat diabetes. To minimize the risk and maximize the benefit, nicotinamide‐related compounds should be taken with insulin sensitizers (for type 2 diabetes), polyphenols, benfotiamine, acetyl‐L‐carnitine and aldose reductase inhibitors. The efficacy of these regimens can be monitored by measuring serum NAD+ and urinary nicotinamide catabolites.
Collapse
Affiliation(s)
- Lan Fan
- Boston University School of Medicine, Boston, Massachusetts, USA
| | - Jose M Cacicedo
- Boston University School of Medicine, Boston, Massachusetts, USA
| | - Yasuo Ido
- Boston University School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
26
|
Bódis K, Jelenik T, Lundbom J, Markgraf DF, Strom A, Zaharia OP, Karusheva Y, Burkart V, Müssig K, Kupriyanova Y, Ouni M, Wolkersdorfer M, Hwang JH, Ziegler D, Schürmann A, Roden M, Szendroedi J. Expansion and Impaired Mitochondrial Efficiency of Deep Subcutaneous Adipose Tissue in Recent-Onset Type 2 Diabetes. J Clin Endocrinol Metab 2020; 105:5678088. [PMID: 31838512 PMCID: PMC7060761 DOI: 10.1210/clinem/dgz267] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 12/13/2019] [Indexed: 01/21/2023]
Abstract
CONTEXT/OBJECTIVE Impaired adipose tissue (AT) function might induce recent-onset type 2 diabetes (T2D). Understanding AT energy metabolism could yield novel targets for the treatment of T2D. DESIGN/PATIENTS Male patients with recently-diagnosed T2D and healthy male controls (CON) of similar abdominal subcutaneous AT (SAT)-thickness, fat mass, and age (n = 14 each), underwent hyperinsulinemic-euglycemic clamps with [6,6-2H2]glucose and indirect calorimetry. We assessed mitochondrial efficiency (coupling: state 3/4o; proton leak: state 4o/u) via high-resolution respirometry in superficial (SSAT) and deep (DSAT) SAT-biopsies, hepatocellular lipids (HCL) and fat mass by proton-magnetic-resonance-spectroscopy and -imaging. RESULTS T2D patients (known diabetes duration: 2.5 [0.1; 5.0] years) had 43%, 44%, and 63% lower muscle insulin sensitivity (IS), metabolic flexibility (P < 0.01) and AT IS (P < 0.05), 73% and 31% higher HCL (P < 0.05), and DSAT-thickness (P < 0.001), but similar hepatic IS compared with CON. Mitochondrial efficiency was ~22% lower in SSAT and DSAT of T2D patients (P < 0.001) and ~8% lower in SSAT vs DSAT (P < 0.05). In both fat depots, mitochondrial coupling correlated positively with muscle IS and metabolic flexibility (r ≥ 0.40; P < 0.05), proton leak correlated positively (r ≥ 0.51; P < 0.01) and oxidative capacity negatively (r ≤ -0.47; P < 0.05) with fasting free fatty acids (FFA). Metabolic flexibility correlated positively with SAT-oxidative capacity (r ≥ 0.48; P < 0.05) and negatively with DSAT-thickness (r = -0.48; P < 0.05). DSAT-thickness correlated negatively with mitochondrial coupling in both depots (r ≤ -0.50; P < 0.01) and muscle IS (r = -0.59; P < 0.01), positively with FFA during clamp (r = 0.63; P < 0.001) and HCL (r = 0.49; P < 0.01). CONCLUSIONS Impaired mitochondrial function, insulin resistance, and DSAT expansion are AT abnormalities in recent-onset T2D that might promote whole-body insulin resistance and increased substrate flux to the liver.
Collapse
Affiliation(s)
- Kálmán Bódis
- Division of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Tomas Jelenik
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Jesper Lundbom
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Daniel F Markgraf
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Alexander Strom
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Oana-Patricia Zaharia
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Yanislava Karusheva
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Volker Burkart
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Karsten Müssig
- Division of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Yuliya Kupriyanova
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Meriem Ouni
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbrücke, Nuthetal, Germany
| | | | - Jong-Hee Hwang
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Dan Ziegler
- Division of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Annette Schürmann
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbrücke, Nuthetal, Germany
| | - Michael Roden
- Division of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Julia Szendroedi
- Division of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Correspondence: Dr. Julia Szendroedi, PhD, Division of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University, 40225 Düsseldorf, Germany, c/o Auf’m Hennekamp 65, 40225 Düsseldorf, Germany. E-mail:
| | | |
Collapse
|
27
|
Lv W, Wang L, Xuan Q, Zhao X, Liu X, Shi X, Xu G. Pseudotargeted Method Based on Parallel Column Two-Dimensional Liquid Chromatography-Mass Spectrometry for Broad Coverage of Metabolome and Lipidome. Anal Chem 2020; 92:6043-6050. [DOI: 10.1021/acs.analchem.0c00372] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Wangjie Lv
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lichao Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiuhui Xuan
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinjie Zhao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xinyu Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xianzhe Shi
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Guowang Xu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
28
|
Bozi LHM, Campos JC, Zambelli VO, Ferreira ND, Ferreira JCB. Mitochondrially-targeted treatment strategies. Mol Aspects Med 2019; 71:100836. [PMID: 31866004 DOI: 10.1016/j.mam.2019.100836] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/11/2019] [Accepted: 12/13/2019] [Indexed: 12/13/2022]
Abstract
Disruption of mitochondrial function is a common feature of inherited mitochondrial diseases (mitochondriopathies) and many other infectious and non-infectious diseases including viral, bacterial and protozoan infections, inflammatory and chronic pain, neurodegeneration, diabetes, obesity and cardiovascular diseases. Mitochondria therefore become an attractive target for developing new therapies. In this review we describe critical mechanisms involved in the maintenance of mitochondrial functionality and discuss strategies used to identify and validate mitochondrial targets in different diseases. We also highlight the most recent preclinical and clinical findings using molecules targeting mitochondrial bioenergetics, morphology, number, content and detoxification systems in common pathologies.
Collapse
Affiliation(s)
- Luiz H M Bozi
- Institute of Biomedical Sciences, University of Sao Paulo, Brazil
| | - Juliane C Campos
- Institute of Biomedical Sciences, University of Sao Paulo, Brazil
| | | | | | - Julio C B Ferreira
- Institute of Biomedical Sciences, University of Sao Paulo, Brazil; Department of Chemical and Systems Biology, School of Medicine, Stanford University, USA.
| |
Collapse
|
29
|
Aday AW, Goldfine AB, Gregory JM, Beckman JA. Impact of Acipimox Therapy on Free Fatty Acid Efflux and Endothelial Function in the Metabolic Syndrome: A Randomized Trial. Obesity (Silver Spring) 2019; 27:1812-1819. [PMID: 31571412 PMCID: PMC6832806 DOI: 10.1002/oby.22602] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 07/01/2019] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Insulin resistance is associated with increased lipolysis and elevated concentrations of free fatty acids (FFA), which in turn contribute to impaired vascular function. It was hypothesized that lowering FFA with acipimox, a nicotinic acid derivative that impairs FFA efflux, would improve endothelial function, measured by flow-mediated dilation (FMD), in individuals with metabolic syndrome. METHODS A total of 18 participants with metabolic syndrome and 17 healthy controls were enrolled and treated with acipimox 250 mg orally every 6 hours or placebo for 7 days in a randomized, double-blind, crossover trial. RESULTS Acipimox reduced FFA concentrations among individuals with metabolic syndrome to near normal levels (P = 0.01), but there was no change among healthy controls (P = 0.17). Acipimox did not improve endothelial-dependent FMD in either group (metabolic syndrome: P = 0.42; healthy controls: P = 0.16), although endothelial-independent nitroglycerin-mediated dilation among those with metabolic syndrome tended to increase (20.3%, P = 0.06). There were no changes in blood lipids or markers of inflammation following therapy. There was minimal correlation between change in FMD and baseline measures of BMI ( ρ = -0.09) or waist circumference ( ρ = -0.15). CONCLUSIONS In groups with normal or elevated baseline FFA, short-term reductions do not improve endothelial function assessed by FMD.
Collapse
Affiliation(s)
- Aaron W. Aday
- Vanderbilt Translational and Clinical Cardiovascular Research Center, Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Correspondence: Dr. Aaron W. Aday, Vanderbilt Translational and Clinical Cardiovascular Research Center, Division of Cardiovascular Medicine, Vanderbilt University Medical Center, 2525 West End Ave. Suit 300, Nashville, TN 37203, Phone: (615) 875-8788, Fax: (615) 322-3837,
| | - Allison B. Goldfine
- Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Justin M. Gregory
- Ian M. Burr Division of Pediatric Endocrinology and Diabetes, Vanderbilt University, Medical Center, Nashville, TN, USA
| | - Joshua A. Beckman
- Vanderbilt Translational and Clinical Cardiovascular Research Center, Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
30
|
Phielix E, Begovatz P, Gancheva S, Bierwagen A, Kornips E, Schaart G, Hesselink MKC, Schrauwen P, Roden M. Athletes feature greater rates of muscle glucose transport and glycogen synthesis during lipid infusion. JCI Insight 2019; 4:127928. [PMID: 31672941 DOI: 10.1172/jci.insight.127928] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 10/02/2019] [Indexed: 01/13/2023] Open
Abstract
BACKGROUNDInsulin resistance results from impaired skeletal muscle glucose transport/phosphorylation, linked to augmented lipid availability. Despite greater intramuscular lipids, athletes are highly insulin sensitive, which could result from higher rates of insulin-stimulated glycogen synthesis or glucose transport/phosphorylation and oxidation. Thus, we examined the time course of muscle glycogen and glucose-6-phosphate concentrations during low and high systemic lipid availability.METHODSEight endurance-trained and 9 sedentary humans (VO2 peak: 56 ± 2 vs. 33 ± 2 mL/kg/min, P < 0.05) underwent 6-hour hyperinsulinemic-isoglycemic clamp tests with infusions of triglycerides or saline in a randomized crossover design. Glycogen and glucose-6-phosphate concentrations were monitored in vastus lateralis muscles using 13C/31P magnetic resonance spectroscopy.RESULTSAthletes displayed a 25% greater (P < 0.05) insulin-stimulated glucose disposal rate (Rd) than sedentary participants. During Intralipid infusion, insulin sensitivity remained higher in the athletes (ΔRd: 25 ± 3 vs. 17 ± 3 μmol/kg/min, P < 0.05), supported by higher glucose transporter type 4 protein expression than in sedentary humans. Compared to saline infusion, AUC of glucose-6-phosphate remained unchanged during Intralipid infusion in athletes (1.6 ± 0.2 mmol/L vs. 1.4 ± 0.2 [mmol/L] × h, P = n.s.) but tended to decrease by 36% in sedentary humans (1.7 ± 0.4 vs. 1.1 ± 0.1 [mmol/L] × h, P < 0.059). This drop was accompanied by a 72% higher rate of net glycogen synthesis in the athletes upon Intralipid infusion (47 ± 9 vs. 13 ± 3 μmol/kg/min, P < 0.05).CONCLUSIONAthletes feature higher skeletal muscle glucose disposal and glycogen synthesis during increased lipid availability, which primarily results from maintained insulin-stimulated glucose transport with increased myocellular glucose-6-phosphate levels for subsequent glycogen synthesis.TRIAL REGISTRATIONClinicalTrials.gov NCT01229059.FUNDINGGerman Federal Ministry of Health (BMG).
Collapse
Affiliation(s)
- Esther Phielix
- Institute for Clinical Diabetology, German Diabetes Center, Düsseldorf, Germany.,German Center for Diabetes Research, München-Neuherberg, Germany.,Department of Nutrition and Movement Sciences, School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, Netherlands
| | - Paul Begovatz
- Institute for Clinical Diabetology, German Diabetes Center, Düsseldorf, Germany.,German Center for Diabetes Research, München-Neuherberg, Germany
| | - Sofiya Gancheva
- Institute for Clinical Diabetology, German Diabetes Center, Düsseldorf, Germany.,German Center for Diabetes Research, München-Neuherberg, Germany.,Division of Endocrinology and Diabetology, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Alessandra Bierwagen
- Institute for Clinical Diabetology, German Diabetes Center, Düsseldorf, Germany.,German Center for Diabetes Research, München-Neuherberg, Germany
| | - Esther Kornips
- Department of Nutrition and Movement Sciences, School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, Netherlands
| | - Gert Schaart
- Department of Nutrition and Movement Sciences, School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, Netherlands
| | - Matthijs K C Hesselink
- Department of Nutrition and Movement Sciences, School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, Netherlands
| | - Patrick Schrauwen
- Department of Nutrition and Movement Sciences, School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, Netherlands
| | - Michael Roden
- Institute for Clinical Diabetology, German Diabetes Center, Düsseldorf, Germany.,German Center for Diabetes Research, München-Neuherberg, Germany.,Division of Endocrinology and Diabetology, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| |
Collapse
|
31
|
Dynamic changes of muscle insulin sensitivity after metabolic surgery. Nat Commun 2019; 10:4179. [PMID: 31519890 PMCID: PMC6744497 DOI: 10.1038/s41467-019-12081-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Accepted: 08/15/2019] [Indexed: 02/07/2023] Open
Abstract
The mechanisms underlying improved insulin sensitivity after surgically-induced weight loss are still unclear. We monitored skeletal muscle metabolism in obese individuals before and over 52 weeks after metabolic surgery. Initial weight loss occurs in parallel with a decrease in muscle oxidative capacity and respiratory control ratio. Persistent elevation of intramyocellular lipid intermediates, likely resulting from unrestrained adipose tissue lipolysis, accompanies the lack of rapid changes in insulin sensitivity. Simultaneously, alterations in skeletal muscle expression of genes involved in calcium/lipid metabolism and mitochondrial function associate with subsequent distinct DNA methylation patterns at 52 weeks after surgery. Thus, initial unfavorable metabolic changes including insulin resistance of adipose tissue and skeletal muscle precede epigenetic modifications of genes involved in muscle energy metabolism and the long-term improvement of insulin sensitivity. Surgical weight-loss interventions improve insulin sensitivity via incompletely understood mechanisms. Here the authors assess skeletal muscle epigenetic changes in individuals with obesity following metabolic surgery and compare them with data from individuals without obesity.
Collapse
|
32
|
High-resolution respirometry in human endomyocardial biopsies shows reduced ventricular oxidative capacity related to heart failure. Exp Mol Med 2019; 51:1-10. [PMID: 30765687 PMCID: PMC6376010 DOI: 10.1038/s12276-019-0214-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 08/17/2018] [Accepted: 10/01/2018] [Indexed: 02/07/2023] Open
Abstract
The lifetime risk of developing heart failure is approximately 20%, and survival rates remain poor. Myocardial mitochondrial function has been suggested to play a pivotal role in heart failure pathophysiology. Human studies on ex vivo mitochondrial function have mostly been limited to atrial tissue obtained during open heart surgery and have provided contradictory results. This study aimed at measuring myocardial mitochondrial function in transcatheter ventricular endomyocardial biopsies and assessing the relationship between oxidative capacity and heart function. We enrolled 40 heart failure patients undergoing ventricular assist device surgery or heart transplantation (34 males, age 57 ± 11 years, body mass index 26.6 ± 4.8 kg/m2) and 29 heart transplant recipients of comparable age and body mass index with normal left ventricular function undergoing surveillance biopsies (23 males, 57 ± 12 years, body mass index 26.2 ± 4.1 kg/m2). High-resolution respirometry was established in the myocardium to measure oxidative capacity ex vivo. The mitochondrial oxidative capacity was 90% higher in ventricular compared to atrial tissues (n = 11, p < 0.01) of explanted hearts. Respiration rates were comparable in ventricular samples of heart failure patients obtained during open heart surgery by standard tissue preparation or ex vivo endomyocardial biopsy (r = 0.9988, p < 0.0001, n = 8), and the mitochondrial oxidative capacity in samples from these patients remained stable for 8 h when stored in either of two common preservation buffers. The oxidative capacity was 44% lower in heart failure than in transplant recipients (67 ± 3 vs. 97 ± 5 pmol/[s mg], p < 0.0001) and correlated positively with heart function (r = 0.49, p < 0.01). High-resolution respirometry of ventricular tissue is feasible in transcatheter biopsies, facilitating clinical studies on myocardial mitochondrial function in patients not undergoing heart surgery. The capacity of mitochondria in heart muscle cells to use oxygen to produce energy correlates with cardiac function. Julia Szendroedi at Heinrich-Heine University, Düsseldorf, Germany, and colleagues have established a technique to reliably evaluate mitochondrial energy metabolism in patients with or recovering from heart failure. They showed that the mitochondrial oxidative capacity of cells in the lower heart chambers (ventricles) was significantly higher than in the upper heart chambers (atria). Moreover, they found that mitochondrial oxidative capacity was reduced by 44% in heart muscle biopsies from patients with heart failure compared with biopsies from heart transplant recipients with normal ventricular function. Stimulating the respiration rate of mitochondria in ventricular heart cells could be a promising strategy for improving cardiac function.
Collapse
|
33
|
Brunetta HS, de Paula GC, de Oliveira J, Martins EL, Dos Santos GJ, Galina A, Rafacho A, de Bem AF, Nunes EA. Decrement in resting and insulin-stimulated soleus muscle mitochondrial respiration is an early event in diet-induced obesity in mice. Exp Physiol 2019; 104:306-321. [PMID: 30578638 DOI: 10.1113/ep087317] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 12/19/2018] [Indexed: 01/08/2023]
Abstract
NEW FINDINGS What is the central question of this study? What are the temporal responses of mitochondrial respiration and mitochondrial responsivity to insulin in soleus muscle fibres from mice during the development of obesity and insulin resistance? What is the main finding and its importance? Short- and long-term feeding with a high-fat diet markedly reduced soleus mitochondrial respiration and mitochondrial responsivity to insulin before any change in glycogen synthesis. Muscle glycogen synthesis and whole-body insulin resistance were present after 14 and 28 days, respectively. Our findings highlight the plasticity of mitochondria during the development of obesity and insulin resistance. ABSTRACT Recently, significant attention has been given to the role of muscle mitochondrial function in the development of insulin resistance associated with obesity. Our aim was to investigate temporal alterations in mitochondrial respiration, H2 O2 emission and mitochondrial responsivity to insulin in permeabilized skeletal muscle fibres during the development of obesity in mice. Male Swiss mice (5-6 weeks old) were fed with a high-fat diet (60% calories from fat) or standard diet for 7, 14 or 28 days to induce obesity and insulin resistance. Diet-induced obese (DIO) mice presented with reduced glucose tolerance and hyperinsulinaemia after 7 days of high-fat diet. After 14 days, the expected increase in muscle glycogen content after systemic injection of glucose and insulin was not observed in DIO mice. At 28 days, blood glucose decay after insulin injection was significantly impaired. Complex I (pyruvate + malate) and II (succinate)-linked respiration and oxidative phosphorylation (ADP) were decreased after 7 days of high-fat diet and remained low in DIO mice after 14 and 28 days of treatment. Moreover, mitochondria from DIO mice were incapable of increasing respiratory coupling and ADP responsivity after insulin stimulation in all observed periods. Markers of mitochondrial content were reduced only after 28 days of treatment. The mitochondrial H2 O2 emission profile varied during the time course of DIO, with a reduction of H2 O2 emission in the early stages of DIO and an increased emission after 28 days of treatment. Our data demonstrate that DIO promotes transitory alterations in mitochondrial physiology during the early and late stages of insulin resistance related to obesity.
Collapse
Affiliation(s)
- Henver Simionato Brunetta
- Multicenter Graduate Program in Physiological Sciences, Federal University of Santa Catarina, Florianopólis, Santa Catrina, Brazil
| | - Gabriela Cristina de Paula
- Graduate Program in Biochemistry, Federal University of Santa Catarina, Florianopólis, Santa Catrina, Brazil
| | - Jade de Oliveira
- Graduate Program in Health Sciences, University of Extremo Sul Catarinense, Criciúma, Santa Catarina, Brazil
| | - Eduarda Lopes Martins
- Graduate Program in Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gustavo Jorge Dos Santos
- Multicenter Graduate Program in Physiological Sciences, Federal University of Santa Catarina, Florianopólis, Santa Catrina, Brazil
| | - Antonio Galina
- Graduate Program in Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alex Rafacho
- Multicenter Graduate Program in Physiological Sciences, Federal University of Santa Catarina, Florianopólis, Santa Catrina, Brazil
| | - Andreza Fabro de Bem
- Graduate Program in Biochemistry, Federal University of Santa Catarina, Florianopólis, Santa Catrina, Brazil.,Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, Brasília, Distrito Federal, Brazil
| | - Everson Araújo Nunes
- Multicenter Graduate Program in Physiological Sciences, Federal University of Santa Catarina, Florianopólis, Santa Catrina, Brazil
| |
Collapse
|
34
|
Gancheva S, Jelenik T, Álvarez-Hernández E, Roden M. Interorgan Metabolic Crosstalk in Human Insulin Resistance. Physiol Rev 2018; 98:1371-1415. [PMID: 29767564 DOI: 10.1152/physrev.00015.2017] [Citation(s) in RCA: 137] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Excessive energy intake and reduced energy expenditure drive the development of insulin resistance and metabolic diseases such as obesity and type 2 diabetes mellitus. Metabolic signals derived from dietary intake or secreted from adipose tissue, gut, and liver contribute to energy homeostasis. Recent metabolomic studies identified novel metabolites and enlarged our knowledge on classic metabolites. This review summarizes the evidence of their roles as mediators of interorgan crosstalk and regulators of insulin sensitivity and energy metabolism. Circulating lipids such as free fatty acids, acetate, and palmitoleate from adipose tissue and short-chain fatty acids from the gut effectively act on liver and skeletal muscle. Intracellular lipids such as diacylglycerols and sphingolipids can serve as lipotoxins by directly inhibiting insulin action in muscle and liver. In contrast, fatty acid esters of hydroxy fatty acids have been recently shown to exert a series of beneficial effects. Also, ketoacids are gaining interest as potent modulators of insulin action and mitochondrial function. Finally, branched-chain amino acids not only predict metabolic diseases, but also inhibit insulin signaling. Here, we focus on the metabolic crosstalk in humans, which regulates insulin sensitivity and energy homeostasis in the main insulin-sensitive tissues, skeletal muscle, liver, and adipose tissue.
Collapse
Affiliation(s)
- Sofiya Gancheva
- Division of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University , Düsseldorf , Germany ; Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University , Düsseldorf , Germany ; and German Center of Diabetes Research (DZD e.V.), Munich- Neuherberg , Germany
| | - Tomas Jelenik
- Division of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University , Düsseldorf , Germany ; Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University , Düsseldorf , Germany ; and German Center of Diabetes Research (DZD e.V.), Munich- Neuherberg , Germany
| | - Elisa Álvarez-Hernández
- Division of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University , Düsseldorf , Germany ; Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University , Düsseldorf , Germany ; and German Center of Diabetes Research (DZD e.V.), Munich- Neuherberg , Germany
| | - Michael Roden
- Division of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University , Düsseldorf , Germany ; Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University , Düsseldorf , Germany ; and German Center of Diabetes Research (DZD e.V.), Munich- Neuherberg , Germany
| |
Collapse
|
35
|
Jelenik T, Flögel U, Álvarez-Hernández E, Scheiber D, Zweck E, Ding Z, Rothe M, Mastrototaro L, Kohlhaas V, Kotzka J, Knebel B, Müller-Wieland D, Moellendorf S, Gödecke A, Kelm M, Westenfeld R, Roden M, Szendroedi J. Insulin Resistance and Vulnerability to Cardiac Ischemia. Diabetes 2018; 67:2695-2702. [PMID: 30257974 PMCID: PMC6245221 DOI: 10.2337/db18-0449] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 09/05/2018] [Indexed: 12/20/2022]
Abstract
Hepatic and myocardial ectopic lipid deposition has been associated with insulin resistance (IR) and cardiovascular risk. Lipid overload promotes increased hepatic oxidative capacity, oxidative stress, and impaired mitochondrial efficiency, driving the progression of nonalcoholic fatty liver disease (NAFLD). We hypothesized that higher lipid availability promotes ischemia-induced cardiac dysfunction and decreases myocardial mitochondrial efficiency. Mice with adipose tissue-specific overexpression of sterol element-binding protein 1c as model of lipid overload with combined NAFLD-IR and controls underwent reperfused acute myocardial infarcts (AMIs). Whereas indexes of left ventricle (LV) contraction were similar in both groups at baseline, NAFLD-IR showed severe myocardial dysfunction post-AMI, with prominent LV reshaping and increased end-diastolic and end-systolic volumes. Hearts of NAFLD-IR displayed hypertrophy, steatosis, and IR due to 18:1/18:1-diacylglycerol-mediated protein kinase Cε (PKCε) activation. Myocardial fatty acid-linked respiration and oxidative stress were increased, whereas mitochondrial efficiency was decreased. In humans, decreased myocardial mitochondrial efficiency of ventricle biopsies related to IR and troponin levels, a marker of impaired myocardial integrity. Taken together, increased lipid availability and IR favor susceptibility to ischemia-induced cardiac dysfunction. The diacylglycerol-PKCε pathway and reduced mitochondrial efficiency both caused by myocardial lipotoxicity may contribute to the impaired LV compensation of the noninfarcted region of the myocardium.
Collapse
Affiliation(s)
- Tomas Jelenik
- Institute for Clinical Diabetology, German Diabetes Center, Düsseldorf, Germany
- German Center for Diabetes Research, München-Neuherberg, Germany
| | - Ulrich Flögel
- Department of Molecular Cardiology, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Elisa Álvarez-Hernández
- Institute for Clinical Diabetology, German Diabetes Center, Düsseldorf, Germany
- German Center for Diabetes Research, München-Neuherberg, Germany
| | - Daniel Scheiber
- Institute for Clinical Diabetology, German Diabetes Center, Düsseldorf, Germany
- Division of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Elric Zweck
- Institute for Clinical Diabetology, German Diabetes Center, Düsseldorf, Germany
- Division of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Zhaoping Ding
- Department of Molecular Cardiology, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Maik Rothe
- Institute for Clinical Diabetology, German Diabetes Center, Düsseldorf, Germany
- German Center for Diabetes Research, München-Neuherberg, Germany
| | - Lucia Mastrototaro
- Institute for Clinical Diabetology, German Diabetes Center, Düsseldorf, Germany
- German Center for Diabetes Research, München-Neuherberg, Germany
| | - Vivien Kohlhaas
- Institute for Clinical Diabetology, German Diabetes Center, Düsseldorf, Germany
- German Center for Diabetes Research, München-Neuherberg, Germany
| | - Jörg Kotzka
- German Center for Diabetes Research, München-Neuherberg, Germany
- Institute for Biochemistry and Pathobiochemistry, German Diabetes Center, Düsseldorf, Germany
| | - Birgit Knebel
- German Center for Diabetes Research, München-Neuherberg, Germany
- Institute for Biochemistry and Pathobiochemistry, German Diabetes Center, Düsseldorf, Germany
| | | | - Sarah Moellendorf
- Department of Cardiovascular Physiology, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Axel Gödecke
- Department of Cardiovascular Physiology, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Malte Kelm
- Division of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Ralf Westenfeld
- Division of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Michael Roden
- Institute for Clinical Diabetology, German Diabetes Center, Düsseldorf, Germany
- German Center for Diabetes Research, München-Neuherberg, Germany
- Division of Endocrinology and Diabetology, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Julia Szendroedi
- Institute for Clinical Diabetology, German Diabetes Center, Düsseldorf, Germany
- German Center for Diabetes Research, München-Neuherberg, Germany
- Division of Endocrinology and Diabetology, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
36
|
Di Cara F, Bülow MH, Simmonds AJ, Rachubinski RA. Dysfunctional peroxisomes compromise gut structure and host defense by increased cell death and Tor-dependent autophagy. Mol Biol Cell 2018; 29:2766-2783. [PMID: 30188767 PMCID: PMC6249834 DOI: 10.1091/mbc.e18-07-0434] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The gut has a central role in digestion and nutrient absorption, but it also serves in defending against pathogens, engages in mutually beneficial interactions with commensals, and is a major source of endocrine signals. Gut homeostasis is necessary for organismal health and changes to the gut are associated with conditions like obesity and diabetes and inflammatory illnesses like Crohn's disease. We report that peroxisomes, organelles involved in lipid metabolism and redox balance, are required to maintain gut epithelium homeostasis and renewal in Drosophila and for survival and development of the organism. Dysfunctional peroxisomes in gut epithelial cells activate Tor kinase-dependent autophagy that increases cell death and epithelial instability, which ultimately alter the composition of the intestinal microbiota, compromise immune pathways in the gut in response to infection, and affect organismal survival. Peroxisomes in the gut effectively function as hubs that coordinate responses from stress, metabolic, and immune signaling pathways to maintain enteric health and the functionality of the gut-microbe interface.
Collapse
Affiliation(s)
- Francesca Di Cara
- Department of Cell Biology, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Margret H Bülow
- Development, Genetics and Molecular Physiology, LIMES (Life and Medical Sciences), University of Bonn, D-53115 Bonn, Germany
| | - Andrew J Simmonds
- Department of Cell Biology, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | | |
Collapse
|
37
|
Abstract
Enlarged fat cells in obese adipose tissue diminish capacity to store fat and are resistant to the anti-lipolytic effect of insulin. Insulin resistance (IR)-associated S-nitrosylation of insulin-signaling proteins increases in obesity. In accordance with the inhibition of insulin-mediated anti-lipolytic action, plasma free fatty acid (FFA) levels increase. Additionally, endoplasmic reticulum stress stimuli induce lipolysis by activating cyclic adenosine monophosphate/Protein kinase A (cAMP/PKA) and extracellular signal-regulated kinase ½ (ERK1/2) signaling in adipocytes. Failure of packaging of excess lipid into lipid droplets causes chronic elevation of circulating fatty acids, which can reach to toxic levels within non-adipose tissues. Deleterious effects of lipid accumulation in non-adipose tissues are known as lipotoxicity. In fact, triglycerides may also serve a storage function for long-chain non-esterified fatty acids and their products such as ceramides and diacylglycerols (DAGs). Thus, excess DAG, ceramide and saturated fatty acids in obesity can induce chronic inflammation and have harmful effect on multiple organs and systems. In this context, chronic adipose tissue inflammation, mitochondrial dysfunction and IR have been discussed within the scope of lipotoxicity.
Collapse
|
38
|
Gonzalez-Franquesa A, Patti ME. Insulin Resistance and Mitochondrial Dysfunction. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 982:465-520. [DOI: 10.1007/978-3-319-55330-6_25] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
39
|
Pang D, You L, Zhou L, Li T, Zheng B, Liu RH. Averrhoa carambolafree phenolic extract ameliorates nonalcoholic hepatic steatosis by modulating mircoRNA-34a, mircoRNA-33 and AMPK pathways in leptin receptor-deficient db/db mice. Food Funct 2017; 8:4496-4507. [DOI: 10.1039/c7fo00833c] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Averrhoa carambolafree phenolic extract ameliorates hepatic steatosis by modulating mircoRNA-34a, mircoRNA-33 and AMPK signaling.
Collapse
Affiliation(s)
- Daorui Pang
- School of Food Science and Engineering
- South China University of Technology
- Guangzhou
- People's Republic of China
| | - Lijun You
- School of Food Science and Engineering
- South China University of Technology
- Guangzhou
- People's Republic of China
| | - Lin Zhou
- School of Food Science and Engineering
- South China University of Technology
- Guangzhou
- People's Republic of China
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates
| | - Tong Li
- Department of Food Science
- Cornell University
- Ithaca
- USA
| | - Bisheng Zheng
- School of Food Science and Engineering
- South China University of Technology
- Guangzhou
- People's Republic of China
| | - Rui Hai Liu
- Department of Food Science
- Cornell University
- Ithaca
- USA
| |
Collapse
|
40
|
Cree-Green M, Gupta A, Coe GV, Baumgartner AD, Pyle L, Reusch JEB, Brown MS, Newcomer BR, Nadeau KJ. Insulin resistance in type 2 diabetes youth relates to serum free fatty acids and muscle mitochondrial dysfunction. J Diabetes Complications 2017; 31:141-148. [PMID: 27839922 PMCID: PMC5395421 DOI: 10.1016/j.jdiacomp.2016.10.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 09/14/2016] [Accepted: 10/10/2016] [Indexed: 12/15/2022]
Abstract
AIMS Insulin resistance (IR) correlates with mitochondrial dysfunction, free fatty acids (FFAs), and intramyocellular lipid (IMCL) in adults with type 2 diabetes (T2D). We hypothesized that muscle IR would relate to similar factors in T2D youth. METHODS Participants included 17 youth with T2D, 23 normal weight controls (LCs), and 26 obese controls (OBs) of similar pubertal stage and activity level. RESULTS T2D and OB groups were of similar BMI. T2D youth were significantly more IR and had higher calf IMCL and serum FFA concentrations during hyperinsulinemia. ADP time constant (ADPTC), a blood-flow dependent mitochondrial function measure, was slowed and oxidative phosphorylation rates lower in T2D. In multiple linear regression of the entire cohort, lack of FFA suppression and longer ADPTC, but not IMCL or HbA1c, were independently associated with IR. CONCLUSION We found that elevated FFAs and mitochondrial dysfunction are early abnormalities in relatively well-controlled youth with T2D. Further, post-exercise oxidative metabolism appears affected by reduced blood flow, and is not solely an inherent mitochondrial defect. Thus, lowering FFAs and improving mitochondrial function and blood flow may be potential treatment targets in youth with T2D.
Collapse
Affiliation(s)
- Melanie Cree-Green
- Division of Pediatric Endocrinology, University of Colorado Anschutz Medical Campus and Children's Hospital Colorado, Aurora, CO, 80045; Center for Women's Health Research, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045.
| | - Abhinav Gupta
- Division of Pediatric Endocrinology, University of Colorado Anschutz Medical Campus and Children's Hospital Colorado, Aurora, CO, 80045
| | - Gregory V Coe
- Division of Pediatric Endocrinology, University of Colorado Anschutz Medical Campus and Children's Hospital Colorado, Aurora, CO, 80045
| | - Amy D Baumgartner
- Division of Pediatric Endocrinology, University of Colorado Anschutz Medical Campus and Children's Hospital Colorado, Aurora, CO, 80045
| | - Laura Pyle
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045; Department of Biostatistics and Informatics, Colorado School of Public Health, Aurora, CO, 80045
| | - Jane E B Reusch
- Center for Women's Health Research, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045; Division of Endocrinology, Metabolism and Diabetes, University to Colorado Anschutz Medical Campus, Aurora, CO, 80045; Veterans Affairs Medical Center, Aurora, CO, 80012
| | - Mark S Brown
- Department of Radiology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045
| | | | - Kristen J Nadeau
- Division of Pediatric Endocrinology, University of Colorado Anschutz Medical Campus and Children's Hospital Colorado, Aurora, CO, 80045; Center for Women's Health Research, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045
| |
Collapse
|
41
|
Affourtit C. Mitochondrial involvement in skeletal muscle insulin resistance: A case of imbalanced bioenergetics. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:1678-93. [PMID: 27473535 DOI: 10.1016/j.bbabio.2016.07.008] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 06/19/2016] [Accepted: 07/23/2016] [Indexed: 12/16/2022]
Abstract
Skeletal muscle insulin resistance in obesity associates with mitochondrial dysfunction, but the causality of this association is controversial. This review evaluates mitochondrial models of nutrient-induced muscle insulin resistance. It transpires that all models predict that insulin resistance arises as a result of imbalanced cellular bioenergetics. The nature and precise origin of the proposed insulin-numbing molecules differ between models but all species only accumulate when metabolic fuel supply outweighs energy demand. This observation suggests that mitochondrial deficiency in muscle insulin resistance is not merely owing to intrinsic functional defects, but could instead be an adaptation to nutrient-induced changes in energy expenditure. Such adaptive effects are likely because muscle ATP supply is fully driven by energy demand. This market-economic control of myocellular bioenergetics offers a mechanism by which insulin-signalling deficiency can cause apparent mitochondrial dysfunction, as insulin resistance lowers skeletal muscle anabolism and thus dampens ATP demand and, consequently, oxidative ATP synthesis.
Collapse
Affiliation(s)
- Charles Affourtit
- School of Biomedical and Healthcare Sciences, Plymouth University Peninsula Schools of Medicine and Dentistry, Plymouth University, Drake Circus, PL4 8AA Plymouth, UK.
| |
Collapse
|
42
|
Koliaki C, Roden M. Alterations of Mitochondrial Function and Insulin Sensitivity in Human Obesity and Diabetes Mellitus. Annu Rev Nutr 2016; 36:337-67. [PMID: 27146012 DOI: 10.1146/annurev-nutr-071715-050656] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Mitochondrial function refers to a broad spectrum of features such as resting mitochondrial activity, (sub)maximal oxidative phosphorylation capacity (OXPHOS), and mitochondrial dynamics, turnover, and plasticity. The interaction between mitochondria and insulin sensitivity is bidirectional and varies depending on tissue, experimental model, methodological approach, and features of mitochondrial function tested. In human skeletal muscle, mitochondrial abnormalities may be inherited (e.g., lower mitochondrial content) or acquired (e.g., impaired OXPHOS capacity and plasticity). Abnormalities ultimately lead to lower mitochondrial functionality due to or resulting in insulin resistance and type 2 diabetes mellitus. Similar mechanisms can also operate in adipose tissue and heart muscle. In contrast, mitochondrial oxidative capacity is transiently upregulated in the liver of obese insulin-resistant humans with or without fatty liver, giving rise to oxidative stress and declines in advanced fatty liver disease. These data suggest a highly tissue-specific interaction between insulin sensitivity and oxidative metabolism during the course of metabolic diseases in humans.
Collapse
Affiliation(s)
- Chrysi Koliaki
- Department of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University, Düsseldorf 40225, Germany.,Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University, Düsseldorf 40225, Germany.,German Center for Diabetes Research (DZD e.V.), Düsseldorf 40225, Germany;
| | - Michael Roden
- Department of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University, Düsseldorf 40225, Germany.,Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University, Düsseldorf 40225, Germany.,German Center for Diabetes Research (DZD e.V.), Düsseldorf 40225, Germany;
| |
Collapse
|
43
|
Makimura H, Stanley TL, Suresh C, De Sousa-Coelho AL, Frontera WR, Syu S, Braun LR, Looby SE, Feldpausch MN, Torriani M, Lee H, Patti ME, Grinspoon SK. Metabolic Effects of Long-Term Reduction in Free Fatty Acids With Acipimox in Obesity: A Randomized Trial. J Clin Endocrinol Metab 2016; 101:1123-33. [PMID: 26691888 PMCID: PMC4803166 DOI: 10.1210/jc.2015-3696] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
CONTEXT Increased circulating free fatty acids (FFAs) have been proposed to contribute to insulin resistance in obesity. Short-term studies have investigated the effects of acipimox, an inhibitor of hormone-sensitive lipase, on glucose homeostasis, but longer-term studies have not been performed. OBJECTIVE To test the hypothesis that long-term treatment with acipimox would reduce FFA and improve insulin sensitivity among nondiabetic, insulin-resistant, obese subjects. DESIGN, SETTING, PATIENTS, AND INTERVENTION At an academic medical center, 39 obese men and women were randomized to acipimox 250 mg thrice-daily vs identical placebo for 6 months. MAIN OUTCOME MEASURES Plasma lipids, insulin sensitivity, adiponectin, and mitochondrial function via assessment of the rate of post-exercise phosphocreatine recovery on (31)P-magnetic resonance spectroscopy as well as muscle mitochondrial density and relevant muscle gene expression. RESULTS Fasting glucose decreased significantly in acipimox-treated individuals (effect size, -6 mg/dL; P = .02), in parallel with trends for reduced fasting insulin (effect size, -6.8 μU/mL; P = .07) and HOMA-IR (effect size, -1.96; P = .06), and significantly increased adiponectin (effect size, +668 ng/mL; P = .02). Acipimox did not affect insulin-stimulated glucose uptake, as assessed by euglycemic, hyperinsulinemic clamp. Effects on muscle mitochondrial function and density and on relevant gene expression were not seen. CONCLUSION These data shed light on the long-term effects of FFA reduction on insulin sensitivity, other metabolic parameters, and muscle mitochondrial function in obesity. Reduced FFA achieved by acipimox improved fasting measures of glucose homeostasis, lipids, and adiponectin but had no effect on mitochondrial function, mitochondrial density, or muscle insulin sensitivity.
Collapse
Affiliation(s)
- Hideo Makimura
- Program in Nutritional Metabolism and Neuroendocrine Unit (H.M., T.L.S., C.S., S.S., L.R.B., S.E.L., M.N.F., S.K.G.), Massachusetts General Hospital, Boston, Massachusetts 02114; Harvard Medical School (H.M., T.L.S., A.L.D.S.-C., L.R.B., S.E.L., M.T., H.L., M.-E.P., S.K.G.), Boston, Massachusetts 02115; Pediatric Endocrine Unit (T.L.S., L.R.B.), Massachusetts General Hospital, Boston, Massachusetts 02114; Research Division (A.L.D.S.-C., M.-E.P.), Joslin Diabetes Center, Boston, Massachusetts 02215; Department of Physical Medicine and Rehabilitation (W.R.F.), Vanderbilt University Medical Center, Nashville, Tennessee 37212; Department of Physical Medicine and Rehabilitation (W.R.F.), Harvard Medical School/Spaulding Rehabilitation Hospital, Boston, Massachusetts 02114; Department of Physiology (W.R.F.), University of Puerto Rico School of Medicine, San Juan, Puerto Rico 00936; Department of Radiology (M.T.), Massachusetts General Hospital, Boston, Massachusetts 02114; and MGH Biostatistics Center (H.L.), Massachusetts General Hospital and Harvard Medical Center, Boston, Massachusetts 02114
| | - Takara L Stanley
- Program in Nutritional Metabolism and Neuroendocrine Unit (H.M., T.L.S., C.S., S.S., L.R.B., S.E.L., M.N.F., S.K.G.), Massachusetts General Hospital, Boston, Massachusetts 02114; Harvard Medical School (H.M., T.L.S., A.L.D.S.-C., L.R.B., S.E.L., M.T., H.L., M.-E.P., S.K.G.), Boston, Massachusetts 02115; Pediatric Endocrine Unit (T.L.S., L.R.B.), Massachusetts General Hospital, Boston, Massachusetts 02114; Research Division (A.L.D.S.-C., M.-E.P.), Joslin Diabetes Center, Boston, Massachusetts 02215; Department of Physical Medicine and Rehabilitation (W.R.F.), Vanderbilt University Medical Center, Nashville, Tennessee 37212; Department of Physical Medicine and Rehabilitation (W.R.F.), Harvard Medical School/Spaulding Rehabilitation Hospital, Boston, Massachusetts 02114; Department of Physiology (W.R.F.), University of Puerto Rico School of Medicine, San Juan, Puerto Rico 00936; Department of Radiology (M.T.), Massachusetts General Hospital, Boston, Massachusetts 02114; and MGH Biostatistics Center (H.L.), Massachusetts General Hospital and Harvard Medical Center, Boston, Massachusetts 02114
| | - Caroline Suresh
- Program in Nutritional Metabolism and Neuroendocrine Unit (H.M., T.L.S., C.S., S.S., L.R.B., S.E.L., M.N.F., S.K.G.), Massachusetts General Hospital, Boston, Massachusetts 02114; Harvard Medical School (H.M., T.L.S., A.L.D.S.-C., L.R.B., S.E.L., M.T., H.L., M.-E.P., S.K.G.), Boston, Massachusetts 02115; Pediatric Endocrine Unit (T.L.S., L.R.B.), Massachusetts General Hospital, Boston, Massachusetts 02114; Research Division (A.L.D.S.-C., M.-E.P.), Joslin Diabetes Center, Boston, Massachusetts 02215; Department of Physical Medicine and Rehabilitation (W.R.F.), Vanderbilt University Medical Center, Nashville, Tennessee 37212; Department of Physical Medicine and Rehabilitation (W.R.F.), Harvard Medical School/Spaulding Rehabilitation Hospital, Boston, Massachusetts 02114; Department of Physiology (W.R.F.), University of Puerto Rico School of Medicine, San Juan, Puerto Rico 00936; Department of Radiology (M.T.), Massachusetts General Hospital, Boston, Massachusetts 02114; and MGH Biostatistics Center (H.L.), Massachusetts General Hospital and Harvard Medical Center, Boston, Massachusetts 02114
| | - Ana Luisa De Sousa-Coelho
- Program in Nutritional Metabolism and Neuroendocrine Unit (H.M., T.L.S., C.S., S.S., L.R.B., S.E.L., M.N.F., S.K.G.), Massachusetts General Hospital, Boston, Massachusetts 02114; Harvard Medical School (H.M., T.L.S., A.L.D.S.-C., L.R.B., S.E.L., M.T., H.L., M.-E.P., S.K.G.), Boston, Massachusetts 02115; Pediatric Endocrine Unit (T.L.S., L.R.B.), Massachusetts General Hospital, Boston, Massachusetts 02114; Research Division (A.L.D.S.-C., M.-E.P.), Joslin Diabetes Center, Boston, Massachusetts 02215; Department of Physical Medicine and Rehabilitation (W.R.F.), Vanderbilt University Medical Center, Nashville, Tennessee 37212; Department of Physical Medicine and Rehabilitation (W.R.F.), Harvard Medical School/Spaulding Rehabilitation Hospital, Boston, Massachusetts 02114; Department of Physiology (W.R.F.), University of Puerto Rico School of Medicine, San Juan, Puerto Rico 00936; Department of Radiology (M.T.), Massachusetts General Hospital, Boston, Massachusetts 02114; and MGH Biostatistics Center (H.L.), Massachusetts General Hospital and Harvard Medical Center, Boston, Massachusetts 02114
| | - Walter R Frontera
- Program in Nutritional Metabolism and Neuroendocrine Unit (H.M., T.L.S., C.S., S.S., L.R.B., S.E.L., M.N.F., S.K.G.), Massachusetts General Hospital, Boston, Massachusetts 02114; Harvard Medical School (H.M., T.L.S., A.L.D.S.-C., L.R.B., S.E.L., M.T., H.L., M.-E.P., S.K.G.), Boston, Massachusetts 02115; Pediatric Endocrine Unit (T.L.S., L.R.B.), Massachusetts General Hospital, Boston, Massachusetts 02114; Research Division (A.L.D.S.-C., M.-E.P.), Joslin Diabetes Center, Boston, Massachusetts 02215; Department of Physical Medicine and Rehabilitation (W.R.F.), Vanderbilt University Medical Center, Nashville, Tennessee 37212; Department of Physical Medicine and Rehabilitation (W.R.F.), Harvard Medical School/Spaulding Rehabilitation Hospital, Boston, Massachusetts 02114; Department of Physiology (W.R.F.), University of Puerto Rico School of Medicine, San Juan, Puerto Rico 00936; Department of Radiology (M.T.), Massachusetts General Hospital, Boston, Massachusetts 02114; and MGH Biostatistics Center (H.L.), Massachusetts General Hospital and Harvard Medical Center, Boston, Massachusetts 02114
| | - Stephanie Syu
- Program in Nutritional Metabolism and Neuroendocrine Unit (H.M., T.L.S., C.S., S.S., L.R.B., S.E.L., M.N.F., S.K.G.), Massachusetts General Hospital, Boston, Massachusetts 02114; Harvard Medical School (H.M., T.L.S., A.L.D.S.-C., L.R.B., S.E.L., M.T., H.L., M.-E.P., S.K.G.), Boston, Massachusetts 02115; Pediatric Endocrine Unit (T.L.S., L.R.B.), Massachusetts General Hospital, Boston, Massachusetts 02114; Research Division (A.L.D.S.-C., M.-E.P.), Joslin Diabetes Center, Boston, Massachusetts 02215; Department of Physical Medicine and Rehabilitation (W.R.F.), Vanderbilt University Medical Center, Nashville, Tennessee 37212; Department of Physical Medicine and Rehabilitation (W.R.F.), Harvard Medical School/Spaulding Rehabilitation Hospital, Boston, Massachusetts 02114; Department of Physiology (W.R.F.), University of Puerto Rico School of Medicine, San Juan, Puerto Rico 00936; Department of Radiology (M.T.), Massachusetts General Hospital, Boston, Massachusetts 02114; and MGH Biostatistics Center (H.L.), Massachusetts General Hospital and Harvard Medical Center, Boston, Massachusetts 02114
| | - Laurie R Braun
- Program in Nutritional Metabolism and Neuroendocrine Unit (H.M., T.L.S., C.S., S.S., L.R.B., S.E.L., M.N.F., S.K.G.), Massachusetts General Hospital, Boston, Massachusetts 02114; Harvard Medical School (H.M., T.L.S., A.L.D.S.-C., L.R.B., S.E.L., M.T., H.L., M.-E.P., S.K.G.), Boston, Massachusetts 02115; Pediatric Endocrine Unit (T.L.S., L.R.B.), Massachusetts General Hospital, Boston, Massachusetts 02114; Research Division (A.L.D.S.-C., M.-E.P.), Joslin Diabetes Center, Boston, Massachusetts 02215; Department of Physical Medicine and Rehabilitation (W.R.F.), Vanderbilt University Medical Center, Nashville, Tennessee 37212; Department of Physical Medicine and Rehabilitation (W.R.F.), Harvard Medical School/Spaulding Rehabilitation Hospital, Boston, Massachusetts 02114; Department of Physiology (W.R.F.), University of Puerto Rico School of Medicine, San Juan, Puerto Rico 00936; Department of Radiology (M.T.), Massachusetts General Hospital, Boston, Massachusetts 02114; and MGH Biostatistics Center (H.L.), Massachusetts General Hospital and Harvard Medical Center, Boston, Massachusetts 02114
| | - Sara E Looby
- Program in Nutritional Metabolism and Neuroendocrine Unit (H.M., T.L.S., C.S., S.S., L.R.B., S.E.L., M.N.F., S.K.G.), Massachusetts General Hospital, Boston, Massachusetts 02114; Harvard Medical School (H.M., T.L.S., A.L.D.S.-C., L.R.B., S.E.L., M.T., H.L., M.-E.P., S.K.G.), Boston, Massachusetts 02115; Pediatric Endocrine Unit (T.L.S., L.R.B.), Massachusetts General Hospital, Boston, Massachusetts 02114; Research Division (A.L.D.S.-C., M.-E.P.), Joslin Diabetes Center, Boston, Massachusetts 02215; Department of Physical Medicine and Rehabilitation (W.R.F.), Vanderbilt University Medical Center, Nashville, Tennessee 37212; Department of Physical Medicine and Rehabilitation (W.R.F.), Harvard Medical School/Spaulding Rehabilitation Hospital, Boston, Massachusetts 02114; Department of Physiology (W.R.F.), University of Puerto Rico School of Medicine, San Juan, Puerto Rico 00936; Department of Radiology (M.T.), Massachusetts General Hospital, Boston, Massachusetts 02114; and MGH Biostatistics Center (H.L.), Massachusetts General Hospital and Harvard Medical Center, Boston, Massachusetts 02114
| | - Meghan N Feldpausch
- Program in Nutritional Metabolism and Neuroendocrine Unit (H.M., T.L.S., C.S., S.S., L.R.B., S.E.L., M.N.F., S.K.G.), Massachusetts General Hospital, Boston, Massachusetts 02114; Harvard Medical School (H.M., T.L.S., A.L.D.S.-C., L.R.B., S.E.L., M.T., H.L., M.-E.P., S.K.G.), Boston, Massachusetts 02115; Pediatric Endocrine Unit (T.L.S., L.R.B.), Massachusetts General Hospital, Boston, Massachusetts 02114; Research Division (A.L.D.S.-C., M.-E.P.), Joslin Diabetes Center, Boston, Massachusetts 02215; Department of Physical Medicine and Rehabilitation (W.R.F.), Vanderbilt University Medical Center, Nashville, Tennessee 37212; Department of Physical Medicine and Rehabilitation (W.R.F.), Harvard Medical School/Spaulding Rehabilitation Hospital, Boston, Massachusetts 02114; Department of Physiology (W.R.F.), University of Puerto Rico School of Medicine, San Juan, Puerto Rico 00936; Department of Radiology (M.T.), Massachusetts General Hospital, Boston, Massachusetts 02114; and MGH Biostatistics Center (H.L.), Massachusetts General Hospital and Harvard Medical Center, Boston, Massachusetts 02114
| | - Martin Torriani
- Program in Nutritional Metabolism and Neuroendocrine Unit (H.M., T.L.S., C.S., S.S., L.R.B., S.E.L., M.N.F., S.K.G.), Massachusetts General Hospital, Boston, Massachusetts 02114; Harvard Medical School (H.M., T.L.S., A.L.D.S.-C., L.R.B., S.E.L., M.T., H.L., M.-E.P., S.K.G.), Boston, Massachusetts 02115; Pediatric Endocrine Unit (T.L.S., L.R.B.), Massachusetts General Hospital, Boston, Massachusetts 02114; Research Division (A.L.D.S.-C., M.-E.P.), Joslin Diabetes Center, Boston, Massachusetts 02215; Department of Physical Medicine and Rehabilitation (W.R.F.), Vanderbilt University Medical Center, Nashville, Tennessee 37212; Department of Physical Medicine and Rehabilitation (W.R.F.), Harvard Medical School/Spaulding Rehabilitation Hospital, Boston, Massachusetts 02114; Department of Physiology (W.R.F.), University of Puerto Rico School of Medicine, San Juan, Puerto Rico 00936; Department of Radiology (M.T.), Massachusetts General Hospital, Boston, Massachusetts 02114; and MGH Biostatistics Center (H.L.), Massachusetts General Hospital and Harvard Medical Center, Boston, Massachusetts 02114
| | - Hang Lee
- Program in Nutritional Metabolism and Neuroendocrine Unit (H.M., T.L.S., C.S., S.S., L.R.B., S.E.L., M.N.F., S.K.G.), Massachusetts General Hospital, Boston, Massachusetts 02114; Harvard Medical School (H.M., T.L.S., A.L.D.S.-C., L.R.B., S.E.L., M.T., H.L., M.-E.P., S.K.G.), Boston, Massachusetts 02115; Pediatric Endocrine Unit (T.L.S., L.R.B.), Massachusetts General Hospital, Boston, Massachusetts 02114; Research Division (A.L.D.S.-C., M.-E.P.), Joslin Diabetes Center, Boston, Massachusetts 02215; Department of Physical Medicine and Rehabilitation (W.R.F.), Vanderbilt University Medical Center, Nashville, Tennessee 37212; Department of Physical Medicine and Rehabilitation (W.R.F.), Harvard Medical School/Spaulding Rehabilitation Hospital, Boston, Massachusetts 02114; Department of Physiology (W.R.F.), University of Puerto Rico School of Medicine, San Juan, Puerto Rico 00936; Department of Radiology (M.T.), Massachusetts General Hospital, Boston, Massachusetts 02114; and MGH Biostatistics Center (H.L.), Massachusetts General Hospital and Harvard Medical Center, Boston, Massachusetts 02114
| | - Mary-Elizabeth Patti
- Program in Nutritional Metabolism and Neuroendocrine Unit (H.M., T.L.S., C.S., S.S., L.R.B., S.E.L., M.N.F., S.K.G.), Massachusetts General Hospital, Boston, Massachusetts 02114; Harvard Medical School (H.M., T.L.S., A.L.D.S.-C., L.R.B., S.E.L., M.T., H.L., M.-E.P., S.K.G.), Boston, Massachusetts 02115; Pediatric Endocrine Unit (T.L.S., L.R.B.), Massachusetts General Hospital, Boston, Massachusetts 02114; Research Division (A.L.D.S.-C., M.-E.P.), Joslin Diabetes Center, Boston, Massachusetts 02215; Department of Physical Medicine and Rehabilitation (W.R.F.), Vanderbilt University Medical Center, Nashville, Tennessee 37212; Department of Physical Medicine and Rehabilitation (W.R.F.), Harvard Medical School/Spaulding Rehabilitation Hospital, Boston, Massachusetts 02114; Department of Physiology (W.R.F.), University of Puerto Rico School of Medicine, San Juan, Puerto Rico 00936; Department of Radiology (M.T.), Massachusetts General Hospital, Boston, Massachusetts 02114; and MGH Biostatistics Center (H.L.), Massachusetts General Hospital and Harvard Medical Center, Boston, Massachusetts 02114
| | - Steven K Grinspoon
- Program in Nutritional Metabolism and Neuroendocrine Unit (H.M., T.L.S., C.S., S.S., L.R.B., S.E.L., M.N.F., S.K.G.), Massachusetts General Hospital, Boston, Massachusetts 02114; Harvard Medical School (H.M., T.L.S., A.L.D.S.-C., L.R.B., S.E.L., M.T., H.L., M.-E.P., S.K.G.), Boston, Massachusetts 02115; Pediatric Endocrine Unit (T.L.S., L.R.B.), Massachusetts General Hospital, Boston, Massachusetts 02114; Research Division (A.L.D.S.-C., M.-E.P.), Joslin Diabetes Center, Boston, Massachusetts 02215; Department of Physical Medicine and Rehabilitation (W.R.F.), Vanderbilt University Medical Center, Nashville, Tennessee 37212; Department of Physical Medicine and Rehabilitation (W.R.F.), Harvard Medical School/Spaulding Rehabilitation Hospital, Boston, Massachusetts 02114; Department of Physiology (W.R.F.), University of Puerto Rico School of Medicine, San Juan, Puerto Rico 00936; Department of Radiology (M.T.), Massachusetts General Hospital, Boston, Massachusetts 02114; and MGH Biostatistics Center (H.L.), Massachusetts General Hospital and Harvard Medical Center, Boston, Massachusetts 02114
| |
Collapse
|
44
|
Fritsch M, Koliaki C, Livingstone R, Phielix E, Bierwagen A, Meisinger M, Jelenik T, Strassburger K, Zimmermann S, Brockmann K, Wolff C, Hwang JH, Szendroedi J, Roden M. Time course of postprandial hepatic phosphorus metabolites in lean, obese, and type 2 diabetes patients. Am J Clin Nutr 2015; 102:1051-8. [PMID: 26423389 DOI: 10.3945/ajcn.115.107599] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 08/26/2015] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Impaired energy metabolism is a possible mechanism that contributes to insulin resistance and ectopic fat storage. OBJECTIVE We examined whether meal ingestion differently affects hepatic phosphorus metabolites in insulin-sensitive and insulin-resistant humans. DESIGN Young, lean, insulin-sensitive humans (CONs) [mean ± SD body mass index (BMI; in kg/m(2)): 23.2 ± 1.5]; insulin-resistant, glucose-tolerant, obese humans (OBEs) (BMI: 34.3 ± 1.7); and type 2 diabetes patients (T2Ds) (BMI: 32.0 ± 2.4) were studied (n = 10/group). T2Ds (61 ± 7 y old) were older (P < 0.001) than were OBEs (31 ± 7 y old) and CONs (28 ± 3 y old). We quantified hepatic γATP, inorganic phosphate (Pi), and the fat content [hepatocellular lipids (HCLs)] with the use of (31)P/(1)H magnetic resonance spectroscopy before and at 160 and 240 min after a high-caloric mixed meal. In a subset of volunteers, we measured the skeletal muscle oxidative capacity with the use of high-resolution respirometry. Whole-body insulin sensitivity (M value) was assessed with the use of hyperinsulinemic-euglycemic clamps. RESULTS OBEs and T2Ds were similarly insulin resistant (M value: 3.5 ± 1.4 and 1.9 ± 2.5 mg · kg(-1) · min(-1), respectively; P = 0.9) and had 12-fold (P = 0.01) and 17-fold (P = 0.002) higher HCLs, respectively, than those of lean persons. Despite comparable fasting hepatic γATP concentrations, the maximum postprandial increase of γATP was 6-fold higher in OBEs (0.7 ± 0.2 mmol/L; P = 0.03) but only tended to be higher in T2Ds (0.6 ± 0.2 mmol/L; P = 0.09) than in CONs (0.1 ± 0.1 mmol/L). However, in the fasted state, muscle complex I activity was 53% lower (P = 0.01) in T2Ds but not in OBEs (P = 0.15) than in CONs. CONCLUSIONS Young, obese, nondiabetic humans exhibit augmented postprandial hepatic energy metabolism, whereas elderly T2Ds have impaired fasting muscle energy metabolism. These findings support the concept of a differential and tissue-specific regulation of energy metabolism, which can occur independently of insulin resistance. This trial was registered at clinicaltrials.gov as NCT01229059.
Collapse
Affiliation(s)
- Maria Fritsch
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, Department of Pediatric and Adolescent Medicine, Medical University of Vienna, Vienna, Austria; and
| | - Chrysi Koliaki
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, Department of Endocrinology and Diabetology, Medical Faculty, and German Center of Diabetes Research, Partner Düsseldorf, Germany
| | - Roshan Livingstone
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research
| | - Esther Phielix
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research
| | - Alessandra Bierwagen
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, German Center of Diabetes Research, Partner Düsseldorf, Germany
| | - Markus Meisinger
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research
| | - Tomas Jelenik
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, German Center of Diabetes Research, Partner Düsseldorf, Germany
| | - Klaus Strassburger
- Institute for Biometrics and Epidemiology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich-Heine University, Düsseldorf, Germany, German Center of Diabetes Research, Partner Düsseldorf, Germany
| | - Stefanie Zimmermann
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, German Center of Diabetes Research, Partner Düsseldorf, Germany
| | - Katharina Brockmann
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, German Center of Diabetes Research, Partner Düsseldorf, Germany
| | - Christina Wolff
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, German Center of Diabetes Research, Partner Düsseldorf, Germany
| | - Jong-Hee Hwang
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, German Center of Diabetes Research, Partner Düsseldorf, Germany
| | - Julia Szendroedi
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, Department of Endocrinology and Diabetology, Medical Faculty, and German Center of Diabetes Research, Partner Düsseldorf, Germany
| | - Michael Roden
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, Department of Endocrinology and Diabetology, Medical Faculty, and German Center of Diabetes Research, Partner Düsseldorf, Germany
| |
Collapse
|
45
|
The Combination of Resveratrol and Quercetin Attenuates Metabolic Syndrome in Rats by Modifying the Serum Fatty Acid Composition and by Upregulating SIRT 1 and SIRT 2 Expression in White Adipose Tissue. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:474032. [PMID: 26609312 PMCID: PMC4644561 DOI: 10.1155/2015/474032] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 10/18/2015] [Indexed: 11/18/2022]
Abstract
Resveratrol (RSV) and quercetin (QRC) modify energy metabolism and reduce cardiovascular risk factors included in the metabolic syndrome (MetS). These natural compounds upregulate and activate sirtuins (SIRTs), a family of NAD-dependent histone deacetylases. We analyzed the effect of two doses of a commercial combination of RSV and QRC on serum fatty acid composition and their regulation of SIRTs 1–3 and PPAR-γ expression in white adipose tissue. MetS was induced in Wistar rats by adding 30% sucrose to drinking water for five months. Rats were divided into control and two groups receiving the two different doses of RSV and QRC in drinking water daily for 4 weeks following the 5 months of sucrose treatment. Commercial kits were used to determine serum parameters and the expressions of SIRTs in WAT were analysed by western blot. In MetS rats body mass, central adiposity, insulin, triglycerides, non-HDL-C, leptin, adiponectin, monounsaturated fatty acids (MUFAs), and nonesterified fatty acids (NEFAs) were increased, while polyunsaturated fatty acids (PUFAs) and HDL-C were decreased. SIRT 1 and SIRT 2 were downregulated, while PPAR-γ was increased. RSV + QRC administration improved the serum health parameters modified by MetS and upregulate SIRT 1 and SIRT 2 expression in white abdominal tissue in MetS animals.
Collapse
|
46
|
Ritter O, Jelenik T, Roden M. Lipid-mediated muscle insulin resistance: different fat, different pathways? J Mol Med (Berl) 2015; 93:831-43. [PMID: 26108617 DOI: 10.1007/s00109-015-1310-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 05/27/2015] [Accepted: 06/12/2015] [Indexed: 12/22/2022]
Abstract
Increased dietary fat intake and lipolysis result in excessive lipid availability, which relates to impaired insulin sensitivity. Over the last years, several mechanisms possibly underlying lipid-mediated insulin resistance evolved. Lipid intermediates such as diacylglycerols (DAG) associate with changes in insulin sensitivity in many models. DAG activate novel protein kinase C (PKC) isoforms followed by inhibitory serine phosphorylation of insulin receptor substrate 1 (IRS1). Activation of Toll-like receptor 4 (TLR4) raises another lipid class, ceramides (CER), which induce pro-inflammatory pathways and lead to inhibition of Akt phosphorylation. Inhibition of glucosylceramide and ganglioside synthesis results in improved insulin sensitivity and increased activatory tyrosine phosphorylation of IRS1 in the muscle. Incomplete fat oxidation can increase acylcarnitines (ACC), which in turn stimulate pro-inflammatory pathways. This review analyzed the effects of lipid metabolites on insulin action in skeletal muscle of humans and rodents. Despite the evidence for the association of both DAG and CER with insulin resistance, its causal relevance may differ depending on the subcellular localization and the tested cohorts, e.g., athletes. Nevertheless, recent data indicate that individual lipid species and their degree of fatty acid saturation, particularly membrane and cytosolic C18:2 DAG, specifically activate PKCθ and induce both acute lipid-induced and chronic insulin resistance in humans.
Collapse
Affiliation(s)
- Olesja Ritter
- Institute for Clinical Diabetology, German Diabetes Center, c/o Auf'm Hennekamp 65, D-40225, Düsseldorf, Germany
| | | | | |
Collapse
|
47
|
van de Weijer T, Phielix E, Bilet L, Williams EG, Ropelle ER, Bierwagen A, Livingstone R, Nowotny P, Sparks LM, Paglialunga S, Szendroedi J, Havekes B, Moullan N, Pirinen E, Hwang JH, Schrauwen-Hinderling VB, Hesselink MKC, Auwerx J, Roden M, Schrauwen P. Evidence for a direct effect of the NAD+ precursor acipimox on muscle mitochondrial function in humans. Diabetes 2015; 64:1193-201. [PMID: 25352640 PMCID: PMC4375076 DOI: 10.2337/db14-0667] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Recent preclinical studies showed the potential of nicotinamide adenine dinucleotide (NAD(+)) precursors to increase oxidative phosphorylation and improve metabolic health, but human data are lacking. We hypothesize that the nicotinic acid derivative acipimox, an NAD(+) precursor, would directly affect mitochondrial function independent of reductions in nonesterified fatty acid (NEFA) concentrations. In a multicenter randomized crossover trial, 21 patients with type 2 diabetes (age 57.7 ± 1.1 years, BMI 33.4 ± 0.8 kg/m(2)) received either placebo or acipimox 250 mg three times daily dosage for 2 weeks. Acipimox treatment increased plasma NEFA levels (759 ± 44 vs. 1,135 ± 97 μmol/L for placebo vs. acipimox, P < 0.01) owing to a previously described rebound effect. As a result, skeletal muscle lipid content increased and insulin sensitivity decreased. Despite the elevated plasma NEFA levels, ex vivo mitochondrial respiration in skeletal muscle increased. Subsequently, we showed that acipimox treatment resulted in a robust elevation in expression of nuclear-encoded mitochondrial gene sets and a mitonuclear protein imbalance, which may indicate activation of the mitochondrial unfolded protein response. Further studies in C2C12 myotubes confirmed a direct effect of acipimox on NAD(+) levels, mitonuclear protein imbalance, and mitochondrial oxidative capacity. To the best of our knowledge, this study is the first to demonstrate that NAD(+) boosters can also directly affect skeletal muscle mitochondrial function in humans.
Collapse
Affiliation(s)
- Tineke van de Weijer
- Department of Human Biology, Maastricht University Medical Center, Maastricht, the Netherlands School for Nutrition, Toxicology and Metabolism, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Esther Phielix
- Department of Human Biology, Maastricht University Medical Center, Maastricht, the Netherlands Institute for Clinical Diabetology, German Diabetes Center, Düsseldorf, Germany
| | - Lena Bilet
- Department of Human Biology, Maastricht University Medical Center, Maastricht, the Netherlands School for Nutrition, Toxicology and Metabolism, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Evan G Williams
- Laboratory of Integrative and Systems Physiology, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Eduardo R Ropelle
- Laboratory of Integrative and Systems Physiology, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | | | - Roshan Livingstone
- Institute for Clinical Diabetology, German Diabetes Center, Düsseldorf, Germany
| | - Peter Nowotny
- Institute for Clinical Diabetology, German Diabetes Center, Düsseldorf, Germany
| | - Lauren M Sparks
- Department of Human Biology, Maastricht University Medical Center, Maastricht, the Netherlands School for Nutrition, Toxicology and Metabolism, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Sabina Paglialunga
- Department of Human Biology, Maastricht University Medical Center, Maastricht, the Netherlands School for Nutrition, Toxicology and Metabolism, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Julia Szendroedi
- Institute for Clinical Diabetology, German Diabetes Center, Düsseldorf, Germany Department of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Bas Havekes
- School for Nutrition, Toxicology and Metabolism, Maastricht University Medical Center, Maastricht, the Netherlands Department of Internal Medicine, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Norman Moullan
- Laboratory of Integrative and Systems Physiology, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Eija Pirinen
- Laboratory of Integrative and Systems Physiology, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland Biotechnology and Molecular Medicine, A. I. Virtanen Institute for Molecular Sciences, Biocenter Kuopio, University of Eastern Finland, Kuopio, Finland
| | - Jong-Hee Hwang
- Institute for Clinical Diabetology, German Diabetes Center, Düsseldorf, Germany
| | - Vera B Schrauwen-Hinderling
- School for Nutrition, Toxicology and Metabolism, Maastricht University Medical Center, Maastricht, the Netherlands Department of Radiology, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Matthijs K C Hesselink
- School for Nutrition, Toxicology and Metabolism, Maastricht University Medical Center, Maastricht, the Netherlands Department of Human Movement Sciences, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Johan Auwerx
- Laboratory of Integrative and Systems Physiology, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Michael Roden
- Institute for Clinical Diabetology, German Diabetes Center, Düsseldorf, Germany Department of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University, University Hospital Düsseldorf, Düsseldorf, Germany German Center for Diabetes Research, Partner Düsseldorf, Düsseldorf, Germany
| | - Patrick Schrauwen
- Department of Human Biology, Maastricht University Medical Center, Maastricht, the Netherlands School for Nutrition, Toxicology and Metabolism, Maastricht University Medical Center, Maastricht, the Netherlands
| |
Collapse
|
48
|
Jelenik T, Séquaris G, Kaul K, Ouwens DM, Phielix E, Kotzka J, Knebel B, Weiß J, Reinbeck AL, Janke L, Nowotny P, Partke HJ, Zhang D, Shulman GI, Szendroedi J, Roden M. Tissue-specific differences in the development of insulin resistance in a mouse model for type 1 diabetes. Diabetes 2014; 63:3856-67. [PMID: 24917575 DOI: 10.2337/db13-1794] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Although insulin resistance is known to underlie type 2 diabetes, its role in the development of type 1 diabetes has been gaining increasing interest. In a model of type 1 diabetes, the nonobese diabetic (NOD) mouse, we found that insulin resistance driven by lipid- and glucose-independent mechanisms is already present in the liver of prediabetic mice. Hepatic insulin resistance is associated with a transient rise in mitochondrial respiration followed by increased production of lipid peroxides and c-Jun N-terminal kinase activity. At the onset of diabetes, increased adipose tissue lipolysis promotes myocellular diacylglycerol accumulation. This is paralleled by increased myocellular protein kinase C θ activity and serum fetuin A levels. Muscle mitochondrial oxidative capacity is unchanged at the onset but decreases at later stages of diabetes. In conclusion, hepatic and muscle insulin resistance manifest at different stages and involve distinct cellular mechanisms during the development of diabetes in the NOD mouse.
Collapse
Affiliation(s)
- Tomas Jelenik
- Institute for Clinical Diabetology, German Diabetes Center, Düsseldorf, Germany German Center for Diabetes Research, Partner Düsseldorf, Germany
| | - Gilles Séquaris
- Institute for Clinical Diabetology, German Diabetes Center, Düsseldorf, Germany German Center for Diabetes Research, Partner Düsseldorf, Germany
| | - Kirti Kaul
- Institute for Clinical Diabetology, German Diabetes Center, Düsseldorf, Germany German Center for Diabetes Research, Partner Düsseldorf, Germany
| | - D Margriet Ouwens
- German Center for Diabetes Research, Partner Düsseldorf, Germany Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Düsseldorf, Germany Department of Endocrinology, Ghent University Hospital, Ghent, Belgium
| | - Esther Phielix
- Institute for Clinical Diabetology, German Diabetes Center, Düsseldorf, Germany German Center for Diabetes Research, Partner Düsseldorf, Germany
| | - Jörg Kotzka
- German Center for Diabetes Research, Partner Düsseldorf, Germany Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Düsseldorf, Germany
| | - Birgit Knebel
- German Center for Diabetes Research, Partner Düsseldorf, Germany Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Düsseldorf, Germany
| | - Jürgen Weiß
- German Center for Diabetes Research, Partner Düsseldorf, Germany Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Düsseldorf, Germany
| | - Anna Lena Reinbeck
- Institute for Clinical Diabetology, German Diabetes Center, Düsseldorf, Germany German Center for Diabetes Research, Partner Düsseldorf, Germany
| | - Linda Janke
- Institute for Clinical Diabetology, German Diabetes Center, Düsseldorf, Germany German Center for Diabetes Research, Partner Düsseldorf, Germany
| | - Peter Nowotny
- Institute for Clinical Diabetology, German Diabetes Center, Düsseldorf, Germany German Center for Diabetes Research, Partner Düsseldorf, Germany
| | - Hans-Joachim Partke
- Institute for Clinical Diabetology, German Diabetes Center, Düsseldorf, Germany German Center for Diabetes Research, Partner Düsseldorf, Germany Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Düsseldorf, Germany
| | - Dongyan Zhang
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT
| | - Gerald I Shulman
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT
| | - Julia Szendroedi
- Institute for Clinical Diabetology, German Diabetes Center, Düsseldorf, Germany German Center for Diabetes Research, Partner Düsseldorf, Germany Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Düsseldorf, Germany Department of Endocrinology and Diabetology, Heinrich-Heine University, Düsseldorf, Germany
| | - Michael Roden
- Institute for Clinical Diabetology, German Diabetes Center, Düsseldorf, Germany German Center for Diabetes Research, Partner Düsseldorf, Germany Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Düsseldorf, Germany Department of Endocrinology and Diabetology, Heinrich-Heine University, Düsseldorf, Germany
| |
Collapse
|
49
|
Samocha-Bonet D, Dixit VD, Kahn CR, Leibel RL, Lin X, Nieuwdorp M, Pietiläinen KH, Rabasa-Lhoret R, Roden M, Scherer PE, Klein S, Ravussin E. Metabolically healthy and unhealthy obese--the 2013 Stock Conference report. Obes Rev 2014; 15:697-708. [PMID: 25059108 PMCID: PMC4519075 DOI: 10.1111/obr.12199] [Citation(s) in RCA: 133] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 05/16/2014] [Accepted: 05/18/2014] [Indexed: 12/12/2022]
Abstract
Obesity is closely associated with cardiovascular diseases and type 2 diabetes, but some obese individuals, despite having excessive body fat, exhibit metabolic health that is comparable with that of lean individuals. The 'healthy obese' phenotype was described in the 1980s, but major advancements in its characterization were only made in the past five years. During this time, several new mechanisms that may be involved in health preservation in obesity were proposed through the use of transgenic animal models, use of sophisticated imaging techniques and in vivo measurements of insulin sensitivity. However, the main obstacle in advancing our understanding of the metabolically healthy obese phenotype and its related long-term health risks is the lack of a standardized definition. Here, we summarize the proceedings of the 13th Stock Conference of the International Association of the Study of Obesity. We describe the current research and highlight the unanswered questions and gaps in the field. Better understanding of metabolic health in obesity will assist in therapeutic decision-making and help identify therapeutic targets to improve metabolic health in obesity.
Collapse
Affiliation(s)
- D Samocha-Bonet
- Garvan Institute of Medical Research, University of New South Wales, Sydney, NSW, Australia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Goodpaster BH, Coen PM. Improved mitochondrial function is linked with improved insulin sensitivity through reductions in FFA. Diabetes 2014; 63:2611-2. [PMID: 25060892 DOI: 10.2337/db14-0277] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Bret H Goodpaster
- Translational Research Institute for Metabolism and Diabetes, Florida Hospital, Sanford-Burnham Medical Research Institute, Orlando, FL
| | - Paul M Coen
- Translational Research Institute for Metabolism and Diabetes, Florida Hospital, Sanford-Burnham Medical Research Institute, Orlando, FL
| |
Collapse
|