1
|
Abe T, Takeda Y, Sakuma I, Okada M, Kurigaki A, Bessho R, Sato M, Kitsunai H, Takiyama Y, Sakurai M. Efficacy of Alogliptin/Metformin Fixed-Dose Combination Tablets and Vildagliptin/Metformin Fixed-Dose Combination Tablets on Glycemic Control in Real-World Clinical Practice for the Patients with Type 2 Diabetes: A Multicenter, Open-Label, Randomized, Parallel Group, Comparative Trial. Metab Syndr Relat Disord 2024; 22:651-660. [PMID: 39421912 DOI: 10.1089/met.2024.0127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024] Open
Abstract
Background: This study was aimed to compare the efficacy of two combination tablets of dipeptidyl peptidase-4 (DPP-4) inhibitors and metformin with different dosages, alogliptin/metformin (AM) and vildagliptin/metformin (VM), on glycemic control in patients with type 2 diabetes (T2D). Methods: This was a prospective, multicenter, open-label, randomized, parallel group, comparative trial. After a run-in period of treatment with metformin alone, a total of 59 Japanese outpatients with T2D, aged 20-79 years with glycated hemoglobin (HbA1c) levels of 6.5%-10% were randomly assigned to 12-week AM treatment, alogliptin 25 mg/metformin 500 mg combination tablet orally once a day, or VM treatment, vildagliptin 50 mg/metformin 250 mg combination tablet orally twice a day. The primary endpoints were the changes in HbA1c and fasting plasma glucose (FPG) levels from baseline to week 12 between the two groups. Blinded intermittently scanned continuous glucose monitoring (isCGM) was performed between weeks 10 and 12. The incidence of adverse events during the study was also evaluated. Results: In all, 52 participants were analyzed. Significant decreases in HbA1c and FPG levels from baseline to week 12 were observed in both treatment groups. However, there were no significant differences between the AM and VM groups in the change in HbA1c level (-0.3% and -0.4%, P = 0.309) or the FPG level (-9.0 and -15.0 mg/dL, P = 0.789). The isCGM revealed that both treatments achieved the recommended glycemic target range. No adverse events, such as severe hypoglycemia, were observed in either group. Conclusions: We concluded that there were no significant differences in the efficacy of two combination tablets of DPP-4 inhibitors and metformin with different dosages on glycemic control in patients with T2D.
Collapse
Affiliation(s)
- Tomoe Abe
- Department of Internal Medicine, Asahikawa Medical University, Asahikawa, Japan
- Sapporo Diabetes and Thyroid Clinic, Sapporo, Japan
| | - Yasutaka Takeda
- Department of Internal Medicine, Asahikawa Medical University, Asahikawa, Japan
- Department of Diabetology and Endocrinology, Kanazawa Medical University, Uchinada, Japan
| | - Ichiro Sakuma
- Caress Sapporo Hokko Memorial Clinic, Sapporo, Japan
| | | | - Ayaka Kurigaki
- Department of Internal Medicine, Asahikawa Medical University, Asahikawa, Japan
| | - Ryoichi Bessho
- Department of Internal Medicine, Asahikawa Medical University, Asahikawa, Japan
| | - Mao Sato
- Department of Internal Medicine, Asahikawa Medical University, Asahikawa, Japan
| | - Hiroya Kitsunai
- Department of Internal Medicine, Asahikawa Medical University, Asahikawa, Japan
| | - Yumi Takiyama
- Department of Internal Medicine, Asahikawa Medical University, Asahikawa, Japan
| | - Masaru Sakurai
- Department of Social and Environmental Medicine, Kanazawa Medical University, Uchinada, Japan
| |
Collapse
|
2
|
Fu J, Zhang Y, Cai X, Huang Y. Predicting Metformin Efficacy in Improving Insulin Sensitivity Among Women With Polycystic Ovary Syndrome and Insulin Resistance: A Machine Learning Study. Endocr Pract 2024; 30:1023-1030. [PMID: 39111591 DOI: 10.1016/j.eprac.2024.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/25/2024] [Accepted: 07/31/2024] [Indexed: 09/02/2024]
Abstract
OBJECTIVE Metformin is clinically effective in treating polycystic ovary syndrome (PCOS) with insulin resistance (IR), while its efficacy varies among individuals. This study aims to develop a machine learning model to predict the efficacy of metformin in improving insulin sensitivity among women with PCOS and IR. METHODS This is a retrospective analysis of a multicenter, randomized controlled trial involving 114 women diagnosed with PCOS and IR. All women received metformin treatment for 4 months. We incorporated 27 baseline clinical variables of the women into the construction of our machine learning model. We firstly compared 4 commonly used feature selection methods to screen valuable clinical variables. Then we used the valuable variables as inputs to evaluate the performance of 5 machine learning models, including k-Nearest Neighbors, Support Vector Machine, Logistic Regression, Random Forest, and Extreme Gradient Boosting, in predicting the efficacy of metformin. RESULTS Among the 5 machine learning models, Support Vector Machine performed the best with an area under the receiver operating characteristic curve of 0.781 (95% confidence interval [CI]: 0.772-0.791). The key predictive variables identified were homeostasis model assessment of insulin resistance, body mass index, and low-density lipoprotein cholesterol. CONCLUSION The developed machine learning model could be applied to predict the efficacy of metformin in improving insulin sensitivity among women with PCOS and IR. The result could help doctors evaluate the efficacy of metformin in advance, optimize treatment plans, and thereby enhance overall clinical outcomes.
Collapse
Affiliation(s)
- Jiani Fu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Yiwen Zhang
- School of Biomedical Engineering, Southern Medical University, Guangzhou, China
| | - Xiaowen Cai
- The Tenth Affiliated Hospital, Southern Medical University (Dongguan People's Hospital), Dongguan, China
| | - Yong Huang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China.
| |
Collapse
|
3
|
Wang Q, Leask MP, Lee K, Jaiswal J, Kallingappa P, Dissanayake W, Puli'uvea C, O'Sullivan C, Watson H, Wilcox P, Murphy R, Merry TL, Shepherd PR. The population-specific Thr44Met OCT3 coding variant affects metformin pharmacokinetics with subsequent effects on insulin sensitivity in C57Bl/6J mice. Diabetologia 2024:10.1007/s00125-024-06287-1. [PMID: 39422716 DOI: 10.1007/s00125-024-06287-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 08/19/2024] [Indexed: 10/19/2024]
Abstract
AIMS/HYPOTHESIS Metformin is an important first-line treatment for type 2 diabetes and acts by increasing the body's ability to dispose of glucose. Metformin's efficacy can be affected by genetic variants in the transporters that regulate its uptake into cells. The SLC22A3 gene (also known as EMT; EMTH; OCT3) codes for organic cation transporter 3 (OCT3), which is a broad-specificity cation transporter that also transports metformin. Most SLC22A3 variants reduce the rate of metformin transport but the rs8187715 variant (p.Thr44Met) is reported to increase uptake of metformin in vitro. However, the impact of this on in vivo metformin transport and efficacy is unknown. Very few carriers of this variant have been reported globally, but, notably, all were of Pacific Island descent. Therefore, this study aims to understand the prevalence of this variant in Polynesian peoples (Māori and Pacific peoples) and to understand its impact on metformin transport and efficacy in vivo. METHODS rs8187715 was genotyped in 310 individuals with Māori and Pacific ancestry recruited in Aotearoa New Zealand. To study this variant in a physiological context, an orthologous knockin mouse model with C57BL/6J background was used. Pharmacokinetic analysis compared uptake rate of metformin into tissues. Plasma growth/differentiation factor 15 (GDF-15) was also measured as a marker of metformin efficacy. Glucose and insulin tolerance was assessed after acute or sustained metformin treatment in knockin and wild-type control mice to examine the impact of the variant on metformin's glycaemic control. RESULTS The minor allele frequency of this variant in the Māori and Pacific participants was 15.4%. There was no association of the variant with common metabolic parameters including diabetes status, BMI, blood pressure, lipids, or blood glucose and HbA1c. However, in the orthologous knockin mouse model, the rate of metformin uptake into the blood and tissues was increased. Acute metformin dosing increased insulin sensitivity in variant knockin mice but this effect was lost after longer-term metformin treatment. Metformin's effects on GDF-15 levels were also lost in variant knockin mice with longer-term metformin treatment. CONCLUSIONS/INTERPRETATION These data provide evidence that the SLC22A3 rs8187715 variant accelerates metformin uptake rate in vivo. While this acutely improves insulin sensitivity, there was no increased effect of metformin with longer-term dosing. Thus, our finding of a high prevalence of this variant specifically in Māori and Pacific peoples identifies it as a potential population-specific pharmacogenetic marker with potential to guide metformin therapy in these peoples.
Collapse
Affiliation(s)
- Qian Wang
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre, Auckland, New Zealand
| | | | - Kate Lee
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre, Auckland, New Zealand
| | - Jagdish Jaiswal
- Auckland Cancer Society Research Centre, University of Auckland, Auckland, New Zealand
| | - Prasanna Kallingappa
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| | - Waruni Dissanayake
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre, Auckland, New Zealand
| | - Chris Puli'uvea
- Maurice Wilkins Centre, Auckland, New Zealand
- Department of Biomedicine and Diagnostics, Auckland University of Technology, Auckland, New Zealand
| | | | - Huti Watson
- Paratene Ngata Research Centre, Ngati Porou Oranga, Te Puia Springs, New Zealand
| | - Phillip Wilcox
- Maurice Wilkins Centre, Auckland, New Zealand
- Department of Statistics, University of Otago, Dunedin, New Zealand
| | - Rinki Murphy
- Maurice Wilkins Centre, Auckland, New Zealand
- Department of Medicine, University of Auckland, Auckland, New Zealand
- Auckland Diabetes Centre, Te Whatu Ora Health New Zealand, Te Toka Tumai, New Zealand
| | - Troy L Merry
- Maurice Wilkins Centre, Auckland, New Zealand
- Department of Nutrition, University of Auckland, Auckland, New Zealand
| | - Peter R Shepherd
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand.
- Maurice Wilkins Centre, Auckland, New Zealand.
- Auckland Cancer Society Research Centre, University of Auckland, Auckland, New Zealand.
| |
Collapse
|
4
|
Natrus L, Lisakovska O, Smirnov A, Osadchuk Y, Klys Y. Apoptotic and proliferative processes in the small intestine of rats with type 2 diabetes mellitus after metformin and propionic acid treatment. Front Pharmacol 2024; 15:1477793. [PMID: 39478962 PMCID: PMC11521949 DOI: 10.3389/fphar.2024.1477793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 10/07/2024] [Indexed: 11/02/2024] Open
Abstract
Background Propionic acid (PA) is an intermediate product of metabolism of intestinal bacteria and may protect the intestinal barrier from disruption. The aim of the study was to investigate the apoptotic and proliferative processes in the small intestine (SI) of rats with type 2 diabetes mellitus (T2DM) on the background of metformin monotherapy and its combination with PA. Methods Male Wistar rats were divided: 1) control; 2) T2DM (3-month high-fat diet followed by streptozotocin injection of 25 mg/kg of body weight); 3) T2DM + metformin (60 mg/kg, 14 days, orally); 4) T2DM + PA (60 mg/kg, 14 days, orally); 5) T2DM + PA + metformin. Western blotting, RT-PCR, and scanning electron microscopy were performed. Results We observed profound changes in the SI of diabetic rats suggesting the disturbed intestinal homeostasis: impaired mitochondrial ultrastructure, increased cristae volume, and decreased content of proliferative marker Ki67 with almost unchanged proapoptotic caspase-3 and its p17 subunit levels. Metformin and PA monotherapies also led to an increased cristae volume, however, after their combination, a tendency to normalization of ultrastructure of mitochondria was observed. While there was a significant inhibition of proliferation in T2DM and, in greater extent, after metformin and PA monotherapies, differential influence on apoptosis in the SI was observed. While metformin inhibited apoptosis via Bax declining, PA mainly acted via caspase-3-dependent mechanism elevating its active p17 subunit. Conclusion PA supplementation for the improvement of diabetes-induced gastrointestinal complications concurrently with metformin may be consider as a perspective supportive therapy. Data related to PA action on SI may be valuable during the development of new treatment strategies for diabetes-induced intestinal disturbances raised after metformin treatment.
Collapse
Affiliation(s)
- Larysa Natrus
- Department of Modern Technologies of Medical Diagnostics and Treatment, Bogomolets National Medical University, Kyiv, Ukraine
| | - Olha Lisakovska
- Department of Biochemistry of Vitamins and Coenzymes, Palladin Institute of Biochemistry, Kyiv, Ukraine
| | - Anton Smirnov
- Department of Socio-Humanitarian and Biomedical Sciences, Kharkiv Institute of Medicine and Biomedical Sciences, Kharkiv, Ukraine
| | - Yuliia Osadchuk
- Department of Modern Technologies of Medical Diagnostics and Treatment, Bogomolets National Medical University, Kyiv, Ukraine
| | - Yuliia Klys
- Department of Modern Technologies of Medical Diagnostics and Treatment, Bogomolets National Medical University, Kyiv, Ukraine
| |
Collapse
|
5
|
Chatatikun M, Tedasen A, Phinyo P, Wongyikul P, Klangbud WK, Kawakami F, Imai M, Chuaijit S, Rachmuangfang S, Phuwarinyodsakul S, Leelawattana R, Phongphithakchai A. Hypoglycemic activity of Garcinia mangostana L. extracts on diabetes rodent models: A systematic review and network meta-analysis. Front Pharmacol 2024; 15:1472419. [PMID: 39415841 PMCID: PMC11479905 DOI: 10.3389/fphar.2024.1472419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 09/05/2024] [Indexed: 10/19/2024] Open
Abstract
Background Diabetes mellitus is a significant global health issue, and alternative treatments from natural products like Garcinia mangostana L. [Clusiaceae] or GM are being explored for their potential benefits. This study focused on evaluating the hypoglycemic effects of GM on diabetic rodent models. Methods A comprehensive search was conducted in PubMed, Scopus, and Embase for studies reporting blood glucose levels within 2 weeks as the primary outcome and changes in total cholesterol (TC), triglycerides (TG), low-density lipoprotein cholesterol (LDL-C), and high-density lipoprotein cholesterol (HDL-C) as secondary outcomes. A network meta-analysis (NMA) was performed to determine the pooled effectiveness of each intervention, estimating the weighted mean difference (WMD) and 95% confidence interval (CI) from both direct and indirect evidence. The surface under the cumulative ranking curve (SURCA) was used to rank the interventions. Results Ten articles were identified, with nine included for quantitative analysis. All GM extracts showed greater effectiveness than the control in decreasing blood glucose levels within 2 weeks. GM at 200 mg/kg (GM200) was the top-ranked extract for reducing glucose levels beyond 2 weeks and increasing HDL-C levels. The ethanol extract of GM at 200 mg/kg (GME200) was the most effective for blood glucose reduction within 2 weeks and for TC and TG reductions. The methanol extract of GM at 200 mg/kg (GMM200) was the top-ranked extract for LDL-C reductions. Conclusion GM and its extracts demonstrated significant hypoglycemic activity and improvements in lipid profiles in diabetic rodent models, highlighting their potential as therapeutic agents for the prevention and treatment of diabetes mellitus. Further research in human trials is warranted to confirm these findings and establish clinical applications. Clinical trial registration https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42023426254.
Collapse
Affiliation(s)
- Moragot Chatatikun
- Department of Medical Technology, School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, Thailand
- Center of Excellence Research for Melioidosis and Microorganisms (CERMM), Walailak University, Nakhon Si Thammarat, Thailand
| | - Aman Tedasen
- Department of Medical Technology, School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, Thailand
- Research Excellence Center for Innovation and Health Products (RECIHP), Walailak University, Nakhon Si Thammarat, Thailand
| | - Phichayut Phinyo
- Center for Clinical Epidemiology and Clinical Statistics, Department of Biomedical Informatics and Clinical Epidemiology (BioCE), Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Pakpoom Wongyikul
- Center for Clinical Epidemiology and Clinical Statistics, Department of Biomedical Informatics and Clinical Epidemiology (BioCE), Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Wiyada Kwanhian Klangbud
- Medical Technology program, Faculty of Science, Nakhon Phanom University, Nakhon Phanom, Thailand
| | - Fumitaka Kawakami
- Research Facility of Regenerative Medicine and Cell Design, School of Allied Health Sciences, Kitasato University, Sagamihara, Japan
- Department of Regulation Biochemistry, Kitasato University Graduate School of Medical Sciences, Sagamihara, Japan
| | - Motoki Imai
- Research Facility of Regenerative Medicine and Cell Design, School of Allied Health Sciences, Kitasato University, Sagamihara, Japan
- Department of Molecular Diagnostics, School of Allied Health Sciences, Kitasato University, Sagamihara, Japan
| | - Sirithip Chuaijit
- Department of Medical Science, School of Medicine, Walailak University, Nakhon Si Thammarat, Thailand
| | - Sarawut Rachmuangfang
- Department of Medical Technology, School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, Thailand
| | - Siriporn Phuwarinyodsakul
- Department of Medical Technology, School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, Thailand
| | - Rattana Leelawattana
- Endocrinology and Metabolism Unit, Division of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| | - Atthaphong Phongphithakchai
- Nephrology Unit, Division of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| |
Collapse
|
6
|
Zhang C, Ji Z, Xu N, Yuan J, Zeng W, Wang Y, He Q, Dong J, Zhang X, Yang D, Jiang W, Yan Y, Shang W, Chu J, Chu Q. Integrating network pharmacology and experimental validation to decipher the pharmacological mechanism of DXXK in treating diabetic kidney injury. Sci Rep 2024; 14:22319. [PMID: 39333622 PMCID: PMC11436795 DOI: 10.1038/s41598-024-73642-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 09/19/2024] [Indexed: 09/29/2024] Open
Abstract
Diabetes mellitus (DM) is a chronic metabolic disease that is highly susceptible to kidney injury. Di'ao XinXueKang capsules (DXXK) is a novel Chinese herbal medicine that has been used in clinical trials for the therapy of DM and kidney disease, but the underlying pharmacological mechanism remains unclear. This study aims to integrate network pharmacology, molecular docking and in vivo experiments to explore the potential mechanisms of DXXK in the treatment of diabetic kidney injury. The chemical constituents of DXXK were extracted from the ETCM and Batman-TCM databases, and then evaluated for their pharmacological activity via the Swiss ADME platform. Multiple disease databases were searched and integrated for DM-related targets. Overlapping targets were then collected to construct a protein-protein interaction (PPI) network. KEGG and GO enrichment analyses were performed based on the Metascape database, and molecular docking was performed using AutoDock Vina software. The main components in DXXK were analyzed by HPLC. The results of network pharmacology and molecular docking were validated in an animal model of DM induced by the combination of a high-fat diet (HFD) and streptozotocin (STZ). We screened and obtained 7 ingredients and identified dioscin, protodioscin, and pseudoprotodioscin as the major components of DXXK by HPLC. A total of 2,216 DM-related pathogenic genes were obtained from DrugBank, GeneCards, OMIM, and DisGeNET databases. KEGG and GO enrichment analyses indicated that the TGF-beta signaling pathway is a critical pathway associated with DM therapy. Molecular docking revealed that the ingredients in DXXK bind to the pivotal targets TGFβ1, Smad2, and Smad3. In diabetic mice, we found that DXXK alleviated diabetic symptoms, lowered blood glucose, improved insulin tolerance, and modulated lipid metabolism. Furthermore, DXXK attenuated renal lesions and fibrosis by downregulating TGFβ1, Smad2, and Smad3. Collectively, our results suggest that DXXK has the potential to regulate glucolipid metabolism in DM, and it may serve as a viable therapeutic option for renoprotection by inhibiting of the TGF-β1/Smad2/3 pathway.
Collapse
Affiliation(s)
- Chenxu Zhang
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, 230038, Anhui, People's Republic of China
- School of Graduate, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, People's Republic of China
| | - Zhangxin Ji
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, 230038, Anhui, People's Republic of China
- School of Graduate, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, People's Republic of China
| | - Na Xu
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science and International Joint Laboratory On Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei, 230036, Anhui, People's Republic of China
| | - Jingjing Yuan
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, 230038, Anhui, People's Republic of China
- Research and Technology Center, Anhui University of Chinese Medicine, Hefei, 230038, Anhui, People's Republic of China
| | - Wen Zeng
- Research and Technology Center, Anhui University of Chinese Medicine, Hefei, 230038, Anhui, People's Republic of China
| | - Yadong Wang
- Department of Pathology, School of Integrative Medicine, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, People's Republic of China
| | - Qing He
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, 230038, Anhui, People's Republic of China
- School of Graduate, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, People's Republic of China
| | - Jiaxing Dong
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, 230038, Anhui, People's Republic of China
- School of Graduate, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, People's Republic of China
| | - Xinyu Zhang
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, 230038, Anhui, People's Republic of China
- School of Graduate, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, People's Republic of China
| | - Dongmei Yang
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, 230038, Anhui, People's Republic of China
- School of Graduate, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, People's Republic of China
| | - Wei Jiang
- School of Nursing, Anhui Medical College, Furong Road Campus, Hefei, 230601, Anhui, People's Republic of China
| | - Yibo Yan
- Second Clinical Medical College, Anhui Medical University, Hefei, 230601, Anhui, People's Republic of China
| | - Wencui Shang
- School of Graduate, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, People's Republic of China
| | - Jun Chu
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, 230038, Anhui, People's Republic of China.
- Research and Technology Center, Anhui University of Chinese Medicine, Hefei, 230038, Anhui, People's Republic of China.
- Institute of Surgery, Anhui Academy of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, 230038, Anhui, People's Republic of China.
| | - Quangen Chu
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, 230038, Anhui, People's Republic of China.
| |
Collapse
|
7
|
Yao L, Wang L, Zhang R, Soukas AA, Wu L. The direct targets of metformin in diabetes and beyond. Trends Endocrinol Metab 2024:S1043-2760(24)00198-X. [PMID: 39227192 DOI: 10.1016/j.tem.2024.07.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/17/2024] [Accepted: 07/22/2024] [Indexed: 09/05/2024]
Abstract
Metformin, an oral antihyperglycemic drug that has been in use for over 60 years, remains a first-line therapy for type 2 diabetes (T2D). Numerous studies have suggested that metformin promotes health benefits beyond T2D management, including weight loss, cancer prevention and treatment, and anti-aging, through several proposed mechanistic targets. Here we discuss the established effects of metformin and the progress made in identifying its direct targets. Additionally, we emphasize the importance of elucidating the structural bases of the drug and its direct targets. Ultimately, this review aims to highlight the current state of knowledge regarding metformin and its related emerging discoveries, while also outlining critical future research directions.
Collapse
Affiliation(s)
- Luxia Yao
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China; Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, Hangzhou, Zhejiang, China; Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Lei Wang
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Runshuai Zhang
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China; Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, Hangzhou, Zhejiang, China; Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Alexander A Soukas
- Center for Genomic Medicine and Diabetes Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| | - Lianfeng Wu
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China; Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, Hangzhou, Zhejiang, China; Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China.
| |
Collapse
|
8
|
Abbasi M, Heath B, McGinness L. Advances in metformin-delivery systems for diabetes and obesity management. Diabetes Obes Metab 2024; 26:3513-3529. [PMID: 38984380 DOI: 10.1111/dom.15759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/12/2024] [Accepted: 06/17/2024] [Indexed: 07/11/2024]
Abstract
Metformin is a medication that is commonly prescribed to manage type 2 diabetes. It has been used for more than 60 years and is highly effective in lowering blood glucose levels. Recent studies indicate that metformin may have additional medical benefits beyond treating diabetes, revealing its potential therapeutic uses. Oral medication is commonly used to administer metformin because of its convenience and cost-effectiveness. However, there are challenges in optimizing its effectiveness. Gastrointestinal side effects and limitations in bioavailability have led to the underutilization of metformin. Innovative drug-delivery systems such as fast-dissolving tablets, micro/nanoparticle formulations, hydrogel and microneedles have been explored to optimize metformin therapy. These strategies enhance metformin dosage, targeting, bioavailability and stability, and provide personalized treatment options for improved glucose homeostasis, antiobesity and metabolic health benefits. Developing new delivery systems for metformin shows potential for improving therapeutic outcomes, broadening its applications beyond diabetes management and addressing unmet medical needs in various clinical settings. However, it is important to improve drug-delivery systems, addressing issues such as complexity, cost, biocompatibility, stability during storage and transportation, loading capacity, required technologies and biomaterials, targeting precision and regulatory approval. Addressing these limitations is crucial for effective, safe and accessible drug delivery in clinical practice. In this review, recent advances in the development and application of metformin-delivery systems for diabetes and obesity are discussed.
Collapse
Affiliation(s)
- Mehrnaz Abbasi
- Department of Nutritional Sciences, College of Human Sciences, Auburn University, Auburn, Alabama, USA
| | - Braeden Heath
- Department of Biomedical Sciences, College of Sciences and Mathematics, Auburn University, Auburn, Alabama, USA
| | - Lauren McGinness
- Department of Nutritional Sciences, College of Human Sciences, Auburn University, Auburn, Alabama, USA
| |
Collapse
|
9
|
Ma Y, Sun X, Yao X. The role and mechanism of VDAC1 in type 2 diabetes: An underestimated target of environmental pollutants. Mitochondrion 2024; 78:101929. [PMID: 38986923 DOI: 10.1016/j.mito.2024.101929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/08/2024] [Accepted: 07/07/2024] [Indexed: 07/12/2024]
Abstract
Type 2 diabetes (T2D) is a chronic metabolic disease that accounts for more than 90% of diabetic patients. Its main feature is hyperglycemia due to insulin resistance or insulin deficiency. With changes in diet and lifestyle habits, the incidence of T2D in adolescents has burst in recent decades. The deterioration in the exposure to the environmental pollutants further aggravates the prevalence of T2D, and consequently, it imposes a significant economic burden. Therefore, early prevention and symptomatic treatment are essential to prevent diabetic complications. Mitochondrial number and electron transport chain activity are decreased in the patients with T2D. Voltage-Dependent Anion Channel 1 (VDAC1), as a crucial channel protein on the outer membrane of mitochondria, regulates signal transduction between mitochondria and other cellular components, participating in various biological processes. When VDAC1 exists in oligomeric form, it additionally facilitates the entry and exit of macromolecules into and from mitochondria, modulating insulin secretion. We summarize and highlight the interplay between VDAC1 and T2D, especially in the environmental pollutants-related T2D, shed light on the potential therapeutic implications of targeting VDAC1 monomers and oligomers, providing a new possible target for the treatment of T2D.
Collapse
Affiliation(s)
- Yu Ma
- Environmental and Occupational Health Department, Dalian Medical University, 9 West Lushun South Road, Dalian, China
| | - Xiance Sun
- Environmental and Occupational Health Department, Dalian Medical University, 9 West Lushun South Road, Dalian, China
| | - Xiaofeng Yao
- Environmental and Occupational Health Department, Dalian Medical University, 9 West Lushun South Road, Dalian, China.
| |
Collapse
|
10
|
Gao Y, Zhao T, Lv N, Liu S, Yuan T, Fu Y, Zhao W, Zhu B. Metformin-induced changes of the gut microbiota in patients with type 2 diabetes mellitus: results from a prospective cohort study. Endocrine 2024; 85:1178-1192. [PMID: 38761345 DOI: 10.1007/s12020-024-03828-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/09/2024] [Indexed: 05/20/2024]
Abstract
BACKGROUND The influence of the microbiota on hypoglycemic agents is becoming more apparent. The effects of metformin, a primary anti-diabetes drug, on gut microbiota are still not fully understood. RESEARCH DESIGN AND METHODS This prospective cohort study aims to investigate the longitudinal effects of metformin on the gut microbiota of 25 treatment-naïve diabetes patients, each receiving a daily dose of 1500 mg. Microbiota compositions were analyzed at baseline, and at 1, 3, and 6 months of medication using 16S rRNA gene sequencing. RESULTS Prior to the 3-month period of metformin treatment, significant improvements were noted in body mass index (BMI) and glycemic-related parameters, such as fasting blood glucose (FPG) and hemoglobin A1c (HbA1c), alongside homeostasis model assessment indices of insulin resistance (HOMA-IR). At the 3-month mark of medication, a significant reduction in the α-diversity of the gut microbiota was noted, while β-diversity exhibited no marked variances throughout the treatment duration. The Firmicutes to Bacteroidetes ratio. markedly decreased. Metformin treatment consistently increased Escherichia-Shigella and decreased Romboutsia, while Pseudomonas decreased at 3 months. Fuzzy c-means clustering identified three longitudinal trajectory clusters for microbial fluctuations: (i) genera temporarily changing, (ii) genera continuing to decrease (Bacteroides), and (iii) genera continuing to increase(Lachnospiraceae ND3007 group, [Eubacterium] xylanophilum group, Romboutsia, Faecalibacterium and Ruminococcaceae UCG-014). The correlation matrix revealed associations between specific fecal taxa and metformin-related clinical parameters HbA1c, FPG, Uric Acid (UA), high-density lipoproteincholesterol (HDL-C), alanine aminotransferase (ALT), hypersensitive C-reactive protein (hs-CRP), triglyceride (TG) (P < 0.05). Metacyc database showed that metformin significantly altered 17 functional pathways. Amino acid metabolism pathways such as isoleucine biosynthesis predominated in the post-treatment group. CONCLUSIONS Metformin's role in glucose metabolism regulation may primarily involve specific alterations in certain gut microbial species rather than an overall increase in microbial species diversity. This may suggest gut microbiota targets in future studies on metabolic abnormalities caused by metformin.
Collapse
Affiliation(s)
- Yuting Gao
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Tianyi Zhao
- Department of Physical Examination Center, China-Japan Friendship Hospital, Beijing, China
| | - Na Lv
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Shixuan Liu
- Department of Pathology, China-Japan Friendship Hospital, Beijing, China
| | - Tao Yuan
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Yong Fu
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Weigang Zhao
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China.
| | - Baoli Zhu
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
11
|
Zhao S, Hao R, Zhao J, Ma K, Li J, Tian C, Guan H, Li M. Efficacy and safety of combined Chinese and western medicine in the treatment of metabolic syndrome: A network meta-analysis of randomized controlled trials. Heliyon 2024; 10:e35811. [PMID: 39224309 PMCID: PMC11366876 DOI: 10.1016/j.heliyon.2024.e35811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 08/03/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
Objectives To comprehensively analyze the randomized controlled clinical trials of integrated traditional Chinese medicine (TCM) and western medicine in the treatment of metabolic syndrome (MetS), and to explore the clinical efficacy and safety of different TCM combined with western medicine for MetS. The purpose of this study is to provide specific suggestions for clinical guidance in the treatment of MetS. Methods A comprehensive literature review was conducted across several databases, including China Knowledge Network, Wanfang Data, VIP Information, China Biomedical Literature Service System, Embase, PubMed, and Web of Science, up to October 2023. The scope of this review was confined to RCTs focusing on the treatment of metabolic syndrome through an integrated approach of TCM and Western medicine. The primary efficacy endpoints analyzed were clinical efficacy, fasting blood glucose (FBG), triglyceride (TG), and high-density lipoprotein (HDL). Data synthesis and analysis were performed using Stata 16 and RevMan 5.4 for both traditional and network meta-analyses. Results The findings from both traditional and network meta-analyses reveal that the combination of JiangZhiHuoXue pills (JZHX) + Conventional Western Medicine (CWM) significantly reduces FBG levels. Similarly, the AnShenNingXin capsules (ASNX) + CWM combination markedly lowers TG levels, while the FuFangQiMa capsules (FFQM) + CWM combination shows enhanced efficacy in elevating HDL levels. Notably, the combination of KangNing capsules (KNJN) + CWM demonstrates a more pronounced clinical effect compared to CWM/placebo alone. Conclusions The study concludes that the synergistic combination of TCM and Western medicine exhibits superior therapeutic benefits in treating MetS compared to CWM/Placebo treatments alone. The combinations of JZHX, AXNX, FFQM, and KNJN with CWM emerge as potentially effective treatments.
Collapse
Affiliation(s)
- Shuang Zhao
- Changchun University of Chinese Medicine, Changchun, China
| | - Rui Hao
- Institute of Metabolic Diseases, Guang’ Anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jinyue Zhao
- Changchun University of Chinese Medicine, Changchun, China
| | - Kaile Ma
- Institute of Metabolic Diseases, Guang’ Anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jiarui Li
- Changchun University of Chinese Medicine, Changchun, China
| | - Chuanxi Tian
- Beijing University of Chinese Medicine, Beijing, China
| | - Huifang Guan
- Changchun University of Chinese Medicine, Changchun, China
| | - Min Li
- Research Laboratory of Molecular Biology, Guang’ Anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
12
|
Sirtori CR, Castiglione S, Pavanello C. METFORMIN: FROM DIABETES TO CANCER TO PROLONGATION OF LIFE. Pharmacol Res 2024; 208:107367. [PMID: 39191336 DOI: 10.1016/j.phrs.2024.107367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/12/2024] [Accepted: 08/21/2024] [Indexed: 08/29/2024]
Abstract
The metformin molecule dates back to over a century, but its clinical use started in the '50s. Since then, its use in diabetics has grown constantly, with over 150 million users today. The therapeutic profile also expanded, with improved understanding of novel mechanisms. Metformin has a major activity on insulin resistance, by acting on the insulin receptors and mitochondria, most likely by activation of the adenosine monophosphate-activated kinase. These and associated mechanisms lead to significant lipid lowering and body weight loss. An anti-cancer action has come up in recent years, with mechanisms partly dependent on the mitochondrial activity and also on phosphatidylinositol 3-kinase resistance occurring in some malignant tumors. The potential of metformin to raise life-length is the object of large ongoing studies and of several basic and clinical investigations. The present review article will attempt to investigate the basic mechanisms behind these diverse activities and the potential clinical benefits. Metformin may act on transcriptional activity by histone modification, DNA methylation and miRNAs. An activity on age-associated inflammation (inflammaging) may occur via activation of the nuclear factor erythroid 2 related factor and changes in gut microbiota. A senolytic activity, leading to reduction of cells with the senescent associated secretory phenotype, may be crucial in lifespan prolongation as well as in ancillary properties in age-associated diseases, such as Parkinson's disease. Telomere prolongation may be related to the activity on mitochondrial respiratory factor 1 and on peroxisome gamma proliferator coactivator 1-alpha. Very recent observations on the potential to act on the most severe neurological disorders, such as amyotrophic lateral sclerosis and frontotemporal dementia, have raised considerable hope.
Collapse
Affiliation(s)
- Cesare R Sirtori
- Center of Dyslipidemias, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy; Centro E. Grossi Paoletti, Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy.
| | - Sofia Castiglione
- Center of Dyslipidemias, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy; Centro E. Grossi Paoletti, Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Chiara Pavanello
- Center of Dyslipidemias, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy; Centro E. Grossi Paoletti, Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
13
|
Gallwitz B. [Drug therapy of type-2-diabetes-is metformin dispensable now?]. INNERE MEDIZIN (HEIDELBERG, GERMANY) 2024:10.1007/s00108-024-01755-7. [PMID: 39167190 DOI: 10.1007/s00108-024-01755-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/04/2024] [Indexed: 08/23/2024]
Abstract
Metformin has been recommended as first-line pharmacological therapy in type‑2 diabetes (T2D) since 1998. It was the first medication that demonstrated cardiovascular benefits in obese subjects with T2D. Efficacy and safety of metformin have since been demonstrated in further studies and in real-world data on its use in practice. The recommendation of metformin as baseline therapy has reached wide acceptance internationally. During the period 2015-2021, large cardiovascular safety trials showed superiority for cardiovascular morbidity and partly also mortality outcomes for most substances of the novel antidiabetic substance classes of GLP‑1 receptor agonists and SGLT‑2 inhibitors in people with T2D and very high cardiovascular risk or preexisting cardiovascular disease. The evidence for these two substance classes is now broader than for metformin. Therefore, the question arises as to whether it is still justified to recommend metformin generally as first-line therapy in T2D. This article provides an overview of the study data as well as an overview of the evidence-based guidelines. The status and position of metformin in the treatment of T2D are discussed.
Collapse
Affiliation(s)
- Baptist Gallwitz
- Deutsche Diabetes Gesellschaft (DDG), Albrechtstr. 9, 10117, Berlin, Deutschland.
| |
Collapse
|
14
|
Msane S, Khathi A, Sosibo A. Therapeutic Potential of Various Intermittent Fasting Regimens in Alleviating Type 2 Diabetes Mellitus and Prediabetes: A Narrative Review. Nutrients 2024; 16:2692. [PMID: 39203828 PMCID: PMC11357349 DOI: 10.3390/nu16162692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/22/2024] [Accepted: 08/12/2024] [Indexed: 09/03/2024] Open
Abstract
Intermittent fasting has drawn significant interest in the clinical research community due to its potential to address metabolic complications such as obesity and type 2 diabetes mellitus. Various intermittent fasting regimens include alternate-day fasting (24 h of fasting followed by 24 h of eating), time-restricted fasting (fasting for 14 h and eating within a 10 h window), and the 5:2 diet (fasting for two days and eating normally for the other five days). Intermittent fasting is associated with a reduced risk of type 2 diabetes mellitus-related complications and can slow their progression. The increasing global prevalence of type 2 diabetes mellitus highlights the importance of early management. Since prediabetes is a precursor to type 2 diabetes mellitus, understanding its progression is essential. However, the long-term effects of intermittent fasting on prediabetes are not yet well understood. Therefore, this review aims to comprehensively compile existing knowledge on the therapeutic effects of intermittent fasting in managing type 2 diabetes mellitus and prediabetes.
Collapse
Affiliation(s)
| | - Andile Khathi
- Department of Human Physiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4041, South Africa;
| | - Aubrey Sosibo
- Department of Human Physiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4041, South Africa;
| |
Collapse
|
15
|
Hansen LS, Gasbjerg LS, Brønden A, Dalsgaard NB, Bahne E, Stensen S, Hellmann PH, Rehfeld JF, Hartmann B, Wewer Albrechtsen NJ, Holst JJ, Vilsbøll T, Knop FK. The role of glucagon-like peptide 1 in the postprandial effects of metformin in type 2 diabetes: a randomized crossover trial. Eur J Endocrinol 2024; 191:192-203. [PMID: 39049802 DOI: 10.1093/ejendo/lvae095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/08/2024] [Accepted: 07/24/2024] [Indexed: 07/27/2024]
Abstract
AIMS Although metformin is widely used for treatment of type 2 diabetes (T2D), its glucose-lowering mechanism remains unclear. Using the glucagon-like peptide 1 (GLP-1) receptor (GLP-1R) antagonist exendin(9-39)NH2, we tested the hypothesis that postprandial GLP-1-mediated effects contribute to the glucose-lowering potential of metformin in T2D. METHODS In a randomized, placebo-controlled, double-blind, crossover study, 15 individuals with T2D (median HbA1c 50 mmol/mol [6.7%], body mass index 30.1 kg/m2, age 71 years) underwent, in randomized order, 14 days of metformin and placebo treatment, respectively. Each treatment period was preceded by 14 days without any glucose-lowering medicine and concluded by two 4 h mixed meal tests performed in randomized order and separated by >24 h with either continuous intravenous exendin(9-39)NH2 or saline infusion. RESULTS Compared to placebo, metformin treatment lowered fasting plasma glucose (mean of differences [MD] 1.4 mmol/L × min [95% CI 0.8-2.0]) as well as postprandial plasma glucose excursions during both saline infusion (MD 186 mmol/L × min [95% CI 64-307]) and exendin(9-39)NH2 infusion (MD 268 mmol/L × min [95% CI 108-427]). The metformin-induced improvement in postprandial glucose tolerance was unaffected by GLP-1R antagonization (MD 82 mmol/L × min [95% CI -6564-170]). Metformin treatment increased fasting plasma GLP-1 (MD 1.7 pmol/L × min [95% CI 0.39-2.9]) but did not affect postprandial GLP-1 responses (MD 820 pmol/L × min [95% CI -1750-111]). CONCLUSIONS Using GLP-1R antagonization, we could not detect GLP-1-mediated postprandial glucose-lowering effect of metformin in individuals with T2D. We show that 2 weeks of metformin treatment increases fasting plasma GLP-1, which may contribute to metformin's beneficial effect on fasting plasma glucose in T2D. Trial registration: Clinicaltrials.gov NCT03246451.
Collapse
Affiliation(s)
- Laura S Hansen
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, DK-2900 Hellerup, Denmark
| | - Lærke S Gasbjerg
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, DK-2900 Hellerup, Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Andreas Brønden
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, DK-2900 Hellerup, Denmark
- Department of Clinical Pharmacology, Copenhagen University Hospital-Bispebjerg and Frederiksberg, DK-2400 Copenhagen NV, Denmark
| | - Niels B Dalsgaard
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, DK-2900 Hellerup, Denmark
| | - Emilie Bahne
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, DK-2900 Hellerup, Denmark
- Clinical Research, Steno Diabetes Center Copenhagen, University of Copenhagen, DK-2730 Herlev, Denmark
| | - Signe Stensen
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, DK-2900 Hellerup, Denmark
| | - Pernille H Hellmann
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, DK-2900 Hellerup, Denmark
| | - Jens F Rehfeld
- Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Bolette Hartmann
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | | | - Jens J Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Tina Vilsbøll
- Clinical Research, Steno Diabetes Center Copenhagen, University of Copenhagen, DK-2730 Herlev, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Filip K Knop
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, DK-2900 Hellerup, Denmark
- Clinical Research, Steno Diabetes Center Copenhagen, University of Copenhagen, DK-2730 Herlev, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| |
Collapse
|
16
|
Chan JCN, Yang A, Chu N, Chow E. Current type 2 diabetes guidelines: Individualized treatment and how to make the most of metformin. Diabetes Obes Metab 2024; 26 Suppl 3:55-74. [PMID: 38992869 DOI: 10.1111/dom.15700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/24/2024] [Accepted: 05/24/2024] [Indexed: 07/13/2024]
Abstract
Evidence-based guidelines provide the premise for the delivery of quality care to preserve health and prevent disabilities and premature death. The systematic gathering of observational, mechanistic and experimental data contributes to the hierarchy of evidence used to guide clinical practice. In the field of diabetes, metformin was discovered more than 100 years ago, and with 60 years of clinical use, it has stood the test of time regarding its value in the prevention and management of type 2 diabetes. Although some guidelines have challenged the role of metformin as the first-line glucose-lowering drug, it is important to point out that the cardiovascular-renal protective effects of sodium-glucose co-transporter-2 inhibitors and glucagon-like peptide-1 receptor agonists were gathered from patients with type 2 diabetes, the majority of whom were treated with metformin. Most national, regional and international guidelines recommend metformin as a foundation therapy with emphasis on avoidance of therapeutic inertia and early attainment of multiple treatment goals. Moreover, real-world evidence has confirmed the glucose-lowering and cardiovascular-renal benefits of metformin accompanied by an extremely low risk of lactic acidosis. In patients with type 2 diabetes and advanced chronic kidney disease (estimated glomerular filtration rate 15-30 mL/min/1.73m2), metformin discontinuation was associated with an increased risk of cardiovascular-renal events compared with metformin persistence. Meanwhile, it is understood that microbiota, nutrients and metformin can interact through the gut-brain-kidney axis to modulate homeostasis of bioactive molecules, systemic inflammation and energy metabolism. While these biological changes contribute to the multisystem effects of metformin, they may also explain the gastrointestinal side effects and vitamin B12 deficiency associated with metformin intolerance. By understanding the interactions between metformin, foods and microbiota, healthcare professionals are in a better position to optimize the use of metformin and mitigate potential side effects. The United Kingdom Prospective Diabetes Study and the Da Qing Diabetes Prevention Program commenced 40 years ago provided the first evidence that type 2 diabetes is preventable and treatable. To drive real-world impact from this evidence, payors, practitioners and planners need to co-design and implement an integrated, data-driven, metformin-based programme to detect people with undiagnosed diabetes and prediabetes (intermediate hyperglycaemia), notably impaired glucose tolerance, for early intervention. The systematic data collection will create real-world evidence to bring out the best of metformin and make healthcare sustainable, affordable and accessible.
Collapse
Affiliation(s)
- Juliana C N Chan
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
- Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
- Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
| | - Aimin Yang
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
- Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
- Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
| | - Natural Chu
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
- Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
- Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
| | - Elaine Chow
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
- Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
- Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
- Phase 1 Clinical Trial Centre, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
| |
Collapse
|
17
|
Petrie JR. Metformin beyond type 2 diabetes: Emerging and potential new indications. Diabetes Obes Metab 2024; 26 Suppl 3:31-41. [PMID: 38965738 DOI: 10.1111/dom.15756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/16/2024] [Accepted: 06/16/2024] [Indexed: 07/06/2024]
Abstract
Metformin is best known as a foundational therapy for type 2 diabetes but is also used in other contexts in clinical medicine with a number of emerging and potential indications. Many of its beneficial effects may be mediated by modest effects on weight loss and insulin sensitivity, but it has multiple other known mechanisms of action. Current clinical uses beyond type 2 diabetes include: polycystic ovarian syndrome; diabetes in pregnancy/gestational diabetes; prevention of type 2 diabetes in prediabetes; and adjunct therapy in type 1 diabetes. As metformin has been in clinical use for almost 70 years, much of the underpinning evidence for its use in these conditions is, by definition, based on trials conducted before the advent of contemporary evidence-based medicine. As a result, some of the above-established uses are 'off-label' in many regulatory territories and their use varies accordingly in different countries. Going forward, several current 'repurposing' investigational uses of metformin are also being investigated: prevention of cancer (including in Li Fraumeni syndrome), renal protection, Alzheimer's disease, metabolic dysfunction-associated steatotic liver disease and promotion of healthy ageing. Despite the longevity of metformin and its important current roles beyond type 2 diabetes in clinical medicine, it has further potential and much research is ongoing.
Collapse
Affiliation(s)
- John R Petrie
- School of Health and Wellbeing, University of Glasgow, Glasgow, UK
| |
Collapse
|
18
|
Bailey CJ. Metformin: Therapeutic profile in the treatment of type 2 diabetes. Diabetes Obes Metab 2024; 26 Suppl 3:3-19. [PMID: 38784991 DOI: 10.1111/dom.15663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/02/2024] [Accepted: 05/05/2024] [Indexed: 05/25/2024]
Abstract
Metformin (dimethyl-biguanide) can claim its origins in the use of Galega officinalis as a plant treatment for symptoms ascribed to diabetes. Since the first clinical use of metformin as a glucose-lowering agent in 1957, this medicine has emerged as a first-line pharmacological option to support lifestyle interventions in the management of type 2 diabetes (T2D). It acts through multiple cellular pathways, principally in the gut, liver and muscle, to counter insulin resistance and lower blood glucose without weight gain or risk of overt hypoglycaemia. Other effects include improvements in lipid metabolism, decreased inflammation and lower long-term cardiovascular risk. Metformin is conveniently combined with other diabetes medications, can be prescribed in prediabetes to reduce the risk of progression to T2D, and is used in some regions to assist glycaemic control in pregnancy. Consistent with its diversity of actions, established safety profile and cost-effectiveness, metformin is being assessed for further possible clinical applications. The use of metformin requires adequate renal function for drug elimination, and may cause initial gastrointestinal side effects, which can be moderated by taking with meals or using an extended-release formulation. Thus, metformin serves as a valuable therapeutic resource for use throughout the natural history of T2D.
Collapse
|
19
|
Fardous RS, Alshmmari S, Tawfik E, Khadra I, Ramadan Q, Zourob M. An Integrated and Modular Compartmentalized Microfluidic System with Tunable Electrospun Porous Membranes for Epithelialized Organs-on-a-Chip. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39047263 DOI: 10.1021/acsami.4c08864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
A modular and 3D compartmentalized microfluidic system with electrospun porous membranes (PMs) for epithelialized organ-on-a-chip systems is presented. Our novel approach involves direct deposition of polymer nanofibers onto a patterned poly(methyl methacrylate) (PMMA) substrate using electrospinning, resulting in an integrated PM within the microfluidic chip. The in situ deposition of the PM eliminates the need for additional assembly processes. To demonstrate the high throughput membrane integration capability of our approach, we successfully deposited nanofibers onto various chip designs with complex microfluidic planar structures and expanded dimensions. We characterized and tested the fully PMMA chip by growing an epithelial monolayer using the Caco-2 cell line to study drug permeability. A comprehensive analysis of the bulk and surface properties of the membrane's fibers made of PMMA and polystyrene (PS) was conducted to determine the polymer with the best performance for cell culture and drug transport applications. The PMMA-based membrane, with a PMMA/PVP ratio of 5:1, allowed for the fabrication of a uniform membrane structure along the aligned nanofibers. By modulating the fiber diameter and total thickness of the membrane, we could adjust the membrane's porosity for specific cell culture applications. The PMMA-PVP nanofibers exhibited a low polydispersity index value, indicating monodispersed nanofibers and a more homogeneous and uniform fiber network. Both types of membranes demonstrated excellent mechanical integrity under medium perfusion flow rates. However, the PMMA-PVP composition offered a tailored porous structure with modulable porosity based on the fiber diameter and thickness. Our developed platform enables dynamic in vitro modeling of the epithelial barrier and has applications in drug transport and in vitro microphysiological systems.
Collapse
Affiliation(s)
- Roa S Fardous
- Strathclyde Institute of Pharmacy and Biomedical Sciences, Strathclyde University, Glasgow G4 0RE, U.K
- Alfaisal University, Riyadh 11533, Kingdome Saudi Arabia
| | - Sultan Alshmmari
- Leibniz Institute of Photonic Technology, Albert-Einstein-Straße 9, Jena 07745, Germany
- Alfaisal University, Riyadh 11533, Kingdome Saudi Arabia
| | - Essam Tawfik
- Advanced Diagnostics & Therapeutics Institute, King Abdulaziz City for Science and Technology, Riyadh 12354, Kingdome Saudi Arabia
| | - Ibrahim Khadra
- Strathclyde Institute of Pharmacy and Biomedical Sciences, Strathclyde University, Glasgow G4 0RE, U.K
| | - Qasem Ramadan
- Alfaisal University, Riyadh 11533, Kingdome Saudi Arabia
| | | |
Collapse
|
20
|
Vo N, Zhang Q, Sung HK. From fasting to fat reshaping: exploring the molecular pathways of intermittent fasting-induced adipose tissue remodeling. JOURNAL OF PHARMACY & PHARMACEUTICAL SCIENCES : A PUBLICATION OF THE CANADIAN SOCIETY FOR PHARMACEUTICAL SCIENCES, SOCIETE CANADIENNE DES SCIENCES PHARMACEUTIQUES 2024; 27:13062. [PMID: 39104461 PMCID: PMC11298356 DOI: 10.3389/jpps.2024.13062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 07/05/2024] [Indexed: 08/07/2024]
Abstract
Obesity, characterised by excessive fat accumulation, is a complex chronic condition that results from dysfunctional adipose tissue expansion due to prolonged calorie surplus. This leads to rapid adipocyte enlargement that exceeds the support capacity of the surrounding neurovascular network, resulting in increased hypoxia, inflammation, and insulin resistance. Intermittent fasting (IF), a dietary regimen that cycles between periods of fasting and eating, has emerged as an effective strategy to combat obesity and improve metabolic homeostasis by promoting healthy adipose tissue remodeling. However, the precise molecular and cellular mechanisms behind the metabolic improvements and remodeling of white adipose tissue (WAT) driven by IF remain elusive. This review aims to summarise and discuss the relationship between IF and adipose tissue remodeling and explore the potential mechanisms through which IF induces alterations in WAT. This includes several key structural changes, including angiogenesis and sympathetic innervation of WAT. We will also discuss the involvement of key signalling pathways, such as PI3K, SIRT, mTOR, and AMPK, which potentially play a crucial role in IF-mediated metabolic adaptations.
Collapse
Affiliation(s)
- Nathaniel Vo
- Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Qiwei Zhang
- Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Hoon-Ki Sung
- Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
21
|
Szymczak-Pajor I, Drzewoski J, Wenclewska S, Śliwińska A. Metformin-Associated Gastrointestinal Adverse Events Are Reduced by Probiotics: A Meta-Analysis. Pharmaceuticals (Basel) 2024; 17:898. [PMID: 39065748 PMCID: PMC11279730 DOI: 10.3390/ph17070898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 06/27/2024] [Accepted: 07/01/2024] [Indexed: 07/28/2024] Open
Abstract
Metformin, one of the most frequently used oral glucose-lowering drugs (GLDs), is associated with the occurrence of gastrointestinal (GI) adverse events in approximately 20% of users. These unwanted actions result in non-compliance or even discontinuation of metformin therapy. The aim of the presented meta-analysis was to determine whether adding a drug from the group of sulfonylureas, glitazones, DPP-IV inhibitors, or probiotics to metformin monotherapy may affect the risk of GI side effects. The material for this meta-analysis comprised data from 26 randomized controlled clinical trials (RCTs) published in English. This meta-analysis included 41,048 patients. The PubMed, Cochrane Library, and Clinical Trials databases were thoroughly searched to find relevant RCTs. The Population, Intervention, Comparison, Outcomes, and Study Type (PICOT) structure was used to formulate study selection criteria and the research question. Cochrane Review Manager Software 5.4 was used to carry out analysis of collected data. The results were presented as relative risk (RR) and 95% confidence interval (95% CI) for each group, and p < 0.05 was considered as statistically significant. As expected from clinical practice, metformin was associated with a markedly increased risk of abdominal pain, nausea, and vomiting compared to placebo. In comparison to other GLDs, taking metformin was related to an elevated risk of diarrhea and abdominal pain and to a lowered risk of vomiting and bloating. In turn, adding other GLDs to metformin treatment was associated with an elevated risk of nausea and vomiting than treatment with metformin in monotherapy. However, adding probiotics to metformin therapy was related to a decreased risk of diarrhea, bloating, and constipation. The obtained results demonstrate that the combination of metformin with other GLDs may elevate the risk of nausea and vomiting, whereas combination with probiotics decreases the risk of diarrhea, bloating, and constipation. Thus, the results of our meta-analysis suggest that probiotics may reduce the risk of some GI side effects in people with type 2 diabetes mellitus (T2DM) who started treatment with metformin.
Collapse
Affiliation(s)
- Izabela Szymczak-Pajor
- Department of Nucleic Acid Biochemistry, Medical University of Lodz, 251 Pomorska Str., 92-213 Lodz, Poland
| | - Józef Drzewoski
- Central Teaching Hospital of the Medical University of Lodz, 251 Pomorska Str., 92-213 Lodz, Poland;
| | - Sylwia Wenclewska
- Provincial Hospital Named after Primate Cardinal Stefan Wyszyński, 7 Armii Krajowej Str., 98-200 Sieradz, Poland;
| | - Agnieszka Śliwińska
- Department of Nucleic Acid Biochemistry, Medical University of Lodz, 251 Pomorska Str., 92-213 Lodz, Poland
| |
Collapse
|
22
|
Cheng M, Jia X, Ren L, Chen S, Wang W, Wang J, Cong B. Region-Specific Effects of Metformin on Gut Microbiome and Metabolome in High-Fat Diet-Induced Type 2 Diabetes Mouse Model. Int J Mol Sci 2024; 25:7250. [PMID: 39000356 PMCID: PMC11241422 DOI: 10.3390/ijms25137250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 06/26/2024] [Accepted: 06/26/2024] [Indexed: 07/16/2024] Open
Abstract
The glucose-lowering drug metformin alters the composition of the gut microbiome in patients with type 2 diabetes mellitus (T2DM) and other diseases. Nevertheless, most studies on the effects of this drug have relied on fecal samples, which provide limited insights into its local effects on different regions of the gut. Using a high-fat diet (HFD)-induced mouse model of T2DM, we characterize the spatial variability of the gut microbiome and associated metabolome in response to metformin treatment. Four parts of the gut as well as the feces were analyzed using full-length sequencing of 16S rRNA genes and targeted metabolomic analyses, thus providing insights into the composition of the microbiome and associated metabolome. We found significant differences in the gut microbiome and metabolome in each gut region, with the most pronounced effects on the microbiomes of the cecum, colon, and feces, with a significant increase in a variety of species belonging to Akkermansiaceae, Lactobacillaceae, Tannerellaceae, and Erysipelotrichaceae. Metabolomics analysis showed that metformin had the most pronounced effect on microbiome-derived metabolites in the cecum and colon, with several metabolites, such as carbohydrates, fatty acids, and benzenoids, having elevated levels in the colon; however, most of the metabolites were reduced in the cecum. Thus, a wide range of beneficial metabolites derived from the microbiome after metformin treatment were produced mainly in the colon. Our study highlights the importance of considering gut regions when understanding the effects of metformin on the gut microbiome and metabolome.
Collapse
Affiliation(s)
- Meihui Cheng
- Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Shijiazhuang 050017, China
- College of Forensic Medicine, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Medical University, Shijiazhuang 050017, China
- National Health Commission Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 102629, China
| | - Xianxian Jia
- Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Shijiazhuang 050017, China
- College of Forensic Medicine, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Medical University, Shijiazhuang 050017, China
- Department of Pathogen Biology, Institute of basic Medicine, Hebei Medical University, Shijiazhuang 050017, China
| | - Lili Ren
- Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Shijiazhuang 050017, China
- National Health Commission Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 102629, China
| | - Siqian Chen
- Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Shijiazhuang 050017, China
- College of Forensic Medicine, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Medical University, Shijiazhuang 050017, China
- National Health Commission Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 102629, China
| | - Wei Wang
- Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Shijiazhuang 050017, China
- College of Forensic Medicine, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Medical University, Shijiazhuang 050017, China
| | - Jianwei Wang
- Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Shijiazhuang 050017, China
- National Health Commission Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 102629, China
| | - Bin Cong
- Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Shijiazhuang 050017, China
- College of Forensic Medicine, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Medical University, Shijiazhuang 050017, China
| |
Collapse
|
23
|
Szemerédi N, Schelz Z, Horvath DA, Rácz B, Szatmári AG, Muddather HF, Bózsity N, Zupkó I, Spengler G. Impact of V9302, a Competitive Antagonist of Transmembrane Glutamine Flux on Reversal of Resistance in Breast Cancer Cell Lines. Pharmaceutics 2024; 16:877. [PMID: 39065573 PMCID: PMC11280048 DOI: 10.3390/pharmaceutics16070877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/16/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024] Open
Abstract
Chemotherapy is a known treatment modality that improves the long-term survival of breast cancer patients. However, due to the resistance to numerous anticancer drugs, alternative chemotherapeutic strategies are required. Regarding antimetabolic drugs, several compounds have proven anticancer properties, such as statins. The present study aimed to investigate the in vitro effects of V9302, a competitive antagonist of glutamine flux, on different subtypes of breast cancers (estrogen, progesterone, and HER2 receptor-positive or negative, and Pgp-negative and Pgp-overexpressing). The interactions of V9302 with standard chemotherapeutic drugs (doxorubicin and cisplatin) were also determined by MTT staining on breast cancer cell lines. Furthermore, the influence of V9302 on the cell cycle of MCF-7 and its Pgp-overexpressing counterpart KCR was monitored by flow cytometry. It was shown that V9302 exerted synergistic interactions with doxorubicin in all breast cancer cell lines. In cell cycle analysis, the KCR cell line was more sensitive to V9302. After 48 h, cell proliferation was completely blocked, and elevated G1, suppressed S, and decreased G2/M could be detected. Inhibition of glutamate transport can be assumed to block resistance related to Pgp.
Collapse
Affiliation(s)
- Nikoletta Szemerédi
- Department of Medical Microbiology, Albert Szent-Györgyi Health Center and Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis utca 6, 6725 Szeged, Hungary; (N.S.); (B.R.)
| | - Zsuzsanna Schelz
- Institute of Pharmacodynamics and Biopharmacy, Faculty of Pharmacy, University of Szeged, Eötvös utca. 6, 6720 Szeged, Hungary; (Z.S.); (H.F.M.); (N.B.)
| | - Dária Antónia Horvath
- Department of Medical Microbiology, Albert Szent-Györgyi Health Center and Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis utca 6, 6725 Szeged, Hungary; (N.S.); (B.R.)
| | - Bálint Rácz
- Department of Medical Microbiology, Albert Szent-Györgyi Health Center and Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis utca 6, 6725 Szeged, Hungary; (N.S.); (B.R.)
| | - András G. Szatmári
- Department of Medical Microbiology, Albert Szent-Györgyi Health Center and Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis utca 6, 6725 Szeged, Hungary; (N.S.); (B.R.)
| | - Hiba F. Muddather
- Institute of Pharmacodynamics and Biopharmacy, Faculty of Pharmacy, University of Szeged, Eötvös utca. 6, 6720 Szeged, Hungary; (Z.S.); (H.F.M.); (N.B.)
| | - Noémi Bózsity
- Institute of Pharmacodynamics and Biopharmacy, Faculty of Pharmacy, University of Szeged, Eötvös utca. 6, 6720 Szeged, Hungary; (Z.S.); (H.F.M.); (N.B.)
| | - István Zupkó
- Institute of Pharmacodynamics and Biopharmacy, Faculty of Pharmacy, University of Szeged, Eötvös utca. 6, 6720 Szeged, Hungary; (Z.S.); (H.F.M.); (N.B.)
| | - Gabriella Spengler
- Department of Medical Microbiology, Albert Szent-Györgyi Health Center and Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis utca 6, 6725 Szeged, Hungary; (N.S.); (B.R.)
| |
Collapse
|
24
|
Sarkar A, Fanous KI, Marei I, Ding H, Ladjimi M, MacDonald R, Hollenberg MD, Anderson TJ, Hill MA, Triggle CR. Repurposing Metformin for the Treatment of Atrial Fibrillation: Current Insights. Vasc Health Risk Manag 2024; 20:255-288. [PMID: 38919471 PMCID: PMC11198029 DOI: 10.2147/vhrm.s391808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 06/05/2024] [Indexed: 06/27/2024] Open
Abstract
Metformin is an orally effective anti-hyperglycemic drug that despite being introduced over 60 years ago is still utilized by an estimated 120 to 150 million people worldwide for the treatment of type 2 diabetes (T2D). Metformin is used off-label for the treatment of polycystic ovary syndrome (PCOS) and for pre-diabetes and weight loss. Metformin is a safe, inexpensive drug with side effects mostly limited to gastrointestinal issues. Prospective clinical data from the United Kingdom Prospective Diabetes Study (UKPDS), completed in 1998, demonstrated that metformin not only has excellent therapeutic efficacy as an anti-diabetes drug but also that good glycemic control reduced the risk of micro- and macro-vascular complications, especially in obese patients and thereby reduced the risk of diabetes-associated cardiovascular disease (CVD). Based on a long history of clinical use and an excellent safety record metformin has been investigated to be repurposed for numerous other diseases including as an anti-aging agent, Alzheimer's disease and other dementias, cancer, COVID-19 and also atrial fibrillation (AF). AF is the most frequently diagnosed cardiac arrythmia and its prevalence is increasing globally as the population ages. The argument for repurposing metformin for AF is based on a combination of retrospective clinical data and in vivo and in vitro pre-clinical laboratory studies. In this review, we critically evaluate the evidence that metformin has cardioprotective actions and assess whether the clinical and pre-clinical evidence support the use of metformin to reduce the risk and treat AF.
Collapse
Affiliation(s)
- Aparajita Sarkar
- Department of Medical Education, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Kareem Imad Fanous
- Department of Medical Education, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Isra Marei
- Department of Pharmacology & Medical Education, Weill Cornell Medicine- Qatar, Doha, Qatar
| | - Hong Ding
- Department of Pharmacology & Medical Education, Weill Cornell Medicine- Qatar, Doha, Qatar
| | - Moncef Ladjimi
- Department of Biochemistry & Medical Education, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Ross MacDonald
- Health Sciences Library, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Morley D Hollenberg
- Department of Physiology & Pharmacology, and Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Todd J Anderson
- Department of Cardiac Sciences and Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Michael A Hill
- Dalton Cardiovascular Research Center & Department of Medical Pharmacology & Physiology, School of Medicine, University of Missouri, Columbia, Missouri, USA
| | - Chris R Triggle
- Department of Pharmacology & Medical Education, Weill Cornell Medicine- Qatar, Doha, Qatar
| |
Collapse
|
25
|
Xu H, Liu Z, Xu W, Zhang Y. Beneficial In Vitro Effects of Polysaccharide and Non-Polysaccharide Components of Dendrobium huoshanense on Gut Microbiota of Rats with Type 1 Diabetes as Opposed to Metformin. Molecules 2024; 29:2791. [PMID: 38930856 PMCID: PMC11206810 DOI: 10.3390/molecules29122791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 06/07/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024] Open
Abstract
The extract of Dendrobium huoshanense, a traditional Chinese medicinal and food homologous plant belonging to the family Orchidaceae, was previously reported to have hypoglycemic and antioxidant effects. In this study, the direct effects of polysaccharide (DHP) and non-polysaccharide (NDHP) components of D. huoshanense, as well as its water extract (DHWE) were compared with that of metformin (an antidiabetic drug) on the gut microbiota (collected from fecal flora) of rats with streptozotocin-induced type 1 diabetes (T1D) using an in vitro fermentation method. The results showed that DHWE, DHP, and NDHP reduced pH and increased bacterial proliferation and short-chain fatty acid (SCFA) content in fermentation broth. DHWE, DHP, NDHP and metformin promoted the production of acetic and propionic acid, acetic acid, propionic acid and butyric acid, and propionic acid, respectively. DHWE, DHP, and NDHP reduced the abundance of Proteobacteria (subdominant pathogenic bacteria) and increased the abundance of Firmicutes (dominant beneficial gut bacteria). NDHP also reduced the abundance of Bacteroidetes (beneficial and conditional pathogenic). Metformin increased the abundance of Proteobacteria and reduced the abundance of Firmicutes and Bacteroidetes. At the genus level, NDHP promoted the proliferation of Megamonas and Megasphaera and decreased harmful bacteria (e.g., Klebsiella), and DHP increased the abundance of Prevotellaceae (opportunistic and usually harmless). By contrast, metformin increased the abundance of harmful bacteria (e.g., Citrobacter) and reduced the abundance of beneficial bacteria (e.g., Oscillospira). Our study indicates that DHWE, DHP, and NDHP are potentially more beneficial than metformin on the gut microbiota of T1D rats in vitro.
Collapse
Affiliation(s)
- Haijun Xu
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an 237012, China; (Z.L.); (W.X.); (Y.Z.)
- Engineering Laboratory of Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources in Anhui Province, Lu’an 237012, China
- Anhui Province Key Laboratory for Quality Evaluation and Improvement of Traditional Chinese Medicine, Lu’an 237012, China
| | - Zhu Liu
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an 237012, China; (Z.L.); (W.X.); (Y.Z.)
| | - Wen Xu
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an 237012, China; (Z.L.); (W.X.); (Y.Z.)
| | - Yafei Zhang
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an 237012, China; (Z.L.); (W.X.); (Y.Z.)
| |
Collapse
|
26
|
Xu JX, Zhu QL, Bi YM, Peng YC. New evidence: Metformin unsuitable as routine adjuvant for breast cancer: a drug-target mendelian randomization analysis. BMC Cancer 2024; 24:691. [PMID: 38844880 PMCID: PMC11155042 DOI: 10.1186/s12885-024-12453-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 05/30/2024] [Indexed: 06/10/2024] Open
Abstract
PURPOSE The potential efficacy of metformin in breast cancer (BC) has been hotly discussed but never conclusive. This genetics-based study aimed to evaluate the relationships between metformin targets and BC risk. METHODS Metformin targets from DrugBank and genome-wide association study (GWAS) data from IEU OpenGWAS and FinnGen were used to investigate the breast cancer (BC)-metformin causal link with various Mendelian Randomization (MR) methods (e.g., inverse-variance-weighting). The genetic association between type 2 diabetes (T2D) and the drug target of metformin was also analyzed as a positive control. Sensitivity and pleiotropic tests ensured reliability. RESULTS The primary targets of metformin are PRKAB1, ETFDH and GPD1L. We found a causal association between PRKAB1 and T2D (odds ratio [OR] 0.959, P = 0.002), but no causal relationship was observed between metformin targets and overall BC risk (PRKAB1: OR 0.990, P = 0.530; ETFDH: OR 0.986, P = 0.592; GPD1L: OR 1.002, P = 0.806). A noteworthy causal relationship was observed between ETFDH and estrogen receptor (ER)-positive BC (OR 0.867, P = 0.018), and between GPD1L and human epidermal growth factor receptor 2 (HER2)-negative BC (OR 0.966, P = 0.040). Other group analyses did not yield positive results. CONCLUSION The star target of metformin, PRKAB1, does not exhibit a substantial causal association with the risk of BC. Conversely, metformin, acting as an inhibitor of ETFDH and GPD1L, may potentially elevate the likelihood of developing ER-positive BC and HER2-negative BC. Consequently, it is not advisable to employ metformin as a standard supplementary therapy for BC patients without T2D.
Collapse
Affiliation(s)
- Jing-Xuan Xu
- Department of General Surgery, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, 400021, China
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, Guangxi Province, 530021, China
| | - Qi-Long Zhu
- Pharmacy Department, The Ninth People's Hospital of Chongqing, Chongqing, 400015, China
| | - Yu-Miao Bi
- Department of General Surgery, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, 400021, China.
| | - Yu-Chong Peng
- Department of General Surgery, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, 400021, China.
| |
Collapse
|
27
|
El-Damanawi R, Stanley IK, Staatz C, Pascoe EM, Craig JC, Johnson DW, Mallett AJ, Hawley CM, Milanzi E, Hiemstra TF, Viecelli AK. Metformin for preventing the progression of chronic kidney disease. Cochrane Database Syst Rev 2024; 6:CD013414. [PMID: 38837240 PMCID: PMC11152183 DOI: 10.1002/14651858.cd013414.pub2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
BACKGROUND Metformin has been used in the management of diabetes for decades. It is an effective, low-cost intervention with a well-established safety profile. Emerging evidence suggests that metformin targets a number of pathways that lead to chronic kidney damage, and long-term use may, therefore, slow the rate of kidney function decline and chronic kidney disease (CKD) progression. OBJECTIVES To evaluate the effect of metformin therapy on kidney function decline in patients with CKD with or without diabetes mellitus and assess the safety and dose tolerability in this population. SEARCH METHODS We searched the Cochrane Kidney and Transplant Register of Studies up to 19 July 2023 with assistance from an Information Specialist using search terms relevant to this review. Studies in the Register are identified through searches of CENTRAL, MEDLINE, and EMBASE, conference proceedings, the International Clinical Trials Registry Platform (ICTRP) Search Portal and ClinicalTrials.gov. SELECTION CRITERIA We included randomised controlled trials (RCTs) that reported kidney-related outcomes with a minimum duration of 12 months delivery of the metformin intervention and whose eligibility criteria included adult participants with either i) a diagnosis of CKD of any aetiology and/or ii) those with a diagnosis of diabetes mellitus. Comparisons included placebo, no intervention, non-pharmacological interventions, other antidiabetic medications or any other active control. Studies that included patients on any modality of kidney replacement therapy were excluded. DATA COLLECTION AND ANALYSIS Two authors independently carried out data extraction using a standard data extraction form. The methodological quality of the included studies was assessed using the Cochrane risk of bias tool. Summary estimates of effect were obtained using a random-effects model, and results were expressed as risk ratios (RR) and their 95% confidence intervals (CI) for dichotomous outcomes and mean difference (MD) and 95% CI for continuous outcomes. Confidence in the evidence was assessed using the Grading of Recommendations Assessment, Development and Evaluation (GRADE) approach. MAIN RESULTS This review included 11 studies reporting on 8449 randomised participants. Studies were conducted in patient populations with Autosomal Dominant Polycystic Kidney Disease (ADPKD) (four studies) or diabetes mellitus (seven studies). Six studies compared metformin with no active control, four studies compared metformin with active controls (rosiglitazone, glyburide, pioglitazone, or glipizide), and one study included treatment arms that randomised to either metformin, diet and lifestyle modifications, or other antidiabetic therapies. The risk of bias in included studies varied; two studies were abstract-only publications and were judged to have a high risk of bias in most domains. Other included publications were judged to have a low risk of bias in most domains. Across comparisons, GRADE evaluations for most outcomes were judged as low or very low certainty, except for those relating to side effects, tolerance, and withdrawals, which were judged as moderate certainty. The evidence suggests that compared to placebo, metformin may result in i) a slightly smaller decline in kidney function (3 studies, 505 participants: MD 1.92 mL/min, 95% CI 0.33 to 3.51; I2 = 0%; low certainty), ii) very uncertain effects on the incidence of kidney failure (1 study, 753 participants: RR 1.20, 95% CI 0.17 to 8.49), iii) little or no effect on death (3 studies, 865 participants: RR 1.00, 95% CI 0.76 to 1.32; I2 = 0%; moderate certainty), iv) little or no effect on the incidence of serious adverse events (3 studies, 576 participants: RR 1.15, 95% CI 0.76 to 1.72; I2 = 0%; moderate certainty), and v) likely higher incidence of intolerance leading to study withdrawal than placebo (4 studies, 646 participants: RR 2.19, 95% CI 1.46 to 3.27; I2 = 0%; moderate certainty). The certainty of the evidence for proteinuria was very uncertain. Compared to other active controls (rosiglitazone, glyburide, pioglitazone, or glipizide), metformin i) demonstrated very uncertain effects on kidney function decline, ii) may result in little or no difference in death (3 studies, 5608 participants: RR 0.95 95% CI 0.63 to 1.43; I2 = 0%; low certainty), iii) probably results in little or no difference in intolerance leading to study withdrawal (3 studies, 5593 participants: RR 0.92, 95% CI, 0.79 to 1.08; I2 = 0%; moderate certainty), iv) probably results in little or no difference in the incidence of serious adverse events (2 studies, 5545 participants: RR 1.16, 95% CI 0.79 to 1.71; I2 = 0%; moderate certainty), and v) may increase the urinary albumin-creatinine ratio (2 studies, 3836 participants: MD 14.61, 95% CI 8.17 to 21.05; I2 = 0%; low certainty). No studies reported the incidence of kidney failure. AUTHORS' CONCLUSIONS This review highlights the lack of RCTs reporting on the effects of metformin on kidney function, particularly in patients with CKD. Future research in this field requires adequately powered RCTs comparing metformin to placebo or standard care in those with CKD. Seven ongoing studies were identified in this review, and future updates, including their findings, may further inform the results of this review.
Collapse
Affiliation(s)
| | | | - Christine Staatz
- School of Pharmacy, The University of Queensland, Brisbane, Australia
| | - Elaine M Pascoe
- Centre for Health Services Research, The University of Queensland, Brisbane, Australia
| | - Jonathan C Craig
- Cochrane Kidney and Transplant, Centre for Kidney Research, The Children's Hospital at Westmead, Westmead, Australia
- College of Medicine and Public Health, Flinders University, Adelaide, Australia
| | - David W Johnson
- Department of Kidney and Transplant Services, Princess Alexandra Hospital, Brisbane, Australia
- Australasian Kidney Trials Network, The University of Queensland, Herston, Australia
- Translational Research Institute, Brisbane, Australia
| | - Andrew J Mallett
- Australasian Kidney Trials Network, The University of Queensland, Herston, Australia
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
- College of Medicine and Dentistry, James Cook University, Townsville, Queensland, Australia
- Department of Renal Medicine, Townsville Hospital & Health Service, Townsville, Australia
| | - Carmel M Hawley
- Department of Kidney and Transplant Services, Princess Alexandra Hospital, Brisbane, Australia
- Australasian Kidney Trials Network, The University of Queensland, Herston, Australia
- Translational Research Institute, Brisbane, Australia
| | - Elasma Milanzi
- School of Population and Global Health, University of Melbourne, Melbourne, Australia
| | - Thomas F Hiemstra
- Cambridge Clinical Trials Unit, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Andrea K Viecelli
- Department of Kidney and Transplant Services, Princess Alexandra Hospital, Brisbane, Australia
- Australasian Kidney Trials Network, The University of Queensland, Herston, Australia
| |
Collapse
|
28
|
Xu S, Chen Y, Gong Y. Improvement of Theaflavins on Glucose and Lipid Metabolism in Diabetes Mellitus. Foods 2024; 13:1763. [PMID: 38890991 PMCID: PMC11171799 DOI: 10.3390/foods13111763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/28/2024] [Accepted: 06/03/2024] [Indexed: 06/20/2024] Open
Abstract
In diabetes mellitus, disordered glucose and lipid metabolisms precipitate diverse complications, including nonalcoholic fatty liver disease, contributing to a rising global mortality rate. Theaflavins (TFs) can improve disorders of glycolipid metabolism in diabetic patients and reduce various types of damage, including glucotoxicity, lipotoxicity, and other associated secondary adverse effects. TFs exert effects to lower blood glucose and lipids levels, partly by regulating digestive enzyme activities, activation of OATP-MCT pathway and increasing secretion of incretins such as GIP. By the Ca2+-CaMKK ꞵ-AMPK and PI3K-AKT pathway, TFs promote glucose utilization and inhibit endogenous glucose production. Along with the regulation of energy metabolism by AMPK-SIRT1 pathway, TFs enhance fatty acids oxidation and reduce de novo lipogenesis. As such, the administration of TFs holds significant promise for both the prevention and amelioration of diabetes mellitus.
Collapse
Affiliation(s)
- Shiyu Xu
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Changsha 410128, China;
- Key Laboratory of Tea Science of Ministry of Education, Changsha 410128, China
| | - Ying Chen
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Changsha 410128, China;
- Key Laboratory of Tea Science of Ministry of Education, Changsha 410128, China
| | - Yushun Gong
- Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Changsha 410128, China
- Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
29
|
Chaudhary S, Kulkarni A. Metformin: Past, Present, and Future. Curr Diab Rep 2024; 24:119-130. [PMID: 38568468 DOI: 10.1007/s11892-024-01539-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/12/2024] [Indexed: 05/12/2024]
Abstract
PURPOSE OF REVIEW This review provides the most recent update of metformin, a biguanide oral antihyperglycemic drug used as a first-line treatment in type 2 diabetes mellitus. RECENT FINDINGS Metformin continues to dominate in the world of antidiabetics, and its use will continue to rise because of its high efficiency and easy availability. Apart from type 2 diabetes, research is exploring its potential in other conditions such as cancer, memory loss, bone disorders, immunological diseases, and aging. Metformin is the most prescribed oral antidiabetic worldwide. It has been in practical use for the last six decades and continues to be the preferred drug for newly diagnosed type 2 diabetes mellitus. It reduces glucose levels by decreasing hepatic glucose production, reducing intestinal glucose absorption, and increasing insulin sensitivity. It can be used as monotherapy or combined with other antidiabetics like sulfonylureas, DPP-4 inhibitors, SGLT-2 inhibitors, or insulin, improving its efficacy. Metformin can be used once or twice daily, depending on requirements. Prolonged usage of metformin may lead to abdominal discomfort, deficiency of Vitamin B12, or lactic acidosis. It should be used carefully in patients with renal impairment. Recent studies have explored additional benefits of metformin in polycystic ovarian disease, gestational diabetes mellitus, cognitive disorders, and immunological diseases. However, more extensive studies are needed to confirm these additional benefits.
Collapse
|
30
|
Froldi G. View on Metformin: Antidiabetic and Pleiotropic Effects, Pharmacokinetics, Side Effects, and Sex-Related Differences. Pharmaceuticals (Basel) 2024; 17:478. [PMID: 38675438 PMCID: PMC11054066 DOI: 10.3390/ph17040478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 03/29/2024] [Accepted: 04/03/2024] [Indexed: 04/28/2024] Open
Abstract
Metformin is a synthetic biguanide used as an antidiabetic drug in type 2 diabetes mellitus, achieved by studying the bioactive metabolites of Galega officinalis L. It is also used off-label for various other diseases, such as subclinical diabetes, obesity, polycystic ovary syndrome, etc. In addition, metformin is proposed as an add-on therapy for several conditions, including autoimmune diseases, neurodegenerative diseases, and cancer. Although metformin has been used for many decades, it is still the subject of many pharmacodynamic and pharmacokinetic studies in light of its extensive use. Metformin acts at the mitochondrial level by inhibiting the respiratory chain, thus increasing the AMP/ATP ratio and, subsequently, activating the AMP-activated protein kinase. However, several other mechanisms have been proposed, including binding to presenilin enhancer 2, increasing GLP1 release, and modification of microRNA expression. Regarding its pharmacokinetics, after oral administration, metformin is absorbed, distributed, and eliminated, mainly through the renal route, using transporters for cationic solutes, since it exists as an ionic molecule at physiological pH. In this review, particular consideration has been paid to literature data from the last 10 years, deepening the study of clinical trials inherent to new uses of metformin, the differences in effectiveness and safety observed between the sexes, and the unwanted side effects. For this last objective, metformin safety was also evaluated using both VigiBase and EudraVigilance, respectively, the WHO and European databases of the reported adverse drug reactions, to assess the extent of metformin side effects in real-life use.
Collapse
Affiliation(s)
- Guglielmina Froldi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy
| |
Collapse
|
31
|
Leija RG, Curl CC, Arevalo JA, Osmond AD, Duong JJ, Huie MJ, Masharani U, Brooks GA. Enteric and systemic postprandial lactate shuttle phases and dietary carbohydrate carbon flow in humans. Nat Metab 2024; 6:670-677. [PMID: 38388706 PMCID: PMC11052717 DOI: 10.1038/s42255-024-00993-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 01/24/2024] [Indexed: 02/24/2024]
Abstract
Dietary glucose in excess is stored in the liver in the form of glycogen. As opposed to direct conversion of glucose into glycogen, the hypothesis of the postprandial lactate shuttle (PLS) proposes that dietary glucose uptake is metabolized to lactate in the gut, thereby being transferred to the liver for glycogen storage. In the present study, we provide evidence of a PLS in young healthy men and women. Overnight fasted participants underwent an oral glucose tolerance test, and arterialized lactate concentration and rate of appearance were determined. The concentration of lactate in the blood rose before the concentration of glucose, thus providing evidence of an enteric PLS. Secondary increments in the concentration of lactate in the blood and its rate of appearance coincided with those of glucose, which indicates the presence of a larger, secondary, systemic PLS phase driven by hepatic glucose release. The present study challenges the notion that lactate production is the result of hypoxia in skeletal muscles, because our work indicates that glycolysis proceeds to lactate in fully aerobic tissues and dietary carbohydrate is processed via lactate shuttling. Our study proposes that, in humans, lactate is a major vehicle for carbohydrate carbon distribution and metabolism.
Collapse
Affiliation(s)
- Robert G Leija
- Exercise Physiology Laboratory, Department of Integrative Biology, University of California, Berkeley, CA, USA
| | - Casey C Curl
- Exercise Physiology Laboratory, Department of Integrative Biology, University of California, Berkeley, CA, USA
| | - Jose A Arevalo
- Exercise Physiology Laboratory, Department of Integrative Biology, University of California, Berkeley, CA, USA
| | - Adam D Osmond
- Exercise Physiology Laboratory, Department of Integrative Biology, University of California, Berkeley, CA, USA
| | - Justin J Duong
- Exercise Physiology Laboratory, Department of Integrative Biology, University of California, Berkeley, CA, USA
| | - Melvin J Huie
- Exercise Physiology Laboratory, Department of Integrative Biology, University of California, Berkeley, CA, USA
| | - Umesh Masharani
- Department of Medicine, University of California, San Francisco, CA, USA
| | - George A Brooks
- Exercise Physiology Laboratory, Department of Integrative Biology, University of California, Berkeley, CA, USA.
| |
Collapse
|
32
|
Cheng M, Ren L, Jia X, Wang J, Cong B. Understanding the action mechanisms of metformin in the gastrointestinal tract. Front Pharmacol 2024; 15:1347047. [PMID: 38617792 PMCID: PMC11010946 DOI: 10.3389/fphar.2024.1347047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 03/15/2024] [Indexed: 04/16/2024] Open
Abstract
Metformin is the initial medication recommended for the treatment of type 2 diabetes mellitus (T2DM). In addition to diabetes treatment, the function of metformin also can be anti-aging, antiviral, and anti-inflammatory. Nevertheless, further exploration is required to fully understand its mode of operation. Historically, the liver has been acknowledged as the main location where metformin reduces glucose levels, however, there is increasing evidence suggesting that the gastrointestinal tract also plays a significant role in its action. In the gastrointestinal tract, metformin effects glucose uptake and absorption, increases glucagon-like peptide-1 (GLP-1) secretion, alters the composition and structure of the gut microbiota, and modulates the immune response. However, the side effects of it cannot be ignored such as gastrointestinal distress in patients. This review outlines the impact of metformin on the digestive system and explores potential explanations for variations in metformin effectiveness and adverse effects like gastrointestinal discomfort.
Collapse
Affiliation(s)
- Meihui Cheng
- Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- College of Forensic Medicine, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Medical University, Shijiazhuang, China
- NHC Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lili Ren
- Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- NHC Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xianxian Jia
- Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Pathogen Biology, Institute of Basic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Jianwei Wang
- Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- NHC Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bin Cong
- Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- College of Forensic Medicine, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
33
|
Perazza F, Leoni L, Colosimo S, Musio A, Bocedi G, D’Avino M, Agnelli G, Nicastri A, Rossetti C, Sacilotto F, Marchesini G, Petroni ML, Ravaioli F. Metformin and the Liver: Unlocking the Full Therapeutic Potential. Metabolites 2024; 14:186. [PMID: 38668314 PMCID: PMC11052067 DOI: 10.3390/metabo14040186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 03/20/2024] [Accepted: 03/22/2024] [Indexed: 04/28/2024] Open
Abstract
Metformin is a highly effective medication for managing type 2 diabetes mellitus. Recent studies have shown that it has significant therapeutic benefits in various organ systems, particularly the liver. Although the effects of metformin on metabolic dysfunction-associated steatotic liver disease and metabolic dysfunction-associated steatohepatitis are still being debated, it has positive effects on cirrhosis and anti-tumoral properties, which can help prevent the development of hepatocellular carcinoma. Furthermore, it has been proven to improve insulin resistance and dyslipidaemia, commonly associated with liver diseases. While more studies are needed to fully determine the safety and effectiveness of metformin use in liver diseases, the results are highly promising. Indeed, metformin has a terrific potential for extending its full therapeutic properties beyond its traditional use in managing diabetes.
Collapse
Affiliation(s)
- Federica Perazza
- Department of Medical and Surgical Sciences, IRCCS Azienda Ospedaliero, Universitaria di Bologna, 40138 Bologna, Italy; (F.P.); (L.L.); (G.A.); (A.N.); (C.R.); (F.S.); (G.M.); (M.L.P.)
| | - Laura Leoni
- Department of Medical and Surgical Sciences, IRCCS Azienda Ospedaliero, Universitaria di Bologna, 40138 Bologna, Italy; (F.P.); (L.L.); (G.A.); (A.N.); (C.R.); (F.S.); (G.M.); (M.L.P.)
| | - Santo Colosimo
- Doctorate School of Nutrition Science, University of Milan, 20122 Milan, Italy;
| | | | - Giulia Bocedi
- U.O. Diabetologia, Ospedale C. Magati, Scandiano, 42019 Reggio Emilia, Italy;
| | - Michela D’Avino
- S.C. Endocrinologia Arcispedale Santa Maria Nuova, 42123 Reggio Emilia, Italy;
| | - Giulio Agnelli
- Department of Medical and Surgical Sciences, IRCCS Azienda Ospedaliero, Universitaria di Bologna, 40138 Bologna, Italy; (F.P.); (L.L.); (G.A.); (A.N.); (C.R.); (F.S.); (G.M.); (M.L.P.)
| | - Alba Nicastri
- Department of Medical and Surgical Sciences, IRCCS Azienda Ospedaliero, Universitaria di Bologna, 40138 Bologna, Italy; (F.P.); (L.L.); (G.A.); (A.N.); (C.R.); (F.S.); (G.M.); (M.L.P.)
| | - Chiara Rossetti
- Department of Medical and Surgical Sciences, IRCCS Azienda Ospedaliero, Universitaria di Bologna, 40138 Bologna, Italy; (F.P.); (L.L.); (G.A.); (A.N.); (C.R.); (F.S.); (G.M.); (M.L.P.)
| | - Federica Sacilotto
- Department of Medical and Surgical Sciences, IRCCS Azienda Ospedaliero, Universitaria di Bologna, 40138 Bologna, Italy; (F.P.); (L.L.); (G.A.); (A.N.); (C.R.); (F.S.); (G.M.); (M.L.P.)
| | - Giulio Marchesini
- Department of Medical and Surgical Sciences, IRCCS Azienda Ospedaliero, Universitaria di Bologna, 40138 Bologna, Italy; (F.P.); (L.L.); (G.A.); (A.N.); (C.R.); (F.S.); (G.M.); (M.L.P.)
| | - Maria Letizia Petroni
- Department of Medical and Surgical Sciences, IRCCS Azienda Ospedaliero, Universitaria di Bologna, 40138 Bologna, Italy; (F.P.); (L.L.); (G.A.); (A.N.); (C.R.); (F.S.); (G.M.); (M.L.P.)
| | - Federico Ravaioli
- Department of Medical and Surgical Sciences, IRCCS Azienda Ospedaliero, Universitaria di Bologna, 40138 Bologna, Italy; (F.P.); (L.L.); (G.A.); (A.N.); (C.R.); (F.S.); (G.M.); (M.L.P.)
- Division of Hepatobiliary and Immunoallergic Diseases, Department of Internal Medicine, IRCCS Azienda Ospedaliero, Universitaria di Bologna, 40138 Bologna, Italy
| |
Collapse
|
34
|
Niu H, Zhou M, Zogona D, Xing Z, Wu T, Chen R, Cui D, Liang F, Xu X. Akkermansia muciniphila: a potential candidate for ameliorating metabolic diseases. Front Immunol 2024; 15:1370658. [PMID: 38571945 PMCID: PMC10987721 DOI: 10.3389/fimmu.2024.1370658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 03/11/2024] [Indexed: 04/05/2024] Open
Abstract
Metabolic diseases are comprehensive disease based on obesity. Numerous cumulative studies have shown a certain correlation between the fluctuating abundance of Akkermansia muciniphila and the occurrence of metabolic diseases. A. muciniphila, a potential probiotic candidate colonized in the human intestinal mucus layer, and its derivatives have various physiological functions, including treating metabolic disorders and maintaining human health. This review systematically explicates the abundance change rules of A. muciniphila in metabolic diseases. It also details the high efficacy and specific molecules mechanism of A. muciniphila and its derivatives in treating obesity, type 2 diabetes mellitus, cardiovascular disease, and non-alcoholic fatty liver disease.
Collapse
Affiliation(s)
- Huifang Niu
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), Hubei Key Laboratory of Fruit Vegetable Processing Quality Control (Huazhong Agricultural University), School of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Minfeng Zhou
- Union Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Daniel Zogona
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), Hubei Key Laboratory of Fruit Vegetable Processing Quality Control (Huazhong Agricultural University), School of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Zheng Xing
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), Hubei Key Laboratory of Fruit Vegetable Processing Quality Control (Huazhong Agricultural University), School of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Ting Wu
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), Hubei Key Laboratory of Fruit Vegetable Processing Quality Control (Huazhong Agricultural University), School of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Rui Chen
- Union Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Dandan Cui
- Union Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Fengxia Liang
- School of Acupuncture and Bone Injury, Hubei University of Chinese Medicine, Wuhan, China
| | - Xiaoyun Xu
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), Hubei Key Laboratory of Fruit Vegetable Processing Quality Control (Huazhong Agricultural University), School of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| |
Collapse
|
35
|
Wang F, Liu X, Huang F, Zhou Y, Wang X, Song Z, Wang S, Wang X, Shi D, Ruan G, Ji X, Zhang E, Tan Z, Ye Y, Wang C, Zhu J, Wang W. Gut microbiota-derived gamma-aminobutyric acid from metformin treatment reduces hepatic ischemia/reperfusion injury through inhibiting ferroptosis. eLife 2024; 12:RP89045. [PMID: 38488837 PMCID: PMC10942780 DOI: 10.7554/elife.89045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2024] Open
Abstract
Hepatic ischemia/reperfusion injury (HIRI) is a common and inevitable factor leading to poor prognosis in various liver diseases, making the outcomes of current treatments in clinic unsatisfactory. Metformin has been demonstrated to be beneficial to alleviate HIRI in recent studies, however, the underpinning mechanism remains unclear. In this study, we found metformin mitigates HIRI-induced ferroptosis through reshaped gut microbiota in mice, which was confirmed by the results of fecal microbiota transplantation treatment but showed the elimination of the beneficial effects when gut bacteria were depleted using antibiotics. Detailedly, through 16S rRNA and metagenomic sequencing, we identified that the metformin-reshaped microbiota was characterized by the increase of gamma-aminobutyric acid (GABA) producing bacteria. This increase was further confirmed by the elevation of GABA synthesis key enzymes, glutamic acid decarboxylase and putrescine aminotransferase, in gut microbes of metformin-treated mice and healthy volunteers. Furthermore, the benefit of GABA against HIRI-induced ferroptosis was demonstrated in GABA-treated mice. Collectively, our data indicate that metformin can mitigate HIRI-induced ferroptosis by reshaped gut microbiota, with GABA identified as a key metabolite.
Collapse
Affiliation(s)
- Fangyan Wang
- Institute of Ischemia/Reperfusion Injury, School of Basic Medical Science, Wenzhou Medical UniversityWenzhouChina
| | - Xiujie Liu
- Institute of Ischemia/Reperfusion Injury, School of Basic Medical Science, Wenzhou Medical UniversityWenzhouChina
- Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, The University of Nottingham NingboNingboChina
- Suzhou Inhal Pharma Co., Ltd.SuzhouChina
| | - Furong Huang
- Institute of Ischemia/Reperfusion Injury, School of Basic Medical Science, Wenzhou Medical UniversityWenzhouChina
| | - Yan Zhou
- Wenzhou Key Laboratory of Sanitary Microbiology, Wenzhou Medical UniversityWenzhouChina
| | - Xinyu Wang
- Institute of Ischemia/Reperfusion Injury, School of Basic Medical Science, Wenzhou Medical UniversityWenzhouChina
| | - Zhengyang Song
- Institute of Ischemia/Reperfusion Injury, School of Basic Medical Science, Wenzhou Medical UniversityWenzhouChina
| | - Sisi Wang
- Institute of Ischemia/Reperfusion Injury, School of Basic Medical Science, Wenzhou Medical UniversityWenzhouChina
| | - Xiaoting Wang
- Institute of Ischemia/Reperfusion Injury, School of Basic Medical Science, Wenzhou Medical UniversityWenzhouChina
| | - Dibang Shi
- Department of Gastroenterology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Gaoyi Ruan
- Department of Gastroenterology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Xiawei Ji
- Department of Gastroenterology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Eryao Zhang
- Department of Gastroenterology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Zenglin Tan
- Institute of Ischemia/Reperfusion Injury, School of Basic Medical Science, Wenzhou Medical UniversityWenzhouChina
| | - Yuqing Ye
- Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, The University of Nottingham NingboNingboChina
- Suzhou Inhal Pharma Co., Ltd.SuzhouChina
| | - Chuang Wang
- Medical School of Ningbo University, Ningbo UniversityNingboChina
| | - Jesse Zhu
- Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, The University of Nottingham NingboNingboChina
- Suzhou Inhal Pharma Co., Ltd.SuzhouChina
| | - Wantie Wang
- Institute of Ischemia/Reperfusion Injury, School of Basic Medical Science, Wenzhou Medical UniversityWenzhouChina
| |
Collapse
|
36
|
Heidarpour M, Mojarad M, Mazaheri-Tehrani S, Kachuei A, Najimi A, Shafie D, Rezvanian H. Comparative Effectiveness of Antidiabetic Drugs as an Additional Therapy to Metformin in Women with Polycystic Ovary Syndrome: A Systematic Review of Metabolic Approaches. Int J Endocrinol 2024; 2024:9900213. [PMID: 38500709 PMCID: PMC10948218 DOI: 10.1155/2024/9900213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/13/2024] [Accepted: 02/29/2024] [Indexed: 03/20/2024] Open
Abstract
Background Metformin is commonly prescribed to treat polycystic ovary syndrome (PCOS) patients, but in some cases, it may not be effective even at high doses or may cause intolerable side effects. Therefore, recent studies have examined the impact of combining metformin with other antidiabetic medications. Methods A systematic search was performed in Scopus, PubMed, Web of Science, and Embase up to 30 June 2023. All interventional studies that assessed the efficacy of different antidiabetic agents were included. Results Among the 3488 records found in the primary search, 16 papers were included. Our study showed that dipeptidyl peptidase-4 inhibitors (DPP4i) had the most significant impact on glycemic profile, while thiazolidinediones (TZDs) had the most influence on lipid levels. However, it was observed that patients taking only metformin experienced a greater increase in high-density lipoprotein cholesterol (HDL-C) levels. Glucagon-like peptide-1 receptor agonists (GLP1RAs) effectively modified various anthropometric measurements, such as weight, body mass index, waist circumference, and waist-to-hip ratio. The effects of different antidiabetic drugs on hormone levels were inconclusive, although testosterone levels were more affected by GLP1RA, sodium-glucose cotransporter-2 inhibitors (SGLT2i), and TZDs. None of the combined therapies showed a significant change in blood pressure. Conclusion Since PCOS is a metabolic disorder, choosing the best combination of antidiabetic drugs in the clinical course of PCOS patients will be very important. Today, it seems that we need a new metabolic approach for better treatment of the metabolic aspects of these patients.
Collapse
Affiliation(s)
- Maryam Heidarpour
- Isfahan Endocrine and Metabolism Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mehrzad Mojarad
- Isfahan Endocrine and Metabolism Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sadegh Mazaheri-Tehrani
- Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
- Heart Failure Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ali Kachuei
- Isfahan Endocrine and Metabolism Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Arash Najimi
- Medical Education Department, Medical Education Research Center, Education Development Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Davood Shafie
- Heart Failure Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hassan Rezvanian
- Isfahan Endocrine and Metabolism Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
37
|
Yang S, Hu Z, Wu P, Kirk T, Chen XD. In vitro release and bioaccessibility of oral solid preparations in a dynamic gastrointestinal system simulating fasted and fed states: A case study of metformin hydrochloride tablets. Int J Pharm 2024; 652:123869. [PMID: 38296171 DOI: 10.1016/j.ijpharm.2024.123869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 01/10/2024] [Accepted: 01/28/2024] [Indexed: 02/05/2024]
Abstract
Food and formulation characteristics are crucial factors affecting the gastrointestinal release and absorption kinetics of oral solid preparations. In the present study, the dynamic continuous release and bioaccessibility of metformin hydrochloride immediate-release (IR) and sustained-release (SR) tablets were investigated in the dynamic human stomach-intestine (DHSI-IV) system simulating fasted and fed states in healthy adults. Both tablet formulations (particularly IR tablet) exhibited a postponed release in the fed state compared to the fasted state. Correspondingly, the bioaccessible fraction of metformin from IR tablets in the presence of high-fat meal was significantly reduced to 76.2 % of the fasted state. However, the in vitro bioaccessibility was less impaired by food for SR tablets with a fed/fasted ratio of 95.5 %. A convolution-based approach was used to convert in vitro bioaccessibility results to plasma concentration data. The predicted plasma concentration curve showed good agreement with human data in terms of pharmacokinetic (PK) parameters. In the fasted state, the predicted Cmax, Tmax and AUC0-24h of IR tablets were 943.9 ± 25.7 ng/mL, 2.0 ± 0.4 h and 7090.7 ± 112.0 ng.h/mL, respectively, mirroring values observed in healthy subjects. Overall, the DHSI-IV system has demonstrated potential to assess and predict the impact of meal intake on the in vivo release and absorption behaviors of oral solid preparations.
Collapse
Affiliation(s)
- Shilei Yang
- Life Quality Engineering Interest Group, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu Province 215123, China; Xiao Dong Pro-health (Suzhou) Instrumentation Co Ltd, Suzhou, Jiangsu Province 215152, China
| | - Zejun Hu
- Life Quality Engineering Interest Group, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu Province 215123, China; Xiao Dong Pro-health (Suzhou) Instrumentation Co Ltd, Suzhou, Jiangsu Province 215152, China
| | - Peng Wu
- Life Quality Engineering Interest Group, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu Province 215123, China.
| | - Tim Kirk
- Life Quality Engineering Interest Group, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu Province 215123, China
| | - Xiao Dong Chen
- Life Quality Engineering Interest Group, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu Province 215123, China.
| |
Collapse
|
38
|
Rosell-Díaz M, Fernández-Real JM. Metformin, Cognitive Function, and Changes in the Gut Microbiome. Endocr Rev 2024; 45:210-226. [PMID: 37603460 PMCID: PMC10911951 DOI: 10.1210/endrev/bnad029] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 08/03/2023] [Accepted: 08/16/2023] [Indexed: 08/23/2023]
Abstract
The decline in cognitive function and the prevalence of neurodegenerative disorders are among the most serious threats to health in old age. The prevalence of dementia has reached 50 million people worldwide and has become a major public health problem. The causes of age-related cognitive impairment are multiple, complex, and difficult to determine. However, type 2 diabetes (T2D) is linked to an enhanced risk of cognitive impairment and dementia. Human studies have shown that patients with T2D exhibit dysbiosis of the gut microbiota. This dysbiosis may contribute to the development of insulin resistance and increased plasma lipopolysaccharide concentrations. Metformin medication mimics some of the benefits of calorie restriction and physical activity, such as greater insulin sensitivity and decreased cholesterol levels, and hence may also have a positive impact on aging in humans. According to recent human investigations, metformin might partially restore gut dysbiosis related to T2D. Likewise, some studies showed that metformin reduced the risk of dementia and improved cognition, although not all studies are concordant. Therefore, this review focused on those human studies describing the effects of metformin on the gut microbiome (specifically the changes in taxonomy, function, and circulating metabolomics), the changes in cognitive function, and their possible bidirectional implications.
Collapse
Affiliation(s)
- Marisel Rosell-Díaz
- Department of Diabetes, Endocrinology and Nutrition, Dr. Josep Trueta University Hospital, 17007 Girona, Spain
- Nutrition, Eumetabolism and Health Group, Girona Biomedical Research Institute (IdibGi), 17007 Girona, Spain
- CIBERobn Fisiopatología de la Obesidad y Nutrición, 28029 Madrid, Spain
| | - José Manuel Fernández-Real
- Department of Diabetes, Endocrinology and Nutrition, Dr. Josep Trueta University Hospital, 17007 Girona, Spain
- Nutrition, Eumetabolism and Health Group, Girona Biomedical Research Institute (IdibGi), 17007 Girona, Spain
- CIBERobn Fisiopatología de la Obesidad y Nutrición, 28029 Madrid, Spain
- Department of Medical Sciences, School of Medicine, University of Girona, 17004 Girona, Spain
| |
Collapse
|
39
|
Tasnim J, Hashim NM, Han HC. A comprehensive review on potential drug-drug interactions of proton pump inhibitors with antidiabetic drugs metformin and DPP-4 inhibitors. Cell Biochem Funct 2024; 42:e3967. [PMID: 38480622 DOI: 10.1002/cbf.3967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/22/2024] [Accepted: 02/23/2024] [Indexed: 03/22/2024]
Abstract
A drug interaction is a condition in which two or more drugs are taken at the same time. Type 2 diabetes mellitus is a significant contributor to polypharmacy. Proton pump inhibitors (PPIs) are often prescribed in combination with metformin or DPP-4 inhibitors (sitagliptin, saxagliptin, linagliptin, and alogliptin) or a combined dose of metformin and DPP-4 inhibitor to treat gastritis in diabetic patients. This review article mainly focused on evaluating the potential drug-drug interactions (DDIs) between PPIs (i.e. esomeprazole, lansoprazole, omeprazole, pantoprazole, and rabeprazole) with metformin and PPIs with DPP-4 inhibitors. The findings demonstrated the existence of pharmacokinetic and pharmacodynamic DDIs between the aforementioned PPIs with metformin and DPP-4 inhibitors, which could impact the biological activities (i.e., hypoglycemia) of these drugs. Moreover, this review suggested that esomeprazole could be the best drug in the PPI group to be prescribed simultaneously with metformin and DPP-4 inhibitors, as most of the antidiabetic drugs of this study did not show any interaction with esomeprazole. The findings of this study also revealed that both antidiabetic drugs and PPIs could have positive interactions as PPIs have the potential to lessen the gastrointestinal side effects of metformin and DPP-4 inhibitors. To achieve the greatest therapeutic impact with the fewest side effects, careful dose control of these drugs is required. So, more extensive research on both human and animal subjects are needed to ascertain the veracity of this hypothesis.
Collapse
Affiliation(s)
- Jarin Tasnim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Najihah Mohd Hashim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universiti Malaya, Kuala Lumpur, Malaysia
- Centre for Natural Products Research and Drug Discovery, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Heh Choon Han
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universiti Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
40
|
Colmer SF, Adams AA, Adam E, Miller R, Stefanovski D, Kulp JC, van Eps A. The effect of pre-dosing with metformin on the insulin response to oral sugar in insulin-dysregulated horses. Equine Vet J 2024; 56:318-325. [PMID: 37545128 DOI: 10.1111/evj.13979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 07/13/2023] [Indexed: 08/08/2023]
Abstract
BACKGROUND A single dose of metformin administered 1 h prior to oral glucose challenge was previously shown to reduce insulinaemic responses in horses with experimentally-induced insulin dysregulation (ID). Targeted administration could be useful for controlling post-prandial hyperinsulinaemia in horses with naturally-occurring ID. OBJECTIVES The objective was to compare the insulinaemic and glycaemic responses to oral sugar testing (OST) performed at different intervals after a single dose of metformin in horses with naturally-occurring ID. We hypothesised that pre-treatment with one dose of metformin would significantly decrease the insulinaemic response to OST. STUDY DESIGN Randomised cross-over in vivo experiment. METHODS Eight university-owned adult horses with naturally-occurring ID underwent OST 1, 2 and 6 h following a single oral dose of metformin (30 mg/kg) or 1 h after placebo (240 mL water) with a 7-day washout between treatments over a period of 3 weeks. Plasma insulin, C-peptide and glucose concentrations were measured at 0, 60 and 90 min after 0.45 mL/kg light corn syrup and the effect of treatment (and the interval since dosing) examined using a mixed effects linear regression model. RESULTS Metformin treatment had no significant effect on plasma glucose, insulin or C-peptide concentrations at any time point compared with placebo (p > 0.05). For OST 1 h post metformin, median (IQR) plasma insulin was 91.3 (62.4-114.9) μIU/mL at 60 min versus 76.2 (59.1-134.5) for placebo (p = 0.8) and 62.7 (31.4-109.7) at 90 min versus 51.8 (29.2-126.3) for placebo (p = 0.9). MAIN LIMITATIONS Small sample size may limit identification of more subtle decreases in insulin concentration with metformin pre-dosing. The results of this study are relevant only for one pre-treatment dose (30 mg/kg) which limits extrapolation to predictions about the effects of longer-term metformin administration on insulin and glucose dynamics in the horse. CONCLUSIONS AND CLINICAL IMPORTANCE The results do not support the use of targeted metformin treatment to reduce post-prandial hyperinsulinaemia in horses with naturally-occurring ID.
Collapse
Affiliation(s)
- Sarah F Colmer
- Department of Clinical Studies-New Bolton Center, The University of Pennsylvania School of Veterinary Medicine, Kennett Square, Pennsylvania, USA
| | - Amanda A Adams
- Department of Veterinary Science, Gluck Equine Research Center, The University of Kentucky College of Agriculture, Food and Environment, Lexington, Kentucky, USA
| | - Emma Adam
- Department of Veterinary Science, Gluck Equine Research Center, The University of Kentucky College of Agriculture, Food and Environment, Lexington, Kentucky, USA
| | - Rachel Miller
- Department of Clinical Sciences, Lincoln Memorial University College of Veterinary Medicine, Harrogate, Tennessee, USA
| | - Darko Stefanovski
- Department of Clinical Studies-New Bolton Center, The University of Pennsylvania School of Veterinary Medicine, Kennett Square, Pennsylvania, USA
| | - Jeaneen C Kulp
- Department of Clinical Studies-New Bolton Center, The University of Pennsylvania School of Veterinary Medicine, Kennett Square, Pennsylvania, USA
| | - Andrew van Eps
- Department of Clinical Studies-New Bolton Center, The University of Pennsylvania School of Veterinary Medicine, Kennett Square, Pennsylvania, USA
| |
Collapse
|
41
|
Ke Z, Lu Z, Li Q, Tong W. Intestinal glucose excretion: A potential mechanism for glycemic control. Metabolism 2024; 152:155743. [PMID: 38007149 DOI: 10.1016/j.metabol.2023.155743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/20/2023] [Accepted: 11/20/2023] [Indexed: 11/27/2023]
Abstract
The gut has been increasingly recognized in recent years as a pivotal organ in the maintenance of glucose homeostasis. Specifically, the profound and enduring improvement in glucose metabolism achieved through metabolic surgery to modify the anatomy of the gut has prompted scholars to acknowledge that the most effective strategy for treating type 2 diabetes mellitus (T2DM) involves the gut. The mechanisms underlying the regulation of glucose metabolism by the gut encompass gut hormones, bile acids, intestinal gluconeogenesis, gut microbiota, and signaling interactions between the gut and other organs (liver, brain, adipose, etc.). Recent studies have also revealed a novel phenomenon of glucose lowering through the gut: metabolic surgery and metformin promote the excretion of glucose from the circulation into the intestinal lumen by enterocytes. However, there is still limited understanding regarding the underlying mechanisms of intestinal glucose excretion and its contribution to glycemic control. This article reviews current research on intestinal glucose excretion while focusing on its role in T2DM management as well as potential mechanisms.
Collapse
Affiliation(s)
- Zhigang Ke
- Department of General Surgery, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Zongshi Lu
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, Chongqing 400042, China
| | - Qing Li
- Department of General Surgery, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Weidong Tong
- Department of General Surgery, Daping Hospital, Army Medical University, Chongqing 400042, China.
| |
Collapse
|
42
|
Chaudhary M, Midha NK, Sukhadiya P, Kumar D, Garg MK. Metformin-Induced Chronic Diarrhea Misdiagnosed as Irritable Bowel Syndrome for Years. Cureus 2024; 16:e56828. [PMID: 38654785 PMCID: PMC11037500 DOI: 10.7759/cureus.56828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/24/2024] [Indexed: 04/26/2024] Open
Abstract
Metformin is the most prescribed and recommended drug for type 2 diabetes mellitus because of its better tolerability, pleiotropic benefits, and cost-effectiveness. Metformin inhibits hepatic glucose production and increases muscle glucose uptake. Metformin is also associated with gastrointestinal side effects like abdominal bloating, flatulence, diarrhea, nausea, and vomiting. Metformin-related gastrointestinal side effects are mainly due to alteration in gut microbiota, raised intestinal glucose, and increased ileal bile salt reabsorption. We report a case of a 62-year-old diabetic patient who presented with chronic diarrhea with a weight loss of 6 kg from the last six years after initiation of metformin. He underwent multiple investigations and was finally misdiagnosed with irritable bowel syndrome for years. After discontinuation of metformin, there was a significant improvement in gastrointestinal symptoms. Our case highlights the importance of metformin-induced chronic diarrhea if no other causes for the diarrhea are obvious in patients with type 2 diabetes taking metformin. Consideration of this potential side effect of metformin must be valuable to avoid unwarranted investigations, additional drug therapy, and annoyance of the patients.
Collapse
Affiliation(s)
- Monika Chaudhary
- General Medicine, All India Institute of Medical Sciences, Jodhpur, IND
| | - Naresh K Midha
- General Medicine, All India Institute of Medical Sciences, Jodhpur, IND
| | - Pankaj Sukhadiya
- General Medicine, All India Institute of Medical Sciences, Jodhpur, IND
| | - Deepak Kumar
- General Medicine, All India Institute of Medical Sciences, Jodhpur, IND
| | | |
Collapse
|
43
|
Buczyńska A, Sidorkiewicz I, Krętowski AJ, Adamska A. Examining the clinical relevance of metformin as an antioxidant intervention. Front Pharmacol 2024; 15:1330797. [PMID: 38362157 PMCID: PMC10867198 DOI: 10.3389/fphar.2024.1330797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/19/2024] [Indexed: 02/17/2024] Open
Abstract
In physiological concentrations, reactive oxygen species play a vital role in regulating cell signaling and gene expression. Nevertheless, oxidative stress is implicated in the pathogenesis of numerous diseases and can inflict damage on diverse cell types and tissues. Thus, understanding the factors that mitigate the deleterious effects of oxidative stress is imperative for identifying new therapeutic targets. In light of the absence of direct treatment recommendations for reducing oxidative stress, there is a continuing need for fundamental research that utilizes innovative therapeutic approaches. Metformin, known for its multifaceted beneficial properties, is acknowledged for its ability to counteract the adverse effects of increased oxidative stress at both molecular and cellular levels. In this review, we delve into recent insights regarding metformin's antioxidant attributes, aiming to expand its clinical applicability. Our review proposes that metformin holds promise as a potential adjunctive therapy for various diseases, given its modulation of oxidative stress characteristics and regulation of diverse metabolic pathways. These pathways include lipid metabolism, hormone synthesis, and immunological responses, all of which may experience dysregulation in disease states, contributing to increased oxidative stress. Furthermore, our review introduces potential novel metformin-based interventions that may merit consideration in future research. Nevertheless, the necessity for clinical trials involving this drug remains imperative, as they are essential for establishing therapeutic dosages and addressing challenges associated with dose-dependent effects.
Collapse
Affiliation(s)
- Angelika Buczyńska
- Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Iwona Sidorkiewicz
- Clinical Research Support Centre, Medical University of Bialystok, Bialystok, Poland
| | - Adam Jacek Krętowski
- Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, Bialystok, Poland
| | - Agnieszka Adamska
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
44
|
Kincaid JWR, Rimmington D, Tadross JA, Cimino I, Zvetkova I, Kaser A, Richards P, Patel S, O'Rahilly S, Coll AP. The gastrointestinal tract is a major source of the acute metformin-stimulated rise in GDF15. Sci Rep 2024; 14:1899. [PMID: 38253650 PMCID: PMC10803367 DOI: 10.1038/s41598-024-51866-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
The hormone GDF15 is secreted in response to cellular stressors. Metformin elevates circulating levels of GDF15, an action important for the drug's beneficial effects on body weight. Metformin can also inhibit mammalian respiratory complex I, leading to decreases in ATP:AMP ratio, activation of AMP Kinase (AMPK), and increased GDF15 production. We undertook studies using a range of mice with tissue-specific loss of Gdf15 (namely gut, liver and global deletion) to determine the relative contributions of two classical metformin target tissues, the gut and liver, to the elevation of GDF15 seen with metformin. In addition, we performed comparative studies with another pharmacological agent, the AMP kinase pan-activator, MK-8722. Deletion of Gdf15 from the intestinal epithelium significantly reduced the circulating GDF15 response to oral metformin, whereas deletion of Gdf15 from the liver had no effect. In contrast, deletion of Gdf15 from the liver, but not the gut, markedly reduced circulating GDF15 responses to MK-8722. Further, our data show that, while GDF15 restricts high-fat diet-induced weight gain, the intestinal production of GDF15 is not necessary for this effect. These findings add to the body of evidence implicating the intestinal epithelium in key aspects of the pharmacology of metformin action.
Collapse
Affiliation(s)
- John W R Kincaid
- Institute of Metabolic Science, University of Cambridge, Cambridge, CB2 0QQ, UK
- Harvard Medical School, Boston, MA, 02115, USA
| | - Debra Rimmington
- Institute of Metabolic Science, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - John A Tadross
- Institute of Metabolic Science, University of Cambridge, Cambridge, CB2 0QQ, UK
- Cambridge Genomics Laboratory, Cambridge University Hospitals NHS Foundation Trust, Cambridge, CB2 0QQ, UK
- NHS East Genomic Laboratory Hub, East Genomics, Cambridge, CB2 0QQ, UK
- Department of Histopathology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, CB2 0QQ, UK
| | - Irene Cimino
- Institute of Metabolic Science, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Ilona Zvetkova
- Institute of Metabolic Science, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Arthur Kaser
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, CB2 0AW, UK
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK
| | - Paul Richards
- Kallyope, Inc., 430 East 29th, Street, New York, NY, 10016, USA
| | - Satish Patel
- Institute of Metabolic Science, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Stephen O'Rahilly
- Institute of Metabolic Science, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Anthony P Coll
- Institute of Metabolic Science, University of Cambridge, Cambridge, CB2 0QQ, UK.
| |
Collapse
|
45
|
Molteni L, Marelli G, Castagna G, Brambilla L, Acerbis M, Alberghina F, Carpani A, Chiavenna E, Ferlini MG, Impellizzeri C, Paredi R, Rigamonti A, Rivolta G, Disoteo OE. Improving Type 2 Diabetes Care with Extended-Release Metformin: Real-Life Insights from a Physician Educational Program. Endocr Metab Immune Disord Drug Targets 2024; 24:1422-1430. [PMID: 38425116 PMCID: PMC11348454 DOI: 10.2174/0118715303294909240221102552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/05/2024] [Accepted: 02/09/2024] [Indexed: 03/02/2024]
Abstract
BACKGROUND Compared to Immediate-Release (IR) metformin, Extended-Release (ER) metformin reduces side effects and pill burden while improving adherence; however, there is little real-life data on patient satisfaction with this innovative formulation to guide physicians toward a more holistic approach. OBJECTIVE Our goal is to train general practitioners on holistic patient management, with the aim of increasing patient satisfaction and treatment adherence, reducing side effects, and improving quality of life in patients with poor tolerance to metformin-IR. MATERIALS AND METHODS We designed an educational program for physicians called SlowDiab, aimed at establishing a holistic patient approach. In this context, adult patients with T2DM who experienced gastrointestinal discomfort with metformin-IR were enrolled and switched to metformin- ER. Data on glycemic control were collected at baseline and 2 months after switching. A survey was carried out on patients to assess their level of satisfaction. RESULTS In 69 enrolled patients (mean (min-max) age, 68.2 (41-90)), side effects decreased after switching from 61.8% to 16.2% (p < 0.01), and the mean perceived burden of adverse events on a scale of 1 to 10 also decreased (6.17 vs. 3.82; p < 0.05). Among patients previously intolerant to metformin-IR, 74.3% reported no longer experiencing any side effects after the switch. The mean number of tablets taken daily (2.28 vs. 1.66; p < 0.01) and mean plasma glycated hemoglobin (HbA1c) values (7.0% vs. 6.7%; p < 0.05) decreased, while 93.8% of patients were satisfied with the treatment change. Moreover, 84.2% reported an improvement in glycemic control after the switch. CONCLUSION In a real-life setting, an educational program for general practitioners confirmed that metformin ER reduces side effects and improves pill burden, therapeutic adherence, and patient satisfaction compared to metformin IR.
Collapse
Affiliation(s)
- Laura Molteni
- Centre for Diabetology, Endocrinology and Treatment of Metabolic Diseases, Sacra Famiglia Hospital, Erba, Italy
| | - Giuseppe Marelli
- Centre for Diabetology, Endocrinology and Treatment of Metabolic Diseases, Sacra Famiglia Hospital, Erba, Italy
| | - Giona Castagna
- Centre for Diabetology, Endocrinology and Treatment of Metabolic Diseases, Sacra Famiglia Hospital, Erba, Italy
- University of Milano Bicocca, Milan, Italy
| | - Luciano Brambilla
- Centre for Diabetology, Endocrinology and Treatment of Metabolic Diseases, Sacra Famiglia Hospital, Erba, Italy
| | | | | | - Antonio Carpani
- General Practitioner, ATS Insubria, Erba District, Como, Italy
| | - Erika Chiavenna
- General Practitioner, ATS Insubria, Erba District, Como, Italy
| | | | | | - Roberto Paredi
- General Practitioner, ATS Insubria, Erba District, Como, Italy
| | | | | | - Olga Eugenia Disoteo
- Division of Endocrinology and Diabetology, Sant’Anna Hospital - ASST Lariana, Como, Italy
| |
Collapse
|
46
|
Stanisławiak-Rudowicz J, Karbownik A, Szkutnik-Fiedler D, Otto F, Grabowski T, Wolc A, Grześkowiak E, Szałek E. Bidirectional pharmacokinetic drug interactions between olaparib and metformin. Cancer Chemother Pharmacol 2024; 93:79-88. [PMID: 37815561 PMCID: PMC10796410 DOI: 10.1007/s00280-023-04591-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 09/10/2023] [Indexed: 10/11/2023]
Abstract
OBJECTIVE Olaparib is a PARP (poly-ADP-ribose polymerase) inhibitor used for maintenance therapy in BRCA-mutated cancers. Metformin is a first-choice drug used in the treatment of type 2 diabetes. Both drugs are commonly co-administered to oncologic patients with add-on type 2 diabetes mellitus. Olaparib is metabolized by the CYP3A4 enzyme, which may be inhibited by metformin through the Pregnane X Receptor. In vitro studies have shown that olaparib inhibits the following metformin transporters: OCT1, MATE1, and MATE2K. The aim of the study was to assess the influence of 'the perpetrator drug' on the pharmacokinetic (PK) parameters of 'the victim drug' after a single dose. To evaluate the effect, the AUC0→∞ (area under the curve) ratio was determined (the ratio between AUC0→∞ in the presence of the perpetrator and AUC0→∞ without the presence of the perpetrator). METHODS Male Wistar rats were assigned to three groups (eight animals in each group), which were orally administered: metformin and olaparib (IMET+OLA), vehiculum with metformin (IIMET), and vehiculum with olaparib (IIIOLA). Blood samples were collected after 24 h. HPLC was applied to measure the concentrations of olaparib and metformin. The PK parameters were calculated in a non-compartmental model. RESULTS Metformin did not affect the olaparib PK parameters. The AUC0→∞ IMET+OLA/IIIOLA ratio was 0.99. Olaparib significantly increased the metformin Cmax (by 177.8%), AUC0→t (by 159.8%), and AUC0→∞ (by 74.1%). The AUC0→∞ IMET+OLA/IIMET ratio was 1.74. CONCLUSIONS A single dose of metformin did not affect the PK parameters of olaparib, nor did it inhibit the olaparib metabolism, but olaparib significantly changed the metformin pharmacokinetics, which may be of clinical importance.
Collapse
Affiliation(s)
- Joanna Stanisławiak-Rudowicz
- Department of Clinical Pharmacy and Biopharmacy, Poznań University of Medical Sciences, Rokietnicka 3, 60-806, Poznań, Poland.
- Poznań University Clinical Hospital, Szamarzewskiego 84/86, 60-569, Poznań, Poland.
| | - Agnieszka Karbownik
- Department of Clinical Pharmacy and Biopharmacy, Poznań University of Medical Sciences, Rokietnicka 3, 60-806, Poznań, Poland
| | - Danuta Szkutnik-Fiedler
- Department of Clinical Pharmacy and Biopharmacy, Poznań University of Medical Sciences, Rokietnicka 3, 60-806, Poznań, Poland
| | - Filip Otto
- Department of Clinical Pharmacy and Biopharmacy, Poznań University of Medical Sciences, Rokietnicka 3, 60-806, Poznań, Poland
| | - Tomasz Grabowski
- Department of Inorganic Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, M. Skłodowskiej-Curie 3a, 80-210, Gdańsk, Poland
| | - Anna Wolc
- Department of Animal Science, Iowa State University, 239E Kildee Hall, Ames, IA, 50011, USA
- Hy-Line International, 2583 240th Street, Dallas Center, IA, 50063, USA
| | - Edmund Grześkowiak
- Department of Clinical Pharmacy and Biopharmacy, Poznań University of Medical Sciences, Rokietnicka 3, 60-806, Poznań, Poland
| | - Edyta Szałek
- Department of Clinical Pharmacy and Biopharmacy, Poznań University of Medical Sciences, Rokietnicka 3, 60-806, Poznań, Poland
| |
Collapse
|
47
|
Wattanapisit A, Pankamnerd N, Wattanapisit S. Iatrogenic Chronic Abdominal Pain in a Geriatric Patient: A Case Report. Prague Med Rep 2024; 125:87-91. [PMID: 38380457 DOI: 10.14712/23362936.2024.9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024] Open
Abstract
Chronic abdominal pain is a challenging problem in clinical practice, with several pathophysiological mechanisms underlying its aetiologies. This case report presents a geriatric patient with multiple comorbidities who had experienced intermittent abdominal pain for over 10 years. Alarming symptoms were ruled out, and a functional gastrointestinal disorder was determined as the most likely cause. The patient's medical history and previous treatments were thoroughly reviewed, revealing that long-term use of metformin and an oral iron supplement was the iatrogenic symptom triggers. The abdominal pain resolved upon discontinuation of these two medications. This case report highlights the significance of reviewing iatrogenic causes and periodically assessing chronic medical conditions to identify potential contributing factors of chronic abdominal pain.
Collapse
Affiliation(s)
- Apichai Wattanapisit
- School of Medicine, Walailak University, Nakhon Si Thammarat, Thailand.
- Walailak University Hospital, Nakhon Si Thammarat, Thailand.
| | | | | |
Collapse
|
48
|
Mac Curtain BM, O'Brien L, El Sherif O, Mc Cormack A, Carolan E, Ryan JD, O'Shea D, Gallagher TK. Biguanides and glucagon like peptide 1 receptor agonists in the amelioration of post liver transplant weight gain; a scoping review of the mechanism of action, safety and efficacy. GASTROENTEROLOGY AND HEPATOLOGY FROM BED TO BENCH 2024; 17:17-27. [PMID: 38737926 PMCID: PMC11080689 DOI: 10.22037/ghfbb.v17i1.2899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/02/2023] [Indexed: 05/14/2024]
Abstract
Weight gain post-liver transplant can lead to adverse patient outcomes in the post-transplant period. Pharmacotherapy and other measures can be utilised to reduce the burden and occurrence of weight gain in this population. We explored the mechanism of action, safety, and efficacy of these medications, specifically GLP-1 receptor agonists and metformin, focusing on liver transplant patients. This scoping review was conducted in line with the scoping review structure as outlined by the PRISMA guidelines. Metformin and GLP-1 receptor agonists have been observed to be safe and effective in liver transplant patients. Experimental models have found liver-centric weight loss mechanisms in this drug cohort. There is a paucity of evidence about the use of antihyperglycemics in a post-transplant population for weight loss purposes. However, some small studies have shown strong safety and efficacy data. The evidence in relation to using these medications in patients with metabolic syndrome for weight loss warrants further study in a transplant population.
Collapse
Affiliation(s)
| | - Luke O'Brien
- Hepatopancreatobiliary Group, St Vincent's University Hospital, Dublin 4, Ireland
| | - Omar El Sherif
- National Liver Transplant Unit, St Vincent's University Hospital, Dublin 4, Ireland
| | - Aidan Mc Cormack
- National Liver Transplant Unit, St Vincent's University Hospital, Dublin 4, Ireland
| | - Emer Carolan
- Department of Hepatology, Beaumont Hospital, Dublin 9, Ireland
| | - John D Ryan
- Department of Hepatology, Beaumont Hospital, Dublin 9, Ireland
| | - Donal O'Shea
- Department of Endocrinology, St Vincent's University Hospital, Dublin 4, Ireland
| | - Tom K Gallagher
- Hepatopancreatobiliary Group, St Vincent's University Hospital, Dublin 4, Ireland
- National Liver Transplant Unit, St Vincent's University Hospital, Dublin 4, Ireland
| |
Collapse
|
49
|
Chandrasekhar P, Kaliyaperumal R. Revolutionizing Brain Drug Delivery: Buccal Transferosomes on the Verge of a Breakthrough. RECENT ADVANCES IN DRUG DELIVERY AND FORMULATION 2024; 18:262-275. [PMID: 39356098 DOI: 10.2174/0126673878312336240802113811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 07/13/2024] [Accepted: 07/23/2024] [Indexed: 10/03/2024]
Abstract
The buccal cavity, also known as the oral cavity, is a complex anatomical structure that plays a crucial role in various physiological processes. It serves as a gateway to the digestive system and facilitates the initial stages of food digestion and absorption. However, its significance extends beyond mere digestion as it presents a promising route for drug delivery, particularly to the brain. Transferosomes are lipid-based vesicles that have gained significant attention in the field of drug delivery due to their unique structure and properties. These vesicles are composed of phospholipids that form bilayer structures capable of encapsulating both hydrophilic and lipophilic drugs. Strategies for the development of buccal transferosomes for brain delivery have emerged as promising avenues for pharmaceutical research. This review aims to explore the various approaches and challenges associated with harnessing the potential of buccal transferosomes as a means of enhancing drug delivery to the brain. By understanding the structure and function of both buccal tissue and transferosomes, researchers can develop effective formulation methods and characterization techniques to optimize drug delivery. Furthermore, strategic approaches and success stories in buccal transferosome development are highlighted, showcasing inspiring examples that demonstrate their potential to revolutionize brain delivery.
Collapse
Affiliation(s)
- Pavuluri Chandrasekhar
- Department of Pharmaceutics, Faculty of Pharmacy, Bharath Institute of Higher Education and Research, Selaiyur, Chennai, Tamil Nadu, 600073, India
| | - Rajaganapathy Kaliyaperumal
- Department of Pharmacology, Faculty of Pharmacy, Bharath Institute of Higher Education and Research, Selaiyur, Chennai, Tamil Nadu, 600073, India
| |
Collapse
|
50
|
Geng Y, Wang Z, Xu X, Sun X, Dong X, Luo Y, Sun X. Extensive therapeutic effects, underlying molecular mechanisms and disease treatment prediction of Metformin: a systematic review. Transl Res 2024; 263:73-92. [PMID: 37567440 DOI: 10.1016/j.trsl.2023.08.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023]
Abstract
Metformin (Met), a first-line management for type 2 diabetes mellitus, has been expansively employed and studied with results indicating its therapeutic potential extending beyond glycemic control. Beyond its established role, this therapeutic drug demonstrates a broad spectrum of action encompassing over 60 disorders, encompassing metabolic conditions, inflammatory disorders, carcinomas, cardiovascular diseases, and cerebrovascular pathologies. There is clear evidence of Met's action targeting specific nodes in the molecular pathways of these diseases and, intriguingly, interactions with the intestinal microbiota and epigenetic processes have been explored. Furthermore, novel Met derivatives with structural modifications tailored to diverse diseases have been synthesized and assessed. This manuscript proffers a comprehensive thematic review of the diseases amenable to Met treatment, elucidates their molecular mechanisms, and employs informatics technology to prospect future therapeutic applications of Met. These data and insights gleaned considerably contribute to enriching our understanding and appreciation of Met's far-reaching clinical potential and therapeutic applicability.
Collapse
Affiliation(s)
- Yifei Geng
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China; Diabetes Research Center, Chinese Academy of Medical Sciences, China; Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, China
| | - Zhen Wang
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China; Diabetes Research Center, Chinese Academy of Medical Sciences, China; Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, China
| | - Xiaoyu Xu
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China; Diabetes Research Center, Chinese Academy of Medical Sciences, China; Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, China
| | - Xiao Sun
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China; Diabetes Research Center, Chinese Academy of Medical Sciences, China; Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, China
| | - Xi Dong
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China; Diabetes Research Center, Chinese Academy of Medical Sciences, China; Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, China
| | - Yun Luo
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China; Diabetes Research Center, Chinese Academy of Medical Sciences, China; Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, China.
| | - Xiaobo Sun
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China; Diabetes Research Center, Chinese Academy of Medical Sciences, China; Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, China.
| |
Collapse
|