1
|
Wang S, Tong S, Jin X, Li N, Dang P, Sui Y, Liu Y, Wang D. Single-cell RNA sequencing analysis of the retina under acute high intraocular pressure. Neural Regen Res 2024; 19:2522-2531. [PMID: 38526288 PMCID: PMC11090430 DOI: 10.4103/1673-5374.389363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/27/2023] [Accepted: 09/13/2023] [Indexed: 03/26/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202419110-00032/figure1/v/2024-03-08T184507Z/r/image-tiff High intraocular pressure causes retinal ganglion cell injury in primary and secondary glaucoma diseases, yet the molecular landscape characteristics of retinal cells under high intraocular pressure remain unknown. Rat models of acute hypertension ocular pressure were established by injection of cross-linked hyaluronic acid hydrogel (Healaflow®). Single-cell RNA sequencing was then used to describe the cellular composition and molecular profile of the retina following high intraocular pressure. Our results identified a total of 12 cell types, namely retinal pigment epithelial cells, rod-photoreceptor cells, bipolar cells, Müller cells, microglia, cone-photoreceptor cells, retinal ganglion cells, endothelial cells, retinal progenitor cells, oligodendrocytes, pericytes, and fibroblasts. The single-cell RNA sequencing analysis of the retina under acute high intraocular pressure revealed obvious changes in the proportions of various retinal cells, with ganglion cells decreased by 23%. Hematoxylin and eosin staining and TUNEL staining confirmed the damage to retinal ganglion cells under high intraocular pressure. We extracted data from retinal ganglion cells and analyzed the retinal ganglion cell cluster with the most distinct expression. We found upregulation of the B3gat2 gene, which is associated with neuronal migration and adhesion, and downregulation of the Tsc22d gene, which participates in inhibition of inflammation. This study is the first to reveal molecular changes and intercellular interactions in the retina under high intraocular pressure. These data contribute to understanding of the molecular mechanism of retinal injury induced by high intraocular pressure and will benefit the development of novel therapies.
Collapse
Affiliation(s)
- Shaojun Wang
- Division of Ophthalmology, The Third Medical Center of PLA General Hospital, Beijing, China
| | - Siti Tong
- Division of Ophthalmology, The Third Medical Center of PLA General Hospital, Beijing, China
| | - Xin Jin
- Division of Ophthalmology, The Third Medical Center of PLA General Hospital, Beijing, China
| | - Na Li
- Division of Ophthalmology, The Third Medical Center of PLA General Hospital, Beijing, China
| | - Pingxiu Dang
- Division of Ophthalmology, The Third Medical Center of PLA General Hospital, Beijing, China
| | - Yang Sui
- Division of Ophthalmology, The Third Medical Center of PLA General Hospital, Beijing, China
| | - Ying Liu
- Department of Ophthalmology, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
| | - Dajiang Wang
- Division of Ophthalmology, The Third Medical Center of PLA General Hospital, Beijing, China
| |
Collapse
|
2
|
Li J, Li C, Wu X, Yu S, Sun G, Ding P, Lu S, Zhang L, Yang P, Peng Y, Fu J, Wang L. Bioinformatics analysis of immune infiltration in human diabetic retinopathy and identification of immune-related hub genes and their ceRNA networks. Sci Rep 2024; 14:24003. [PMID: 39402134 PMCID: PMC11473686 DOI: 10.1038/s41598-024-75055-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 10/01/2024] [Indexed: 10/17/2024] Open
Abstract
Diabetic retinopathy (DR) is the most common microvascular complication in diabetic patients, and recent studies have shown that immune regulatory mechanisms are closely associated with retinal damage in DR. Therefore, this study focused on exploring immune cells and immune-related genes (IRGs) in DR and gaining insight into the ceRNA mechanisms by which IRGs regulate DR progression. Four datasets from human DR model retinal tissues were obtained from the Gene Expression Omnibus (GEO) database. R software was first used to identify differentially expressed mRNAs (DE-mRNAs) in the dataset GSE160306-mRNAs, then the distribution of immune cells in the gene matrix was analyzed by xCell and ImmuCellAI, ImmPort and InnateDB database were used to obtain immune-related hub genes (IRHGs) in the DR, and finally the STRING online tool and Cytoscape to construct the immune-related ceRNA network. The datasets GSE102485, GSE160308 and GSE160306-lncRNAs were used to validate the results of the ceRNA network further. The results of immune cell infiltration analysis showed that macrophages are important immune cells in DR; immune-related gene screening showed that FCGR2B is an IRHG in DR, and 2 immune-related ceRNA networks of IRHG were obtained: DDN-AS1/miR-10a-5p/FCGR2B and LINC01515/miR-10a-5p/FCGR2B. Our study suggests that infiltration of immune cells, especially the immune role of macrophages, is an important component of DR progression; the immune-related hub gene FCGR2B and its ceRNA network may be a key regulatory network for DR progression. The discovery of key immune cells, IRHG and ceRNA networks in this study may provide new prospects for early intervention and targeted treatment of DR.
Collapse
Affiliation(s)
- Jingru Li
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, No. 295, Xichang Road, Wuhua District, Kunming, 650032, Yunnan, China
| | - Chaozhong Li
- Department of Emergency Medicine, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan, China
| | - Xinyu Wu
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, No. 295, Xichang Road, Wuhua District, Kunming, 650032, Yunnan, China
| | - Shuai Yu
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, No. 295, Xichang Road, Wuhua District, Kunming, 650032, Yunnan, China
| | - Guihu Sun
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, No. 295, Xichang Road, Wuhua District, Kunming, 650032, Yunnan, China
| | - Peng Ding
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, No. 295, Xichang Road, Wuhua District, Kunming, 650032, Yunnan, China
| | - Si Lu
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, No. 295, Xichang Road, Wuhua District, Kunming, 650032, Yunnan, China
| | - Lijiao Zhang
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, No. 295, Xichang Road, Wuhua District, Kunming, 650032, Yunnan, China
| | - Ping Yang
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, No. 295, Xichang Road, Wuhua District, Kunming, 650032, Yunnan, China
| | - Yunzhu Peng
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, No. 295, Xichang Road, Wuhua District, Kunming, 650032, Yunnan, China
| | - Jingyun Fu
- Department of Endocrinology, The First Affiliated Hospital of Kunming Medical University, No. 295, Xichang Road, Wuhua District, Kunming, 650032, Yunnan, China.
| | - Luqiao Wang
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, No. 295, Xichang Road, Wuhua District, Kunming, 650032, Yunnan, China.
| |
Collapse
|
3
|
Yang H, Han RY, Gong RW, Zhang YJ, Yang SS, Xu GZ, Liu W. CST3 alleviates retinal vascular leakage by regulating the Rap1 signaling pathway. Exp Eye Res 2024; 247:110042. [PMID: 39147193 DOI: 10.1016/j.exer.2024.110042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 06/21/2024] [Accepted: 08/12/2024] [Indexed: 08/17/2024]
Abstract
Retinal vascular leakage is a major event in several retinal diseases, including diabetic retinopathy (DR). In a previous study, we demonstrated that the aqueous humor concentration of Cystatin C (CST3), a physiological inhibitor of cysteine protease, is negatively correlated with the severity of diabetic macular edema. However, its function in the retina has not been clearly elucidated. In this study, we found a significant decrease in the aqueous humor concentration of CST3 with DR progression. Furthermore, we found that CST3 was expressed in retinal endothelial cells and that its expression was significantly downregulated in high glucose-treated human retinal microvascular endothelial cells (HRMECs) and the retinal vessels of oxygen-induced retinopathy (OIR) mice. Silencing CST3 expression resulted in decreased HRMEC migration and tubule formation ability. Exogenous addition of the CST3 protein significantly improved HRMEC migration and tubular formation. In-vivo experiments demonstrated that CST3 silencing induced retinal vascular leakage in WT mice, while its intravitreal injection significantly reduced retinal leakage in OIR mice. Mechanistically, CST3 promoted the expression of the downstream adhesion molecules, claudin5, VE-cadherin, and ZO-1, in retinal vascular cells by regulating the Rap1 signaling pathway. Therefore, this study revealed a novel mechanism by which CST3 improves retinal vascular function and provided evidence that it is a potential therapeutic target for retinal vascular leakage.
Collapse
Affiliation(s)
- Hong Yang
- Department of Ophthalmology, Eye, ENT Hospital of Fudan University, Shanghai, 200031, China; Shanghai Key Laboratory of Visual Impairment, Restoration, Fudan University, Shanghai, 200031, China
| | - Ru-Yi Han
- Department of Ophthalmology, Eye, ENT Hospital of Fudan University, Shanghai, 200031, China; Shanghai Key Laboratory of Visual Impairment, Restoration, Fudan University, Shanghai, 200031, China
| | - Ruo-Wen Gong
- Department of Ophthalmology, Eye, ENT Hospital of Fudan University, Shanghai, 200031, China; Shanghai Key Laboratory of Visual Impairment, Restoration, Fudan University, Shanghai, 200031, China
| | - Ya-Juan Zhang
- Sixth Affiliated Hospital of Kunming Medical University, Yun Nan, 653100, China
| | - Shi-Shi Yang
- Sixth Affiliated Hospital of Kunming Medical University, Yun Nan, 653100, China
| | - Ge-Zhi Xu
- Department of Ophthalmology, Eye, ENT Hospital of Fudan University, Shanghai, 200031, China; Shanghai Key Laboratory of Visual Impairment, Restoration, Fudan University, Shanghai, 200031, China.
| | - Wei Liu
- Department of Ophthalmology, Eye, ENT Hospital of Fudan University, Shanghai, 200031, China; Shanghai Key Laboratory of Visual Impairment, Restoration, Fudan University, Shanghai, 200031, China.
| |
Collapse
|
4
|
Zhou Y, Zhou W, Rao Y, He J, Huang Y, Zhao P, Li J. Dysregulated energy and protein homeostasis and the loss of GABAergic amacrine cells in aging retina. Exp Eye Res 2024; 245:109985. [PMID: 38945518 DOI: 10.1016/j.exer.2024.109985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/30/2024] [Accepted: 06/27/2024] [Indexed: 07/02/2024]
Abstract
Aging is a major risk factor for the development or the worsening of retinal degenerative conditions. The intricate network of the neural retina determined that the retinal aging is a complicated process. The aim of this study is to delineate the transcriptomic changes of major retinal neurons during aging in C57BL/6 mice at single-cell level. We analyzed the transcriptional profiles of the photoreceptor, bipolar, amacrine, and Müller glial cells of 1.5-2 and 24-30 months old mice using single-cell RNA sequencing technique. We selectively confirmed the differences in gene expression using immunofluorescence staining and RNA in situ hybridization analysis. We found that each retinal cell type had unique changes upon aging. However, they all showed signs of dysregulated glucose and energy metabolism, and perturbed proteostasis. In particular, old Müller glia exhibited the most profound changes, including the upregulation of cell metabolism, stress-responses, antigen-presentation and immune responses and metal ion homeostasis. The dysregulated gliogenesis and differentiation was confirmed by the presence of Müller glia expressing rod-specific genes in the inner nuclear layer and the outer plexiform layer of the old retina. We further pinpointed the specific loss of GABAergic amacrine cells in old retina. Our study emphasized changes of amacrine and Müller glia during retinal aging, provided resources for further research on the molecular and cellular regulatory mechanisms underlying aging-associated retinal deterioration.
Collapse
Affiliation(s)
- Yutong Zhou
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Wenchuan Zhou
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Yuqing Rao
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Jincan He
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Yue Huang
- Department of Ophthalmology, Chongming Hospital Affiliated to Shanghai University of Medicine and Health Sciences, Shanghai, 202150, China
| | - Peiquan Zhao
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| | - Jing Li
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| |
Collapse
|
5
|
Ren L, Xia J, Huang C, Bai Y, Yao J, Li D, Yan B. Single-cell transcriptomic analysis reveals the antiangiogenic role of Mgarp in diabetic retinopathy. BMJ Open Diabetes Res Care 2024; 12:e004189. [PMID: 39013633 PMCID: PMC11268071 DOI: 10.1136/bmjdrc-2024-004189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 06/27/2024] [Indexed: 07/18/2024] Open
Abstract
INTRODUCTION Diabetic retinopathy (DR) is a common vascular complication of diabetes mellitus and a leading cause of vision loss worldwide. Endothelial cell (EC) heterogeneity has been observed in the pathogenesis of DR. Elucidating the underlying mechanisms governing EC heterogeneity may provide novel insights into EC-specific therapies for DR. RESEARCH DESIGN AND METHODS We used the single-cell data from the Gene Expression Omnibus database to explore EC heterogeneity between diabetic retinas and non-diabetic retinas and identify the potential genes involved in DR. CCK-8 assays, EdU assays, transwell assays, and tube formation assays were conducted to determine the role of the identified gene in angiogenic effects. RESULTS Our analysis identified three distinct EC subpopulations in retinas and revealed that Mitochondria-localized glutamic acid-rich protein (Mgarp) gene is potentially involved in the pathogenesis of DR. Silencing of Mgarp significantly suppressed the proliferation, migration, and tube formation capacities in retinal endothelial cells. CONCLUSIONS This study not only offers new insights into transcriptomic heterogeneity and pathological alteration of retinal ECs but also holds the promise to pave the way for antiangiogenic therapy by targeting EC-specific gene.
Collapse
Affiliation(s)
- Ling Ren
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, People's Republic of China
| | - Jiao Xia
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Chang Huang
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, People's Republic of China
| | - Yun Bai
- College of Information Science, Shanghai Ocean University, Shanghai, People's Republic of China
| | - Jin Yao
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, People's Republic of China
| | - Dan Li
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, People's Republic of China
| | - Biao Yan
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| |
Collapse
|
6
|
Li J, Zhao T, Sun Y. Interleukin-17A in diabetic retinopathy: The crosstalk of inflammation and angiogenesis. Biochem Pharmacol 2024; 225:116311. [PMID: 38788958 DOI: 10.1016/j.bcp.2024.116311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 05/19/2024] [Accepted: 05/21/2024] [Indexed: 05/26/2024]
Abstract
Diabetic retinopathy (DR) is a severe ocular complication of diabetes which can leads to irreversible vision loss in its late-stage. Chronic inflammation results from long-term hyperglycemia contributes to the pathogenesis and progression of DR. In recent years, the interleukin-17 (IL-17) family have attracted the interest of researchers. IL-17A is the most widely explored cytokine in IL-17 family, involved in various acute and chronic inflammatory diseases. Growing body of evidence indicate the role of IL-17A in the pathogenesis of DR. However, the pro-inflammatory and pro-angiogenic effect of IL-17A in DR have not hitherto been reviewed. Gaining an understanding of the pro-inflammatory role of IL-17A, and how IL-17A control/impact angiogenesis pathways in the eye will deepen our understanding of how IL-17A contributes to DR pathogenesis. Herein, we aimed to thoroughly review the pro-inflammatory role of IL-17A in DR, with focus in how IL-17A impact inflammation and angiogenesis crosstalk.
Collapse
Affiliation(s)
- Jiani Li
- Department of Ophthalmology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
| | - Tantai Zhao
- Department of Ophthalmology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
| | - Yun Sun
- Department of Ophthalmology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China.
| |
Collapse
|
7
|
Li T, Qian Y, Li H, Wang T, Jiang Q, Wang Y, Zhu Y, Li S, He X, Shi G, Su W, Lu Y, Chen Y. Cellular communication network factor 1 promotes retinal leakage in diabetic retinopathy via inducing neutrophil stasis and neutrophil extracellular traps extrusion. Cell Commun Signal 2024; 22:275. [PMID: 38755602 PMCID: PMC11097549 DOI: 10.1186/s12964-024-01653-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 05/07/2024] [Indexed: 05/18/2024] Open
Abstract
BACKGROUND Diabetic retinopathy (DR) is a major cause of blindness and is characterized by dysfunction of the retinal microvasculature. Neutrophil stasis, resulting in retinal inflammation and the occlusion of retinal microvessels, is a key mechanism driving DR. These plugging neutrophils subsequently release neutrophil extracellular traps (NETs), which further disrupts the retinal vasculature. Nevertheless, the primary catalyst for NETs extrusion in the retinal microenvironment under diabetic conditions remains unidentified. In recent studies, cellular communication network factor 1 (CCN1) has emerged as a central molecule modulating inflammation in pathological settings. Additionally, our previous research has shed light on the pathogenic role of CCN1 in maintaining endothelial integrity. However, the precise role of CCN1 in microvascular occlusion and its potential interaction with neutrophils in diabetic retinopathy have not yet been investigated. METHODS We first examined the circulating level of CCN1 and NETs in our study cohort and analyzed related clinical parameters. To further evaluate the effects of CCN1 in vivo, we used recombinant CCN1 protein and CCN1 overexpression for gain-of-function, and CCN1 knockdown for loss-of-function by intravitreal injection in diabetic mice. The underlying mechanisms were further validated on human and mouse primary neutrophils and dHL60 cells. RESULTS We detected increases in CCN1 and neutrophil elastase in the plasma of DR patients and the retinas of diabetic mice. CCN1 gain-of-function in the retina resulted in neutrophil stasis, NETs extrusion, capillary degeneration, and retinal leakage. Pre-treatment with DNase I to reduce NETs effectively eliminated CCN1-induced retinal leakage. Notably, both CCN1 knockdown and DNase I treatment rescued the retinal leakage in the context of diabetes. In vitro, CCN1 promoted adherence, migration, and NETs extrusion of neutrophils. CONCLUSION In this study, we uncover that CCN1 contributed to retinal inflammation, vessel occlusion and leakage by recruiting neutrophils and triggering NETs extrusion under diabetic conditions. Notably, manipulating CCN1 was able to hold therapeutic promise for the treatment of diabetic retinopathy.
Collapse
Affiliation(s)
- Ting Li
- Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Diabetology, Guangzhou Key Laboratory of Mechanistic and Translational Obesity Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Yixia Qian
- Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Diabetology, Guangzhou Key Laboratory of Mechanistic and Translational Obesity Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Haicheng Li
- Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Diabetology, Guangzhou Key Laboratory of Mechanistic and Translational Obesity Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Tongtong Wang
- Department of Clinical Immunology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Qi Jiang
- Department of Ocular Immunology & Uveitis, State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou, 510515, China
| | - Yuchan Wang
- Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Diabetology, Guangzhou Key Laboratory of Mechanistic and Translational Obesity Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Yanhua Zhu
- Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Diabetology, Guangzhou Key Laboratory of Mechanistic and Translational Obesity Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Shasha Li
- Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Diabetology, Guangzhou Key Laboratory of Mechanistic and Translational Obesity Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Xuemin He
- Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Diabetology, Guangzhou Key Laboratory of Mechanistic and Translational Obesity Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Guojun Shi
- Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Diabetology, Guangzhou Key Laboratory of Mechanistic and Translational Obesity Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Wenru Su
- Department of Ocular Immunology & Uveitis, State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou, 510515, China
| | - Yan Lu
- Department of Clinical Immunology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China.
| | - Yanming Chen
- Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Diabetology, Guangzhou Key Laboratory of Mechanistic and Translational Obesity Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China.
- Department of Clinical Immunology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China.
| |
Collapse
|
8
|
Noguchi Y, Onodera Y, Miyamoto T, Maruoka M, Kosako H, Suzuki J. In vivo CRISPR screening directly targeting testicular cells. CELL GENOMICS 2024; 4:100510. [PMID: 38447574 PMCID: PMC10943590 DOI: 10.1016/j.xgen.2024.100510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 12/10/2023] [Accepted: 02/06/2024] [Indexed: 03/08/2024]
Abstract
CRISPR-Cas9 short guide RNA (sgRNA) library screening is a powerful approach to understand the molecular mechanisms of biological phenomena. However, its in vivo application is currently limited. Here, we developed our previously established in vitro revival screening method into an in vivo one to identify factors involved in spermatogenesis integrity by utilizing sperm capacitation as an indicator. By introducing an sgRNA library into testicular cells, we successfully pinpointed the retinal degeneration 3 (Rd3) gene as a significant factor in spermatogenesis. Single-cell RNA sequencing (scRNA-seq) analysis highlighted the high expression of Rd3 in round spermatids, and proteomics analysis indicated that Rd3 interacts with mitochondria. To search for cell-type-specific signaling pathways based on scRNA-seq and proteomics analyses, we developed a computational tool, Hub-Explorer. Through this, we discovered that Rd3 modulates oxidative stress by regulating mitochondrial distribution upon ciliogenesis induction. Collectively, our screening system provides a valuable in vivo approach to decipher molecular mechanisms in biological processes.
Collapse
Affiliation(s)
- Yuki Noguchi
- Graduate School of Biostudies, Kyoto University, Konoe-cho, Yoshida, Sakyoku, Kyoto 606-8501, Japan; Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-Honmachi, Sakyoku, Kyoto 606-8501, Japan
| | - Yasuhito Onodera
- Global Center for Biomedical Science and Engineering, Faculty of Medicine, Hokkaido University, N15W7 Kita-ku, Sapporo, Hokkaido 060-8638, Japan
| | - Tatsuo Miyamoto
- Department of Molecular and Cellular Physiology, Yamaguchi University, Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505, Japan
| | - Masahiro Maruoka
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-Honmachi, Sakyoku, Kyoto 606-8501, Japan; Center for Integrated Biosystems, Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Hidetaka Kosako
- Division of Cell Signaling, Fujii Memorial Institute of Medical Sciences, Institute of Advanced Medical Sciences, Tokushima University, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| | - Jun Suzuki
- Graduate School of Biostudies, Kyoto University, Konoe-cho, Yoshida, Sakyoku, Kyoto 606-8501, Japan; Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-Honmachi, Sakyoku, Kyoto 606-8501, Japan; Center for Integrated Biosystems, Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan; CREST, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012, Japan.
| |
Collapse
|
9
|
Pfaller AM, Kaplan L, Carido M, Grassmann F, Díaz-Lezama N, Ghaseminejad F, Wunderlich KA, Glänzer S, Bludau O, Pannicke T, Weber BHF, Koch SF, Bonev B, Hauck SM, Grosche A. The glucocorticoid receptor as a master regulator of the Müller cell response to diabetic conditions in mice. J Neuroinflammation 2024; 21:33. [PMID: 38273366 PMCID: PMC10809506 DOI: 10.1186/s12974-024-03021-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 01/11/2024] [Indexed: 01/27/2024] Open
Abstract
Diabetic retinopathy (DR) is considered a primarily microvascular complication of diabetes. Müller glia cells are at the centre of the retinal neurovascular unit and play a critical role in DR. We therefore investigated Müller cell-specific signalling pathways that are altered in DR to identify novel targets for gene therapy. Using a multi-omics approach on purified Müller cells from diabetic db/db mice, we found the mRNA and protein expression of the glucocorticoid receptor (GR) to be significantly decreased, while its target gene cluster was down-regulated. Further, oPOSSUM TF analysis and ATAC- sequencing identified the GR as a master regulator of Müller cell response to diabetic conditions. Cortisol not only increased GR phosphorylation. It also induced changes in the expression of known GR target genes in retinal explants. Finally, retinal functionality was improved by AAV-mediated overexpression of GR in Müller cells. Our study demonstrates an important role of the glial GR in DR and implies that therapeutic approaches targeting this signalling pathway should be aimed at increasing GR expression rather than the addition of more ligand.
Collapse
Affiliation(s)
- Anna M Pfaller
- Department of Physiological Genomics, Biomedical Center-BMC, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Lew Kaplan
- Department of Physiological Genomics, Biomedical Center-BMC, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Madalena Carido
- Helmholtz Pioneer Campus, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Felix Grassmann
- Institute of Clinical Human Genetics, University Hospital Regensburg, Regensburg, Germany
- Institute for Clinical Research and Systems Medicine, Health and Medical University, Potsdam, Germany
| | - Nundehui Díaz-Lezama
- Department of Physiological Genomics, Biomedical Center-BMC, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Farhad Ghaseminejad
- Department of Physiological Genomics, Biomedical Center-BMC, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Kirsten A Wunderlich
- Department of Physiological Genomics, Biomedical Center-BMC, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
- Institute for Molecular Medicine, Health and Medical University, Potsdam, Germany
| | - Sarah Glänzer
- Department of Physiological Genomics, Biomedical Center-BMC, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Oliver Bludau
- Department of Physiological Genomics, Biomedical Center-BMC, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Thomas Pannicke
- Paul Flechsig Institute for Brain Research, University of Leipzig, Leipzig, Germany
| | - Bernhard H F Weber
- Institute of Clinical Human Genetics, University Hospital Regensburg, Regensburg, Germany
- Institute of Human Genetics, University Regensburg, Regensburg, Germany
| | - Susanne F Koch
- Department of Physiological Genomics, Biomedical Center-BMC, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Boyan Bonev
- Department of Physiological Genomics, Biomedical Center-BMC, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
- Helmholtz Pioneer Campus, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Stefanie M Hauck
- Metabolomics and Proteomics Core, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Antje Grosche
- Department of Physiological Genomics, Biomedical Center-BMC, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany.
| |
Collapse
|
10
|
Shigesada N, Shikada N, Shirai M, Toriyama M, Higashijima F, Kimura K, Kondo T, Bessho Y, Shinozuka T, Sasai N. Combination of blockade of endothelin signalling and compensation of IGF1 expression protects the retina from degeneration. Cell Mol Life Sci 2024; 81:51. [PMID: 38252153 PMCID: PMC10803390 DOI: 10.1007/s00018-023-05087-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 12/01/2023] [Accepted: 12/12/2023] [Indexed: 01/23/2024]
Abstract
Retinitis pigmentosa (RP) and macular dystrophy (MD) cause severe retinal dysfunction, affecting 1 in 4000 people worldwide. This disease is currently assumed to be intractable, because effective therapeutic methods have not been established, regardless of genetic or sporadic traits. Here, we examined a RP mouse model in which the Prominin-1 (Prom1) gene was deficient and investigated the molecular events occurring at the outset of retinal dysfunction. We extracted the Prom1-deficient retina subjected to light exposure for a short time, conducted single-cell expression profiling, and compared the gene expression with and without stimuli. We identified the cells and genes whose expression levels change directly in response to light stimuli. Among the genes altered by light stimulation, Igf1 was decreased in rod photoreceptor cells and astrocytes under the light-stimulated condition. Consistently, the insulin-like growth factor (IGF) signal was weakened in light-stimulated photoreceptor cells. The recovery of Igf1 expression with the adeno-associated virus (AAV) prevented photoreceptor cell death, and its treatment in combination with the endothelin receptor antagonist led to the blockade of abnormal glial activation and the promotion of glycolysis, thereby resulting in the improvement of retinal functions, as assayed by electroretinography. We additionally demonstrated that the attenuation of mammalian/mechanistic target of rapamycin (mTOR), which mediates IGF signalling, leads to complications in maintaining retinal homeostasis. Together, we propose that combinatorial manipulation of distinct mechanisms is useful for the maintenance of the retinal condition.
Collapse
Affiliation(s)
- Naoya Shigesada
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, 630-0192, Japan
| | - Naoya Shikada
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, 630-0192, Japan
| | - Manabu Shirai
- Omics Research Center (ORC), National Cerebral and Cardiovascular Center, Suita, Osaka, 564-8565, Japan
| | - Michinori Toriyama
- Department of Biomedical Chemistry, School of Science and Technology, Kwansei Gakuin University, Sanda, 669-1337, Japan
| | - Fumiaki Higashijima
- Department of Ophthalmology, Graduate School of Medicine, Yamaguchi University, Ube, 755-0046, Japan
| | - Kazuhiro Kimura
- Department of Ophthalmology, Graduate School of Medicine, Yamaguchi University, Ube, 755-0046, Japan
| | - Toru Kondo
- Division of Stem Cell Biology, Institute for Genetic Medicine, Hokkaido University, Sapporo, 060-0815, Japan
| | - Yasumasa Bessho
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, 630-0192, Japan
| | - Takuma Shinozuka
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, 630-0192, Japan
| | - Noriaki Sasai
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, 630-0192, Japan.
| |
Collapse
|
11
|
Li M, Peng Y, Pang L, Wang L, Li J. Single-Cell RNA Sequencing Reveals Transcriptional Signatures and Cell-Cell Communication in Diabetic Retinopathy. Endocr Metab Immune Disord Drug Targets 2024; 24:1651-1663. [PMID: 38988068 DOI: 10.2174/0118715303286652240214110511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/21/2024] [Accepted: 01/31/2024] [Indexed: 07/12/2024]
Abstract
BACKGROUND Diabetic retinopathy (DR) is a major cause of vision loss in workingage individuals worldwide. Cell-to-cell communication between retinal cells and retinal pigment epithelial cells (RPEs) in DR is still unclear, so this study aimed to generate a single-cell atlas and identify receptor‒ligand communication between retinal cells and RPEs. METHODS A mouse single-cell RNA sequencing (scRNA-seq) dataset was retrieved from the GEO database (GSE178121) and was further analyzed with the R package Seurat. Cell cluster annotation was performed to further analyze cell‒cell communication. The differentially expressed genes (DEGs) in RPEs were explored through pathway enrichment analysis and the protein‒ protein interaction (PPI) network. Core genes in the PPI were verified by quantitative PCR in ARPE-19 cells. RESULTS We observed an increased proportion of RPEs in STZ mice. Although some overall intercellular communication pathways did not differ significantly in the STZ and control groups, RPEs relayed significantly more signals in the STZ group. In addition, THBS1, ITGB1, COL9A3, ITGB8, VTN, TIMP2, and FBN1 were found to be the core DEGs of the PPI network in RPEs. qPCR results showed that the expression of ITGB1, COL9A3, ITGB8, VTN, TIMP2, and FBN1 was higher and consistent with scRNA-seq results in ARPE-19 cells under hyperglycemic conditions. CONCLUSION Our study, for the first time, investigated how signals that RPEs relay to and from other cells underly the progression of DR based on scRNA-seq. These signaling pathways and hub genes may provide new insights into DR mechanisms and therapeutic targets.
Collapse
Affiliation(s)
- Muye Li
- Department of Vitreoretinopathy, Shanxi Eye Hospital Affiliated to Shanxi Medical University, Taiyuan, 030002, China
| | - Yueling Peng
- Department of Nephrology, Shanxi Provincial People's Hospital (Fifth Hospital of Shanxi Medical University), Taiyuan, 030012, China
| | - Lin Pang
- Department of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan, 030001, China
| | - Lin Wang
- Department of Vitreoretinopathy, Shanxi Eye Hospital Affiliated to Shanxi Medical University, Taiyuan, 030002, China
| | - Junhong Li
- Department of Strabismus and Pediatric, Shanxi Eye Hospital Affiliated to Shanxi Medical University, Taiyuan, 030002, China
| |
Collapse
|
12
|
He S, Sun L, Chen J, Ouyang Y. Recent Advances and Perspectives in Relation to the Metabolomics-Based Study of Diabetic Retinopathy. Metabolites 2023; 13:1007. [PMID: 37755287 PMCID: PMC10536395 DOI: 10.3390/metabo13091007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 09/03/2023] [Accepted: 09/05/2023] [Indexed: 09/28/2023] Open
Abstract
Diabetic retinopathy (DR), a prevalent microvascular complication of diabetes, is a major cause of acquired blindness in adults. Currently, a clinical diagnosis of DR primarily relies on fundus fluorescein angiography, with a limited availability of effective biomarkers. Metabolomics, a discipline dedicated to scrutinizing the response of various metabolites within living organisms, has shown noteworthy advancements in uncovering metabolic disorders and identifying key metabolites associated with DR in recent years. Consequently, this review aims to present the latest advancements in metabolomics techniques and comprehensively discuss the principal metabolic outcomes derived from analyzing blood, vitreous humor, aqueous humor, urine, and fecal samples.
Collapse
Affiliation(s)
| | | | | | - Yang Ouyang
- Department of Health Inspection and Quarantine, School of Public Health, Fujian Medical University, Fuzhou 350122, China; (S.H.)
| |
Collapse
|
13
|
Chen K, Wang Y, Huang Y, Liu X, Tian X, Yang Y, Dong A. Cross-species scRNA-seq reveals the cellular landscape of retina and early alterations in type 2 diabetes mice. Genomics 2023; 115:110644. [PMID: 37279838 DOI: 10.1016/j.ygeno.2023.110644] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 05/12/2023] [Accepted: 05/19/2023] [Indexed: 06/08/2023]
Abstract
Single-cell RNA sequencing (scRNA-seq) analysis have provided an unprecedented resolution for the studies on diabetic retinopathy (DR). However, the early changes in the retina in diabetes remain unclear. A total of 8 human and mouse scRNA-seq datasets, containing 276,402 cells were analyzed individually to comprehensively delineate the retinal cell atlas. The neural retinas were isolated from the type 2 diabetes (T2D) and control mice, and scRNA-seq analysis was conducted to evaluate the early effects of diabetes on the retina. Bipolar cell (BC) heterogeneity were identified. We found some stable BCs across multiple datasets, and explored their biological functions. A new RBC subtype (Car8_RBC) in the mouse retina was validated using the multi-color immunohistochemistry. AC149090.1 was significantly upregulated in the rod cells, ON cone BCs (CBCs), OFF CBCs, and RBCs in T2D mice. Additionally, the interneurons, especially BCs, were the most vulnerable cells to diabetes by integrating scRNA-seq and genome-wide association studies (GWAS) analyses. In conclusion, this study delineated a cross-species retinal cell atlas and uncovered the early pathological alterations in the retina of T2D mice.
Collapse
Affiliation(s)
- Kai Chen
- Department of General Surgery, Peking University First Hospital, Beijing 100034, China
| | - Yinhao Wang
- Department of Ophthalmology, First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang 310003, China
| | - Youyuan Huang
- Department of Endocrinology, Peking University First Hospital, Beijing 100034, China
| | - Xinxin Liu
- Department of General Surgery, Peking University First Hospital, Beijing 100034, China
| | - Xiaodong Tian
- Department of General Surgery, Peking University First Hospital, Beijing 100034, China.
| | - Yinmo Yang
- Department of General Surgery, Peking University First Hospital, Beijing 100034, China.
| | - Aimei Dong
- Department of Endocrinology, Peking University First Hospital, Beijing 100034, China; Department of General Practice, Peking University First Hospital, Beijing 100034, China.
| |
Collapse
|
14
|
Padovani-Claudio DA, Ramos CJ, Capozzi ME, Penn JS. Elucidating glial responses to products of diabetes-associated systemic dyshomeostasis. Prog Retin Eye Res 2023; 94:101151. [PMID: 37028118 PMCID: PMC10683564 DOI: 10.1016/j.preteyeres.2022.101151] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 04/08/2023]
Abstract
Diabetic retinopathy (DR) is a leading cause of blindness in working age adults. DR has non-proliferative stages, characterized in part by retinal neuroinflammation and ischemia, and proliferative stages, characterized by retinal angiogenesis. Several systemic factors, including poor glycemic control, hypertension, and hyperlipidemia, increase the risk of DR progression to vision-threatening stages. Identification of cellular or molecular targets in early DR events could allow more prompt interventions pre-empting DR progression to vision-threatening stages. Glia mediate homeostasis and repair. They contribute to immune surveillance and defense, cytokine and growth factor production and secretion, ion and neurotransmitter balance, neuroprotection, and, potentially, regeneration. Therefore, it is likely that glia orchestrate events throughout the development and progression of retinopathy. Understanding glial responses to products of diabetes-associated systemic dyshomeostasis may reveal novel insights into the pathophysiology of DR and guide the development of novel therapies for this potentially blinding condition. In this article, first, we review normal glial functions and their putative roles in the development of DR. We then describe glial transcriptome alterations in response to systemic circulating factors that are upregulated in patients with diabetes and diabetes-related comorbidities; namely glucose in hyperglycemia, angiotensin II in hypertension, and the free fatty acid palmitic acid in hyperlipidemia. Finally, we discuss potential benefits and challenges associated with studying glia as targets of DR therapeutic interventions. In vitro stimulation of glia with glucose, angiotensin II and palmitic acid suggests that: 1) astrocytes may be more responsive than other glia to these products of systemic dyshomeostasis; 2) the effects of hyperglycemia on glia are likely to be largely osmotic; 3) fatty acid accumulation may compound DR pathophysiology by promoting predominantly proinflammatory and proangiogenic transcriptional alterations of macro and microglia; and 4) cell-targeted therapies may offer safer and more effective avenues for DR treatment as they may circumvent the complication of pleiotropism in retinal cell responses. Although several molecules previously implicated in DR pathophysiology are validated in this review, some less explored molecules emerge as potential therapeutic targets. Whereas much is known regarding glial cell activation, future studies characterizing the role of glia in DR and how their activation is regulated and sustained (independently or as part of retinal cell networks) may help elucidate mechanisms of DR pathogenesis and identify novel drug targets for this blinding disease.
Collapse
Affiliation(s)
- Dolly Ann Padovani-Claudio
- Department of Ophthalmology and Visual Sciences, Vanderbilt University School of Medicine, B3321A Medical Center North, 1161 21st Avenue South, Nashville, TN, 37232-0011, USA.
| | - Carla J Ramos
- Department of Ophthalmology and Visual Sciences, Vanderbilt University School of Medicine, AA1324 Medical Center North, 1161 21st Avenue South, Nashville, TN, 37232-0011, USA.
| | - Megan E Capozzi
- Duke Molecular Physiology Institute, Duke University School of Medicine, 300 North Duke Street, Durham, NC, 27701, USA.
| | - John S Penn
- Department of Ophthalmology and Visual Sciences, Vanderbilt University School of Medicine, B3307 Medical Center North, 1161 21st Avenue South, Nashville, TN, 37232-0011, USA.
| |
Collapse
|
15
|
Vargas-Soria M, García-Alloza M, Corraliza-Gómez M. Effects of diabetes on microglial physiology: a systematic review of in vitro, preclinical and clinical studies. J Neuroinflammation 2023; 20:57. [PMID: 36869375 PMCID: PMC9983227 DOI: 10.1186/s12974-023-02740-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 02/16/2023] [Indexed: 03/05/2023] Open
Abstract
Diabetes mellitus is a heterogeneous chronic metabolic disorder characterized by the presence of hyperglycemia, commonly preceded by a prediabetic state. The excess of blood glucose can damage multiple organs, including the brain. In fact, cognitive decline and dementia are increasingly being recognized as important comorbidities of diabetes. Despite the largely consistent link between diabetes and dementia, the underlying causes of neurodegeneration in diabetic patients remain to be elucidated. A common factor for almost all neurological disorders is neuroinflammation, a complex inflammatory process in the central nervous system for the most part orchestrated by microglial cells, the main representatives of the immune system in the brain. In this context, our research question aimed to understand how diabetes affects brain and/or retinal microglia physiology. We conducted a systematic search in PubMed and Web of Science to identify research items addressing the effects of diabetes on microglial phenotypic modulation, including critical neuroinflammatory mediators and their pathways. The literature search yielded 1327 records, including 18 patents. Based on the title and abstracts, 830 papers were screened from which 250 primary research papers met the eligibility criteria (original research articles with patients or with a strict diabetes model without comorbidities, that included direct data about microglia in the brain or retina), and 17 additional research papers were included through forward and backward citations, resulting in a total of 267 primary research articles included in the scoping systematic review. We reviewed all primary publications investigating the effects of diabetes and/or its main pathophysiological traits on microglia, including in vitro studies, preclinical models of diabetes and clinical studies on diabetic patients. Although a strict classification of microglia remains elusive given their capacity to adapt to the environment and their morphological, ultrastructural and molecular dynamism, diabetes modulates microglial phenotypic states, triggering specific responses that include upregulation of activity markers (such as Iba1, CD11b, CD68, MHC-II and F4/80), morphological shift to amoeboid shape, secretion of a wide variety of cytokines and chemokines, metabolic reprogramming and generalized increase of oxidative stress. Pathways commonly activated by diabetes-related conditions include NF-κB, NLRP3 inflammasome, fractalkine/CX3CR1, MAPKs, AGEs/RAGE and Akt/mTOR. Altogether, the detailed portrait of complex interactions between diabetes and microglia physiology presented here can be regarded as an important starting point for future research focused on the microglia-metabolism interface.
Collapse
Affiliation(s)
- María Vargas-Soria
- Division of Physiology, School of Medicine, Universidad de Cadiz, Cadiz, Spain.,Instituto de Investigacion e Innovacion en Ciencias Biomedicas de la Provincia de Cadiz (INIBICA), Cadiz, Spain
| | - Mónica García-Alloza
- Division of Physiology, School of Medicine, Universidad de Cadiz, Cadiz, Spain.,Instituto de Investigacion e Innovacion en Ciencias Biomedicas de la Provincia de Cadiz (INIBICA), Cadiz, Spain
| | - Miriam Corraliza-Gómez
- Division of Physiology, School of Medicine, Universidad de Cadiz, Cadiz, Spain. .,Instituto de Investigacion e Innovacion en Ciencias Biomedicas de la Provincia de Cadiz (INIBICA), Cadiz, Spain.
| |
Collapse
|
16
|
Yao Y, Wei L, Chen Z, Li H, Qi J, Wu Q, Zhou X, Lu Y, Zhu X. Single-cell RNA sequencing: Inhibited Notch2 signalling underlying the increased lens fibre cells differentiation in high myopia. Cell Prolif 2023:e13412. [PMID: 36717696 PMCID: PMC10392066 DOI: 10.1111/cpr.13412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/26/2022] [Accepted: 01/18/2023] [Indexed: 02/01/2023] Open
Abstract
High myopia is the leading cause of blindness worldwide. It promotes the overgrowth of lens, which is an important component of ocular refractive system, and increases the risks of lens surgery. While postnatal growth of lens is based on the addition of lens fibre cells (LFCs) supplemented by proliferation and differentiation of lens epithelial cells (LECs), it remains unknown how these cellular processes change in highly myopic eyes and what signalling pathways may be involved. Single-cell RNA sequencing was performed and a total of 50,375 single cells isolated from the lens epithelium of mouse highly myopic and control eyes were analysed to uncover their underlying transcriptome atlas. The proportion of LFCs was significantly higher in highly myopic eyes. Meanwhile, Notch2 signalling was inhibited during lineage differentiation trajectory towards LFCs, while Notch2 predominant LEC cluster was significantly reduced in highly myopic eyes. In consistence, Notch2 was the top down-regulated gene identified in highly myopic lens epithelium. Further validation experiments confirmed NOTCH2 downregulation in the lens epithelium of human and mouse highly myopic eyes. In addition, NOTCH2 knockdown in primary human and mouse LECs resulted in enhanced differentiation towards LFCs accompanied by up-regulation of MAF and CDKN1C. These findings indicated an essential role of NOTCH2 inhibition in lens overgrowth of highly myopic eyes, suggesting a therapeutic target for future interventions.
Collapse
Affiliation(s)
- Yunqian Yao
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China.,National Health Center Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China.,Shanghai Research Center of Ophthalmology and Optometry, Shanghai, China
| | - Ling Wei
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China.,National Health Center Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Zhenhua Chen
- State Key Laboratory of Molecular Development Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Hao Li
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China.,National Health Center Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Jiao Qi
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China.,National Health Center Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Qingfeng Wu
- State Key Laboratory of Molecular Development Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China.,Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Beijing, China.,Chinese Institute for Brain Research, Beijing, China.,Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Xingtao Zhou
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China.,National Health Center Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China.,Shanghai Research Center of Ophthalmology and Optometry, Shanghai, China
| | - Yi Lu
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China.,National Health Center Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China.,State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | - Xiangjia Zhu
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China.,National Health Center Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China.,State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| |
Collapse
|
17
|
Jerome JR, Deliyanti D, Suphapimol V, Kolkhof P, Wilkinson-Berka JL. Finerenone, a Non-Steroidal Mineralocorticoid Receptor Antagonist, Reduces Vascular Injury and Increases Regulatory T-Cells: Studies in Rodents with Diabetic and Neovascular Retinopathy. Int J Mol Sci 2023; 24:ijms24032334. [PMID: 36768656 PMCID: PMC9917037 DOI: 10.3390/ijms24032334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/20/2023] [Accepted: 01/21/2023] [Indexed: 01/26/2023] Open
Abstract
Vision loss in diabetic retinopathy features damage to the blood-retinal barrier and neovascularization, with hypertension and the renin-angiotensin system (RAS) having causal roles. We evaluated if finerenone, a non-steroidal mineralocorticoid receptor (MR) antagonist, reduced vascular pathology and inflammation in diabetic and neovascular retinopathy. Diabetic and hypertensive transgenic (mRen-2)27 rats overexpressing the RAS received the MR antagonist finerenone (10 mg/kg/day, oral gavage) or the angiotensin-converting enzyme inhibitor perindopril (10 mg/kg/day, drinking water) for 12 weeks. As retinal neovascularization does not develop in diabetic rodents, finerenone (5 mg/kg/day, i.p.) was evaluated in murine oxygen-induced retinopathy (OIR). Retinal vasculopathy was assessed by measuring gliosis, vascular leakage, neovascularization, and VEGF. Inflammation was investigated by quantitating retinal microglia/macrophages, pro-inflammatory mediators, and anti-inflammatory regulatory T-cells (Tregs). In diabetes, both treatments reduced systolic blood pressure, gliosis, vascular leakage, and microglial/macrophage density, but only finerenone lowered VEGF, ICAM-1, and IL-1ß. In OIR, finerenone reduced neovascularization, vascular leakage, and microglial density, and increased Tregs in the blood, spleen, and retina. Our findings, in the context of the FIDELIO-DKD and FIGARO-DKD trials reporting the benefits of finerenone on renal and cardiovascular outcomes in diabetic kidney disease, indicate the potential of finerenone as an effective oral treatment for diabetic retinopathy.
Collapse
Affiliation(s)
- Jack R. Jerome
- Department of Anatomy and Physiology, School of Biomedical Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Devy Deliyanti
- Department of Anatomy and Physiology, School of Biomedical Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Varaporn Suphapimol
- Department of Anatomy and Physiology, School of Biomedical Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | | | - Jennifer L. Wilkinson-Berka
- Department of Anatomy and Physiology, School of Biomedical Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
- Correspondence:
| |
Collapse
|
18
|
Wu S, Mo X. Optic Nerve Regeneration in Diabetic Retinopathy: Potentials and Challenges Ahead. Int J Mol Sci 2023; 24:ijms24021447. [PMID: 36674963 PMCID: PMC9865663 DOI: 10.3390/ijms24021447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/31/2022] [Accepted: 01/09/2023] [Indexed: 01/15/2023] Open
Abstract
Diabetic retinopathy (DR), the most common microvascular compilation of diabetes, is the leading cause of vision loss and blindness worldwide. Recent studies indicate that retinal neuron impairment occurs before any noticeable vascular changes in DR, and retinal ganglion cell (RGC) degeneration is one of the earliest signs. Axons of RGCs have little capacity to regenerate after injury, clinically leading the visual functional defects to become irreversible. In the past two decades, tremendous progress has been achieved to enable RGC axon regeneration in animal models of optic nerve injury, which holds promise for neural repair and visual restoration in DR. This review summarizes these advances and discusses the potential and challenges for developing optic nerve regeneration strategies treating DR.
Collapse
Affiliation(s)
| | - Xiaofen Mo
- Correspondence: ; Tel.: +86-021-64377134
| |
Collapse
|
19
|
Essential Role of Multi-Omics Approaches in the Study of Retinal Vascular Diseases. Cells 2022; 12:cells12010103. [PMID: 36611897 PMCID: PMC9818611 DOI: 10.3390/cells12010103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 12/19/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
Retinal vascular disease is a highly prevalent vision-threatening ocular disease in the global population; however, its exact mechanism remains unclear. The expansion of omics technologies has revolutionized a new medical research methodology that combines multiple omics data derived from the same patients to generate multi-dimensional and multi-evidence-supported holistic inferences, providing unprecedented opportunities to elucidate the information flow of complex multi-factorial diseases. In this review, we summarize the applications of multi-omics technology to further elucidate the pathogenesis and complex molecular mechanisms underlying retinal vascular diseases. Moreover, we proposed multi-omics-based biomarker and therapeutic strategy discovery methodologies to optimize clinical and basic medicinal research approaches to retinal vascular diseases. Finally, the opportunities, current challenges, and future prospects of multi-omics analyses in retinal vascular disease studies are discussed in detail.
Collapse
|
20
|
Sun D, Chen S, Li S, Wang N, Zhang S, Xu L, Zhu S, Li H, Gu Q, Xu X, Wei F. Enhancement of glycolysis-dependent DNA repair regulated by FOXO1 knockdown via PFKFB3 attenuates hyperglycemia-induced endothelial oxidative stress injury. Redox Biol 2022; 59:102589. [PMID: 36577299 PMCID: PMC9803794 DOI: 10.1016/j.redox.2022.102589] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/14/2022] [Accepted: 12/23/2022] [Indexed: 12/26/2022] Open
Abstract
The accumulation of DNA damage induced by oxidative stress is a crucial pathogenic factor of endothelial loss in diabetic vascular complications, but it is still unknown whether aberrant glucose metabolism leads to defective DNA repair and accounts for hyperglycemia-induced endothelial oxidative stress injury. Here, we showed that Foxo1 knockdown alleviated diabetes-associated retinal DNA damage and vascular dysfunction. Mechanistically, FOXO1 knockdown avoided persistent DNA damage and cellular senescence under high glucose in endothelial cells by promoting DNA repair mediated by the MRN (MRE11-RAD50-NBS1 complex)-ATM pathway in response to oxidative stress injury. Moreover, FOXO1 knockdown mediated robust DNA repair by restoring glycolysis capacity under high glucose. During this process, the key glycolytic enzyme PFKFB3 was stimulated and, in addition to its promoting effect on glycolysis, directly participated in DNA repair. Under genotoxic stress, PFKFB3 relocated into oxidative stress-induced DNA damage sites and promoted DNA repair by interaction with the MRN-ATM pathway. Our study proposed that defective glycolysis-dependent DNA repair is present in diabetic endothelial cells and contributes to hyperglycemia-induced vascular dysfunction, which could provide novel therapeutic targets for diabetic vascular complications.
Collapse
Affiliation(s)
- Dandan Sun
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China,National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Disease, Shanghai Engineering Center for Visual Science and Photo Medicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, 200080, China
| | - Shimei Chen
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China,National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Disease, Shanghai Engineering Center for Visual Science and Photo Medicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, 200080, China
| | - Shenping Li
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China,National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Disease, Shanghai Engineering Center for Visual Science and Photo Medicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, 200080, China
| | - Ning Wang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China,National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Disease, Shanghai Engineering Center for Visual Science and Photo Medicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, 200080, China
| | - Shuchang Zhang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China,National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Disease, Shanghai Engineering Center for Visual Science and Photo Medicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, 200080, China
| | - Li Xu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China,National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Disease, Shanghai Engineering Center for Visual Science and Photo Medicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, 200080, China
| | - Shaopin Zhu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China,National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Disease, Shanghai Engineering Center for Visual Science and Photo Medicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, 200080, China
| | - Huiming Li
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Qing Gu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China,National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Disease, Shanghai Engineering Center for Visual Science and Photo Medicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, 200080, China
| | - Xun Xu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China; National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Disease, Shanghai Engineering Center for Visual Science and Photo Medicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, 200080, China.
| | - Fang Wei
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China; National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Disease, Shanghai Engineering Center for Visual Science and Photo Medicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, 200080, China.
| |
Collapse
|
21
|
Becker K, Weigelt CM, Fuchs H, Viollet C, Rust W, Wyatt H, Huber J, Lamla T, Fernandez-Albert F, Simon E, Zippel N, Bakker RA, Klein H, Redemann NH. Transcriptome analysis of AAV-induced retinopathy models expressing human VEGF, TNF-α, and IL-6 in murine eyes. Sci Rep 2022; 12:19395. [PMID: 36371417 PMCID: PMC9653384 DOI: 10.1038/s41598-022-23065-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 10/25/2022] [Indexed: 11/14/2022] Open
Abstract
Retinopathies are multifactorial diseases with complex pathologies that eventually lead to vision loss. Animal models facilitate the understanding of the pathophysiology and identification of novel treatment options. However, each animal model reflects only specific disease aspects and understanding of the specific molecular changes in most disease models is limited. Here, we conducted transcriptome analysis of murine ocular tissue transduced with recombinant Adeno-associated viruses (AAVs) expressing either human VEGF-A, TNF-α, or IL-6. VEGF expression led to a distinct regulation of extracellular matrix (ECM)-associated genes. In contrast, both TNF-α and IL-6 led to more comparable gene expression changes in interleukin signaling, and the complement cascade, with TNF-α-induced changes being more pronounced. Furthermore, integration of single cell RNA-Sequencing data suggested an increase of endothelial cell-specific marker genes by VEGF, while TNF-α expression increased the expression T-cell markers. Both TNF-α and IL-6 expression led to an increase in macrophage markers. Finally, transcriptomic changes in AAV-VEGF treated mice largely overlapped with gene expression changes observed in the oxygen-induced retinopathy model, especially regarding ECM components and endothelial cell-specific gene expression. Altogether, our study represents a valuable investigation of gene expression changes induced by VEGF, TNF-α, and IL-6 and will aid researchers in selecting appropriate animal models for retinopathies based on their agreement with the human pathophysiology.
Collapse
Affiliation(s)
- Kolja Becker
- grid.420061.10000 0001 2171 7500Global Computational Biology & Digital Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany
| | - Carina M. Weigelt
- grid.420061.10000 0001 2171 7500Cardiometabolic Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany
| | - Holger Fuchs
- grid.420061.10000 0001 2171 7500Cardiometabolic Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany
| | - Coralie Viollet
- grid.420061.10000 0001 2171 7500Global Computational Biology & Digital Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany
| | - Werner Rust
- grid.420061.10000 0001 2171 7500Global Computational Biology & Digital Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany
| | - Hannah Wyatt
- grid.420061.10000 0001 2171 7500Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany
| | - Jochen Huber
- grid.420061.10000 0001 2171 7500Clinical Development & Operations Corporate, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany
| | - Thorsten Lamla
- grid.420061.10000 0001 2171 7500Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany
| | - Francesc Fernandez-Albert
- grid.420061.10000 0001 2171 7500Global Computational Biology & Digital Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany
| | - Eric Simon
- grid.420061.10000 0001 2171 7500Global Computational Biology & Digital Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany
| | - Nina Zippel
- grid.420061.10000 0001 2171 7500Cardiometabolic Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany
| | - Remko A. Bakker
- grid.420061.10000 0001 2171 7500Cardiometabolic Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany
| | - Holger Klein
- grid.420061.10000 0001 2171 7500Global Computational Biology & Digital Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany
| | - Norbert H. Redemann
- grid.420061.10000 0001 2171 7500Cardiometabolic Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany
| |
Collapse
|
22
|
Wen Y, Chen X, Feng H, Wang X, Kang X, Zhao P, Zhao C, Wei Y. Kdm6a deficiency in microglia/macrophages epigenetically silences Lcn2 expression and reduces photoreceptor dysfunction in diabetic retinopathy. Metabolism 2022; 136:155293. [PMID: 35995279 DOI: 10.1016/j.metabol.2022.155293] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 08/15/2022] [Accepted: 08/16/2022] [Indexed: 11/26/2022]
Abstract
Diabetic retinopathy (DR) is one of the leading causes of severe visual impairment worldwide. However, the role of adaptive immune inflammation driven by microglia/macrophages in DR is not yet well elucidated. Kdm6a is a histone demethylase that removes the trimethyl groups of histones H3K27 and plays important biological roles in activating target genes. To elucidate the role of Kdm6a in microglia/macrophages in diabetic retinas, we established diabetic animal models with conditional knockout mice to investigate the impacts of Kdm6a deficiency. The RNA-seq analysis, mass spectrum examination, immunohistochemistry and detection of enzyme activities were used to elucidate the effect of Kdm6a deletion on gene transcription in microglia/macrophages. The expression of Kdm6a was increased in the retinas of diabetic mice compared to the control group. Loss of Kdm6a in microglia/macrophages ameliorated the diabetes-induced retinal thickness decrease, inflammation, and visual impairment. Kdm6a in microglia/macrophages regulated Lcn2 expression in a demethylase activity-dependent manner and inhibited glycolysis progression in photoreceptor cells through Lcn2. These results suggest that Kdm6a in microglia/macrophages aggravated diabetic retinopathy by promoting the expression of Lcn2 and impairing glycolysis progression in photoreceptor cells.
Collapse
Affiliation(s)
- Yanjun Wen
- Department of Ophthalmology, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai 200031, China; Department of Ophthalmology, Shanghai Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai Key Laboratory of Visual Impairment and Restoration (Fudan University), Shanghai 200032, China
| | - Xin Chen
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China; National Clinical Research Center for Oral Disease, Shanghai, 200011, China; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Huazhang Feng
- Department of Ophthalmology, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai 200031, China; Department of Ophthalmology, Shanghai Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Xu Wang
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China; National Clinical Research Center for Oral Disease, Shanghai, 200011, China; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Xiaoli Kang
- Department of Ophthalmology, Shanghai Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Peiquan Zhao
- Department of Ophthalmology, Shanghai Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Chen Zhao
- Department of Ophthalmology, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai 200031, China; NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai Key Laboratory of Visual Impairment and Restoration (Fudan University), Shanghai 200032, China
| | - Yan Wei
- Department of Ophthalmology, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai 200031, China; NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai Key Laboratory of Visual Impairment and Restoration (Fudan University), Shanghai 200032, China.
| |
Collapse
|
23
|
Lv K, Ying H, Hu G, Hu J, Jian Q, Zhang F. Integrated multi-omics reveals the activated retinal microglia with intracellular metabolic reprogramming contributes to inflammation in STZ-induced early diabetic retinopathy. Front Immunol 2022; 13:942768. [PMID: 36119084 PMCID: PMC9479211 DOI: 10.3389/fimmu.2022.942768] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 08/08/2022] [Indexed: 12/14/2022] Open
Abstract
Diabetic retinopathy (DR) is the leading cause of visual impairment and blindness among working-age people. Inflammation is recognized as a critical driver of the DR process. However, the main retina-specific cell type producing pro-inflammatory cytokines and its mechanism underlying DR are still unclear. Here, we used single-cell sequencing to identify microglia with metabolic pathway alterations that were the main source of IL-1β in STZ-induced DR mice. To profile the full extent of local metabolic shifts in activated microglia and to reveal the metabolic microenvironment contributing to immune mechanisms, we performed integrated metabolomics, lipidomics, and RNA profiling analyses in microglia cell line samples representative of the DR microenvironment. The results showed that activated microglia with IL-1β increase exhibited a metabolic bias favoring glycolysis, purine metabolism, and triacylglycerol synthesis, but less Tricarboxylic acid (TCA). In addition, some of these especially glycolysis was necessary to facilitate their pro-inflammation. These findings suggest that activated microglia with intracellular metabolic reprogramming in retina may contribute to pro-inflammation in the early DR.
Collapse
Affiliation(s)
- Kangjia Lv
- National Clinical Research Center for Eye Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Fundus Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui Ying
- National Clinical Research Center for Eye Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Fundus Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guangyi Hu
- National Clinical Research Center for Eye Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Fundus Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Hu
- National Clinical Research Center for Eye Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Fundus Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qizhi Jian
- National Clinical Research Center for Eye Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Fundus Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fang Zhang
- National Clinical Research Center for Eye Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Fundus Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Fang Zhang,
| |
Collapse
|
24
|
Bertelli PM, Pedrini E, Hughes D, McDonnell S, Pathak V, Peixoto E, Guduric-Fuchs J, Stitt AW, Medina RJ. Long term high glucose exposure induces premature senescence in retinal endothelial cells. Front Physiol 2022; 13:929118. [PMID: 36091370 PMCID: PMC9459081 DOI: 10.3389/fphys.2022.929118] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 07/22/2022] [Indexed: 01/10/2023] Open
Abstract
Purpose: Features of cellular senescence have been described in diabetic retinal vasculature. The aim of this study was to investigate how the high glucose microenvironment impacts on the senescence program of retinal endothelial cells. Methods: Human retinal microvascular endothelial cells were cultured under control and high glucose conditions of 5 mM and 25 mM D-glucose, respectively. Isomeric l-glucose was used as the osmotic control. Cells were counted using CASY technology until they reached their Hayflick limit. Senescence-associated β-Galactosidase was used to identify senescent cells. Endothelial cell functionality was evaluated by the clonogenic, 3D tube formation, and barrier formation assays. Cell metabolism was characterized using the Seahorse Bioanalyzer. Gene expression analysis was performed by bulk RNA sequencing. Retinal tissues from db/db and db/+ mice were evaluated for the presence of senescent cells. Publicly available scRNA-sequencing data for retinas from Akimba and control mice was used for gene set enrichment analysis. Results: Long term exposure to 25 mM D-Glucose accelerated the establishment of cellular senescence in human retinal endothelial cells when compared to 5 mM D-glucose and osmotic controls. This was shown from 4 weeks, by a significant slower growth, higher percentages of cells positive for senescence-associated β-galactosidase, an increase in cell size, and lower expression of pRb and HMGB2. These senescence features were associated with decreased clonogenic capacity, diminished tubulogenicity, and impaired barrier function. Long term high glucose-cultured cells exhibited diminished glycolysis, with lower protein expression of GLUT1, GLUT3, and PFKFB3. Transcriptomic analysis, after 4 weeks of culture, identified downregulation of ALDOC, PFKL, and TPI1, in cells cultured with 25 mM D-glucose when compared to controls. The retina from db/db mice showed a significant increase in acellular capillaries associated with a significant decrease in vascular density in the intermediate and deep retinal plexuses, when compared to db/+ mice. Senescent endothelial cells within the db/db retinal vasculature were identified by senescence-associated β-galactosidase staining. Analysis of single cell transcriptomics data for the Akimba mouse retina highlighted an enrichment of senescence and senescence-associated secretory phenotype gene signatures when compared to control mice. Conclusion: A diabetic-like microenvironment of 25 mM D-glucose was sufficient to accelerate the establishment of cellular senescence in human retinal microvascular endothelial cells.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Reinhold J. Medina
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Sciences, Faculty of Medicine, Health, and Life Sciences, Queen’s University Belfast, Belfast, United Kingdom
| |
Collapse
|
25
|
Ren J, Zhang S, Pan Y, Jin M, Li J, Luo Y, Sun X, Li G. Diabetic retinopathy: Involved cells, biomarkers, and treatments. Front Pharmacol 2022; 13:953691. [PMID: 36016568 PMCID: PMC9396039 DOI: 10.3389/fphar.2022.953691] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/06/2022] [Indexed: 11/13/2022] Open
Abstract
Diabetic retinopathy (DR), a leading cause of vision loss and blindness worldwide, is caused by retinal neurovascular unit dysfunction, and its cellular pathology involves at least nine kinds of retinal cells, including photoreceptors, horizontal and bipolar cells, amacrine cells, retinal ganglion cells, glial cells (Müller cells, astrocytes, and microglia), endothelial cells, pericytes, and retinal pigment epithelial cells. Its mechanism is complicated and involves loss of cells, inflammatory factor production, neovascularization, and BRB impairment. However, the mechanism has not been completely elucidated. Drug treatment for DR has been gradually advancing recently. Research on potential drug targets relies upon clear information on pathogenesis and effective biomarkers. Therefore, we reviewed the recent literature on the cellular pathology and the diagnostic and prognostic biomarkers of DR in terms of blood, protein, and clinical and preclinical drug therapy (including synthesized molecules and natural molecules). This review may provide a theoretical basis for further DR research.
Collapse
Affiliation(s)
- Jiahui Ren
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
- Yunnan Branch, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Jinghong, China
- Yunnan Key Laboratory of Southern Medicine Utilization, Kunming, China
| | - Shuxia Zhang
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
| | - Yunfeng Pan
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
| | - Meiqi Jin
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
| | - Jiaxin Li
- Yunnan Key Laboratory of Southern Medicine Utilization, Kunming, China
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yun Luo
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
- *Correspondence: Yun Luo, ; Xiaobo Sun , ; Guang Li,
| | - Xiaobo Sun
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
- *Correspondence: Yun Luo, ; Xiaobo Sun , ; Guang Li,
| | - Guang Li
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Yunnan Branch, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Jinghong, China
- Yunnan Key Laboratory of Southern Medicine Utilization, Kunming, China
- *Correspondence: Yun Luo, ; Xiaobo Sun , ; Guang Li,
| |
Collapse
|
26
|
Luo Q, Leley SP, Bello E, Dhami H, Mathew D, Bhatwadekar AD. Dapagliflozin protects neural and vascular dysfunction of the retina in diabetes. BMJ Open Diabetes Res Care 2022; 10:e002801. [PMID: 35577387 PMCID: PMC9114950 DOI: 10.1136/bmjdrc-2022-002801] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 04/22/2022] [Indexed: 11/04/2022] Open
Abstract
INTRODUCTION Dapagliflozin, a sodium-glucose transporter inhibitor, effectively reduces blood glucose and is indicated for individuals with kidney diseases and cardiovascular disorders. In this study, we further expand the therapeutic benefit of dapagliflozin in the neural and vascular retina, with the potential to effectively manage diabetic retinopathy (DR), the most common complication of diabetes. RESEARCH DESIGN AND METHODS Db/db mice, an animal model of type 2 diabetes, were treated with dapagliflozin orally, and the electroretinogram (ERG) response and acellular capillary numbers were assessed. Messenger RNA levels of inflammatory cytokines were studied using real-time quantitative (q)PCR. We assessed endothelial cell migration in a scratch wound assay and retinal glucose uptake using human retinal endothelial cells. RESULTS The dapagliflozin treatment improved the ERG b-wave amplitude and decreased acellular capillary numbers. The scratch wound assay demonstrated a reduction in wound closure after dapagliflozin treatment. Retinal glucose uptake reduced after dapagliflozin treatment compared with the respective controls. CONCLUSIONS Our studies suggest that dapagliflozin treatment effectively corrects neural and vascular dysfunction of the retina in diabetes. This effect is mediated by a decrease in inflammation and improved glycemic control. In addition, dapagliflozin exhibits decreased wound healing and glucose uptake, which could benefit the retina. Thus, dapagliflozin could be helpful in the management of DR, with multimodal therapeutic effects.
Collapse
Affiliation(s)
- Qianyi Luo
- Department of Ophthalmology, Indiana University, Indianapolis, Indiana, USA
| | - Sameer P Leley
- School of Medicine, Indiana University, Indianapolis, Indiana, USA
| | - Erika Bello
- Department of Ophthalmology, Indiana University, Indianapolis, Indiana, USA
| | - Hurshdeep Dhami
- Department of Ophthalmology, Indiana University, Indianapolis, Indiana, USA
| | - Deepa Mathew
- Department of Ophthalmology, Indiana University, Indianapolis, Indiana, USA
| | | |
Collapse
|
27
|
Rosmus DD, Lange C, Ludwig F, Ajami B, Wieghofer P. The Role of Osteopontin in Microglia Biology: Current Concepts and Future Perspectives. Biomedicines 2022; 10:biomedicines10040840. [PMID: 35453590 PMCID: PMC9027630 DOI: 10.3390/biomedicines10040840] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/26/2022] [Accepted: 03/27/2022] [Indexed: 12/14/2022] Open
Abstract
The innate immune landscape of the central nervous system (CNS), including the brain and the retina, consists of different myeloid cell populations with distinct tasks to fulfill. Whereas the CNS borders harbor extraparenchymal CNS-associated macrophages whose main duty is to build up a defense against invading pathogens and other damaging factors from the periphery, the resident immune cells of the CNS parenchyma and the retina, microglia, are highly dynamic cells with a plethora of functions during homeostasis and disease. Therefore, microglia are constantly sensing their environment and closely interacting with surrounding cells, which is in part mediated by soluble factors. One of these factors is Osteopontin (OPN), a multifunctional protein that is produced by different cell types in the CNS, including microglia, and is upregulated in neurodegenerative and neuroinflammatory conditions. In this review, we discuss the current literature about the interaction between microglia and OPN in homeostasis and several disease entities, including multiple sclerosis (MS), Alzheimer’s and cerebrovascular diseases (AD, CVD), amyotrophic lateral sclerosis (ALS), age-related macular degeneration (AMD) and diabetic retinopathy (DR), in the context of the molecular pathways involved in OPN signaling shaping the function of microglia. As nearly all CNS diseases are characterized by pathological alterations in microglial cells, accompanied by the disturbance of the homeostatic microglia phenotype, the emergence of disease-associated microglia (DAM) states and their interplay with factors shaping the DAM-signature, such as OPN, is of great interest for therapeutical interventions in the future.
Collapse
Affiliation(s)
| | - Clemens Lange
- Eye Center, Freiburg Medical Center, University of Freiburg, 79106 Freiburg, Germany; (C.L.); (F.L.)
- Ophtha-Lab, Department of Ophthalmology, St. Franziskus Hospital, 48145 Muenster, Germany
| | - Franziska Ludwig
- Eye Center, Freiburg Medical Center, University of Freiburg, 79106 Freiburg, Germany; (C.L.); (F.L.)
| | - Bahareh Ajami
- Department of Microbiology and Immunology, Oregon Health and Science University, Portland, OR 97239, USA;
| | - Peter Wieghofer
- Institute of Anatomy, Leipzig University, 04103 Leipzig, Germany;
- Cellular Neuroanatomy, Institute of Theoretical Medicine, Medical Faculty, Augsburg University, 86159 Augsburg, Germany
- Correspondence:
| |
Collapse
|
28
|
Mahaling B, Low SWY, Beck M, Kumar D, Ahmed S, Connor TB, Ahmad B, Chaurasia SS. Damage-Associated Molecular Patterns (DAMPs) in Retinal Disorders. Int J Mol Sci 2022; 23:ijms23052591. [PMID: 35269741 PMCID: PMC8910759 DOI: 10.3390/ijms23052591] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 02/22/2022] [Accepted: 02/25/2022] [Indexed: 12/13/2022] Open
Abstract
Damage-associated molecular patterns (DAMPs) are endogenous danger molecules released from the extracellular and intracellular space of damaged tissue or dead cells. Recent evidence indicates that DAMPs are associated with the sterile inflammation caused by aging, increased ocular pressure, high glucose, oxidative stress, ischemia, mechanical trauma, stress, or environmental conditions, in retinal diseases. DAMPs activate the innate immune system, suggesting their role to be protective, but may promote pathological inflammation and angiogenesis in response to the chronic insult or injury. DAMPs are recognized by specialized innate immune receptors, such as receptors for advanced glycation end products (RAGE), toll-like receptors (TLRs) and the NOD-like receptor family (NLRs), and purine receptor 7 (P2X7), in systemic diseases. However, studies describing the role of DAMPs in retinal disorders are meager. Here, we extensively reviewed the role of DAMPs in retinal disorders, including endophthalmitis, uveitis, glaucoma, ocular cancer, ischemic retinopathies, diabetic retinopathy, age-related macular degeneration, rhegmatogenous retinal detachment, proliferative vitreoretinopathy, and inherited retinal disorders. Finally, we discussed DAMPs as biomarkers, therapeutic targets, and therapeutic agents for retinal disorders.
Collapse
Affiliation(s)
- Binapani Mahaling
- Ocular Immunology and Angiogenesis Lab, Department of Ophthalmology and Visual Sciences, Froedtert and MCW Eye Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (B.M.); (S.W.Y.L.); (M.B.); (D.K.); (S.A.); (T.B.C.); (B.A.)
| | - Shermaine W. Y. Low
- Ocular Immunology and Angiogenesis Lab, Department of Ophthalmology and Visual Sciences, Froedtert and MCW Eye Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (B.M.); (S.W.Y.L.); (M.B.); (D.K.); (S.A.); (T.B.C.); (B.A.)
| | - Molly Beck
- Ocular Immunology and Angiogenesis Lab, Department of Ophthalmology and Visual Sciences, Froedtert and MCW Eye Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (B.M.); (S.W.Y.L.); (M.B.); (D.K.); (S.A.); (T.B.C.); (B.A.)
| | - Devesh Kumar
- Ocular Immunology and Angiogenesis Lab, Department of Ophthalmology and Visual Sciences, Froedtert and MCW Eye Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (B.M.); (S.W.Y.L.); (M.B.); (D.K.); (S.A.); (T.B.C.); (B.A.)
| | - Simrah Ahmed
- Ocular Immunology and Angiogenesis Lab, Department of Ophthalmology and Visual Sciences, Froedtert and MCW Eye Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (B.M.); (S.W.Y.L.); (M.B.); (D.K.); (S.A.); (T.B.C.); (B.A.)
| | - Thomas B. Connor
- Ocular Immunology and Angiogenesis Lab, Department of Ophthalmology and Visual Sciences, Froedtert and MCW Eye Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (B.M.); (S.W.Y.L.); (M.B.); (D.K.); (S.A.); (T.B.C.); (B.A.)
- Vitreoretinal Surgery, Froedtert and MCW Eye Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Baseer Ahmad
- Ocular Immunology and Angiogenesis Lab, Department of Ophthalmology and Visual Sciences, Froedtert and MCW Eye Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (B.M.); (S.W.Y.L.); (M.B.); (D.K.); (S.A.); (T.B.C.); (B.A.)
- Vitreoretinal Surgery, Froedtert and MCW Eye Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Shyam S. Chaurasia
- Ocular Immunology and Angiogenesis Lab, Department of Ophthalmology and Visual Sciences, Froedtert and MCW Eye Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (B.M.); (S.W.Y.L.); (M.B.); (D.K.); (S.A.); (T.B.C.); (B.A.)
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Correspondence: ; Tel.: +1-414-955-2050
| |
Collapse
|
29
|
Qin X, Zou H. The role of lipopolysaccharides in diabetic retinopathy. BMC Ophthalmol 2022; 22:86. [PMID: 35193549 PMCID: PMC8862382 DOI: 10.1186/s12886-022-02296-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 02/03/2022] [Indexed: 11/29/2022] Open
Abstract
Diabetes mellitus (DM) is a complex metabolic syndrome characterized by hyperglycemia. Diabetic retinopathy (DR) is the most common complication of DM and the leading cause of blindness in the working-age population of the Western world. Lipopolysaccharides (LPS) is an essential ingredient of the outer membrane of gram-negative bacteria, which induces systemic inflammatory responses and cellular apoptotic changes in the host. High-level serum LPS has been found in diabetic patients at the advanced stages, which is mainly due to gut leakage and dysbiosis. In this light, increasing evidence points to a strong correlation between systemic LPS challenge and the progression of DR. Although the underlying molecular mechanisms have not been fully elucidated yet, LPS-related pathobiological events in the retina may contribute to the exacerbation of vasculopathy and neurodegeneration in DR. In this review, we focus on the involvement of LPS in the progression of DR, with emphasis on the blood-retina barrier dysfunction and dysregulated glial activation. Eventually, we summarize the recent advances in the therapeutic strategies for antagonising LPS activity, which may be introduced to DR treatment with promising clinical value.
Collapse
Affiliation(s)
- Xinran Qin
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haidong Zou
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China. .,Shanghai Eye Diseases Prevention & Treatment Center, Shanghai Eye Hospital, Shanghai, China. .,Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China. .,National Clinical Research Center for Eye Diseases, Shanghai, China. .,Shanghai Key Laboratory of Fundus Diseases, Shanghai, China.
| |
Collapse
|
30
|
Li J, Zhao D, Deng Q, Hao Y, Wang M, Sun J, Liu J, Ren G, Li H, Qi Y, Liu J. Reduced serum calcium is associated with a higher risk of retinopathy in non-diabetic individuals: The Chinese Multi-provincial Cohort Study. Front Endocrinol (Lausanne) 2022; 13:973078. [PMID: 36531449 PMCID: PMC9747923 DOI: 10.3389/fendo.2022.973078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 11/16/2022] [Indexed: 12/02/2022] Open
Abstract
AIMS As a common micro-vascular disease, retinopathy can also present in non-diabetic individuals and increase the risk of clinical cardiovascular disease. Understanding the relationship between serum calcium and retinopathy would contribute to etiological study and disease prevention. METHODS A total of 1836 participants (aged 55-84 years and diabetes-free) from the Chinese Multi-Provincial Cohort Study-Beijing Project in 2012 were included for analyzing the relation between serum calcium level and retinopathy prevalence. Of these, 1407 non-diabetic participants with data on serum calcium in both the 2007 and 2012 surveys were included for analyzing the association of five-year changes in serum calcium with retinopathy risk. The retinopathy was determined from retinal images by ophthalmologists and a computer-aided system using convolutional neural network (CNN). The association between serum calcium and retinopathy risk was assessed by multivariate logistic regression. RESULTS Among the 1836 participants (male, 42.5%), 330 (18.0%) had retinopathy determined by CNN. After multivariate adjustment, the odds ratio (OR) comparing the lowest quartiles (serum calcium < 2.38 mmol/L) to the highest quartiles (serum calcium ≥ 2.50 mmol/L) for the prevalence of retinopathy determined by CNN was 1.58 (95% confidence interval [CI]: 1.10 - 2.27). The findings were consistent with the result discerned by ophthalmologists, and either by CNN or ophthalmologists. These relationships are preserved even in those without metabolic risk factors, including hypertension, high hemoglobin A1c, high fasting blood glucose, or high low-density lipoprotein cholesterol. Over 5 years, participants with the sustainably low levels of serum calcium (OR: 1.58; 95%CI: 1.05 - 2.39) and those who experienced a decrease in serum calcium (OR: 1.56; 95%CI: 1.04 - 2.35) had an increased risk of retinopathy than those with the sustainably high level of serum calcium. CONCLUSIONS Reduced serum calcium was independently associated with an increased risk of retinopathy in non-diabetic individuals. Moreover, reduction of serum calcium could further increase the risk of retinopathy even in the absence of hypertension, high glucose, or high cholesterol. This study suggested that maintaining a high level of serum calcium may be recommended for reducing the growing burden of retinopathy. Further large prospective studies will allow more detailed information.
Collapse
Affiliation(s)
- Jiangtao Li
- Center for Clinical and Epidemiologic Research, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China
- The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing, China
- Beijing Municipal Key laboratory of Clinical Epidemiology, Beijing, China
| | - Dong Zhao
- Center for Clinical and Epidemiologic Research, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China
- The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing, China
- Beijing Municipal Key laboratory of Clinical Epidemiology, Beijing, China
| | - Qiuju Deng
- Center for Clinical and Epidemiologic Research, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China
- The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing, China
- Beijing Municipal Key laboratory of Clinical Epidemiology, Beijing, China
| | - Yongchen Hao
- Center for Clinical and Epidemiologic Research, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China
- The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing, China
- Beijing Municipal Key laboratory of Clinical Epidemiology, Beijing, China
| | - Miao Wang
- Center for Clinical and Epidemiologic Research, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China
- The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing, China
- Beijing Municipal Key laboratory of Clinical Epidemiology, Beijing, China
| | - Jiayi Sun
- Center for Clinical and Epidemiologic Research, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China
- The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing, China
- Beijing Municipal Key laboratory of Clinical Epidemiology, Beijing, China
| | - Jun Liu
- Center for Clinical and Epidemiologic Research, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China
- The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing, China
- Beijing Municipal Key laboratory of Clinical Epidemiology, Beijing, China
| | - Guandi Ren
- School of Information and Electronics, Beijing Institute of Technology, Beijing, China
| | - Huiqi Li
- School of Information and Electronics, Beijing Institute of Technology, Beijing, China
| | - Yue Qi
- Center for Clinical and Epidemiologic Research, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China
- The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing, China
- Beijing Municipal Key laboratory of Clinical Epidemiology, Beijing, China
- *Correspondence: Yue Qi, ; ; Jing Liu,
| | - Jing Liu
- Center for Clinical and Epidemiologic Research, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China
- The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing, China
- Beijing Municipal Key laboratory of Clinical Epidemiology, Beijing, China
- *Correspondence: Yue Qi, ; ; Jing Liu,
| |
Collapse
|
31
|
Meng Z, Chen Y, Wu W, Yan B, Meng Y, Liang Y, Yao X, Luo J. Exploring the Immune Infiltration Landscape and M2 Macrophage-Related Biomarkers of Proliferative Diabetic Retinopathy. Front Endocrinol (Lausanne) 2022; 13:841813. [PMID: 35692390 PMCID: PMC9186015 DOI: 10.3389/fendo.2022.841813] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 04/19/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUNDS Diabetic retinopathy (DR), especially proliferative diabetic retinopathy (PDR), is the major cause of irreversible blindness in the working-age population. Increasing evidence indicates that immune cells and the inflammatory microenvironment play an important role during PDR development. Herein, we aim to explore the immune landscape of PDR and then identify potential biomarkers correlated with specific infiltrating immune cells. METHODS We mined and re-analyzed PDR-related datasets from the Gene Expression Omnibus (GEO) database. Using the cell-type identification by estimating relative subsets of RNA transcripts (CIBERSORT) algorithm, we investigated the infiltration of 22 types of immune cells in all selected samples; analyses of differences and correlations between infiltrating cells were used to reveal the immune landscape of PDR. Thereafter, weighted gene co-expression network analysis (WGCNA) and differential expression analysis were applied to identify the hub genes on M2 macrophages that may affect PDR progression. RESULTS Significant differences were found between infiltration levels of immune cells in fibrovascular membranes (FVMs) from PDR and normal retinas. The percentages of follicular helper T cells, M1 macrophages, and M2 macrophages were increased significantly in FVMs. Integrative analysis combining the differential expression and co-expression revealed the M2 macrophage-related hub genes in PDR. Among these, COL5A2, CALD1, COL6A3, CORO1C, and CALU showed increased expression in FVM and may be potential biomarkers for PDR. CONCLUSIONS Our findings provide novel insights into the immune mechanisms involved in PDR. COL5A2, CALD1, COL6A3, CORO1C, and CALU are M2 macrophage-related biomarkers, further study of these genes could inform novel ideas and basis for the understanding of disease progression and targeted treatment of PDR.
Collapse
Affiliation(s)
- Zhishang Meng
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yanzhu Chen
- Department of Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Wenyi Wu
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China
| | - Bin Yan
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yongan Meng
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Youling Liang
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiaoxi Yao
- Shenzhen College of International Education, Shenzhen, China
| | - Jing Luo
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Jing Luo,
| |
Collapse
|
32
|
Rudraraju M, Narayanan SP, Somanath PR. Distinct Mechanisms of Human Retinal Endothelial Barrier Modulation In Vitro by Mediators of Diabetes and Uveitis. Life (Basel) 2021; 12:life12010033. [PMID: 35054426 PMCID: PMC8779223 DOI: 10.3390/life12010033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 11/30/2021] [Accepted: 12/10/2021] [Indexed: 12/04/2022] Open
Abstract
Ocular diseases such as diabetic retinopathy (DR) and uveitis are associated with injury to the blood–retinal barrier (BRB). Whereas high glucose (HG) and advanced glycation end products (AGE) contribute to DR, bacterial infections causing uveitis are triggered by endotoxins such as lipopolysaccharide (LPS). It is unclear how HG, AGE, and LPS affect human retinal endothelial cell (HREC) junctions. Moreover, tumor necrosis factor-α (TNFα) is elevated in both DR and ocular infections. In the current study, we determined the direct effects of HG, AGE, TNFα, and LPS on the expression and intracellular distribution of claudin-5, VE-cadherin, and β-catenin in HRECs and how these mediators affect Akt and P38 MAP kinase that have been implicated in ocular pathologies. In our results, whereas HG, AGE, and TNFα activated both Akt and P38 MAPK, LPS treatment suppressed Akt but increased P38 MAPK phosphorylation. Furthermore, while treatment with AGE and HG increased cell-junction protein expression in HRECs, LPS elicited a paradoxical effect. By contrast, when HG treatment increased HREC-barrier resistance, AGE and LPS stimulation compromised it, and TNFα had no effect. Together, our results demonstrated the differential effects of the mediators of diabetes and infection on HREC-barrier modulation leading to BRB injury.
Collapse
Affiliation(s)
- Madhuri Rudraraju
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, GA 30912, USA;
- Research Division, Charlie Norwood VA Medical Center, Augusta, GA 30912, USA
| | - S. Priya Narayanan
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, GA 30912, USA;
- Research Division, Charlie Norwood VA Medical Center, Augusta, GA 30912, USA
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Correspondence: (S.P.N.); (P.R.S.); Tel.: +1-706-721-4250 (P.R.S.)
| | - Payaningal R. Somanath
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, GA 30912, USA;
- Research Division, Charlie Norwood VA Medical Center, Augusta, GA 30912, USA
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Correspondence: (S.P.N.); (P.R.S.); Tel.: +1-706-721-4250 (P.R.S.)
| |
Collapse
|
33
|
Ma P, Zhang P, Chen S, Shi W, Ye J, Chen S, Ju R, Liu B, Zheng Y, Liu Y. Immune Cell Landscape of Patients With Diabetic Macular Edema by Single-Cell RNA Analysis. Front Pharmacol 2021; 12:754933. [PMID: 34594230 PMCID: PMC8476792 DOI: 10.3389/fphar.2021.754933] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 08/30/2021] [Indexed: 12/13/2022] Open
Abstract
Purpose: We performed single-cell RNA sequencing (scRNA-seq), an unbiased and high-throughput single cell technology, to determine phenotype and function of peripheral immune cells in patients with diabetic macular edema (DME). Methods: Peripheral blood mononuclear cells (PBMCs) were isolated from DME patients and healthy controls (HC). The single-cell samples were loaded on the Chromium platform (10x Genomics) for sequencing. R package Seurat v3 was used for data normalizing, clustering, dimensionality reduction, differential expression analysis, and visualization. Results: We constructed a single-cell RNA atlas comprising 57,650 PBMCs (24,919 HC, 32,731 DME). We divided all immune cells into five major immune cell lineages, including monocytes (MC), T cells (TC), NK cells (NK), B cells (BC), and dendritic cells (DC). Our differential expression gene (DEG) analysis showed that MC was enriched of genes participating in the cytokine pathway and inflammation activation. We further subdivided MC into five subsets: resting CD14++ MC, proinflammatory CD14++ MC, intermediate MC, resting CD16++ MC and pro-inflammatory CD16++ MC. Remarkably, we revealed that the proinflammatory CD14++ monocytes predominated in promoting inflammation, mainly by increasingly production of inflammatory cytokines (TNF, IL1B, and NFKBIA) and chemokines (CCL3, CCL3L1, CCL4L2, CXCL2, and CXCL8). Gene Ontology (GO) and pathway analysis of the DEGs demonstrated that the proinflammatory CD14++ monocytes, especially in DME patients, upregulated inflammatory pathways including tumor necrosis factor-mediated signaling pathway, I-kappaB kinase/NF-kappaB signaling, and toll-like receptor signaling pathway. Conclusion: In this study, we construct the first immune landscape of DME patients with T2D and confirmed innate immune dysregulation in peripheral blood based on an unbiased scRNA-seq approach. And these results demonstrate potential target cell population for anti-inflammation treatments.
Collapse
Affiliation(s)
- Pengjuan Ma
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China.,Research Unit of Ocular Development and Regeneration, Chinese Academy of Medical Sciences, Guangzhou, China
| | - Ping Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Shuxia Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Wen Shi
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China.,Research Unit of Ocular Development and Regeneration, Chinese Academy of Medical Sciences, Guangzhou, China
| | - Jinguo Ye
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China.,Research Unit of Ocular Development and Regeneration, Chinese Academy of Medical Sciences, Guangzhou, China
| | - Shida Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China.,Research Unit of Ocular Development and Regeneration, Chinese Academy of Medical Sciences, Guangzhou, China
| | - Rong Ju
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Bingqian Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Yingfeng Zheng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China.,Research Unit of Ocular Development and Regeneration, Chinese Academy of Medical Sciences, Guangzhou, China
| | - Yizhi Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China.,Research Unit of Ocular Development and Regeneration, Chinese Academy of Medical Sciences, Guangzhou, China
| |
Collapse
|
34
|
Veys L, Devroye J, Lefevere E, Cools L, Vandenabeele M, De Groef L. Characterizing the Retinal Phenotype of the Thy1-h[A30P]α-syn Mouse Model of Parkinson's Disease. Front Neurosci 2021; 15:726476. [PMID: 34557068 PMCID: PMC8452874 DOI: 10.3389/fnins.2021.726476] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 08/19/2021] [Indexed: 12/30/2022] Open
Abstract
Despite decades of research, disease-modifying treatments of Parkinson’s disease (PD), the second most common neurodegenerative disease worldwide, remain out of reach. One of the reasons for this treatment gap is the incomplete understanding of how misfolded alpha-synuclein (α-syn) contributes to PD pathology. The retina, as an integral part of the central nervous system, recapitulates the PD disease processes that are typically seen in the brain, and retinal manifestations have emerged as prodromal symptoms of the disease. The timeline of PD manifestations in the visual system, however, is not fully elucidated and the underlying mechanisms are obscure. This highlights the need for new studies investigating retinal pathology, in order to propel its use as PD biomarker, and to develop validated research models to investigate PD pathogenesis. The present study pioneers in characterizing the retina of the Thy1-h[A30P]α-syn PD transgenic mouse model. We demonstrate widespread α-syn accumulation in the inner retina of these mice, of which a proportion is phosphorylated yet not aggregated. This α-syn expression coincides with inner retinal atrophy due to postsynaptic degeneration. We also reveal abnormal retinal electrophysiological responses. Absence of selective loss of melanopsin retinal ganglion cells or dopaminergic amacrine cells and inflammation indicates that the retinal manifestations in these transgenic mice diverge from their brain phenotype, and questions the specific cellular or molecular alterations that underlie retinal pathology in this PD mouse model. Nevertheless, the observed α-syn accumulation, synapse loss and functional deficits suggest that the Thy1-h[A30P]α-syn retina mimics some of the features of prodromal PD, and thus may provide a window to monitor and study the preclinical/prodromal stages of PD, PD-associated retinal disease processes, as well as aid in retinal biomarker discovery and validation.
Collapse
Affiliation(s)
- Lien Veys
- Research Group of Neural Circuit Development and Regeneration, Department of Biology, KU Leuven, Leuven, Belgium.,Department of Biomedical Sciences, Leuven Brain Institute, Leuven, Belgium
| | - Joyce Devroye
- Research Group of Neural Circuit Development and Regeneration, Department of Biology, KU Leuven, Leuven, Belgium.,Department of Biomedical Sciences, Leuven Brain Institute, Leuven, Belgium
| | - Evy Lefevere
- Research Group of Neural Circuit Development and Regeneration, Department of Biology, KU Leuven, Leuven, Belgium.,Department of Biomedical Sciences, Leuven Brain Institute, Leuven, Belgium
| | - Lien Cools
- Research Group of Neural Circuit Development and Regeneration, Department of Biology, KU Leuven, Leuven, Belgium.,Department of Biomedical Sciences, Leuven Brain Institute, Leuven, Belgium
| | - Marjan Vandenabeele
- Research Group of Neural Circuit Development and Regeneration, Department of Biology, KU Leuven, Leuven, Belgium.,Department of Biomedical Sciences, Leuven Brain Institute, Leuven, Belgium
| | - Lies De Groef
- Research Group of Neural Circuit Development and Regeneration, Department of Biology, KU Leuven, Leuven, Belgium.,Department of Biomedical Sciences, Leuven Brain Institute, Leuven, Belgium
| |
Collapse
|
35
|
Yang TT, Li H, Dong LJ. Role of glycolysis in retinal vascular endothelium, glia, pigment epithelium, and photoreceptor cells and as therapeutic targets for related retinal diseases. Int J Ophthalmol 2021; 14:1302-1309. [PMID: 34540603 DOI: 10.18240/ijo.2021.09.02] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 06/16/2021] [Indexed: 02/08/2023] Open
Abstract
Glycolysis produces large amounts of adenosine triphosphate (ATP) in a short time. The retinal vascular endothelium feeds itself primarily through aerobic glycolysis with less ATP. But when it generates new vessels, aerobic glycolysis provides rapid and abundant ATP support for angiogenesis, and thus inhibition of glycolysis in endothelial cells can be a target for the treatment of neovascularization. Aerobic glycolysis has a protective effect on Müller cells, and it can provide with a target for visual protection and maintenance of the blood-retinal barrier. Under physiological conditions, the mitochondria of RPE can use lactic acid produced by photoreceptor cells as an energy source to provide ATP for survival. In pathological conditions, because RPE cells avoid their oxidative damage by increasing glycolysis, a large number of glycolysis products accumulate, which in turn has a toxic effect on photoreceptor cells. This shows that stabilizing the function of RPE mitochondria may become a target for the treatment of diseases such as retinal degeneration. The decrease of aerobic glycolysis leads to the decline of photoreceptor cell function and impaired vision; therefore, aerobic glycolysis of stable photoreceptor cells provides a reliable target for delaying vision loss. It is of great significance to study the role of glycolysis in various retinal cells for the targeted treatment of ocular fundus diseases.
Collapse
Affiliation(s)
- Ting-Ting Yang
- Editorial Department of Chinese Journal of Ocular Fundus Diseases, West China Hospital of Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Hui Li
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Diseases, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin 300384, China
| | - Li-Jie Dong
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Diseases, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin 300384, China
| |
Collapse
|
36
|
Sun L, Wang R, Hu G, Liu H, Lv K, Duan Y, Shen N, Wu J, Hu J, Liu Y, Jin Q, Zhang F, Xu X. Single cell RNA sequencing (scRNA-Seq) deciphering pathological alterations in streptozotocin-induced diabetic retinas. Exp Eye Res 2021; 210:108718. [PMID: 34364890 DOI: 10.1016/j.exer.2021.108718] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 08/01/2021] [Accepted: 08/04/2021] [Indexed: 11/28/2022]
Abstract
Diabetic retinopathy (DR) is an irreversible and progressive diabetic complication leading to visual impairment, even blindness. Due to the delicate and complicated structure of the retina, the pathology of DR has not been completely elucidated yet. We constructed a transcriptome atlas of >14,000 single cells from healthy and streptozotocin (STZ)-induced diabetic murine retinas to decipher pathological alterations of DR. We found four stress-inducible genes Cirbp, Rmb3, Mt1 and Mt2 commonly induced in most types of retinal cells. Bipolar cells were little affected on both number and gene expression. Diabetes increased expression of inflammatory factor genes in retinal microglia, and stimulated expression of immediate early genes (IEGs) in retinal astrocytes. A large number of genes were deregulated in diabetic vascular endothelial cells (ECs), and the differentially expressed genes were paired to the pathways functioning in metabolism, shear stress and vascular permeability. These pathways were mapped by more deregulated genes in a subpopulation of ECs specifically presented in diabetic retinas (diabetic retinal ECs, DRECs). Moreover, several inflammation pathways were activated in DRECs, and the most significant one is the IL-17 signaling pathway. According to the EC markers, DRECs were mainly capillary ECs, confirmed by immunofluorescent staining of S100a9, a target gene of the IL-17 signaling pathway. This study deciphered pathological alterations of DR, and provided clues for potential targets for DR therapy.
Collapse
Affiliation(s)
- Licheng Sun
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University, 200080, Shanghai, China; National Clinical Research Center for Eye Diseases, 200080, Shanghai, China; Shanghai Key Laboratory of Fundus Diseases, 200080, Shanghai, China; Shanghai Engineering Center for Visual Science and Photomedicine, 200080, Shanghai, China; Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, 200080, Shanghai, China
| | - Ruonan Wang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University, 200080, Shanghai, China; National Clinical Research Center for Eye Diseases, 200080, Shanghai, China; Shanghai Key Laboratory of Fundus Diseases, 200080, Shanghai, China; Shanghai Engineering Center for Visual Science and Photomedicine, 200080, Shanghai, China; Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, 200080, Shanghai, China
| | - Guangyi Hu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University, 200080, Shanghai, China; National Clinical Research Center for Eye Diseases, 200080, Shanghai, China; Shanghai Key Laboratory of Fundus Diseases, 200080, Shanghai, China; Shanghai Engineering Center for Visual Science and Photomedicine, 200080, Shanghai, China; Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, 200080, Shanghai, China
| | - Huazhen Liu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University, 200080, Shanghai, China; National Clinical Research Center for Eye Diseases, 200080, Shanghai, China; Shanghai Key Laboratory of Fundus Diseases, 200080, Shanghai, China; Shanghai Engineering Center for Visual Science and Photomedicine, 200080, Shanghai, China; Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, 200080, Shanghai, China
| | - Kangjia Lv
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University, 200080, Shanghai, China; National Clinical Research Center for Eye Diseases, 200080, Shanghai, China; Shanghai Key Laboratory of Fundus Diseases, 200080, Shanghai, China; Shanghai Engineering Center for Visual Science and Photomedicine, 200080, Shanghai, China; Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, 200080, Shanghai, China
| | - Yi Duan
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University, 200080, Shanghai, China; National Clinical Research Center for Eye Diseases, 200080, Shanghai, China; Shanghai Key Laboratory of Fundus Diseases, 200080, Shanghai, China; Shanghai Engineering Center for Visual Science and Photomedicine, 200080, Shanghai, China; Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, 200080, Shanghai, China
| | - Ning Shen
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University, 200080, Shanghai, China; National Clinical Research Center for Eye Diseases, 200080, Shanghai, China; Shanghai Key Laboratory of Fundus Diseases, 200080, Shanghai, China; Shanghai Engineering Center for Visual Science and Photomedicine, 200080, Shanghai, China; Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, 200080, Shanghai, China
| | - Jiali Wu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University, 200080, Shanghai, China; National Clinical Research Center for Eye Diseases, 200080, Shanghai, China; Shanghai Key Laboratory of Fundus Diseases, 200080, Shanghai, China; Shanghai Engineering Center for Visual Science and Photomedicine, 200080, Shanghai, China; Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, 200080, Shanghai, China
| | - Jing Hu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University, 200080, Shanghai, China; National Clinical Research Center for Eye Diseases, 200080, Shanghai, China; Shanghai Key Laboratory of Fundus Diseases, 200080, Shanghai, China; Shanghai Engineering Center for Visual Science and Photomedicine, 200080, Shanghai, China; Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, 200080, Shanghai, China
| | - Yujuan Liu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University, 200080, Shanghai, China; National Clinical Research Center for Eye Diseases, 200080, Shanghai, China; Shanghai Key Laboratory of Fundus Diseases, 200080, Shanghai, China; Shanghai Engineering Center for Visual Science and Photomedicine, 200080, Shanghai, China; Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, 200080, Shanghai, China
| | - Qihuang Jin
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University, 200080, Shanghai, China; National Clinical Research Center for Eye Diseases, 200080, Shanghai, China; Shanghai Key Laboratory of Fundus Diseases, 200080, Shanghai, China; Shanghai Engineering Center for Visual Science and Photomedicine, 200080, Shanghai, China; Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, 200080, Shanghai, China.
| | - Fang Zhang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University, 200080, Shanghai, China; National Clinical Research Center for Eye Diseases, 200080, Shanghai, China; Shanghai Key Laboratory of Fundus Diseases, 200080, Shanghai, China; Shanghai Engineering Center for Visual Science and Photomedicine, 200080, Shanghai, China; Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, 200080, Shanghai, China.
| | - Xun Xu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University, 200080, Shanghai, China; National Clinical Research Center for Eye Diseases, 200080, Shanghai, China; Shanghai Key Laboratory of Fundus Diseases, 200080, Shanghai, China; Shanghai Engineering Center for Visual Science and Photomedicine, 200080, Shanghai, China; Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, 200080, Shanghai, China.
| |
Collapse
|
37
|
Abstract
It has been known for over a century that the basic organization of the retina is conserved across vertebrates. It has been equally clear that retinal cells can be classified into numerous types, but only recently have methods been devised to explore this diversity in unbiased, scalable, and comprehensive ways. Advances in high-throughput single-cell RNA-sequencing (scRNA-seq) have played a pivotal role in this effort. In this article, we outline the experimental and computational components of scRNA-seq and review studies that have used them to generate retinal atlases of cell types in several vertebrate species. These atlases have enabled studies of retinal development, responses of retinal cells to injury, expression patterns of genes implicated in retinal disease, and the evolution of cell types. Recently, the inquiry has expanded to include the entire eye and visual centers in the brain. These studies have enhanced our understanding of retinal function and dysfunction and provided tools and insights for exploring neural diversity throughout the brain. Expected final online publication date for the Annual Review of Vision Science, Volume 7 is September 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Karthik Shekhar
- Department of Chemical and Biomolecular Engineering; Helen Wills Neuroscience Institute; and California Institute for Quantitative Biosciences, QB3, University of California, Berkeley, California 94720, USA;
| | - Joshua R Sanes
- Center for Brain Science and Department of Molecular and Cell Biology, Harvard University, Cambridge, Massachusetts 02138, USA;
| |
Collapse
|
38
|
Hu Y, Zhou C, Shi Y, She X, Zhao S, Gu C, Xu X, Chen H, Ma M, Zheng Z. A Higher Serum Calcium Level is an Independent Risk Factor for Vision-Threatening Diabetic Retinopathy in Patients with Type 2 Diabetes: Cross-Sectional and Longitudinal Analyses. Endocr Pract 2021; 27:826-833. [PMID: 34000390 DOI: 10.1016/j.eprac.2021.05.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 12/21/2022]
Abstract
OBJECTIVE An elevated serum calcium level is associated with a higher risk of type 2 diabetes (T2D), but its role in microvascular complications remains unclear. This study was conducted to investigate the association between serum calcium levels and vision-threatening diabetic retinopathy (VTDR). METHODS This study employed a cross-sectional and longitudinal design. The cross-sectional part included all patients treated for T2D at Shanghai General Hospital between 2007 and 2016, while the longitudinal part involved an overlapping cohort of diabetic patients without VTDR who were followed from their admission until December 2019. Multivariable logistic and Cox proportional hazard regression analyses were performed, respectively. VTDR was defined as severe nonproliferative diabetic retinopathy, proliferative diabetic retinopathy, or clinically significant macular edema. RESULTS A total of 3269 patients were included in the cross-sectional analysis, and 649 patients were included in the longitudinal analysis. In the cross-sectional analysis, higher corrected serum calcium (odds ratio: 1.31 per 0.1 mmol/L, 95% confidence interval: 1.16-1.49), younger age, longer diabetes duration, albuminuria, impaired renal function, and lower serum magnesium were independently associated with VTDR. In the longitudinal analysis, 95 subjects developed VTDR during follow-up (9.7 years, interquartile range: 7.4-10.9 years). Higher corrected serum calcium (hazard ratio: 1.38 per 0.1 mmol/L, 95% confidence interval: 1.10-1.72), younger age, longer diabetes duration, sub-VTDR, albuminuria, lower serum magnesium, and higher glycated hemoglobin were identified as independent risk factors for VTDR. CONCLUSIONS A higher serum calcium level may be an independent risk factor for VTDR in patients with T2D.
Collapse
Affiliation(s)
- Yanan Hu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Chuandi Zhou
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Ya Shi
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Xinping She
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Shuzhi Zhao
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Chufeng Gu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Xun Xu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Haibing Chen
- Department of Endocrinology and Metabolism, Shanghai 10th People's Hospital, Tongji University, Shanghai, China
| | - Mingming Ma
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Zhi Zheng
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China.
| |
Collapse
|
39
|
Targeting RGD-binding integrins as an integrative therapy for diabetic retinopathy and neovascular age-related macular degeneration. Prog Retin Eye Res 2021; 85:100966. [PMID: 33775825 DOI: 10.1016/j.preteyeres.2021.100966] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 03/15/2021] [Accepted: 03/19/2021] [Indexed: 12/14/2022]
Abstract
Integrins are a class of transmembrane receptors that are involved in a wide range of biological functions. Dysregulation of integrins has been implicated in many pathological processes and consequently, they are attractive therapeutic targets. In the ophthalmology arena, there is extensive evidence suggesting that integrins play an important role in diabetic retinopathy (DR), age-related macular degeneration (AMD), glaucoma, dry eye disease and retinal vein occlusion. For example, there is extensive evidence that arginyl-glycyl-aspartic acid (Arg-Gly-Asp; RGD)-binding integrins are involved in key disease hallmarks of DR and neovascular AMD (nvAMD), specifically inflammation, vascular leakage, angiogenesis and fibrosis. Based on such evidence, drugs that engage integrin-linked pathways have received attention for their potential to block all these vision-threatening pathways. This review focuses on the pathophysiological role that RGD-binding integrins can have in complex multifactorial retinal disorders like DR, diabetic macular edema (DME) and nvAMD, which are leading causes of blindness in developed countries. Special emphasis will be given on how RGD-binding integrins can modulate the intricate molecular pathways and regulate the underlying pathological mechanisms. For instance, the interplay between integrins and key molecular players such as growth factors, cytokines and enzymes will be summarized. In addition, recent clinical advances linked to targeting RGD-binding integrins in the context of DME and nvAMD will be discussed alongside future potential for limiting progression of these diseases.
Collapse
|
40
|
Mesenchymal Stem Cell-Based Therapy for Retinal Degenerative Diseases: Experimental Models and Clinical Trials. Cells 2021; 10:cells10030588. [PMID: 33799995 PMCID: PMC8001847 DOI: 10.3390/cells10030588] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 02/26/2021] [Accepted: 03/02/2021] [Indexed: 12/13/2022] Open
Abstract
Retinal degenerative diseases, such as age-related macular degeneration, retinitis pigmentosa, diabetic retinopathy or glaucoma, represent the main causes of a decreased quality of vision or even blindness worldwide. However, despite considerable efforts, the treatment possibilities for these disorders remain very limited. A perspective is offered by cell therapy using mesenchymal stem cells (MSCs). These cells can be obtained from the bone marrow or adipose tissue of a particular patient, expanded in vitro and used as the autologous cells. MSCs possess potent immunoregulatory properties and can inhibit a harmful inflammatory reaction in the diseased retina. By the production of numerous growth and neurotrophic factors, they support the survival and growth of retinal cells. In addition, MSCs can protect retinal cells by antiapoptotic properties and could contribute to the regeneration of the diseased retina by their ability to differentiate into various cell types, including the cells of the retina. All of these properties indicate the potential of MSCs for the therapy of diseased retinas. This view is supported by the recent results of numerous experimental studies in different preclinical models. Here we provide an overview of the therapeutic properties of MSCs, and their use in experimental models of retinal diseases and in clinical trials.
Collapse
|
41
|
Schlecht A, Zhang P, Wolf J, Thien A, Rosmus DD, Boneva S, Schlunck G, Lange C, Wieghofer P. Secreted Phosphoprotein 1 Expression in Retinal Mononuclear Phagocytes Links Murine to Human Choroidal Neovascularization. Front Cell Dev Biol 2021; 8:618598. [PMID: 33585455 PMCID: PMC7876283 DOI: 10.3389/fcell.2020.618598] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 12/01/2020] [Indexed: 01/08/2023] Open
Abstract
Age-related macular degeneration (AMD) represents the most common cause of blindness in the elderly in the Western world. An impairment of the outer blood-retina barrier and a localized inflammatory microenvironment cause sprouting of choroidal neovascular membranes (CNV) in neovascular AMD that are in intimate contact with surrounding myeloid cells, such as retinal microglia, and ultimately lead to visual impairment. The discovery of novel target molecules to interfere with angiogenesis and inflammation is vital for future treatment approaches in AMD patients. To explore the transcriptional profile and the function of retinal microglia at sites of CNV, we performed a comprehensive RNA-seq analysis of retinal microglia in the mouse model of laser-induced choroidal neovascularization (mCNV). Here, we identified the angiogenic factor Osteopontin (Opn), also known as "secreted phosphoprotein 1" (Spp1), as one of the most highly expressed genes in retinal microglia in the course of CNV formation. We confirmed the presence of SPP1 at the lesion site in recruited retinal microglia in Cx3cr1 CreER:Rosa26-tdTomato reporter mice by confocal microscopy and in whole retinal tissue lysates by ELISA highlighting a massive local production of SPP1. Inhibition of SPP1 by intravitreal injection of an anti-SPP1 antibody significantly increased the lesion size compared to IgG-treated control eyes. In line with our results in rodents, we found an increased SPP1 mRNA expression in surgically extracted human choroidal neovascular (hCNV) membranes by the quantitative RNA-seq approach of massive analysis of cDNA ends (MACE). Numerous IBA1+SPP1+ myeloid cells were detected in human CNV membranes. Taken together, these results highlight the importance of SPP1 in the formation of CNV and potentially offer new opportunities for therapeutic intervention by modulating the SPP1 pathway.
Collapse
Affiliation(s)
- Anja Schlecht
- Eye Center, Medical Center, Medical Faculty, University of Freiburg, Freiburg, Germany
| | - Peipei Zhang
- Eye Center, Medical Center, Medical Faculty, University of Freiburg, Freiburg, Germany
| | - Julian Wolf
- Eye Center, Medical Center, Medical Faculty, University of Freiburg, Freiburg, Germany
| | - Adrian Thien
- Eye Center, Medical Center, Medical Faculty, University of Freiburg, Freiburg, Germany
| | | | - Stefaniya Boneva
- Eye Center, Medical Center, Medical Faculty, University of Freiburg, Freiburg, Germany
| | - Günther Schlunck
- Eye Center, Medical Center, Medical Faculty, University of Freiburg, Freiburg, Germany
| | - Clemens Lange
- Eye Center, Medical Center, Medical Faculty, University of Freiburg, Freiburg, Germany
| | | |
Collapse
|
42
|
The innate immune system in diabetic retinopathy. Prog Retin Eye Res 2021; 84:100940. [PMID: 33429059 DOI: 10.1016/j.preteyeres.2021.100940] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/24/2020] [Accepted: 01/03/2021] [Indexed: 12/20/2022]
Abstract
The prevalence of diabetes has been rising steadily in the past half-century, along with the burden of its associated complications, including diabetic retinopathy (DR). DR is currently the most common cause of vision loss in working-age adults in the United States. Historically, DR has been diagnosed and classified clinically based on what is visible by fundoscopy; that is vasculature alterations. However, recent technological advances have confirmed pathology of the neuroretina prior to any detectable vascular changes. These, coupled with molecular studies, and the positive impact of anti-inflammatory therapeutics in DR patients have highlighted the central involvement of the innate immune system. Reminiscent of the systemic impact of diabetes, immune dysregulation has become increasingly identified as a key element of the pathophysiology of DR by interfering with normal homeostatic systems. This review uses the growing body of literature across various model systems to demonstrate the clear involvement of all three pillars of the immune system: immune-competent cells, mediators, and the complement system. It also demonstrates how the relative contribution of each of these requires more extensive analysis, including in human tissues over the continuum of disease progression. Finally, although this review demonstrates how the complex interactions of the immune system pose many more questions than answers, the intimately connected nature of the three pillars of the immune system may also point to possible new targets to reverse or even halt reverse retinopathy.
Collapse
|
43
|
Vandenabeele M, Veys L, Lemmens S, Hadoux X, Gelders G, Masin L, Serneels L, Theunis J, Saito T, Saido TC, Jayapala M, De Boever P, De Strooper B, Stalmans I, van Wijngaarden P, Moons L, De Groef L. The App NL-G-F mouse retina is a site for preclinical Alzheimer's disease diagnosis and research. Acta Neuropathol Commun 2021; 9:6. [PMID: 33407903 PMCID: PMC7788955 DOI: 10.1186/s40478-020-01102-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 12/13/2020] [Indexed: 12/13/2022] Open
Abstract
In this study, we report the results of a comprehensive phenotyping of the retina of the AppNL-G-F mouse. We demonstrate that soluble Aβ accumulation is present in the retina of these mice early in life and progresses to Aβ plaque formation by midlife. This rising Aβ burden coincides with local microglia reactivity, astrogliosis, and abnormalities in retinal vein morphology. Electrophysiological recordings revealed signs of neuronal dysfunction yet no overt neurodegeneration was observed and visual performance outcomes were unaffected in the AppNL-G-F mouse. Furthermore, we show that hyperspectral imaging can be used to quantify retinal Aβ, underscoring its potential as a biomarker for AD diagnosis and monitoring. These findings suggest that the AppNL-G-F retina mimics the early, preclinical stages of AD, and, together with retinal imaging techniques, offers unique opportunities for drug discovery and fundamental research into preclinical AD.
Collapse
Affiliation(s)
- Marjan Vandenabeele
- Neural Circuit Development and Regeneration Research Group, Department of Biology, University of Leuven (KU Leuven), Naamsestraat 61, Box 2464, 3000, Leuven, Belgium
- Leuven Brain Institute, Leuven, Belgium
| | - Lien Veys
- Neural Circuit Development and Regeneration Research Group, Department of Biology, University of Leuven (KU Leuven), Naamsestraat 61, Box 2464, 3000, Leuven, Belgium
- Leuven Brain Institute, Leuven, Belgium
| | - Sophie Lemmens
- Department of Ophthalmology, University Hospitals Leuven, Leuven, Belgium
- Research Group Ophthalmology, Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Xavier Hadoux
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Australia
- Ophthalmology, Department of Surgery, University of Melbourne, Parkville, Australia
| | - Géraldine Gelders
- Neural Circuit Development and Regeneration Research Group, Department of Biology, University of Leuven (KU Leuven), Naamsestraat 61, Box 2464, 3000, Leuven, Belgium
- Leuven Brain Institute, Leuven, Belgium
| | - Luca Masin
- Neural Circuit Development and Regeneration Research Group, Department of Biology, University of Leuven (KU Leuven), Naamsestraat 61, Box 2464, 3000, Leuven, Belgium
- Leuven Brain Institute, Leuven, Belgium
| | - Lutgarde Serneels
- Leuven Brain Institute, Leuven, Belgium
- Center for Brain and Disease Research, Flemish Institute for Biotechnology (VIB), Leuven, Belgium
- Laboratory for the Research of Neurodegenerative Diseases, Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Jan Theunis
- Health Unit, Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - Takashi Saito
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Saitama, Japan
- Department of Neurocognitive Science, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
- Interuniversity Microelectronics Centre (Imec), Leuven, Belgium
| | - Takaomi C Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Saitama, Japan
| | - Murali Jayapala
- Interuniversity Microelectronics Centre (Imec), Leuven, Belgium
| | - Patrick De Boever
- Center for Brain and Disease Research, Flemish Institute for Biotechnology (VIB), Leuven, Belgium
- Laboratory for the Research of Neurodegenerative Diseases, Department of Neurosciences, KU Leuven, Leuven, Belgium
- Center of Environmental Sciences, Hasselt University, Diepenbeek, Belgium
- Department of Biology, University of Antwerp, Wilrijk, Belgium
| | - Bart De Strooper
- Leuven Brain Institute, Leuven, Belgium
- Center for Brain and Disease Research, Flemish Institute for Biotechnology (VIB), Leuven, Belgium
- Laboratory for the Research of Neurodegenerative Diseases, Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Ingeborg Stalmans
- Department of Ophthalmology, University Hospitals Leuven, Leuven, Belgium
- Research Group Ophthalmology, Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Peter van Wijngaarden
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Australia
- Ophthalmology, Department of Surgery, University of Melbourne, Parkville, Australia
| | - Lieve Moons
- Neural Circuit Development and Regeneration Research Group, Department of Biology, University of Leuven (KU Leuven), Naamsestraat 61, Box 2464, 3000, Leuven, Belgium
- Leuven Brain Institute, Leuven, Belgium
| | - Lies De Groef
- Neural Circuit Development and Regeneration Research Group, Department of Biology, University of Leuven (KU Leuven), Naamsestraat 61, Box 2464, 3000, Leuven, Belgium.
- Leuven Brain Institute, Leuven, Belgium.
| |
Collapse
|
44
|
Kinuthia UM, Wolf A, Langmann T. Microglia and Inflammatory Responses in Diabetic Retinopathy. Front Immunol 2020; 11:564077. [PMID: 33240260 PMCID: PMC7681237 DOI: 10.3389/fimmu.2020.564077] [Citation(s) in RCA: 150] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 10/14/2020] [Indexed: 12/12/2022] Open
Abstract
Diabetic retinopathy is a vision-threatening disease affecting neurons and microvasculature of the retina. The development of this disease is associated with the action of inflammatory factors that are connected to the activation of microglial cells, the resident tissue macrophages of the CNS. In the quiescent state, microglial cells help maintain tissue homeostasis in the retina through phagocytosis and control of low-grade inflammation. However, prolonged tissue stress due to hyperglycemia primes microglia to become overly reactive with the concomitant production of pro-inflammatory cytokines and chemokines causing chronic inflammation. In this review, we provide evidence of microglial cell activation and pro-inflammatory molecules associated with the development and progression of diabetic retinopathy. We further highlight innovative animal models that can mimic the disease in humans and discuss strategies in modulating microglial-mediated inflammation as potential therapeutic approaches in managing the disease.
Collapse
Affiliation(s)
- Urbanus Muthai Kinuthia
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.,Center for Molecular Medicine, University of Cologne, Cologne, Germany
| | - Anne Wolf
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Thomas Langmann
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.,Center for Molecular Medicine, University of Cologne, Cologne, Germany
| |
Collapse
|