1
|
Wang Z, Gurlo T, Satin LS, Fraser SE, Butler PC. Subcellular Compartmentalization of Glucose Mediated Insulin Secretion. Cells 2025; 14:198. [PMID: 39936989 DOI: 10.3390/cells14030198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/14/2025] [Accepted: 01/24/2025] [Indexed: 02/13/2025] Open
Abstract
Regulation of blood glucose levels depends on the property of beta cells to couple glucose sensing with insulin secretion. This is accomplished by the concentration-dependent flux of glucose through glycolysis and oxidative phosphorylation, generating ATP. The resulting rise in cytosolic ATP/ADP inhibits KATP channels, inducing membrane depolarization and Ca2+ influx, which prompts insulin secretion. Evidence suggests that this coupling of glucose sensing with insulin secretion may be compartmentalized in the submembrane regions of the beta cell. We investigated the subcellular responses of key components involved in this coupling and found mitochondria in the submembrane zone, some tethered to the cytoskeleton near capillaries. Using Fluorescent Lifetime Imaging Microscopy (FLIM), we observed that submembrane mitochondria were the fastest to respond to glucose. In the most glucose-responsive beta cells, glucose triggers rapid, localized submembrane increases in ATP and Ca2+ as synchronized ~4-min oscillations, consistent with pulsatile insulin release after meals. These findings are consistent with the hypothesis that glucose sensing is coupled with insulin secretion in the submembrane zone of beta cells. This zonal adaptation would enhance both the speed and energy efficiency of beta cell responses to glucose, as only a subset of the most accessible mitochondria would be required to trigger insulin secretion.
Collapse
Affiliation(s)
- Zhongying Wang
- Translational Imaging Center, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA 90089, USA
- Dana and David Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Tatyana Gurlo
- Larry L. Hillblom Islet Research Center, David Geffen School of Medicine at UCLA, Los Angeles, CA 90089, USA
| | - Leslie S Satin
- Brehm Diabetes Center, Caswell Diabetes Institute, Department of Pharmacology, University of Michigan, Ann Arbor, MI 38105, USA
| | - Scott E Fraser
- Translational Imaging Center, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA 90089, USA
- Dana and David Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Peter C Butler
- Larry L. Hillblom Islet Research Center, David Geffen School of Medicine at UCLA, Los Angeles, CA 90089, USA
| |
Collapse
|
2
|
Grubelnik V, Zmazek J, Gosak M, Marhl M. The role of anaplerotic metabolism of glucose and glutamine in insulin secretion: A model approach. Biophys Chem 2024; 311:107270. [PMID: 38833963 DOI: 10.1016/j.bpc.2024.107270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/22/2024] [Accepted: 05/22/2024] [Indexed: 06/06/2024]
Abstract
We propose a detailed computational beta cell model that emphasizes the role of anaplerotic metabolism under glucose and glucose-glutamine stimulation. This model goes beyond the traditional focus on mitochondrial oxidative phosphorylation and ATP-sensitive K+ channels, highlighting the predominant generation of ATP from phosphoenolpyruvate in the vicinity of KATP channels. It also underlines the modulatory role of H2O2 as a signaling molecule in the first phase of glucose-stimulated insulin secretion. In the second phase, the model emphasizes the critical role of anaplerotic pathways, activated by glucose stimulation via pyruvate carboxylase and by glutamine via glutamate dehydrogenase. It particularly focuses on the production of NADPH and glutamate as key enhancers of insulin secretion. The predictions of the model are consistent with empirical data, highlighting the complex interplay of metabolic pathways and emphasizing the primary role of glucose and the facilitating role of glutamine in insulin secretion. By delineating these crucial metabolic pathways, the model provides valuable insights into potential therapeutic targets for diabetes.
Collapse
Affiliation(s)
- Vladimir Grubelnik
- Faculty of Electrical Engineering and Computer Science, University of Maribor, Koroška cesta 46, 2000 Maribor, Slovenia
| | - Jan Zmazek
- Faculty of Natural Sciences and Mathematics, University of Maribor, Koroška cesta 160, 2000 Maribor, Slovenia
| | - Marko Gosak
- Faculty of Natural Sciences and Mathematics, University of Maribor, Koroška cesta 160, 2000 Maribor, Slovenia; Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia; Alma Mater Europaea ECM, Slovenska ulica 17, 2000 Maribor, Slovenia
| | - Marko Marhl
- Faculty of Natural Sciences and Mathematics, University of Maribor, Koroška cesta 160, 2000 Maribor, Slovenia; Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia; Faculty of Education, University of Maribor, Koroška cesta 160, 2000 Maribor, Slovenia.
| |
Collapse
|
3
|
Li Q, Liu R, Lin Z, Zhang X, Silva IG, Pollock SD, Alvarez-Dominguez JR, Liu J. Cyborg islets: implanted flexible electronics reveal principles of human islet electrical maturation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.18.585551. [PMID: 38562695 PMCID: PMC10983936 DOI: 10.1101/2024.03.18.585551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Flexible electronics implanted during tissue formation enable chronic studies of tissue-wide electrophysiology. Here, we integrate tissue-like stretchable electronics during organogenesis of human stem cell-derived pancreatic islets, stably tracing single-cell extracellular spike bursting dynamics over months of functional maturation. Adapting spike sorting methods from neural studies reveals maturation-dependent electrical patterns of α and β-like (SC-α and β) cells, and their stimulus-coupled dynamics. We identified two major electrical states for both SC-α and β cells, distinguished by their glucose threshold for action potential firing. We find that improved hormone stimulation capacity during extended culture reflects increasing numbers of SC-α/β cells in low basal firing states, linked to energy and hormone metabolism gene upregulation. Continuous recording during further maturation by entrainment to daily feeding cycles reveals that circadian islet-level hormone secretion rhythms reflect sustained and coordinate oscillation of cell-level SC-α and β electrical activities. We find that this correlates with cell-cell communication and exocytic network induction, indicating a role for circadian rhythms in coordinating system-level stimulus-coupled responses. Cyborg islets thus reveal principles of electrical maturation that will be useful to build fully functional in vitro islets for research and therapeutic applications.
Collapse
|
4
|
Chaudhary R, Khanna J, Rohilla M, Gupta S, Bansal S. Investigation of Pancreatic-beta Cells Role in the Biological Process of Ageing. Endocr Metab Immune Disord Drug Targets 2024; 24:348-362. [PMID: 37608675 DOI: 10.2174/1871530323666230822095932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/27/2023] [Accepted: 07/20/2023] [Indexed: 08/24/2023]
Abstract
BACKGROUND Cellular senescence is associated with the formation and progression of a range of illnesses, including ageing and metabolic disorders such as diabetes mellitus and pancreatic beta cell dysfunction. Ageing and reduced glucose tolerance are interconnected. Often, Diabetes is becoming more common, which is concerning since it raises the risk of a variety of age-dependent disorders such as cardiovascular disease, cancer, Parkinson's disease, stroke, and Alzheimer's disease. OBJECTIVES The objectives of this study are to find out the most recent research on how ageing affects the functions of pancreatic beta cells, beta cell mass, beta cell senescence, mitochondrial dysfunction, and hormonal imbalance. METHODS Various research and review manuscripts are gathered from various records such as Google Scholar, PubMed, Mendeley, Scopus, Science Open, the Directory of Open Access Journals, and the Education Resources Information Centre, using different terms like "Diabetes, cellular senescence, beta cells, ageing, insulin, glucose". RESULTS In this review, we research novel targets in order to discover new strategies to treat diabetes. Abnormal glucose homeostasis and type 2 diabetes mellitus in the elderly may aid in the development of novel medicines to delay or prevent diabetes onset, improve quality of life, and, finally, increase life duration. CONCLUSION Aging accelerates beta cell senescence by generating premature cell senescence, which is mostly mediated by high glucose levels. Despite higher plasma glucose levels, hepatic gluconeogenesis accelerates and adipose tissue lipolysis rises, resulting in an increase in free fatty acid levels in the blood and worsening insulin resistance throughout the body.
Collapse
Affiliation(s)
- Rishabh Chaudhary
- Department of Pharmacology, M. M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, 133206, India
| | - Janvi Khanna
- Department of Pharmacology, M. M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, 133206, India
| | - Manni Rohilla
- Department of Pharmacology, M. M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, 133206, India
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Sumeet Gupta
- Department of Pharmacology, M. M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, 133206, India
| | - Seema Bansal
- Department of Pharmacology, M. M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, 133206, India
| |
Collapse
|
5
|
Riahi Y, Kogot-Levin A, Kadosh L, Agranovich B, Malka A, Assa M, Piran R, Avrahami D, Glaser B, Gottlieb E, Jackson F, Cerasi E, Bernal-Mizrachi E, Helman A, Leibowitz G. Hyperglucagonaemia in diabetes: altered amino acid metabolism triggers mTORC1 activation, which drives glucagon production. Diabetologia 2023; 66:1925-1942. [PMID: 37480416 DOI: 10.1007/s00125-023-05967-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 06/07/2023] [Indexed: 07/24/2023]
Abstract
AIM/HYPOTHESIS Hyperglycaemia is associated with alpha cell dysfunction, leading to dysregulated glucagon secretion in type 1 and type 2 diabetes; however, the mechanisms involved are still elusive. The nutrient sensor mammalian target of rapamycin complex 1 (mTORC1) plays a major role in the maintenance of alpha cell mass and function. We studied the regulation of alpha cell mTORC1 by nutrients and its role in the development of hyperglucagonaemia in diabetes. METHODS Alpha cell mTORC1 activity was assessed by immunostaining for phosphorylation of its downstream target, the ribosomal protein S6, and glucagon, followed by confocal microscopy on pancreatic sections and flow cytometry on dispersed human and mouse islets and the alpha cell line, αTC1-6. Metabolomics and metabolic flux were studied by 13C glucose labelling in 2.8 or 16.7 mmol/l glucose followed by LC-MS analysis. To study the role of mTORC1 in mediating hyperglucagonaemia in diabetes, we generated an inducible alpha cell-specific Rptor knockout in the Akita mouse model of diabetes and tested the effects on glucose tolerance by IPGTT and on glucagon secretion. RESULTS mTORC1 activity was increased in alpha cells from diabetic Akita mice in parallel to the development of hyperglycaemia and hyperglucagonaemia (two- to eightfold increase). Acute exposure of mouse and human islets to amino acids stimulated alpha cell mTORC1 (3.5-fold increase), whereas high glucose concentrations inhibited mTORC1 (1.4-fold decrease). The mTORC1 response to glucose was abolished in human and mouse diabetic alpha cells following prolonged islet exposure to high glucose levels, resulting in sustained activation of mTORC1, along with increased glucagon secretion. Metabolomics and metabolic flux analysis showed that exposure to high glucose levels enhanced glycolysis, glucose oxidation and the synthesis of glucose-derived amino acids. In addition, chronic exposure to high glucose levels increased the expression of Slc7a2 and Slc38a4, which encode amino acid transporters, as well as the levels of branched-chain amino acids and methionine cycle metabolites (~1.3-fold increase for both). Finally, conditional Rptor knockout in alpha cells from adult diabetic mice inhibited mTORC1, thereby inhibiting glucagon secretion (~sixfold decrease) and improving diabetes, despite persistent insulin deficiency. CONCLUSIONS/INTERPRETATION Alpha cell exposure to hyperglycaemia enhances amino acid synthesis and transport, resulting in sustained activation of mTORC1, thereby increasing glucagon secretion. mTORC1 therefore plays a major role in mediating alpha cell dysfunction in diabetes. DATA AVAILABILITY All sequencing data are available from the Gene Expression Omnibus (GEO) repository (accession no. GSE154126; https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE154126 ).
Collapse
Affiliation(s)
- Yael Riahi
- Diabetes Unit, Department of Endocrinology and Metabolism, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Aviram Kogot-Levin
- Diabetes Unit, Department of Endocrinology and Metabolism, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Liat Kadosh
- Diabetes Unit, Department of Endocrinology and Metabolism, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Bella Agranovich
- Laboratory for Metabolism in Health and Disease, Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Assaf Malka
- The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Michael Assa
- The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Ron Piran
- The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Dana Avrahami
- Diabetes Unit, Department of Endocrinology and Metabolism, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Developmental Biology and Cancer Research, Hadassah Medical Center, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Benjamin Glaser
- Diabetes Unit, Department of Endocrinology and Metabolism, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Eyal Gottlieb
- Laboratory for Metabolism in Health and Disease, Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Fields Jackson
- Department of Biochemistry, Food Science and Nutrition, Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot, Israel
| | - Erol Cerasi
- Diabetes Unit, Department of Endocrinology and Metabolism, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ernesto Bernal-Mizrachi
- Department of Internal Medicine, Division of Endocrinology, Diabetes and Metabolism, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Aharon Helman
- Department of Biochemistry, Food Science and Nutrition, Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot, Israel.
| | - Gil Leibowitz
- Diabetes Unit, Department of Endocrinology and Metabolism, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
6
|
Wewer Albrechtsen NJ, Holst JJ, Cherrington AD, Finan B, Gluud LL, Dean ED, Campbell JE, Bloom SR, Tan TMM, Knop FK, Müller TD. 100 years of glucagon and 100 more. Diabetologia 2023; 66:1378-1394. [PMID: 37367959 DOI: 10.1007/s00125-023-05947-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/18/2023] [Indexed: 06/28/2023]
Abstract
The peptide hormone glucagon, discovered in late 1922, is secreted from pancreatic alpha cells and is an essential regulator of metabolic homeostasis. This review summarises experiences since the discovery of glucagon regarding basic and clinical aspects of this hormone and speculations on the future directions for glucagon biology and glucagon-based therapies. The review was based on the international glucagon conference, entitled 'A hundred years with glucagon and a hundred more', held in Copenhagen, Denmark, in November 2022. The scientific and therapeutic focus of glucagon biology has mainly been related to its role in diabetes. In type 1 diabetes, the glucose-raising properties of glucagon have been leveraged to therapeutically restore hypoglycaemia. The hyperglucagonaemia evident in type 2 diabetes has been proposed to contribute to hyperglycaemia, raising questions regarding underlying mechanism and the importance of this in the pathogenesis of diabetes. Mimicry experiments of glucagon signalling have fuelled the development of several pharmacological compounds including glucagon receptor (GCGR) antagonists, GCGR agonists and, more recently, dual and triple receptor agonists combining glucagon and incretin hormone receptor agonism. From these studies and from earlier observations in extreme cases of either glucagon deficiency or excess secretion, the physiological role of glucagon has expanded to also involve hepatic protein and lipid metabolism. The interplay between the pancreas and the liver, known as the liver-alpha cell axis, reflects the importance of glucagon for glucose, amino acid and lipid metabolism. In individuals with diabetes and fatty liver diseases, glucagon's hepatic actions may be partly impaired resulting in elevated levels of glucagonotropic amino acids, dyslipidaemia and hyperglucagonaemia, reflecting a new, so far largely unexplored pathophysiological phenomenon termed 'glucagon resistance'. Importantly, the hyperglucagonaemia as part of glucagon resistance may result in increased hepatic glucose production and hyperglycaemia. Emerging glucagon-based therapies show a beneficial impact on weight loss and fatty liver diseases and this has sparked a renewed interest in glucagon biology to enable further pharmacological pursuits.
Collapse
Affiliation(s)
- Nicolai J Wewer Albrechtsen
- Department of Clinical Biochemistry, Copenhagen University Hospital - Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark.
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Jens J Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Alan D Cherrington
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Brian Finan
- Novo Nordisk Research Center Indianapolis, Indianapolis, IN, USA
| | - Lise Lotte Gluud
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Gastro Unit, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | - E Danielle Dean
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jonathan E Campbell
- Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, USA
- Department of Medicine, Endocrinology Division, Duke University Medical Center, Durham, NC, USA
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, USA
| | - Stephen R Bloom
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Tricia M-M Tan
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Filip K Knop
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
- Steno Diabetes Center Copenhagen, Herlev, Denmark
| | - Timo D Müller
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Center Munich, Neuherberg, Germany
- German Center for Diabetes Research (DZD), München Neuherberg, Germany
| |
Collapse
|
7
|
Hariri A, Mirian M, Zarrabi A, Kohandel M, Amini-Pozveh M, Aref AR, Tabatabaee A, Prabhakar PK, Sivakumar PM. The circadian rhythm: an influential soundtrack in the diabetes story. Front Endocrinol (Lausanne) 2023; 14:1156757. [PMID: 37441501 PMCID: PMC10333930 DOI: 10.3389/fendo.2023.1156757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 05/03/2023] [Indexed: 07/15/2023] Open
Abstract
Type 2 Diabetes Mellitus (T2DM) has been the main category of metabolic diseases in recent years due to changes in lifestyle and environmental conditions such as diet and physical activity. On the other hand, the circadian rhythm is one of the most significant biological pathways in humans and other mammals, which is affected by light, sleep, and human activity. However, this cycle is controlled via complicated cellular pathways with feedback loops. It is widely known that changes in the circadian rhythm can alter some metabolic pathways of body cells and could affect the treatment process, particularly for metabolic diseases like T2DM. The aim of this study is to explore the importance of the circadian rhythm in the occurrence of T2DM via reviewing the metabolic pathways involved, their relationship with the circadian rhythm from two perspectives, lifestyle and molecular pathways, and their effect on T2DM pathophysiology. These impacts have been demonstrated in a variety of studies and led to the development of approaches such as time-restricted feeding, chronotherapy (time-specific therapies), and circadian molecule stabilizers.
Collapse
Affiliation(s)
- Amirali Hariri
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mina Mirian
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul, Türkiye
| | - Mohammad Kohandel
- Department of Applied Mathematics, Faculty of Mathematics, University of Waterloo, Waterloo, ON, Canada
| | - Maryam Amini-Pozveh
- Department of Prosthodontics Dentistry, Dental Materials Research Center, Dental Research Institute, School of Dentistry, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Amir Reza Aref
- Belfer Center for Applied Cancer Science, Dana Farber Cancer Institute, Boston, MA, United States
- Translational Sciences, Xsphera Biosciences Inc., Boston, MA, United States
| | - Aliye Tabatabaee
- School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Pranav Kumar Prabhakar
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Lovely Professional University, Phagwara, Punjab, India
- Division of Research and Development, Lovely Professional University, Phagwara Punjab, India
| | - Ponnurengam Malliappan Sivakumar
- Institute of Research and Development, Duy Tan University, Da Nang, Vietnam
- School of Medicine and Pharmacy, Duy Tan University, Da Nang, Vietnam
| |
Collapse
|
8
|
Ho T, Potapenko E, Davis DB, Merrins MJ. A plasma membrane-associated glycolytic metabolon is functionally coupled to K ATP channels in pancreatic α and β cells from humans and mice. Cell Rep 2023; 42:112394. [PMID: 37058408 PMCID: PMC10513404 DOI: 10.1016/j.celrep.2023.112394] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 02/25/2023] [Accepted: 03/30/2023] [Indexed: 04/15/2023] Open
Abstract
The ATP-sensitive K+ (KATP) channel is a key regulator of hormone secretion from pancreatic islet endocrine cells. Using direct measurements of KATP channel activity in pancreatic β cells and the lesser-studied α cells, from both humans and mice, we provide evidence that a glycolytic metabolon locally controls KATP channels on the plasma membrane. The two ATP-consuming enzymes of upper glycolysis, glucokinase and phosphofructokinase, generate ADP that activates KATP. Substrate channeling of fructose 1,6-bisphosphate through the enzymes of lower glycolysis fuels pyruvate kinase, which directly consumes the ADP made by phosphofructokinase to raise ATP/ADP and close the channel. We further show the presence of a plasma membrane-associated NAD+/NADH cycle whereby lactate dehydrogenase is functionally coupled to glyceraldehyde-3-phosphate dehydrogenase. These studies provide direct electrophysiological evidence of a KATP-controlling glycolytic signaling complex and demonstrate its relevance to islet glucose sensing and excitability.
Collapse
Affiliation(s)
- Thuong Ho
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Evgeniy Potapenko
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Dawn B Davis
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison, Madison, WI 53705, USA; William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA
| | - Matthew J Merrins
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison, Madison, WI 53705, USA; William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA.
| |
Collapse
|
9
|
Liu J, Li X, Xu N, Han H, Li X. Role of ion channels in the mechanism of proteinuria (Review). Exp Ther Med 2022; 25:27. [PMID: 36561615 PMCID: PMC9748662 DOI: 10.3892/etm.2022.11726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 10/10/2022] [Indexed: 11/25/2022] Open
Abstract
Proteinuria is a common clinical manifestation of kidney diseases, such as glomerulonephritis, nephrotic syndrome, immunoglobulin A nephropathy and diabetic nephropathy. Therefore, proteinuria is considered to be a risk factor for renal dysfunction. Furthermore, proteinuria is also significantly associated with the progression of kidney diseases and increased mortality. Its occurrence is closely associated with damage to the structure of the glomerular filtration membrane. An impaired glomerular filtration membrane can affect the selective filtration function of the kidneys; therefore, several macromolecular substances, such as proteins, may pass through the filtration membrane and promote the manifestation of proteinuria. It has been reported that ion channels play a significant role in the mechanisms underlying proteinuria. Ion channel mutations or other dysfunctions have been implicated in several diseases, therefore ion channels could be used as major therapeutic targets. The mechanisms underlying the action of ion channels and ion transporters in proteinuria have been overlooked in the literature, despite their importance in identifying novel targets for treating proteinuria and delaying the progression of kidney diseases. The current review article focused on the four key ion channel groups, namely Na+, Ca2+, Cl- and K+ ion channels and the associated ion transporters.
Collapse
Affiliation(s)
- Jie Liu
- Department of Nephrology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261000, P.R. China
| | - Xuewei Li
- Department of Rheumatology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261000, P.R. China
| | - Ning Xu
- Department of Nephrology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261000, P.R. China
| | - Huirong Han
- Department of Anesthesiology, Weifang Medical University, Weifang, Shandong 261000, P.R. China
| | - Xiangling Li
- Department of Nephrology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261000, P.R. China,Correspondence to: Professor Xiangling Li, Department of Nephrology, Affiliated Hospital of Weifang Medical University, 2428 Yu He Road, Weifang, Shandong 261000, P.R. China
| |
Collapse
|
10
|
Brüning D, Morsi M, Früh E, Scherneck S, Rustenbeck I. Metabolic Regulation of Hormone Secretion in Beta-Cells and Alpha-Cells of Female Mice: Fundamental Differences. Endocrinology 2022; 163:6656576. [PMID: 35931024 DOI: 10.1210/endocr/bqac125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Indexed: 11/19/2022]
Abstract
It is unclear whether the secretion of glucagon is regulated by an alpha-cell-intrinsic mechanism and whether signal recognition by the mitochondrial metabolism plays a role in it. To measure changes of the cytosolic ATP/ADP ratio, single alpha-cells and beta-cells from NMRI mice were adenovirally transduced with the fluorescent indicator PercevalHR. The cytosolic Ca2+ concentration ([Ca2+]i) was measured by use of Fura2 and the mitochondrial membrane potential by use of TMRE. Perifused islets were used to measure the secretion of glucagon and insulin. At 5 mM glucose, the PercevalHR ratio in beta-cells was significantly lower than in alpha-cells. Lowering glucose to 1 mM decreased the ratio to 69% within 10 minutes in beta-cells, but only to 94% in alpha-cells. In this situation, 30 mM glucose, 10 mM alpha-ketoisocaproic acid, and 10 mM glutamine plus 10 mM BCH (a nonmetabolizable leucine analogue) markedly increased the PercevalHR ratio in beta-cells. In alpha-cells, only glucose was slightly effective. However, none of the nutrients increased the mitochondrial membrane potential in alpha-cells, whereas all did so in beta-cells. The kinetics of the PercevalHR increase were reflected by the kinetics of [Ca2+]i. increase in the beta-cells and insulin secretion. Glucagon secretion was markedly increased by washing out the nutrients with 1 mM glucose, but not by reducing glucose from 5 mM to 1 mM. This pattern was still recognizable when the insulin secretion was strongly inhibited by clonidine. It is concluded that mitochondrial energy metabolism is a signal generator in pancreatic beta-cells, but not in alpha-cells.
Collapse
Affiliation(s)
- Dennis Brüning
- Institute of Pharmacology, Toxicology and Clinical Pharmacy, Technische Universität Braunschweig, D 38106 Braunschweig, Germany
| | - Mai Morsi
- Institute of Pharmacology, Toxicology and Clinical Pharmacy, Technische Universität Braunschweig, D 38106 Braunschweig, Germany
- Department of Pharmacology, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Eike Früh
- Institute of Pharmacology, Toxicology and Clinical Pharmacy, Technische Universität Braunschweig, D 38106 Braunschweig, Germany
| | - Stephan Scherneck
- Institute of Pharmacology, Toxicology and Clinical Pharmacy, Technische Universität Braunschweig, D 38106 Braunschweig, Germany
| | - Ingo Rustenbeck
- Institute of Pharmacology, Toxicology and Clinical Pharmacy, Technische Universität Braunschweig, D 38106 Braunschweig, Germany
| |
Collapse
|
11
|
Lipotoxicity in a Vicious Cycle of Pancreatic Beta Cell Exhaustion. Biomedicines 2022; 10:biomedicines10071627. [PMID: 35884932 PMCID: PMC9313354 DOI: 10.3390/biomedicines10071627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/05/2022] [Accepted: 07/05/2022] [Indexed: 02/07/2023] Open
Abstract
Hyperlipidemia is a common metabolic disorder in modern society and may precede hyperglycemia and diabetes by several years. Exactly how disorders of lipid and glucose metabolism are related is still a mystery in many respects. We analyze the effects of hyperlipidemia, particularly free fatty acids, on pancreatic beta cells and insulin secretion. We have developed a computational model to quantitatively estimate the effects of specific metabolic pathways on insulin secretion and to assess the effects of short- and long-term exposure of beta cells to elevated concentrations of free fatty acids. We show that the major trigger for insulin secretion is the anaplerotic pathway via the phosphoenolpyruvate cycle, which is affected by free fatty acids via uncoupling protein 2 and proton leak and is particularly destructive in long-term chronic exposure to free fatty acids, leading to increased insulin secretion at low blood glucose and inadequate insulin secretion at high blood glucose. This results in beta cells remaining highly active in the “resting” state at low glucose and being unable to respond to anaplerotic signals at high pyruvate levels, as is the case with high blood glucose. The observed fatty-acid-induced disruption of anaplerotic pathways makes sense in the context of the physiological role of insulin as one of the major anabolic hormones.
Collapse
|
12
|
Andersen DB, Holst JJ. Peptides in the regulation of glucagon secretion. Peptides 2022; 148:170683. [PMID: 34748791 DOI: 10.1016/j.peptides.2021.170683] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/21/2021] [Accepted: 11/02/2021] [Indexed: 02/06/2023]
Abstract
Glucose homeostasis is maintained by the glucoregulatory hormones, glucagon, insulin and somatostatin, secreted from the islets of Langerhans. Glucagon is the body's most important anti-hypoglycemic hormone, mobilizing glucose from glycogen stores in the liver in response to fasting, thus maintaining plasma glucose levels within healthy limits. Glucagon secretion is regulated by both circulating nutrients, hormones and neuronal inputs. Hormones that may regulate glucagon secretion include locally produced insulin and somatostatin, but also urocortin-3, amylin and pancreatic polypeptide, and from outside the pancreas glucagon-like peptide-1 and 2, peptide tyrosine tyrosine and oxyntomodulin, glucose-dependent insulinotropic polypeptide, neurotensin and ghrelin, as well as the hypothalamic hormones arginine-vasopressin and oxytocin, and calcitonin from the thyroid. Each of these hormones have distinct effects, ranging from regulating blood glucose, to regulating appetite, stomach emptying rate and intestinal motility, which makes them interesting targets for treating metabolic diseases. Awareness regarding the potential effects of the hormones on glucagon secretion is important since secretory abnormalities could manifest as hyperglycemia or even lethal hypoglycemia. Here, we review the effects of each individual hormone on glucagon secretion, their interplay, and how treatments aimed at modulating the plasma levels of these hormones may also influence glucagon secretion and glycemic control.
Collapse
Affiliation(s)
- Daniel B Andersen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Panum Institute, Blegdamsvej 3B, 2200, Copenhagen N, Denmark; Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Jens J Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Panum Institute, Blegdamsvej 3B, 2200, Copenhagen N, Denmark; Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.
| |
Collapse
|
13
|
Hughson BN. The Glucagon-Like Adipokinetic Hormone in Drosophila melanogaster - Biosynthesis and Secretion. Front Physiol 2021; 12:710652. [PMID: 35002748 PMCID: PMC8733639 DOI: 10.3389/fphys.2021.710652] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 09/16/2021] [Indexed: 11/13/2022] Open
Abstract
Metabolic homeostasis requires the precise regulation of circulating sugar titers. In mammals, homeostatic control of circulating sugar titers requires the coordinated secretion and systemic activities of glucagon and insulin. Metabolic homeostasis is similarly regulated in Drosophila melanogaster through the glucagon-like adipokinetic hormone (AKH) and the Drosophila insulin-like peptides (DILPs). In flies and mammals, glucagon and AKH are biosynthesized in and secreted from specialized endocrine cells. KATP channels borne on these cells respond to fluctuations in circulating glucose titers and thereby regulate glucagon secretion. The influence of glucagon in the pathogenesis of type 2 diabetes mellitus is now recognized, and a crucial mechanism that regulates glucagon secretion was reported nearly a decade ago. Ongoing efforts to develop D. melanogaster models for metabolic syndrome must build upon this seminal work. These efforts make a critical review of AKH physiology timely. This review focuses on AKH biosynthesis and the regulation of glucose-responsive AKH secretion through changes in CC cell electrical activity. Future directions for AKH research in flies are discussed, including the development of models for hyperglucagonemia and epigenetic inheritance of acquired metabolic traits. Many avenues of AKH physiology remain to be explored and thus present great potential for improving the utility of D. melanogaster in metabolic research.
Collapse
Affiliation(s)
- Bryon N. Hughson
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
14
|
Kim A, Knudsen JG, Madara JC, Benrick A, Hill TG, Abdul Kadir L, Kellard JA, Mellander L, Miranda C, Lin H, James T, Suba K, Spigelman AF, Wu Y, MacDonald PE, Wernstedt Asterholm I, Magnussen T, Christensen M, Vilsbøll T, Salem V, Knop FK, Rorsman P, Lowell BB, Briant LJB. Arginine-vasopressin mediates counter-regulatory glucagon release and is diminished in type 1 diabetes. eLife 2021; 10:e72919. [PMID: 34787082 PMCID: PMC8654374 DOI: 10.7554/elife.72919] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 11/16/2021] [Indexed: 01/27/2023] Open
Abstract
Insulin-induced hypoglycemia is a major treatment barrier in type-1 diabetes (T1D). Accordingly, it is important that we understand the mechanisms regulating the circulating levels of glucagon. Varying glucose over the range of concentrations that occur physiologically between the fed and fuel-deprived states (8 to 4 mM) has no significant effect on glucagon secretion in the perfused mouse pancreas or in isolated mouse islets (in vitro), and yet associates with dramatic increases in plasma glucagon. The identity of the systemic factor(s) that elevates circulating glucagon remains unknown. Here, we show that arginine-vasopressin (AVP), secreted from the posterior pituitary, stimulates glucagon secretion. Alpha-cells express high levels of the vasopressin 1b receptor (V1bR) gene (Avpr1b). Activation of AVP neurons in vivo increased circulating copeptin (the C-terminal segment of the AVP precursor peptide) and increased blood glucose; effects blocked by pharmacological antagonism of either the glucagon receptor or V1bR. AVP also mediates the stimulatory effects of hypoglycemia produced by exogenous insulin and 2-deoxy-D-glucose on glucagon secretion. We show that the A1/C1 neurons of the medulla oblongata drive AVP neuron activation in response to insulin-induced hypoglycemia. AVP injection increased cytoplasmic Ca2+ in alpha-cells (implanted into the anterior chamber of the eye) and glucagon release. Hypoglycemia also increases circulating levels of AVP/copeptin in humans and this hormone stimulates glucagon secretion from human islets. In patients with T1D, hypoglycemia failed to increase both copeptin and glucagon. These findings suggest that AVP is a physiological systemic regulator of glucagon secretion and that this mechanism becomes impaired in T1D.
Collapse
Affiliation(s)
- Angela Kim
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical CenterBostonUnited States
- Program in Neuroscience, Harvard Medical SchoolBostonUnited States
| | - Jakob G Knudsen
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of OxfordOxfordUnited Kingdom
- Section for Cell Biology and Physiology, Department of Biology, University of CopenhagenCopenhagenDenmark
| | - Joseph C Madara
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical CenterBostonUnited States
| | - Anna Benrick
- Metabolic Research Unit, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of GothenburgGöteborgSweden
| | - Thomas G Hill
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of OxfordOxfordUnited Kingdom
| | - Lina Abdul Kadir
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of OxfordOxfordUnited Kingdom
| | - Joely A Kellard
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of OxfordOxfordUnited Kingdom
| | - Lisa Mellander
- Metabolic Research Unit, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of GothenburgGöteborgSweden
| | - Caroline Miranda
- Metabolic Research Unit, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of GothenburgGöteborgSweden
| | - Haopeng Lin
- Alberta Diabetes Institute, Li Ka Shing Centre for Health Research InnovationEdmontonCanada
| | - Timothy James
- Department of Clinical Biochemistry, John Radcliffe, Oxford NHS TrustOxfordUnited Kingdom
| | - Kinga Suba
- Section of Cell Biology and Functional Genomics, Department of Metabolism, Digestion and Reproduction, Imperial College LondonLondonUnited Kingdom
| | - Aliya F Spigelman
- Alberta Diabetes Institute, Li Ka Shing Centre for Health Research InnovationEdmontonCanada
| | - Yanling Wu
- Metabolic Research Unit, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of GothenburgGöteborgSweden
| | - Patrick E MacDonald
- Alberta Diabetes Institute, Li Ka Shing Centre for Health Research InnovationEdmontonCanada
| | - Ingrid Wernstedt Asterholm
- Metabolic Research Unit, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of GothenburgGöteborgSweden
| | - Tore Magnussen
- Center for Clinical Metabolic Research, Gentofte HospitalHellerupDenmark
| | - Mikkel Christensen
- Center for Clinical Metabolic Research, Gentofte HospitalHellerupDenmark
- Department of Clinical Pharmacology, Bispebjerg Hospital, University of CopenhagenCopenhagenDenmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of CopenhagenCopenhagenDenmark
| | - Tina Vilsbøll
- Center for Clinical Metabolic Research, Gentofte HospitalHellerupDenmark
- Department of Clinical Pharmacology, Bispebjerg Hospital, University of CopenhagenCopenhagenDenmark
- Steno Diabetes Center CopenhagenCopenhagenDenmark
| | - Victoria Salem
- Section of Cell Biology and Functional Genomics, Department of Metabolism, Digestion and Reproduction, Imperial College LondonLondonUnited Kingdom
| | - Filip K Knop
- Center for Clinical Metabolic Research, Gentofte HospitalHellerupDenmark
- Department of Clinical Pharmacology, Bispebjerg Hospital, University of CopenhagenCopenhagenDenmark
- Steno Diabetes Center CopenhagenCopenhagenDenmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of CopenhagenCopenhagenDenmark
| | - Patrik Rorsman
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of OxfordOxfordUnited Kingdom
- Metabolic Research Unit, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of GothenburgGöteborgSweden
| | - Bradford B Lowell
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical CenterBostonUnited States
- Program in Neuroscience, Harvard Medical SchoolBostonUnited States
| | - Linford JB Briant
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of OxfordOxfordUnited Kingdom
- Department of Computer Science, University of OxfordOxfordUnited Kingdom
| |
Collapse
|
15
|
Wang Z, Gurlo T, Matveyenko AV, Elashoff D, Wang P, Rosenberger M, Junge JA, Stevens RC, White KL, Fraser SE, Butler PC. Live-cell imaging of glucose-induced metabolic coupling of β and α cell metabolism in health and type 2 diabetes. Commun Biol 2021; 4:594. [PMID: 34012065 PMCID: PMC8134470 DOI: 10.1038/s42003-021-02113-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 04/15/2021] [Indexed: 12/18/2022] Open
Abstract
AbstractType 2 diabetes is characterized by β and α cell dysfunction. We used phasor-FLIM (Fluorescence Lifetime Imaging Microscopy) to monitor oxidative phosphorylation and glycolysis in living islet cells before and after glucose stimulation. In healthy cells, glucose enhanced oxidative phosphorylation in β cells and suppressed oxidative phosphorylation in α cells. In Type 2 diabetes, glucose increased glycolysis in β cells, and only partially suppressed oxidative phosphorylation in α cells. FLIM uncovers key perturbations in glucose induced metabolism in living islet cells and provides a sensitive tool for drug discovery in diabetes.
Collapse
|
16
|
Role of cAMP in Double Switch of Glucagon Secretion. Cells 2021; 10:cells10040896. [PMID: 33919776 PMCID: PMC8070687 DOI: 10.3390/cells10040896] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/12/2021] [Accepted: 04/12/2021] [Indexed: 01/03/2023] Open
Abstract
Glucose metabolism plays a crucial role in modulating glucagon secretion in pancreatic alpha cells. However, the downstream effects of glucose metabolism and the activated signaling pathways influencing glucagon granule exocytosis are still obscure. We developed a computational alpha cell model, implementing metabolic pathways of glucose and free fatty acids (FFA) catabolism and an intrinsically activated cAMP signaling pathway. According to the model predictions, increased catabolic activity is able to suppress the cAMP signaling pathway, reducing exocytosis in a Ca2+-dependent and Ca2+ independent manner. The effect is synergistic to the pathway involving ATP-dependent closure of KATP channels and consequent reduction of Ca2+. We analyze the contribution of each pathway to glucagon secretion and show that both play decisive roles, providing a kind of "secure double switch". The cAMP-driven signaling switch plays a dominant role, while the ATP-driven metabolic switch is less favored. The ratio is approximately 60:40, according to the most recent experimental evidence.
Collapse
|
17
|
Garcia SM, Hirschberg PR, Sarkar P, Siegel DM, Teegala SB, Vail GM, Routh VH. Insulin actions on hypothalamic glucose-sensing neurones. J Neuroendocrinol 2021; 33:e12937. [PMID: 33507001 PMCID: PMC10561189 DOI: 10.1111/jne.12937] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/22/2020] [Accepted: 12/29/2020] [Indexed: 12/13/2022]
Abstract
Subsequent to the discovery of insulin 100 years ago, great strides have been made in understanding its function, especially in the brain. It is now clear that insulin is a critical regulator of the neuronal circuitry controlling energy balance and glucose homeostasis. This review focuses on the effects of insulin and diabetes on the activity and glucose sensitivity of hypothalamic glucose-sensing neurones. We highlight the role of electrophysiological data in understanding how insulin regulates glucose-sensing neurones. A brief introduction describing the benefits and limitations of the major electrophysiological techniques used to investigate glucose-sensing neurones is provided. The mechanisms by which hypothalamic neurones sense glucose are discussed with an emphasis on those glucose-sensing neurones already shown to be modulated by insulin. Next, the literature pertaining to how insulin alters the activity and glucose sensitivity of these hypothalamic glucose-sensing neurones is described. In addition, the effects of impaired insulin signalling during diabetes and the ramifications of insulin-induced hypoglycaemia on hypothalamic glucose-sensing neurones are covered. To the extent that it is known, we present hypotheses concerning the mechanisms underlying the effects of these insulin-related pathologies. To conclude, electrophysiological data from the hippocampus are evaluated aiming to provide clues regarding how insulin might influence neuronal plasticity in glucose-sensing neurones. Although much has been accomplished subsequent to the discovery of insulin, the work described in our review suggests that the regulation of central glucose sensing by this hormone is both important and understudied.
Collapse
Affiliation(s)
- Stephanie M Garcia
- Department of Pharmacology, Physiology and Neuroscience, Rutgers, New Jersey Medical School, The State University of New Jersey, Newark, NJ, USA
| | - Pamela R Hirschberg
- Department of Pharmacology, Physiology and Neuroscience, Rutgers, New Jersey Medical School, The State University of New Jersey, Newark, NJ, USA
| | - Pallabi Sarkar
- Department of Pharmacology, Physiology and Neuroscience, Rutgers, New Jersey Medical School, The State University of New Jersey, Newark, NJ, USA
| | - Dashiel M Siegel
- Department of Pharmacology, Physiology and Neuroscience, Rutgers, New Jersey Medical School, The State University of New Jersey, Newark, NJ, USA
| | - Suraj B Teegala
- Department of Pharmacology, Physiology and Neuroscience, Rutgers, New Jersey Medical School, The State University of New Jersey, Newark, NJ, USA
| | - Gwyndolin M Vail
- Department of Pharmacology, Physiology and Neuroscience, Rutgers, New Jersey Medical School, The State University of New Jersey, Newark, NJ, USA
| | - Vanessa H Routh
- Department of Pharmacology, Physiology and Neuroscience, Rutgers, New Jersey Medical School, The State University of New Jersey, Newark, NJ, USA
| |
Collapse
|
18
|
Kaushal R, Kaur M. Bio-medical potential of chalcone derivatives and their metal complexes as antidiabetic agents: a review. J COORD CHEM 2021. [DOI: 10.1080/00958972.2021.1875450] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Raj Kaushal
- Department of Chemistry, National Institute of Technology, Hamirpur, Himachal Pradesh, India
| | - Mandeep Kaur
- Department of Chemistry, National Institute of Technology, Hamirpur, Himachal Pradesh, India
| |
Collapse
|
19
|
Mitochondrial gene expression in single cells shape pancreatic beta cells' sub-populations and explain variation in insulin pathway. Sci Rep 2021; 11:466. [PMID: 33432158 PMCID: PMC7801437 DOI: 10.1038/s41598-020-80334-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 12/21/2020] [Indexed: 12/20/2022] Open
Abstract
Mitochondrial gene expression is pivotal to cell metabolism. Nevertheless, it is unknown whether it diverges within a given cell type. Here, we analysed single-cell RNA-seq experiments from human pancreatic alpha (N = 3471) and beta cells (N = 1989), as well as mouse beta cells (N = 1094). Cluster analysis revealed two distinct human beta cells populations, which diverged by mitochondrial (mtDNA) and nuclear DNA (nDNA)-encoded oxidative phosphorylation (OXPHOS) gene expression in healthy and diabetic individuals, and in newborn but not in adult mice. Insulin gene expression was elevated in beta cells with higher mtDNA gene expression in humans and in young mice. Such human beta cell populations also diverged in mitochondrial RNA mutational repertoire, and in their selective signature, thus implying the existence of two previously overlooked distinct and conserved beta cell populations. While applying our approach to human alpha cells, two sub-populations of cells were identified which diverged in mtDNA gene expression, yet these cellular populations did not consistently diverge in nDNA OXPHOS genes expression, nor did they correlate with the expression of glucagon, the hallmark of alpha cells. Thus, pancreatic beta cells within an individual are divided into distinct groups with unique metabolic-mitochondrial signature.
Collapse
|
20
|
Früh E, Elgert C, Eggert F, Scherneck S, Rustenbeck I. Glucagonotropic and Glucagonostatic Effects of KATP Channel Closure and Potassium Depolarization. Endocrinology 2021; 162:5892293. [PMID: 32790843 DOI: 10.1210/endocr/bqaa136] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 08/05/2020] [Indexed: 02/08/2023]
Abstract
The role of depolarization in the inverse glucose-dependence of glucagon secretion was investigated by comparing the effects of KATP channel block and of high potassium. The secretion of glucagon and insulin by perifused mouse islets was simultaneously measured. Lowering glucose raised glucagon secretion before it decreased insulin secretion, suggesting an alpha cell-intrinsic signal recognition. Raising glucose affected glucagon and insulin secretion at the same time. However, depolarization by tolbutamide, gliclazide, or 15 mM KCl increased insulin secretion before the glucagon secretion receded. In contrast to the robust depolarizing effect of arginine and KCl (15 and 40 mM) on single alpha cells, tolbutamide was of variable efficacy. Only when applied before other depolarizing agents had tolbutamide a consistent depolarizing effect and regularly increased the cytosolic Ca2+ concentration. When tested on inside-out patches tolbutamide was as effective on alpha cells as on beta cells. In the presence of 1 µM clonidine, to separate insulinotropic from glucagonotropic effects, both 500 µM tolbutamide and 30 µM gliclazide increased glucagon secretion significantly, but transiently. The additional presence of 15 or 40 mM KCl in contrast led to a marked and lasting increase of the glucagon secretion. The glucagon secretion by SUR1 knockout islets was not increased by tolbutamide, whereas 40 mM KCl was of unchanged efficiency. In conclusion a strong and sustained depolarization is compatible with a marked and lasting glucagon secretion. KATP channel closure in alpha cells is less readily achieved than in beta cells, which may explain the moderate and transient glucagonotropic effect.
Collapse
Affiliation(s)
- Eike Früh
- Institute of Pharmacology, Toxicology and Clinical Pharmacy, Technische Universität Braunschweig, Braunschweig, Germany
| | - Christin Elgert
- Institute of Pharmacology, Toxicology and Clinical Pharmacy, Technische Universität Braunschweig, Braunschweig, Germany
| | - Frank Eggert
- Institute of Psychology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Stephan Scherneck
- Institute of Pharmacology, Toxicology and Clinical Pharmacy, Technische Universität Braunschweig, Braunschweig, Germany
| | - Ingo Rustenbeck
- Institute of Pharmacology, Toxicology and Clinical Pharmacy, Technische Universität Braunschweig, Braunschweig, Germany
| |
Collapse
|
21
|
González-Vélez V, Piron A, Dupont G. Calcium Oscillations in Pancreatic α-cells Rely on Noise and ATP-Driven Changes in Membrane Electrical Activity. Front Physiol 2020; 11:602844. [PMID: 33281631 PMCID: PMC7705205 DOI: 10.3389/fphys.2020.602844] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 10/28/2020] [Indexed: 11/13/2022] Open
Abstract
In pancreatic α-cells, intracellular Ca2+ ([Ca2+]i) acts as a trigger for secretion of glucagon, a hormone that plays a key role in blood glucose homeostasis. Intracellular Ca2+ dynamics in these cells are governed by the electrical activity of voltage-gated ion channels, among which ATP-sensitive K+ (KATP) channels play a crucial role. In the majority of α-cells, the global Ca2+ response to lowering external glucose occurs in the form of oscillations that are much slower than electrical activity. These Ca2+ oscillations are highly variable as far as inter-spike intervals, shapes and amplitudes are concerned. Such observations suggest that Ca2+ dynamics in α-cells are much influenced by noise. Actually, each Ca2+ increase corresponds to multiple cycles of opening/closing of voltage gated Ca2+ channels that abruptly become silent, before the occurrence of another burst of activity a few tens of seconds later. The mechanism responsible for this intermittent activity is currently unknown. In this work, we used computational modeling to investigate the mechanism of cytosolic Ca2+ oscillations in α-cells. Given the limited population of KATP channels in this cell type, we hypothesized that the stochastic activity of these channels could play a key role in the sporadic character of the action potentials. To test this assumption, we extended a previously proposed model of the α-cells electrical activity (Diderichsen and Göpel, 2006) to take Ca2+ dynamics into account. Including molecular noise on the basis of a Langevin type description as well as realistic dynamics of opening and closing of KATP channels, we found that stochasticity at the level of the activity of this channel is on its own not able to produce Ca2+ oscillations with a time scale of a few tens of seconds. However, when taking into account the intimate relation between Ca2+ and ATP changes together with the intrinsic noise at the level of the KATP channels, simulations displayed Ca2+ oscillations that are compatible with experimental observations. We analyzed the detailed mechanism and used computational simulations to identify the factors that can affect Ca2+ oscillations in α-cells.
Collapse
Affiliation(s)
- Virginia González-Vélez
- Department Basic Sciences, Universidad Autónoma Metropolitana-Azcapotzalco, CDMX, Mèxico, Mexico
| | - Anthony Piron
- ULB Center for Diabetes Research, Faculté de Médecine, Université libre de Bruxelles (ULB), Brussels, Belgium.,Interuniversity Institute of Bioinformatics (IB2), Brussels, Belgium
| | - Geneviève Dupont
- Interuniversity Institute of Bioinformatics (IB2), Brussels, Belgium.,Unit of Theoretical Chronobiology, Faculté des Sciences, Université libre de Bruxelles (ULB), Brussels, Belgium
| |
Collapse
|
22
|
Perry RJ, Saunders CJ, Nelson JM, Rizzo MJ, Braco JT, Johnson EC. Regulation of Metabolism by an Ensemble of Different Ion Channel Types: Excitation-Secretion Coupling Mechanisms of Adipokinetic Hormone Producing Cells in Drosophila. Front Physiol 2020; 11:580618. [PMID: 33192586 PMCID: PMC7658370 DOI: 10.3389/fphys.2020.580618] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 10/07/2020] [Indexed: 12/11/2022] Open
Abstract
Adipokinetic Hormone (AKH) is the primary insect hormone that mobilizes stored energy and is functional equivalent to mammalian glucagon. While most studies have focused on exploring the functional roles of AKH, relatively little is known about how AKH secretion is regulated. We assessed the AKH cell transcriptome and mined the data set for specific insight into the identities of different ion channels expressed in this cell lineage. We found reliable expression of multiple ion channel genes with multiple members for each ionic species. Specifically, we found significant signals for 39 of the either known or suspected ion channel genes within the Drosophila genome. We next performed a targeted RNAi screen aimed to identify the functional contribution of these different ion channels that may participate in excitation-secretion coupling in AKH producing cells (APCs). We assessed starvation survival, because changes in AKH signaling have previously been shown to impact starvation sensitivity. Genetic knockdown of three genes (Ca-Beta, Sur, and sei), in AKH producing cells caused highly significant changes (P < 0.001) in both male and female lifespan, and knockdown of six other genes (Shaw, cac, Ih, NaCP60E, stj, and TASK6) caused significant changes (P < 0.05) in only female lifespan. Specifically, the genetic knockdown of Ca-Beta and Sur led to increases in starvation lifespan, whereas the knockdown of sei decreased starvation survivorship. Focusing on these three strongest candidates from the behavioral screen, we assessed other AKH-dependent phenotypes. The AKH hormone is required for starvation-induced hyperactivity, and we found that these three ion channel gene knockdowns changed activity profiles and further suggest a modulatory role of these channels in AKH release. We eliminated the possibility that these genetic elements caused AKH cell lethality, and using independent methods, we verified expression of these genes in AKH cells. Collectively, these results suggest a model of AKH-cell excitability and establish an experimental framework for evaluating intrinsic mechanisms of AKH release.
Collapse
Affiliation(s)
- Rebecca J Perry
- Department of Biology, Wake Forest University, Winston-Salem, NC, United States
| | - Cecil J Saunders
- Department of Biology, Wake Forest University, Winston-Salem, NC, United States
| | - Jonathan M Nelson
- Department of Biology, Wake Forest University, Winston-Salem, NC, United States
| | - Michael J Rizzo
- Department of Biology, Wake Forest University, Winston-Salem, NC, United States
| | - Jason T Braco
- Department of Biology, Wake Forest University, Winston-Salem, NC, United States
| | - Erik C Johnson
- Department of Biology, Wake Forest University, Winston-Salem, NC, United States
| |
Collapse
|
23
|
Reduced somatostatin signalling leads to hypersecretion of glucagon in mice fed a high-fat diet. Mol Metab 2020; 40:101021. [PMID: 32446876 PMCID: PMC7322681 DOI: 10.1016/j.molmet.2020.101021] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/11/2020] [Accepted: 05/14/2020] [Indexed: 11/29/2022] Open
Abstract
Objectives Elevated plasma glucagon is an early symptom of diabetes, occurring in subjects with impaired glucose regulation. Here, we explored alpha-cell function in female mice fed a high-fat diet (HFD). Methods Female mice expressing the Ca2+ indicator GCaMP3 specifically in alpha-cells were fed a high-fat or control (CTL) diet. We then conducted in vivo phenotyping of these mice, as well as experiments on isolated (ex vivo) islets and in the in situ perfused pancreas. Results In HFD-fed mice, fed plasma glucagon levels were increased and glucagon secretion from isolated islets and in the perfused mouse pancreas was also elevated. In mice fed a CTL diet, increasing glucose reduced intracellular Ca2+ ([Ca2+]i) oscillation frequency and amplitude. This effect was also observed in HFD mice; however, both the frequency and amplitude of the [Ca2+]i oscillations were higher than those in CTL alpha-cells. Given that alpha-cells are under strong paracrine control from neighbouring somatostatin-secreting delta-cells, we hypothesised that this elevation of alpha-cell output was due to a lack of somatostatin (SST) secretion. Indeed, SST secretion in isolated islets from HFD-fed mice was reduced but exogenous SST also failed to suppress glucagon secretion and [Ca2+]i activity from HFD alpha-cells, in contrast to observations in CTL mice. Conclusions These findings suggest that reduced delta-cell function, combined with intrinsic changes in alpha-cells including sensitivity to somatostatin, accounts for the hyperglucagonaemia in mice fed a HFD. HFD feeding causes hyperglucagonaemia in vivo. Glucagon is inadequately suppressed by glucose in HFD-fed mice. Alpha-cell [Ca2+]i oscillations and glucagon output are elevated ex vivo in response to HFD feeding. SST secretion from HFD islets is reduced. Alpha-cells from HFD-fed mice become ‘resistant’ to SST.
Collapse
|
24
|
Abstract
Glucose-induced (physiological) insulin secretion from the islet β-cell involves interplay between cationic (i.e., changes in intracellular calcium) and metabolic (i.e., generation of hydrophobic and hydrophilic second messengers) events. A large body of evidence affirms support for novel regulation, by G proteins, of specific intracellular signaling events, including actin cytoskeletal remodeling, transport of insulin-containing granules to the plasma membrane for fusion, and secretion of insulin into the circulation. This article highlights the following aspects of GPCR-G protein biology of the islet. First, it overviews our current understanding of the identity of a wide variety of G protein regulators and their modulatory roles in GPCR-G protein-effector coupling, which is requisite for optimal β-cell function under physiological conditions. Second, it describes evidence in support of novel, noncanonical, GPCR-independent mechanisms of activation of G proteins in the islet. Third, it highlights the evidence indicating that abnormalities in G protein function lead to islet β-cell dysregulation and demise under the duress of metabolic stress and diabetes. Fourth, it summarizes observations of potential beneficial effects of GPCR agonists in preventing/halting metabolic defects in the islet β-cell under various pathological conditions (e.g., metabolic stress and inflammation). Lastly, it identifies knowledge gaps and potential avenues for future research in this evolving field of translational islet biology. Published 2020. Compr Physiol 10:453-490, 2020.
Collapse
Affiliation(s)
- Anjaneyulu Kowluru
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Center for Translational Research in Diabetes, Biomedical Research Service, John D. Dingell VA Medical Center, Wayne State University, Detroit, Michigan, USA
| |
Collapse
|
25
|
Grubelnik V, Zmazek J, Markovič R, Gosak M, Marhl M. Modelling of energy-driven switch for glucagon and insulin secretion. J Theor Biol 2020; 493:110213. [PMID: 32109481 DOI: 10.1016/j.jtbi.2020.110213] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 02/19/2020] [Accepted: 02/24/2020] [Indexed: 12/14/2022]
Abstract
We present a mathematical model of the energy-driven metabolic switch for glucagon and insulin secretion from pancreatic alpha and beta cells, respectively. The energy status related to hormone secretion is studied for various glucose concentrations. Additionally, the physiological response is studied with regards to the presence of other metabolites, particularly the free-fatty acids. At low glucose, the ATP production in alpha cells is high due to free-fatty acids oxidation in mitochondria, which enables glucagon secretion. When the glucose concentration is elevated above the threshold value, the glucagon secretion is switched off due to the contribution of glycolytic ATP production, representing an "anaerobic switch". On the other hand, during hypoglycemia, the ATP production in beta cells is low, reflecting a "waiting state" for glucose as the main metabolite. When glucose is elevated above the threshold value, the oxidative fate of glucose in mitochondria is the main source of energy required for effective insulin secretion, i.e. the "aerobic switch". Our results show the importance of well-regulated and fine-tuned energetic processes in pancreatic alpha and beta cells required for efficient hormone secretion and hence effective blood glucose regulation. These energetic processes have to be appropriately switched on and off based on the sensing of different metabolites by alpha and beta cells. Our computational results indicate that disturbances in cell energetics (e.g. mitochondrial dysfunction), and dysfunctional metabolite sensing and distribution throughout the cell might be related to pathologies such as metabolic syndrome and diabetes.
Collapse
Affiliation(s)
- Vladimir Grubelnik
- Faculty of Electrical Engineering and Computer Science, University of Maribor, Maribor SI-2000, Slovenia
| | - Jan Zmazek
- Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor SI-2000, Slovenia
| | - Rene Markovič
- Faculty of Electrical Engineering and Computer Science, University of Maribor, Maribor SI-2000, Slovenia; Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor SI-2000, Slovenia
| | - Marko Gosak
- Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor SI-2000, Slovenia; Faculty of Medicine, University of Maribor, Maribor SI-2000, Slovenia
| | - Marko Marhl
- Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor SI-2000, Slovenia; Faculty of Medicine, University of Maribor, Maribor SI-2000, Slovenia; Faculty of Education, University of Maribor, Maribor SI-2000, Slovenia.
| |
Collapse
|
26
|
Grubelnik V, Markovič R, Lipovšek S, Leitinger G, Gosak M, Dolenšek J, Valladolid-Acebes I, Berggren PO, Stožer A, Perc M, Marhl M. Modelling of dysregulated glucagon secretion in type 2 diabetes by considering mitochondrial alterations in pancreatic α-cells. ROYAL SOCIETY OPEN SCIENCE 2020; 7:191171. [PMID: 32218947 PMCID: PMC7029933 DOI: 10.1098/rsos.191171] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 12/16/2019] [Indexed: 05/15/2023]
Abstract
Type 2 diabetes mellitus (T2DM) has been associated with insulin resistance and the failure of β-cells to produce and secrete enough insulin as the disease progresses. However, clinical treatments based solely on insulin secretion and action have had limited success. The focus is therefore shifting towards α-cells, in particular to the dysregulated secretion of glucagon. Our qualitative electron-microscopy-based observations gave an indication that mitochondria in α-cells are altered in Western-diet-induced T2DM. In particular, α-cells extracted from mouse pancreatic tissue showed a lower density of mitochondria, a less expressed matrix and a lower number of cristae. These deformities in mitochondrial ultrastructure imply a decreased efficiency in mitochondrial ATP production, which prompted us to theoretically explore and clarify one of the most challenging problems associated with T2DM, namely the lack of glucagon secretion in hypoglycaemia and its oversecretion at high blood glucose concentrations. To this purpose, we constructed a novel computational model that links α-cell metabolism with their electrical activity and glucagon secretion. Our results show that defective mitochondrial metabolism in α-cells can account for dysregulated glucagon secretion in T2DM, thus improving our understanding of T2DM pathophysiology and indicating possibilities for new clinical treatments.
Collapse
Affiliation(s)
- Vladimir Grubelnik
- Faculty of Electrical Engineering and Computer Science, University of Maribor, 2000 Maribor, Slovenia
| | - Rene Markovič
- Faculty of Electrical Engineering and Computer Science, University of Maribor, 2000 Maribor, Slovenia
- Faculty of Natural Sciences and Mathematics, University of Maribor, 2000 Maribor, Slovenia
| | - Saška Lipovšek
- Faculty of Natural Sciences and Mathematics, University of Maribor, 2000 Maribor, Slovenia
- Faculty of Medicine, University of Maribor, 2000 Maribor, Slovenia
- Faculty of Chemistry and Chemical Engineering, University of Maribor, 2000 Maribor, Slovenia
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria
| | - Gerd Leitinger
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria
| | - Marko Gosak
- Faculty of Natural Sciences and Mathematics, University of Maribor, 2000 Maribor, Slovenia
- Faculty of Medicine, University of Maribor, 2000 Maribor, Slovenia
| | - Jurij Dolenšek
- Faculty of Natural Sciences and Mathematics, University of Maribor, 2000 Maribor, Slovenia
- Faculty of Medicine, University of Maribor, 2000 Maribor, Slovenia
| | - Ismael Valladolid-Acebes
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Karolinska University Hospital L1, 171 76 Stockholm, Sweden
| | - Per-Olof Berggren
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Karolinska University Hospital L1, 171 76 Stockholm, Sweden
| | - Andraž Stožer
- Faculty of Medicine, University of Maribor, 2000 Maribor, Slovenia
| | - Matjaž Perc
- Faculty of Natural Sciences and Mathematics, University of Maribor, 2000 Maribor, Slovenia
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
- Complexity Science Hub Vienna, 1080 Vienna, Austria
- Authors for correspondence: Matjač Perc e-mail:
| | - Marko Marhl
- Faculty of Natural Sciences and Mathematics, University of Maribor, 2000 Maribor, Slovenia
- Faculty of Medicine, University of Maribor, 2000 Maribor, Slovenia
- Faculty of Education, University of Maribor, 2000 Maribor, Slovenia
- Authors for correspondence: Marko Marhl e-mail:
| |
Collapse
|
27
|
Liu M, Ren L, Zhong X, Ding Y, Liu T, Liu Z, Yang X, Cui L, Yang L, Fan Y, Liu Y, Zhang Y. D2-Like Receptors Mediate Dopamine-Inhibited Insulin Secretion via Ion Channels in Rat Pancreatic β-Cells. Front Endocrinol (Lausanne) 2020; 11:152. [PMID: 32318020 PMCID: PMC7154177 DOI: 10.3389/fendo.2020.00152] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 03/04/2020] [Indexed: 11/25/2022] Open
Abstract
Dopamine (DA) has a vital role in the central nervous system and also modulates lipid and glucose metabolism. The present study aimed to investigate the effect of dopamine on insulin secretion and the underlying mechanisms in rat pancreatic β-cells. Data from the radioimmunoassay indicated that dopamine inhibited insulin secretion in a glucose- and dose-dependent manner. This inhibitory effect of dopamine was mediated mainly by D2-like receptors, but not D1-like receptors. Whole-cell patch-clamp recordings showed that dopamine decreased voltage-dependent Ca2+ channel currents, which could be reversed by inhibition of the D2-like receptor. Dopamine increased voltage-dependent potassium (KV) channel currents and shortened action potential duration, which was antagonized by inhibition of D2-like receptors. Further experiments showed that D2-like receptor activation by quinpirole increased KV channel currents. In addition, using calcium imaging techniques, we found that dopamine reduced intracellular Ca2+ concentration, which was also reversed by D2-like receptor antagonists. Similarly, quinpirole was found to decrease intracellular Ca2+ levels. Taken together, these findings demonstrate that dopamine inhibits insulin secretion mainly by acting on D2-like receptors, inhibiting Ca2+ channels, and activating Kv channels. This process results in shortened action potential duration and decreased intracellular Ca2+ levels in β-cells. This work offers new insights into a glucose-dependent mechanism whereby dopamine regulates insulin secretion.
Collapse
Affiliation(s)
- Mengmeng Liu
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China
| | - Lele Ren
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China
| | - Xiangqin Zhong
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China
| | - Yaqin Ding
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China
| | - Tao Liu
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, China
| | - Zhihong Liu
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, China
| | - Xiaohua Yang
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China
| | - Lijuan Cui
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, China
| | - Lijun Yang
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China
| | - Yanying Fan
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China
| | - Yunfeng Liu
- Department of Endocrinology, The First Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan, China
- *Correspondence: Yunfeng Liu
| | - Yi Zhang
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, China
- Yi Zhang
| |
Collapse
|
28
|
Grubelnik V, Markovič R, Lipovšek S, Leitinger G, Gosak M, Dolenšek J, Valladolid-Acebes I, Berggren PO, Stožer A, Perc M, Marhl M. Modelling of dysregulated glucagon secretion in type 2 diabetes by considering mitochondrial alterations in pancreatic α-cells. ROYAL SOCIETY OPEN SCIENCE 2020. [PMID: 32218947 DOI: 10.5061/dryad.9n2k1vk] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Type 2 diabetes mellitus (T2DM) has been associated with insulin resistance and the failure of β-cells to produce and secrete enough insulin as the disease progresses. However, clinical treatments based solely on insulin secretion and action have had limited success. The focus is therefore shifting towards α-cells, in particular to the dysregulated secretion of glucagon. Our qualitative electron-microscopy-based observations gave an indication that mitochondria in α-cells are altered in Western-diet-induced T2DM. In particular, α-cells extracted from mouse pancreatic tissue showed a lower density of mitochondria, a less expressed matrix and a lower number of cristae. These deformities in mitochondrial ultrastructure imply a decreased efficiency in mitochondrial ATP production, which prompted us to theoretically explore and clarify one of the most challenging problems associated with T2DM, namely the lack of glucagon secretion in hypoglycaemia and its oversecretion at high blood glucose concentrations. To this purpose, we constructed a novel computational model that links α-cell metabolism with their electrical activity and glucagon secretion. Our results show that defective mitochondrial metabolism in α-cells can account for dysregulated glucagon secretion in T2DM, thus improving our understanding of T2DM pathophysiology and indicating possibilities for new clinical treatments.
Collapse
Affiliation(s)
- Vladimir Grubelnik
- Faculty of Electrical Engineering and Computer Science, University of Maribor, 2000 Maribor, Slovenia
| | - Rene Markovič
- Faculty of Electrical Engineering and Computer Science, University of Maribor, 2000 Maribor, Slovenia
- Faculty of Natural Sciences and Mathematics, University of Maribor, 2000 Maribor, Slovenia
| | - Saška Lipovšek
- Faculty of Natural Sciences and Mathematics, University of Maribor, 2000 Maribor, Slovenia
- Faculty of Medicine, University of Maribor, 2000 Maribor, Slovenia
- Faculty of Chemistry and Chemical Engineering, University of Maribor, 2000 Maribor, Slovenia
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria
| | - Gerd Leitinger
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria
| | - Marko Gosak
- Faculty of Natural Sciences and Mathematics, University of Maribor, 2000 Maribor, Slovenia
- Faculty of Medicine, University of Maribor, 2000 Maribor, Slovenia
| | - Jurij Dolenšek
- Faculty of Natural Sciences and Mathematics, University of Maribor, 2000 Maribor, Slovenia
- Faculty of Medicine, University of Maribor, 2000 Maribor, Slovenia
| | - Ismael Valladolid-Acebes
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Karolinska University Hospital L1, 171 76 Stockholm, Sweden
| | - Per-Olof Berggren
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Karolinska University Hospital L1, 171 76 Stockholm, Sweden
| | - Andraž Stožer
- Faculty of Medicine, University of Maribor, 2000 Maribor, Slovenia
| | - Matjaž Perc
- Faculty of Natural Sciences and Mathematics, University of Maribor, 2000 Maribor, Slovenia
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
- Complexity Science Hub Vienna, 1080 Vienna, Austria
| | - Marko Marhl
- Faculty of Natural Sciences and Mathematics, University of Maribor, 2000 Maribor, Slovenia
- Faculty of Medicine, University of Maribor, 2000 Maribor, Slovenia
- Faculty of Education, University of Maribor, 2000 Maribor, Slovenia
| |
Collapse
|
29
|
Liu W, Kin T, Ho S, Dorrell C, Campbell SR, Luo P, Chen X. Abnormal regulation of glucagon secretion by human islet alpha cells in the absence of beta cells. EBioMedicine 2019; 50:306-316. [PMID: 31780397 PMCID: PMC6921359 DOI: 10.1016/j.ebiom.2019.11.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 11/11/2019] [Accepted: 11/11/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The understanding of the regulation of glucagon secretion by pancreatic islet α-cells remains elusive. We aimed to develop an in vitro model for investigating the function of human α-cells under direct influence of glucose and other potential regulators. METHODS Highly purified human α-cells from islets of deceased donors were re-aggregated in the presence or absence of β-cells in culture, evaluated for glucagon secretion under various treatment conditions, and compared to that of intact human islets and non-sorted islet cell aggregates. FINDINGS The pure human α-cell aggregates maintained proper glucagon secretion capability at low concentrations of glucose, but failed to respond to changes in ambient glucose concentration. Addition of purified β-cells, but not the secreted factors from β-cells at low or high concentrations of glucose, partly restored the responsiveness of α-cells to glucose with regulated glucagon secretion. The EphA stimulator ephrinA5-fc failed to mimic the inhibitory effect of β-cells on glucagon secretion. Glibenclamide inhibited glucagon secretion from islets and the α- and β-mixed cell-aggregates, but not from the α-cell-only aggregates, at 2.0 mM glucose. INTERPRETATION This study validated the use of isolated and then re-aggregated human islet cells for investigating α-cell function and paracrine regulation, and demonstrated the importance of cell-to-cell contact between α- and β-cells on glucagon secretion. Loss of proper β- and α-cell physical interaction in islets likely contributes to the dysregulated glucagon secretion in diabetic patients. Re-aggregated select combinations of human islet cells provide unique platforms for studying islet cell function and regulation.
Collapse
Affiliation(s)
- Wei Liu
- Department of Nephropathy, The Second Hospital of Jilin University, 218 Ziquiang Street, Nanguan District, Changchun, Jilin 130041, China; Columbia Center for Translational Immunology, Department of Medicine, Columbia University Medical Center, New York, NY, USA
| | - Tatsuya Kin
- Clinical Islet Laboratory, University of Alberta, Edmonton, Alberta, Canada
| | - Siuhong Ho
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Medical Center, New York, NY, USA
| | - Craig Dorrell
- Oregon Stem Cell Center, Oregon Health & Science University, Portland, OR, USA
| | - Sean R Campbell
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Medical Center, New York, NY, USA
| | - Ping Luo
- Department of Nephropathy, The Second Hospital of Jilin University, 218 Ziquiang Street, Nanguan District, Changchun, Jilin 130041, China.
| | - Xiaojuan Chen
- Columbia Center for Translational Immunology, Department of Surgery, Columbia University Medical Center, 650 West 168th Street, BB1701, New York, NY 10032, USA.
| |
Collapse
|
30
|
Du Q, Jovanović S, Tulić L, Tulić I, Jovanović A. Pregnancy-induced hypertension is associated with down-regulation of Kir6.1 in human myometrium. Pregnancy Hypertens 2019; 18:96-98. [PMID: 31585348 DOI: 10.1016/j.preghy.2019.09.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 08/12/2019] [Accepted: 09/20/2019] [Indexed: 11/16/2022]
Abstract
It is generally accepted that activity of K+ channels maintain resting membrane potential and uterine quiescence during pregnancy, which is, at least in part, mediated by down-regulation of ATP-sensitive K+ (KATP) channels. Pregnancy-induced hypertension (PIH) is associated with pre-term and late pre-term labour. Here, we have used real time RT-PCR to compare mRNA levels of KATP channel subunits in PIH parturient and control parturient. We have found that Kir6.1, a pore forming, myometrial KATP channel subunit is down-regulated in PIH patients. This could perfectly explain increased rate of pre-term labour in patients suffering from PIH.
Collapse
Affiliation(s)
- Qingyou Du
- Division of Molecular and Clinical Medicine, Medical School, University of Dundee, UK
| | - Sofija Jovanović
- Division of Molecular and Clinical Medicine, Medical School, University of Dundee, UK
| | - Lidija Tulić
- Department of In Vitro Fertilization, Clinic of Gynecology and Obstetrics, Clinical Center of Serbia, Belgrade, Serbia; Gynecology and Obstetrics, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Ivan Tulić
- Department of In Vitro Fertilization, Clinic of Gynecology and Obstetrics, Clinical Center of Serbia, Belgrade, Serbia; Gynecology and Obstetrics, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Aleksandar Jovanović
- University of Nicosia Medical School, Cyprus; Center for Neuroscience and Integrative Brain Research (CENIBRE), University of Nicosia Medical School, Cyprus.
| |
Collapse
|
31
|
Denwood G, Tarasov A, Salehi A, Vergari E, Ramracheya R, Takahashi H, Nikolaev VO, Seino S, Gribble F, Reimann F, Rorsman P, Zhang Q. Glucose stimulates somatostatin secretion in pancreatic δ-cells by cAMP-dependent intracellular Ca 2+ release. J Gen Physiol 2019; 151:1094-1115. [PMID: 31358556 PMCID: PMC6719402 DOI: 10.1085/jgp.201912351] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 05/11/2019] [Accepted: 07/09/2019] [Indexed: 12/12/2022] Open
Abstract
Somatostatin secretion from pancreatic islet δ-cells is stimulated by elevated glucose levels, but the underlying mechanisms have only partially been elucidated. Here we show that glucose-induced somatostatin secretion (GISS) involves both membrane potential-dependent and -independent pathways. Although glucose-induced electrical activity triggers somatostatin release, the sugar also stimulates GISS via a cAMP-dependent stimulation of CICR and exocytosis of somatostatin. The latter effect is more quantitatively important and in mouse islets depolarized by 70 mM extracellular K+ , increasing glucose from 1 mM to 20 mM produced an ∼3.5-fold stimulation of somatostatin secretion, an effect that was mimicked by the application of the adenylyl cyclase activator forskolin. Inhibiting cAMP-dependent pathways with PKI or ESI-05, which inhibit PKA and exchange protein directly activated by cAMP 2 (Epac2), respectively, reduced glucose/forskolin-induced somatostatin secretion. Ryanodine produced a similar effect that was not additive to that of the PKA or Epac2 inhibitors. Intracellular application of cAMP produced a concentration-dependent stimulation of somatostatin exocytosis and elevation of cytoplasmic Ca2+ ([Ca2+]i). Both effects were inhibited by ESI-05 and thapsigargin (an inhibitor of SERCA). By contrast, inhibition of PKA suppressed δ-cell exocytosis without affecting [Ca2+]i Simultaneous recordings of electrical activity and [Ca2+]i in δ-cells expressing the genetically encoded Ca2+ indicator GCaMP3 revealed that the majority of glucose-induced [Ca2+]i spikes did not correlate with δ-cell electrical activity but instead reflected Ca2+ release from the ER. These spontaneous [Ca2+]i spikes are resistant to PKI but sensitive to ESI-05 or thapsigargin. We propose that cAMP links an increase in plasma glucose to stimulation of somatostatin secretion by promoting CICR, thus evoking exocytosis of somatostatin-containing secretory vesicles in the δ-cell.
Collapse
Affiliation(s)
- Geoffrey Denwood
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford, UK
| | - Andrei Tarasov
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford, UK
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield, UK
| | - Albert Salehi
- Institute of Neuroscience and Physiology, Department of Physiology, Metabolic Research Unit, University of Goteborg, Göteborg, Sweden
| | - Elisa Vergari
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford, UK
| | - Reshma Ramracheya
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford, UK
| | - Harumi Takahashi
- Division of Molecular and Metabolic Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Viacheslav O Nikolaev
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Susumo Seino
- Division of Molecular and Metabolic Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Fiona Gribble
- Institute of Metabolic Science, University of Cambridge, Addenbrook's Hospital, Cambridge, UK
| | - Frank Reimann
- Institute of Metabolic Science, University of Cambridge, Addenbrook's Hospital, Cambridge, UK
| | - Patrik Rorsman
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford, UK
- Institute of Neuroscience and Physiology, Department of Physiology, Metabolic Research Unit, University of Goteborg, Göteborg, Sweden
| | - Quan Zhang
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford, UK
| |
Collapse
|
32
|
Garla V, Kanduri S, Yanes-Cardozo L, Lién LF. Management of diabetes mellitus in chronic kidney disease. MINERVA ENDOCRINOL 2019; 44:273-287. [DOI: 10.23736/s0391-1977.19.03015-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
33
|
Navigating Two Roads to Glucose Normalization in Diabetes: Automated Insulin Delivery Devices and Cell Therapy. Cell Metab 2019; 29:545-563. [PMID: 30840911 DOI: 10.1016/j.cmet.2019.02.007] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 02/12/2019] [Accepted: 02/13/2019] [Indexed: 12/23/2022]
Abstract
Incredible strides have been made since the discovery of insulin almost 100 years ago. Insulin formulations have improved dramatically, glucose levels can be measured continuously, and recently first-generation biomechanical "artificial pancreas" systems have been approved by regulators around the globe. However, still only a small fraction of patients with diabetes achieve glycemic goals. Replacement of insulin-producing cells via transplantation shows significant promise, but is limited in application due to supply constraints (cadaver-based) and the need for chronic immunosuppression. Over the past decade, significant progress has been made to address these barriers to widespread implementation of a cell therapy. Can glucose levels in people with diabetes be normalized with artificial pancreas systems or via cell replacement approaches? Here we review the road ahead, including the challenges and opportunities of both approaches.
Collapse
|
34
|
Knudsen JG, Hamilton A, Ramracheya R, Tarasov AI, Brereton M, Haythorne E, Chibalina MV, Spégel P, Mulder H, Zhang Q, Ashcroft FM, Adam J, Rorsman P. Dysregulation of Glucagon Secretion by Hyperglycemia-Induced Sodium-Dependent Reduction of ATP Production. Cell Metab 2019; 29:430-442.e4. [PMID: 30415925 PMCID: PMC6370947 DOI: 10.1016/j.cmet.2018.10.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 07/23/2018] [Accepted: 10/13/2018] [Indexed: 01/21/2023]
Abstract
Diabetes is a bihormonal disorder resulting from combined insulin and glucagon secretion defects. Mice lacking fumarase (Fh1) in their β cells (Fh1βKO mice) develop progressive hyperglycemia and dysregulated glucagon secretion similar to that seen in diabetic patients (too much at high glucose and too little at low glucose). The glucagon secretion defects are corrected by low concentrations of tolbutamide and prevented by the sodium-glucose transport (SGLT) inhibitor phlorizin. These data link hyperglycemia, intracellular Na+ accumulation, and acidification to impaired mitochondrial metabolism, reduced ATP production, and dysregulated glucagon secretion. Protein succination, reflecting reduced activity of fumarase, is observed in α cells from hyperglycemic Fh1βKO and β-V59M gain-of-function KATP channel mice, diabetic Goto-Kakizaki rats, and patients with type 2 diabetes. Succination is also observed in renal tubular cells and cardiomyocytes from hyperglycemic Fh1βKO mice, suggesting that the model can be extended to other SGLT-expressing cells and may explain part of the spectrum of diabetic complications.
Collapse
Affiliation(s)
- Jakob G Knudsen
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 7LE, UK
| | - Alexander Hamilton
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 7LE, UK
| | - Reshma Ramracheya
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 7LE, UK
| | - Andrei I Tarasov
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 7LE, UK
| | - Melissa Brereton
- Department of Physiology, Anatomy & Genetics, Parks Road, Oxford OX1 3PT, UK
| | - Elizabeth Haythorne
- Department of Physiology, Anatomy & Genetics, Parks Road, Oxford OX1 3PT, UK
| | - Margarita V Chibalina
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 7LE, UK
| | - Peter Spégel
- Centre for Analysis and Synthesis, Lund University Diabetes Centre, Department of Chemistry, Naturvetarvägen 14, Lund 221 00, Sweden
| | - Hindrik Mulder
- Unit of Molecular Metabolism, Lund University Diabetes Centre, Department of Clinical Research in Malmö, Jan Waldenströms Gata 35, Malmö 205 02, Sweden
| | - Quan Zhang
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 7LE, UK
| | - Frances M Ashcroft
- Department of Physiology, Anatomy & Genetics, Parks Road, Oxford OX1 3PT, UK
| | - Julie Adam
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 7LE, UK; Nuffield Department of Clinical Medicine, University of Oxford, NDM Research Building, Oxford OX3 7FZ, UK.
| | - Patrik Rorsman
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 7LE, UK; Metabolic Research, Department of Neuroscience and Physiology, Sahlgrenska Academy, University of Göteborg, Box 433, Göteborg 405 30, Sweden.
| |
Collapse
|
35
|
Pan F, He X, Feng J, Cui W, Gao L, Li M, Yang H, Wang C, Hu Y. Peptidome analysis reveals the involvement of endogenous peptides in mouse pancreatic dysfunction with aging. J Cell Physiol 2019; 234:14090-14099. [PMID: 30618084 DOI: 10.1002/jcp.28098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 12/13/2018] [Indexed: 01/15/2023]
Abstract
Type 2 diabetes (T2D) is a glucose regulation disorder that has significantly enhanced mortality and the global disease burden. The prevalence of T2D has increased worldwide and is higher in the elderly. The function of pancreatic islets decreases with age, which is one important reason for the occurrence of diabetes in the elderly. Recently, peptidome analysis has attracted attention. However, the role of age-related peptides in pancreatic dysfunction has not been investigated extensively. Here, we conducted a comparison of endogenous peptides between pancreas from adult and aging mice by liquid chromatography tandem mass spectrometry (LC-MS/MS). A total of 2,089 peptides originating from 1,280 protein precursors were identified, of which 232 were upregulated and 183 were downregulated in the aging mice (fold change ≥ 2 and p < 0.05), suggesting that the expression of pancreatic peptides in mice varied with age. The molecular weight of most peptides was <3.0 kDa, and the isoelectric point distribution had a bimodal characteristic. Further analysis of cleavage site patterns indicated that proteases cleaved pancreatic proteins according to their rules. Moreover, Gene Ontology and pathway analyses showed that the differentially expressed peptides potentially had specific effects on pancreatic dysfunction. Some differential peptides were located within the domains of precursor proteins that were closely associated with the development of diabetes. We believe that our research may advance the current understanding of pancreas-derived peptides and that certain peptides may be involved in the etiology of diabetes.
Collapse
Affiliation(s)
- Fenghui Pan
- Division of Geriatrics, Drum Tower Clinical Medical College of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xuan He
- Division of Geriatrics, Drum Tower Clinical Medical College of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jie Feng
- Department of Laboratory and Inspection Center, Jiangsu Institute of Planned Parenthood Research, Nanjing, Jiangsu, China
| | - Wenxia Cui
- Division of Geriatrics, Drum Tower Clinical Medical College of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Lei Gao
- Division of Geriatrics, Drum Tower Clinical Medical College of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Man Li
- Division of Geriatrics, Drum Tower Clinical Medical College of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Haiyan Yang
- Division of Geriatrics, Drum Tower Clinical Medical College of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chun Wang
- Division of Geriatrics, Drum Tower Clinical Medical College of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yun Hu
- Division of Geriatrics, Drum Tower Clinical Medical College of Nanjing Medical University, Nanjing, Jiangsu, China.,Department of Chemistry, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, China
| |
Collapse
|
36
|
Lai BK, Chae H, Gómez-Ruiz A, Cheng P, Gallo P, Antoine N, Beauloye C, Jonas JC, Seghers V, Seino S, Gilon P. Somatostatin Is Only Partly Required for the Glucagonostatic Effect of Glucose but Is Necessary for the Glucagonostatic Effect of K ATP Channel Blockers. Diabetes 2018; 67:2239-2253. [PMID: 30115649 DOI: 10.2337/db17-0880] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 08/03/2018] [Indexed: 11/13/2022]
Abstract
The mechanisms of control of glucagon secretion are largely debated. In particular, the paracrine role of somatostatin (SST) is unclear. We studied its role in the control of glucagon secretion by glucose and KATP channel blockers, using perifused islets and the in situ perfused pancreas. The involvement of SST was evaluated by comparing glucagon release of control tissue or tissue without paracrine influence of SST (pertussis toxin-treated islets, or islets or pancreas from Sst-/- mice). We show that removal of the paracrine influence of SST suppresses the ability of KATP channel blockers or KATP channel ablation to inhibit glucagon release, suggesting that in control islets, the glucagonostatic effect of KATP channel blockers/ablation is fully mediated by SST. By contrast, the glucagonostatic effect of glucose in control islets is mainly independent of SST for low glucose concentrations (0-7 mmol/L) but starts to involve SST for high concentrations of the sugar (15-30 mmol/L). This demonstrates that the glucagonostatic effect of glucose only partially depends on SST. Real-time quantitative PCR and pharmacological experiments indicate that the glucagonostatic effect of SST is mediated by two types of SST receptors, SSTR2 and SSTR3. These results suggest that alterations of the paracrine influence of SST will affect glucagon release.
Collapse
Affiliation(s)
- Bao-Khanh Lai
- Pôle d'Endocrinologie, Diabète et Nutrition, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Heeyoung Chae
- Pôle d'Endocrinologie, Diabète et Nutrition, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Ana Gómez-Ruiz
- Pôle d'Endocrinologie, Diabète et Nutrition, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Panpan Cheng
- Pôle d'Endocrinologie, Diabète et Nutrition, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Paola Gallo
- Pôle d'Endocrinologie, Diabète et Nutrition, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Nancy Antoine
- Pôle d'Endocrinologie, Diabète et Nutrition, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Christophe Beauloye
- Pôle de Recherche Cardiovasculaire, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Jean-Christophe Jonas
- Pôle d'Endocrinologie, Diabète et Nutrition, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Victor Seghers
- Department of Pediatric Radiology, Texas Children's Hospital, Baylor College of Medicine, Houston, TX
| | - Susumu Seino
- Division of Molecular and Metabolic Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Patrick Gilon
- Pôle d'Endocrinologie, Diabète et Nutrition, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| |
Collapse
|
37
|
Tinker A, Aziz Q, Li Y, Specterman M. ATP‐Sensitive Potassium Channels and Their Physiological and Pathophysiological Roles. Compr Physiol 2018; 8:1463-1511. [DOI: 10.1002/cphy.c170048] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
38
|
Bishnoi M, Khare P, Brown L, Panchal SK. Transient receptor potential (TRP) channels: a metabolic TR(i)P to obesity prevention and therapy. Obes Rev 2018; 19:1269-1292. [PMID: 29797770 DOI: 10.1111/obr.12703] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 03/26/2018] [Accepted: 04/11/2018] [Indexed: 12/13/2022]
Abstract
Cellular transport of ions, especially by ion channels, regulates physiological function. The transient receptor potential (TRP) channels, with 30 identified so far, are cation channels with high calcium permeability. These ion channels are present in metabolically active tissues including adipose tissue, liver, gastrointestinal tract, brain (hypothalamus), pancreas and skeletal muscle, which suggests a potential role in metabolic disorders including obesity. TRP channels have potentially important roles in adipogenesis, obesity development and its prevention and therapy because of their physiological properties including calcium permeability, thermosensation and taste perception, involvement in cell metabolic signalling and hormone release. This wide range of actions means that organ-specific actions are unlikely, thus increasing the possibility of adverse effects. Delineation of responses to TRP channels has been limited by the poor selectivity of available agonists and antagonists. Food constituents that can modulate TRP channels are of interest in controlling metabolic status. TRP vanilloid 1 channels modulated by capsaicin have been the most studied, suggesting that this may be the first target for effective pharmacological modulation in obesity. This review shows that most of the TRP channels are potential targets to reduce metabolic disorders through a range of mechanisms.
Collapse
Affiliation(s)
- M Bishnoi
- Department of Food and Nutritional Biotechnology, National Agri-Food Biotechnology Institute, S.A.S. Nagar (Mohali), Punjab, India.,Functional Foods Research Group, Institute for Agriculture and the Environment, University of Southern Queensland, Toowoomba, QLD, Australia
| | - P Khare
- Department of Food and Nutritional Biotechnology, National Agri-Food Biotechnology Institute, S.A.S. Nagar (Mohali), Punjab, India
| | - L Brown
- Functional Foods Research Group, Institute for Agriculture and the Environment, University of Southern Queensland, Toowoomba, QLD, Australia.,School of Health and Wellbeing, University of Southern Queensland, Toowoomba, QLD, Australia
| | - S K Panchal
- Functional Foods Research Group, Institute for Agriculture and the Environment, University of Southern Queensland, Toowoomba, QLD, Australia
| |
Collapse
|
39
|
Ramracheya R, Chapman C, Chibalina M, Dou H, Miranda C, González A, Moritoh Y, Shigeto M, Zhang Q, Braun M, Clark A, Johnson PR, Rorsman P, Briant LJB. GLP-1 suppresses glucagon secretion in human pancreatic alpha-cells by inhibition of P/Q-type Ca 2+ channels. Physiol Rep 2018; 6:e13852. [PMID: 30187652 PMCID: PMC6125244 DOI: 10.14814/phy2.13852] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 07/31/2018] [Accepted: 08/07/2018] [Indexed: 01/13/2023] Open
Abstract
Glucagon is the body's main hyperglycemic hormone, and its secretion is dysregulated in type 2 diabetes mellitus (T2DM). The incretin hormone glucagon-like peptide-1 (GLP-1) is released from the gut and is used in T2DM therapy. Uniquely, it both stimulates insulin and inhibits glucagon secretion and thereby lowers plasma glucose levels. In this study, we have investigated the action of GLP-1 on glucagon release from human pancreatic islets. Immunocytochemistry revealed that only <0.5% of the α-cells possess detectable GLP-1R immunoreactivity. Despite this, GLP-1 inhibited glucagon secretion by 50-70%. This was due to a direct effect on α-cells, rather than paracrine signaling, because the inhibition was not reversed by the insulin receptor antagonist S961 or the somatostatin receptor-2 antagonist CYN154806. The inhibitory effect of GLP-1 on glucagon secretion was prevented by the PKA-inhibitor Rp-cAMPS and mimicked by the adenylate cyclase activator forskolin. Electrophysiological measurements revealed that GLP-1 decreased action potential height and depolarized interspike membrane potential. Mathematical modeling suggests both effects could result from inhibition of P/Q-type Ca2+ channels. In agreement with this, GLP-1 and ω-agatoxin (a blocker of P/Q-type channels) inhibited glucagon secretion in islets depolarized by 70 mmol/L [K+ ]o , and these effects were not additive. Intracellular application of cAMP inhibited depolarization-evoked exocytosis in individual α-cells by a PKA-dependent (Rp-cAMPS-sensitive) mechanism. We propose that inhibition of glucagon secretion by GLP-1 involves activation of the few GLP-1 receptors present in the α-cell membrane. The resulting small elevation of cAMP leads to PKA-dependent inhibition of P/Q-type Ca2+ channels and suppression of glucagon exocytosis.
Collapse
Affiliation(s)
- Reshma Ramracheya
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of MedicineUniversity of OxfordOxfordUnited Kingdom
| | - Caroline Chapman
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of MedicineUniversity of OxfordOxfordUnited Kingdom
| | - Margarita Chibalina
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of MedicineUniversity of OxfordOxfordUnited Kingdom
| | - Haiqiang Dou
- Institute of Neuroscience and PhysiologyMetabolic Research UnitUniversity of GöteborgGöteborgSweden
| | - Caroline Miranda
- Institute of Neuroscience and PhysiologyMetabolic Research UnitUniversity of GöteborgGöteborgSweden
| | - Alejandro González
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of MedicineUniversity of OxfordOxfordUnited Kingdom
| | - Yusuke Moritoh
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of MedicineUniversity of OxfordOxfordUnited Kingdom
| | - Makoto Shigeto
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of MedicineUniversity of OxfordOxfordUnited Kingdom
| | - Quan Zhang
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of MedicineUniversity of OxfordOxfordUnited Kingdom
| | - Matthias Braun
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of MedicineUniversity of OxfordOxfordUnited Kingdom
| | - Anne Clark
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of MedicineUniversity of OxfordOxfordUnited Kingdom
| | - Paul R. Johnson
- Nuffield Department of SurgeryUniversity of OxfordJohn Radcliffe HospitalOxfordUnited Kingdom
- NIHR Oxford Biomedical Research CentreOxfordUnited Kingdom
| | - Patrik Rorsman
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of MedicineUniversity of OxfordOxfordUnited Kingdom
- Institute of Neuroscience and PhysiologyMetabolic Research UnitUniversity of GöteborgGöteborgSweden
- NIHR Oxford Biomedical Research CentreOxfordUnited Kingdom
| | - Linford J. B. Briant
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of MedicineUniversity of OxfordOxfordUnited Kingdom
- Department of Computer ScienceUniversity of OxfordOxfordUnited Kingdom
| |
Collapse
|
40
|
Filadi R, Basso E, Lefkimmiatis K, Pozzan T. Beyond Intracellular Signaling: The Ins and Outs of Second Messengers Microdomains. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 981:279-322. [PMID: 29594866 DOI: 10.1007/978-3-319-55858-5_12] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A typical characteristic of eukaryotic cells compared to prokaryotes is represented by the spatial heterogeneity of the different structural and functional components: for example, most of the genetic material is surrounded by a highly specific membrane structure (the nuclear membrane), continuous with, yet largely different from, the endoplasmic reticulum (ER); oxidative phosphorylation is carried out by organelles enclosed by a double membrane, the mitochondria; in addition, distinct domains, enriched in specific proteins, are present in the plasma membrane (PM) of most cells. Less obvious, but now generally accepted, is the notion that even the concentration of small molecules such as second messengers (Ca2+ and cAMP in particular) can be highly heterogeneous within cells. In the case of most organelles, the differences in the luminal levels of second messengers depend either on the existence on their membrane of proteins that allow the accumulation/release of the second messenger (e.g., in the case of Ca2+, pumps, exchangers or channels), or on the synthesis and degradation of the specific molecule within the lumen (the autonomous intramitochondrial cAMP system). It needs stressing that the existence of a surrounding membrane does not necessarily imply the existence of a gradient between the cytosol and the organelle lumen. For example, the nuclear membrane is highly permeable to both Ca2+ and cAMP (nuclear pores are permeable to solutes up to 50 kDa) and differences in [Ca2+] or [cAMP] between cytoplasm and nucleoplasm are not seen in steady state and only very transiently during cell activation. A similar situation has been observed, as far as Ca2+ is concerned, in peroxisomes.
Collapse
Affiliation(s)
- Riccardo Filadi
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Emy Basso
- Institute of Neuroscience, Padova Section, National Research Council, Padova, Italy
| | - Konstantinos Lefkimmiatis
- Institute of Neuroscience, Padova Section, National Research Council, Padova, Italy
- Venetian Institute of Molecular Medicine, Padova, Italy
| | - Tullio Pozzan
- Department of Biomedical Sciences, University of Padova, Padova, Italy.
- Institute of Neuroscience, Padova Section, National Research Council, Padova, Italy.
- Venetian Institute of Molecular Medicine, Padova, Italy.
| |
Collapse
|
41
|
Abstract
The somatostatin-secreting δ-cells comprise ~5% of the cells of the pancreatic islets. The δ-cells have complex morphology and might interact with many more islet cells than suggested by their low numbers. δ-Cells contain ATP-sensitive potassium channels, which open at low levels of glucose but close when glucose is elevated. This closure initiates membrane depolarization and electrical activity and increased somatostatin secretion. Factors released by neighbouring α-cells or β-cells amplify the glucose-induced effects on somatostatin secretion from δ-cells, which act locally within the islets as paracrine or autocrine inhibitors of insulin, glucagon and somatostatin secretion. The effects of somatostatin are mediated by activation of somatostatin receptors coupled to the inhibitory G protein, which culminates in suppression of the electrical activity and exocytosis in α-cells and β-cells. Somatostatin secretion is perturbed in animal models of diabetes mellitus, which might explain the loss of appropriate hypoglycaemia-induced glucagon secretion, a defect that could be mitigated by somatostatin receptor 2 antagonists. Somatostatin antagonists or agents that suppress somatostatin secretion have been proposed as an adjunct to insulin therapy. In this Review, we summarize the cell physiology of somatostatin secretion, what might go wrong in diabetes mellitus and the therapeutic potential of agents targeting somatostatin secretion or action.
Collapse
Affiliation(s)
- Patrik Rorsman
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, Churchill Hospital, University of Oxford, Oxford, UK.
- Department of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden.
| | - Mark O Huising
- Department of Neurobiology, Physiology and Behavior, College of Biological Sciences, University of California, Davis, Davis, CA, USA
- Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, Davis, CA, USA
| |
Collapse
|
42
|
Hamilton A, Zhang Q, Salehi A, Willems M, Knudsen JG, Ringgaard AK, Chapman CE, Gonzalez-Alvarez A, Surdo NC, Zaccolo M, Basco D, Johnson PRV, Ramracheya R, Rutter GA, Galione A, Rorsman P, Tarasov AI. Adrenaline Stimulates Glucagon Secretion by Tpc2-Dependent Ca 2+ Mobilization From Acidic Stores in Pancreatic α-Cells. Diabetes 2018; 67:1128-1139. [PMID: 29563152 PMCID: PMC6258900 DOI: 10.2337/db17-1102] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 03/14/2018] [Indexed: 12/25/2022]
Abstract
Adrenaline is a powerful stimulus of glucagon secretion. It acts by activation of β-adrenergic receptors, but the downstream mechanisms have only been partially elucidated. Here, we have examined the effects of adrenaline in mouse and human α-cells by a combination of electrophysiology, imaging of Ca2+ and PKA activity, and hormone release measurements. We found that stimulation of glucagon secretion correlated with a PKA- and EPAC2-dependent (inhibited by PKI and ESI-05, respectively) elevation of [Ca2+]i in α-cells, which occurred without stimulation of electrical activity and persisted in the absence of extracellular Ca2+ but was sensitive to ryanodine, bafilomycin, and thapsigargin. Adrenaline also increased [Ca2+]i in α-cells in human islets. Genetic or pharmacological inhibition of the Tpc2 channel (that mediates Ca2+ release from acidic intracellular stores) abolished the stimulatory effect of adrenaline on glucagon secretion and reduced the elevation of [Ca2+]i Furthermore, in Tpc2-deficient islets, ryanodine exerted no additive inhibitory effect. These data suggest that β-adrenergic stimulation of glucagon secretion is controlled by a hierarchy of [Ca2+]i signaling in the α-cell that is initiated by cAMP-induced Tpc2-dependent Ca2+ release from the acidic stores and further amplified by Ca2+-induced Ca2+ release from the sarco/endoplasmic reticulum.
Collapse
Affiliation(s)
- Alexander Hamilton
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital, University of Oxford, Headington, U.K
| | - Quan Zhang
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital, University of Oxford, Headington, U.K
| | - Albert Salehi
- Institute of Neuroscience of Physiology, Department of Physiology, Metabolic Research Unit, University of Göteborg, Göteborg, Sweden
| | - Mara Willems
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital, University of Oxford, Headington, U.K
| | - Jakob G Knudsen
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital, University of Oxford, Headington, U.K
| | - Anna K Ringgaard
- Diabetes Research, Department of Stem Cell Biology, Novo Nordisk A/S, Måløv, Denmark
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Caroline E Chapman
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital, University of Oxford, Headington, U.K
| | - Alejandro Gonzalez-Alvarez
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital, University of Oxford, Headington, U.K
| | - Nicoletta C Surdo
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, U.K
| | - Manuela Zaccolo
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, U.K
| | - Davide Basco
- Center for Integrative Genomics, Université de Lausanne, Lausanne, Switzerland
| | - Paul R V Johnson
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital, University of Oxford, Headington, U.K
- Oxford National Institute for Health Research, Biomedical Research Centre, Oxford, U.K
| | - Reshma Ramracheya
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital, University of Oxford, Headington, U.K
| | - Guy A Rutter
- Section of Cell Biology and Functional Genomics, Department of Medicine, Imperial College London, London, U.K
| | - Antony Galione
- Department of Pharmacology, University of Oxford, Oxford, U.K
| | - Patrik Rorsman
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital, University of Oxford, Headington, U.K.
- Institute of Neuroscience of Physiology, Department of Physiology, Metabolic Research Unit, University of Göteborg, Göteborg, Sweden
- Oxford National Institute for Health Research, Biomedical Research Centre, Oxford, U.K
| | - Andrei I Tarasov
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital, University of Oxford, Headington, U.K.
- Oxford National Institute for Health Research, Biomedical Research Centre, Oxford, U.K
| |
Collapse
|
43
|
The somatostatin-secreting pancreatic δ-cell in health and disease. NATURE REVIEWS. ENDOCRINOLOGY 2018. [PMID: 29773871 DOI: 10.1038/s41574‐018‐0020‐6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The somatostatin-secreting δ-cells comprise ~5% of the cells of the pancreatic islets. The δ-cells have complex morphology and might interact with many more islet cells than suggested by their low numbers. δ-Cells contain ATP-sensitive potassium channels, which open at low levels of glucose but close when glucose is elevated. This closure initiates membrane depolarization and electrical activity and increased somatostatin secretion. Factors released by neighbouring α-cells or β-cells amplify the glucose-induced effects on somatostatin secretion from δ-cells, which act locally within the islets as paracrine or autocrine inhibitors of insulin, glucagon and somatostatin secretion. The effects of somatostatin are mediated by activation of somatostatin receptors coupled to the inhibitory G protein, which culminates in suppression of the electrical activity and exocytosis in α-cells and β-cells. Somatostatin secretion is perturbed in animal models of diabetes mellitus, which might explain the loss of appropriate hypoglycaemia-induced glucagon secretion, a defect that could be mitigated by somatostatin receptor 2 antagonists. Somatostatin antagonists or agents that suppress somatostatin secretion have been proposed as an adjunct to insulin therapy. In this Review, we summarize the cell physiology of somatostatin secretion, what might go wrong in diabetes mellitus and the therapeutic potential of agents targeting somatostatin secretion or action.
Collapse
|
44
|
Zhang X, Yang W, Wang J, Meng Y, Guan Y, Yang J. FAM3 gene family: A promising therapeutical target for NAFLD and type 2 diabetes. Metabolism 2018; 81:71-82. [PMID: 29221790 DOI: 10.1016/j.metabol.2017.12.001] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 11/08/2017] [Accepted: 12/01/2017] [Indexed: 12/15/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) and diabetes are severe public health issues worldwide. The Family with sequence similarity 3 (FAM3) gene family consists of four members designated as FAM3A, FAM3B, FAM3C and FAM3D, respectively. Recently, there had been increasing evidence that FAM3A, FAM3B and FAM3C are important regulators of glucose and lipid metabolism. FAM3A expression is reduced in the livers of diabetic rodents and NAFLD patients. Hepatic FAM3A restoration activates ATP-P2 receptor-Akt and AMPK pathways to attenuate steatosis and hyperglycemia in obese diabetic mice. FAM3C expression is also reduced in the liver under diabetic condition. FAM3C is a new hepatokine that activates HSF1-CaM-Akt pathway and represses mTOR-SREBP1-FAS pathway to suppress hepatic gluconeogenesis and lipogenesis. In contrast, hepatic expression of FAM3B, also called PANDER, is increased under obese state. FAM3B promotes hepatic lipogenesis and gluconeogenesis by repressing Akt and AMPK activities, and activating lipogenic pathway. Under obese state, the imbalance among hepatic FAM3A, FAM3B and FAM3C signaling networks plays important roles in the pathogenesis of NAFLD and type 2 diabetes. This review briefly discussed the latest research progress on the roles and mechanisms of FAM3A, FAM3B and FAM3C in the regulation of hepatic glucose and lipid metabolism.
Collapse
Affiliation(s)
- Xiaoyan Zhang
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Weili Yang
- Department of Physiology and Pathophysiology, Center for Noncoding RNA Medicine, Key Laboratory of Molecular Cardiovascular Science of the Ministry of Education, Peking University Health Science Center, Beijing 100191, China
| | - Junpei Wang
- Department of Physiology and Pathophysiology, Center for Noncoding RNA Medicine, Key Laboratory of Molecular Cardiovascular Science of the Ministry of Education, Peking University Health Science Center, Beijing 100191, China
| | - Yuhong Meng
- Department of Physiology and Pathophysiology, Center for Noncoding RNA Medicine, Key Laboratory of Molecular Cardiovascular Science of the Ministry of Education, Peking University Health Science Center, Beijing 100191, China
| | - Youfei Guan
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116044, China.
| | - Jichun Yang
- Department of Physiology and Pathophysiology, Center for Noncoding RNA Medicine, Key Laboratory of Molecular Cardiovascular Science of the Ministry of Education, Peking University Health Science Center, Beijing 100191, China.
| |
Collapse
|
45
|
Basco D, Zhang Q, Salehi A, Tarasov A, Dolci W, Herrera P, Spiliotis I, Berney X, Tarussio D, Rorsman P, Thorens B. α-cell glucokinase suppresses glucose-regulated glucagon secretion. Nat Commun 2018; 9:546. [PMID: 29416045 PMCID: PMC5803227 DOI: 10.1038/s41467-018-03034-0] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 01/15/2018] [Indexed: 02/08/2023] Open
Abstract
Glucagon secretion by pancreatic α-cells is triggered by hypoglycemia and suppressed by high glucose levels; impaired suppression of glucagon secretion is a hallmark of both type 1 and type 2 diabetes. Here, we show that α-cell glucokinase (Gck) plays a role in the control of glucagon secretion. Using mice with α-cell-specific inactivation of Gck (αGckKO mice), we find that glucokinase is required for the glucose-dependent increase in intracellular ATP/ADP ratio and the closure of KATP channels in α-cells and the suppression of glucagon secretion at euglycemic and hyperglycemic levels. αGckKO mice display hyperglucagonemia in the fed state, which is associated with increased hepatic gluconeogenic gene expression and hepatic glucose output capacity. In adult mice, fed hyperglucagonemia is further increased and glucose intolerance develops. Thus, glucokinase governs an α-cell metabolic pathway that suppresses secretion at or above normoglycemic levels; abnormal suppression of glucagon secretion deregulates hepatic glucose metabolism and, over time, induces a pre-diabetic phenotype.
Collapse
Affiliation(s)
- Davide Basco
- Center for Integrative Genomics, University of Lausanne, 1015, Lausanne, Switzerland
| | - Quan Zhang
- Oxford Centre for Diabetes, Endocrinology, and Metabolism, University of Oxford, Churchill Hospital, Oxford, OX3 7LE, UK
| | - Albert Salehi
- Department of Clinical Science, UMAS, Division of Islet Cell Physiology, Lund, Sweden
| | - Andrei Tarasov
- Oxford Centre for Diabetes, Endocrinology, and Metabolism, University of Oxford, Churchill Hospital, Oxford, OX3 7LE, UK
| | - Wanda Dolci
- Center for Integrative Genomics, University of Lausanne, 1015, Lausanne, Switzerland
| | - Pedro Herrera
- Department of Genetic Medicine and Development, 1200, Geneva, Switzerland
| | - Ioannis Spiliotis
- Oxford Centre for Diabetes, Endocrinology, and Metabolism, University of Oxford, Churchill Hospital, Oxford, OX3 7LE, UK
| | - Xavier Berney
- Center for Integrative Genomics, University of Lausanne, 1015, Lausanne, Switzerland
| | - David Tarussio
- Center for Integrative Genomics, University of Lausanne, 1015, Lausanne, Switzerland
| | - Patrik Rorsman
- Oxford Centre for Diabetes, Endocrinology, and Metabolism, University of Oxford, Churchill Hospital, Oxford, OX3 7LE, UK
| | - Bernard Thorens
- Center for Integrative Genomics, University of Lausanne, 1015, Lausanne, Switzerland.
| |
Collapse
|
46
|
Bozadjieva N, Blandino-Rosano M, Chase J, Dai XQ, Cummings K, Gimeno J, Dean D, Powers AC, Gittes GK, Rüegg MA, Hall MN, MacDonald PE, Bernal-Mizrachi E. Loss of mTORC1 signaling alters pancreatic α cell mass and impairs glucagon secretion. J Clin Invest 2017; 127:4379-4393. [PMID: 29106387 DOI: 10.1172/jci90004] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 09/26/2017] [Indexed: 01/19/2023] Open
Abstract
Glucagon plays a major role in the regulation of glucose homeostasis during fed and fasting states. However, the mechanisms responsible for the regulation of pancreatic α cell mass and function are not completely understood. In the current study, we identified mTOR complex 1 (mTORC1) as a major regulator of α cell mass and glucagon secretion. Using mice with tissue-specific deletion of the mTORC1 regulator Raptor in α cells (αRaptorKO), we showed that mTORC1 signaling is dispensable for α cell development, but essential for α cell maturation during the transition from a milk-based diet to a chow-based diet after weaning. Moreover, inhibition of mTORC1 signaling in αRaptorKO mice and in WT animals exposed to chronic rapamycin administration decreased glucagon content and glucagon secretion. In αRaptorKO mice, impaired glucagon secretion occurred in response to different secretagogues and was mediated by alterations in KATP channel subunit expression and activity. Additionally, our data identify the mTORC1/FoxA2 axis as a link between mTORC1 and transcriptional regulation of key genes responsible for α cell function. Thus, our results reveal a potential function of mTORC1 in nutrient-dependent regulation of glucagon secretion and identify a role for mTORC1 in controlling α cell-mass maintenance.
Collapse
Affiliation(s)
- Nadejda Bozadjieva
- Department of Internal Medicine, Division of Metabolism, Endocrinology and Diabetes, and.,Graduate Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Manuel Blandino-Rosano
- Department of Internal Medicine, Division of Metabolism, Endocrinology and Diabetes, and.,Department of Internal Medicine, Division Endocrinology, Metabolism and Diabetes, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Jennifer Chase
- Graduate Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Xiao-Qing Dai
- Alberta Diabetes Institute and Department of Pharmacology, Edmonton, Alberta, Canada
| | - Kelsey Cummings
- Department of Internal Medicine, Division of Metabolism, Endocrinology and Diabetes, and
| | - Jennifer Gimeno
- Department of Internal Medicine, Division Endocrinology, Metabolism and Diabetes, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Danielle Dean
- Department of Medicine, Division of Diabetes, Endocrinology, and Metabolism, and
| | - Alvin C Powers
- Department of Medicine, Division of Diabetes, Endocrinology, and Metabolism, and.,Department of Molecular Physiology & Biophysics, Vanderbilt University, Nashville, Tennessee, USA.,VA Tennessee Valley Healthcare, Nashville, Tennessee, USA
| | - George K Gittes
- Children's Hospital, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | | | | | - Patrick E MacDonald
- Alberta Diabetes Institute and Department of Pharmacology, Edmonton, Alberta, Canada
| | - Ernesto Bernal-Mizrachi
- Department of Internal Medicine, Division of Metabolism, Endocrinology and Diabetes, and.,Graduate Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, Michigan, USA.,Department of Internal Medicine, Division Endocrinology, Metabolism and Diabetes, Miller School of Medicine, University of Miami, Miami, Florida, USA.,Veterans Affairs Medical Center, Miami, Florida, USA
| |
Collapse
|
47
|
Alsahli M, Gerich JE. Renal glucose metabolism in normal physiological conditions and in diabetes. Diabetes Res Clin Pract 2017; 133:1-9. [PMID: 28866383 DOI: 10.1016/j.diabres.2017.07.033] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 07/16/2017] [Accepted: 07/26/2017] [Indexed: 01/25/2023]
Abstract
The kidney plays an important role in glucose homeostasis via gluconeogenesis, glucose utilization, and glucose reabsorption from the renal glomerular filtrate. After an overnight fast, 20-25% of glucose released into the circulation originates from the kidneys through gluconeogenesis. In this post-absorptive state, the kidneys utilize about 10% of all glucose utilized by the body. After glucose ingestion, renal gluconeogenesis increases and accounts for approximately 60% of endogenous glucose release in the postprandial period. Each day, the kidneys filter approximately 180g of glucose and virtually all of this is reabsorbed into the circulation. Hormones (most importantly insulin and catecholamines), substrates, enzymes, and glucose transporters are some of the various factors influencing the kidney's role. Patients with type 2 diabetes have an increased renal glucose uptake and release in the fasting and the post-prandial states. Additionally, glucosuria in these patients does not occur at plasma glucose levels that would normally produce glucosuria in healthy individuals. The major abnormality of renal glucose metabolism in type 1 diabetes appears to be impaired renal glucose release during hypoglycemia.
Collapse
Affiliation(s)
- Mazen Alsahli
- Southlake Regional Health Center, Newmarket, Ontario, Canada; University of Toronto Faculty of Medicine, Toronto, Ontario, Canada
| | - John E Gerich
- University of Rochester School of Medicine, Rochester, NY, USA.
| |
Collapse
|
48
|
Insulin, glucagon and somatostatin stores in the pancreas of subjects with type-2 diabetes and their lean and obese non-diabetic controls. Sci Rep 2017; 7:11015. [PMID: 28887444 PMCID: PMC5591190 DOI: 10.1038/s41598-017-10296-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 07/20/2017] [Indexed: 12/14/2022] Open
Abstract
In type-2 diabetes, both insufficient insulin and excessive glucagon secretion contribute to hyperglycemia. We compared insulin, glucagon and somatostatin stores in pancreas obtained at autopsy of 20 lean and 19 obese non-diabetic (ND), and 18 type-2 diabetic (T2D) subjects. From concentrations and pancreas weight, total content of hormones was calculated. Insulin content was 35% lower in T2D than ND subjects (7.4 versus 11.3 mg), whereas glucagon content was similar (0.76 versus 0.81 mg). The higher ratio of glucagon/insulin contents in T2D was thus explained by the decrease in insulin. With increasing BMI of ND subjects, insulin and glucagon contents respectively tended to increase and decrease, resulting in a lower glucagon/insulin ratio in obesity. With aging, insulin and glucagon contents did not significantly change in ND subjects but declined in T2D subjects, without association with the duration of diabetes or type of treatment. The somatostatin content was lower in T2D than ND subjects (0.027 versus 0.038 mg), but ratios somatostatin/insulin and somatostatin/glucagon were not different. In conclusion, insulin stores are about 1/3 lower in T2D than ND subjects, whereas glucagon stores are unchanged. Abnormal secretion of each hormone in type-2 diabetes cannot be attributed to major alterations in their pancreatic reserves.
Collapse
|
49
|
Babinsky VN, Hannan FM, Ramracheya RD, Zhang Q, Nesbit MA, Hugill A, Bentley L, Hough TA, Joynson E, Stewart M, Aggarwal A, Prinz-Wohlgenannt M, Gorvin CM, Kallay E, Wells S, Cox RD, Richards D, Rorsman P, Thakker RV. Mutant Mice With Calcium-Sensing Receptor Activation Have Hyperglycemia That Is Rectified by Calcilytic Therapy. Endocrinology 2017; 158:2486-2502. [PMID: 28575322 PMCID: PMC5551547 DOI: 10.1210/en.2017-00111] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Accepted: 05/30/2017] [Indexed: 12/12/2022]
Abstract
The calcium-sensing receptor (CaSR) is a family C G-protein-coupled receptor that plays a pivotal role in extracellular calcium homeostasis. The CaSR is also highly expressed in pancreatic islet α- and β-cells that secrete glucagon and insulin, respectively. To determine whether the CaSR may influence systemic glucose homeostasis, we characterized a mouse model with a germline gain-of-function CaSR mutation, Leu723Gln, referred to as Nuclear flecks (Nuf). Heterozygous- (CasrNuf/+) and homozygous-affected (CasrNuf/Nuf) mice were shown to have hypocalcemia in association with impaired glucose tolerance and insulin secretion. Oral administration of a CaSR antagonist compound, known as a calcilytic, rectified the glucose intolerance and hypoinsulinemia of CasrNuf/+ mice and ameliorated glucose intolerance in CasrNuf/Nuf mice. Ex vivo studies showed CasrNuf/+ and CasrNuf/Nuf mice to have reduced pancreatic islet mass and β-cell proliferation. Electrophysiological analysis of isolated CasrNuf/Nuf islets showed CaSR activation to increase the basal electrical activity of β-cells independently of effects on the activity of the adenosine triphosphate (ATP)-sensitive K+ (KATP) channel. CasrNuf/Nuf mice also had impaired glucose-mediated suppression of glucagon secretion, which was associated with increased numbers of α-cells and a higher α-cell proliferation rate. Moreover, CasrNuf/Nuf islet electrophysiology demonstrated an impairment of α-cell membrane depolarization in association with attenuated α-cell basal KATP channel activity. These studies indicate that the CaSR activation impairs glucose tolerance by a combination of α- and β-cell defects and also influences pancreatic islet mass. Moreover, our findings highlight a potential application of targeted CaSR compounds for modulating glucose metabolism.
Collapse
Affiliation(s)
- Valerie N. Babinsky
- Radcliffe Department of Medicine, Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford OX3 7LE, United Kingdom
| | - Fadil M. Hannan
- Radcliffe Department of Medicine, Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford OX3 7LE, United Kingdom
- Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool L7 8TX, United Kingdom
| | - Reshma D. Ramracheya
- Radcliffe Department of Medicine, Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford OX3 7LE, United Kingdom
| | - Quan Zhang
- Radcliffe Department of Medicine, Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford OX3 7LE, United Kingdom
| | - M. Andrew Nesbit
- Radcliffe Department of Medicine, Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford OX3 7LE, United Kingdom
- Biomedical Sciences Research Institute, Ulster University, Coleraine BT52 1SA, United Kingdom
| | - Alison Hugill
- Medical Research Council Mammalian Genetics Unit and Mary Lyon Centre, Medical Research Council Harwell Institute, Harwell Science and Innovation Campus, Oxfordshire OX11 0RD, United Kingdom
| | - Liz Bentley
- Medical Research Council Mammalian Genetics Unit and Mary Lyon Centre, Medical Research Council Harwell Institute, Harwell Science and Innovation Campus, Oxfordshire OX11 0RD, United Kingdom
| | - Tertius A. Hough
- Medical Research Council Mammalian Genetics Unit and Mary Lyon Centre, Medical Research Council Harwell Institute, Harwell Science and Innovation Campus, Oxfordshire OX11 0RD, United Kingdom
| | - Elizabeth Joynson
- Medical Research Council Mammalian Genetics Unit and Mary Lyon Centre, Medical Research Council Harwell Institute, Harwell Science and Innovation Campus, Oxfordshire OX11 0RD, United Kingdom
| | - Michelle Stewart
- Medical Research Council Mammalian Genetics Unit and Mary Lyon Centre, Medical Research Council Harwell Institute, Harwell Science and Innovation Campus, Oxfordshire OX11 0RD, United Kingdom
| | - Abhishek Aggarwal
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna A-1090, Austria
| | | | - Caroline M. Gorvin
- Radcliffe Department of Medicine, Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford OX3 7LE, United Kingdom
| | - Enikö Kallay
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna A-1090, Austria
| | - Sara Wells
- Medical Research Council Mammalian Genetics Unit and Mary Lyon Centre, Medical Research Council Harwell Institute, Harwell Science and Innovation Campus, Oxfordshire OX11 0RD, United Kingdom
| | - Roger D. Cox
- Medical Research Council Mammalian Genetics Unit and Mary Lyon Centre, Medical Research Council Harwell Institute, Harwell Science and Innovation Campus, Oxfordshire OX11 0RD, United Kingdom
| | - Duncan Richards
- GlaxoSmithKline Clinical Unit, Cambridge CB2 0GG, United Kingdom
| | - Patrik Rorsman
- Radcliffe Department of Medicine, Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford OX3 7LE, United Kingdom
| | - Rajesh V. Thakker
- Radcliffe Department of Medicine, Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford OX3 7LE, United Kingdom
| |
Collapse
|
50
|
Solini A, Sebastiani G, Nigi L, Santini E, Rossi C, Dotta F. Dapagliflozin modulates glucagon secretion in an SGLT2-independent manner in murine alpha cells. DIABETES & METABOLISM 2017; 43:512-520. [PMID: 28499695 DOI: 10.1016/j.diabet.2017.04.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 03/28/2017] [Accepted: 04/13/2017] [Indexed: 12/20/2022]
Abstract
AIM SGLT2 inhibitors reduce renal glucose uptake through an insulin-independent mechanism. They also increase glucagon concentration, although the extent to which this is due to a direct effect on pancreatic alpha cells remains unclear. METHODS In the present work, αTC1 cells treated with the SGLT2 inhibitor dapagliflozin (Dapa) were analyzed for glucose transporters, molecular mediators of hormone secretion, glucagon and GLP-1 release, and the effects of somatostatin. Data were validated in murine and human pancreatic islets. RESULTS SLC5A2 (the SGLT2-encoding gene) was nearly undetectable in αTC1 cells, not even by a digital PCR technique using different probes. In contrast, SLC5A1 (the SGLT1-encoding gene) was constitutively abundant in αTC1 cells and in islets, and increased with Dapa. This was associated with greater glucagon release, preceded by increased expression of preproglucagon and HNF4α. Looking at the candidate intracellular signalling pathway, reduced PASK and increased AMPK-α2 expression were also detected. GLUT1 and GLUT2, as well as regulators of glucagon release and alpha-cell phenotype (chromogranin A, paired box 6, proprotein convertase 1/2, synaptophysin), were unaffected by Dapa, as were GLP-1 receptor expression and GLP-1 release. Low glucose did not influence the stimulatory effect of Dapa on glucagon release, but was instead almost fully reverted by SLC5A1 silencing. When the effect of Dapa on AMPK and PASK, emerging regulators of lipid and glucose metabolism, was tested, upregulated AMPK-α2 appeared to be involved in molecular signalling. CONCLUSION Our study has shown that, in αTC1 cells, Dapa acutely upregulates SGLT1 expression and increases glucagon release through an SGLT1-dependent mechanism, with SGLT2 expression virtually undetectable. These results suggest the involvement of SGLT1 in modulating glucagon increases following SGLT2 inhibition.
Collapse
Affiliation(s)
- A Solini
- Department of surgical, medical, molecular and critical area pathology, university of Pisa, Via Roma 67, 56126 Pisa, Italy.
| | - G Sebastiani
- Department of medicine, surgery and neuroscience, university of Siena and Fondazione Umberto di Mario-Toscana life science, Viale Bracci 18, 53100 Siena, Italy
| | - L Nigi
- Department of medicine, surgery and neuroscience, university of Siena and Fondazione Umberto di Mario-Toscana life science, Viale Bracci 18, 53100 Siena, Italy
| | - E Santini
- Department of clinical and experimental medicine, university of Pisa, Pisa, Italy
| | - C Rossi
- Department of clinical and experimental medicine, university of Pisa, Pisa, Italy
| | - F Dotta
- Department of medicine, surgery and neuroscience, university of Siena and Fondazione Umberto di Mario-Toscana life science, Viale Bracci 18, 53100 Siena, Italy.
| |
Collapse
|