1
|
Müller L, Hoffmann A, Bernhart SH, Ghosh A, Zhong J, Hagemann T, Sun W, Dong H, Noé F, Wolfrum C, Dietrich A, Stumvoll M, Massier L, Blüher M, Kovacs P, Chakaroun R, Keller M. Blood methylation pattern reflects epigenetic remodelling in adipose tissue after bariatric surgery. EBioMedicine 2024; 106:105242. [PMID: 39002385 PMCID: PMC11284569 DOI: 10.1016/j.ebiom.2024.105242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/15/2024] Open
Abstract
BACKGROUND Studies on DNA methylation following bariatric surgery have primarily focused on blood cells, while it is unclear to which extend it may reflect DNA methylation profiles in specific metabolically relevant organs such as adipose tissue. Here, we investigated whether adipose tissue depots specific methylation changes after bariatric surgery are mirrored in blood. METHODS Using Illumina 850K EPIC technology, we analysed genome-wide DNA methylation in paired blood, subcutaneous and omental visceral AT (SAT/OVAT) samples from nine individuals (N = 6 female) with severe obesity pre- and post-surgery. FINDINGS The numbers and effect sizes of differentially methylated regions (DMRs) post-bariatric surgery were more pronounced in AT (SAT: 12,865 DMRs from -11.5 to 10.8%; OVAT: 14,632 DMRs from -13.7 to 12.8%) than in blood (9267 DMRs from -8.8 to 7.7%). Cross-tissue DMRs implicated immune-related genes. Among them, 49 regions could be validated with similar methylation changes in blood from independent individuals. Fourteen DMRs correlated with differentially expressed genes in AT post bariatric surgery, including downregulation of PIK3AP1 in both SAT and OVAT. DNA methylation age acceleration was significantly higher in AT compared to blood, but remained unaffected after surgery. INTERPRETATION Concurrent methylation pattern changes in blood and AT, particularly in immune-related genes, suggest blood DNA methylation mirrors AT's inflammatory state post-bariatric surgery. FUNDING The funding sources are listed in the Acknowledgments section.
Collapse
Affiliation(s)
- Luise Müller
- Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, 04103, Germany
| | - Anne Hoffmann
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Center Munich at the University of Leipzig and University Hospital Leipzig, Leipzig, 04103, Germany
| | - Stephan H Bernhart
- Interdisciplinary Center for Bioinformatics, University of Leipzig, 04107, Leipzig, Germany; Bioinformatics Group, Department of Computer, University of Leipzig, 04107, Leipzig, Germany; Transcriptome Bioinformatics, LIFE Research Center for Civilization Diseases, University of Leipzig, 04107, Leipzig, Germany
| | - Adhideb Ghosh
- Institute of Food, Nutrition and Health, ETH Zurich, 8092, Schwerzenbach, Switzerland
| | - Jiawei Zhong
- Department of Medicine Huddinge (H7), Karolinska Institutet, Karolinska University Hospital Huddinge, 141 83, Huddinge, Sweden
| | - Tobias Hagemann
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Center Munich at the University of Leipzig and University Hospital Leipzig, Leipzig, 04103, Germany
| | - Wenfei Sun
- Institute of Food, Nutrition and Health, ETH Zurich, 8092, Schwerzenbach, Switzerland
| | - Hua Dong
- Institute of Food, Nutrition and Health, ETH Zurich, 8092, Schwerzenbach, Switzerland
| | - Falko Noé
- Institute of Food, Nutrition and Health, ETH Zurich, 8092, Schwerzenbach, Switzerland
| | - Christian Wolfrum
- Institute of Food, Nutrition and Health, ETH Zurich, 8092, Schwerzenbach, Switzerland
| | - Arne Dietrich
- Leipzig University Hospital, Department of Visceral, Transplantation, Thoracic and Vascular Surgery, Section of Bariatric Surgery, 04103, Leipzig, Germany
| | - Michael Stumvoll
- Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, 04103, Germany; Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Center Munich at the University of Leipzig and University Hospital Leipzig, Leipzig, 04103, Germany; Deutsches Zentrum für Diabetesforschung e.V., 85764, Neuherberg, Germany
| | - Lucas Massier
- Department of Medicine Huddinge (H7), Karolinska Institutet, Karolinska University Hospital Huddinge, 141 83, Huddinge, Sweden
| | - Matthias Blüher
- Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, 04103, Germany; Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Center Munich at the University of Leipzig and University Hospital Leipzig, Leipzig, 04103, Germany; Deutsches Zentrum für Diabetesforschung e.V., 85764, Neuherberg, Germany
| | - Peter Kovacs
- Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, 04103, Germany; Deutsches Zentrum für Diabetesforschung e.V., 85764, Neuherberg, Germany
| | - Rima Chakaroun
- Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, 04103, Germany; The Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, 41345, Gothenburg, Sweden
| | - Maria Keller
- Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, 04103, Germany; Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Center Munich at the University of Leipzig and University Hospital Leipzig, Leipzig, 04103, Germany.
| |
Collapse
|
2
|
Wu Y, Liu C, Huang J, Wang F. Quantitative proteomics reveals pregnancy prognosis signature of polycystic ovary syndrome women based on machine learning. Gynecol Endocrinol 2024; 40:2328613. [PMID: 38497425 DOI: 10.1080/09513590.2024.2328613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 03/05/2024] [Indexed: 03/19/2024] Open
Abstract
OBJECTIVE We aimed to screen and construct a predictive model for pregnancy loss in polycystic ovary syndrome (PCOS) patients through machine learning methods. METHODS We obtained the endometrial samples from 33 PCOS patients and 7 healthy controls at the Reproductive Center of the Second Hospital of Lanzhou University from September 2019 to September 2020. Liquid chromatography tandem mass spectrometry (LCMS/MS) was conducted to identify the differentially expressed proteins (DEPs) of the two groups. Gene Ontology (GO) as well as Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis were performed to analyze the related pathways and functions of the DEPs. Then, we used machine learning methods to screen the feature proteins. Multivariate Cox regression analysis was also conducted to establish the prognostic models. The performance of the prognostic model was then evaluated by the receiver operating characteristic (ROC) curve, calibration curve, and decision curve analysis (DCA). In addition, the Bootstrap method was conducted to verify the generalization ability of the model. Finally, linear correlation analysis was performed to figure out the correlation between the feature proteins and clinical data. RESULTS Four hundred and fifty DEPs in PCOS and controls were screened out, and we obtained some pathways and functions. A prognostic model for the pregnancy loss of PCOS was established, which has good discrimination and generalization ability based on two feature proteins (TIA1, COL5A1). Strong correlation between clinical data and proteins were identified to predict the reproductive outcome in PCOS. CONCLUSION The model based on the TIA1 and COL5A1 protein could effectively predict the occurrence of pregnancy loss in PCOS patients and provide a good theoretical foundation for subsequent research.
Collapse
Affiliation(s)
- Yuanyuan Wu
- Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Cai Liu
- Department of Reproductive Medicine, Lanzhou University Second Hospital, Lanzhou, China
| | - Jinge Huang
- Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Fang Wang
- Department of Reproductive Medicine, Lanzhou University Second Hospital, Lanzhou, China
| |
Collapse
|
3
|
Tian H, Qiao H, Han F, Kong X, Zhu S, Xing F, Duan H, Li W, Wang W, Zhang D, Wu Y. Genome-wide DNA methylation analysis of body composition in Chinese monozygotic twins. Eur J Clin Invest 2023; 53:e14055. [PMID: 37392072 DOI: 10.1111/eci.14055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 06/06/2023] [Accepted: 06/20/2023] [Indexed: 07/02/2023]
Abstract
BACKGROUND Little is currently known about epigenetic alterations associated with body composition in obesity. Thus, we aimed to explore epigenetic relationships between genome-wide DNA methylation levels and three common traits of body composition as measured by body fat percentage (BF%), fat mass (FM) and lean body mass (LBM) among Chinese monozygotic twins. METHODS Generalized estimated equation model was used to regress the methylation level of CpG sites on body composition. Inference about Causation Through Examination Of Familial Confounding was used to explore the evidence of a causal relationship. Gene expression analysis was further performed to validate the results of differentially methylated genes. RESULTS We identified 32, 22 and 28 differentially methylated CpG sites (p < 10-5 ) as well as 20, 17 and eight differentially methylated regions (slk-corrected p < 0.05) significantly associated with BF%, FM and LBM which were annotated to 65 genes, showing partially overlapping. Causal inference demonstrated bidirectional causality between DNA methylation and body composition (p < 0.05). Gene expression analysis revealed significant correlations between expression levels of five differentially methylated genes and body composition (p < 0.05). CONCLUSIONS These DNA methylation signatures will contribute to increased knowledge about the epigenetic basis of body composition and provide new strategies for early prevention and treatment of obesity and its related diseases.
Collapse
Affiliation(s)
- Huimin Tian
- Department of Epidemiology and Health Statistics, Public Health College, Qingdao University, Qingdao, China
| | - Haofei Qiao
- Qingdao Mental Health Centre, Qingdao, China
| | - Fulei Han
- Department of Epidemiology and Health Statistics, Public Health College, Qingdao University, Qingdao, China
| | - Xiangjie Kong
- Department of Epidemiology and Health Statistics, Public Health College, Qingdao University, Qingdao, China
| | - Shuai Zhu
- Department of Epidemiology and Health Statistics, Public Health College, Qingdao University, Qingdao, China
| | - Fangjie Xing
- Department of Epidemiology and Health Statistics, Public Health College, Qingdao University, Qingdao, China
| | - Haiping Duan
- Qingdao Municipal Centre for Disease Control and Prevention, Qingdao, China
| | - Weilong Li
- Population Research Unit, Faculty of Social Sciences, University of Helsinki, Helsinki, Finland
| | - Weijing Wang
- Department of Epidemiology and Health Statistics, Public Health College, Qingdao University, Qingdao, China
| | - Dongfeng Zhang
- Department of Epidemiology and Health Statistics, Public Health College, Qingdao University, Qingdao, China
| | - Yili Wu
- Department of Epidemiology and Health Statistics, Public Health College, Qingdao University, Qingdao, China
| |
Collapse
|
4
|
Subramanian N, Hofwimmer K, Tavira B, Massier L, Andersson DP, Arner P, Laurencikiene J. Adipose tissue specific CCL18 associates with cardiometabolic diseases in non-obese individuals implicating CD4 + T cells. Cardiovasc Diabetol 2023; 22:84. [PMID: 37046242 PMCID: PMC10099890 DOI: 10.1186/s12933-023-01803-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 03/16/2023] [Indexed: 04/14/2023] Open
Abstract
AIM Obesity is linked to cardiometabolic diseases, however non-obese individuals are also at risk for type 2 diabetes (T2D) and cardiovascular disease (CVD). White adipose tissue (WAT) is known to play a role in both T2D and CVD, but the contribution of WAT inflammatory status especially in non-obese patients with cardiometabolic diseases is less understood. Therefore, we aimed to find associations between WAT inflammatory status and cardiometabolic diseases in non-obese individuals. METHODS In a population-based cohort containing non-obese healthy (n = 17), T2D (n = 16), CVD (n = 18), T2D + CVD (n = 19) individuals, seventeen different cytokines were measured in WAT and in circulation. In addition, 13-color flow cytometry profiling was employed to phenotype the immune cells. Human T cell line (Jurkat T cells) was stimulated by rCCL18, and conditioned media (CM) was added to the in vitro cultures of human adipocytes. Lipolysis was measured by glycerol release. Blocking antibodies against IFN-γ and TGF-β were used in vitro to prove a role for these cytokines in CCL18-T-cell-adipocyte lipolysis regulation axis. RESULTS In CVD, T2D and CVD + T2D groups, CCL18 and CD4+ T cells were upregulated significantly compared to healthy controls. WAT CCL18 secretion correlated with the amounts of WAT CD4+ T cells, which also highly expressed CCL18 receptors suggesting that WAT CD4+ T cells are responders to this chemokine. While direct addition of rCCL18 to mature adipocytes did not alter the adipocyte lipolysis, CM from CCL18-treated T cells increased glycerol release in in vitro cultures of adipocytes. IFN-γ and TGF-β secretion was significantly induced in CM obtained from T cells treated with CCL18. Blocking these cytokines in CM, prevented CM-induced upregulation of adipocyte lipolysis. CONCLUSION We suggest that in T2D and CVD, increased production of CCL18 recruits and activates CD4+ T cells to secrete IFN-γ and TGF-β. This, in turn, promotes adipocyte lipolysis - a possible risk factor for cardiometabolic diseases.
Collapse
Affiliation(s)
- Narmadha Subramanian
- Lipid laboratory, Unit of Endocrinology, Dept. of Medicine Huddinge, Karolinska Institutet, Stockholm, 141 86, Sweden
| | - Kaisa Hofwimmer
- Lipid laboratory, Unit of Endocrinology, Dept. of Medicine Huddinge, Karolinska Institutet, Stockholm, 141 86, Sweden
| | - Beatriz Tavira
- Lipid laboratory, Unit of Endocrinology, Dept. of Medicine Huddinge, Karolinska Institutet, Stockholm, 141 86, Sweden
| | - Lucas Massier
- Lipid laboratory, Unit of Endocrinology, Dept. of Medicine Huddinge, Karolinska Institutet, Stockholm, 141 86, Sweden
| | - Daniel P Andersson
- Lipid laboratory, Unit of Endocrinology, Dept. of Medicine Huddinge, Karolinska Institutet, Stockholm, 141 86, Sweden
| | - Peter Arner
- Lipid laboratory, Unit of Endocrinology, Dept. of Medicine Huddinge, Karolinska Institutet, Stockholm, 141 86, Sweden
| | - Jurga Laurencikiene
- Lipid laboratory, Unit of Endocrinology, Dept. of Medicine Huddinge, Karolinska Institutet, Stockholm, 141 86, Sweden.
| |
Collapse
|
5
|
An integrated single cell and spatial transcriptomic map of human white adipose tissue. Nat Commun 2023; 14:1438. [PMID: 36922516 PMCID: PMC10017705 DOI: 10.1038/s41467-023-36983-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 02/27/2023] [Indexed: 03/18/2023] Open
Abstract
To date, single-cell studies of human white adipose tissue (WAT) have been based on small cohort sizes and no cellular consensus nomenclature exists. Herein, we performed a comprehensive meta-analysis of publicly available and newly generated single-cell, single-nucleus, and spatial transcriptomic results from human subcutaneous, omental, and perivascular WAT. Our high-resolution map is built on data from ten studies and allowed us to robustly identify >60 subpopulations of adipocytes, fibroblast and adipogenic progenitors, vascular, and immune cells. Using these results, we deconvolved spatial and bulk transcriptomic data from nine additional cohorts to provide spatial and clinical dimensions to the map. This identified cell-cell interactions as well as relationships between specific cell subtypes and insulin resistance, dyslipidemia, adipocyte volume, and lipolysis upon long-term weight changes. Altogether, our meta-map provides a rich resource defining the cellular and microarchitectural landscape of human WAT and describes the associations between specific cell types and metabolic states.
Collapse
|
6
|
Hao J, Liu Y. Epigenetics of methylation modifications in diabetic cardiomyopathy. Front Endocrinol (Lausanne) 2023; 14:1119765. [PMID: 37008904 PMCID: PMC10050754 DOI: 10.3389/fendo.2023.1119765] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 03/01/2023] [Indexed: 03/17/2023] Open
Abstract
Type 2 diabetes is one of the most common metabolic diseases with complications including diabetic cardiomyopathy and atherosclerotic cardiovascular disease. Recently, a growing body of research has revealed that the complex interplay between epigenetic changes and the environmental factors may significantly contribute to the pathogenesis of cardiovascular complications secondary to diabetes. Methylation modifications, including DNA methylation and histone methylation among others, are important in developing diabetic cardiomyopathy. Here we summarized the literatures of studies focusing on the role of DNA methylation, and histone modifications in microvascular complications of diabetes and discussed the mechanism underlying these disorders, to provide the guidance for future research toward an integrated pathophysiology and novel therapeutic strategies to treat or prevent this frequent pathological condition.
Collapse
Affiliation(s)
- Jing Hao
- Department of Emergency, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Yao Liu
- Department of Pharmacy, Children’s Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Yao Liu,
| |
Collapse
|
7
|
Talukdar FR, Escobar Marcillo DI, Laskar RS, Novoloaca A, Cuenin C, Sbraccia P, Nisticò L, Guglielmi V, Gheit T, Tommasino M, Dogliotti E, Fortini P, Herceg Z. Bariatric surgery-induced weight loss and associated genome-wide DNA-methylation alterations in obese individuals. Clin Epigenetics 2022; 14:176. [PMID: 36528638 PMCID: PMC9759858 DOI: 10.1186/s13148-022-01401-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Obesity is a multifactorial and chronic condition of growing universal concern. It has recently been reported that bariatric surgery is a more successful treatment for severe obesity than other noninvasive interventions, resulting in rapid significant weight loss and associated chronic disease remission. The identification of distinct epigenetic patterns in patients who are obese or have metabolic imbalances has suggested a potential role for epigenetic alterations in causal or mediating pathways in the development of obesity-related pathologies. Specific changes in the epigenome (DNA methylome), associated with metabolic disorders, can be detected in the blood. We investigated whether such epigenetic changes are reversible after weight loss using genome-wide DNA methylome analysis of blood samples from individuals with severe obesity (mean BMI ~ 45) undergoing bariatric surgery. RESULTS Our analysis revealed 41 significant (Bonferroni p < 0.05) and 1169 (false discovery rate p < 0.05) suggestive differentially methylated positions (DMPs) associated with weight loss due to bariatric surgery. Among the 41 significant DMPs, 5 CpGs were replicated in an independent cohort of BMI-discordant monozygotic twins (the heavier twin underwent diet-induced weight loss). The effect sizes of these 5 CpGs were consistent across discovery and replication sets (p < 0.05). We also identified 192 differentially methylated regions (DMRs) among which SMAD6 and PFKFB3 genes were the top hypermethylated and hypomethylated regions, respectively. Pathway enrichment analysis of the DMR-associated genes showed that functional pathways related to immune function and type 1 diabetes were significant. Weight loss due to bariatric surgery also significantly decelerated epigenetic age 12 months after the intervention (mean = - 4.29; p = 0.02). CONCLUSIONS We identified weight loss-associated DNA-methylation alterations targeting immune and inflammatory gene pathways in blood samples from bariatric-surgery patients. The top hits were replicated in samples from an independent cohort of BMI-discordant monozygotic twins following a hypocaloric diet. Energy restriction and bariatric surgery thus share CpGs that may represent early indicators of response to the metabolic effects of weight loss. The analysis of bariatric surgery-associated DMRs suggests that epigenetic regulation of genes involved in endothelial and adipose tissue function is key in the pathophysiology of obesity.
Collapse
Affiliation(s)
- Fazlur Rahman Talukdar
- Epigenomics and Mechanisms Branch, International Agency for Research On Cancer (IARC), 150 Cours Albert Thomas, Lyon, France
| | - David Israel Escobar Marcillo
- Section of Mechanisms, Biomarkers and Models, Dept Environment and Health, Istituto Superiore Di Sanità, Viale Regina Elena, No. 299, 00161 Rome, Italy
- Obesity Center-Internal Medicine Unit, Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Ruhina Shirin Laskar
- Nutrition and Metabolism Branch, International Agency for Research On Cancer (IARC), 150 Cours Albert Thomas, Lyon, France
| | - Alexei Novoloaca
- Epigenomics and Mechanisms Branch, International Agency for Research On Cancer (IARC), 150 Cours Albert Thomas, Lyon, France
| | - Cyrille Cuenin
- Epigenomics and Mechanisms Branch, International Agency for Research On Cancer (IARC), 150 Cours Albert Thomas, Lyon, France
| | - Paolo Sbraccia
- Obesity Center-Internal Medicine Unit, Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Lorenza Nisticò
- Centre for Behavioral Sciences and Mental Health, Istituto Superiore Di Sanità, Viale Regina Elena, No. 299, 00161 Rome, Italy
| | - Valeria Guglielmi
- Obesity Center-Internal Medicine Unit, Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Tarik Gheit
- Early Detection, Prevention, and Infections Branch, International Agency for Research On Cancer (IARC), 150 Cours Albert Thomas, Lyon, France
| | | | - Eugenia Dogliotti
- Section of Mechanisms, Biomarkers and Models, Dept Environment and Health, Istituto Superiore Di Sanità, Viale Regina Elena, No. 299, 00161 Rome, Italy
| | - Paola Fortini
- Section of Mechanisms, Biomarkers and Models, Dept Environment and Health, Istituto Superiore Di Sanità, Viale Regina Elena, No. 299, 00161 Rome, Italy
| | - Zdenko Herceg
- Epigenomics and Mechanisms Branch, International Agency for Research On Cancer (IARC), 150 Cours Albert Thomas, Lyon, France
| |
Collapse
|
8
|
Sun P, Bouwman LMS, de Deugd JL, van der Stelt I, Oosting A, Keijer J, van Schothorst EM. Galactose in the Post-Weaning Diet Programs Improved Circulating Adiponectin Concentrations and Skeletal Muscle Insulin Signaling. Int J Mol Sci 2022; 23:ijms231810207. [PMID: 36142131 PMCID: PMC9499164 DOI: 10.3390/ijms231810207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/22/2022] [Accepted: 09/01/2022] [Indexed: 11/16/2022] Open
Abstract
Short-term post-weaning nutrition can result in long-lasting effects in later life. Partial replacement of glucose by galactose in the post-weaning diet showed direct effects on liver inflammation. Here, we examined this program on body weight, body composition, and insulin sensitivity at the adult age. Three-week-old female C57BL/6JRccHsd mice were fed a diet with glucose plus galactose (GAL; 16 energy% (en%) each) or a control diet with glucose (GLU; 32 en%) for three weeks, and afterward, both groups were given the same high-fat diet (HFD). After five weeks on a HFD, an oral glucose tolerance test was performed. After nine weeks on a HFD, energy metabolism was assessed by indirect calorimetry, and fasted mice were sacrificed fifteen minutes after a glucose bolus, followed by serum and tissue analyses. Body weight and body composition were not different between the post-weaning dietary groups, during the post-weaning period, or the HFD period. Glucose tolerance and energy metabolism in adulthood were not affected by the post-weaning diet. Serum adiponectin concentrations were significantly higher (p = 0.02) in GAL mice while insulin, leptin, and insulin-like growth factor 1 concentrations were not affected. Expression of Adipoq mRNA was significantly higher in gonadal white adipose tissue (gWAT; p = 0.03), while its receptors in the liver and skeletal muscles remained unaffected. Irs2 expression was significantly lower in skeletal muscles (p = 0.01), but not in gWAT or Irs1 expression (in both tissues). Gene expressions of inflammatory markers in gWAT and the liver were also not affected. Conclusively, galactose in the post-weaning diet significantly improved circulating adiponectin concentrations and reduced skeletal muscle Irs2 expression in adulthood without alterations in fat mass, glucose tolerance, and inflammation.
Collapse
Affiliation(s)
- Peixin Sun
- Human and Animal Physiology, Wageningen University and Research, 6708 WD Wageningen, The Netherlands
| | - Lianne M. S. Bouwman
- Human and Animal Physiology, Wageningen University and Research, 6708 WD Wageningen, The Netherlands
| | - Jo-lene de Deugd
- Human and Animal Physiology, Wageningen University and Research, 6708 WD Wageningen, The Netherlands
| | - Inge van der Stelt
- Human and Animal Physiology, Wageningen University and Research, 6708 WD Wageningen, The Netherlands
| | | | - Jaap Keijer
- Human and Animal Physiology, Wageningen University and Research, 6708 WD Wageningen, The Netherlands
| | - Evert M. van Schothorst
- Human and Animal Physiology, Wageningen University and Research, 6708 WD Wageningen, The Netherlands
- Correspondence: ; Tel.: +31-317484699
| |
Collapse
|
9
|
Zhang LH, Wang J, Tan BH, Yin YB, Kang YM. The Association of lncRNA and mRNA Changes in Adipose Tissue with Improved Insulin Resistance in Type 2 Obese Diabetes Mellitus Rats after Roux-en-Y Gastric Bypass. DISEASE MARKERS 2022; 2022:8902916. [PMID: 35899178 PMCID: PMC9313968 DOI: 10.1155/2022/8902916] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 11/18/2022]
Abstract
Objective Roux-en-Y gastric bypass (RYGB) has shown good effects in improving obesity and type II diabetes mellitus (T2DM), but the underlying mechanisms remain unclear. This study explored the changes of related lncRNAs, mRNAs, and signaling pathways in white adipose tissue of T2DM rats after RYGB based on RNA-Seq sequencing, with the aim to provide a theoretical basis for RYGB treatment. Methods T2DM rat models were established by continuous feeding with a high-fat diet and injection of streptozotocin (STZ), after which they underwent RYGB or sham surgery. After the surgery, their body weight was measured weekly. Their fasting blood glucose (FBG) and fasting serum insulin (FSI) were also measured. A homeostasis model assessment of insulin resistance (HOMA-IR) was calculated at weeks 0, 8, and 12. Besides, white adipose tissue of T2DM rats was collected for RNA-Seq sequencing and validated by qRT-PCR. A series of bioinformatics analyses, such as differential expression genes (DEGs) screening, was performed. GO and KEGG functional enrichment analysis and protein-protein interaction (PPI) network construction were conducted based on the sequencing data. Results RYGB surgery could significantly inhibit the weight growth rate and decrease the FBG, FSI, and HOMA-IR of T2DM rats. Bioinformatics analysis of RNA sequencing (RNA-Seq) results revealed that 87 DE- lncRNAs (49 upregulated and 38 downregulated) and 1,824 DEGs (896 upregulated and 928 downregulated) were present in between the RYGB group and Sham group. GO and KEGG analysis showed that the target genes of DEGs and differentially expressed lncRNAs (DE-lncRNAs) were mainly associated with amino acid metabolism, fatty acid metabolism, channel activity, and other processes. In addition, the PPI network diagram also displayed that genes such as Fasn, Grin3a, and Nog could be key genes playing a role after RYGB. qRT-PCR showed that the expression level of Grin3a in the RYGB group was significantly increased compared with the Sham group, while the expression of Fasn and Nog was significantly decreased, which was consistent with the sequencing results. Conclusion Using RNA-Seq sequencing, this study revealed the changes of related lncRNAs, mRNAs, and signaling pathways in the white adipose tissue of T2DM rats after RYGB and identified Fasn, Grin3a, and Nog as potential key genes to function after RYGB.
Collapse
Affiliation(s)
- Li-Hai Zhang
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Xi'an 710061, China
- General Surgery, The First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang 154002, China
| | - Jiao Wang
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Xi'an 710061, China
- General Surgery, The First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang 154002, China
| | - Bai-Hong Tan
- General Surgery, The First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang 154002, China
| | - Yan-Bin Yin
- General Surgery, The First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang 154002, China
| | - Yu-Ming Kang
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Xi'an 710061, China
| |
Collapse
|
10
|
Ling C, Bacos K, Rönn T. Epigenetics of type 2 diabetes mellitus and weight change - a tool for precision medicine? Nat Rev Endocrinol 2022; 18:433-448. [PMID: 35513492 DOI: 10.1038/s41574-022-00671-w] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/29/2022] [Indexed: 12/12/2022]
Abstract
Pioneering studies performed over the past few decades demonstrate links between epigenetics and type 2 diabetes mellitus (T2DM), the metabolic disorder with the most rapidly increasing prevalence in the world. Importantly, these studies identified epigenetic modifications, including altered DNA methylation, in pancreatic islets, adipose tissue, skeletal muscle and the liver from individuals with T2DM. As non-genetic factors that affect the risk of T2DM, such as obesity, unhealthy diet, physical inactivity, ageing and the intrauterine environment, have been associated with epigenetic modifications in healthy individuals, epigenetics probably also contributes to T2DM development. In addition, genetic factors associated with T2DM and obesity affect the epigenome in human tissues. Notably, causal mediation analyses found DNA methylation to be a potential mediator of genetic associations with metabolic traits and disease. In the past few years, translational studies have identified blood-based epigenetic markers that might be further developed and used for precision medicine to help patients with T2DM receive optimal therapy and to identify patients at risk of complications. This Review focuses on epigenetic mechanisms in the development of T2DM and the regulation of body weight in humans, with a special focus on precision medicine.
Collapse
Affiliation(s)
- Charlotte Ling
- Epigenetics and Diabetes Unit, Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, Scania University Hospital, Malmö, Sweden.
| | - Karl Bacos
- Epigenetics and Diabetes Unit, Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, Scania University Hospital, Malmö, Sweden
| | - Tina Rönn
- Epigenetics and Diabetes Unit, Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, Scania University Hospital, Malmö, Sweden
| |
Collapse
|
11
|
Barbosa P, Landes RD, Graw S, Byrum SD, Bennuri S, Delhey L, Randolph C, MacLeod S, Reis A, Børsheim E, Rose S, Carvalho E. Effect of excess weight and insulin resistance on DNA methylation in prepubertal children. Sci Rep 2022; 12:8430. [PMID: 35589784 PMCID: PMC9120504 DOI: 10.1038/s41598-022-12325-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 05/03/2022] [Indexed: 11/13/2022] Open
Abstract
Epigenetic mechanisms, such as DNA methylation, regulate gene expression and play a role in the development of insulin resistance. This study evaluates how the BMI z-score (BMIz) and the homeostatic model assessment of insulin resistance (HOMA-IR), alone or in combination, relate to clinical outcomes and DNA methylation patterns in prepubertal children. DNA methylation in peripheral blood mononuclear cells (PBMCs) and clinical outcomes were measured in a cohort of 41 prepubertal children. Children with higher HOMA-IR had higher blood pressure and plasma lactate levels while children with higher BMIz had higher triglycerides levels. Moreover, the DNA methylation analysis demonstrated that a 1 unit increase in the BMIz was associated with a 0.41 (95% CI: 0.29, 0.53) increase in methylation of a CpG near the PPP6R2 gene. This gene is important in the regulation of NF-kB expression. However, there was no strong evidence that the BMIz and the HOMA-IR were synergistically related to any clinical or DNA methylation outcomes. In summary, the results suggest that obesity and insulin resistance may impact metabolic health both independently in prepubertal children. In addition, obesity also has an impact on the DNA methylation of the PPP6R2 gene. This may be a novel underlying starting point for the systemic inflammation associated with obesity and insulin resistance, in this population.
Collapse
Affiliation(s)
- Pedro Barbosa
- PhD Programme in Experimental Biology and Biomedicine, Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Coimbra, Portugal.,Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Coimbra, Portugal
| | - Reid D Landes
- Department of Biostatistics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Stefan Graw
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA.,Arkansas Children's Research Institute, Little Rock, AR, USA.,Everest Clinical Research Corporation, Markham, ON, Canada
| | - Stephanie D Byrum
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA.,Arkansas Children's Research Institute, Little Rock, AR, USA
| | - Sirish Bennuri
- Arkansas Children's Research Institute, Little Rock, AR, USA
| | - Leanna Delhey
- Arkansas Children's Research Institute, Little Rock, AR, USA.,Department of Epidemiology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Chris Randolph
- Arkansas Children's Research Institute, Little Rock, AR, USA
| | - Stewart MacLeod
- Arkansas Children's Research Institute, Little Rock, AR, USA
| | - Andreia Reis
- Department of Medical Sciences (DCM), Institute for Research in Biomedicine (iBiMED), University of Aveiro, Aveiro, Portugal
| | - Elisabet Børsheim
- Arkansas Children's Research Institute, Little Rock, AR, USA.,Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA.,Arkansas Children's Nutrition Center, Little Rock, AR, USA.,Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Shannon Rose
- Arkansas Children's Research Institute, Little Rock, AR, USA.,Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Eugenia Carvalho
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal. .,Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Coimbra, Portugal. .,Arkansas Children's Research Institute, Little Rock, AR, USA. .,Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| |
Collapse
|
12
|
Shared genetic loci for body fat storage and adipocyte lipolysis in humans. Sci Rep 2022; 12:3666. [PMID: 35256633 PMCID: PMC8901764 DOI: 10.1038/s41598-022-07291-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 02/15/2022] [Indexed: 12/11/2022] Open
Abstract
Total body fat and central fat distribution are heritable traits and well-established predictors of adverse metabolic outcomes. Lipolysis is the process responsible for the hydrolysis of triacylglycerols stored in adipocytes. To increase our understanding of the genetic regulation of body fat distribution and total body fat, we set out to determine if genetic variants associated with body mass index (BMI) or waist-hip-ratio adjusted for BMI (WHRadjBMI) in genome-wide association studies (GWAS) mediate their effect by influencing adipocyte lipolysis. We utilized data from the recent GWAS of spontaneous and isoprenaline-stimulated lipolysis in the unique GENetics of Adipocyte Lipolysis (GENiAL) cohort. GENiAL consists of 939 participants who have undergone abdominal subcutaneous adipose biopsy for the determination of spontaneous and isoprenaline-stimulated lipolysis in adipocytes. We report 11 BMI and 15 WHRadjBMI loci with SNPs displaying nominal association with lipolysis and allele-dependent gene expression in adipose tissue according to in silico analysis. Functional evaluation of candidate genes in these loci by small interfering RNAs (siRNA)-mediated knock-down in adipose-derived stem cells identified ZNF436 and NUP85 as intrinsic regulators of lipolysis consistent with the associations observed in the clinical cohorts. Furthermore, candidate genes in another BMI-locus (STX17) and two more WHRadjBMI loci (NID2, GGA3, GRB2) control lipolysis alone, or in conjunction with lipid storage, and may hereby be involved in genetic control of body fat. The findings expand our understanding of how genetic variants mediate their impact on the complex traits of fat storage and distribution.
Collapse
|
13
|
Viraragavan A, Willmer T, Patel O, Basson A, Johnson R, Pheiffer C. Cafeteria diet induces global and Slc27a3-specific hypomethylation in male Wistar rats. Adipocyte 2021; 10:108-118. [PMID: 33570456 PMCID: PMC7889207 DOI: 10.1080/21623945.2021.1886697] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Increased visceral adipose tissue (VAT) is associated with metabolic dysfunction, while subcutaneous adipose tissue (SAT) is considered protective. The mechanisms underlying these differences are not fully elucidated. This study aimed to investigate molecular differences in VAT and SAT of male Wistar rats fed a cafeteria diet (CD) or a standard rodent diet (STD) for three months. The expression of fatty acid metabolism genes was analysed by quantitative real-time PCR. Global and gene-specific DNA methylation was quantified using the Imprint® Methylated DNA Quantification Kit and pyrosequencing, respectively. Bodyweight, retroperitoneal fat mass, insulin resistance, leptin and triglyceride concentrations and adipocyte hypertrophy were higher in CD- compared to STD-fed rats. The expression of solute carrier family 27 member 3 (Slc27a3), a fatty acid transporter, was 9.6-fold higher in VAT and 6.3-fold lower in SAT of CD- versus STD-fed rats. Taqman probes confirmed increased Slc27a3 expression, while pyrosequencing showed Slc27a3 hypomethylation in VAT of CD- compared to STD-fed rats. The CD decreased global methylation in both VAT and SAT, although no depot differences were observed. Dysregulated fatty acid influx in VAT, in response to a CD, provides insight into the mechanisms underlying depot-differences in adipose tissue expansion during obesity and metabolic disease. Abbreviations: CD: cafeteria diet; E2F1: E2F Transcription Factor 1; EMSA: electrophoretic mobility shift assay; EGFR: epidermal growth factor receptor; GCF: GC-Rich Sequence DNA-Binding Factor; HOMA-IR: Homeostasis model for insulin resistance; NKX2-1: NK2 homeobox 1; PCR: Polymerase chain reaction; qRT-PCR: quantitative real-time PCR; RF: retroperitoneal fat; SAT: subcutaneous adipose tissue; Slc27a3: solute carrier family 27 member 3; STD: standard diet; TNFα: tumour necrosis factor alpha; TTS: transcriptional start site; T2D: Type 2 Diabetes; VAT: visceral adipose tissue; WT1 I: Wilms’ tumour protein 1
Collapse
Affiliation(s)
- Amsha Viraragavan
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, South Africa
- Department of Biochemistry and Microbiology, University of Zululand, Kwa-Dlangezwa, South Africa
| | - Tarryn Willmer
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, South Africa
- Division of Medical Physiology, Faculty of Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Oelfah Patel
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, South Africa
- Division of Clinical Pharmacology, Department of Medicine, Faculty of Medicine and Health Sciences, University of Stellenbosch, Tygerberg, South Africa
| | - Albertus Basson
- Department of Biochemistry and Microbiology, University of Zululand, Kwa-Dlangezwa, South Africa
| | - Rabia Johnson
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, South Africa
- Division of Medical Physiology, Faculty of Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Carmen Pheiffer
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, South Africa
- Division of Medical Physiology, Faculty of Health Sciences, Stellenbosch University, Tygerberg, South Africa
| |
Collapse
|
14
|
Jung SY, Sobel EM, Pellegrini M, Yu H, Papp JC. Synergistic Effects of Genetic Variants of Glucose Homeostasis and Lifelong Exposures to Cigarette Smoking, Female Hormones, and Dietary Fat Intake on Primary Colorectal Cancer Development in African and Hispanic/Latino American Women. Front Oncol 2021; 11:760243. [PMID: 34692549 PMCID: PMC8529283 DOI: 10.3389/fonc.2021.760243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 09/22/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Disparities in cancer genomic science exist among racial/ethnic minorities. Particularly, African American (AA) and Hispanic/Latino American (HA) women, the 2 largest minorities, are underrepresented in genetic/genome-wide studies for cancers and their risk factors. We conducted on AA and HA postmenopausal women a genomic study for insulin resistance (IR), the main biologic mechanism underlying colorectal cancer (CRC) carcinogenesis owing to obesity. METHODS With 780 genome-wide IR-specific single-nucleotide polymorphisms (SNPs) among 4,692 AA and 1,986 HA women, we constructed a CRC-risk prediction model. Along with these SNPs, we incorporated CRC-associated lifestyles in the model of each group and detected the topmost influential genetic and lifestyle factors. Further, we estimated the attributable risk of the topmost risk factors shared by the groups to explore potential factors that differentiate CRC risk between these groups. RESULTS In both groups, we detected IR-SNPs in PCSK1 (in AA) and IFT172, GCKR, and NRBP1 (in HA) and risk lifestyles, including long lifetime exposures to cigarette smoking and endogenous female hormones and daily intake of polyunsaturated fatty acids (PFA), as the topmost predictive variables for CRC risk. Combinations of those top genetic- and lifestyle-markers synergistically increased CRC risk. Of those risk factors, dietary PFA intake and long lifetime exposure to female hormones may play a key role in mediating racial disparity of CRC incidence between AA and HA women. CONCLUSIONS Our results may improve CRC risk prediction performance in those medically/scientifically underrepresented groups and lead to the development of genetically informed interventions for cancer prevention and therapeutic effort, thus contributing to reduced cancer disparities in those minority subpopulations.
Collapse
Affiliation(s)
- Su Yon Jung
- Translational Sciences Section, Jonsson Comprehensive Cancer Center, School of Nursing, University of California, Los Angeles, Los Angeles, CA, United States
| | - Eric M. Sobel
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Computational Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Matteo Pellegrini
- Department of Molecular, Cell and Developmental Biology, Life Sciences Division, University of California, Los Angeles, Los Angeles, CA, United States
| | - Herbert Yu
- Cancer Epidemiology Program, University of Hawaii Cancer Center, Honolulu, HI, United States
| | - Jeanette C. Papp
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
15
|
Jung SY. Genetic Signatures of Glucose Homeostasis: Synergistic Interplay With Long-Term Exposure to Cigarette Smoking in Development of Primary Colorectal Cancer Among African American Women. Clin Transl Gastroenterol 2021; 12:e00412. [PMID: 34608882 PMCID: PMC8500576 DOI: 10.14309/ctg.0000000000000412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 08/22/2021] [Indexed: 11/17/2022] Open
Abstract
INTRODUCTION Insulin resistance (IR)/glucose intolerance is a critical biologic mechanism for the development of colorectal cancer (CRC) in postmenopausal women. Whereas IR and excessive adiposity are more prevalent in African American (AA) women than in White women, AA women are underrepresented in genome-wide studies for systemic regulation of IR and the association with CRC risk. METHODS With 780 genome-wide IR single-nucleotide polymorphisms (SNPs) among 4,692 AA women, we tested for a causal inference between genetically elevated IR and CRC risk. Furthermore, by incorporating CRC-associated lifestyle factors, we established a prediction model on the basis of gene-environment interactions to generate risk profiles for CRC with the most influential genetic and lifestyle factors. RESUTLS In the pooled Mendelian randomization analysis, the genetically elevated IR was associated with 9 times increased risk of CRC, but with lack of analytic power. By addressing the variation of individual SNPs in CRC in the prediction model, we detected 4 fasting glucose-specific SNPs in GCK, PCSK1, and MTNR1B and 4 lifestyles, including smoking, aging, prolonged lifetime exposure to endogenous estrogen, and high fat intake, as the most predictive markers of CRC risk. Our joint test for those risk genotypes and lifestyles with smoking revealed the synergistically increased CRC risk, more substantially in women with longer-term exposure to cigarette smoking. DISCUSSION Our findings may improve CRC prediction ability among medically underrepresented AA women and highlight genetically informed preventive interventions (e.g., smoking cessation; CRC screening to longer-term smokers) for those women at high risk with risk genotypes and behavioral patterns.
Collapse
Affiliation(s)
- Su Yon Jung
- Translational Sciences Section, School of Nursing, University of California, Los Angeles, Los Angeles, California, USA; and
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, California, USA.
| |
Collapse
|
16
|
Zhang F, Yang Y, Chen X, Liu Y, Hu Q, Huang B, Liu Y, Pan Y, Zhang Y, Liu D, Liang R, Li G, Wei Q, Li L, Jin L. The long non-coding RNA βFaar regulates islet β-cell function and survival during obesity in mice. Nat Commun 2021; 12:3997. [PMID: 34183666 PMCID: PMC8238983 DOI: 10.1038/s41467-021-24302-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 06/07/2021] [Indexed: 02/08/2023] Open
Abstract
Despite obesity being a predisposing factor for pancreatic β-cell dysfunction and loss, the mechanisms underlying its negative effect on insulin-secreting cells remain poorly understood. In this study, we identify an islet-enriched long non-coding RNA (lncRNA), which we name β-cell function and apoptosis regulator (βFaar). βFaar is dramatically downregulated in the islets of the obese mice, and a low level of βFaar is necessary for the development of obesity-associated β-cell dysfunction and apoptosis. Mechanistically, βFaar promote the synthesis and secretion of insulin by upregulating islet-specific genes Ins2, NeuroD1, and Creb1 through sponging miR-138-5p. In addition, using quantitative mass spectrometry, we identify TRAF3IP2 and SMURF1 as interacting proteins that are specifically associated with βFaar. We demonstrate that SMURF1 ubiquitin ligase activity is essential for TRAF3IP2 ubiquitination and activation of NF-κB-mediate β-cell apoptosis. Our experiments provide direct evidence that dysregulated βFaar contributes to the development of obesity-induced β-cell injury and apoptosis. Beta-cell function is often impaired in obesity through incompletely understood mechanisms. Here the authors show that the long noncoding RNA βFaar is reduced by diet-induced obesity in mice, which leads to impaired beta-cell function via miR-138-5p and survival via TRAF3 Interacting Protein 2.
Collapse
Affiliation(s)
- Fangfang Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu Province, China
| | - Yue Yang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu Province, China
| | - Xi Chen
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu Province, China
| | - Yue Liu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu Province, China
| | - Qianxing Hu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu Province, China
| | - Bin Huang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu Province, China
| | - Yuhong Liu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu Province, China
| | - Yi Pan
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu Province, China
| | - Yanfeng Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu Province, China
| | - Dechen Liu
- Department of Endocrinology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu Province, China
| | - Rui Liang
- Organ Transplant Center, Tianjin First Central Hospital, Nankai University, Tianjin, China
| | - Guoqing Li
- Department of Endocrinology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu Province, China.,Pancreatic Research Institute, Southeast University, Nanjing, China
| | - Qiong Wei
- Department of Endocrinology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu Province, China. .,Pancreatic Research Institute, Southeast University, Nanjing, China.
| | - Ling Li
- Department of Endocrinology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu Province, China. .,Pancreatic Research Institute, Southeast University, Nanjing, China.
| | - Liang Jin
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu Province, China.
| |
Collapse
|
17
|
Anguita-Ruiz A, Bustos-Aibar M, Plaza-Díaz J, Mendez-Gutierrez A, Alcalá-Fdez J, Aguilera CM, Ruiz-Ojeda FJ. Omics Approaches in Adipose Tissue and Skeletal Muscle Addressing the Role of Extracellular Matrix in Obesity and Metabolic Dysfunction. Int J Mol Sci 2021; 22:2756. [PMID: 33803198 PMCID: PMC7963192 DOI: 10.3390/ijms22052756] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/03/2021] [Accepted: 03/05/2021] [Indexed: 12/14/2022] Open
Abstract
Extracellular matrix (ECM) remodeling plays important roles in both white adipose tissue (WAT) and the skeletal muscle (SM) metabolism. Excessive adipocyte hypertrophy causes fibrosis, inflammation, and metabolic dysfunction in adipose tissue, as well as impaired adipogenesis. Similarly, disturbed ECM remodeling in SM has metabolic consequences such as decreased insulin sensitivity. Most of described ECM molecular alterations have been associated with DNA sequence variation, alterations in gene expression patterns, and epigenetic modifications. Among others, the most important epigenetic mechanism by which cells are able to modulate their gene expression is DNA methylation. Epigenome-Wide Association Studies (EWAS) have become a powerful approach to identify DNA methylation variation associated with biological traits in humans. Likewise, Genome-Wide Association Studies (GWAS) and gene expression microarrays have allowed the study of whole-genome genetics and transcriptomics patterns in obesity and metabolic diseases. The aim of this review is to explore the molecular basis of ECM in WAT and SM remodeling in obesity and the consequences of metabolic complications. For that purpose, we reviewed scientific literature including all omics approaches reporting genetic, epigenetic, and transcriptomic (GWAS, EWAS, and RNA-seq or cDNA arrays) ECM-related alterations in WAT and SM as associated with metabolic dysfunction and obesity.
Collapse
Affiliation(s)
- Augusto Anguita-Ruiz
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain; (A.A.-R.); (M.B.-A.); (J.P.-D.); (A.M.-G.); (F.J.R.-O.)
- Instituto de Investigación Biosanitaria IBS.GRANADA, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain
- Institute of Nutrition and Food Technology “José Mataix”, Center of Biomedical Research, University of Granada, Avda. del Conocimiento s/n., 18016 Granada, Spain
- CIBEROBN (CIBER Physiopathology of Obesity and Nutrition), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Mireia Bustos-Aibar
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain; (A.A.-R.); (M.B.-A.); (J.P.-D.); (A.M.-G.); (F.J.R.-O.)
- Institute of Nutrition and Food Technology “José Mataix”, Center of Biomedical Research, University of Granada, Avda. del Conocimiento s/n., 18016 Granada, Spain
| | - Julio Plaza-Díaz
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain; (A.A.-R.); (M.B.-A.); (J.P.-D.); (A.M.-G.); (F.J.R.-O.)
- Instituto de Investigación Biosanitaria IBS.GRANADA, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain
- Institute of Nutrition and Food Technology “José Mataix”, Center of Biomedical Research, University of Granada, Avda. del Conocimiento s/n., 18016 Granada, Spain
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada
| | - Andrea Mendez-Gutierrez
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain; (A.A.-R.); (M.B.-A.); (J.P.-D.); (A.M.-G.); (F.J.R.-O.)
- Instituto de Investigación Biosanitaria IBS.GRANADA, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain
- Institute of Nutrition and Food Technology “José Mataix”, Center of Biomedical Research, University of Granada, Avda. del Conocimiento s/n., 18016 Granada, Spain
- CIBEROBN (CIBER Physiopathology of Obesity and Nutrition), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Jesús Alcalá-Fdez
- Department of Computer Science and Artificial Intelligence, University of Granada, 18071 Granada, Spain;
| | - Concepción María Aguilera
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain; (A.A.-R.); (M.B.-A.); (J.P.-D.); (A.M.-G.); (F.J.R.-O.)
- Instituto de Investigación Biosanitaria IBS.GRANADA, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain
- Institute of Nutrition and Food Technology “José Mataix”, Center of Biomedical Research, University of Granada, Avda. del Conocimiento s/n., 18016 Granada, Spain
- CIBEROBN (CIBER Physiopathology of Obesity and Nutrition), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Francisco Javier Ruiz-Ojeda
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain; (A.A.-R.); (M.B.-A.); (J.P.-D.); (A.M.-G.); (F.J.R.-O.)
- Instituto de Investigación Biosanitaria IBS.GRANADA, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain
- RG Adipocytes and Metabolism, Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Center Munich, Neuherberg, 85764 Munich, Germany
| |
Collapse
|
18
|
Andrade S, Morais T, Sandovici I, Seabra AL, Constância M, Monteiro MP. Adipose Tissue Epigenetic Profile in Obesity-Related Dysglycemia - A Systematic Review. Front Endocrinol (Lausanne) 2021; 12:681649. [PMID: 34290669 PMCID: PMC8288106 DOI: 10.3389/fendo.2021.681649] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 05/26/2021] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Obesity is a major risk factor for dysglycemic disorders, including type 2 diabetes (T2D). However, there is wide phenotypic variation in metabolic profiles. Tissue-specific epigenetic modifications could be partially accountable for the observed phenotypic variability. SCOPE The aim of this systematic review was to summarize the available data on epigenetic signatures in human adipose tissue (AT) that characterize overweight or obesity-related insulin resistance (IR) and dysglycemia states and to identify potential underlying mechanisms through the use of unbiased bioinformatics approaches. METHODS Original data published in the last decade concerning the comparison of epigenetic marks in human AT of individuals with metabolically unhealthy overweight/obesity (MUHO) versus normal weight individuals or individuals with metabolically healthy overweight/obesity (MHO) was assessed. Furthermore, association of these epigenetic marks with IR/dysglycemic traits, including T2D, was compiled. RESULTS We catalogued more than two thousand differentially methylated regions (DMRs; above the cut-off of 5%) in the AT of individuals with MUHO compared to individuals with MHO. These DNA methylation changes were less likely to occur around the promoter regions and were enriched at loci implicated in intracellular signaling (signal transduction mediated by small GTPases, ERK1/2 signaling and intracellular trafficking). We also identified a network of seven transcription factors that may play an important role in targeting DNA methylation changes to specific genes in the AT of subjects with MUHO, contributing to the pathogeny of obesity-related IR/T2D. Furthermore, we found differentially methylated CpG sites at 8 genes that were present in AT and whole blood, suggesting that DMRs in whole blood could be potentially used as accessible biomarkers of MUHO. CONCLUSIONS The overall evidence linking epigenetic alterations in key tissues such AT to metabolic complications in human obesity is still very limited, highlighting the need for further studies, particularly those focusing on epigenetic marks other than DNA methylation. Our initial analysis suggests that DNA methylation patterns can potentially discriminate between MUHO from MHO and provide new clues into why some people with obesity are less susceptible to dysglycemia. Identifying AT-specific epigenetic targets could also lead to novel approaches to modify the progression of individuals with obesity towards metabolic disease. SYSTEMATIC REVIEW REGISTRATION PROSPERO, identifier CRD42021227237.
Collapse
Affiliation(s)
- Sara Andrade
- Endocrine and Metabolic Research, Unit for Multidisciplinary Research in Biomedicine (UMIB), University of Porto, Porto, Portugal
- Department of Anatomy, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Tiago Morais
- Endocrine and Metabolic Research, Unit for Multidisciplinary Research in Biomedicine (UMIB), University of Porto, Porto, Portugal
- Department of Anatomy, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Ionel Sandovici
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Institute of Metabolic Science, Addenbrookes Hospital, Cambridge, United Kingdom
- Department of Obstetrics and Gynaecology and National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, United Kingdom
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Alexandre L. Seabra
- Endocrine and Metabolic Research, Unit for Multidisciplinary Research in Biomedicine (UMIB), University of Porto, Porto, Portugal
- Department of Anatomy, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Miguel Constância
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Institute of Metabolic Science, Addenbrookes Hospital, Cambridge, United Kingdom
- Department of Obstetrics and Gynaecology and National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, United Kingdom
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
- National Institute of Health Research, Cambridge Biomedical Research Centre, Cambridge, United Kingdom
| | - Mariana P. Monteiro
- Endocrine and Metabolic Research, Unit for Multidisciplinary Research in Biomedicine (UMIB), University of Porto, Porto, Portugal
- Department of Anatomy, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
- *Correspondence: Mariana P. Monteiro,
| |
Collapse
|
19
|
Sharma NK, Comeau ME, Montoya D, Pellegrini M, Howard TD, Langefeld CD, Das SK. Integrative Analysis of Glucometabolic Traits, Adipose Tissue DNA Methylation, and Gene Expression Identifies Epigenetic Regulatory Mechanisms of Insulin Resistance and Obesity in African Americans. Diabetes 2020; 69:2779-2793. [PMID: 32928872 PMCID: PMC7679782 DOI: 10.2337/db20-0117] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 08/28/2020] [Indexed: 12/13/2022]
Abstract
Decline in insulin sensitivity due to dysfunction of adipose tissue (AT) is one of the earliest pathogenic events in type 2 diabetes. We hypothesize that differential DNA methylation (DNAm) controls insulin sensitivity and obesity by modulating transcript expression in AT. Integrating AT DNAm profiles with transcript profile data measured in a cohort of 230 African Americans (AAs) from the African American Genetics of Metabolism and Expression cohort, we performed cis-expression quantitative trait methylation (cis-eQTM) analysis to identify epigenetic regulatory loci for glucometabolic trait-associated transcripts. We identified significantly associated cytosine-guanine dinucleotide regions for 82 transcripts (false discovery rate [FDR]-P < 0.05). The strongest eQTM locus was observed for the proopiomelanocortin (POMC; ρ = -0.632, P = 4.70 × 10-27) gene. Epigenome-wide association studies (EWAS) further identified 155, 46, and 168 cytosine-guanine dinucleotide regions associated (FDR-P < 0.05) with the Matsuda index, SI, and BMI, respectively. Intersection of EWAS, transcript level to trait association, and eQTM results, followed by causal inference test identified significant eQTM loci for 23 genes that were also associated with Matsuda index, SI, and/or BMI in EWAS. These associated genes include FERMT3, ITGAM, ITGAX, and POMC In summary, applying an integrative multiomics approach, our study provides evidence for DNAm-mediated regulation of gene expression at both previously identified and novel loci for many key AT transcripts influencing insulin resistance and obesity.
Collapse
Affiliation(s)
- Neeraj K Sharma
- Department of Internal Medicine, Section of Endocrinology and Metabolism, Wake Forest School of Medicine, Winston-Salem, NC
| | - Mary E Comeau
- Department of Biostatistics and Data Science, Division of Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, NC
| | - Dennis Montoya
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA
| | - Matteo Pellegrini
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA
| | - Timothy D Howard
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC
| | - Carl D Langefeld
- Department of Biostatistics and Data Science, Division of Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, NC
| | - Swapan K Das
- Department of Internal Medicine, Section of Endocrinology and Metabolism, Wake Forest School of Medicine, Winston-Salem, NC
| |
Collapse
|
20
|
Sun X, Ji Y, Tahir A, Kang J. Network Pharmacology Combined with Transcriptional Analysis to Unveil the Biological Basis of Astaxanthin in Reducing the Oxidative Stress Induced by Diabetes Mellitus. Diabetes Metab Syndr Obes 2020; 13:4281-4295. [PMID: 33204134 PMCID: PMC7667204 DOI: 10.2147/dmso.s274315] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/10/2020] [Indexed: 01/24/2023] Open
Abstract
PURPOSE Astaxanthin (Ast) has been reported to reduce oxidative stress induced by diabetes mellitus (DM). The aim of this research was to give a systematic overview of the biological basis for this process. METHODS Ast-targeted proteins were collected from the BATMAN database, Comparative Toxicogenomics Database, and STITCH database. Putative DM-related protein targets were collected from the GeneCards database. A DM-rat model was then built with streptozotocin (STZ) combined with a high-sugar, high-fat diet for 30 days. Total cholesterol (TC), triglycerides (TGs), and insulin levels were examined using whole tail-vein blood from overnight-fasted rats. SOD, GSH, and MDA activy was detected in liver tissue (p<0.05). In addition, we used RNA-sequencing analysis to detect gene-transcription level in liver tissue of rats and GO biological process analysis to show all the log2FC≥2 genes in the Ast-fed DM rats compared with the DM group using the STRING database. Ast-intersecting targets were collected with Venn analysis. Docking analysis between Ast and targeted proteins was down with the SwissDock server. Ast targets-pathway networks were built using Cytoscape 3.7.2 software. RESULTS A total of 120 Ast-targeted proteins and 13,784 DM-related targets were collected. Ast functioned in reducing TC, TG, and MDA levels, promoting SOD activity and GSH expression, and alleviating islet-cell injury in Ast-fed DM rats compared with DM control rats. Furthermore, genes involved in MAPK, TNF, AMPK, and FOXO signaling pathways were differently expressed in Ast-treated DM rats compared with DM rats. The differentially expressed genes were enriched in euchromatin, thyroid cancer, and metaphase-plate congression. Three Ast-intersecting targets - Col5A1, Nqo1, and Notch2 - were then identified. We found possible binding patterns of Ast with Nqo1 and Notch2, respectively. Ast targets-pathway networks were finally built to show a systematic overview of how Ast works in multiple pathways to reduce oxidative stress. Taken together, Ast is predicted to target Col5A1, Nqo1, and Notch2 to form a network of systemic pharmacological effects to: 1) promote insulin-releasing balance and relieve insulin resistance, 2) reduce testicular cell apoptosis, and 3) maintain normal size in marginal-zone B cells and inhibit autoimmune DM, all of which contribute to the balance of lipid metabolism and reduction of oxidative stress in DM patients. CONCLUSION Ast functions in reducing oxidative stress in DM rats by regulating a variety of targets to form a comprehensive antioxidative network.
Collapse
Affiliation(s)
- Xueliang Sun
- School of Life Sciences, Tianjin University, Tianjin300072, People’s Republic of China
- Tianjin Key Laboratory of Aquaecology and Aquaculture, College of Fisheries, Tianjin Agricultural University, Tianjin300384, People’s Republic of China
| | - Yanbin Ji
- Tianjin Key Laboratory of Aquaecology and Aquaculture, College of Fisheries, Tianjin Agricultural University, Tianjin300384, People’s Republic of China
| | - Ayesha Tahir
- Department of Biosciences, COMSATS University Islamabad, Islamabad45550, Pakistan
| | - Jun Kang
- School of Life Sciences, Tianjin University, Tianjin300072, People’s Republic of China
| |
Collapse
|
21
|
Zhou Q, Fu Z, Gong Y, Seshachalam VP, Li J, Ma Y, Liang H, Guan W, Lin S, Ghosh S, Sun L, Zhou H. Metabolic Health Status Contributes to Transcriptome Alternation in Human Visceral Adipose Tissue During Obesity. Obesity (Silver Spring) 2020; 28:2153-2162. [PMID: 32985130 DOI: 10.1002/oby.22950] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/27/2020] [Accepted: 06/19/2020] [Indexed: 11/10/2022]
Abstract
OBJECTIVE BMI is a well-established factor affecting the transcriptome profile of adipose tissue, but there are few reports on the relationship between the metabolic health status of people with obesity and the transcriptional changes, particularly in visceral adipose tissue. METHODS Visceral adipose tissue was collected from three subgroups of patients, lean (n = 11), metabolically healthy obesity (MHO; n = 22), and metabolically unhealthy obesity (MUO; n = 26), and RNA sequencing was conducted to profile the transcriptome changes between these groups in a pairwise manner. RESULTS Comparing MUO with lean and comparing MHO with lean revealed similar patterns in gene expression and pathway changes: obesity, regardless of metabolic health, was associated with upregulated inflammatory pathways. However, the inflammatory signature in MUO was stronger than in MHO. Pairwise comparisons among MUO, MHO, and lean samples identified 34 common differentially expressed genes; 12 out of 34 genes were associated with inflammatory pathways and exhibited a gradually increased expression pattern in the order of lean, MHO, and MUO. CONCLUSIONS This study reveals not only that BMI plays an important role in determining the gene expression profile in visceral adipose tissue but also that a metabolically healthy condition is associated with a less inflammatory transcriptional change during obesity.
Collapse
Affiliation(s)
- Qiuzhong Zhou
- Cardiovascular & Metabolic Disorders, Duke-NUS Medical School, Singapore, Singapore
| | - Zhenzhen Fu
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yingyun Gong
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | | | - Jia Li
- Cardiovascular & Metabolic Disorders, Duke-NUS Medical School, Singapore, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Yizhe Ma
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hui Liang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wei Guan
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Shibo Lin
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Sujoy Ghosh
- Centre for Computational Biology and Cardiovascular & Metabolic Disorders, Duke-NUS Medical School, Singapore, Singapore
| | - Lei Sun
- Cardiovascular & Metabolic Disorders, Duke-NUS Medical School, Singapore, Singapore
- Institute of Molecular and Cell Biology, Proteos, Singapore, Singapore
| | - Hongwen Zhou
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
22
|
Krause C, Geißler C, Tackenberg H, El Gammal AT, Wolter S, Spranger J, Mann O, Lehnert H, Kirchner H. Multi-layered epigenetic regulation of IRS2 expression in the liver of obese individuals with type 2 diabetes. Diabetologia 2020; 63:2182-2193. [PMID: 32710190 PMCID: PMC7476982 DOI: 10.1007/s00125-020-05212-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 04/30/2020] [Indexed: 12/15/2022]
Abstract
AIMS/HYPOTHESIS IRS2 is an important molecular switch that mediates insulin signalling in the liver. IRS2 dysregulation is responsible for the phenomenon of selective insulin resistance that is observed in type 2 diabetes. We hypothesise that epigenetic mechanisms are involved in the regulation of IRS2 in the liver of obese and type 2 diabetic individuals. METHODS DNA methylation of seven CpG sites was studied by bisulphite pyrosequencing and mRNA and microRNA (miRNA) expression was assessed by quantitative real-time PCR in liver biopsies of 50 obese non-diabetic and 31 obese type 2 diabetic participants, in a cross-sectional setting. Methylation-sensitive luciferase assays and electrophoretic mobility shift assays were performed. Furthermore, HepG2 cells were treated with insulin and high glucose concentrations to induce miRNA expression and IRS2 downregulation. RESULTS We found a significant downregulation of IRS2 expression in the liver of obese individuals with type 2 diabetes (0.84 ± 0.08-fold change; p = 0.0833; adjusted p value [pa] = 0.0417; n = 31) in comparison with non-diabetic obese participants (n = 50). This downregulation correlated with hepatic IRS2 DNA methylation at CpG5. Additionally, CpG6, which is located in intron 1 of IRS2, was hypomethylated in type 2 diabetes; this site spans the sterol regulatory element binding transcription factor 1 (SREBF1) recognition motif, which likely acts as transcriptional repressor. The adjacent polymorphism rs4547213 (G>A) was significantly associated with DNA methylation at a specificity-protein-1 (SP1) binding site (CpG3). Moreover, DNA methylation of cg25924746, a CpG site located in the shore region of the IRS2 promoter-associated CpG island, was increased in the liver of individuals with type 2 diabetes, as compared with those without diabetes. A second epigenetic mechanism, upregulation of hepatic miRNA hsa-let-7e-5p (let-7e-5p) in obese individuals with type 2 diabetes (n = 29) vs non-diabetic obese individuals (n = 49) (1.2 ± 0.08-fold change; p = 0.0332; pa = 0.0450), is likely to act synergistically with altered IRS2 DNA methylation to decrease IRS2 expression. Mechanistic in vitro experiments demonstrated an acute upregulation of let-7e-5p expression and simultaneous IRS2 downregulation in a liver (HepG2) cell line upon hyperinsulinaemic and hyperglycaemic conditions. CONCLUSIONS/INTERPRETATION Our study highlights a new multi-layered epigenetic network that could be involved in subtle dysregulation of IRS2 in the liver of individuals with type 2 diabetes. This might lead to fine-tuning of IRS2 expression and is likely to be supplementary to the already known factors regulating IRS2 expression. Thereby, our findings could support the discovery of new diagnostic and therapeutic strategies for type 2 diabetes. Graphical abstract.
Collapse
Affiliation(s)
- Christin Krause
- First Department of Medicine, Division of Epigenetics and Metabolism, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany
| | - Cathleen Geißler
- First Department of Medicine, Division of Epigenetics and Metabolism, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany
| | - Heidi Tackenberg
- First Department of Medicine, Division of Epigenetics and Metabolism, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany
| | - Alexander T El Gammal
- Department of General, Visceral and Thoracic Surgery, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Stefan Wolter
- Department of General, Visceral and Thoracic Surgery, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Joachim Spranger
- Department of Endocrinology and Metabolism, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Oliver Mann
- Department of General, Visceral and Thoracic Surgery, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Hendrik Lehnert
- First Department of Medicine, Division of Epigenetics and Metabolism, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Henriette Kirchner
- First Department of Medicine, Division of Epigenetics and Metabolism, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany.
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany.
| |
Collapse
|
23
|
Pheiffer C, Willmer T, Dias S, Abrahams Y, Louw J, Goedecke JH. Ethnic and Adipose Depot Specific Associations Between DNA Methylation and Metabolic Risk. Front Genet 2020; 11:967. [PMID: 33133129 PMCID: PMC7550664 DOI: 10.3389/fgene.2020.00967] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 07/31/2020] [Indexed: 01/22/2023] Open
Abstract
Background Metabolic risk varies according to body mass index (BMI), body fat distribution and ethnicity. In recent years, epigenetics, which reflect gene-environment interactions have attracted considerable interest as mechanisms that may mediate differences in metabolic risk. The aim of this study was to investigate DNA methylation differences in abdominal and gluteal subcutaneous adipose tissues of normal-weight and obese black and white South African women. Methods Body composition was assessed using dual-energy x-ray absorptiometry and computerized tomography, and insulin sensitivity was measured using a frequently sampled intravenous glucose tolerance test in 54 normal-weight (BMI 18–25 kg/m2) and obese (BMI ≥ 30 kg/m2) women. Global and insulin receptor (INSR) DNA methylation was quantified in abdominal (ASAT) and gluteal (GSAT) subcutaneous adipose depots, using the Imprint methylation enzyme-linked immunosorbent assay and pyrosequencing. INSR gene expression was measured using quantitative real-time PCR. Results Global DNA methylation in GSAT varied according to BMI and ethnicity, with higher levels observed in normal-weight white compared to normal-weight black (p = 0.030) and obese white (p = 0.012) women. Pyrosequencing of 14 CpG sites within the INSR promoter also showed BMI, adipose depot and ethnic differences, although inter-individual variability prevented attainment of statistical significance. Both global and INSR methylation were correlated with body fat distribution, insulin resistance and systemic inflammation, which were dependent on ethnicity and the adipose depot. Adipose depot and ethnic differences in INSR gene expression were observed. Conclusion We show small, but significant global and INSR promoter DNA methylation differences in GSAT and ASAT of normal-weight and obese black and white South African women. DNA methylation in ASAT was associated with centralization of body fat in white women, whereas in black women DNA methylation in GSAT was associated with insulin resistance and systemic inflammation. Our findings suggest that GSAT rather than ASAT may be a determinant of metabolic risk in black women and provide novel evidence that altered DNA methylation within adipose depots may contribute to ethnic differences in body fat distribution and cardiometabolic risk.
Collapse
Affiliation(s)
- Carmen Pheiffer
- Biomedical Research and Innovation Platform, South African Medical Research Council, Cape Town, South Africa.,Division of Medical Physiology, Faculty of Medicine and Health Sciences, University of Stellenbosch, Stellenbosch, South Africa
| | - Tarryn Willmer
- Biomedical Research and Innovation Platform, South African Medical Research Council, Cape Town, South Africa.,Division of Medical Physiology, Faculty of Medicine and Health Sciences, University of Stellenbosch, Stellenbosch, South Africa
| | - Stephanie Dias
- Biomedical Research and Innovation Platform, South African Medical Research Council, Cape Town, South Africa
| | - Yoonus Abrahams
- Biomedical Research and Innovation Platform, South African Medical Research Council, Cape Town, South Africa.,Division of Medical Physiology, Faculty of Medicine and Health Sciences, University of Stellenbosch, Stellenbosch, South Africa
| | - Johan Louw
- Biomedical Research and Innovation Platform, South African Medical Research Council, Cape Town, South Africa
| | - Julia H Goedecke
- Non-Communicable Diseases Research Unit, South African Medical Research Council, Cape Town, South Africa.,Division of Exercise Science and Sports Medicine, Department of Human Biology, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
24
|
Santos JL, Krause BJ, Cataldo LR, Vega J, Salas-Pérez F, Mennickent P, Gallegos R, Milagro FI, Prieto-Hontoria P, Riezu-Boj JI, Bravo C, Salas-Huetos A, Arpón A, Galgani JE, Martínez JA. PPARGC1A Gene Promoter Methylation as a Biomarker of Insulin Secretion and Sensitivity in Response to Glucose Challenges. Nutrients 2020; 12:nu12092790. [PMID: 32933059 PMCID: PMC7551463 DOI: 10.3390/nu12092790] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 08/28/2020] [Accepted: 08/31/2020] [Indexed: 12/15/2022] Open
Abstract
Methylation in CpG sites of the PPARGC1A gene (encoding PGC1-α) has been associated with adiposity, insulin secretion/sensitivity indexes and type 2 diabetes. We assessed the association between the methylation profile of the PPARGC1A gene promoter gene in leukocytes with insulin secretion/sensitivity indexes in normoglycemic women. A standard oral glucose tolerance test (OGTT) and an abbreviated version of the intravenous glucose tolerance test (IVGTT) were carried out in n = 57 Chilean nondiabetic women with measurements of plasma glucose, insulin, and C-peptide. Bisulfite-treated DNA from leukocytes was evaluated for methylation levels in six CpG sites of the proximal promoter of the PPARGC1A gene by pyrosequencing (positions -816, -783, -652, -617, -521 and -515). A strong correlation between the DNA methylation percentage of different CpG sites of the PPARGC1A promoter in leukocytes was found, suggesting an integrated epigenetic control of this region. We found a positive association between the methylation levels of the CpG site -783 with the insulin sensitivity Matsuda composite index (rho = 0.31; p = 0.02) derived from the OGTT. The CpG hypomethylation in the promoter position -783 of the PPARGC1A gene in leukocytes may represent a biomarker of reduced insulin sensitivity after the ingestion of glucose.
Collapse
Affiliation(s)
- José L. Santos
- Department of Nutrition, Diabetes and Metabolism, School of Medicine, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile; (L.R.C.); (J.V.); (P.M.); (R.G.); (C.B.); (J.E.G.)
- Correspondence: ; Tel.: +56-2-354-3862; Fax: +56-2-633-8298
| | - Bernardo J. Krause
- Instituto de Ciencias de la Salud, Universidad de O’Higgins, Avenida Libertador Bernardo O’Higgins 611, Rancagua 2841935, Chile; (B.J.K.); (F.S.-P.)
| | - Luis Rodrigo Cataldo
- Department of Nutrition, Diabetes and Metabolism, School of Medicine, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile; (L.R.C.); (J.V.); (P.M.); (R.G.); (C.B.); (J.E.G.)
| | - Javier Vega
- Department of Nutrition, Diabetes and Metabolism, School of Medicine, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile; (L.R.C.); (J.V.); (P.M.); (R.G.); (C.B.); (J.E.G.)
| | - Francisca Salas-Pérez
- Instituto de Ciencias de la Salud, Universidad de O’Higgins, Avenida Libertador Bernardo O’Higgins 611, Rancagua 2841935, Chile; (B.J.K.); (F.S.-P.)
- Department of Nutrition, Food Sciences and Physiology, Centre for Nutrition Research, University of Navarra, 31008 Pamplona, Spain; (F.I.M.); (J.I.R.-B.); (A.A.); (J.A.M.)
| | - Paula Mennickent
- Department of Nutrition, Diabetes and Metabolism, School of Medicine, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile; (L.R.C.); (J.V.); (P.M.); (R.G.); (C.B.); (J.E.G.)
| | - Raúl Gallegos
- Department of Nutrition, Diabetes and Metabolism, School of Medicine, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile; (L.R.C.); (J.V.); (P.M.); (R.G.); (C.B.); (J.E.G.)
| | - Fermín I. Milagro
- Department of Nutrition, Food Sciences and Physiology, Centre for Nutrition Research, University of Navarra, 31008 Pamplona, Spain; (F.I.M.); (J.I.R.-B.); (A.A.); (J.A.M.)
- Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, 28029 Madrid, Spain
- IdiSNA, Navarra’s Health Research Institute, 31008 Pamplona, Spain
| | | | - J. Ignacio Riezu-Boj
- Department of Nutrition, Food Sciences and Physiology, Centre for Nutrition Research, University of Navarra, 31008 Pamplona, Spain; (F.I.M.); (J.I.R.-B.); (A.A.); (J.A.M.)
- IdiSNA, Navarra’s Health Research Institute, 31008 Pamplona, Spain
| | - Carolina Bravo
- Department of Nutrition, Diabetes and Metabolism, School of Medicine, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile; (L.R.C.); (J.V.); (P.M.); (R.G.); (C.B.); (J.E.G.)
| | - Albert Salas-Huetos
- Andrology and IVF Laboratory, Division of Urology, Department of Surgery, University of Utah School of Medicine, Salt Lake City, UT 84108, USA;
| | - Ana Arpón
- Department of Nutrition, Food Sciences and Physiology, Centre for Nutrition Research, University of Navarra, 31008 Pamplona, Spain; (F.I.M.); (J.I.R.-B.); (A.A.); (J.A.M.)
| | - José E. Galgani
- Department of Nutrition, Diabetes and Metabolism, School of Medicine, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile; (L.R.C.); (J.V.); (P.M.); (R.G.); (C.B.); (J.E.G.)
- Departamento de Ciencias de la Salud, Nutrición y Dietética, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago 781000, Chile
| | - J. Alfredo Martínez
- Department of Nutrition, Food Sciences and Physiology, Centre for Nutrition Research, University of Navarra, 31008 Pamplona, Spain; (F.I.M.); (J.I.R.-B.); (A.A.); (J.A.M.)
- Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, 28029 Madrid, Spain
- IdiSNA, Navarra’s Health Research Institute, 31008 Pamplona, Spain
- IMDEA-Food, 28049 Madrid, Spain
| |
Collapse
|
25
|
Lovestone S. The European medical information framework: A novel ecosystem for sharing healthcare data across Europe. Learn Health Syst 2020; 4:e10214. [PMID: 32313838 PMCID: PMC7156868 DOI: 10.1002/lrh2.10214] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 11/27/2019] [Accepted: 11/29/2019] [Indexed: 12/15/2022] Open
Abstract
INTRODUCTION The European medical information framework (EMIF) was an Innovative Medicines Initiative project jointly supported by the European Union and the European Federation of Pharmaceutical Industries and Associations, that generated a common technology and governance framework to identify, assess and (re)use healthcare data, to facilitate real-world data research. The objectives of EMIF included providing a unified platform to support a wide range of studies within two verification programmes-Alzheimer's disease (EMIF-AD), and metabolic consequences of obesity (EMIF-MET). METHODS The EMIF platform was built around two main data-types: electronic health record data and research cohort data, and the platform architecture composed of a set of tools designed to enable data discovery and characterisation. This included the EMIF catalogue, which allowed users to find relevant data sources, including the data-types collected. Data harmonisation via a common data model were central to the project especially for population data sources. EMIF also developed an ethical code of practice to ensure data protection, patient confidentiality and compliance with the European Data Protection Directive, and GDPR. RESULTS Currently 18 population-based disease agnostic and 60 cohort-based Alzheimer's data partners from across 14 countries are contained within the catalogue, and this will continue to expand. The work conducted in EMIF-AD and EMIF-MET includes standardizing cohorts, summarising baseline characteristics of patients, developing diagnostic algorithms, epidemiological studies, identifying and validating novel biomarkers and selecting potential patient samples for pharmacological intervention. CONCLUSIONS EMIF was designed to provide a sustainable model as demonstrated by the sustainability plans for EMIF-AD. Although network-wide studies using EMIF were not conducted during this project to evaluate its sustainability, learning from EMIF will be used in the follow-on IMI-2 project, European Health Data and Evidence Network (EHDEN). Furthermore, EMIF has facilitated collaborations between partners and continues to promote a wider adoption of principles, technology and architecture through some of its continued work.
Collapse
Affiliation(s)
- Simon Lovestone
- Neurodegeneration, Janssen R&D, Janssen Pharmaceutica, Beerse, Belgium
| | | |
Collapse
|
26
|
Synergistic Effects of Hyperandrogenemia and Obesogenic Western-style Diet on Transcription and DNA Methylation in Visceral Adipose Tissue of Nonhuman Primates. Sci Rep 2019; 9:19232. [PMID: 31848372 PMCID: PMC6917716 DOI: 10.1038/s41598-019-55291-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 11/26/2019] [Indexed: 12/14/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) is a major reproductive disorder that is responsible for 80% of anovulatory infertility and that is associated with hyperandrogenemia, increased risk of obesity, and white adipose tissue (WAT) dysfunction. We have previously demonstrated that the combination of chronic testosterone (T) treatment and an obesogenic Western-style diet (WSD) exerts synergistic functional effects on WAT, leading to increased lipid accumulation in visceral adipocytes by an unknown mechanism. In this study, we examined the whole-genome transcriptional response in visceral WAT to T and WSD, alone and in combination. We observed a synergistic effect of T and WSD on gene expression, resulting in upregulation of lipid storage genes concomitant with adipocyte hypertrophy. Because DNA methylation is known to be associated with body fat distribution and the etiology of PCOS, we conducted whole-genome DNA methylation analysis of visceral WAT. While only a fraction of differentially expressed genes also exhibited differential DNA methylation, in silico analysis showed that differentially methylated regions were enriched in transcription factor binding motifs, suggesting a potential gene regulatory role for these regions. In summary, this study demonstrates that hyperandrogenemia alone does not induce global transcriptional and epigenetic response in young female macaques unless combined with an obesogenic diet.
Collapse
|
27
|
Zhu Z, Cao F, Li X. Epigenetic Programming and Fetal Metabolic Programming. Front Endocrinol (Lausanne) 2019; 10:764. [PMID: 31849831 PMCID: PMC6901800 DOI: 10.3389/fendo.2019.00764] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 10/21/2019] [Indexed: 12/30/2022] Open
Abstract
Fetal metabolic programming caused by the adverse intrauterine environment can induce metabolic syndrome in adult offspring. Adverse intrauterine environment introduces fetal long-term relatively irreversible changes in organs and metabolism, and thus causes fetal metabolic programming leading metabolic syndrome in adult offspring. Fetal metabolic programming of obesity and insulin resistance plays a key role in this process. The mechanism of fetal metabolic programming is still not very clear. It is suggested that epigenetic programming, also induced by the adverse intrauterine environment, is a critical underlying mechanism of fetal metabolic programming. Fetal epigenetic programming affects gene expression changes and cellular function through epigenetic modifications without DNA nucleotide sequence changes. Epigenetic modifications can be relatively stably retained and transmitted through mitosis and generations, and thereby induce the development of metabolic syndrome in adult offspring. This manuscript provides an overview of the critical role of epigenetic programming in fetal metabolic programming.
Collapse
Affiliation(s)
- Ziqiang Zhu
- Children's Hospital of Soochow University, Suzhou, China
- Changzhou Maternity and Child Health Care Hospital affiliated to Nanjing Medical University, Changzhou, China
| | - Fang Cao
- Changzhou Maternity and Child Health Care Hospital affiliated to Nanjing Medical University, Changzhou, China
| | - Xiaozhong Li
- Children's Hospital of Soochow University, Suzhou, China
| |
Collapse
|
28
|
Acosta JR, Tavira B, Douagi I, Kulyté A, Arner P, Rydén M, Laurencikiene J. Human-Specific Function of IL-10 in Adipose Tissue Linked to Insulin Resistance. J Clin Endocrinol Metab 2019; 104:4552-4562. [PMID: 31132124 DOI: 10.1210/jc.2019-00341] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Accepted: 05/21/2019] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Although IL-10 is generally considered as an anti-inflammatory cytokine, it was recently shown to have detrimental effects on insulin sensitivity and fat cell metabolism in rodents. Whether this also pertains to human white adipose tissue (hWAT) is unclear. We therefore determined the main cellular source and effects of IL-10 on human adipocytes and hWAT-resident immune cells and its link to insulin resistance. METHODS Associations between hWAT IL-10 production and metabolic parameters were investigated in 216 participants with large interindividual variations in body mass index and insulin sensitivity. Adipose cells expressing or secreting IL-10 and the cognate IL-10 receptor α (IL10RA) were identified by flow cytometry sorting. Effects on adipogenesis, lipolysis, and inflammatory/metabolic gene expression were measured in two human primary adipocyte models. Secretion of inflammatory cytokines was investigated in cultures of IL-10-treated hWAT macrophages and leukocytes by Luminex analysis (Luminex Corp.). RESULTS IL-10 gene expression and protein secretion in hWAT correlated positively with body mass index (BMI) and homeostasis model assessment-insulin resistance (HOMA-IR). Gene expression analyses in mature fat cells and flow cytometry-sorted hWAT-resident adipocyte progenitors, macrophages, and leukocytes demonstrated that the expression of IL-10 and the IL10RA were significantly enriched in proinflammatory M1 macrophages. In contrast to murine data, functional studies showed that recombinant IL-10 had no effect on adipocyte phenotype. In hWAT-derived macrophages and leukocytes, it induced an anti-inflammatory profile. CONCLUSION In hWAT, IL-10 is upregulated in proinflammatory macrophages of obese and insulin-resistant persons. However, in contrast to findings in mice, IL-10 does not directly affect human adipocyte function.
Collapse
Affiliation(s)
- Juan R Acosta
- Lipid Laboratory, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Beatriz Tavira
- Lipid Laboratory, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Iyadh Douagi
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Agné Kulyté
- Lipid Laboratory, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Peter Arner
- Lipid Laboratory, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Mikael Rydén
- Lipid Laboratory, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Jurga Laurencikiene
- Lipid Laboratory, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
29
|
Common Variants in 22 Genes Regulate Response to Metformin Intervention in Children with Obesity: A Pharmacogenetic Study of a Randomized Controlled Trial. J Clin Med 2019; 8:jcm8091471. [PMID: 31527397 PMCID: PMC6780549 DOI: 10.3390/jcm8091471] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 09/10/2019] [Accepted: 09/11/2019] [Indexed: 12/19/2022] Open
Abstract
Metformin is a first-line oral antidiabetic agent that has shown additional effects in treating obesity and metabolic syndrome. Inter-individual variability in metformin response could be partially explained by the genetic component. Here, we aimed to test whether common genetic variants can predict the response to metformin intervention in obese children. The study was a multicenter and double-blind randomized controlled trial that was stratified according to sex and pubertal status in 160 children with obesity. Children were randomly assigned to receive either metformin (1g/d) or placebo for six months after meeting the defined inclusion criteria. We conducted a post hoc genotyping study in 124 individuals (59 placebo, 65 treated) comprising finally 231 genetic variants in candidate genes. We provide evidence for 28 common variants as promising pharmacogenetics regulators of metformin response in terms of a wide range of anthropometric and biochemical outcomes, including body mass index (BMI) Z-score, and glucose, lipid, and inflammatory traits. Although no association remained statistically significant after multiple-test correction, our findings support previously reported variants in metformin transporters or targets as well as identify novel and promising loci, such as the ADYC3 and the BDNF genes, with plausible biological relation to the metformin's action mechanism. Trial Registration: Registered on the European Clinical Trials Database (EudraCT, ID: 2010-023061-21) on 14 November 2011 (URL: https://www.clinicaltrialsregister.eu/ctr-search/trial/2010-023061-21/ES).
Collapse
|
30
|
Analysis of Tks4 Knockout Mice Suggests a Role for Tks4 in Adipose Tissue Homeostasis in the Context of Beigeing. Cells 2019; 8:cells8080831. [PMID: 31387265 PMCID: PMC6721678 DOI: 10.3390/cells8080831] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 07/22/2019] [Accepted: 07/30/2019] [Indexed: 12/28/2022] Open
Abstract
Obesity and adipocyte malfunction are related to and arise as consequences of disturbances in signaling pathways. Tyrosine kinase substrate with four Src homology 3 domains (Tks4) is a scaffold protein that establishes a platform for signaling cascade molecules during podosome formation and epidermal growth factor receptor (EGFR) signaling. Several lines of evidence have also suggested that Tks4 has a role in adipocyte biology; however, its roles in the various types of adipocytes at the cellular level and in transcriptional regulation have not been studied. Therefore, we hypothesized that Tks4 functions as an organizing molecule in signaling networks that regulate adipocyte homeostasis. Our aims were to study the white and brown adipose depots of Tks4 knockout (KO) mice using immunohistology and western blotting and to analyze gene expression changes regulated by the white, brown, and beige adipocyte-related transcription factors via a PCR array. Based on morphological differences in the Tks4-KO adipocytes and increased uncoupling protein 1 (UCP1) expression in the white adipose tissue (WAT) of Tks4-KO mice, we concluded that the beigeing process was more robust in the WAT of Tks4-KO mice compared to the wild-type animals. Furthermore, in the Tks4-KO WAT, the expression profile of peroxisome proliferator-activated receptor gamma (PPARγ)-regulated adipogenesis-related genes was shifted in favor of the appearance of beige-like cells. These results suggest that Tks4 and its downstream signaling partners are novel regulators of adipocyte functions and PPARγ-directed white to beige adipose tissue conversion.
Collapse
|
31
|
Comparative DNA methylomic analyses reveal potential origins of novel epigenetic biomarkers of insulin resistance in monocytes from virally suppressed HIV-infected adults. Clin Epigenetics 2019; 11:95. [PMID: 31253200 PMCID: PMC6599380 DOI: 10.1186/s13148-019-0694-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 06/11/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Compared to healthy individuals, those with stably repressed HIV experience a higher risk of developing insulin resistance, a hallmark of pre-diabetes and a major determinant for cardiometabolic diseases. Although epigenetic processes, including in particular DNA methylation, appear to be dysregulated in individuals with insulin resistance, little is known about where these occur in the genomes of immune cells and the origins of these alterations in HIV-infected individuals. Here, we examined the genome-wide DNA methylation states of monocytes in HIV-infected individuals (n = 37) with varying levels of insulin sensitivity measured by the homeostatic model assessment of insulin resistance (HOMA-IR). RESULTS By profiling DNA methylation at single-nucleotide resolution using the Illumina Infinium HumanMethylation450 BeadChip in monocytes from insulin-resistant (IR; HOMA-IR ≥ 2.0; n = 14) and insulin-sensitive (IS; HOMA-IR < 2.0; n = 23) individuals, we identified 123 CpGs with significantly different DNA methylation levels. These CpGs were enriched at genes involved in pathways relating to glucose metabolism, immune activation, and insulin-relevant signaling, with the majority (86.2%) being hypomethylated in IR relative to IS individuals. Using a stepwise multiple logistic regression analysis, we observed 4 CpGs (cg27655935, cg02000426, cg10184328, and cg23085143) whose methylation levels independently predicted the insulin-resistant state at a higher confidence than that of clinical risk factors typically associated with insulin resistance (i.e., fasting glucose, 120-min oral glucose tolerance test, Framingham Risk Score, and Total to HDL cholesterol ratio). Interestingly, 79 of the 123 CpGs (64%) exhibited remarkably similar levels of methylation as that of hematopoietic stem cells (HSC) in monocytes from IR individuals, implicating epigenetic defects in myeloid differentiation as a possible origin for the methylation landscape underlying the insulin resistance phenotype. In support of this, gene ontology analysis of these 79 CpGs revealed overrepresentation of these CpGs at genes relevant to HSC function, including involvement in stem cell pluripotency, differentiation, and Wnt signaling pathways. CONCLUSION Altogether, our data suggests a possible role for DNA methylation in regulating monocyte activity that may associate with the insulin-resistant phenotype. The methylomic landscape of insulin resistance in monocytes could originate from epigenetic dysregulation during HSC differentiation through the myeloid lineage. Understanding the factors involved with changes in the myeloid trajectory may provide further insight into the development of insulin resistance. Furthermore, regulation of specific genes that were implicated in our analysis reveal possible targets for modulating immune activity to ameliorate insulin resistance.
Collapse
|
32
|
Specific loss of adipocyte CD248 improves metabolic health via reduced white adipose tissue hypoxia, fibrosis and inflammation. EBioMedicine 2019; 44:489-501. [PMID: 31221584 PMCID: PMC6606747 DOI: 10.1016/j.ebiom.2019.05.057] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 05/26/2019] [Accepted: 05/28/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND A positive energy balance promotes white adipose tissue (WAT) expansion which is characterized by activation of a repertoire of events including hypoxia, inflammation and extracellular matrix remodelling. The transmembrane glycoprotein CD248 has been implicated in all these processes in different malignant and inflammatory diseases but its potential impact in WAT and metabolic disease has not been explored. METHODS The role of CD248 in adipocyte function and glucose metabolism was evaluated by omics analyses in human WAT, gene knockdowns in human in vitro differentiated adipocytes and by adipocyte-specific and inducible Cd248 gene knockout studies in mice. FINDINGS CD248 is upregulated in white but not brown adipose tissue of obese and insulin-resistant individuals. Gene ontology analyses showed that CD248 expression associated positively with pro-inflammatory/pro-fibrotic pathways. By combining data from several human cohorts with gene knockdown experiments in human adipocytes, our results indicate that CD248 acts as a microenvironmental sensor which mediates part of the adipose tissue response to hypoxia and is specifically perturbed in white adipocytes in the obese state. Adipocyte-specific and inducible Cd248 knockouts in mice, both before and after diet-induced obesity and insulin resistance/glucose intolerance, resulted in increased microvascular density as well as attenuated hypoxia, inflammation and fibrosis without affecting fat cell volume. This was accompanied by significant improvements in insulin sensitivity and glucose tolerance. INTERPRETATION CD248 exerts detrimental effects on WAT phenotype and systemic glucose homeostasis which may be reversed by suppression of adipocyte CD248. Therefore, CD248 may constitute a target to treat obesity-associated co-morbidities.
Collapse
|
33
|
Kerr AG, Sinha I, Dadvar S, Arner P, Dahlman I. Epigenetic regulation of diabetogenic adipose morphology. Mol Metab 2019; 25:159-167. [PMID: 31031182 PMCID: PMC6600120 DOI: 10.1016/j.molmet.2019.04.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 04/13/2019] [Indexed: 12/17/2022] Open
Abstract
Objective Hypertrophic white adipose tissue (WAT) morphology is associated with insulin resistance and type 2 diabetes. The mechanisms governing hyperplastic versus hypertrophic WAT expansion are poorly understood. We assessed if epigenetic modifications in adipocytes are associated with hypertrophic adipose morphology. A subset of genes with differentially methylated CpG-sites (DMS) in the promoters was taken forward for functional evaluation. Methods The study included 126 women who underwent abdominal subcutaneous biopsy to determine adipose morphology. Global transcriptome profiling was performed on WAT from 113 of the women, and CpG methylome profiling on isolated adipocytes from 78 women. Small interfering RNAs (siRNA) knockdown in human mesenchymal stem cells (hMSCs) was used to assess influence of specific genes on lipid storage. Results A higher proportion of CpG-sites were methylated in hypertrophic compared to hyperplastic WAT. Methylation at 35,138 CpG-sites was found to correlate to adipose morphology. 2,102 of these CpG-sites were also differentially methylated in T2D; 98% showed directionally consistent change in methylation in WAT hypertrophy and T2D. We identified 2,508 DMS in 638 adipose morphology-associated genes where methylation correlated with gene expression. These genes were over-represented in gene sets relevant to WAT hypertrophy, such as insulin resistance, lipolysis, extracellular matrix organization, and innate immunity. siRNA knockdown of ADH1B, AZGP1, C14orf180, GYG2, HADH, PRKAR2B, PFKFB3, and AQP7 influenced lipid storage and metabolism. Conclusion CpG methylation could be influential in determining adipose morphology and thereby constitute a novel antidiabetic target. We identified C14orf180 as a novel regulator of adipocyte lipid storage and possibly differentiation. Hypertrophic adipose morphology display a distinct adipocyte CpG-methylome profile. Adipose hypertrophy and type 2 diabetes display strong overlap in CpG-methylome profile. C14orf180 is a novel regulator of adipocyte lipid storage and possibly adipogenesis.
Collapse
Affiliation(s)
- A G Kerr
- Department of Medicine, Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - I Sinha
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - S Dadvar
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - P Arner
- Department of Medicine, Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - I Dahlman
- Department of Medicine, Huddinge, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
34
|
Abstract
The prevalence of insulin resistance (IR) is increasing rapidly worldwide and it is a relevant health problem because it is associated with several diseases, such as type 2 diabetes, cardiovascular disorders and cancer. Understanding the mechanisms involved in IR onset and progression will open new avenues for identifying biomarkers for preventing and treating IR and its co-diseases. Epigenetic mechanisms such as DNA methylation are important factors that mediate the environmental effect in the genome by regulating gene expression and consequently its effect on the phenotype and the development of disease. Taking into account that IR results from a complex interplay between genes and the environment and that epigenetic marks are reversible, disentangling the relationship between IR and epigenetics will provide new tools to improve the management and prevention of IR. Here, we review the current scientific evidence regarding the association between IR and epigenetic markers as mechanisms involved in IR development and potential management.
Collapse
Affiliation(s)
- Andrea G Izquierdo
- Epigenomics in Endocrinology and Nutrition group, Instituto de Investigacion Sanitaria (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS/SERGAS), C/ Choupana, s/n, 15706, Santiago de Compostela, Spain
- CIBER Fisiopatologia de la Obesidad y Nutricion (CIBERobn), Madrid, Spain
| | - Ana B Crujeiras
- Epigenomics in Endocrinology and Nutrition group, Instituto de Investigacion Sanitaria (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS/SERGAS), C/ Choupana, s/n, 15706, Santiago de Compostela, Spain.
- CIBER Fisiopatologia de la Obesidad y Nutricion (CIBERobn), Madrid, Spain.
| |
Collapse
|
35
|
Arpón A, Milagro FI, Ramos-Lopez O, Mansego ML, Santos JL, Riezu-Boj JI, Martínez JA. Epigenome-wide association study in peripheral white blood cells involving insulin resistance. Sci Rep 2019; 9:2445. [PMID: 30792424 PMCID: PMC6385280 DOI: 10.1038/s41598-019-38980-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 01/11/2019] [Indexed: 02/06/2023] Open
Abstract
Insulin resistance (IR) is a hallmark of type 2 diabetes, metabolic syndrome and cardiometabolic risk. An epigenetic phenomena such as DNA methylation might be involved in the onset and development of systemic IR. The aim of this study was to explore the genetic DNA methylation levels in peripheral white blood cells with the objective of identifying epigenetic signatures associated with IR measured by the Homeostatic Model Assessment of IR (HOMA-IR) following an epigenome-wide association study approach. DNA methylation levels were assessed using Infinium Methylation Assay (Illumina), and were associated with HOMA-IR values of participants from the Methyl Epigenome Network Association (MENA) project, finding statistical associations for at least 798 CpGs. A stringent statistical analysis revealed that 478 of them showed a differential methylation pattern between individuals with HOMA-IR ≤ 3 and > 3. ROC curves of top four CpGs out of 478 allowed differentiating individuals between both groups (AUC≈0.88). This study demonstrated the association between DNA methylation in some specific CpGs and HOMA-IR values that will help to the understanding and in the development of new strategies for personalized approaches to predict and prevent IR-associated diseases.
Collapse
Affiliation(s)
- Ana Arpón
- University of Navarra, Department of Nutrition, Food Sciences and Physiology & Centre for Nutrition Research, Pamplona, Spain
| | - Fermín I Milagro
- University of Navarra, Department of Nutrition, Food Sciences and Physiology & Centre for Nutrition Research, Pamplona, Spain.,Spanish Biomedical Research Centre in Physiopathology of Obesity and Nutrition (CIBERobn), Institute of Health Carlos III, Madrid, Spain
| | - Omar Ramos-Lopez
- University of Navarra, Department of Nutrition, Food Sciences and Physiology & Centre for Nutrition Research, Pamplona, Spain
| | - M Luisa Mansego
- University of Navarra, Department of Nutrition, Food Sciences and Physiology & Centre for Nutrition Research, Pamplona, Spain
| | - José Luis Santos
- Department of Nutrition, Diabetes and Metabolism, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - José-Ignacio Riezu-Boj
- University of Navarra, Department of Nutrition, Food Sciences and Physiology & Centre for Nutrition Research, Pamplona, Spain. .,Navarra Institute for Health Research (IdiSNa), Pamplona, Spain.
| | - J Alfredo Martínez
- University of Navarra, Department of Nutrition, Food Sciences and Physiology & Centre for Nutrition Research, Pamplona, Spain.,Spanish Biomedical Research Centre in Physiopathology of Obesity and Nutrition (CIBERobn), Institute of Health Carlos III, Madrid, Spain.,Navarra Institute for Health Research (IdiSNa), Pamplona, Spain.,Madrid Institute for Advanced Studies (IMDEA), IMDEA Food, Madrid, Spain
| |
Collapse
|
36
|
Mahmassani ZS, Reidy PT, McKenzie AI, Stubben C, Howard MT, Drummond MJ. Disuse-induced insulin resistance susceptibility coincides with a dysregulated skeletal muscle metabolic transcriptome. J Appl Physiol (1985) 2019; 126:1419-1429. [PMID: 30763167 DOI: 10.1152/japplphysiol.01093.2018] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Short-term muscle disuse is characterized by skeletal muscle insulin resistance, although this response is divergent across subjects. The mechanisms regulating inactivity-induced insulin resistance between populations that are more or less susceptible to disuse-induced insulin resistance are not known. RNA sequencing was conducted on vastus lateralis muscle biopsies from subjects before and after bed rest (n = 26) to describe the transcriptome of inactivity-induced insulin resistance. Subjects were separated into Low (n = 14) or High (n = 12) Susceptibility Groups based on the magnitude of change in insulin sensitivity after 5 days of bed rest. Both groups became insulin-resistant after bed rest, and there were no differences between groups in nonmetabolic characteristics (body mass, body mass index, fat mass, and lean mass). The High Susceptibility Group had more genes altered >1.5-fold (426 high versus 391 low) and more than twofold (73 high versus 55 low). Twenty-four genes were altered more than twofold in the High Susceptibility Group that did not change in the Low Susceptibility Group. 95 gene changes correlated with the changes in insulin sensitivity; 6 of these genes changed more than twofold in the High Susceptibility Group. Participants in the High Susceptibility Group were uniquely characterized with muscle gene responses described by a decrease in pathways responsible for lipid uptake and oxidation, decreased capacity for triglyceride export (APOB), increased lipogenesis (i.e., PFKFB3, FASN), and increased amino acid export (SLC43A1). These transcriptomic data provide a comprehensive examination of pathways and genes that may be useful biomarkers, or novel targets to offset muscle disuse-induced insulin resistance. NEW & NOTEWORTHY Short-term muscle disuse results in skeletal muscle insulin resistance through mechanisms that are not fully understood. Following a 5-day bed rest intervention, subjects were divided into High and Low Susceptibility Groups to inactivity-induced insulin resistance. This was followed by a genome-wide transcriptional analysis on muscle biopsy samples to gain insight on divergent insulin sensitivity responses. Our primary finding was that the skeletal muscle of subjects who experienced the most inactivity-induced insulin resistance (high susceptibility) was characterized by a decreased preference for lipid oxidation, increased lipogenesis, and increased amino acid export.
Collapse
Affiliation(s)
- Ziad S Mahmassani
- Department of Physical Therapy and Athletic Training, University of Utah , Salt Lake City, Utah
| | - Paul T Reidy
- Department of Physical Therapy and Athletic Training, University of Utah , Salt Lake City, Utah
| | - Alec I McKenzie
- Department of Physical Therapy and Athletic Training, University of Utah , Salt Lake City, Utah
| | - Chris Stubben
- Bioinformatics Shared Resource at the Huntsman Cancer Institute , Salt Lake City, Utah
| | - Michael T Howard
- Department of Genetics, University of Utah , Salt Lake City, Utah
| | - Micah J Drummond
- Department of Physical Therapy and Athletic Training, University of Utah , Salt Lake City, Utah
| |
Collapse
|
37
|
Shah UJ, Xie W, Flyvbjerg A, Nolan JJ, Højlund K, Walker M, Relton CL, Elliott HR. Differential methylation of the type 2 diabetes susceptibility locus KCNQ1 is associated with insulin sensitivity and is predicted by CpG site specific genetic variation. Diabetes Res Clin Pract 2019; 148:189-199. [PMID: 30641161 PMCID: PMC6395844 DOI: 10.1016/j.diabres.2019.01.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 11/28/2018] [Accepted: 01/04/2019] [Indexed: 01/02/2023]
Abstract
AIMS Epigenetic mechanisms regulate gene expression and may influence the pathogenesis of type 2 diabetes through the loss of insulin sensitivity. The aims of this study were to measure variation in DNA methylation at the type 2 diabetes locus KCNQ1 and assess its relationship with metabolic measures and with genotype. METHODS DNA methylation from whole blood DNA was quantified using pyrosequencing at 5 CpG sites at the KCNQ1 locus in 510 individuals without diabetes from the 'Relationship between Insulin Sensitivity and Cardiovascular disease' (RISC) cohort. Genotype data was analysed at the same locus in 1119 individuals in the same cohort. Insulin sensitivity was assessed by euglycaemic-hyperinsulinaemic clamp. RESULTS DNA methylation at the KCNQ1 locus was inversely associated with insulin sensitivity and serum adiponectin. This association was driven by a methylation-altering Single Nucleotide Polymorphism (SNP) (rs231840) which ablated a methylation site and reduced methylation levels. A second SNP (rs231357), in weak Linkage Disequilibrium (LD) with rs231840, was also associated with insulin sensitivity and DNA methylation. These SNPs have not been previously reported to be associated with type 2 diabetes risk or insulin sensitivity. CONCLUSION Evidence indicates that genetic and epigenetic determinants at the KCNQ1 locus influence insulin sensitivity.
Collapse
Affiliation(s)
- Ushma J Shah
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne NE1 7RU, UK; MedGenome Labs Ltd., Bangalore 560 099, India
| | - Weijia Xie
- Peninsula School of Medicine and Dentistry, Exeter EX2 5DW, UK
| | - Allan Flyvbjerg
- Steno Diabetes Center Copenhagen, The Capital Region of Denmark and University of Copenhagen, Copenhagen, Denmark
| | - John J Nolan
- European Association for the Study of Diabetes (EASD), 40591 Düsseldorf, Germany
| | - Kurt Højlund
- Steno Diabetes Center Odense, Odense University Hospital, DK-5000, Denmark
| | - Mark Walker
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Caroline L Relton
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne NE1 7RU, UK; MRC Integrative Epidemiology Unit at the University of Bristol, Bristol BS8 2BN, UK; Population Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 2BN, UK
| | - Hannah R Elliott
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne NE1 7RU, UK; MRC Integrative Epidemiology Unit at the University of Bristol, Bristol BS8 2BN, UK; Population Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 2BN, UK.
| |
Collapse
|
38
|
Izquierdo AG, Crujeiras AB. Obesity-Related Epigenetic Changes After Bariatric Surgery. Front Endocrinol (Lausanne) 2019; 10:232. [PMID: 31040824 PMCID: PMC6476922 DOI: 10.3389/fendo.2019.00232] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 03/22/2019] [Indexed: 12/13/2022] Open
Abstract
Objective: In recent years, an increasing number of studies have begun focusing on epigenetics as a link between environmental factors and a greater predisposition to the development of obesity and its comorbidities. An important challenge in this field is the evaluation of the possibility of the reversal of obesity-related epigenetic marks by means of therapy to induce weight loss and if the beneficial effects of therapy in reducing obesity are mediated by epigenetic mechanisms. We aimed to offer an outline of the current results regarding to the impact of bariatric surgery on epigenetic regulation, as well as to show if the beneficial effect of this intervention could be mediated by epigenetic mechanisms. Methods: A review of the scientific publications in PubMed was performed by using key words related to obesity, epigenetics and bariatric surgery to provide an update of recent findings in this area of research. The most relevant and recently published articles and abstracts were selected to frame this review. Results: Previous studies have demonstrated the presence of differential DNA methylation after bariatric surgery and the differential expression of non-coding RNAs. Therefore, epigenetic regulation could mediate the benefit of bariatric surgery on body weight and the metabolic disturbances associated with excess body weight, such as insulin resistance, hypertension, and cardiovascular disease. This evidence is relatively new as epigenetic regulation was first evaluated in the obesity field only a few years ago. However, there is an urgent need to perform longitudinal studies to evaluate the capacity of epigenetic marks in the prediction of bariatric surgery response. Conclusions: Bariatric surgery appears to be capable of partially reversing the obesity-related epigenome. The identification of potential epigenetic biomarkers predictive for the success of bariatric surgery may open new doors to personalized therapy for severe obesity.
Collapse
Affiliation(s)
- Andrea G. Izquierdo
- Epigenomics in Endocrinology and Nutrition Group, Instituto de Investigacion Sanitaria (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS/SERGAS), Santiago de Compostela, Spain
- CIBER Fisiopatologia de la Obesidad y Nutricion (CIBERobn), Madrid, Spain
| | - Ana B. Crujeiras
- Epigenomics in Endocrinology and Nutrition Group, Instituto de Investigacion Sanitaria (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS/SERGAS), Santiago de Compostela, Spain
- CIBER Fisiopatologia de la Obesidad y Nutricion (CIBERobn), Madrid, Spain
- *Correspondence: Ana B. Crujeiras
| |
Collapse
|
39
|
Ramos-Lopez O, Riezu-Boj JI, Milagro FI, Alfredo Martinez J. Association of Methylation Signatures at Hepatocellular Carcinoma Pathway Genes with Adiposity and Insulin Resistance Phenotypes. Nutr Cancer 2018; 71:840-851. [PMID: 30457363 DOI: 10.1080/01635581.2018.1531136] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Omar Ramos-Lopez
- Department of Nutrition, Food Science and Physiology, and Center for Nutrition Research, University of Navarra, Pamplona, Spain
| | - Jose I. Riezu-Boj
- Department of Nutrition, Food Science and Physiology, and Center for Nutrition Research, University of Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Fermin I. Milagro
- Department of Nutrition, Food Science and Physiology, and Center for Nutrition Research, University of Navarra, Pamplona, Spain
- CIBERobn, Fisiopatología de la Obesidad y la Nutrición, Carlos III Health Institute, Madrid, Spain
| | - J. Alfredo Martinez
- Department of Nutrition, Food Science and Physiology, and Center for Nutrition Research, University of Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
- CIBERobn, Fisiopatología de la Obesidad y la Nutrición, Carlos III Health Institute, Madrid, Spain
- Madrid Institute of Advanced Studies (IMDEA Food), Madrid, Spain
| | | |
Collapse
|
40
|
Timmons JA, Atherton PJ, Larsson O, Sood S, Blokhin IO, Brogan RJ, Volmar CH, Josse AR, Slentz C, Wahlestedt C, Phillips SM, Phillips BE, Gallagher IJ, Kraus WE. A coding and non-coding transcriptomic perspective on the genomics of human metabolic disease. Nucleic Acids Res 2018; 46:7772-7792. [PMID: 29986096 PMCID: PMC6125682 DOI: 10.1093/nar/gky570] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Revised: 05/23/2018] [Accepted: 06/13/2018] [Indexed: 12/13/2022] Open
Abstract
Genome-wide association studies (GWAS), relying on hundreds of thousands of individuals, have revealed >200 genomic loci linked to metabolic disease (MD). Loss of insulin sensitivity (IS) is a key component of MD and we hypothesized that discovery of a robust IS transcriptome would help reveal the underlying genomic structure of MD. Using 1,012 human skeletal muscle samples, detailed physiology and a tissue-optimized approach for the quantification of coding (>18,000) and non-coding (>15,000) RNA (ncRNA), we identified 332 fasting IS-related genes (CORE-IS). Over 200 had a proven role in the biochemistry of insulin and/or metabolism or were located at GWAS MD loci. Over 50% of the CORE-IS genes responded to clinical treatment; 16 quantitatively tracking changes in IS across four independent studies (P = 0.0000053: negatively: AGL, G0S2, KPNA2, PGM2, RND3 and TSPAN9 and positively: ALDH6A1, DHTKD1, ECHDC3, MCCC1, OARD1, PCYT2, PRRX1, SGCG, SLC43A1 and SMIM8). A network of ncRNA positively related to IS and interacted with RNA coding for viral response proteins (P < 1 × 10-48), while reduced amino acid catabolic gene expression occurred without a change in expression of oxidative-phosphorylation genes. We illustrate that combining in-depth physiological phenotyping with robust RNA profiling methods, identifies molecular networks which are highly consistent with the genetics and biochemistry of human metabolic disease.
Collapse
Affiliation(s)
- James A Timmons
- Division of Genetics and Molecular Medicine, King's College London, London, UK
- Scion House, Stirling University Innovation Park, Stirling, UK
| | | | - Ola Larsson
- Department of Oncology-Pathology, Science For Life Laboratory, Stockholm, Sweden
| | - Sanjana Sood
- Division of Genetics and Molecular Medicine, King's College London, London, UK
| | | | - Robert J Brogan
- Scion House, Stirling University Innovation Park, Stirling, UK
| | | | | | - Cris Slentz
- Duke University School of Medicine, Durham, USA
| | - Claes Wahlestedt
- Department of Oncology-Pathology, Science For Life Laboratory, Stockholm, Sweden
| | | | | | - Iain J Gallagher
- Scion House, Stirling University Innovation Park, Stirling, UK
- School of Health Sciences and Sport, University of Stirling, Stirling, UK
| | | |
Collapse
|
41
|
Zhang SJ, Wang Y, Yang YL, Zheng H. Aberrant DNA Methylation Involved in Obese Women with Systemic Insulin Resistance. Open Life Sci 2018; 13:201-207. [PMID: 33817084 PMCID: PMC7874722 DOI: 10.1515/biol-2018-0024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 01/08/2018] [Indexed: 01/03/2023] Open
Abstract
Background Epigenetics has been recognized as a significant regulator in many diseases. White adipose tissue (WAT) epigenetic dysregulation is associated with systemic insulin resistance (IR). The aim of this study was to survey the differential methylation of genes in obese women with systemic insulin resistance by DNA methylation microarray. Methods The genome-wide methylation profile of systemic insulin resistant obese women was obtained from Gene Expression Omnibus database. After data preprocessing, differing methylation patterns between insulin resistant and sensitive obese women were identified by Student's t-test and methylation value differences. Network analysis was then performed to reveal co-regulated genes of differentially methylated genes. Functional analysis was also implemented to reveal the underlying biological processes related to systemic insulin resistance in obese women. Results Relative to insulin sensitive obese women, we initially screened 10,874 differentially methylated CpGs, including 7402 hyper-methylated sites and 6073 hypo-methylated CpGs. Our analysis identified 4 significantly differentially methylated genes, including SMYD3, UST, BCL11A, and BAI3. Network and functional analyses found that these differentially methylated genes were mainly involved in chondroitin and dermatan sulfate biosynthetic processes. Conclusion Based on our study, we propose several epigenetic biomarkers that may be related to obesity-associated insulin resistance. Our results provide new insights into the epigenetic regulation of disease etiology and also identify novel targets for insulin resistance treatment in obese women.
Collapse
Affiliation(s)
- Shao-Jun Zhang
- Department of Endocrinology, The People's Hospital of Shanxi Province, Taiyuan, Shanxi 030012, China.,Department of Endocrinology, The Sixth Division Hospital of Xinjiang Production and Construction Corps, Wujiaqu, Xinjiang 830025, China
| | - Yan Wang
- Medical Laboratory Diagnosis Center, Jinan Central Hospital, Jinan, Shandong 250013, China
| | - Yan-Lan Yang
- Department of Endocrinology, The People's Hospital of Shanxi Province, Taiyuan, Shanxi 030012, China
| | - Hong Zheng
- Department of Endocrinology, The Second Affiliated Hospital of Dalian Medical University, No. 467 Zhongshan Road, Shahekou District, Dalian, Liaoning 116023, China
| |
Collapse
|
42
|
Qiu C, Hanson RL, Fufaa G, Kobes S, Gluck C, Huang J, Chen Y, Raj D, Nelson RG, Knowler WC, Susztak K. Cytosine methylation predicts renal function decline in American Indians. Kidney Int 2018; 93:1417-1431. [PMID: 29709239 PMCID: PMC5973533 DOI: 10.1016/j.kint.2018.01.036] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Revised: 01/07/2018] [Accepted: 01/25/2018] [Indexed: 12/18/2022]
Abstract
Diabetic nephropathy accounts for most of the excess mortality in individuals with diabetes, but the molecular mechanisms by which nephropathy develops are largely unknown. Here we tested cytosine methylation levels at 397,063 genomic CpG sites for association with decline in the estimated glomerular filtration rate (eGFR) over a six year period in 181 diabetic Pima Indians. Methylation levels at 77 sites showed significant association with eGFR decline after correction for multiple comparisons. A model including methylation level at two probes (cg25799291 and cg22253401) improved prediction of eGFR decline in addition to baseline eGFR and the albumin to creatinine ratio with the percent of variance explained significantly improving from 23.1% to 42.2%. Cg22253401 was also significantly associated with eGFR decline in a case-control study derived from the Chronic Renal Insufficiency Cohort. Probes at which methylation significantly associated with eGFR decline were localized to gene regulatory regions and enriched for genes with metabolic functions and apoptosis. Three of the 77 probes that were associated with eGFR decline in blood samples showed directionally consistent and significant association with fibrosis in microdissected human kidney tissue, after correction for multiple comparisons. Thus, cytosine methylation levels may provide biomarkers of disease progression in diabetic nephropathy and epigenetic variations contribute to the development of diabetic kidney disease.
Collapse
MESH Headings
- Adult
- Aged
- Albuminuria/ethnology
- Albuminuria/genetics
- Albuminuria/physiopathology
- Apoptosis/genetics
- Case-Control Studies
- Cell Cycle/genetics
- CpG Islands
- Cytosine
- DNA Methylation
- Diabetic Nephropathies/diagnosis
- Diabetic Nephropathies/ethnology
- Diabetic Nephropathies/genetics
- Diabetic Nephropathies/physiopathology
- Disease Progression
- Energy Metabolism/genetics
- Epigenesis, Genetic
- Female
- Fibrosis
- Genetic Predisposition to Disease
- Glomerular Filtration Rate/genetics
- Humans
- Indians, North American/genetics
- Kidney/pathology
- Kidney/physiopathology
- Kidney Failure, Chronic/diagnosis
- Kidney Failure, Chronic/ethnology
- Kidney Failure, Chronic/genetics
- Kidney Failure, Chronic/physiopathology
- Male
- Middle Aged
- Phenotype
- Prognosis
- Renal Insufficiency, Chronic/diagnosis
- Renal Insufficiency, Chronic/ethnology
- Renal Insufficiency, Chronic/genetics
- Renal Insufficiency, Chronic/physiopathology
- Risk Factors
Collapse
Affiliation(s)
- Chengxiang Qiu
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Robert L Hanson
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Phoenix, Arizona, USA.
| | - Gudeta Fufaa
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Phoenix, Arizona, USA
| | - Sayuko Kobes
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Phoenix, Arizona, USA
| | - Caroline Gluck
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Jing Huang
- Department of Biostatistics, Epidemiology and Informatics, Center for Clinical Epidemiology and Biostatistics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Yong Chen
- Department of Biostatistics, Epidemiology and Informatics, Center for Clinical Epidemiology and Biostatistics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Dominic Raj
- Division of Renal Diseases and Hypertension, The George Washington School of Medicine, Washington, DC, USA
| | - Robert G Nelson
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Phoenix, Arizona, USA
| | - William C Knowler
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Phoenix, Arizona, USA
| | - Katalin Susztak
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
43
|
Long Non-Coding RNAs Associated with Metabolic Traits in Human White Adipose Tissue. EBioMedicine 2018; 30:248-260. [PMID: 29580841 PMCID: PMC5952343 DOI: 10.1016/j.ebiom.2018.03.010] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 03/09/2018] [Accepted: 03/09/2018] [Indexed: 12/25/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) belong to a recently discovered class of molecules proposed to regulate various cellular processes. Here, we systematically analyzed their expression in human subcutaneous white adipose tissue (WAT) and found that a limited set was differentially expressed in obesity and/or the insulin resistant state. Two lncRNAs herein termed adipocyte-specific metabolic related lncRNAs, ASMER-1 and ASMER-2 were enriched in adipocytes and regulated by both obesity and insulin resistance. Knockdown of either ASMER-1 or ASMER-2 by antisense oligonucleotides in in vitro differentiated human adipocytes revealed that both genes regulated adipogenesis, lipid mobilization and adiponectin secretion. The observed effects could be attributed to crosstalk between ASMERs and genes within the master regulatory pathways for adipocyte function including PPARG and INSR. Altogether, our data demonstrate that lncRNAs are modulators of the metabolic and secretory functions in human fat cells and provide an emerging link between WAT and common metabolic conditions.
Collapse
|
44
|
Altered DNA methylation in liver and adipose tissues derived from individuals with obesity and type 2 diabetes. BMC MEDICAL GENETICS 2018; 19:28. [PMID: 29466957 PMCID: PMC5822594 DOI: 10.1186/s12881-018-0542-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 02/15/2018] [Indexed: 12/22/2022]
Abstract
Background Obesity is a well-recognized risk factor for insulin resistance and type 2 diabetes (T2D), although the precise mechanisms underlying the relationship remain unknown. In this study we identified alterations of DNA methylation influencing T2D pathogenesis, in subcutaneous and visceral adipose tissues, liver, and blood from individuals with obesity. Methods The study included individuals with obesity, with and without T2D. From these patients, we obtained samples of liver tissue (n = 16), visceral and subcutaneous adipose tissues (n = 30), and peripheral blood (n = 38). We analyzed DNA methylation using Illumina Infinium Human Methylation arrays, and gene expression profiles using HumanHT-12 Expression BeadChip Arrays. Results Analysis of DNA methylation profiles revealed several loci with differential methylation between individuals with and without T2D, in all tissues. Aberrant DNA methylation was mainly found in the liver and visceral adipose tissue. Gene ontology analysis of genes with altered DNA methylation revealed enriched terms related to glucose metabolism, lipid metabolism, cell cycle regulation, and response to wounding. An inverse correlation between altered methylation and gene expression in the four tissues was found in a subset of genes, which were related to insulin resistance, adipogenesis, fat storage, and inflammation. Conclusions Our present findings provide additional evidence that aberrant DNA methylation may be a relevant mechanism involved in T2D pathogenesis among individuals with obesity. Electronic supplementary material The online version of this article (10.1186/s12881-018-0542-8) contains supplementary material, which is available to authorized users.
Collapse
|
45
|
De Rosa S, Arcidiacono B, Chiefari E, Brunetti A, Indolfi C, Foti DP. Type 2 Diabetes Mellitus and Cardiovascular Disease: Genetic and Epigenetic Links. Front Endocrinol (Lausanne) 2018; 9:2. [PMID: 29387042 PMCID: PMC5776102 DOI: 10.3389/fendo.2018.00002] [Citation(s) in RCA: 187] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 01/03/2018] [Indexed: 12/14/2022] Open
Abstract
Type 2 diabetes mellitus (DM) is a common metabolic disorder predisposing to diabetic cardiomyopathy and atherosclerotic cardiovascular disease (CVD), which could lead to heart failure through a variety of mechanisms, including myocardial infarction and chronic pressure overload. Pathogenetic mechanisms, mainly linked to hyperglycemia and chronic sustained hyperinsulinemia, include changes in metabolic profiles, intracellular signaling pathways, energy production, redox status, increased susceptibility to ischemia, and extracellular matrix remodeling. The close relationship between type 2 DM and CVD has led to the common soil hypothesis, postulating that both conditions share common genetic and environmental factors influencing this association. However, although the common risk factors of both CVD and type 2 DM, such as obesity, insulin resistance, dyslipidemia, inflammation, and thrombophilia, can be identified in the majority of affected patients, less is known about how these factors influence both conditions, so that efforts are still needed for a more comprehensive understanding of this relationship. The genetic, epigenetic, and environmental backgrounds of both type 2 DM and CVD have been more recently studied and updated. However, the underlying pathogenetic mechanisms have seldom been investigated within the broader shared background, but rather studied in the specific context of type 2 DM or CVD, separately. As the precise pathophysiological links between type 2 DM and CVD are not entirely understood and many aspects still require elucidation, an integrated description of the genetic, epigenetic, and environmental influences involved in the concomitant development of both diseases is of paramount importance to shed new light on the interlinks between type 2 DM and CVD. This review addresses the current knowledge of overlapping genetic and epigenetic aspects in type 2 DM and CVD, including microRNAs and long non-coding RNAs, whose abnormal regulation has been implicated in both disease conditions, either etiologically or as cause for their progression. Understanding the links between these disorders may help to drive future research toward an integrated pathophysiological approach and to provide future directions in the field.
Collapse
Affiliation(s)
- Salvatore De Rosa
- Department of Medical and Surgical Sciences, Magna Græcia University of Catanzaro, Catanzaro, Italy
| | - Biagio Arcidiacono
- Department of Health Sciences, Magna Græcia University of Catanzaro, Catanzaro, Italy
| | - Eusebio Chiefari
- Department of Health Sciences, Magna Græcia University of Catanzaro, Catanzaro, Italy
| | - Antonio Brunetti
- Department of Health Sciences, Magna Græcia University of Catanzaro, Catanzaro, Italy
- *Correspondence: Antonio Brunetti, ; Ciro Indolfi, ; Daniela P. Foti,
| | - Ciro Indolfi
- Department of Medical and Surgical Sciences, Magna Græcia University of Catanzaro, Catanzaro, Italy
- *Correspondence: Antonio Brunetti, ; Ciro Indolfi, ; Daniela P. Foti,
| | - Daniela P. Foti
- Department of Health Sciences, Magna Græcia University of Catanzaro, Catanzaro, Italy
- *Correspondence: Antonio Brunetti, ; Ciro Indolfi, ; Daniela P. Foti,
| |
Collapse
|
46
|
Cheng Z, Zheng L, Almeida FA. Epigenetic reprogramming in metabolic disorders: nutritional factors and beyond. J Nutr Biochem 2017; 54:1-10. [PMID: 29154162 DOI: 10.1016/j.jnutbio.2017.10.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 09/26/2017] [Accepted: 10/10/2017] [Indexed: 12/13/2022]
Abstract
Environmental factors (e.g., malnutrition and physical inactivity) contribute largely to metabolic disorders including obesity, type 2 diabetes, cardiometabolic disease and nonalcoholic fatty liver diseases. The abnormalities in metabolic activity and pathways have been increasingly associated with altered DNA methylation, histone modification and noncoding RNAs, whereas lifestyle interventions targeting diet and physical activity can reverse the epigenetic and metabolic changes. Here we review recent evidence primarily from human studies that links DNA methylation reprogramming to metabolic derangements or improvements, with a focus on cross-tissue (e.g., the liver, skeletal muscle, pancreas, adipose tissue and blood samples) epigenetic markers, mechanistic mediators of the epigenetic reprogramming, and the potential of using epigenetic traits to predict disease risk and intervention response. The challenges in epigenetic studies addressing the mechanisms of metabolic diseases and future directions are also discussed and prospected.
Collapse
Affiliation(s)
- Zhiyong Cheng
- Department of Human Nutrition, Foods, and Exercise, Fralin Translational Obesity Research Center, College of Agriculture and Life Science, Virginia Tech, Blacksburg, VA 24061, USA.
| | - Louise Zheng
- Department of Human Nutrition, Foods, and Exercise, Fralin Translational Obesity Research Center, College of Agriculture and Life Science, Virginia Tech, Blacksburg, VA 24061, USA
| | - Fabio A Almeida
- Department of Health Promotion, Social & Behavioral Health, College of Public Health, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
47
|
Epigenetic Regulation of PLIN 1 in Obese Women and its Relation to Lipolysis. Sci Rep 2017; 7:10152. [PMID: 28860604 PMCID: PMC5578955 DOI: 10.1038/s41598-017-09232-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 07/17/2017] [Indexed: 02/08/2023] Open
Abstract
Increased adipocyte lipolysis links obesity to insulin resistance. The lipid droplet coating-protein Perilipin participates in regulation of lipolysis and is implicated in obesity. In the present study we investigate epigenetic regulation of the PLIN1 gene by correlating PLIN1 CpG methylation to gene expression and lipolysis, and functionally evaluating PLIN1 promoter methylation. PLIN1 CpG methylation in adipocytes and gene expression in white adipose tissue (WAT) was quantified in two cohorts by array. Basal lipolysis in WAT explants and adipocytes was quantified by measuring glycerol release. CpG-methylation of the PLIN1 promoter in adipocytes from obese women was higher as compared to never-obese women. PLIN1 promoter methylation was inversely correlated with PLIN1 mRNA expression and the lipolytic activity. Human mesenchymal stem cells (hMSCs) differentiated in vitro into adipocytes and harboring methylated PLIN1 promoter displayed decreased reporter gene activity as compared to hMSCs harboring unmethylated promoter. Treatment of hMSCs differentiated in vitro into adipocytes with a DNA methyltransferase inhibitor increased levels of PLIN1 mRNA and protein. In conclusion, the PLIN1 gene is epigenetically regulated and promoter methylation is inversely correlated with basal lipolysis in women suggesting that epigenetic regulation of PLIN1 is important for increased adipocyte lipolysis in insulin resistance states.
Collapse
|
48
|
van Otterdijk SD, Binder AM, Szarc vel Szic K, Schwald J, Michels KB. DNA methylation of candidate genes in peripheral blood from patients with type 2 diabetes or the metabolic syndrome. PLoS One 2017; 12:e0180955. [PMID: 28727822 PMCID: PMC5519053 DOI: 10.1371/journal.pone.0180955] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 06/23/2017] [Indexed: 12/22/2022] Open
Abstract
INTRODUCTION The prevalence of type 2 diabetes (T2D) and the metabolic syndrome (MetS) is increasing and several studies suggested an involvement of DNA methylation in the development of these metabolic diseases. This study was designed to investigate if differential DNA methylation in blood can function as a biomarker for T2D and/or MetS. METHODS Pyrosequencing analyses were performed for the candidate genes KCNJ11, PPARγ, PDK4, KCNQ1, SCD1, PDX1, FTO and PEG3 in peripheral blood leukocytes (PBLs) from 25 patients diagnosed with only T2D, 9 patients diagnosed with T2D and MetS and 11 control subjects without any metabolic disorders. RESULTS No significant differences in gene-specific methylation between patients and controls were observed, although a trend towards significance was observed for PEG3. Differential methylation was observed between the groups in 4 out of the 42 single CpG loci located in the promoters regions of the genes FTO, KCNJ11, PPARγ and PDK4. A trend towards a positive correlation was observed for PEG3 methylation with HDL cholesterol levels. DISCUSSION Altered levels of DNA methylation in PBLs of specific loci might serve as a biomarker for T2D or MetS, although further investigation is required.
Collapse
Affiliation(s)
- Sanne D. van Otterdijk
- Institute for Prevention and Cancer Epidemiology, University Medical Center Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK), Freiburg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Alexandra M. Binder
- Department of Epidemiology, Harvard School of Public Health, Boston, MA, United States of America
| | - Katarzyna Szarc vel Szic
- Institute for Prevention and Cancer Epidemiology, University Medical Center Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK), Freiburg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Julia Schwald
- Institute for Prevention and Cancer Epidemiology, University Medical Center Freiburg, Freiburg, Germany
| | - Karin B. Michels
- Institute for Prevention and Cancer Epidemiology, University Medical Center Freiburg, Freiburg, Germany
- Department of Epidemiology, Harvard School of Public Health, Boston, MA, United States of America
- Obstetrics and Gynecology Epidemiology Center, Department of Obstetrics, Gynecology and Reproductive Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States of America
- * E-mail:
| |
Collapse
|
49
|
Abstract
PURPOSE OF REVIEW Glucose metabolism is a central process in mammalian energy homeostasis. Its deregulation is a key factor in development of metabolic disease like diabetes and cancer. In recent decades, our understanding of gene regulation at the signaling, chromatin and posttranscriptional levels has seen dramatic developments. RECENT FINDINGS A number of epigenetic mechanisms that do not affect the genetic code can be assessed with new technologies. However, increasing complexity becomes a major challenge for translation into clinical application. SUMMARY The current review provides an update of transcriptional control of glucose metabolism, focusing on epigenetic regulators, DNA-methylation, histone modifications and noncoding RNAs. Recent studies heavily support the importance of those mechanisms for future therapeutics and preventive efforts for metabolic diseases.
Collapse
Affiliation(s)
- Sapna Sharma
- aResearch Unit of Molecular Epidemiology, Institute of Epidemiology II, Helmholtz Zentrum München bGerman Center for Diabetes Research (DZD) cClinical Cooperation Group Type 2 Diabetes, Helmholtz Zentrum München and Ludwig-Maximillians Universität dClinical Cooperation Group Nutrigenomics and Type 2 Diabetes, Helmholtz Zentrum München and Technische Universität München, München, Germany
| | | | | |
Collapse
|
50
|
Sonne SB, Yadav R, Yin G, Dalgaard MD, Myrmel LS, Gupta R, Wang J, Madsen L, Kajimura S, Kristiansen K. Obesity is associated with depot-specific alterations in adipocyte DNA methylation and gene expression. Adipocyte 2017; 6:124-133. [PMID: 28481699 DOI: 10.1080/21623945.2017.1320002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The present study aimed to identify genes exhibiting concomitant obesity-dependent changes in DNA methylation and gene expression in adipose tissues in the mouse using diet-induced obese (DIO) C57BL/6J and genetically obese ob/ob mice as models. Mature adipocytes were isolated from epididymal and inguinal adipose tissues of ob/ob and DIO C57BL/6J mice. DNA methylation was analyzed by MeDIP-sequencing and gene expression by microarray analysis. The majority of differentially methylated regions (DMRs) were hypomethylated in obese mice. Global methylation of long interspersed elements indicated that hypomethylation did not reflect methyl donor deficiency. In both DIO and ob/ob mice, we observed more obesity-associated methylation changes in epididymal than in inguinal adipocytes. Assignment of DMRs to promoter, exon, intron and intergenic regions demonstrated that DIO-induced changes in DNA methylation in C57BL/6J mice occurred primarily in exons, whereas inguinal adipocytes of ob/ob mice exhibited a higher enrichment of DMRs in promoter regions than in other regions of the genome, suggesting an influence of leptin on DNA methylation in inguinal adipocytes. We observed altered methylation and expression of 9 genes in epididymal adipocytes, including the known obesity-associated genes, Ehd2 and Kctd15, and a novel candidate gene, Irf8, possibly involved in immune type 1/type2 balance. The use of 2 obesity models enabled us to dissociate changes associated with high fat feeding from those associated with obesity per se. This information will be of value in future studies on the mechanisms governing the development of obesity and changes in adipocyte function associated with obesity.
Collapse
Affiliation(s)
- Si Brask Sonne
- UCSF Diabetes Center and Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, California, USA
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Rachita Yadav
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Copenhagen, Denmark
- Department of Bio and Health Informatics, Technical University of Denmark, Kongens Lyngby, Denmark
| | | | - Marlene Danner Dalgaard
- DTU Multi-Assay Core (DMAC), Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | | | - Ramneek Gupta
- Department of Bio and Health Informatics, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Jun Wang
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Copenhagen, Denmark
- BGI-Shenzhen, Shenzhen, China
| | - Lise Madsen
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Copenhagen, Denmark
- BGI-Shenzhen, Shenzhen, China
- National Institute of Nutrition and Seafood Research, Bergen, Norway
| | - Shingo Kajimura
- UCSF Diabetes Center and Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, California, USA
| | - Karsten Kristiansen
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Copenhagen, Denmark
- BGI-Shenzhen, Shenzhen, China
| |
Collapse
|