1
|
Zhang D, Qi Y, Inuzuka H, Liu J, Wei W. O-GlcNAcylation in tumorigenesis and its implications for cancer therapy. J Biol Chem 2024; 300:107709. [PMID: 39178944 PMCID: PMC11417186 DOI: 10.1016/j.jbc.2024.107709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/14/2024] [Accepted: 08/15/2024] [Indexed: 08/26/2024] Open
Abstract
O-linked N-acetylglucosaminylation (O-GlcNAcylation) is a dynamic and reversible posttranslational modification that targets serine and threonine residues in a variety of proteins. Uridine diphospho-N-acetylglucosamine, which is synthesized from glucose via the hexosamine biosynthesis pathway, is the major donor of this modification. O-GlcNAc transferase is the sole enzyme that transfers GlcNAc onto protein substrates, while O-GlcNAcase is responsible for removing this modification. O-GlcNAcylation plays an important role in tumorigenesis and progression through the modification of specific protein substrates. In this review, we discuss the tumor-related biological functions of O-GlcNAcylation and summarize the recent progress in the development of pharmaceutical options to manipulate the O-GlcNAcylation of specific proteins as potential anticancer therapies.
Collapse
Affiliation(s)
- Dize Zhang
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yihang Qi
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States
| | - Hiroyuki Inuzuka
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States
| | - Jing Liu
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States.
| |
Collapse
|
2
|
Niu F, Liu W, Ren Y, Tian Y, Shi W, Li M, Li Y, Xiong Y, Qian L. β-cell neogenesis: A rising star to rescue diabetes mellitus. J Adv Res 2024; 62:71-89. [PMID: 37839502 PMCID: PMC11331176 DOI: 10.1016/j.jare.2023.10.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 10/08/2023] [Accepted: 10/08/2023] [Indexed: 10/17/2023] Open
Abstract
BACKGROUND Diabetes Mellitus (DM), a chronic metabolic disease characterized by elevated blood glucose, is caused by various degrees of insulin resistance and dysfunctional insulin secretion, resulting in hyperglycemia. The loss and failure of functional β-cells are key mechanisms resulting in type 1 diabetes mellitus (T1DM) and type 2 diabetes mellitus (T2DM). AIM OF REVIEW Elucidating the underlying mechanisms of β-cell failure, and exploring approaches for β-cell neogenesis to reverse β-cell dysfunction may provide novel strategies for DM therapy. KEY SCIENTIFIC CONCEPTS OF REVIEW Emerging studies reveal that genetic susceptibility, endoplasmic reticulum (ER) stress, oxidative stress, islet inflammation, and protein modification linked to multiple signaling pathways contribute to DM pathogenesis. Over the past few years, replenishing functional β-cell by β-cell neogenesis to restore the number and function of pancreatic β-cells has remarkably exhibited a promising therapeutic approach for DM therapy. In this review, we provide a comprehensive overview of the underlying mechanisms of β-cell failure in DM, highlight the effective approaches for β-cell neogenesis, as well as discuss the current clinical and preclinical agents research advances of β-cell neogenesis. Insights into the challenges of translating β-cell neogenesis into clinical application for DM treatment are also offered.
Collapse
Affiliation(s)
- Fanglin Niu
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, the Affiliated Hospital of Northwest University, Xi'an No.3 Hospital, Xi'an, Shaanxi, PR China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Wenxuan Liu
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, the Affiliated Hospital of Northwest University, Xi'an No.3 Hospital, Xi'an, Shaanxi, PR China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Yuanyuan Ren
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, the Affiliated Hospital of Northwest University, Xi'an No.3 Hospital, Xi'an, Shaanxi, PR China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Ye Tian
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, the Affiliated Hospital of Northwest University, Xi'an No.3 Hospital, Xi'an, Shaanxi, PR China; Department of Neurology, Affiliated Hospital of Northwest University, Xi'an No.3 Hospital, Xi'an, Shaanxi, China
| | - Wenzhen Shi
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, the Affiliated Hospital of Northwest University, Xi'an No.3 Hospital, Xi'an, Shaanxi, PR China; Medical Research Center, the affiliated Hospital of Northwest University, Xi'an No.3 Hospital, Xi'an, Shaanxi, China
| | - Man Li
- Department of Endocrinology, the Affiliated Hospital of Northwest University, Xi'an No.3 Hospital, Xi'an, Shaanxi, China
| | - Yujia Li
- Department of Endocrinology, the Affiliated Hospital of Northwest University, Xi'an No.3 Hospital, Xi'an, Shaanxi, China
| | - Yuyan Xiong
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, the Affiliated Hospital of Northwest University, Xi'an No.3 Hospital, Xi'an, Shaanxi, PR China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Lu Qian
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, the Affiliated Hospital of Northwest University, Xi'an No.3 Hospital, Xi'an, Shaanxi, PR China; Department of Endocrinology, the Affiliated Hospital of Northwest University, Xi'an No.3 Hospital, Xi'an, Shaanxi, China
| |
Collapse
|
3
|
Ohgaku S, Ida S, Ohashi N, Morino K, Ishikado A, Yanagimachi T, Murata K, Sato D, Ugi S, Nasiri A, Shulman GI, Maegawa H, Kume S, Fujita Y. O-GlcNAc modification in endothelial cells modulates adiposity via fat absorption from the intestine in mice. Heliyon 2024; 10:e34490. [PMID: 39130439 PMCID: PMC11315187 DOI: 10.1016/j.heliyon.2024.e34490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 07/10/2024] [Accepted: 07/10/2024] [Indexed: 08/13/2024] Open
Abstract
Introduction Endothelial cells have a crucial function in transporting and exchanging various nutrients. O-GlcNAcylation, mediated by O-GlcNAc transferase (OGT), involves the addition of N-acetylglucosamine to proteins and serves as an intracellular nutrient sensing mechanism. However, the role of O-GlcNAcylation in endothelial cells remains poorly understood. Objective This study investigated the role of O-GlcNAcylation in endothelial cells. Methods Endothelial-cell-specific Ogt -knockout mice (Ogt-ECKO) were generated by crossing Ogt-floxed mice (Ogt-flox) with VE-Cadherin Cre ERT2 mice. Ogt-ECKO mice and Ogt-flox control mice were subjected to a normal or high-fat diet, and their body weight, glucose metabolism, and lipid metabolism were examined. Results Ogt-ECKO mice exhibited reduced body weight compared with Ogt-flox control mice under a high-fat diet. Lipid absorption was significantly impaired in Ogt-ECKO mice. Changes in the intercellular junctions of small intestinal lacteal endothelial cells from a button-like to a zipper-like configuration were observed. Furthermore, Ogt-ECKO mice showed decreased expression of VEGFR3. The administration of a nitric oxide donor restored lipid absorption and reversed the morphological alterations in Ogt-ECKO mice. Conclusions These findings demonstrate the critical role of O-GlcNAcylation in endothelial cells in lipid absorption in the intestine through the modulation of lacteal junction morphology. These results provide novel insight into the metabolic regulatory mechanisms under physiological conditions and have implications for the development of new therapeutic strategies for obesity.
Collapse
Affiliation(s)
- Seiichiro Ohgaku
- Department of Medicine, Shiga University of Medical Science, Otsu 520-2192, Japan
| | - Shogo Ida
- Department of Medicine, Shiga University of Medical Science, Otsu 520-2192, Japan
| | - Natsuko Ohashi
- Department of Medicine, Shiga University of Medical Science, Otsu 520-2192, Japan
- Department of Stem Cell Biology and Regenerative Medicine, Shiga University of Medical Science, Otsu 520-2192, Japan
| | - Katsutaro Morino
- Department of Medicine, Shiga University of Medical Science, Otsu 520-2192, Japan
- Institutional Research Office, Shiga University of Medical Science, Otsu 520-2192, Japan
| | - Atsushi Ishikado
- Department of Medicine, Shiga University of Medical Science, Otsu 520-2192, Japan
- R&D Department, Sunstar Inc., Osaka 569-1195, Japan
| | - Tsuyoshi Yanagimachi
- Department of Medicine, Shiga University of Medical Science, Otsu 520-2192, Japan
| | - Koichiro Murata
- Department of Medicine, Shiga University of Medical Science, Otsu 520-2192, Japan
| | - Daisuke Sato
- Department of Medicine, Shiga University of Medical Science, Otsu 520-2192, Japan
| | - Satoshi Ugi
- Department of Medicine, Shiga University of Medical Science, Otsu 520-2192, Japan
| | - Ali Nasiri
- Department of Medicine (Endocrinology), Yale School of Medicine, New Haven, CT 06520, USA
| | - Gerald I. Shulman
- Department of Medicine (Endocrinology), Yale School of Medicine, New Haven, CT 06520, USA
- Department of Cellular & Molecular Physiology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Hiroshi Maegawa
- Department of Medicine, Shiga University of Medical Science, Otsu 520-2192, Japan
| | - Shinji Kume
- Department of Medicine, Shiga University of Medical Science, Otsu 520-2192, Japan
| | - Yukihiro Fujita
- Department of Medicine, Shiga University of Medical Science, Otsu 520-2192, Japan
| |
Collapse
|
4
|
Pratt MR, Vocadlo DJ. Understanding and exploiting the roles of O-GlcNAc in neurodegenerative diseases. J Biol Chem 2023; 299:105411. [PMID: 37918804 PMCID: PMC10687168 DOI: 10.1016/j.jbc.2023.105411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/18/2023] [Accepted: 10/23/2023] [Indexed: 11/04/2023] Open
Abstract
O-GlcNAc is a common modification found on nuclear and cytoplasmic proteins. Determining the catalytic mechanism of the enzyme O-GlcNAcase (OGA), which removes O-GlcNAc from proteins, enabled the creation of potent and selective inhibitors of this regulatory enzyme. Such inhibitors have served as important tools in helping to uncover the cellular and organismal physiological roles of this modification. In addition, OGA inhibitors have been important for defining the augmentation of O-GlcNAc as a promising disease-modifying approach to combat several neurodegenerative diseases including both Alzheimer's disease and Parkinson's disease. These studies have led to development and optimization of OGA inhibitors for clinical application. These compounds have been shown to be well tolerated in early clinical studies and are steadily advancing into the clinic. Despite these advances, the mechanisms by which O-GlcNAc protects against these various types of neurodegeneration are a topic of continuing interest since improved insight may enable the creation of more targeted strategies to modulate O-GlcNAc for therapeutic benefit. Relevant pathways on which O-GlcNAc has been found to exert beneficial effects include autophagy, necroptosis, and processing of the amyloid precursor protein. More recently, the development and application of chemical methods enabling the synthesis of homogenous proteins have clarified the biochemical effects of O-GlcNAc on protein aggregation and uncovered new roles for O-GlcNAc in heat shock response. Here, we discuss the features of O-GlcNAc in neurodegenerative diseases, the application of inhibitors to identify the roles of this modification, and the biochemical effects of O-GlcNAc on proteins and pathways associated with neurodegeneration.
Collapse
Affiliation(s)
- Matthew R Pratt
- Department of Chemistry and Department of Biological Sciences, University of Southern California, Los Angeles, California, USA.
| | - David J Vocadlo
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, Canada; Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada.
| |
Collapse
|
5
|
Le Minh G, Esquea EM, Young RG, Huang J, Reginato MJ. On a sugar high: Role of O-GlcNAcylation in cancer. J Biol Chem 2023; 299:105344. [PMID: 37838167 PMCID: PMC10641670 DOI: 10.1016/j.jbc.2023.105344] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 10/02/2023] [Accepted: 10/04/2023] [Indexed: 10/16/2023] Open
Abstract
Recent advances in the understanding of the molecular mechanisms underlying cancer progression have led to the development of novel therapeutic targeting strategies. Aberrant glycosylation patterns and their implication in cancer have gained increasing attention as potential targets due to the critical role of glycosylation in regulating tumor-specific pathways that contribute to cancer cell survival, proliferation, and progression. A special type of glycosylation that has been gaining momentum in cancer research is the modification of nuclear, cytoplasmic, and mitochondrial proteins, termed O-GlcNAcylation. This protein modification is catalyzed by an enzyme called O-GlcNAc transferase (OGT), which uses the final product of the Hexosamine Biosynthetic Pathway (HBP) to connect altered nutrient availability to changes in cellular signaling that contribute to multiple aspects of tumor progression. Both O-GlcNAc and its enzyme OGT are highly elevated in cancer and fulfill the crucial role in regulating many hallmarks of cancer. In this review, we present and discuss the latest findings elucidating the involvement of OGT and O-GlcNAc in cancer.
Collapse
Affiliation(s)
- Giang Le Minh
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Emily M Esquea
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Riley G Young
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Jessie Huang
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Mauricio J Reginato
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA; Translational Cellular Oncology Program, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
6
|
Jo S, Pritchard S, Wong A, Avula N, Essawy A, Hanover J, Alejandro EU. Pancreatic β-cell hyper-O-GlcNAcylation leads to impaired glucose homeostasis in vivo. Front Endocrinol (Lausanne) 2022; 13:1040014. [PMID: 36387851 PMCID: PMC9644030 DOI: 10.3389/fendo.2022.1040014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 10/10/2022] [Indexed: 11/13/2022] Open
Abstract
Protein O-GlcNAcylation is a nutrient and stress-sensitive protein post-translational modification (PTM). The addition of an O-GlcNAc molecule to proteins is catalyzed by O-GlcNAc transferase (OGT), whereas O-GlcNAcase (OGA) enzyme is responsible for removal of this PTM. Previous work showed that OGT is highly expressed in the pancreas, and we demonstrated that hypo-O-GlcNAcylation in β-cells cause severe diabetes in mice. These studies show a direct link between nutrient-sensitive OGT and β-cell health and function. In the current study, we hypothesized that hyper-O-GlcNAcylation may confer protection from β-cell failure in high-fat diet (HFD)-induced obesity. To test this hypothesis, we generated a mouse model with constitutive β-cell OGA ablation (βOGAKO) to specifically increase O-GlcNAcylation in β-cells. Under normal chow diet, young male and female βOGAKO mice exhibited normal glucose tolerance but developed glucose intolerance with aging, relative to littermate controls. No alteration in β-cell mass was observed between βOGAKO and littermate controls. Total insulin content was reduced despite an increase in pro-insulin to insulin ratio in βOGAKO islets. βOGAKO mice showed deficit in insulin secretion in vivo and in vitro. When young animals were subjected to HFD, both male and female βOGAKO mice displayed normal body weight gain and insulin tolerance but developed glucose intolerance that worsened with longer exposure to HFD. Comparable β-cell mass was found between βOGAKO and littermate controls. Taken together, these data demonstrate that the loss of OGA in β-cells reduces β-cell function, thereby perturbing glucose homeostasis. The findings reinforce the rheostat model of intracellular O-GlcNAcylation where too much (OGA loss) or too little (OGT loss) O-GlcNAcylation are both detrimental to the β-cell.
Collapse
Affiliation(s)
- Seokwon Jo
- Department of Integrative Biology & Physiology, University of Minnesota Medical School, Minneapolis, MN, United States
| | - Samantha Pritchard
- Department of Integrative Biology & Physiology, University of Minnesota Medical School, Minneapolis, MN, United States
| | - Alicia Wong
- Department of Integrative Biology & Physiology, University of Minnesota Medical School, Minneapolis, MN, United States
- Department of Genetics, Cell Biology & Development, University of Minnesota, Minneapolis, MN, United States
| | - Nandini Avula
- Department of Integrative Biology & Physiology, University of Minnesota Medical School, Minneapolis, MN, United States
| | - Ahmad Essawy
- Department of Integrative Biology & Physiology, University of Minnesota Medical School, Minneapolis, MN, United States
| | - John Hanover
- Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health, Bethesda, MD, United States
| | - Emilyn U. Alejandro
- Department of Integrative Biology & Physiology, University of Minnesota Medical School, Minneapolis, MN, United States
| |
Collapse
|
7
|
Hu A, Zou H, Chen B, Zhong J. Posttranslational modifications in diabetes: Mechanisms and functions. Rev Endocr Metab Disord 2022; 23:1011-1033. [PMID: 35697961 DOI: 10.1007/s11154-022-09740-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/20/2022] [Indexed: 12/15/2022]
Abstract
As one of the most widespread chronic diseases, diabetes and its accompanying complications affect approximately one tenth of individuals worldwide and represent a growing cause of morbidity and mortality. Accumulating evidence has proven that the process of diabetes is complex and interactive, involving various cellular responses and signaling cascades by posttranslational modifications (PTMs). Therefore, understanding the mechanisms and functions of PTMs in regulatory networks has fundamental importance for understanding the prediction, onset, diagnosis, progression, and treatment of diabetes. In this review, we offer a holistic summary and illustration of the crosstalk between PTMs and diabetes, including both types 1 and 2. Meanwhile, we discuss the potential use of PTMs in diabetes treatment and provide a prospective direction for deeply understanding the metabolic diseases.
Collapse
Affiliation(s)
- Ang Hu
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, 323 National Road, Ganzhou, 341000, Jiangxi, China
| | - Haohong Zou
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, 323 National Road, Ganzhou, 341000, Jiangxi, China
| | - Bin Chen
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, 323 National Road, Ganzhou, 341000, Jiangxi, China
- The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Jianing Zhong
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, 323 National Road, Ganzhou, 341000, Jiangxi, China.
| |
Collapse
|
8
|
The Roles of Probiotics in the Gut Microbiota Composition and Metabolic Outcomes in Asymptomatic Post-Gestational Diabetes Women: A Randomized Controlled Trial. Nutrients 2022; 14:nu14183878. [PMID: 36145254 PMCID: PMC9504400 DOI: 10.3390/nu14183878] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/08/2022] [Accepted: 09/12/2022] [Indexed: 12/04/2022] Open
Abstract
Probiotics are widely used as an adjuvant therapy in various diseases. Nonetheless, it is uncertain how they affect the gut microbiota composition and metabolic and inflammatory outcomes in women who have recently experienced gestational diabetes mellitus (post-GDM). A randomized, double-blind, placebo-controlled clinical trial involving 132 asymptomatic post-GDM women was conducted to close this gap (Clinical Trial Registration: NCT05273073). The intervention (probiotics) group received a cocktail of six probiotic strains from Bifidobacterium and Lactobacillus for 12 weeks, while the placebo group received an identical sachet devoid of living microorganisms. Anthropometric measurements, biochemical analyses, and 16S rRNA gene sequencing results were evaluated pre- and post-intervention. After the 12-week intervention, the probiotics group’s fasting blood glucose level significantly decreased (mean difference −0.20 mmol/L; p = 0.0021). The HbA1c, total cholesterol, triglycerides, and high-sensitivity C-reactive protein levels were significantly different between the two groups (p < 0.05). Sequencing data also demonstrated a large rise in the Bifidobacterium adolescentis following probiotic supplementation. Our findings suggest that multi-strain probiotics are beneficial for improved metabolic and inflammatory outcomes in post-GDM women by modulating gut dysbiosis. This study emphasizes the necessity for a comprehensive strategy for postpartum treatment that includes probiotics to protect post-GDM women from developing glucose intolerance.
Collapse
|
9
|
Protein O-GlcNAcylation and the regulation of energy homeostasis: lessons from knock-out mouse models. J Biomed Sci 2022; 29:64. [PMID: 36058931 PMCID: PMC9443036 DOI: 10.1186/s12929-022-00851-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 08/30/2022] [Indexed: 12/02/2022] Open
Abstract
O-GlcNAcylation corresponds to the addition of N-Acetylglucosamine (GlcNAc) on serine or threonine residues of cytosolic, nuclear and mitochondrial proteins. This reversible modification is catalysed by a unique couple of enzymes, O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA). OGT uses UDP-GlcNAc produced in the hexosamine biosynthesis pathway, to modify proteins. UDP-GlcNAc is at the cross-roads of several cellular metabolisms, including glucose, amino acids and fatty acids. Therefore, OGT is considered as a metabolic sensor that post-translationally modifies proteins according to nutrient availability. O-GlcNAcylation can modulate protein–protein interactions and regulate protein enzymatic activities, stability or subcellular localization. In addition, it can compete with phosphorylation on the same serine or threonine residues, or regulate positively or negatively the phosphorylation of adjacent residues. As such, O-GlcNAcylation is a major actor in the regulation of cell signaling and has been implicated in numerous physiological and pathological processes. A large body of evidence have indicated that increased O-GlcNAcylation participates in the deleterious effects of glucose (glucotoxicity) in metabolic diseases. However, recent studies using mice models with OGT or OGA knock-out in different tissues have shown that O-GlcNAcylation protects against various cellular stresses, and indicate that both increase and decrease in O-GlcNAcylation have deleterious effects on the regulation of energy homeostasis.
Collapse
|
10
|
O-GlcNAc Modification and Its Role in Diabetic Retinopathy. Metabolites 2022; 12:metabo12080725. [PMID: 36005597 PMCID: PMC9415332 DOI: 10.3390/metabo12080725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/01/2022] [Accepted: 08/03/2022] [Indexed: 11/17/2022] Open
Abstract
Diabetic retinopathy (DR) is a leading complication in type 1 and type 2 diabetes and has emerged as a significant health problem. Currently, there are no effective therapeutic strategies owing to its inconspicuous early lesions and complex pathological mechanisms. Therefore, the mechanism of molecular pathogenesis requires further elucidation to identify potential targets that can aid in the prevention of DR. As a type of protein translational modification, O-linked β-N-acetylglucosamine (O-GlcNAc) modification is involved in many diseases, and increasing evidence suggests that dysregulated O-GlcNAc modification is associated with DR. The present review discusses O-GlcNAc modification and its molecular mechanisms involved in DR. O-GlcNAc modification might represent a novel alternative therapeutic target for DR in the future.
Collapse
|
11
|
Yoshida M, Yokoi N, Takahashi H, Hatano N, Hayami T, Ogawa W, Seino S. O-GlcNAcylation of myocyte-specific enhancer factor 2D negatively regulates insulin secretion from pancreatic β-cells. Biochem Biophys Res Commun 2022; 605:90-96. [DOI: 10.1016/j.bbrc.2022.03.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 03/07/2022] [Indexed: 11/02/2022]
|
12
|
Liu D, Yang KY, Chan VW, Ye W, Chong CC, Wang CC, Wang H, Zhou B, Cheng KK, Lui KO. YY1 Regulates Glucose Homeostasis Through Controlling Insulin Transcription in Pancreatic β-Cells. Diabetes 2022; 71:961-977. [PMID: 35113157 PMCID: PMC9044128 DOI: 10.2337/db21-0695] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 01/28/2022] [Indexed: 11/13/2022]
Abstract
To date, identification of nonislet-specific transcriptional factors in the regulation of insulin gene expression has been little studied. Here, we report that the expression level of the transcription factor YY1 is increased dramatically in both human and mouse pancreatic β-cells after birth. Nevertheless, the physiological role of YY1 during β-cell development and its regulatory mechanism in β-cell function remain largely unknown. After β-cell ablation of Yy1, we observed rapid onset of hyperglycemia, impaired glucose tolerance, and reduced β-cell mass in neonatal and adult mice. These mice also had hypoinsulinemia with normal insulin sensitivity compared with their wild-type littermates, manifesting as a type 1 diabetic phenotype. Mechanistically, genome-wide RNA sequencing has defined dysregulated insulin signaling and defective glucose responsiveness in β-cells devoid of YY1. Integrative analyses coupled with chromatin immunoprecipitation assays targeting YY1, and histone modifications, including H3K4me1, H3K27ac, and H3K27me3, have further identified Ins1 and Ins2 as direct gene targets of YY1. Luciferase reporter assays and loss- and gain-of-function experiments also demonstrated that YY1 binds to the enhancer regions in exon 2 of Ins1 and Ins2, activating insulin transcription and, therefore, proinsulin and insulin production in pancreatic β-cells. YY1 also directly interacts with RNA polymerase II, potentially stabilizing the enhancer-promoter interaction in the multiprotein-DNA complex during transcription initiation. Taken together, our findings suggest a role for YY1 as a transcriptional activator of insulin gene expression, assisting β-cell maturation and function after birth. These analyses may advance our understanding of β-cell biology and provide clinically relevant insights targeting the pathophysiological origins of diabetes.
Collapse
Affiliation(s)
- Di Liu
- Department of Chemical Pathology, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Kevin Y. Yang
- Department of Chemical Pathology, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Vicken W. Chan
- Department of Chemical Pathology, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Wenchu Ye
- Department of Chemical Pathology, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Charing C.N. Chong
- Department of Surgery, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Chi Chiu Wang
- Department of Obstetrics and Gynaecology, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
- Li Li Ka Shing Institute of Health Sciences, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Huating Wang
- Li Li Ka Shing Institute of Health Sciences, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Bin Zhou
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, China
| | - Kenneth K.Y. Cheng
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| | - Kathy O. Lui
- Department of Chemical Pathology, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
- Li Li Ka Shing Institute of Health Sciences, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
- Corresponding author: Kathy O. Lui,
| |
Collapse
|
13
|
Nishimura K, Fujita Y, Ida S, Yanagimachi T, Ohashi N, Nishi K, Nishida A, Iwasaki Y, Morino K, Ugi S, Nishi E, Andoh A, Maegawa H. Glycaemia and body weight are regulated by sodium-glucose cotransporter 1 (SGLT1) expression via O-GlcNAcylation in the intestine. Mol Metab 2022; 59:101458. [PMID: 35189429 PMCID: PMC8902621 DOI: 10.1016/j.molmet.2022.101458] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/10/2022] [Accepted: 02/10/2022] [Indexed: 11/28/2022] Open
Abstract
Objective Methods Results Conclusion Intestine-specific OGT depletion results in weight loss and hypoglycaemia. It reduces SGLT1 expression, resulting in glucose absorption from the gut. OGT knockdown may contribute to diminish glucose-induced incretin secretion. OGT may regulate SGLT1 expression via the cAMP/CREB-dependent pathway. O-GlcNAcylation regulates SGLT1 expression in the intestine and the kidney.
Collapse
Affiliation(s)
- Kimihiro Nishimura
- Department of Medicine, Shiga University of Medical Science, Shiga 520-2192, Japan
| | - Yukihiro Fujita
- Department of Medicine, Shiga University of Medical Science, Shiga 520-2192, Japan.
| | - Shogo Ida
- Department of Medicine, Shiga University of Medical Science, Shiga 520-2192, Japan
| | - Tsuyoshi Yanagimachi
- Department of Medicine, Shiga University of Medical Science, Shiga 520-2192, Japan
| | - Natsuko Ohashi
- Department of Medicine, Shiga University of Medical Science, Shiga 520-2192, Japan
| | - Kiyoto Nishi
- Department of Pharmacology, Shiga University of Medical Science, Shiga 520-2192, Japan
| | - Atsushi Nishida
- Department of Medicine, Shiga University of Medical Science, Shiga 520-2192, Japan
| | - Yasumasa Iwasaki
- Department of Clinical Nutrition, Faculty of Health Science, Suzuka University of Medical Science, Mie 510-029, Japan
| | - Katsutaro Morino
- Department of Medicine, Shiga University of Medical Science, Shiga 520-2192, Japan; Institutional Research Office, Shiga University of Medical Science, Shiga 520-2192, Japan
| | - Satoshi Ugi
- Department of Medicine, Shiga University of Medical Science, Shiga 520-2192, Japan
| | - Eiichiro Nishi
- Department of Pharmacology, Shiga University of Medical Science, Shiga 520-2192, Japan
| | - Akira Andoh
- Department of Medicine, Shiga University of Medical Science, Shiga 520-2192, Japan
| | - Hiroshi Maegawa
- Department of Medicine, Shiga University of Medical Science, Shiga 520-2192, Japan
| |
Collapse
|
14
|
Sombutthaweesri T, Wu S, Chamusri N, Settakorn J, Pruksakorn D, Chaiyawat P, Sastraruji T, Krisanaprakornkit S, Supanchart C. Relationship Between O-GlcNAcase Expression and Prognosis of Patients With Osteosarcoma. Appl Immunohistochem Mol Morphol 2021; 30:e1-e10. [PMID: 34469899 DOI: 10.1097/pai.0000000000000970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 08/05/2021] [Indexed: 11/25/2022]
Abstract
Several studies have demonstrated a role of O-GlcNAcylation (O-GlcNAc) in tumorigenesis of various carcinomas by modification of tumor-associated proteins. However, its implication in the pathogenesis of osteosarcoma remains unclear. This study aimed to investigate the levels of O-GlcNAc and the expressions of O-linked N-acetylglucosamine transferase (OGT) and O-GlcNAcase (OGA) in human osteosarcoma tissues, by using immunohistochemistry; and to find correlations between the levels or expressions and several clinicopathologic parameters. There were 109 first diagnosed osteosarcoma patients, including Enneking stage IIB (n=70) and III (n=39). Correlations between the immunoreactive score (IRS) and clinicopathologic parameters, overall survival, and metastasis-free survival were evaluated. A positive correlation was found between the IRS of OGA and the percentage of postchemotherapeutic tumor necrosis (r=0.308; P=0.017). Univariate analysis revealed significantly lower OGA IRS in metastatic patients (P=0.020) and poor chemotherapeutic-responder patients (P=0.001). By multivariate analysis, presence of tumor metastasis (P=0.002) and lower OGA IRS (P=0.004) was significantly associated with shorter overall survival. Subgroup analysis in stage IIB osteosarcoma (n=70) demonstrated that male sex (P=0.019), presence of tumor recurrence (P=0.026), poor chemotherapeutic responder (P=0.022), and lower OGA IRS (P=0.019) were significantly correlated with short metastasis-free survival. But, lower OGA IRS was the only independent predictor for short metastasis-free survival (P=0.006). Our findings suggested that O-GlcNAc pathway, especially OGA, may involve in pathogenesis and aggressiveness of osteosarcoma. Low level of OGA expression may be used as a poor prognostic indicator.
Collapse
Affiliation(s)
- Thamonwan Sombutthaweesri
- Departments of Oral and Maxillofacial Surgery Oral Biology and Diagnostic Sciences, Center of Excellence in Oral and Maxillofacial Biology, Faculty of Dentistry Department of Pathology Musculoskeletal Science and Translational Research Center (MSTR) Omics Center for Health Sciences (OCHS) Department of Orthopedics, Faculty of Medicine Biomedical Engineering Institute, Chiang Mai University, Chiang Mai, Thailand
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Mueller T, Ouyang X, Johnson MS, Qian WJ, Chatham JC, Darley-Usmar V, Zhang J. New Insights Into the Biology of Protein O-GlcNAcylation: Approaches and Observations. FRONTIERS IN AGING 2021; 1:620382. [PMID: 35822169 PMCID: PMC9261361 DOI: 10.3389/fragi.2020.620382] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 12/11/2020] [Indexed: 12/13/2022]
Abstract
O-GlcNAcylation is a protein posttranslational modification that results in the addition of O-GlcNAc to Ser/Thr residues. Since its discovery in the 1980s, it has been shown to play an important role in a broad range of cellular functions by modifying nuclear, cytosolic, and mitochondrial proteins. The addition of O-GlcNAc is catalyzed by O-GlcNAc transferase (OGT), and its removal is catalyzed by O-GlcNAcase (OGA). Levels of protein O-GlcNAcylation change in response to nutrient availability and metabolic, oxidative, and proteotoxic stress. OGT and OGA levels, activity, and target engagement are also regulated. Together, this results in adaptive and, on occasions, detrimental responses that affect cellular function and survival, which impact a broad range of pathologies and aging. Over the past several decades, approaches and tools to aid the investigation of the regulation and consequences of protein O-GlcNAcylation have been developed and enhanced. This review is divided into two sections: 1) We will first focus on current standard and advanced technical approaches for assessing enzymatic activities of OGT and OGT, assessing the global and specific protein O-GlcNAcylation and 2) we will summarize in vivo findings of functional consequences of changing protein O-GlcNAcylation, using genetic and pharmacological approaches.
Collapse
Affiliation(s)
- Toni Mueller
- Department of Pathology and Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Xiaosen Ouyang
- Department of Pathology and Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Michelle S. Johnson
- Department of Pathology and Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Wei-Jun Qian
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, United States
| | - John C. Chatham
- Department of Pathology and Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Victor Darley-Usmar
- Department of Pathology and Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jianhua Zhang
- Department of Pathology and Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, United States
- *Correspondence: Jianhua Zhang,
| |
Collapse
|
16
|
Morino K, Maegawa H. Role of O-linked N-acetylglucosamine in the homeostasis of metabolic organs, and its potential links with diabetes and its complications. J Diabetes Investig 2021; 12:130-136. [PMID: 32654398 PMCID: PMC7858115 DOI: 10.1111/jdi.13359] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/07/2020] [Accepted: 07/09/2020] [Indexed: 12/12/2022] Open
Abstract
Recent studies using genetically manipulated mouse models have shown the pivotal role of O-linked N-acetylglucosamine modification (O-GlcNAcylation) in the metabolism of multiple organs. The molecular mechanism involves the sensing of glucose flux by the hexosamine biosynthesis pathway, which leads to the adjustment of cellular metabolism to protect against changes in the environment of each organ through O-GlcNAcylation. More recently, not only glucose, but also fluxes of amino acids and fatty acids have been reported to induce O-GlcNAcylation, affecting multiple cellular processes. In this review, we discuss how O-GlcNAcylation maintains homeostasis in organs that are affected by diabetes mellitus: skeletal muscle, adipose tissue, liver and pancreatic β-cells. Furthermore, we discuss the importance of O-GlcNAcylation in the pathogenesis of diabetic complications. By elucidating the molecular mechanisms whereby cellular homeostasis is maintained, despite changes in metabolic flux, these studies might provide new targets for the treatment and prevention of diabetes and its complications.
Collapse
Affiliation(s)
- Katsutaro Morino
- Division of Diabetology, Endocrinology, and NephrologyDepartment of MedicineShiga University of Medical ScienceOtsuShigaJapan
| | - Hiroshi Maegawa
- Division of Diabetology, Endocrinology, and NephrologyDepartment of MedicineShiga University of Medical ScienceOtsuShigaJapan
| |
Collapse
|
17
|
Essawy A, Jo S, Beetch M, Lockridge A, Gustafson E, Alejandro EU. O-linked N-acetylglucosamine transferase (OGT) regulates pancreatic α-cell function in mice. J Biol Chem 2021; 296:100297. [PMID: 33460647 PMCID: PMC7949098 DOI: 10.1016/j.jbc.2021.100297] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 01/05/2021] [Accepted: 01/12/2021] [Indexed: 01/06/2023] Open
Abstract
The nutrient sensor O-GlcNAc transferase (OGT) catalyzes posttranslational addition of O-GlcNAc onto target proteins, influencing signaling pathways in response to cellular nutrient levels. OGT is highly expressed in pancreatic glucagon-secreting cells (α-cells), which secrete glucagon in response to hypoglycemia. The objective of this study was to determine whether OGT is necessary for the regulation of α-cell mass and function in vivo. We utilized genetic manipulation to produce two α-cell specific OGT-knockout models: a constitutive glucagon-Cre (αOGTKO) and an inducible glucagon-Cre (i-αOGTKO), which effectively delete OGT in α-cells. Using approaches including immunoblotting, immunofluorescent imaging, and metabolic phenotyping in vivo, we provide the first insight on the role of O-GlcNAcylation in α-cell mass and function. αOGTKO mice demonstrated normal glucose tolerance and insulin sensitivity but displayed significantly lower glucagon levels during both fed and fasted states. αOGTKO mice exhibited significantly lower α-cell glucagon content and α-cell mass at 6 months of age. In fasting, αOGTKO mice showed impaired pyruvate stimulated gluconeogenesis in vivo and reduced glucagon secretion in vitro. i-αOGTKO mice showed similarly reduced blood glucagon levels, defective in vitro glucagon secretion, and normal α-cell mass. Interestingly, both αOGTKO and i-αOGTKO mice had no deficiency in maintaining blood glucose homeostasis under fed or fasting conditions, despite impairment in α-cell mass and function, and glucagon content. In conclusion, these studies provide a first look at the role of OGT signaling in the α-cell, its effect on α-cell mass, and its importance in regulating glucagon secretion in hypoglycemic conditions.
Collapse
Affiliation(s)
- Ahmad Essawy
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Seokwon Jo
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Megan Beetch
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Amber Lockridge
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Eric Gustafson
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Emilyn U Alejandro
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN, USA.
| |
Collapse
|
18
|
Chatham JC, Zhang J, Wende AR. Role of O-Linked N-Acetylglucosamine Protein Modification in Cellular (Patho)Physiology. Physiol Rev 2020; 101:427-493. [PMID: 32730113 DOI: 10.1152/physrev.00043.2019] [Citation(s) in RCA: 163] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In the mid-1980s, the identification of serine and threonine residues on nuclear and cytoplasmic proteins modified by a N-acetylglucosamine moiety (O-GlcNAc) via an O-linkage overturned the widely held assumption that glycosylation only occurred in the endoplasmic reticulum, Golgi apparatus, and secretory pathways. In contrast to traditional glycosylation, the O-GlcNAc modification does not lead to complex, branched glycan structures and is rapidly cycled on and off proteins by O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA), respectively. Since its discovery, O-GlcNAcylation has been shown to contribute to numerous cellular functions, including signaling, protein localization and stability, transcription, chromatin remodeling, mitochondrial function, and cell survival. Dysregulation in O-GlcNAc cycling has been implicated in the progression of a wide range of diseases, such as diabetes, diabetic complications, cancer, cardiovascular, and neurodegenerative diseases. This review will outline our current understanding of the processes involved in regulating O-GlcNAc turnover, the role of O-GlcNAcylation in regulating cellular physiology, and how dysregulation in O-GlcNAc cycling contributes to pathophysiological processes.
Collapse
Affiliation(s)
- John C Chatham
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama; and Birmingham Veterans Affairs Medical Center, Birmingham, Alabama
| | - Jianhua Zhang
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama; and Birmingham Veterans Affairs Medical Center, Birmingham, Alabama
| | - Adam R Wende
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama; and Birmingham Veterans Affairs Medical Center, Birmingham, Alabama
| |
Collapse
|
19
|
Hashimoto Y, Hamaguchi M, Kaji A, Sakai R, Osaka T, Inoue R, Kashiwagi S, Mizushima K, Uchiyama K, Takagi T, Naito Y, Fukui M. Intake of sucrose affects gut dysbiosis in patients with type 2 diabetes. J Diabetes Investig 2020; 11:1623-1634. [PMID: 32412684 PMCID: PMC7610116 DOI: 10.1111/jdi.13293] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 05/07/2020] [Accepted: 05/08/2020] [Indexed: 12/14/2022] Open
Abstract
Aims/Introduction Gut dysbiosis is generally associated with type 2 diabetes mellitus. However, the effect of habitual dietary intake on gut dysbiosis in Japanese patients with type 2 diabetes mellitus has not yet been explicated. This study investigated whether alteration of the gut microbiota was influenced by dietary intake of sucrose in Japanese patients with type 2 diabetes mellitus. Materials and Methods In this cross‐sectional study, 97 patients with type 2 diabetes mellitus and 97 healthy individuals were matched by age and sex, and then, fecal samples were obtained. Next‐generation sequencing of the 16S ribosomal ribonucleic acid gene was carried out, and functional profiles for the gut microbiota were analyzed. We selected the top 30 gut microbial genera and top 20 functional profiles for the gut microbiota specified by the weighted average difference method. The association between gut microbial genera or functional profiles and habitual dietary intake was investigated by Spearman’s rank correlation coefficient, and then, clustering analysis was carried out to clarify the impact of habitual dietary intake. Results The Actinobacteria phylum was highly abundant in patients with type 2 diabetes mellitus, whereas the Bacteroidetes phylum was less abundant. Diabetic‐type gut microbes, specifically Bacteroides and Bifidobacterium, were altered by sucrose intake at the genus level. Furthermore, sucrose intake was associated with glycolysis/gluconeogenesis in the diabetic‐type functional profiles of the gut microbiota. Conclusions The gut microbiota and functional profiles for the gut microbiota in patients with type 2 diabetes mellitus were significantly different from those in healthy individuals. Furthermore, we showed that sucrose intake was closely associated with these differences.
Collapse
Affiliation(s)
- Yoshitaka Hashimoto
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Masahide Hamaguchi
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Ayumi Kaji
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Ryosuke Sakai
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Takafumi Osaka
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Ryo Inoue
- Laboratory of Animal Science, Kyoto Prefectural University, Kyoto, Japan.,Laboratory of Animal Science, Setsunan University, Hirakata, Japan
| | - Saori Kashiwagi
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Katsura Mizushima
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Kazuhiko Uchiyama
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Tomohisa Takagi
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan.,Department for Medical Innovation and Translational Medical Science, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yuji Naito
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Michiaki Fukui
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
20
|
Baumann D, Wong A, Akhaphong B, Jo S, Pritchard S, Mohan R, Chung G, Zhang Y, Alejandro EU. Role of nutrient-driven O-GlcNAc-post-translational modification in pancreatic exocrine and endocrine islet development. Development 2020; 147:dev186643. [PMID: 32165492 PMCID: PMC7174839 DOI: 10.1242/dev.186643] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 02/25/2020] [Indexed: 12/16/2022]
Abstract
Although the developing pancreas is exquisitely sensitive to nutrient supply in utero, it is not entirely clear how nutrient-driven post-translational modification of proteins impacts the pancreas during development. We hypothesized that the nutrient-sensing enzyme O-GlcNAc transferase (Ogt), which catalyzes an O-GlcNAc-modification onto key target proteins, integrates nutrient-signaling networks to regulate cell survival and development. In this study, we investigated the heretofore unknown role of Ogt in exocrine and endocrine islet development. By genetic manipulation in vivo and by using morphometric and molecular analyses, such as immunofluorescence imaging and single cell RNA sequencing, we show the first evidence that Ogt regulates pancreas development. Genetic deletion of Ogt in the pancreatic epithelium (OgtKOPanc) causes pancreatic hypoplasia, in part by increased apoptosis and reduced levels of of Pdx1 protein. Transcriptomic analysis of single cell and bulk RNA sequencing uncovered cell-type heterogeneity and predicted upstream regulator proteins that mediate cell survival, including Pdx1, Ptf1a and p53, which are putative Ogt targets. In conclusion, these findings underscore the requirement of O-GlcNAcylation during pancreas development and show that Ogt is essential for pancreatic progenitor survival, providing a novel mechanistic link between nutrients and pancreas development.
Collapse
Affiliation(s)
- Daniel Baumann
- Department of Integrative Biology and Physiology, University of Minnesota Medical School. Minneapolis, MN 55455, USA
| | - Alicia Wong
- Department of Integrative Biology and Physiology, University of Minnesota Medical School. Minneapolis, MN 55455, USA
| | - Brian Akhaphong
- Department of Integrative Biology and Physiology, University of Minnesota Medical School. Minneapolis, MN 55455, USA
| | - Seokwon Jo
- Department of Integrative Biology and Physiology, University of Minnesota Medical School. Minneapolis, MN 55455, USA
| | - Samantha Pritchard
- Department of Integrative Biology and Physiology, University of Minnesota Medical School. Minneapolis, MN 55455, USA
| | - Ramkumar Mohan
- Department of Integrative Biology and Physiology, University of Minnesota Medical School. Minneapolis, MN 55455, USA
| | - Grace Chung
- Department of Integrative Biology and Physiology, University of Minnesota Medical School. Minneapolis, MN 55455, USA
| | - Ying Zhang
- Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - Emilyn U Alejandro
- Department of Integrative Biology and Physiology, University of Minnesota Medical School. Minneapolis, MN 55455, USA
| |
Collapse
|
21
|
Yang Y, Fu M, Li MD, Zhang K, Zhang B, Wang S, Liu Y, Ni W, Ong Q, Mi J, Yang X. O-GlcNAc transferase inhibits visceral fat lipolysis and promotes diet-induced obesity. Nat Commun 2020; 11:181. [PMID: 31924761 PMCID: PMC6954210 DOI: 10.1038/s41467-019-13914-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Accepted: 11/14/2019] [Indexed: 01/01/2023] Open
Abstract
Excessive visceral fat accumulation is a primary risk factor for metabolically unhealthy obesity and related diseases. The visceral fat is highly susceptible to the availability of external nutrients. Nutrient flux into the hexosamine biosynthetic pathway leads to protein posttranslational modification by O-linked β-N-acetylglucosamine (O-GlcNAc) moieties. O-GlcNAc transferase (OGT) is responsible for the addition of GlcNAc moieties to target proteins. Here, we report that inducible deletion of adipose OGT causes a rapid visceral fat loss by specifically promoting lipolysis in visceral fat. Mechanistically, visceral fat maintains a high level of O-GlcNAcylation during fasting. Loss of OGT decreases O-GlcNAcylation of lipid droplet-associated perilipin 1 (PLIN1), which leads to elevated PLIN1 phosphorylation and enhanced lipolysis. Moreover, adipose OGT overexpression inhibits lipolysis and promotes diet-induced obesity. These findings establish an essential role for OGT in adipose tissue homeostasis and indicate a unique potential for targeting O-GlcNAc signaling in the treatment of obesity.
Collapse
Affiliation(s)
- Yunfan Yang
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Minnie Fu
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Min-Dian Li
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, 06510, USA
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Kaisi Zhang
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, 06510, USA
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Bichen Zhang
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, 06510, USA
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Simeng Wang
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Yuyang Liu
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Weiming Ni
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Qunxiang Ong
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Jia Mi
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Xiaoyong Yang
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, 06510, USA.
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, 06510, USA.
| |
Collapse
|
22
|
Esch N, Jo S, Moore M, Alejandro EU. Nutrient Sensor mTOR and OGT: Orchestrators of Organelle Homeostasis in Pancreatic β-Cells. J Diabetes Res 2020; 2020:8872639. [PMID: 33457426 PMCID: PMC7787834 DOI: 10.1155/2020/8872639] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/06/2020] [Accepted: 11/24/2020] [Indexed: 02/08/2023] Open
Abstract
The purpose of this review is to integrate the role of nutrient-sensing pathways into β-cell organelle dysfunction prompted by nutrient excess during type 2 diabetes (T2D). T2D encompasses chronic hyperglycemia, hyperlipidemia, and inflammation, which each contribute to β-cell failure. These factors can disrupt the function of critical β-cell organelles, namely, the ER, mitochondria, lysosomes, and autophagosomes. Dysfunctional organelles cause defects in insulin synthesis and secretion and activate apoptotic pathways if homeostasis is not restored. In this review, we will focus on mTORC1 and OGT, two major anabolic nutrient sensors with important roles in β-cell physiology. Though acute stimulation of these sensors frequently improves β-cell function and promotes adaptation to cell stress, chronic and sustained activity disturbs organelle homeostasis. mTORC1 and OGT regulate organelle function by influencing the expression and activities of key proteins, enzymes, and transcription factors, as well as by modulating autophagy to influence clearance of defective organelles. In addition, mTORC1 and OGT activity influence islet inflammation during T2D, which can further disrupt organelle and β-cell function. Therapies for T2D that fine-tune the activity of these nutrient sensors have yet to be developed, but the important role of mTORC1 and OGT in organelle homeostasis makes them promising targets to improve β-cell function and survival.
Collapse
Affiliation(s)
- Nicholas Esch
- Department of Integrative Biology & Physiology, University of Minnesota Medical School, University of Minnesota, Minneapolis, Minnesota, USA
| | - Seokwon Jo
- Department of Integrative Biology & Physiology, University of Minnesota Medical School, University of Minnesota, Minneapolis, Minnesota, USA
| | - Mackenzie Moore
- Department of Integrative Biology & Physiology, University of Minnesota Medical School, University of Minnesota, Minneapolis, Minnesota, USA
- Department of Surgery, University of Minnesota Medical School, University of Minnesota, Minneapolis, Minnesota, USA
| | - Emilyn U. Alejandro
- Department of Integrative Biology & Physiology, University of Minnesota Medical School, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
23
|
Shi H, Munk A, Nielsen TS, Daughtry MR, Larsson L, Li S, Høyer KF, Geisler HW, Sulek K, Kjøbsted R, Fisher T, Andersen MM, Shen Z, Hansen UK, England EM, Cheng Z, Højlund K, Wojtaszewski JFP, Yang X, Hulver MW, Helm RF, Treebak JT, Gerrard DE. Skeletal muscle O-GlcNAc transferase is important for muscle energy homeostasis and whole-body insulin sensitivity. Mol Metab 2018. [PMID: 29525407 PMCID: PMC6001359 DOI: 10.1016/j.molmet.2018.02.010] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Objective Given that cellular O-GlcNAcylation levels are thought to be real-time measures of cellular nutrient status and dysregulated O-GlcNAc signaling is associated with insulin resistance, we evaluated the role of O-GlcNAc transferase (OGT), the enzyme that mediates O-GlcNAcylation, in skeletal muscle. Methods We assessed O-GlcNAcylation levels in skeletal muscle from obese, type 2 diabetic people, and we characterized muscle-specific OGT knockout (mKO) mice in metabolic cages and measured energy expenditure and substrate utilization pattern using indirect calorimetry. Whole body insulin sensitivity was assessed using the hyperinsulinemic euglycemic clamp technique and tissue-specific glucose uptake was subsequently evaluated. Tissues were used for histology, qPCR, Western blot, co-immunoprecipitation, and chromatin immunoprecipitation analyses. Results We found elevated levels of O-GlcNAc-modified proteins in obese, type 2 diabetic people compared with well-matched obese and lean controls. Muscle-specific OGT knockout mice were lean, and whole body energy expenditure and insulin sensitivity were increased in these mice, consistent with enhanced glucose uptake and elevated glycolytic enzyme activities in skeletal muscle. Moreover, enhanced glucose uptake was also observed in white adipose tissue that was browner than that of WT mice. Interestingly, mKO mice had elevated mRNA levels of Il15 in skeletal muscle and increased circulating IL-15 levels. We found that OGT in muscle mediates transcriptional repression of Il15 by O-GlcNAcylating Enhancer of Zeste Homolog 2 (EZH2). Conclusions Elevated muscle O-GlcNAc levels paralleled insulin resistance and type 2 diabetes in humans. Moreover, OGT-mediated signaling is necessary for proper skeletal muscle metabolism and whole-body energy homeostasis, and our data highlight O-GlcNAcylation as a potential target for ameliorating metabolic disorders. Type 2 diabetic humans have elevated O-GlcNAc levels in skeletal muscle. Knockout of OGT in muscle elevates whole body insulin sensitivity. Knockout of OGT in muscle increases resistance to diet-induced obesity. Muscle-specific OGT knockout mice have elevated plasma IL-15 levels. OGT in muscle controls Il15 expression by O-GlcNAcylation and inhibition of EZH2.
Collapse
Affiliation(s)
- Hao Shi
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Alexander Munk
- Section of Integrative Physiology, Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, DK2200, Denmark
| | - Thomas S Nielsen
- Section of Integrative Physiology, Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, DK2200, Denmark
| | - Morgan R Daughtry
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Louise Larsson
- Section of Integrative Physiology, Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, DK2200, Denmark
| | - Shize Li
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Kasper F Høyer
- Section of Integrative Physiology, Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, DK2200, Denmark; Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, DK8000, Denmark
| | - Hannah W Geisler
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Karolina Sulek
- Section of Integrative Physiology, Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, DK2200, Denmark
| | - Rasmus Kjøbsted
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, DK2100, Denmark
| | - Taylor Fisher
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Marianne M Andersen
- Section of Integrative Physiology, Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, DK2200, Denmark
| | - Zhengxing Shen
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Ulrik K Hansen
- Section of Integrative Physiology, Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, DK2200, Denmark
| | - Eric M England
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Zhiyong Cheng
- Department of Human Nutrition, Foods, and Exercise, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Kurt Højlund
- Department of Endocrinology, Odense University Hospital, Odense, Denmark; Section of Molecular Diabetes and Metabolism, Institute of Molecular Medicine and Institute of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Jørgen F P Wojtaszewski
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, DK2100, Denmark
| | - Xiaoyong Yang
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Matthew W Hulver
- Department of Human Nutrition, Foods, and Exercise, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA; The Virginia Tech Metabolic Phenotyping Core, Blacksburg, VA 24061, USA
| | - Richard F Helm
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Jonas T Treebak
- Section of Integrative Physiology, Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, DK2200, Denmark.
| | - David E Gerrard
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA.
| |
Collapse
|
24
|
Lambert M, Bastide B, Cieniewski-Bernard C. Involvement of O-GlcNAcylation in the Skeletal Muscle Physiology and Physiopathology: Focus on Muscle Metabolism. Front Endocrinol (Lausanne) 2018; 9:578. [PMID: 30459708 PMCID: PMC6232757 DOI: 10.3389/fendo.2018.00578] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 09/11/2018] [Indexed: 12/13/2022] Open
Abstract
Skeletal muscle represents around 40% of whole body mass. The principal function of skeletal muscle is the conversion of chemical energy toward mechanic energy to ensure the development of force, provide movement and locomotion, and maintain posture. This crucial energy dependence is maintained by the faculty of the skeletal muscle for being a central place as a "reservoir" of amino acids and carbohydrates in the whole body. A fundamental post-translational modification, named O-GlcNAcylation, depends, inter alia, on these nutrients; it consists to the transfer or the removal of a unique monosaccharide (N-acetyl-D-glucosamine) to a serine or threonine hydroxyl group of nucleocytoplasmic and mitochondrial proteins in a dynamic process by the O-GlcNAc Transferase (OGT) and the O-GlcNAcase (OGA), respectively. O-GlcNAcylation has been shown to be strongly involved in crucial intracellular mechanisms through the modulation of signaling pathways, gene expression, or cytoskeletal functions in various organs and tissues, such as the brain, liver, kidney or pancreas, and linked to the etiology of associated diseases. In recent years, several studies were also focused on the role of O-GlcNAcylation in the physiology and the physiopathology of skeletal muscle. These studies were mostly interested in O-GlcNAcylation during muscle exercise or muscle-wasting conditions. Major findings pointed out a different "O-GlcNAc signature" depending on muscle type metabolism at resting, wasting and exercise conditions, as well as depending on acute or long-term exhausting exercise protocol. First insights showed some differential OGT/OGA expression and/or activity associated with some differential stress cellular responses through Reactive Oxygen Species and/or Heat-Shock Proteins. Robust data displayed that these O-GlcNAc changes could lead to (i) a differential modulation of the carbohydrates metabolism, since the majority of enzymes are known to be O-GlcNAcylated, and to (ii) a differential modulation of the protein synthesis/degradation balance since O-GlcNAcylation regulates some key signaling pathways such as Akt/GSK3β, Akt/mTOR, Myogenin/Atrogin-1, Myogenin/Mef2D, Mrf4 and PGC-1α in the skeletal muscle. Finally, such involvement of O-GlcNAcylation in some metabolic processes of the skeletal muscle might be linked to some associated diseases such as type 2 diabetes or neuromuscular diseases showing a critical increase of the global O-GlcNAcylation level.
Collapse
|
25
|
Murata K, Morino K, Ida S, Ohashi N, Lemecha M, Park SY, Ishikado A, Kume S, Choi CS, Sekine O, Ugi S, Maegawa H. Lack of O-GlcNAcylation enhances exercise-dependent glucose utilization potentially through AMP-activated protein kinase activation in skeletal muscle. Biochem Biophys Res Commun 2017; 495:2098-2104. [PMID: 29253568 DOI: 10.1016/j.bbrc.2017.12.081] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 12/14/2017] [Indexed: 12/27/2022]
Abstract
O-GlcNAcylation is a post-translational modification that is characterized by the addition of N-acetylglucosamine (GlcNAc) to proteins by O-GlcNAc transferase (Ogt). The degree of O-GlcNAcylation is thought to be associated with glucotoxicity and diabetic complications, because GlcNAc is produced by a branch of the glycolytic pathway. However, its role in skeletal muscle has not been fully elucidated. In this study, we created skeletal muscle-specific Ogt knockout (Ogt-MKO) mice and analyzed their glucose metabolism. During an intraperitoneal glucose tolerance test, blood glucose was slightly lower in Ogt-MKO mice than in control Ogt-flox mice. High fat diet-induced obesity and insulin resistance were reversed in Ogt-MKO mice. In addition, 12-month-old Ogt-MKO mice had lower adipose and body mass. A single bout of exercise significantly reduced blood glucose in Ogt-MKO mice, probably because of higher AMP-activated protein kinase α (AMPKα) protein expression. Furthermore, intraperitoneal injection of 5-aminoimidazole-4-carboxamide ribonucleotide, an AMPK activator, resulted in a more marked decrease in blood glucose levels in Ogt-MKO mice than in controls. Finally, Ogt knockdown by siRNA in C2C12 myotubes significantly increased protein expression of AMPKα, glucose uptake and oxidation. In conclusion, loss of O-GlcNAcylation facilitates glucose utilization in skeletal muscle, potentially through AMPK activation. The inhibition of O-GlcNAcylation in skeletal muscle may have an anti-diabetic effect, through an enhancement of glucose utilization during exercise.
Collapse
Affiliation(s)
- Koichiro Murata
- Department of Medicine, Shiga University of Medical Science, Seta Tsukinowa, Otsu, Shiga, 520-2192, Japan
| | - Katsutaro Morino
- Department of Medicine, Shiga University of Medical Science, Seta Tsukinowa, Otsu, Shiga, 520-2192, Japan.
| | - Shogo Ida
- Department of Medicine, Shiga University of Medical Science, Seta Tsukinowa, Otsu, Shiga, 520-2192, Japan
| | - Natsuko Ohashi
- Department of Medicine, Shiga University of Medical Science, Seta Tsukinowa, Otsu, Shiga, 520-2192, Japan
| | - Mengistu Lemecha
- Department of Medicine, Shiga University of Medical Science, Seta Tsukinowa, Otsu, Shiga, 520-2192, Japan
| | - Shi-Young Park
- Korea Mouse Metabolic Phenotyping Center, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, 7-45, Songdodong, Yeonsugu, Incheon, 21999, Republic of Korea
| | - Atsushi Ishikado
- Department of Medicine, Shiga University of Medical Science, Seta Tsukinowa, Otsu, Shiga, 520-2192, Japan; R&D Department, Sunstar Inc., 3-1, Asahimachi, Takatsuki, Osaka, 569-1195, Japan
| | - Shinji Kume
- Department of Medicine, Shiga University of Medical Science, Seta Tsukinowa, Otsu, Shiga, 520-2192, Japan
| | - Cheol Soo Choi
- Korea Mouse Metabolic Phenotyping Center, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, 7-45, Songdodong, Yeonsugu, Incheon, 21999, Republic of Korea
| | - Osamu Sekine
- Department of Medicine, Shiga University of Medical Science, Seta Tsukinowa, Otsu, Shiga, 520-2192, Japan
| | - Satoshi Ugi
- Department of Medicine, Shiga University of Medical Science, Seta Tsukinowa, Otsu, Shiga, 520-2192, Japan
| | - Hiroshi Maegawa
- Department of Medicine, Shiga University of Medical Science, Seta Tsukinowa, Otsu, Shiga, 520-2192, Japan
| |
Collapse
|