1
|
Chen Y, Xu C, Huang Y, Liu Z, Zou J, Zhu H. The Adverse Impact of Bisphenol A Exposure on Optimal Cardiovascular Health as Measured by Life's Essential 8 in U.S. Adults: Evidence from NHANES 2005 to 2016. Nutrients 2024; 16:3253. [PMID: 39408220 PMCID: PMC11478777 DOI: 10.3390/nu16193253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/18/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
Background/Objectives: Cardiovascular diseases are the primary cause of global morbidity and mortality, with cardiovascular health (CVH) remaining well below the ideal level and showing minimal improvement in the U.S. population over recent years. Bisphenol A (BPA), a pervasive environmental contaminant, has emerged as a potential contributor to adverse cardiovascular outcomes. This cross-sectional study delves into the impact of BPA exposure on achieving optimal CVH, as assessed by the Life's Essential 8 metric, among U.S. adults. Methods: Analyzing data from 6635 participants in the National Health and Nutrition Examination Survey (NHANES) collected between 2005 and 2016, BPA exposure was quantified through urinary BPA levels, while optimal CVH was defined using the American Heart Association's Life's Essential 8 criteria, scoring between 80 and 100. Multivariable logistic regression and propensity score matching were employed to evaluate the association between BPA exposure and CVH. Results: This study reveals that individuals in the highest tertile of urinary BPA levels were 27% less likely to attain optimal CVH compared with those in the lowest tertile (OR, 0.73; 95% CI: 0.59-0.92). This negative association persisted across diverse demographics, including age, sex, and race, mirrored in the link between urinary BPA levels and health factor scores. Conclusions: The findings underscore the potential benefits of reducing BPA exposure in enhancing the prevalence of optimal CVH and mitigating the burden of cardiovascular disease. Given the widespread use of BPA, ongoing monitoring of BPA's impact on CVH is essential. Further studies are necessary to elucidate the long-term and causative connections between BPA and CVH. These insights contribute to understanding the complex interplay between environmental factors and CVH outcomes, informing targeted interventions to mitigate cardiovascular disease risk within the population.
Collapse
Affiliation(s)
- Yemei Chen
- Department of Nutrition, School of Public Health, Sun Yat-Sen University, 74 Zhong Shan Road 2, Guangzhou 510080, China; (Y.C.); (Z.L.); (J.Z.)
- Department of Clinical Nutrition, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China;
| | - Chao Xu
- Department of Clinical Nutrition, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, No. 43 Renmin Avenue, Haikou 570208, China;
| | - Ying Huang
- Department of Clinical Nutrition, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China;
| | - Zhaoyan Liu
- Department of Nutrition, School of Public Health, Sun Yat-Sen University, 74 Zhong Shan Road 2, Guangzhou 510080, China; (Y.C.); (Z.L.); (J.Z.)
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China
| | - Jiupeng Zou
- Department of Nutrition, School of Public Health, Sun Yat-Sen University, 74 Zhong Shan Road 2, Guangzhou 510080, China; (Y.C.); (Z.L.); (J.Z.)
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China
| | - Huilian Zhu
- Department of Nutrition, School of Public Health, Sun Yat-Sen University, 74 Zhong Shan Road 2, Guangzhou 510080, China; (Y.C.); (Z.L.); (J.Z.)
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China
| |
Collapse
|
2
|
Costa SA, Severo M, Lopes C, Torres D. Association between bisphenol A exposure and cardiometabolic outcomes: A longitudinal approach. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135000. [PMID: 38909471 DOI: 10.1016/j.jhazmat.2024.135000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/17/2024] [Accepted: 06/20/2024] [Indexed: 06/25/2024]
Abstract
Increased cardiometabolic risk is associated with abnormalities in blood biomarkers profile and adiposity measurements. Some substances found in the food matrix and the environment, called endocrine-disrupting chemicals, may impair cardiometabolic health in the early and later stages of life. Bisphenol A (BPA) is a food contaminant that migrates from food contact materials and may act as an endocrine disruptor, negatively affecting human health. The present work aims to longitudinally assess the association between BPA exposure and cardiometabolic outcomes, considering data from Portuguese population-based birth cohort Generation XXI. Blood insulin (0.06stdβ; 95 %CI:0.03,0.09) and insulin resistance (0.05stdβ; 95 %CI:0.02,0.08) presented a significant longitudinal association with BPA daily exposure after adjustment for important variables and energy. The same findings were observed for fat mass (0.03stdβ; 95 %CI 0.01,0.06) and waist circumference (0.06stdβ; 95 %CI:0.04,0.08). For z-BMI, a significant cross-sectional (0.03stdβ; 95 %CI:0.01,0.04) and longitudinal (0.02stdβ; 95 %CI:0.00,0.04) association was found. This was the first study assessing the association between BPA exposure and health outcomes from childhood to adolescence. We found an association between BPA exposure and increased blood insulin level, insulin resistance, fat mass percentage, waist circumference and z-BMI. Our results point to the need to reduce exposure to BPA in the early stages of life.
Collapse
Affiliation(s)
- Sofia Almeida Costa
- EPIUnit - Instituto de Saúde Pública, Universidade do Porto, Rua das Taipas, n° 135, Porto 4050-600, Portugal; Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Universidade do Porto, Rua das Taipas, n° 135, Porto 4050-600, Portugal.
| | - Milton Severo
- EPIUnit - Instituto de Saúde Pública, Universidade do Porto, Rua das Taipas, n° 135, Porto 4050-600, Portugal; Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua Jorge de Viterbo Ferreira 228, Porto 4050-313, Portugal
| | - Carla Lopes
- EPIUnit - Instituto de Saúde Pública, Universidade do Porto, Rua das Taipas, n° 135, Porto 4050-600, Portugal; Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Universidade do Porto, Rua das Taipas, n° 135, Porto 4050-600, Portugal; Departamento de Ciências da Saúde Pública e Forenses, e Educação Médica, Faculdade de Medicina, Universidade do Porto, Alameda Prof. Hernâni Monteiro Porto, Porto 4200-319, Portugal
| | - Duarte Torres
- EPIUnit - Instituto de Saúde Pública, Universidade do Porto, Rua das Taipas, n° 135, Porto 4050-600, Portugal; Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Universidade do Porto, Rua das Taipas, n° 135, Porto 4050-600, Portugal; Faculdade de Ciências da Nutrição e Alimentação, Universidade do Porto, Rua Dr. Roberto Frias, Porto 4200-465, Portugal
| |
Collapse
|
3
|
Yue H, Tian Y, Zhu H, Wu X, Xu P, Ji X, Qin G, Sang N. Fetal Origin of Abnormal Glucose Tolerance in Adult Offspring Induced by Maternal Bisphenol A Analogs Exposure. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:10910-10919. [PMID: 38862419 DOI: 10.1021/acs.est.3c09238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
With the widespread use of bisphenol A (BPA) analogs, their health risks have attracted attention. The effects of maternal BPA analogs exposure on glucose homeostasis in adult offspring and the underlying fetal origins require further exploration. Herein, we exposed pregnant mice to two types of BPA analogs─BPB and BPAF; we evaluated glucose homeostasis in adult offspring and maternal-fetal glucose transport by testing intraperitoneal glucose tolerance, determining glucose and glycogen contents, conducting positron emission tomography (PET)/computed tomography (CT), detecting expression of placental nutrient transport factors, and assessing placental barrier status. We observed that adult female offspring maternally exposed to BPB and BPAF exhibited low fasting blood glucose in adulthood, with even abnormal glucose tolerance in the BPAF group. This phenomenon can be traced back to the elevated fetal glucose induced by the increased efficiency of placenta glucose transport in late pregnancy. On the other hand, the expression of genes associated with vascular development and glucose transport was significantly altered in the placenta in the BPAF group, potentially contributing to enhanced fetal glucose. These findings provide preliminary insights into potential mechanisms underlying the disturbance of glucose metabolism in adult female offspring mice induced by maternal exposure to BPA analogs.
Collapse
Affiliation(s)
- Huifeng Yue
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, P. R. China
| | - Yuchai Tian
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, P. R. China
| | - Huizhen Zhu
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, P. R. China
| | - Xiaoyun Wu
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, P. R. China
| | - Pengchong Xu
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, P. R. China
| | - Xiaotong Ji
- Department of Environmental Health, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, P. R. China
- Key Laboratory of Coal Environmental Pathogenicity and Prevention (Shanxi Medical University), Ministry of Education, Taiyuan, Shanxi 030001, P. R. China
| | - Guohua Qin
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, P. R. China
| | - Nan Sang
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, P. R. China
| |
Collapse
|
4
|
Khoury N, Ángeles Martínez M, Nishi SK, Ángel Martínez-González M, Corella D, Castañer O, Alfredo Martínez J, Alonso-Gómez ÁM, Wärnberg J, Vioque J, Romaguera D, López-Miranda J, Estruch R, Tinahones FJ, Manuel Santos-Lozano J, Serra-Majem L, Bueno-Cavanillas A, Tur JA, Cinza Sanjurjo S, Pintó X, Juan Gaforio J, Matía-Martín P, Vidal J, Vázquez C, Daimiel L, Ros E, Sayon-Orea C, V Sorli J, Pérez-Vega KA, Garcia-Rios A, Ortiz-Díaz F, Gómez-Gracia E, Zulet MA, Chaplin A, Casas R, Salcedo-Bellido I, Tojal-Sierra L, Bernal-Lopez MR, Vazquez-Ruiz Z, Asensio EM, Goday A, Peña-Orihuela PJ, Signes-Pastor AJ, Garcia-Arellano A, Fitó M, Babio N, Salas-Salvadó J. Dietary intake of Perfluorooctanesulfonic acid (PFOS) and glucose homeostasis parameters in a non-diabetic senior population. ENVIRONMENT INTERNATIONAL 2024; 186:108565. [PMID: 38574403 DOI: 10.1016/j.envint.2024.108565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/26/2024] [Accepted: 03/04/2024] [Indexed: 04/06/2024]
Abstract
BACKGROUND Endocrine disruptors (EDs) have emerged as potential contributors to the development of type-2 diabetes. Perfluorooctane sulfonate (PFOS), is one of these EDs linked with chronic diseases and gathered attention due to its widespread in food. OBJECTIVE To assess at baseline and after 1-year of follow-up associations between estimated dietary intake (DI) of PFOS, and glucose homeostasis parameters and body-mass-index (BMI) in a senior population of 4600 non-diabetic participants from the PREDIMED-plus study. METHODS Multivariable linear regression models were conducted to assess associations between baseline PFOS-DI at lower bound (LB) and upper bound (UB) established by the EFSA, glucose homeostasis parameters and BMI. RESULTS Compared to those in the lowest tertile, participants in the highest tertile of baseline PFOS-DI in LB and UB showed higher levels of HbA1c [β-coefficient(CI)] [0.01 %(0.002 to 0.026), and [0.06 mg/dL(0.026 to 0.087), both p-trend ≤ 0.001], and fasting plasma glucose in the LB PFOS-DI [1.05 mg/dL(0.050 to 2.046),p-trend = 0.022]. Prospectively, a positive association between LB of PFOS-DI and BMI [0.06 kg/m2(0.014 to 0.106) per 1-SD increment of energy-adjusted PFOS-DI was shown. Participants in the top tertile showed an increase in HOMA-IR [0.06(0.016 to 0.097), p-trend = 0.005] compared to participants in the reference tertile after 1-year of follow-up. DISCUSSION This is the first study to explore the association between DI of PFOS and glucose homeostasis. In this study, a high baseline DI of PFOS was associated with a higher levels of fasting plasma glucose and HbA1c and with an increase in HOMA-IR and BMI after 1-year of follow-up.
Collapse
Affiliation(s)
- Nadine Khoury
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, Madrid, Spain; Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Alimentaciò, Nutrició, Desenvolupament i Salut Mental ANUT-DSM, Reus, Spain; Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain
| | - María Ángeles Martínez
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, Madrid, Spain; Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Alimentaciò, Nutrició, Desenvolupament i Salut Mental ANUT-DSM, Reus, Spain; Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain.
| | - Stephanie K Nishi
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, Madrid, Spain; Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Alimentaciò, Nutrició, Desenvolupament i Salut Mental ANUT-DSM, Reus, Spain; Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain
| | - Miguel Ángel Martínez-González
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, Madrid, Spain; University of Navarra, Department of Preventive Medicine and Public Health, IDISNA, Pamplona, Spain; Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Dolores Corella
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, Madrid, Spain; Department of Preventive Medicine, University of Valencia, Valencia, Spain
| | - Olga Castañer
- IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain; University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
| | - J Alfredo Martínez
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, Madrid, Spain; Department of Nutrition, Food Sciences, and Physiology, Center for Nutrition Research, University of Navarra, Pamplona, Spain; Precision Nutrition and Cardiometabolic Health Program, IMDEA Food, CEI UAM + CSIC, Madrid, Spain
| | - Ángel M Alonso-Gómez
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, Madrid, Spain; Bioaraba Health Research Institute, Cardiovascular, Respiratory and Metabolic Area, Spain; Osakidetza Basque Health Service, Araba University Hospital, Spain; University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
| | - Julia Wärnberg
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, Madrid, Spain; EpiPHAAN Research Group, School of Health Sciences, University of Málaga - Instituto de Investigación Biomédica en Málaga (IBIMA), Málaga, Spain
| | - Jesús Vioque
- CIBER de Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain; Instituto de Investigación Sanitaria y Biomédica de Alicante, Universidad Miguel Hernández (ISABIAL-UMH), Alicante, Spain
| | - Dora Romaguera
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, Madrid, Spain; Health Research Institute of the Balearic Islands (IdISBa), Palma de Mallorca, Spain
| | - José López-Miranda
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, Madrid, Spain; Department of Internal Medicine, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, Cordoba, Spain
| | - Ramon Estruch
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, Madrid, Spain; Department of Internal Medicine, Hospital Clinic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Institut de Recerca en Nutrició i Seguretat Alimentària (INSA), University of Barcelona, Barcelona, Spain
| | - Francisco J Tinahones
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, Madrid, Spain; Virgen de la Victoria Hospital, Department of Endocrinology, Instituto de Investigación Biomédica de Málaga (IBIMA), University of Málaga, Málaga, Spain
| | - José Manuel Santos-Lozano
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, Madrid, Spain; Department of Family Medicine, Research Unit, Distrito Sanitario Atención Primaria Sevilla, Sevilla, Spain
| | - Lluís Serra-Majem
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, Madrid, Spain; Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria & Centro Hospitalario Universitario Insular Materno Infantil (CHUIMI), Canarian Health Service, Las Palmas de Gran Canaria, Spain
| | - Aurora Bueno-Cavanillas
- CIBER de Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain; Department of Preventive Medicine and Public Health, University of Granada, Granada, Spain
| | - Josep A Tur
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, Madrid, Spain; Research Group on Community Nutrition & Oxidative Stress, University of Balearic Islands, Palma de Mallorca, Spain
| | - Sergio Cinza Sanjurjo
- CS Milladoiro, Área Sanitaria de Santiago de Compostela, Spain; Instituto de Investigación de Santiago de Compostela (IDIS), Spain; Centro de Investigación Biomédica en Red-Enfermedades Cardiovasculares (CIBERCV), Spain
| | - Xavier Pintó
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, Madrid, Spain; Lipids and Vascular Risk Unit, Internal Medicine, Hospital Universitario de Bellvitge-IDIBELL, Hospitalet de Llobregat, Barcelona, Spain
| | - José Juan Gaforio
- University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain; Departamento de Ciencias de la Salud, Instituto Universitario de Investigación en Olivar y Aceites de Oliva, Universidad de Jaén, Jaén, Spain
| | - Pilar Matía-Martín
- Department of Endocrinology and Nutrition, Instituto de Investigación Sanitaria Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Josep Vidal
- CIBER Diabetes y Enfermedades Metabólicas (CIBERDEM), Instituto de Salud Carlos III (ISCIII), Madrid, Spain; Department of Endocrinology, Institut d'Investigacions Biomédiques August Pi Sunyer (IDIBAPS), Hospital Clinic, University of Barcelona, Barcelona, Spain
| | - Clotilde Vázquez
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, Madrid, Spain; Department of Endocrinology and Nutrition, Hospital Fundación Jimenez Díaz. Instituto de Investigaciones Biomédicas IISFJD, University Autonoma, Madrid, Spain
| | - Lidia Daimiel
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, Madrid, Spain; Nutritional Control of the Epigenome Group. Precision Nutrition and Obesity Program. IMDEA Food, CEI UAM + CSIC, Madrid, Spain
| | - Emilio Ros
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, Madrid, Spain; Lipid Clinic, Department of Endocrinology and Nutrition, Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), Hospital Clínic, Barcelona, Spain
| | - Carmen Sayon-Orea
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, Madrid, Spain; University of Navarra, Department of Preventive Medicine and Public Health, IDISNA, Pamplona, Spain
| | - Jose V Sorli
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, Madrid, Spain; Department of Preventive Medicine, University of Valencia, Valencia, Spain
| | - Karla-Alejandra Pérez-Vega
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, Madrid, Spain; IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - Antonio Garcia-Rios
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, Madrid, Spain; Department of Internal Medicine, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, Cordoba, Spain
| | | | - Enrique Gómez-Gracia
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, Madrid, Spain; EpiPHAAN Research Group, School of Health Sciences, University of Málaga - Instituto de Investigación Biomédica en Málaga (IBIMA), Málaga, Spain
| | - M A Zulet
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, Madrid, Spain; Department of Nutrition, Food Sciences, and Physiology, Center for Nutrition Research, University of Navarra, Pamplona, Spain; Precision Nutrition and Cardiometabolic Health Program, IMDEA Food, CEI UAM + CSIC, Madrid, Spain
| | - Alice Chaplin
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, Madrid, Spain; Health Research Institute of the Balearic Islands (IdISBa), Palma de Mallorca, Spain
| | - Rosa Casas
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, Madrid, Spain; Department of Internal Medicine, Hospital Clinic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Institut de Recerca en Nutrició i Seguretat Alimentària (INSA), University of Barcelona, Barcelona, Spain
| | - Inmaculada Salcedo-Bellido
- CIBER de Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain; Department of Preventive Medicine and Public Health, University of Granada, Granada, Spain; Instituto de Investigación Biosanitaria ibs. GRANADA, 18014 Granada, Spain
| | - Lucas Tojal-Sierra
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, Madrid, Spain; Bioaraba Health Research Institute, Cardiovascular, Respiratory and Metabolic Area, Spain; Osakidetza Basque Health Service, Araba University Hospital, Spain; University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
| | - Maria-Rosa Bernal-Lopez
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, Madrid, Spain; Internal Medicine Clinical Management Unit, Hospital Regional Universitario de Málaga, Instituto de Investigación Biomédica de Málaga (IBIMA-Plataforma BIONAND), Universidad de Málaga, Spain
| | - Zenaida Vazquez-Ruiz
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, Madrid, Spain; University of Navarra, Department of Preventive Medicine and Public Health, IDISNA, Pamplona, Spain
| | - Eva M Asensio
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, Madrid, Spain; Department of Preventive Medicine, University of Valencia, Valencia, Spain
| | - Albert Goday
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, Madrid, Spain; IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - Patricia J Peña-Orihuela
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, Madrid, Spain; Department of Internal Medicine, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, Cordoba, Spain
| | - Antonio J Signes-Pastor
- CIBER de Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain; Instituto de Investigación Sanitaria y Biomédica de Alicante, Universidad Miguel Hernández (ISABIAL-UMH), Alicante, Spain
| | - Ana Garcia-Arellano
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, Madrid, Spain; University of Navarra, Department of Preventive Medicine and Public Health, IDISNA, Pamplona, Spain
| | - Montse Fitó
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, Madrid, Spain; IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - Nancy Babio
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, Madrid, Spain; Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Alimentaciò, Nutrició, Desenvolupament i Salut Mental ANUT-DSM, Reus, Spain; Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain
| | - Jordi Salas-Salvadó
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, Madrid, Spain; Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Alimentaciò, Nutrició, Desenvolupament i Salut Mental ANUT-DSM, Reus, Spain; Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain.
| |
Collapse
|
5
|
Zhang S, Dai L, Wan Z, Huang Z, Zou M, Guan H. Sex-specific associations of bisphenol A and its substitutes with body fat distribution among US adults: NHANES 2011-2016. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:7948-7958. [PMID: 38172318 DOI: 10.1007/s11356-023-31589-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 12/12/2023] [Indexed: 01/05/2024]
Abstract
Bisphenol A (BPA) and its structural analogs (bisphenol S (BPS) and bisphenol F (BPF)) are widely consumed endocrine disrupting chemicals that may contribute to the etiology of obesity. To date, few studies have directly investigated the sex-related associations between bisphenols and body fat distribution in adults. In this study, we included 2669 participants from the National Health and Nutrition Examination Survey (NHANES) 2011-2016 to evaluate and compare sex-specific differences of the associations of BPA, BPS, and BPF with body fat distribution. We found that there were significant positive correlations between BPS and body fat indices (STFAT [adjustedβ=1.94, 95% CI: (0.24, 3.64)], TAF [0.18 (0.04, 0.32)], SAT [0.15 (0.03, 0.27)], android fat mass [0.20 (0.004, 0.40)], BMI [1.63 (0.61, 2.65)], and WC [3.19 (0.64, 5.73)] in the highest quartiles of BPS), but not in BPA and BPF. Stratified analyses suggested that the significant associations of BPS with body fat indices were stronger in women than men (STFAT [adjustedβ=3.75, 95% CI: (1.04, 6.45) vs. adjustedβ=-0.06, 95% CI: (-2.23, 2.11), P for interaction < 0.001], TAF [ 0.32 (0.09, 0.54) vs. 0.01 (-0.17, 0.19), P for interaction < 0.001], SAT [0.27 (0.09, 0.45) vs. 0.01 (-0.14, 0.16), P for interaction < 0.001], android fat mass [0.41 (0.12, 0.71) vs. -0.02 (-0.28, 0.24), P for interaction < 0.001], gynoid fat mass [0.56 (0.11, 1.01) vs. -0.05 (-0.41, 0.31), P for interaction = 0.002], BMI [2.76 (1.08, 4.44) vs. 0.47 (-0.80, 1.74), P for interaction < 0.001], and WC [5.51 (1.44, 9.58) vs. 0.61 (-2.67, 3.88), P for interaction < 0.001]), and positive associations between BPS with fat distribution were also observed in non-smoking women. Our study indicated that in women, higher concentration of urinary BPS was associated with increased body fat accumulation, except for visceral adipose tissue mass. These findings emphasize the role of environmental BPS exposure in the increasing fat deposits, and confirm the need for more prospective cohort studies on a sex-specific manner.
Collapse
Affiliation(s)
- Shili Zhang
- Department of Endocrinology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Lingyan Dai
- Global Health Research Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, 510080, China
| | - Ziyu Wan
- Department of Endocrinology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Zhiwei Huang
- Department of Epidemiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Mengchen Zou
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Haixia Guan
- Department of Endocrinology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China.
| |
Collapse
|
6
|
Hou Y, Dai H, Chen N, Zhao Z, Wang Q, Hou T, Zheng J, Wang T, Li M, Lin H, Wang S, Zheng R, Lu J, Xu Y, Chen Y, Liu R, Ning G, Wang W, Bi Y, Wang J, Xu M. Whole Blood-based Transcriptional Risk Score for Nonobese Type 2 Diabetes Predicts Dynamic Changes in Glucose Metabolism. J Clin Endocrinol Metab 2023; 109:114-124. [PMID: 37555255 PMCID: PMC10735316 DOI: 10.1210/clinem/dgad466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 08/02/2023] [Accepted: 08/04/2023] [Indexed: 08/10/2023]
Abstract
CONTEXT The performance of peripheral blood transcriptional markers in evaluating risk of type 2 diabetes (T2D) with normal body mass index (BMI) is unknown. OBJECTIVE We developed a whole blood-based transcriptional risk score (wb-TRS) for nonobese T2D and assessed its contributions on disease risk and dynamic changes in glucose metabolism. METHODS Using a community-based cohort with blood transcriptome data, we developed the wb-TRS in 1105 participants aged ≥40 years who maintained a normal BMI for up to 10 years, and we validated the wb-TRS in an external dataset. Potential biological significance was explored. RESULTS The wb-TRS included 144 gene transcripts. Compared to the lowest tertile, wb-TRS in tertile 3 was associated with 8.91-fold (95% CI, 3.53-22.5) higher risk and each 1-unit increment was associated with 2.63-fold (95% CI, 1.87-3.68) higher risk of nonobese T2D. Furthermore, baseline wb-TRS significantly associated with dynamic changes in average, daytime, nighttime, and 24-hour glucose, HbA1c values, and area under the curve of glucose measured by continuous glucose monitoring over 6 months of intervention. The wb-TRS improved the prediction performance for nonobese T2D, combined with fasting glucose, triglycerides, and demographic and anthropometric parameters. Multi-contrast gene set enrichment (Mitch) analysis implicated oxidative phosphorylation, mTORC1 signaling, and cholesterol metabolism involved in nonobese T2D pathogenesis. CONCLUSION A whole blood-based nonobese T2D-associated transcriptional risk score was validated to predict dynamic changes in glucose metabolism. These findings suggested several biological pathways involved in the pathogenesis of nonobese T2D.
Collapse
Affiliation(s)
- Yanan Hou
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Huajie Dai
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Na Chen
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Zhiyun Zhao
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Qi Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Tianzhichao Hou
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jie Zheng
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Tiange Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Mian Li
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Hong Lin
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Shuangyuan Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ruizhi Zheng
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jieli Lu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yu Xu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yuhong Chen
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ruixin Liu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Guang Ning
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Weiqing Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yufang Bi
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jiqiu Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Min Xu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
7
|
Kang JH, Asai D, Toita R. Bisphenol A (BPA) and Cardiovascular or Cardiometabolic Diseases. J Xenobiot 2023; 13:775-810. [PMID: 38132710 PMCID: PMC10745077 DOI: 10.3390/jox13040049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023] Open
Abstract
Bisphenol A (BPA; 4,4'-isopropylidenediphenol) is a well-known endocrine disruptor. Most human exposure to BPA occurs through the consumption of BPA-contaminated foods. Cardiovascular or cardiometabolic diseases such as diabetes, obesity, hypertension, acute kidney disease, chronic kidney disease, and heart failure are the leading causes of death worldwide. Positive associations have been reported between blood or urinary BPA levels and cardiovascular or cardiometabolic diseases. BPA also induces disorders or dysfunctions in the tissues associated with these diseases through various cell signaling pathways. This review highlights the literature elucidating the relationship between BPA and various cardiovascular or cardiometabolic diseases and the potential mechanisms underlying BPA-mediated disorders or dysfunctions in tissues such as blood vessels, skeletal muscle, adipose tissue, liver, pancreas, kidney, and heart that are associated with these diseases.
Collapse
Affiliation(s)
- Jeong-Hun Kang
- National Cerebral and Cardiovascular Center Research Institute, 6-1 Shinmachi, Kishibe, Osaka 564-8565, Japan
| | - Daisuke Asai
- Laboratory of Microbiology, Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Tokyo 194-8543, Japan;
| | - Riki Toita
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Osaka 563-8577, Japan;
- AIST-Osaka University Advanced Photonics and Biosensing Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology (AIST), 2-1 Yamadaoka, Osaka 565-0871, Japan
| |
Collapse
|
8
|
Dou C, Liu D, Wang T. Risk Factors for Diabetes and Cardiovascular Complications in the Chinese Population. China CDC Wkly 2023; 5:1017-1021. [PMID: 38020345 PMCID: PMC10652083 DOI: 10.46234/ccdcw2023.191] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 09/05/2023] [Indexed: 12/01/2023] Open
Affiliation(s)
- Chun Dou
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dong Liu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tiange Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
9
|
Hu Y, Lai S, Li Y, Wu X, Xing M, Li X, Xu D, Chen Y, Xiang J, Cheng P, Wang X, Chen Z, Ding H, Xu P, Lou X. Association of urinary bisphenols with thyroid function in the general population: a cross-sectional study of an industrial park in China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:107517-107532. [PMID: 37735335 DOI: 10.1007/s11356-023-29932-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 09/13/2023] [Indexed: 09/23/2023]
Abstract
Bisphenols (BPs) are potential thyroid disruptors that are widely used in many consumer products, leading to their widespread exposure in the general population. Current cross-sectional and case-control studies have found associations between exposure to BPs and serum thyroid function, but the results were contradictory. The objectives of this study are to describe demographic characteristics, BP exposure levels, and thyroid function measurements in potentially exposed and control districts and to investigate the association of urinary BPs with thyroid function. Data were collected from a general population aged 3-79 years (N = 281) recruited by the Zhejiang Human Biomonitoring Program (ZJHBP). The concentrations of 10 kinds of BPs in urine and serum free triiodothyronine (FT3), total triiodothyronine (TT3), free thyroxine (FT4), total thyroxine (TT4), thyroid-stimulating hormone (TSH), thyroglobulin (Tg), thyroglobulin antibodies (TgAb), thyroid peroxidase antibodies (TPOAb), and thyrotropin receptor antibody (TRAb) in serum were measured. Multiple linear regression and weighted quantile sum (WQS) regression were used to estimate the relationship between single and mixed exposure of BPs and thyroid function. Bisphenol A (BPA), bisphenol S (BPS), and bisphenol P (BPP) were detected, respectively, in 82.73%, 94.24%, and 55.40% of the population in the exposed area and 81.69%, 61.27%, and 43.66% of the population in the control area. Among adult females, serum TT3 was negatively associated with urinary BPA (β = -0.033, 95% CI = -0.071, -0.008, P = 0.021). Among minor females, FT4 and Tg levels were negatively associated with the urinary BPA (β = -0.026, 95% CI = -0.051, -0.002, P = 0.032 for FT4; β = -0.129, 95% CI = -0.248, -0.009, P = 0.035 for Tg), and TPOAb was positively associated with urinary BPA (β = 0.104, 95% CI = 0.006, 0.203, P = 0.039). In WQS models, BPs mixture was positively associated with FT3 (βWQS = 0.022, 95% CI = 0.002, 0.042) and TT3 (βWQS = 0.033, 95% CI = 0.004, 0.062), and negatively associated with FT4 (βWQS = -0.024, 95% CI = -0.044, 0.004). We found widespread exposure to BPA, BPS, and BPP in the general population of Zhejiang province and found an association between BPA and thyroid hormones. This association is gender- and age-dependent and needs to be confirmed in further studies.
Collapse
Affiliation(s)
- Yang Hu
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Bin Sheng Road, Binjiang District, Hangzhou, 310051, China
| | - Shiming Lai
- Quzhou Center for Disease Control and Prevention, 154 Xi'an Road, Ke Cheng District, Quzhou, 324000, China
| | - Ying Li
- Key Laboratory of Environmental Pollution Control Technology of Zhejiang Province, Hangzhou, 310007, China
- Environmental Science Research & Design Institute of Zhejiang Province, Zhejiang, 310007, Hangzhou, China
| | - Xiaodong Wu
- Key Laboratory of Environmental Pollution Control Technology of Zhejiang Province, Hangzhou, 310007, China
- Environmental Science Research & Design Institute of Zhejiang Province, Zhejiang, 310007, Hangzhou, China
| | - Mingluan Xing
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Bin Sheng Road, Binjiang District, Hangzhou, 310051, China
| | - Xueqing Li
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Bin Sheng Road, Binjiang District, Hangzhou, 310051, China
| | - Dandan Xu
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Bin Sheng Road, Binjiang District, Hangzhou, 310051, China
| | - Yuan Chen
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Bin Sheng Road, Binjiang District, Hangzhou, 310051, China
| | - Jie Xiang
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Bin Sheng Road, Binjiang District, Hangzhou, 310051, China
| | - Ping Cheng
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Bin Sheng Road, Binjiang District, Hangzhou, 310051, China
| | - Xiaofeng Wang
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Bin Sheng Road, Binjiang District, Hangzhou, 310051, China
| | - Zhijian Chen
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Bin Sheng Road, Binjiang District, Hangzhou, 310051, China
| | - Hao Ding
- Key Laboratory of Environmental Pollution Control Technology of Zhejiang Province, Hangzhou, 310007, China
- Environmental Science Research & Design Institute of Zhejiang Province, Zhejiang, 310007, Hangzhou, China
| | - Peiwei Xu
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Bin Sheng Road, Binjiang District, Hangzhou, 310051, China
| | - Xiaoming Lou
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Bin Sheng Road, Binjiang District, Hangzhou, 310051, China.
| |
Collapse
|
10
|
Muncke J, Andersson AM, Backhaus T, Belcher SM, Boucher JM, Carney Almroth B, Collins TJ, Geueke B, Groh KJ, Heindel JJ, von Hippel FA, Legler J, Maffini MV, Martin OV, Peterson Myers J, Nadal A, Nerin C, Soto AM, Trasande L, Vandenberg LN, Wagner M, Zimmermann L, Thomas Zoeller R, Scheringer M. A vision for safer food contact materials: Public health concerns as drivers for improved testing. ENVIRONMENT INTERNATIONAL 2023; 180:108161. [PMID: 37758599 DOI: 10.1016/j.envint.2023.108161] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 08/17/2023] [Accepted: 08/17/2023] [Indexed: 09/29/2023]
Abstract
Food contact materials (FCMs) and food contact articles are ubiquitous in today's globalized food system. Chemicals migrate from FCMs into foodstuffs, so called food contact chemicals (FCCs), but current regulatory requirements do not sufficiently protect public health from hazardous FCCs because only individual substances used to make FCMs are tested and mostly only for genotoxicity while endocrine disruption and other hazard properties are disregarded. Indeed, FCMs are a known source of a wide range of hazardous chemicals, and they likely contribute to highly prevalent non-communicable diseases. FCMs can also include non-intentionally added substances (NIAS), which often are unknown and therefore not subject to risk assessment. To address these important shortcomings, we outline how the safety of FCMs may be improved by (1) testing the overall migrate, including (unknown) NIAS, of finished food contact articles, and (2) expanding toxicological testing beyond genotoxicity to multiple endpoints associated with non-communicable diseases relevant to human health. To identify mechanistic endpoints for testing, we group chronic health outcomes associated with chemical exposure into Six Clusters of Disease (SCOD) and we propose that finished food contact articles should be tested for their impacts on these SCOD. Research should focus on developing robust, relevant, and sensitive in-vitro assays based on mechanistic information linked to the SCOD, e.g., through Adverse Outcome Pathways (AOPs) or Key Characteristics of Toxicants. Implementing this vision will improve prevention of chronic diseases that are associated with hazardous chemical exposures, including from FCMs.
Collapse
Affiliation(s)
- Jane Muncke
- Food Packaging Forum Foundation, Zurich, Switzerland.
| | - Anna-Maria Andersson
- Dept. of Growth and Reproduction, Rigshospitalet and Centre for Research and Research Training in Male Reproduction and Child Health (EDMaRC), Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Thomas Backhaus
- Dept of Biological and Environmental Sciences, University of Gothenburg, Sweden
| | - Scott M Belcher
- Dept. of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | | | | | | | - Birgit Geueke
- Food Packaging Forum Foundation, Zurich, Switzerland
| | - Ksenia J Groh
- Department of Environmental Toxicology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | - Jerrold J Heindel
- Healthy Environment and Endocrine Disruptor Strategies, Durham, NC, USA
| | - Frank A von Hippel
- Mel & Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ, USA
| | - Juliette Legler
- Dept. of Population Health Sciences, Faculty of Veterinary Medicine, University of Utrecht, Netherlands
| | | | - Olwenn V Martin
- Plastic Waste Innovation Hub, Department of Arts and Science, University College London, UK
| | - John Peterson Myers
- Dept. of Chemistry, Carnegie Mellon University, Pittsburgh, PA, USA; Environmental Health Sciences, Charlottesville, VA, USA
| | - Angel Nadal
- IDiBE and CIBERDEM, Miguel Hernández University of Elche, Alicante, Spain
| | - Cristina Nerin
- Dept. of Analytical Chemistry, I3A, University of Zaragoza, Zaragoza, Spain
| | - Ana M Soto
- Department of Immunology, Tufts University School of Medicine, Boston, MA, USA; Centre Cavaillès, Ecole Normale Supérieure, Paris, France
| | - Leonardo Trasande
- College of Global Public Health and Grossman School of Medicine and Wagner School of Public Service, New York University, New York, NY, USA
| | - Laura N Vandenberg
- Department of Environmental Health Sciences, School of Public Health & Health Sciences, University of Massachusetts Amherst, Amherst, MA, USA
| | - Martin Wagner
- Dept. of Biology, Faculty of Natural Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | | | - R Thomas Zoeller
- Department of Environmental Health Sciences, School of Public Health & Health Sciences, University of Massachusetts Amherst, Amherst, MA, USA
| | - Martin Scheringer
- RECETOX, Masaryk University, Brno, Czech Republic; Department of Environmental Systems Science, ETH Zurich, Switzerland.
| |
Collapse
|
11
|
Wang G, Hong X, Yu J, Zhang Y, Li Y, Li Z, Zhu Z, Yuan S, Zhang X, Wang S, Zhu F, Wang Y, Wu C, Su P, Shen T. Enhancing de novo ceramide synthesis induced by bisphenol A exposure aggravates metabolic derangement during obesity. Mol Metab 2023; 73:101741. [PMID: 37225016 PMCID: PMC10250932 DOI: 10.1016/j.molmet.2023.101741] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 05/16/2023] [Indexed: 05/26/2023] Open
Abstract
OBJECTIVE Exposure to bisphenol A (BPA) has been shown to increase the prevalence of obesity and its related insulin resistance (IR). Ceramide is a sphingolipid known to facilitate the production of proinflammatory cytokines and subsequently exacerbate inflammation and IR during the progression of obesity. Here, we investigated the effects of BPA exposure on ceramide de novo synthesis and whether increased ceramides aggravate adipose tissue (AT) inflammation and obesity-related IR. METHODS A population-based case-control study was conducted to explore the relationship between BPA exposure and IR and the potential role of ceramide in AT in obesity. Next, we used mice reared on a normal chow diet (NCD) or a high-fat diet (HFD) to verify the results from the population study and then investigated the role of ceramides in low-level BPA exposure with HFD-induced IR and AT inflammation in mice treated with or without myriocin (an inhibitor of the rate-limiting enzyme in de novo ceramide synthesis). RESULTS BPA levels are higher in obese individuals and are significantly associated with AT inflammation and IR. Specific subtypes of ceramides mediated the associations between BPA and obesity, obesity-related IR and AT inflammation in the obesity group. In animal experiments, BPA exposure facilitated ceramide accumulation in AT, activated PKCζ, promoted AT inflammation, increased the expression and secretion of proinflammatory cytokines via the JNK/NF-κB pathway, and lowered insulin sensitivity by disrupting IRS1-PI3K-AKT signaling in mice fed a HFD. Myriocin suppressed BPA-induced AT inflammation and IR. CONCLUSION These findings indicate that BPA aggravates obesity-induced IR, which is partly via increased de novo synthesis of ceramides and subsequent promotion of AT inflammation. Ceramide synthesis could be a potential target for the prevention of environmental BPA exposure-related metabolic diseases.
Collapse
Affiliation(s)
- Gengfu Wang
- School of Public Health, Anhui Medical University, Hefei 230032, Anhui, PR China
| | - Xu Hong
- School of Public Health, Anhui Medical University, Hefei 230032, Anhui, PR China
| | - Jia Yu
- School of Public Health, Anhui Medical University, Hefei 230032, Anhui, PR China
| | - Yuheng Zhang
- School of Public Health, Anhui Medical University, Hefei 230032, Anhui, PR China
| | - Yuting Li
- School of Public Health, Anhui Medical University, Hefei 230032, Anhui, PR China
| | - Zuo Li
- School of Public Health, Anhui Medical University, Hefei 230032, Anhui, PR China
| | - Zhiyuan Zhu
- School of Public Health, Anhui Medical University, Hefei 230032, Anhui, PR China
| | - Shaoyun Yuan
- School of Public Health, Anhui Medical University, Hefei 230032, Anhui, PR China
| | - Xiaofei Zhang
- School of Public Health, Anhui Medical University, Hefei 230032, Anhui, PR China
| | - Sheng Wang
- Center for Scientific Research of Anhui Medical University, Hefei 230032, Anhui, PR China
| | - Fuhai Zhu
- Second Affiliated Hospital, Anhui Medical University, Hefei 230032, Anhui, PR China
| | - Yong Wang
- Second Affiliated Hospital, Anhui Medical University, Hefei 230032, Anhui, PR China
| | - Changhao Wu
- Department of Biochemistry and Physiology, Faculty of Heath & Medical Sciences, University of Surrey, Surrey, Guildford, UK.
| | - Puyu Su
- School of Public Health, Anhui Medical University, Hefei 230032, Anhui, PR China.
| | - Tong Shen
- School of Public Health, Anhui Medical University, Hefei 230032, Anhui, PR China.
| |
Collapse
|
12
|
Milanović M, Milošević N, Milić N, Stojanoska MM, Petri E, Filipović JM. Food contaminants and potential risk of diabetes development: A narrative review. World J Diabetes 2023; 14:705-723. [PMID: 37383596 PMCID: PMC10294057 DOI: 10.4239/wjd.v14.i6.705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/03/2023] [Accepted: 04/13/2023] [Indexed: 06/14/2023] Open
Abstract
The number of people diagnosed with diabetes continues to increase, especially among younger populations. Apart from genetic predisposition and lifestyle, there is increasing scientific and public concern that environmental agents may also contribute to diabetes. Food contamination by chemical substances that originate from packaging materials, or are the result of chemical reactions during food processing, is generally recognized as a worldwide problem with potential health hazards. Phthalates, bisphenol A (BPA) and acrylamide (AA) have been the focus of attention in recent years, due to the numerous adverse health effects associated with their exposure. This paper summarizes the available data about the association between phthalates, BPA and AA exposure and diabetes. Although their mechanism of action has not been fully clarified, in vitro, in vivo and epidemiological studies have made significant progress toward identifying the potential roles of phthalates, BPA and AA in diabetes development and progression. These chemicals interfere with multiple signaling pathways involved in glucose and lipid homeostasis and can aggravate the symptoms of diabetes. Especially concerning are the effects of exposure during early stages and the gestational period. Well-designed prospective studies are needed in order to better establish prevention strategies against the harmful effects of these food contaminants.
Collapse
Affiliation(s)
- Maja Milanović
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, Novi Sad 21000, Serbia
| | - Nataša Milošević
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, Novi Sad 21000, Serbia
| | - Nataša Milić
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, Novi Sad 21000, Serbia
| | - Milica Medić Stojanoska
- Faculty of Medicine, Clinic for Endocrinology, Diabetes and Metabolic Diseases, University Clinical Center of Vojvodina, University of Novi Sad, Novi Sad 21000, Serbia
| | - Edward Petri
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Novi Sad 21000, Serbia
| | - Jelena Marković Filipović
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Novi Sad 21000, Serbia
| |
Collapse
|
13
|
Martínez-Pinna J, Sempere-Navarro R, Medina-Gali RM, Fuentes E, Quesada I, Sargis RM, Trasande L, Nadal A. Endocrine disruptors in plastics alter β-cell physiology and increase the risk of diabetes mellitus. Am J Physiol Endocrinol Metab 2023; 324:E488-E505. [PMID: 37134142 PMCID: PMC10228669 DOI: 10.1152/ajpendo.00068.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/27/2023] [Accepted: 04/28/2023] [Indexed: 05/05/2023]
Abstract
Plastic pollution breaks a planetary boundary threatening wildlife and humans through its physical and chemical effects. Of the latter, the release of endocrine disrupting chemicals (EDCs) has consequences on the prevalence of human diseases related to the endocrine system. Bisphenols (BPs) and phthalates are two groups of EDCs commonly found in plastics that migrate into the environment and make low-dose human exposure ubiquitous. Here we review epidemiological, animal, and cellular studies linking exposure to BPs and phthalates to altered glucose regulation, with emphasis on the role of pancreatic β-cells. Epidemiological studies indicate that exposure to BPs and phthalates is associated with diabetes mellitus. Studies in animal models indicate that treatment with doses within the range of human exposure decreases insulin sensitivity and glucose tolerance, induces dyslipidemia, and modifies functional β-cell mass and serum levels of insulin, leptin, and adiponectin. These studies reveal that disruption of β-cell physiology by EDCs plays a key role in impairing glucose homeostasis by altering the mechanisms used by β-cells to adapt to metabolic stress such as chronic nutrient excess. Studies at the cellular level demonstrate that BPs and phthalates modify the same biochemical pathways involved in adaptation to chronic excess fuel. These include changes in insulin biosynthesis and secretion, electrical activity, expression of key genes, and mitochondrial function. The data summarized here indicate that BPs and phthalates are important risk factors for diabetes mellitus and support a global effort to decrease plastic pollution and human exposure to EDCs.
Collapse
Affiliation(s)
- Juan Martínez-Pinna
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, Elche, Spain
- Departamento de Fisiología, Genética y Microbiología, Universidad de Alicante, Alicante, Spain
| | - Roberto Sempere-Navarro
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, Elche, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Regla M Medina-Gali
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, Elche, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Esther Fuentes
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, Elche, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Ivan Quesada
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, Elche, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Robert M Sargis
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States
| | - Leonardo Trasande
- Department of Pediatrics, New York University Grossman School of Medicine, New York, New York, United States
- Department of Population Health, New York University Grossman School of Medicine, New York, New York, United States
- Wagner School of Public Service, New York University, New York, New York, United States
| | - Angel Nadal
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, Elche, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
14
|
Jiang W, Ding K, Huang W, Xu F, Lei M, Yue R. Potential effects of bisphenol A on diabetes mellitus and its chronic complications: A narrative review. Heliyon 2023; 9:e16340. [PMID: 37251906 PMCID: PMC10213369 DOI: 10.1016/j.heliyon.2023.e16340] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 05/10/2023] [Accepted: 05/12/2023] [Indexed: 05/31/2023] Open
Abstract
Diabetes mellitus (DM) is a metabolic disease caused by multiple factors such as genetics, environment, and lifestyle. Bisphenol A (BPA), as one of the most common endocrine-disrupting chemicals (EDCs), has been strongly implicated in the development of type 2 diabetes mellitus (T2DM). BPA exposure is associated with target organ damage in DM and may exacerbate the progression of some chronic complications of DM. This paper reviews relevant epidemiological, in vivo, and in vitro studies to better understand BPA's potential risk associations and pathological mechanisms in several chronic diabetic complications.
Collapse
Affiliation(s)
- Wei Jiang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Kaixi Ding
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Wenjie Huang
- Chengdu University of Technology, College of Ecology and Environment, Chengdu, 610075, China
| | - Feng Xu
- School of Engineering and Built Environment, Griffith University, Nathan, QLD, 4111, Australia
| | - Ming Lei
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Rensong Yue
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| |
Collapse
|
15
|
Lv Z, Tang Z, Huang S, Hu X, Peng C, Chen Y, Liu G, Chen Y, Cao T, Hou C, Wei X, Ke Y, Zou X, Zeng H, Guo Y. In vivo hypoglycemic effects of bisphenol F exposure in high-fat diet mice. CHEMOSPHERE 2023; 311:137066. [PMID: 36328321 DOI: 10.1016/j.chemosphere.2022.137066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 10/25/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
Bisphenol F (BPF) is a widely used bisphenol A (BPA) substitute plastic additive that has attracted increasing public concerns due to its potential toxic effects on animal and human health. Although previous studies have indicated that BPF might have harmful effects on metabolic homeostasis, the systematic effects of BPF on glucose disorders remain controversial. In this study, mice fed a normal chow diet (ND) and high-fat diet (HFD) were administered BPF at a dose of 100 μg/kg of body weight, and glucose metabolism was monitored after both short- and long-term treatment. Little change in glucose metabolism was observed in BPF-treated ND mice, but improved glucose metabolism was observed in BPF-treated HFD mice. Consistently, BPF treatment led to increased insulin signalling in the skeletal muscle of HFD mice. Additionally, liver metabolite levels also revealed increased carbohydrate digestion and improved TCA cycle progression in BPF-treated HFD mice. Our results demonstrate that sustained BPF exposure at an environmentally relevant dosage may substantially improve glucose metabolism and enhance insulin sensitivity in mice fed a high-fat diet.
Collapse
Affiliation(s)
- Ziquan Lv
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Zhi Tang
- Department of Environmental and Occupational Health, School of Public Health, Guangdong Medical University, Dongguan, 523808, China
| | - Suli Huang
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Xiaoxiao Hu
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Changfeng Peng
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Yuhua Chen
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Guangnan Liu
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Ying Chen
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Tingting Cao
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Cuilan Hou
- Department of Cardiology, Shanghai Children's Hospital, Shanghai Jiaotong University, Shanghai, 200062, China
| | - Xinyi Wei
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Yuebin Ke
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Xuan Zou
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Huaicai Zeng
- School of Public Health, Guilin Medical University, Guilin, 541000, China.
| | - Yajie Guo
- The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518033, China.
| |
Collapse
|
16
|
Protective effects of polyphenols against endocrine disrupting chemicals. Food Sci Biotechnol 2022; 31:905-934. [DOI: 10.1007/s10068-022-01105-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/24/2022] [Accepted: 05/16/2022] [Indexed: 11/04/2022] Open
|
17
|
Babiloni-Chust I, Dos Santos RS, Medina-Gali RM, Perez-Serna AA, Encinar JA, Martinez-Pinna J, Gustafsson JA, Marroqui L, Nadal A. G protein-coupled estrogen receptor activation by bisphenol-A disrupts the protection from apoptosis conferred by the estrogen receptors ERα and ERβ in pancreatic beta cells. ENVIRONMENT INTERNATIONAL 2022; 164:107250. [PMID: 35461094 DOI: 10.1016/j.envint.2022.107250] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/12/2022] [Accepted: 04/15/2022] [Indexed: 06/14/2023]
Abstract
17β-estradiol protects pancreatic β-cells from apoptosis via the estrogen receptors ERα, ERβ and GPER. Conversely, the endocrine disruptor bisphenol-A (BPA), which exerts multiple effects in this cell type via the same estrogen receptors, increased basal apoptosis. The molecular-initiated events that trigger these opposite actions have yet to be identified. We demonstrated that combined genetic downregulation and pharmacological blockade of each estrogen receptor increased apoptosis to a different extent. The increase in apoptosis induced by BPA was diminished by the pharmacological blockade or the genetic silencing of GPER, and it was partially reproduced by the GPER agonist G1. BPA and G1-induced apoptosis were abolished upon pharmacological inhibition, silencing of ERα and ERβ, or in dispersed islet cells from ERβ knockout (BERKO) mice. However, the ERα and ERβ agonists PPT and DPN, respectively, had no effect on beta cell viability. To exert their biological actions, ERα and ERβ form homodimers and heterodimers. Molecular dynamics simulations together with proximity ligand assays and coimmunoprecipitation experiments indicated that the interaction of BPA with ERα and ERβ as well as GPER activation by G1 decreased ERαβ heterodimers. We propose that ERαβ heterodimers play an antiapoptotic role in beta cells and that BPA- and G1-induced decreases in ERαβ heterodimers lead to beta cell apoptosis. Unveiling how different estrogenic chemicals affect the crosstalk among estrogen receptors should help to identify diabetogenic endocrine disruptors.
Collapse
Affiliation(s)
- Ignacio Babiloni-Chust
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, Elche, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Spain
| | - Reinaldo S Dos Santos
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, Elche, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Spain
| | - Regla M Medina-Gali
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, Elche, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Spain
| | - Atenea A Perez-Serna
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, Elche, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Spain
| | - José-Antonio Encinar
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, Elche, Spain
| | - Juan Martinez-Pinna
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, Elche, Spain; Departamento de Fisiología, Genética y Microbiología, Universidad de Alicante, Alicante, Spain
| | - Jan-Ake Gustafsson
- Department of Cell Biology and Biochemistry, Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, TX, USA; Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Laura Marroqui
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, Elche, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Spain
| | - Angel Nadal
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, Elche, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Spain.
| |
Collapse
|
18
|
Wang S, Ren H, Zhong H, Zhao X, Li C, Ma J, Gu X, Xue Y, Huang S, Yang J, Chen L, Chen G, Qu S, Liang J, Qin L, Huang Q, Peng Y, Li Q, Wang X, Zou Y, Shi Z, Li X, Li T, Yang H, Lai S, Xu G, Li J, Zhang Y, Gu Y, Wang W. Combined berberine and probiotic treatment as an effective regimen for improving postprandial hyperlipidemia in type 2 diabetes patients: a double blinded placebo controlled randomized study. Gut Microbes 2022; 14:2003176. [PMID: 34923903 PMCID: PMC8726654 DOI: 10.1080/19490976.2021.2003176] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Non-fasting lipidemia (nFL), mainly contributed by postprandial lipidemia (PL), has recently been recognized as an important cardiovascular disease (CVD) risk as fasting lipidemia (FL). PL serves as a common feature of dyslipidemia in Type 2 Diabetes (T2D), albeit effective therapies targeting on PL were limited. In this study, we aimed to evaluate whether the therapy combining probiotics (Prob) and berberine (BBR), a proven antidiabetic and hypolipidemic regimen via altering gut microbiome, could effectively reduce PL in T2D and to explore the underlying mechanism. Blood PL (120 min after taking 100 g standard carbohydrate meal) was examined in 365 participants with T2D from the Probiotics and BBR on the Efficacy and Change of Gut Microbiota in Patients with Newly Diagnosed Type 2 Diabetes (PREMOTE study), a random, placebo-controlled, and multicenter clinical trial. Prob+BBR was superior to BBR or Prob alone in improving postprandial total cholesterol (pTC) and low-density lipoprotein cholesterol (pLDLc) levels with decrement of multiple species of postprandial lipidomic metabolites after 3 months follow-up. This effect was linked to the changes of fecal Bifidobacterium breve level responding to BBR alone or Prob+BBR treatment. Four fadD genes encoding long-chain acyl-CoA synthetase were identified in the genome of this B. breve strain, and transcriptionally activated by BBR. In vitro BBR treatment further decreased the concentration of FFA in the culture medium of B. breve compared to vehicle. Thus, the activation of fadD by BBR could enhance FFA import and mobilization in B. breve and diliminish the intraluminal lipids for absorption to mediate the effect of Prob+BBR on PL. Our study confirmed that BBR and Prob (B. breve) could exert a synergistic hypolipidemic effect on PL, acting as a gut lipid sink to achieve better lipidemia and CVD risk control in T2D.
Collapse
Affiliation(s)
- Shujie Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the Pr China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huahui Ren
- BGI-Shenzhen, Shenzhen, China,Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | | | - Xinjie Zhao
- Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, China
| | - Changkun Li
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the Pr China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Ma
- Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xuejiang Gu
- Department of Endocrinology, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang Province, China
| | - Yaoming Xue
- Nanfang Hospital, Southern Medical University, Guangdong Province, China
| | - Shan Huang
- Tong Ren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jialin Yang
- Department of Endocrinology, Central Hospital of Minhang District, Shanghai, China
| | - Li Chen
- Department of Endocrinology, Qilu Hospital of Shandong University, Shandong Province, China
| | - Gang Chen
- Department of Endocrinology, Fujian Provincial Hospital, Fujian Province, China
| | - Shen Qu
- Department of Endocrinology, Shanghai Tenth People’s Hospital of Tong Ji University, Shanghai, China
| | - Jun Liang
- Department of Endocrinology, Xuzhou Central Hospital, Jiangsu Province, China
| | - Li Qin
- Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qin Huang
- Chang Hai Hospital, Second Military Medical University, Shanghai, China
| | - Yongde Peng
- Shanghai First People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qi Li
- Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, China
| | - Xiaolin Wang
- Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, China
| | | | | | - Xuelin Li
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the Pr China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tingting Li
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the Pr China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huanming Yang
- BGI-Shenzhen, Shenzhen, China,James D. Watson Institute of Genome Sciences, Hangzhou, China
| | - Shenghan Lai
- Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Guowang Xu
- Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, China
| | - Junhua Li
- BGI-Shenzhen, Shenzhen, China,CONTACT Junhua Li BGI-Shenzhen, Shenzhen, China
| | - Yifei Zhang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the Pr China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,Yifei Zhang Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanyun Gu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the Pr China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,Yanyun Gu Shanghai National Clinical Research Center for metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China
| | - Weiqing Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the Pr China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,Weiqing Wang, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
19
|
Wu B, Zhao Q, Li Z, Min Z, Shi M, Nie X, He Q, Gui R. Environmental level bisphenol A accelerates alterations of the reno-cardiac axis by the MAPK cascades in male diabetic rats: An analysis based on transcriptomic profiling and bioinformatics. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 287:117671. [PMID: 34435562 DOI: 10.1016/j.envpol.2021.117671] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 06/25/2021] [Accepted: 06/26/2021] [Indexed: 06/13/2023]
Abstract
In humans and animal models, the kidneys and cardiovascular systems are negatively affected by BPA from the environment. It is considered that BPA have some potential estrogen-like and non-hormone-like properties. In this study, RNA-sequencing and its-related bioinformatics was used as the basic strategy to clarify the characteristic mechanisms of kidney-heart axis remodeling and dysfunction in diabetic male rats under BPA exposure. We found that continuous BPA exposure in diabetic rats aggravated renal impairment, and caused hemodynamic disorders and dysfunctions. There were 655 and 125 differentially expressed genes in the kidney and heart, respectively. For the kidneys, functional annotation and enrichment, and gene set enrichment analyses identified bile acid secretion related to lipid synthesis and transport, and MAPK cascade pathways. For the heart, these bioinformatics analyses clearly pointed to MAPKs pathways. A total of 12 genes and another total of 6 genes were identified from the kidney tissue and heart tissue, respectively. Western blotting showed that exposure to BPA activated MAPK cascades in both organs. In this study, the exacerbated remodeling of diabetic kidney-heart axis under BPA exposure and diabetes might occur through hemodynamics, metabolism disorders, and the immune-inflammatory response, as well as continuous estrogen-like stimulation, with focus on the MAPK cascades.
Collapse
Affiliation(s)
- Bin Wu
- Department of Blood Transfusion, The Third Xiangya Hospital, Central South University, Changsha, China; Wuhan Hospital of Traditional Chinese and Western Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Physiology, Pathophysiology, Pharmacology and Toxicology (Laboratory of Physiological Science), Hubei University of Arts and Science, Xiangyang, China
| | - Qiangqiang Zhao
- Department of Blood Transfusion, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Zuoneng Li
- Institute of Environment Health and Food Safety, Wuhan Center for Diseases Control and Prevention, Wuhan, China
| | - Zhiteng Min
- Department of Occupational Health, Wuhan Center for Diseases Control and Prevention, Wuhan, China; Key Laboratory of Occupational Hazard Identification and Control of Hubei Province, Wuhan University of Science and Technology, Wuhan, China
| | - Mengdie Shi
- Institute of Environment Health and Food Safety, Wuhan Center for Diseases Control and Prevention, Wuhan, China
| | - Xinmin Nie
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Qingnan He
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Rong Gui
- Department of Blood Transfusion, The Third Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
20
|
Wang L, Mao Z, Liu X, Wei D, Liu P, Nie L, Fan K, Kang N, Song Y, Xu Q, Wang J, Wang M, Liao W, Jing T, Li W, Wang C, Huo W. Combined effects of progesterone and SOCS3 DNA methylation on T2DM: a case-control study. Clin Epigenetics 2021; 13:181. [PMID: 34565450 PMCID: PMC8474856 DOI: 10.1186/s13148-021-01172-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 09/14/2021] [Indexed: 02/28/2023] Open
Abstract
BACKGROUND This study aims to investigate the independent and combined effects of progesterone and suppressor of cytokine signaling (SOCS)-3 DNA methylation on type 2 diabetes mellitus (T2DM) among men and postmenopausal women in rural China. METHODS A case-control study with 914 participants (329 T2DM, 585 controls) was conducted. Serum progesterone was detected with liquid chromatography-tandem mass spectrometry. DNA methylation of SOCS3 was determined by MethylTarget™. Linear regression was applied to evaluate the associations of progesterone and SOCS3 methylation with marks of glucose metabolism. Logistic regression was employed to investigate the independent and combined effects of progesterone and SOCS3 methylation with T2DM in men and postmenopausal women. RESULTS After multiple adjustment, progesterone was positively associated with T2DM in both men (odds ratio (OR) (95% confidence interval (CI)): 2.77 (1.79, 4.29)) and postmenopausal women (OR (95% CI): 1.85 (1.26, 2.72)). Methylation level of Chr17:76,356,190 or Chr17:76,356,199 (SOCS3) was negatively associated with T2DM in both men (OR (95% CI): 0.58 (0.39, 0.86) or 0.27 (0.14, 0.51)) and postmenopausal women (OR (95% CI): 0.43 (0.29, 0.65) or 0.53 (0.28, 0.99)). Subjects with high progesterone and low Chr17:76,356,190 or Chr17:76,356,199 methylation were more susceptible to have a higher prevalence of T2DM (men: OR (95% CI): 5.20 (2.49, 10.85) or 5.62 (2.74, 11.54); postmenopausal women: OR (95% CI): 3.66 (1.85, 7.26) or 3.27 (1.66, 6.45)). CONCLUSIONS The independent and combined effects of progesterone and SOCS3 methylation on T2DM were found among men and postmenopausal women, suggesting that ensuring low levels of progesterone and high methylation of SOCS3 could reduce the prevalence of T2DM. Trial registration The Chinese Clinical Trial registration: The Henan Rural Cohort Study, ChiCTR-OOC-15006699. Registered 06 July 2015, http://www.chictr.org.cn/showproj.aspx?proj=11375.
Collapse
Affiliation(s)
- Lulu Wang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Zhenxing Mao
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Xiaotian Liu
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Dandan Wei
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Pengling Liu
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Luting Nie
- Department of Occupational and Environmental Health Sciences, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan, People's Republic of China
| | - Keliang Fan
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Ning Kang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Yu Song
- Department of Occupational and Environmental Health Sciences, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan, People's Republic of China
| | - Qingqing Xu
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Juan Wang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Mian Wang
- Department of Occupational and Environmental Health Sciences, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan, People's Republic of China
| | - Wei Liao
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Tao Jing
- School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Wenjie Li
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Chongjian Wang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Wenqian Huo
- Department of Occupational and Environmental Health Sciences, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan, People's Republic of China.
| |
Collapse
|
21
|
Wang L, Liu X, Wei D, Kang N, Nie L, Liu P, Fan K, Zhang L, Hou J, Li X, Xu S, Jing T, Li W, Wang C, Mao Z, Huo W. The mediation role of SOCS3 methylation in the effect of serum testosterone on type 2 diabetes. J Diabetes 2021; 13:701-712. [PMID: 33576141 DOI: 10.1111/1753-0407.13167] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 01/21/2021] [Accepted: 02/03/2021] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Previous studies reported that testosterone and DNA methylation of suppressor of cytokine signaling-3 (SOCS3) were associated with type 2 diabetes (T2D). Testosterone affects SOCS3 gene expression. Therefore, we aimed to investigate how the SOCS3 methylation mediates the relationship between testosterone and T2D among Chinese rural adults. METHODS A case-control study comprised 365 T2D patients and 651 controls was conducted. Liquid chromatography-tandem mass spectrometry and MethylTarget were used to determine the levels of serum testosterone and DNA methylation of SOCS3 gene, respectively. The odds ratio (OR) of testosterone or SOCS3 methylation for T2D was calculated using logistic regression models, and β value of testosterone for SOCS3 methylation was evaluated by linear regression models. Furthermore, through mediation analysis the mediating effect of SOCS3 methylation on the association of testosterone with T2D was estimated. RESULTS After adjusting for multiple variables, the protective effect of testosterone on T2D was found in men (OR = 0.61, 95% confidence interval [CI]: 0.47-0.80), and the methylation of Chr17:76356190 or Chr17:76356199 was negatively related to T2D in both men and women. Moreover, testosterone was positively associated with Chr17:76356190 methylation in men and Chr17:76356199 methylation in women (both P < .05). The mediation analysis showed that the Chr17:76356190 methylation partly mediated effect of testosterone on T2D in men was approximately 8.2%. CONCLUSIONS High levels of serum testosterone in men and Chr17:76356190 and Chr17:76356199 (SOCS3) methylation were related to a lower prevalent T2D. In addition, Chr17:76356190 methylation partially mediated the effect of testosterone on T2D in Chinese rural men.
Collapse
Affiliation(s)
- Lulu Wang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Xiaotiao Liu
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Dandan Wei
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Ning Kang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Luting Nie
- Department of Occupational and Environmental Health Sciences, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Pengling Liu
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Keliang Fan
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Li Zhang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Jian Hou
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Xing Li
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Shunqing Xu
- School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Jing
- School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenjie Li
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Chongjian Wang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Zhenxing Mao
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Wenqian Huo
- Department of Occupational and Environmental Health Sciences, College of Public Health, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
22
|
Harnett KG, Chin A, Schuh SM. BPA and BPA alternatives BPS, BPAF, and TMBPF, induce cytotoxicity and apoptosis in rat and human stem cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 216:112210. [PMID: 33866271 DOI: 10.1016/j.ecoenv.2021.112210] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 03/22/2021] [Accepted: 03/29/2021] [Indexed: 05/25/2023]
Abstract
Bisphenol A (BPA) is a ubiquitous industrial chemical found in everyday plastic products and materials. Due to scientific findings on the reproductive, developmental, and cellular defects caused by BPA and heightened public awareness, manufacturers have begun to use new chemicals in place of BPA in "BPA-free" products. These alternatives are chemical analogs of BPA and include dozens of new compounds that have undergone relatively little testing and oversight, including: bisphenol S (BPS), bisphenol AF (BPAF), and the recently developed tetramethyl bisphenol F (TMBPF; the monomer of valPure V70). Here, we used adult female rat adipose-derived stem cells (rASCs) and human mesenchymal stem cells (hMSCs) to compare the toxicities and potencies of these BPA alternatives in vitro. Rat and human stem cells were exposed to BPA (1-10 μM), 17β-estradiol (E2; 10 μM), BPS (1-100 μM), BPAF (3×10-4-30 μM), TMBPF (0.01-50 μM), or control media alone (with 0.01% ethanol) for varying time intervals from 10 min to 24 h. We found significantly decreased cell viability and massive apoptosis in rat and human stem cells treated with each BPA analog, as early as 10 min of exposure, and at low, physiologically relevant doses. BPAF showed extreme cytotoxicity in a dose-dependent manner (LC50 =0.014 μM (rASCs) and 0.009 μM (hMSCs)), whereas TMBPF showed a bimodal response, with low and high concentrations being the most toxic (LC50 =0.88 μM (rASCs) and 0.06 μM (hMSCs)). Activated caspase-6 levels increased in nearly all cells treated with the BPA analogs indicating the majority of cell death was due to caspase-6-mediated apoptosis. These results in both rat and human stem cells underscore the toxicity and potency of these BPA analogs, and establish a rank order of potency of: BPAF>TMBPF>BPA>BPS. Further, these and other recent findings indicate that these newer BPA analogs may be 'regrettable substitutions,' being worse than the original parent compound and lacking proper testing and regulation. This work brings to light the need for further toxicological characterization, better regulation, greater public awareness, and the development of safer, more sustainable chemicals and non-plastic products.
Collapse
Affiliation(s)
- Kristen G Harnett
- Saint Mary's College of California, Department of Biology, Moraga, CA, USA
| | - Ashley Chin
- Saint Mary's College of California, Department of Biology, Moraga, CA, USA
| | - Sonya M Schuh
- Saint Mary's College of California, Department of Biology, Moraga, CA, USA.
| |
Collapse
|
23
|
Yu P, Huang L, Wang Z, Meng X, Yu X. The Association of Serum Uric Acid with Beta-Cell Function and Insulin Resistance in Nondiabetic Individuals: A Cross-Sectional Study. Diabetes Metab Syndr Obes 2021; 14:2673-2682. [PMID: 34163195 PMCID: PMC8214016 DOI: 10.2147/dmso.s312489] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 05/06/2021] [Indexed: 01/24/2023] Open
Abstract
PURPOSE Higher serum levels of uric acid (SUA) are associated with an increased risk of developing type 2 diabetes. Meanwhile, insulin resistance and beta-cell dysfunction are critical factors that mediate the progression from normal glucose tolerance to impaired fasting glucose (IFG) and type 2 diabetes. We aimed to investigate the association between SUA levels and insulin resistance and beta-cell dysfunction in individuals without diabetes, thus explicating the role of uric acid in the early stage of the natural history of type 2 diabetes. PATIENTS AND METHODS We used cross-sectional data from the China Health and Nutrition Survey to examine the association. Insulin resistance and beta-cell dysfunction were estimated using the homeostasis model assessment of insulin resistance (HOMA-IR) index and homeostasis model assessment of beta-cell function (HOMA-beta) index, respectively. The associations were analyzed by using partial correlation analysis and multivariate logistic regressionl analysis. RESULTS SUA levels were positively associated with fasting glucose, fasting insulin, HOMA-IR in the total population. After adjustment for age, drinking, smoking, living area, daily dietary nutrient intake, body mass index (BMI), estimated glomerular filtration rate (eGFR), hypertension, and dyslipidemia, compared with participants in the lowest quartile of SUA, the adjusted odds ratios for the fourth quartiles were 1.56(1.09-2.24) for IFG, 1.51(1.27-1.78) for insulin resistance, and 1.06(0.88-1.27) for beta-cell dysfunction. In the subgroup analysis, no interactions were found between serum uric acid and age, drinking status, smoking status, BMI, hypertension, or dyslipidemia (all p for interaction>0.05). CONCLUSION In nondiabetic individuals, SUA levels are independently associated with IFG and insulin resistance, while no significant association exists between SUA and beta-cell dysfunction.
Collapse
Affiliation(s)
- Peng Yu
- Department of Internal Medicine, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People’s Republic of China
- Branch of National Clinical Research Center for Metabolic Diseases, Hubei, China
| | - Li Huang
- Department of Internal Medicine, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People’s Republic of China
- Branch of National Clinical Research Center for Metabolic Diseases, Hubei, China
| | - Zhihan Wang
- Department of Internal Medicine, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People’s Republic of China
- Branch of National Clinical Research Center for Metabolic Diseases, Hubei, China
| | - Xiaoyu Meng
- Department of Internal Medicine, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People’s Republic of China
- Branch of National Clinical Research Center for Metabolic Diseases, Hubei, China
| | - Xuefeng Yu
- Department of Internal Medicine, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People’s Republic of China
- Branch of National Clinical Research Center for Metabolic Diseases, Hubei, China
| |
Collapse
|
24
|
Pérez-Bermejo M, Mas-Pérez I, Murillo-Llorente MT. The Role of the Bisphenol A in Diabetes and Obesity. Biomedicines 2021; 9:666. [PMID: 34200822 PMCID: PMC8230545 DOI: 10.3390/biomedicines9060666] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/04/2021] [Accepted: 06/08/2021] [Indexed: 12/15/2022] Open
Abstract
Bisphenol A is a compound commonly found in products meant for daily use. It was one of the first compounds to be identified as an endocrine disruptor that was capable of disrupting the endocrine system and producing very similar effects to those of metabolic syndrome. It has recently gained popularity in the scientific arena as a risk factor for obesity and diabetes due to its ability to imitate natural oestrogens and bind to their receptors. The aim was to study the possible relationship between the Bisphenol A endocrine disruptor with diabetes and obesity. The analysis of the articles allows us to conclude that Bisphenol A is an additional risk factor to consider in the development of diabetes and obesity, since it is capable of stimulating the hypertrophy of adipocytes and altering the endocrine system by mimicking the effects of the oestrogen molecule, since epidemiological studies carried out have suggested that the same disruptions seen in experimental studies on animals can be found in humans; however, despite many countries having developed policies to limit exposure to this disruptor in their populations, there is a lack of international agreement. Understanding its relationship with obesity and diabetes will help to raise awareness in the population and adopt public health campaigns to prevent exposure-especially among young people-to these substances.
Collapse
Affiliation(s)
- Marcelino Pérez-Bermejo
- SONEV Research Group, School of Medicine and Health Sciences, Catholic University of Valencia San Vicente Mártir, C/Quevedo nº 2, 46001 Valencia, Spain;
| | - Irene Mas-Pérez
- School of Medicine and Health Sciences, Catholic University of Valencia San Vicente Mártir, C/Quevedo nº 2, 46001 Valencia, Spain;
| | - Maria Teresa Murillo-Llorente
- SONEV Research Group, School of Medicine and Health Sciences, Catholic University of Valencia San Vicente Mártir, C/Quevedo nº 2, 46001 Valencia, Spain;
| |
Collapse
|
25
|
Guo Y, Lv Z, Tang Z, Huang S, Peng C, Wang F, Zhou Z, Ding W, Liu W, Liu P, Li D, Song J, He J, Chen Y, Liu G, Hu X, Liu J, Ke Y. Long-term exposure to low doses of bisphenol S has hypoglycaemic effect in adult male mice by promoting insulin sensitivity and repressing gluconeogenesis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 277:116630. [PMID: 33667749 DOI: 10.1016/j.envpol.2021.116630] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 01/25/2021] [Accepted: 01/28/2021] [Indexed: 05/27/2023]
Abstract
Bisphenol S (BPS), an industrial chemical that is a structural analogue of bisphenol A, has been widely reported to be involved in various biological processes. Epidemiological studies have demonstrated that exposure to BPS is associated with dysglycaemia-related health outcomes. The role of BPS in glucose metabolism, however, remains controversial. In this study, we aimed to investigate the effects of chronic exposure to environmentally relevant concentrations of BPS on glucose metabolism in different nutritionally conditioned mice. Our results revealed that 1-month exposure to a BPS dosage of 100 μg/kg bw slightly increased the insulin sensitivity of normal diet-fed mice, and that this effect was enhanced after 3-month exposure. It was also found that BPS exposure attenuated insulin resistance and reduced gluconeogenesis in high-fat diet-fed mice. Consequently, the concentrations of hepatic metabolites related to glucose metabolism were altered in both groups of mice. Moreover, thyroid hormone signalling was disrupted after BPS administration in both groups of mice. Taken together, our results demonstrated that chronic exposure to environmentally relevant concentrations of BPS exerted an unexpected hypoglycaemic effect in mice of different nutritional statuses, and that this was partly attributable to disrupted thyroid hormone signalling.
Collapse
Affiliation(s)
- Yajie Guo
- The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518033, China
| | - Ziquan Lv
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Zhi Tang
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China; Department of Environmental and Occupational Health, School of Public Health, Guangdong Medical University, Dongguan, 523808, China
| | - Suli Huang
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Changfeng Peng
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Fangting Wang
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Zhiguang Zhou
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Wenqi Ding
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Weiwen Liu
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Peiyi Liu
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Di Li
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Jiayi Song
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Jie He
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Ying Chen
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Guangnan Liu
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Xiaoxiao Hu
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Jianjun Liu
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Yuebin Ke
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China.
| |
Collapse
|
26
|
Szkudelska K, Okulicz M, Szkudelski T. Bisphenol A disturbs metabolism of primary rat adipocytes without affecting adipokine secretion. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:23301-23309. [PMID: 33447972 PMCID: PMC8113171 DOI: 10.1007/s11356-021-12411-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 01/06/2021] [Indexed: 06/12/2023]
Abstract
Bisphenol A (BPA) is an ubiquitous synthetic chemical exerting numerous adverse effects. Results of rodent studies show that BPA negatively affects adipose tissue. However, the short-term influence of this compound addressing adipocyte metabolism and adipokine secretion is unknown. In the present study, isolated rat adipocytes were exposed for 2 h to 1 and 10 nM BPA. Insulin-induced glucose conversion to lipids along with glucose transport was significantly increased in the presence of BPA. However, basal glucose conversion to lipids, glucose oxidation, and formation of lipids from acetate were unchanged in adipocytes incubated with BPA. It was also shown that BPA significantly increases lipolytic response of adipocytes to epinephrine. However, lipolysis stimulated by dibutyryl-cAMP (a direct activator of protein kinase A) and the antilipolytic action of insulin were not affected by BPA. Moreover, BPA did not influence leptin and adiponectin secretion from adipocytes. Our new results show that BPA is capable of disturbing processes related to lipid accumulation in isolated rat adipocytes. This is associated with the potentiation of insulin and epinephrine action. The effects of BPA appear already after short-term exposure to low doses of this compound. However, BPA fails to change adipokine secretion.
Collapse
Affiliation(s)
- Katarzyna Szkudelska
- Department of Animal Physiology, Biochemistry and Biostructure, Poznań University of Life Sciences, Wołyńska 35, 60-637, Poznań, Poland
| | - Monika Okulicz
- Department of Animal Physiology, Biochemistry and Biostructure, Poznań University of Life Sciences, Wołyńska 35, 60-637, Poznań, Poland
| | - Tomasz Szkudelski
- Department of Animal Physiology, Biochemistry and Biostructure, Poznań University of Life Sciences, Wołyńska 35, 60-637, Poznań, Poland.
| |
Collapse
|
27
|
Wang S, Shi J, Peng Y, Fang Q, Mu Q, Gu W, Hong J, Zhang Y, Wang W. Stronger association of triglyceride glucose index than the HOMA-IR with arterial stiffness in patients with type 2 diabetes: a real-world single-centre study. Cardiovasc Diabetol 2021; 20:82. [PMID: 33888131 PMCID: PMC8063289 DOI: 10.1186/s12933-021-01274-x] [Citation(s) in RCA: 93] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/15/2021] [Indexed: 12/17/2022] Open
Abstract
Background The triglyceride-glucose index (TyG index) has been proposed as a simple and reliable alternative insulin resistance (IR) marker, while the homeostasis model assessment for IR (HOMA-IR) is the most frequently used index. Few studies have evaluated the role of IR assessed by the TyG index and HOMA-IR on arterial stiffness in a type 2 diabetes (T2D) population with a high risk of increased arterial stiffness. We aimed to investigate the association of the TyG index and HOMA-IR with arterial stiffness in patients with T2D. Methods We recruited 3185 patients with T2D, who underwent brachial-ankle pulse wave velocity (baPWV), an indicator of arterial stiffness, but without previous cardiovascular disease. Increased arterial stiffness was defined as a baPWV value greater than the 75th percentile (18.15 m/s) in the present study. The TyG index was determined as ln(fasting triglycerides [mg/dL] × fasting glucose [mg/dL]/2), and the HOMA-IR was calculated as (fasting insulin [μIU/mL] × fasting glucose [mmol/L])/22.5. Results The mean age of the study participants was 54.6 ± 12.0 years, and 1954 (61.4%) were men. Seemingly unrelated regression estimation analysis demonstrated that the TyG index had stronger associations with baPWV than the HOMA-IR (all P < 0.001). In the multivariable logistic analyses, each one-unit increase in the TyG index was associated with a 1.40-fold (95% CI 1.16–1.70, P < 0.001) higher prevalence of increased arterial stiffness, but the prominent association of the HOMA-IR with the prevalence of increased arterial stiffness was not observed. Subgroup analyses showed that a more significant association between the TyG index and the prevalence of increased arterial stiffness was detected in older patients with a longer duration of diabetes and poor glycaemic control (all P < 0.05). Conclusions Compared with the HOMA-IR, the TyG index is independently and more strongly associated with arterial stiffness in patients with T2D. Supplementary Information The online version contains supplementary material available at 10.1186/s12933-021-01274-x.
Collapse
Affiliation(s)
- Shujie Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Juan Shi
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Peng
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qianhua Fang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qian Mu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weiqiong Gu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Hong
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yifei Zhang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China. .,Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Weiqing Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China. .,Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
28
|
Farrugia F, Aquilina A, Vassallo J, Pace NP. Bisphenol A and Type 2 Diabetes Mellitus: A Review of Epidemiologic, Functional, and Early Life Factors. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:E716. [PMID: 33467592 PMCID: PMC7830729 DOI: 10.3390/ijerph18020716] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/10/2021] [Accepted: 01/13/2021] [Indexed: 12/12/2022]
Abstract
Type 2 diabetes mellitus (T2DM) is characterised by insulin resistance and eventual pancreatic β-cell dysfunction, resulting in persistent high blood glucose levels. Endocrine disrupting chemicals (EDCs) such as bisphenol A (BPA) are currently under scrutiny as they are implicated in the development of metabolic diseases, including T2DM. BPA is a pervasive EDC, being the main constituent of polycarbonate plastics. It can enter the human body by ingestion, through the skin, and cross from mother to offspring via the placenta or breast milk. BPA is a xenoestrogen that alters various aspects of beta cell metabolism via the modulation of oestrogen receptor signalling. In vivo and in vitro models reveal that varying concentrations of BPA disrupt glucose homeostasis and pancreatic β-cell function by altering gene expression and mitochondrial morphology. BPA also plays a role in the development of insulin resistance and has been linked to long-term adverse metabolic effects following foetal and perinatal exposure. Several epidemiological studies reveal a significant association between BPA and the development of insulin resistance and impaired glucose homeostasis, although conflicting findings driven by multiple confounding factors have been reported. In this review, the main findings of epidemiological and functional studies are summarised and compared, and their respective strengths and limitations are discussed. Further research is essential for understanding the exact mechanism of BPA action in various tissues and the extent of its effects on humans at environmentally relevant doses.
Collapse
Affiliation(s)
- Francesca Farrugia
- Department of Physiology and Biochemistry, University of Malta, MSD 2080 Msida, Malta; (F.F.); (A.A.); (J.V.)
| | - Alexia Aquilina
- Department of Physiology and Biochemistry, University of Malta, MSD 2080 Msida, Malta; (F.F.); (A.A.); (J.V.)
| | - Josanne Vassallo
- Department of Physiology and Biochemistry, University of Malta, MSD 2080 Msida, Malta; (F.F.); (A.A.); (J.V.)
- Centre for Molecular Medicine and Biobanking, University of Malta, MSD 2080 Msida, Malt
| | - Nikolai Paul Pace
- Department of Physiology and Biochemistry, University of Malta, MSD 2080 Msida, Malta; (F.F.); (A.A.); (J.V.)
- Centre for Molecular Medicine and Biobanking, University of Malta, MSD 2080 Msida, Malt
| |
Collapse
|
29
|
Engin AB, Engin A. The effect of environmental Bisphenol A exposure on breast cancer associated with obesity. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 81:103544. [PMID: 33161112 DOI: 10.1016/j.etap.2020.103544] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/30/2020] [Accepted: 11/01/2020] [Indexed: 06/11/2023]
Abstract
Bisphenol A (BPA) is a widely used endocrine disrupter. Its environmental exposure is a causative factor of cell aging via decreasing telomerase activity, thus leading to shortening of telomere length. Epidemiological studies confirm positive associations between BPA exposure and the incidence of obesity and type 2 diabetes (T2DM). Increased urinary BPA levels in obese females are both significantly correlated with shorter relative telomere length and T2DM. BPA is a critically effective endocrine disrupter leading to poor prognosis via the obesity-inflammation-aromatase axis in breast cancer. Environmental BPA exposure contributes to the progression of both estrogen dependent and triple negative breast cancers. BPA is a positive regulator of human telomerase reverse transcriptase (hTERT) and it increases the expression of hTERT mRNA in breast cancer cells. BPA exposure can lead to tamoxifen resistance. Among patients treated with chemotherapy, those with persistent high telomerase activity due to BPA are at higher risk of death.
Collapse
Affiliation(s)
- Ayse Basak Engin
- Gazi University, Faculty of Pharmacy, Department of Toxicology, Ankara, Turkey.
| | - Atilla Engin
- Gazi University, Faculty of Medicine, Department of General Surgery, Ankara, Turkey
| |
Collapse
|
30
|
Xin Z, Liu S, Niu J, Xu M, Wang T, Lu J, Chen Y, Wang W, Ning G, Bi Y, Xu Y, Li M, Zhao Z. The association of low-grade albuminuria with incident non-alcoholic fatty liver disease and non-invasive markers of liver fibrosis by glycaemia status. Liver Int 2021; 41:101-109. [PMID: 32840963 DOI: 10.1111/liv.14649] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 07/28/2020] [Accepted: 08/17/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND & AIM Low-grade albuminuria, as an early marker of endothelial dysfunction and kidney damage, has been recognized as a risk factor for metabolic disorders. Epidemiological studies manifesting the association of low-grade albuminuria with the risk of incident NAFLD and fibrosis were not available. We aimed to investigate the association of low-grade albuminuria with incident NAFLD and fibrosis by glycaemia status. METHODS A prospective population-based study was performed in 3308 participants without NAFLD at recruitment. Baseline urinary albumin excretion was obtained by a first-voided early morning spot urine sample. At follow-up visit, incident NAFLD was diagnosed by hepatic ultrasound after excluding alcohol abuse and other cause of hepatic diseases. Fatty liver index (FLI) was employed to reflect liver fat content. Liver fibrosis was evaluated by NAFLD fibrosis score (NFS), fibrosis-4 score (FIB-4) and Hepamet fibrosis score (HFS) respectively. RESULTS After 4.3 years of follow-up, 622 (18.8%) were detected as incident NAFLD. Participants with low-grade albuminuria imposed a 40.4% [1.404 (1.112-1.772)] greater risk on incident NAFLD, and 52.0% [1.520 (1.141-2.026)], 87.4% [1.874 (1.291-2.720)] and 40.4% [1.404 (1.038-1.898)] higher risks on newly onset higher values of FLI, NFS and FIB-4 respectively. The effect of low-grade albuminuria was stronger in the subgroup of non-diabetic population. CONCLUSIONS Low-grade albuminuria was independently associated with incident NAFLD and a higher probability of fibrosis, especially among non-diabetic individuals.
Collapse
Affiliation(s)
- Zhuojun Xin
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shanshan Liu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jingya Niu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min Xu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tiange Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jieli Lu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuhong Chen
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weiqing Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guang Ning
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yufang Bi
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Xu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mian Li
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhiyun Zhao
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
31
|
Ong HT, Samsudin H, Soto-Valdez H. Migration of endocrine-disrupting chemicals into food from plastic packaging materials: an overview of chemical risk assessment, techniques to monitor migration, and international regulations. Crit Rev Food Sci Nutr 2020; 62:957-979. [DOI: 10.1080/10408398.2020.1830747] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Hooi-Theng Ong
- Seberang Perai Selatan District Health Office, Nibong Tebal, Pulau Pinang, Malaysia
| | - Hayati Samsudin
- Food Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Pulau Pinang, Malaysia
| | - Herlinda Soto-Valdez
- Laboratorio de Envases, Centro de Investigaciόn en Alimentaciόn y Desarrollo, A.C., Hermosillo Sonora, Mexico
| |
Collapse
|
32
|
Wang B, Wang S, Zhao Z, Chen Y, Xu Y, Li M, Xu M, Wang W, Ning G, Bi Y, Wang T. Bisphenol A exposure in relation to altered lipid profile and dyslipidemia among Chinese adults: A repeated measures study. ENVIRONMENTAL RESEARCH 2020; 184:109382. [PMID: 32192991 DOI: 10.1016/j.envres.2020.109382] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 03/10/2020] [Accepted: 03/10/2020] [Indexed: 06/10/2023]
Abstract
Animal experiments suggest that bisphenol A (BPA) could potentially induce lipid abnormalities. However, whether BPA exposure associates with altered lipid metabolism in humans has not been fully elucidated. We thus comprehensively investigated the relationship of BPA exposure and its change with lipid profile and development of incident dyslipidemia among Chinese adults. We initially included 1872 participants aged 40 years or older who were free of dyslipidemia at baseline in 2009, and followed them for 4 years. Urinary BPA and serum lipids including total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), and triglycerides (TG) were determined at baseline and follow-up. Linear mixed models were used for repeated measures analyses and linear and logistic regression models were used to evaluate longitudinal changes in lipid profile and risk of incident dyslipidemia. In repeated measures analyses, per doubling of urinary BPA concentrations was associated with higher serum levels of LDL-C, non-HDL-C, TC to HDL-C ratio, and lower levels of HDL-C and TG. In longitudinal change analyses, participants with high BPA at both baseline and follow-up showed an additional 2.94% increase in LDL-C (95% CI: 0.02%, 5.95%) and 6.12% increase in TG (95% CI: 0.74%, 11.8%), as compared with those who maintained low BPA. Furthermore, participants with sustained high BPA at two time points had increased odds of developing hyper-LDL cholesterolemia (odds ratio = 1.93, 95% CI: 1.02, 3.66). Our results suggested that high BPA exposure, especially maintained a long time period apart, was associated with deterioration of lipid profiles among middle-aged and elderly adults, supporting a detrimental role of BPA in lipid metabolism.
Collapse
Affiliation(s)
- Bin Wang
- State Key Laboratory of Medical Genomics, Key Laboratory for Endocrine and Metabolic Diseases of Ministry of Health, National Clinical Research Center for Metabolic Diseases, Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Shuangyuan Wang
- State Key Laboratory of Medical Genomics, Key Laboratory for Endocrine and Metabolic Diseases of Ministry of Health, National Clinical Research Center for Metabolic Diseases, Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Zhiyun Zhao
- State Key Laboratory of Medical Genomics, Key Laboratory for Endocrine and Metabolic Diseases of Ministry of Health, National Clinical Research Center for Metabolic Diseases, Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yuhong Chen
- State Key Laboratory of Medical Genomics, Key Laboratory for Endocrine and Metabolic Diseases of Ministry of Health, National Clinical Research Center for Metabolic Diseases, Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yiping Xu
- State Key Laboratory of Medical Genomics, Key Laboratory for Endocrine and Metabolic Diseases of Ministry of Health, National Clinical Research Center for Metabolic Diseases, Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Mian Li
- State Key Laboratory of Medical Genomics, Key Laboratory for Endocrine and Metabolic Diseases of Ministry of Health, National Clinical Research Center for Metabolic Diseases, Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Min Xu
- State Key Laboratory of Medical Genomics, Key Laboratory for Endocrine and Metabolic Diseases of Ministry of Health, National Clinical Research Center for Metabolic Diseases, Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Weiqing Wang
- State Key Laboratory of Medical Genomics, Key Laboratory for Endocrine and Metabolic Diseases of Ministry of Health, National Clinical Research Center for Metabolic Diseases, Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Guang Ning
- State Key Laboratory of Medical Genomics, Key Laboratory for Endocrine and Metabolic Diseases of Ministry of Health, National Clinical Research Center for Metabolic Diseases, Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yufang Bi
- State Key Laboratory of Medical Genomics, Key Laboratory for Endocrine and Metabolic Diseases of Ministry of Health, National Clinical Research Center for Metabolic Diseases, Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Tiange Wang
- State Key Laboratory of Medical Genomics, Key Laboratory for Endocrine and Metabolic Diseases of Ministry of Health, National Clinical Research Center for Metabolic Diseases, Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
33
|
Hunt PA, Vom Saal FS, Stahlhut R, Gerona R. BPA and risk assessment - Authors' reply. Lancet Diabetes Endocrinol 2020; 8:271-272. [PMID: 32197112 DOI: 10.1016/s2213-8587(20)30071-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 02/17/2020] [Indexed: 12/18/2022]
Affiliation(s)
- Patricia A Hunt
- School of Molecular Biosciences, Center for Reproductive Biology, Washington State University, Pullman, WA 99164, USA.
| | | | | | - Roy Gerona
- School of Medicine, University of California, San Francisco, CA, USA
| |
Collapse
|
34
|
Kim JJ, Kumar S, Kumar V, Lee YM, Kim YS, Kumar V. Bisphenols as a Legacy Pollutant, and Their Effects on Organ Vulnerability. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 17:E112. [PMID: 31877889 PMCID: PMC6982222 DOI: 10.3390/ijerph17010112] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 12/18/2019] [Accepted: 12/19/2019] [Indexed: 12/21/2022]
Abstract
Bisphenols are widely used in the synthesis of polycarbonate plastics, epoxy resins, and thermal paper, which are used in manufacturing items of daily use. Packaged foods and drinks are the main sources of exposure to bisphenols. These chemicals affect humans and animals by disrupting the estrogen, androgen, progesterone, thyroid, and aryl hydrocarbon receptor functions. Bisphenols exert numerous harmful effects because of their interaction with receptors, reactive oxygen species (ROS) formation, lipid peroxidation, mitochondrial dysfunction, and cell signal alterations. Both cohort and case-control studies have determined an association between bisphenol exposure and increased risk of cardiovascular diseases, neurological disorders, reproductive abnormalities, obesity, and diabetes. Prenatal exposure to bisphenols results in developmental disorders in animals. These chemicals also affect the immune cells and play a significant role in initiating the inflammatory response. Exposure to bisphenols exhibit age, gender, and dose-dependent effects. Even at low concentrations, bisphenols exert toxicity, and hence deserve a critical assessment of their uses. Since bisphenols have a global influence on human health, the need to discover the underlying pathways involved in all disease conditions is essential. Furthermore, it is important to promote the use of alternatives for bisphenols, thereby restricting their uses.
Collapse
Affiliation(s)
- Jong-Joo Kim
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Korea; (J.-J.K.); (Y.-M.L.); (Y.-S.K.)
| | - Surendra Kumar
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi 110029, India;
| | - Vinay Kumar
- Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh 758307, Vietnam;
| | - Yun-Mi Lee
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Korea; (J.-J.K.); (Y.-M.L.); (Y.-S.K.)
| | - You-Sam Kim
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Korea; (J.-J.K.); (Y.-M.L.); (Y.-S.K.)
| | - Vijay Kumar
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Korea; (J.-J.K.); (Y.-M.L.); (Y.-S.K.)
| |
Collapse
|