1
|
Amin A, Saadatakhtar M, Mohajerian A, Marashi SM, Zamanifard S, Keshavarzian A, Molaee P, Keshmiri MS, Nikdoust F. Mercury-Mediated Cardiovascular Toxicity: Mechanisms and Remedies. Cardiovasc Toxicol 2025:10.1007/s12012-025-09966-6. [PMID: 39904862 DOI: 10.1007/s12012-025-09966-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 01/22/2025] [Indexed: 02/06/2025]
Abstract
Mercury is a significant environmental pollutant and public health threat, primarily recognized for its neurotoxic effects. Increasing evidence also highlights its harmful impact on the cardiovascular system, particularly in adults. Exposure to mercury through contaminated soil, air, or water initiates a cascade of pathological events that lead to organ damage, including platelet activation, oxidative stress, enhanced inflammation, and direct injury to critical cells such as cardiomyocytes and endothelial cells. Endothelial activation triggers the upregulation of adhesion molecules, promoting the recruitment of leukocytes and platelets to vascular sites. These interactions activate both platelets and immune cells, creating a pro-inflammatory, prothrombotic environment. A key outcome is the formation of platelet-leukocyte aggregates (PLAs), which exacerbate thromboinflammation and endothelial dysfunction. These processes significantly elevate cardiovascular risks, including thrombosis and vascular inflammation. This study offers a comprehensive analysis of the mechanisms underlying mercury-induced cardiotoxicity, focusing on oxidative stress, inflammation, and cellular dysfunction.
Collapse
Affiliation(s)
- Arash Amin
- Department of Cardiology, School of Medicine, Shahid Madani Hospital, Lorestan University of Medical Sciences, Khoramabad, Iran
| | | | - Ahmad Mohajerian
- Department of Emergency Medicine, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Somayeh Zamanifard
- Department of Cardiology, School of Medicine, Hajar Hospital, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | | | | | - Mohammad Sadegh Keshmiri
- Lung Transplant Research Center, National Research Institute of Tuberculosis and Lung Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Farahnaz Nikdoust
- Department of Cardiology, Shariati Hospital, Tehran University of Medical Sciences, Tehran, IR, Iran.
| |
Collapse
|
2
|
Althobaiti NA. Heavy metals exposure and Alzheimer's disease: Underlying mechanisms and advancing therapeutic approaches. Behav Brain Res 2025; 476:115212. [PMID: 39187176 DOI: 10.1016/j.bbr.2024.115212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/19/2024] [Accepted: 08/19/2024] [Indexed: 08/28/2024]
Abstract
Heavy metals such as lead, cadmium, mercury, and arsenic are prevalent in the environment due to both natural and anthropogenic sources, leading to significant public health concerns. These heavy metals are known to cause damage to the nervous system, potentially leading to a range of neurological conditions including Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), multiple sclerosis (MS), and attention-deficit hyperactivity disorder (ADHD). The present study examines the complex relationship between heavy metal exposure and AD, focusing on the underlying mechanisms of toxicity and potential therapeutic approaches. This review article highlights how these metals can impair brain function through mechanisms such as oxidative stress, inflammation, and neurotransmitter disruption, ultimately contributing to neurodegenerative diseases like AD. It also addresses the challenges in diagnosing heavy metal-induced cognitive impairments and emphasizes the need for further research to explore effective treatment strategies and preventive measures against heavy metal exposure.
Collapse
Affiliation(s)
- Norah A Althobaiti
- Biology Department, College of Science and Humanities, Shaqra University, Saudi Arabia.
| |
Collapse
|
3
|
Nong Q, Wu Y, Liu S, Tang Y, Wu J, Huang H, Hong J, Qin Y, Xu R, Zhao W, Chen B, Huang Z, Hu L, Zhao N, Huang Y. Lead-induced actin polymerization aggravates neutrophil extracellular trap formation and contributes to vascular inflammation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 290:117598. [PMID: 39721424 DOI: 10.1016/j.ecoenv.2024.117598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 12/14/2024] [Accepted: 12/19/2024] [Indexed: 12/28/2024]
Abstract
Lead (Pb) exposure is widely acknowledged as a risk factor for cardiovascular diseases. Previous studies have established neutrophil involvement in Pb-induced cardiovascular injuries; however, the underlying mechanisms remain unclear. To address this knowledge gap, the binding targets of Pb in neutrophils and their roles in regulating neutrophil extracellular trap (NET) formation were investigated. Furthermore, their impact on Pb-induced vascular inflammation and other cardiovascular injuries was studied in mice. Our findings indicate, for the first time, that Pb binds to β-actin in neutrophils, influencing NET formation. Inhibition of actin polymerization reduces the release of extracellular myeloperoxidase, neutrophil elastase, and citrullinated histone H3, indicating an impediment in NET formation. Furthermore, Pb exposure exacerbates blood pressure and vascular inflammation in vascular tissues, leading to abnormal aortic blood flow in mice. These injuries are potentially associated with NET formation, which is supported by the positive correlation between NETs and vascular inflammation. Importantly, the inhibition of actin polymerization mitigates Pb-induced vascular inflammation and regulates systolic blood pressure by reducing NET formation. Collectively, our findings provide novel insights into the mechanism underlying Pb-induced cardiovascular injury, contributing to the management of the escalating risk associated with Pb-induced cardiovascular damage.
Collapse
Affiliation(s)
- Qiying Nong
- Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou 510300, China
| | - Yanjun Wu
- Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou 510300, China; Guangming District Center for Disease Control and Prevention, Shenzhen 518016, China; Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Suhui Liu
- Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou 510300, China; School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Yinyin Tang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jiayun Wu
- Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou 510300, China; School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510310, China
| | - Hongmei Huang
- Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou 510300, China; School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Jiaying Hong
- Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou 510300, China; School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510310, China
| | - Yiru Qin
- Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou 510300, China
| | - Ruimei Xu
- Material Microanalysis Division, Instrumental Analysis & Research Center, Sun Yat-Sen University, Guangzhou 510275, China
| | - Wenxia Zhao
- Material Microanalysis Division, Instrumental Analysis & Research Center, Sun Yat-Sen University, Guangzhou 510275, China
| | - Baowei Chen
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Zhenlie Huang
- Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Ligang Hu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Institute of Environment and Health, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310000, China
| | - Na Zhao
- Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou 510300, China.
| | - Yongshun Huang
- Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou 510300, China; Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China; School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510310, China.
| |
Collapse
|
4
|
Sharma K, Sharma V. Allium sativum Essential Oil Supplementation Reverses the Hepatic Inflammation, Genotoxicity and Apoptotic Effects in Swiss Albino Mice Intoxicated with the Lead Nitrate. Biol Trace Elem Res 2024; 202:3258-3277. [PMID: 37964042 DOI: 10.1007/s12011-023-03924-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/19/2023] [Indexed: 11/16/2023]
Abstract
Prolonged lead (Pb) exposure impairs human health due to its interference with physiological and biochemical processes. Therefore, it is necessary to investigate natural therapeutics to alleviate Pb-induced intoxication. In the current investigation, essential oil extracted from the fresh bulbs of Allium sativum was considered as a natural remedy. Initially, in vitro antioxidant and anti-inflammatory activity of A. sativum essential oil (ASEO) were explored. The results reported that ASEO exhibits potent antioxidant and anti-inflammatory potential. Additionally, an in vivo study was conducted to elucidate its preventive role against Lead-nitrate (LN)-induced hepatic damage in Swiss albino mice. The experimental mice were allocated into six groups: Control, LN-intoxicated group (50 mg/kg), LN + ASEO (50 mg/kg), LN + ASEO (80 mg/kg), LN + Silymarin (25 mg/kg), and LN + vehicle oil control group. The entire duration of the study was of 30 days. From the results, it was determined that LN exposure elevated the Pb content in hepatic tissues which subsequently increased the serum biomarkers, inflammatory cytokines (NF-kB, TNF-α, IL-6) as well as apoptotic factors (caspase-3, BAX), all of which contribute to DNA damage. Meanwhile, it reduced anti-inflammatory (IFN-γ and IL-10) and anti-apoptotic factors (Bcl-2). Furthermore, Pb accumulation in hepatic tissues changed the histological architecture, which was linked to necrosis, central vein dilation, inflammatory cell infiltration and Kupffer cell activation. In contrast to this, ASEO administration decreased the Pb content, which in turn reduced the level of serum biomarkers, inflammatory and apoptotic factors. At the same time, it increased the anti-inflammatory and anti-apoptotic factors, thereby reduced DNA damage and restored the hepatic histology. In conclusion, exhaustive research is of the utmost demand to elucidate the precise defense mechanisms of ASEO against LN-induced hepatotoxicity.
Collapse
Affiliation(s)
- Kusum Sharma
- Banasthali Vidyapith, Department of Bioscience and Biotechnology, Tonk, Rajasthan, 304022, India
| | - Veena Sharma
- Banasthali Vidyapith, Department of Bioscience and Biotechnology, Tonk, Rajasthan, 304022, India.
| |
Collapse
|
5
|
Yang Y, Hong Y, Han J, Yang Z, Huang N, Xu B, Wang Q. D-Limonene Alleviates Oxidative Stress Injury of the Testis Induced by Arsenic in Rat. Biol Trace Elem Res 2024; 202:2776-2785. [PMID: 37773484 DOI: 10.1007/s12011-023-03881-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/22/2023] [Indexed: 10/01/2023]
Abstract
Long-term exposure to arsenic can lead to testicular damage and lower sperm quality in males, which is mediated by increased arsenic-induced oxidative stress and other damage mechanisms. D-Limonene, which is rich in oranges, lemons, oranges, grapes and other natural fruits, can relieve doxorubicin (DOX)-induced kidney injury and CCL4-induced cardiac toxicity by inhibiting oxidative stress and inflammatory response. The antioxidant and anti-inflammatory properties of D-limonene motivate us to further explore whether it can reduce arsenic-induced testicular injury. To verify this scientific hypothesis, testicular pathology, testicular oxidative stress levels and sperm motility were determined after intervention with D-limonene in rats chronically exposed to arsenic. As expected, long-term arsenic exposure caused testicular tissue structure disturbances, increased levels of oxidative stress, and decreased sperm activation, all of which were significantly inhibited due to treatment with D-limonene. In conclusion, our data reveal a previously unproven beneficial effect of D-limonene, namely that D-limonene can inhibit arsenic-induced testicular injury, and also provide theoretical and experimental basis for the application of D-limonene in the treatment of arsenic-induced testicular injury.
Collapse
Affiliation(s)
- Yanping Yang
- Department of Histology and Embryology, School of Basic Medicine, Guizhou Medical University, Guiyang, 550025, Guizhou, China
| | - Yan Hong
- Department of Histology and Embryology, School of Basic Medicine, Guizhou Medical University, Guiyang, 550025, Guizhou, China
| | - Jing Han
- Department of Histology and Embryology, School of Basic Medicine, Guizhou Medical University, Guiyang, 550025, Guizhou, China
| | - Zhe Yang
- Department of Histology and Embryology, School of Basic Medicine, Guizhou Medical University, Guiyang, 550025, Guizhou, China
| | - Nanmin Huang
- Department of Histology and Embryology, School of Basic Medicine, Guizhou Medical University, Guiyang, 550025, Guizhou, China
| | - Binwei Xu
- Department of Histology and Embryology, School of Basic Medicine, Guizhou Medical University, Guiyang, 550025, Guizhou, China
| | - Qi Wang
- Department of Histology and Embryology, School of Basic Medicine, Guizhou Medical University, Guiyang, 550025, Guizhou, China.
| |
Collapse
|
6
|
Xue C, Du X, Zhu X, Wu N, Ye Q. Heavy metal poisoning caused by Chinese folk remedies in psoriasis patients: a retrospective analysis. Sci Rep 2024; 14:11777. [PMID: 38783149 PMCID: PMC11116519 DOI: 10.1038/s41598-024-62653-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/20/2024] [Indexed: 05/25/2024] Open
Abstract
Psoriasis, characterized as a chronic relapsing disease with a protracted course, often drives patients to seek relief through Chinese folk remedies (CFR). Nonetheless, the complex compositions of these remedies frequently result in unintended adverse effects, notably various types of heavy metal poisoning. Our study involved an exhaustive collection and analysis of clinical data from psoriasis patients who developed heavy metal poisoning due to CFR usage, admitted to Beijing Chao-Yang Hospital from January 2011 to October 2023. Our analysis identified 44 cases of mercury poisoning, 17 of lead poisoning, 21 of arsenic poisoning, and 4 instances of mixed heavy metal poisoning. The folk remedies used ranged from fumigation and inhalation to skin application and oral administration. Distinct pathogenic characteristics were observed in each poisoning type. After treatment with metal chelating agents, all patients experienced a reduction in heavy metal levels in their bodies, accompanied by varying degrees of symptom alleviation. This study underscores the vital necessity of opting for formal, medically approved treatments for psoriasis, thereby avoiding the hazardous consequences of unregulated folk remedies that may lead to severe heavy metal poisoning.
Collapse
Affiliation(s)
- Changjiang Xue
- Department of Occupational Medicine and Toxicology, Beijing Chao-Yang Hospital, Clinical Center for Interstitial Lung Diseases, Capital Medical University, Worker's Stadium No.8, Chao-Yang District, Beijing, 100020, China.
| | - Xuqin Du
- Department of Occupational Medicine and Toxicology, Beijing Chao-Yang Hospital, Clinical Center for Interstitial Lung Diseases, Capital Medical University, Worker's Stadium No.8, Chao-Yang District, Beijing, 100020, China
| | - Xiaoli Zhu
- Department of Occupational Medicine and Toxicology, Beijing Chao-Yang Hospital, Clinical Center for Interstitial Lung Diseases, Capital Medical University, Worker's Stadium No.8, Chao-Yang District, Beijing, 100020, China
| | - Na Wu
- Department of Occupational Medicine and Toxicology, Beijing Chao-Yang Hospital, Clinical Center for Interstitial Lung Diseases, Capital Medical University, Worker's Stadium No.8, Chao-Yang District, Beijing, 100020, China
| | - Qiao Ye
- Department of Occupational Medicine and Toxicology, Beijing Chao-Yang Hospital, Clinical Center for Interstitial Lung Diseases, Capital Medical University, Worker's Stadium No.8, Chao-Yang District, Beijing, 100020, China
| |
Collapse
|
7
|
Tian C, Qiu Y, Zhao Y, Fu L, Xia D, Ying J. Selenium protects against Pb-induced renal oxidative injury in weaning rats and human renal tubular epithelial cells through activating NRF2. J Trace Elem Med Biol 2024; 83:127420. [PMID: 38432121 DOI: 10.1016/j.jtemb.2024.127420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/20/2024] [Accepted: 02/25/2024] [Indexed: 03/05/2024]
Abstract
BACKGROUND Lead (Pb) poisoning posing a crucial health risk, especially among children, causing devastating damage not only to brain development, but also to kidney function. Thus, an urgent need persists to identify highly effective, safe, and low-toxicity drugs for the treatment of Pb poisoning. The present study focused on exploring the protective effects of Se on Pb-induced nephrotoxicity in weaning rats and human renal tubular epithelial cells, and investigated the possible mechanisms. METHODS Forty weaning rats were randomly divided into four groups in vivo: control, Pb-exposed, Pb+Se and Se. Serum creatinine (Cr), urea nitrogen (BUN) and hematoxylin and eosin (H&E) staining were performed to evaluate renal function. The activities of antioxidant enzymes in the kidney tissue were determined. In vitro experiments were performed using human renal tubular epithelial cells (HK-2 cells). The cytotoxicity of Pb and Se was detected by 3-(4,5-dimethylthiazol-2yl)-2, 5-diphenyltetrazolium bromide (MTT) assay. Inverted fluorescence microscope was used to investigate cell morphological changes and the fluorescence intensity of reactive oxygen species (ROS). The oxidative stress parameters were measured by a multi-detection reader. Nuclear factor-erythroid-2-related factor (NRF2) signaling pathways were measured by Western blot and reverse transcription polymerase chain reaction (RT-PCR) in HK-2 cells. RESULTS We found that Se alleviated Pb-induced kidney injury by relieving oxidative stress and reducing the inflammatory index. Se significantly increased the activity of the antioxidant enzymes glutathione (GSH), superoxide dismutase (SOD) and catalase (CAT), whereas it decreased the excessive release of malondialdehyde (MDA) in the kidneys of weaning rats and HK-2 cells. Additionally, Se enhanced the antioxidant defense systems via activating the NRF2 transcription factor, thereby promoting the to downstream expression of heme oxygenase 1. Furthermore, genes encoding glutamate-cysteine ligase synthetase catalytic (GCLC), glutamate-cysteine ligase synthetase modifier (GCLM) and NADPH quinone oxidoreductase 1 (NQO1), downstream targets of NRF2, formed a positive feedback loop with NRF2 during oxidative stress responses. The MTT assay results revealed a significant decrease in cell viability with Se treatment, and the cytoprotective role of Se was blocked upon knockdown of NRF2 by small interfering RNA (siRNA). MDA activity results also showed that NRF2 knockdown inhibited the NRF2-dependent transcriptional activity of Se. CONCLUSIONS Our findings demonstrate that Se ameliorated Pb-induced nephrotoxicity by reducing oxidative stress both in vivo and in vitro. The molecular mechanism underlying Se's action in Pb-induced kidney injury is related to the activation of the NRF2 transcription factor and the activity of antioxidant enzymes, ultimately suppressing ROS accumulation.
Collapse
Affiliation(s)
- Chongmei Tian
- Department of Pharmacy, Shaoxing Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Shaoxing 312000, China
| | - Yu Qiu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yaping Zhao
- Department of Pharmacy, Shaoxing Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Shaoxing 312000, China
| | - Liping Fu
- Department of Pharmacy, Shaoxing Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Shaoxing 312000, China
| | - Daozong Xia
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Junjie Ying
- Department of Urology, the Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou 324000, China.
| |
Collapse
|
8
|
Antia M, Ezejiofor AN, Orish CN, Cirovic A, Cirovic A, Orisakwe OE. Selenium and zinc supplementation mitigates metals-(loids) mixture- mediated cardiopulmonary toxicity via attenuation of antioxidant, anti-inflammatory and antiapoptotic mechanisms in female Sprague Dawley rats. Toxicol Res (Camb) 2024; 13:tfad119. [PMID: 38179003 PMCID: PMC10762678 DOI: 10.1093/toxres/tfad119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/01/2023] [Accepted: 11/30/2023] [Indexed: 01/06/2024] Open
Abstract
This study evaluated the cardiopulmonary protective effects of essential elements (Zn and Se) against heavy metals mixture (HMM) exposure. Twenty five female Sprague Dawley albino rats, divided in to five groups: controls were orally treated only with distilled water; next, group 2 was exposed to HMM with the following concentrations: 20 mg/kg of Pb body weight, 0.40 mg/kg of Hg, 0.56 mg/kg of Mn, and 35 mg/kg of Al. Groups 3, 4 and 5 were exposed to HMM and co-treated with zinc chloride (ZnCl2; 0.80 mg/kg), sodium selenite (Na2SeO3;1.50 mg/kg) and both zinc chloride and sodium selenite, respectively. The experiment lasted for 60 days. Afterwards animals were sacrificed, and we conduced biochemical and histopathological examination of the heart and lungs. HMM only exposed animals had an increased levels of malondialdehyde (MDA) and nitric oxide (NO), increased IL-6 and TNF-α, attenuated SOD, GPx, CAT and GSH and caspase 3 in the heart and lungs. HMM affected NF-kB and Nrf2 in the heart muscle with histomorphological alterations. Zn and Se attenuated adverse effects of HMM exposure. Essential element supplementation ameliorated heavy metal cardiopulmonary intoxication in rats.
Collapse
Affiliation(s)
- Mfoniso Antia
- African Centre of Excellence for Public Health and Toxicological Research (ACE-PUTOR), University of Port Harcourt, PMB, East West Road, Choba, Port Harcourt, Rivers State, Choba 5323, Nigeria
| | - Anthonet N Ezejiofor
- African Centre of Excellence for Public Health and Toxicological Research (ACE-PUTOR), University of Port Harcourt, PMB, East West Road, Choba, Port Harcourt, Rivers State, Choba 5323, Nigeria
| | - Chinna N Orish
- Department of Anatomy, Faculty of Basic Medical Sciences, College of Health Sciences, University of Port Harcourt, PMB, East West Road, Choba, Port Harcourt, Rivers State, Choba 5323, Nigeria
| | - Ana Cirovic
- Faculty of Medicine, The Institute of Anatomy, University of Belgrade, East West Road, Choba, Port Harcourt, Rivers State Belgrade, Serbia
| | - Aleksandar Cirovic
- Faculty of Medicine, The Institute of Anatomy, University of Belgrade, East West Road, Choba, Port Harcourt, Rivers State Belgrade, Serbia
| | - Orish E Orisakwe
- African Centre of Excellence for Public Health and Toxicological Research (ACE-PUTOR), University of Port Harcourt, PMB, East West Road, Choba, Port Harcourt, Rivers State, Choba 5323, Nigeria
| |
Collapse
|
9
|
Barbosa NV, Aschner M, Tinkov AA, Farina M, da Rocha JBT. Should ebselen be considered for the treatment of mercury intoxication? A minireview. Toxicol Mech Methods 2024; 34:1-12. [PMID: 37731353 PMCID: PMC10841883 DOI: 10.1080/15376516.2023.2258958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 09/09/2023] [Indexed: 09/22/2023]
Abstract
Mercury is a ubiquitous environmental contaminant and can be found in inorganic (Hg0, Hg+ and Hg2+) and organic forms (chiefly CH3Hg+ or MeHg+). The main route of human, mammals and bird exposure occurs via predatory fish ingestion. Occupational exposure to Hg0 (and Hg2+) can also occur; furthermore, in gold mining areas the exposure to inorganic Hg can also be high. The toxicity of electrophilic forms of Hg (E+Hg) is mediated by disruption of thiol (-SH)- or selenol (-SeH)-containing proteins. The therapeutic approaches to treat methylmercury (MeHg+), Hg0 and Hg2+ are limited. Here we discuss the potential use of ebselen as a potential therapeutic agent to lower the body burden of Hg in man. Ebselen is a safe drug for humans and has been tested in clinical trials (for instance, brain ischemia, noise-induce hearing loss, diabetes complications, bipolar disorders) at doses varying from 400 to 3600 mg per day. Two clinical trials with ebselen in moderate and severe COVID are also approved. Ebselen can be metabolized to an intermediate with -SeH (selenol) functional group, which has a greater affinity to electrophilic Hg (E+Hg) forms than the available thiol-containing therapeutic agents. Accordingly, as observed in vitro and rodent models in vivo, Ebselen exhibited protective effects against MeHg+, indicating its potential as a therapeutic agent to treat MeHg+ overexposure. The combined use of ebselen with thiol-containing molecules (e.g. N-acetylcysteine and enaramide)) is also commented, because they can have synergistic protective effects against MeHg+.
Collapse
Affiliation(s)
- Nilda V. Barbosa
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Alexey A. Tinkov
- Yaroslavl State University, Yaroslavl, Russia
- Center of Bioelementology and Human Ecology, IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Marcelo Farina
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - João Batista Teixeira da Rocha
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, Brazil
- Departamento de Bioquímica, Instituto Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
10
|
Bjørklund G, Tippairote T, Hangan T, Chirumbolo S, Peana M. Early-Life Lead Exposure: Risks and Neurotoxic Consequences. Curr Med Chem 2024; 31:1620-1633. [PMID: 37031386 DOI: 10.2174/0929867330666230409135310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 02/10/2023] [Accepted: 02/16/2023] [Indexed: 04/10/2023]
Abstract
BACKGROUND Lead (Pb) does not have any biological function in a human, and it is likely no safe level of Pb in the human body. The Pb exposure impacts are a global concern for their potential neurotoxic consequences. Despite decreasing both the environmental Pb levels and the average blood Pb levels in the survey populations, the lifetime redistribution from the tissues-stored Pb still poses neurotoxic risks from the low-level exposure in later life. The growing fetus and children hold their innate high-susceptible to these Pb-induced neurodevelopmental and neurobehavioral effects. OBJECTIVE This article aims to evaluate cumulative studies and insights on the topic of Pb neurotoxicology while assessing the emerging trends in the field. RESULTS The Pb-induced neurochemical and neuro-immunological mechanisms are likely responsible for the high-level Pb exposure with the neurodevelopmental and neurobehavioral impacts at the initial stages. Early-life Pb exposure can still produce neurodegenerative consequences in later life due to the altered epigenetic imprints and the ongoing endogenous Pb exposure. Several mechanisms contribute to the Pb-induced neurotoxic impacts, including the direct neurochemical effects, the induction of oxidative stress and inflammation through immunologic activations, and epigenetic alterations. Furthermore, the individual nutritional status, such as macro-, micro-, or antioxidant nutrients, can significantly influence the neurotoxic impacts even at low-level exposure to Pb. CONCLUSION The prevention of early-life Pb exposure is, therefore, the critical determinant for alleviating various Pb-induced neurotoxic impacts across the different age groups.
Collapse
Affiliation(s)
- Geir Bjørklund
- Council for Nutritional and Environmental Medicine (CONEM), Toften 24, Mo i Rana, 8610, Norway
| | - Torsak Tippairote
- Department of Nutritional and Environmental Medicine, HP Medical Center, Bangkok 10540, Thailand
| | - Tony Hangan
- Faculty of Medicine, Ovidius University of Constanta, Constanta, 900470, Romania
| | - Salvatore Chirumbolo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, 37134, Italy
- CONEM Scientific Secretary, Strada Le Grazie 9, 37134, Verona, Italy
| | - Massimiliano Peana
- Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, Via Vienna 2, Sassari, 07100, Italy
| |
Collapse
|
11
|
Yenkoyan K, Ounanian Z, Mirumyan M, Hayrapetyan L, Zakaryan N, Sahakyan R, Bjørklund G. Advances in the Treatment of Autism Spectrum Disorder: Current and Promising Strategies. Curr Med Chem 2024; 31:1485-1511. [PMID: 37888815 PMCID: PMC11092563 DOI: 10.2174/0109298673252910230920151332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 07/04/2023] [Accepted: 08/26/2023] [Indexed: 10/28/2023]
Abstract
Autism spectrum disorder (ASD) is an umbrella term for developmental disorders characterized by social and communication impairments, language difficulties, restricted interests, and repetitive behaviors. Current management approaches for ASD aim to resolve its clinical manifestations based on the type and severity of the disability. Although some medications like risperidone show potential in regulating ASD-associated symptoms, a comprehensive treatment strategy for ASD is yet to be discovered. To date, identifying appropriate therapeutic targets and treatment strategies remains challenging due to the complex pathogenesis associated with ASD. Therefore, a comprehensive approach must be tailored to target the numerous pathogenetic pathways of ASD. From currently viable and basic treatment strategies, this review explores the entire field of advancements in ASD management up to cutting-edge modern scientific research. A novel systematic and personalized treatment approach is suggested, combining the available medications and targeting each symptom accordingly. Herein, summarize and categorize the most appropriate ways of modern ASD management into three distinct categories: current, promising, and prospective strategies.
Collapse
Affiliation(s)
- Konstantin Yenkoyan
- Neuroscience Laboratory, Cobrain Center, Yerevan State Medical University after M. Heratsi, Yerevan, Armenia
- Department of Biochemistry, Yerevan State Medical University after M. Heratsi, Yerevan, Armenia
| | - Zadik Ounanian
- Neuroscience Laboratory, Cobrain Center, Yerevan State Medical University after M. Heratsi, Yerevan, Armenia
| | - Margarita Mirumyan
- Neuroscience Laboratory, Cobrain Center, Yerevan State Medical University after M. Heratsi, Yerevan, Armenia
- Department of Biochemistry, Yerevan State Medical University after M. Heratsi, Yerevan, Armenia
| | - Liana Hayrapetyan
- Neuroscience Laboratory, Cobrain Center, Yerevan State Medical University after M. Heratsi, Yerevan, Armenia
- Department of Radiation Oncology, Inselspital, Bern University Hospital and Department for BioMedical Research (DBMR), University of Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Switzerland
| | - Naira Zakaryan
- Department of Biochemistry, Yerevan State Medical University after M. Heratsi, Yerevan, Armenia
| | - Raisa Sahakyan
- Department of Biochemistry, Yerevan State Medical University after M. Heratsi, Yerevan, Armenia
| | - Geir Bjørklund
- Department of Research, Council for Nutritional and Environmental Medicine, Mo i Rana, Norway
| |
Collapse
|
12
|
Renu K, Mukherjee AG, Gopalakrishnan AV, Wanjari UR, Kannampuzha S, Murali R, Veeraraghavan VP, Vinayagam S, Paz-Montelongo S, George A, Vellingiri B, Madhyastha H. Protective effects of macromolecular polyphenols, metals (zinc, selenium, and copper) - Polyphenol complexes, and different organs with an emphasis on arsenic poisoning: A review. Int J Biol Macromol 2023; 253:126715. [PMID: 37673136 DOI: 10.1016/j.ijbiomac.2023.126715] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 08/28/2023] [Accepted: 09/03/2023] [Indexed: 09/08/2023]
Abstract
For the potential health benefits and nutritional value, polyphenols are one of the secondary metabolites of plants that have received extensive research. It has anti-inflammatory and cytotoxicity-reducing properties in addition to a high antioxidant content. Macromolecular polyphenols and polysaccharides are biologically active natural polymers with antioxidant and anti-inflammatory potential. Arsenic is an ecologically toxic metalloid. Arsenic in drinking water is the most common way people come into contact with this metalloid. While arsenic is known to cause cancer, it is also used to treat acute promyelocytic leukemia (APL). The treatment's effectiveness is hampered by the adverse effects it can cause on the body. Oxidative stress, inflammation, and the inability to regulate cell death cause the most adverse effects. Polyphenols and other macromolecules like polysaccharides act as neuroprotectants by mitigating free radical damage, inhibiting nitric oxide (NO) production, lowering A42 fibril formation, boosting antioxidant levels, and controlling apoptosis and inflammation. To prevent the harmful effects of toxins, polyphenols and pectin lower oxidative stress, boost antioxidant levels, improve mitochondrial function, control apoptosis, and suppress inflammation. Therefore, it prevents damage to the heart, liver, kidneys, and reproductive system. This review aims to identify the effects of the polyphenols in conjugation with polysaccharides as an ameliorative strategy for arsenic-induced toxicity in various organs.
Collapse
Affiliation(s)
- Kaviyarasi Renu
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600077, Tamil Nadu, India.
| | - Anirban Goutam Mukherjee
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India.
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India.
| | - Uddesh Ramesh Wanjari
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India.
| | - Sandra Kannampuzha
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India.
| | - Reshma Murali
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India.
| | - Vishnu Priya Veeraraghavan
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600077, Tamil Nadu, India.
| | - Sathishkumar Vinayagam
- Department of Biotechnology, Periyar University, Centre for Postgraduate and Research Studies, Dharmapuri 635205, Tamil Nadu, India.
| | - Soraya Paz-Montelongo
- Area de Toxicologia, Universidad de La Laguna, 38071 La Laguna, Tenerife, Islas Canarias, Spain; Grupo interuniversitario de Toxicología Alimentaria y Ambiental, Universidad de La Laguna, 38071 La Laguna, Tenerife, Islas Canarias, Spain.
| | - Alex George
- Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur, Kerala, India.
| | - Balachandar Vellingiri
- Stem cell and Regenerative Medicine/Translational Research, Department of Zoology, School of Basic Sciences, Central University of Punjab (CUPB), Bathinda 151401, Punjab, India.
| | - Harishkumar Madhyastha
- Department of Cardiovascular Physiology, Faculty of Medicine, University of Miyazaki, Miyazaki 889 1692, Japan.
| |
Collapse
|
13
|
Doroudian M, Thibault ME, Gailer J. N-Acetylcysteine Displaces Glutathionyl-Moieties from Hg 2+ and MeHg + to Form More Hydrophobic Complexes at Near-Physiological Conditions. Molecules 2023; 28:6762. [PMID: 37836605 PMCID: PMC10574133 DOI: 10.3390/molecules28196762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 09/19/2023] [Accepted: 09/19/2023] [Indexed: 10/15/2023] Open
Abstract
The anthropogenic release of Hg is associated with an increased human exposure risk. Since Hg2+ and MeHg+ have a high affinity for thiols, their interaction with L-glutathione (GSH) within mammalian cells is fundamentally involved in their toxicological chemistry and excretion. To gain insight into the interaction of these mercurials with multiple small molecular weight thiols, we have investigated their competitive interactions with GSH and N-acetylcysteine (NAC) at near-physiological conditions, using a liquid chromatographic approach. This approach involved the injection of each mercurial onto a reversed-phase (RP)-HPLC column (37 °C) using a PBS buffer mobile phase containing 5.0 mM GSH to simulate cytosolic conditions with Hg being detected in the column effluent by an inductively coupled plasma atomic emission spectrometer (ICP-AES). When the 5.0 mM GSH mobile phase was amended with up to 10 mM NAC, gradually increasing retention times of both mercurials were observed. To explain this behavior, the experiment with 5.0 mM NAC and 5.0 mM GSH was replicated using 50 mM Tris buffer (pH 7.4), and the Hg-containing fractions were analyzed by electrospray ionization mass spectrometry. The results revealed the presence of Hg(GS)(NAC) and Hg(NAC)2 for Hg2+ and MeHg(GS) and MeHg(NAC) for MeHg+, which suggests that the coordination/displacement of GS-moieties from each mercurial by the more hydrophobic NAC can explain their retention behavior. Since the biotransformations of both mercurials were observed at near-physiological conditions, they are of toxicological relevance as they provide a biomolecular explanation for some results that were obtained when animals were administered with each mercurial and NAC.
Collapse
Affiliation(s)
| | | | - Jürgen Gailer
- Department of Chemistry, University of Calgary, Calgary, AB T2N 1N4, Canada; (M.D.); (M.E.T.)
| |
Collapse
|
14
|
Chen Z, Leng X, Zhou F, Shen W, Zhang H, Yu Q, Meng X, Fan H, Qin M. Screening and Identification of Probiotic Lactobacilli from the Infant Gut Microbiota to Alleviate Lead Toxicity. Probiotics Antimicrob Proteins 2023; 15:821-831. [PMID: 35060081 DOI: 10.1007/s12602-021-09895-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2021] [Indexed: 02/08/2023]
Abstract
Lead (Pb2+) exposure cause a potential hazard to human health and the ecological environment; however, prevention and treatment of Pb2+ toxicity remain problems. The aim of this study is to isolate a novel probiotic lead (Pb2+)-resistant Lactobacillus strain from the infant gut microbiota and to determine whether they have the probiotic properties and investigate its preventive and therapeutic effects in the early-life Pb2+ exposure mouse model. In the present study, a total of 64 Pb2+-resistant colonies were isolated from the infant gut microbiota. Of these colonies, SYF-08, identified as Lacticaseibacillus casei, exhibited a Pb2+-binding capacity and Pb2+ tolerance. The in vivo study showed that SYF-08 treatment could effectively reduce Pb2+ levels in the blood, alleviate Pb2+ enrichment in bone and brain tissues, and recover the intestinal and brain damage in both dams and offspring. SYF-08 treatment also improved the antioxidant index in the liver and kidney tissues, while increasing the diversity of the intestinal microbiota of the offspring. The results of the in vitro and in vivo studies suggest that SYF-08, isolated from infant fecal samples, is a promising candidate probiotic against Pb2+ toxicity.
Collapse
Affiliation(s)
- Zhenhui Chen
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Xingyu Leng
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Fan Zhou
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Wei Shen
- Department of Neonatology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Hongnan Zhang
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Qinfei Yu
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Xiaojing Meng
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Hongying Fan
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, Guangdong, China.
| | - Min Qin
- Experimental Teaching Center of Preventive Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, Guangdong, China.
| |
Collapse
|
15
|
Shayan M, Barangi S, Hosseinzadeh H, Mehri S. The protective effect of natural or chemical compounds against arsenic-induced neurotoxicity: Cellular and molecular mechanisms. Food Chem Toxicol 2023; 175:113691. [PMID: 36871878 DOI: 10.1016/j.fct.2023.113691] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 02/09/2023] [Accepted: 02/21/2023] [Indexed: 03/06/2023]
Abstract
Arsenic is a notorious metalloid that exists in the earth's crust and is considered toxic for humans and the environment. Both cancerous and non-cancerous complications are possible after arsenic exposure. Target organs include the liver, lungs, kidney, heart, and brain. Arsenic-induced neurotoxicity, the main focus of our study, can occur in central and peripheral nervous systems. Symptoms can develop in a few hours, weeks, or years depending on the quantity of arsenic and the duration of exposure. In this review, we aimed to gather all the compounds, natural and chemical, that have been studied as protective agents in cellular, animal, and human reports. Oxidative stress, apoptosis, and inflammation are frequently described as destructive mechanisms in heavy metal toxicity. Moreover, reduced activity of acetylcholinesterase, the altered release of monoamine neurotransmitters, down-regulation of N-methyl-D-aspartate receptors, and decreased brain-derived neurotrophic factor are important underlying mechanisms of arsenic-induced neurotoxicity. As for neuroprotection, though some compounds have yet limited data, there are others, such as curcumin, resveratrol, taurine, or melatonin which have been studied more deeply and might be closer to a reliable protective agent. We collected the available information on all protective agents and the mechanisms by which they fight against arsenic-induced neurotoxicity.
Collapse
Affiliation(s)
- Mersedeh Shayan
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Samira Barangi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Hosseinzadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Soghra Mehri
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
16
|
Lynch JD, Lancaster J, Jones YO, Andrews AL. A curious case to keep you awake at night. J Hosp Med 2023; 18:262-266. [PMID: 36176047 DOI: 10.1002/jhm.12970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 07/20/2022] [Accepted: 09/08/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Joseph D Lynch
- Department of Pediatrics, Division of Pediatric Hospital Medicine, West Virginia University, Morgantown, West Virginia, USA
| | - Jeffrey Lancaster
- Department of Pediatrics, Division of Pediatric Hospital Medicine, West Virginia University, Morgantown, West Virginia, USA
| | - Yemisi O Jones
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Annie L Andrews
- Department of Pediatrics, Medical University of South Carolina, Charleston, South Carolina, USA
| |
Collapse
|
17
|
Li Y, Li B, Chen L, Dong J, Xia Z, Tian Y. Chelating decorporation agents for internal contamination by actinides: Designs, mechanisms, and advances. J Inorg Biochem 2023; 238:112034. [PMID: 36306597 DOI: 10.1016/j.jinorgbio.2022.112034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 10/16/2022] [Accepted: 10/16/2022] [Indexed: 11/05/2022]
Abstract
During the wide utilization of the actinides in medicine, energy, military, and other fields, internal contaminations can profoundly endanger human health and public security. Chelating decorporation agents are the most effective therapies to reduce internal contamination that includes radiological and chemical toxicities. This review introduces the structures of chelating decorporation agents including inorganic salts, polyaminocarboxylic acids, peptides, polyphosphonates, siderophores, calixarenes, polyethylenimines, and fullerenes, and highlights ongoing advances in their designs and mechanisms. However, there are still numerous challenges that block their applications including coordination properties, pharmacokinetic properties, oral bioavailability, limited timing of administration, and toxicity. Therefore, additional efforts are needed to push novel decorporation agents with high efficiency and low toxicity for the treatment of internal contamination by actinides.
Collapse
Affiliation(s)
- Yongzhong Li
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Bin Li
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Li Chen
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Junxing Dong
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Ziming Xia
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China.
| | - Ying Tian
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China.
| |
Collapse
|
18
|
Li Y, Cai W, Ai Z, Xue C, Cao R, Dong N. Protective effects of sinomenine hydrochloride on lead-induced oxidative stress, inflammation, and apoptosis in mouse liver. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:7510-7521. [PMID: 36038687 DOI: 10.1007/s11356-022-22386-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 07/31/2022] [Indexed: 06/15/2023]
Abstract
Lead, one of the most common heavy metal toxins, seriously affects the health of humans and animals. Sinomenine hydrochloride (SH) shows antioxidative, anti-inflammatory, antiviral, and anticancer properties. Hence, this study investigated the protective effects of SH against Pb-induced liver injury and explored the underlying mechanisms. First, a mouse model of lead acetate (0.5 g/L lead acetate in water, 8 weeks) was established, and SH (100 mg/kg bw in water, 8 weeks) intervention was administered by gavage. Then, the protective effect of SH against lead-induced liver injury was evaluated through serum biochemical analysis, histopathological analysis, and determination of malondialdehyde (MDA) and total antioxidant capacity (T-AOC) levels. The messenger RNA (mRNA) expression levels of the cytokines IL-1β and TNF-α and the apoptosis factors Bax, Bcl-2, and Caspase3 in the liver were detected by quantitative real-time PCR. Then, the expression levels of IL-1β and TNF-α in the liver were detected by ELISA. Immunohistochemical determination of the expression of the apoptosis factors Bax, Bcl-2, and Caspase3 was performed. SH treatment reduced the levels of liver alanine aminotransferase, aspartate aminotransferase (AST), lactate dehydrogenase (LDH), and MDA in Pb-treated mice, indicating that SH protected the liver from injury and oxidative stress in Pb-treated mice. SH also increased the liver T-AOC of Pb-treated mice. Quantitative real-time PCR, ELISA, and immunohistochemical analysis showed that SH inhibited apoptosis, as indicated by the regulation of the mRNA expression of Bax and Bcl-2 and the reduced expression of Caspase3 and pro-inflammatory factors (IL-1β and TNF-α) in the livers of Pb-treated mice. These results suggest that SH protects the mouse liver from Pb-induced injury. The underlying mechanism involves antioxidative, anti-inflammatory, and anti-apoptotic processes.
Collapse
Affiliation(s)
- Ying Li
- The Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition, Northeast Agricultural University, Harbin, People's Republic of China
| | - Wenjie Cai
- The Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition, Northeast Agricultural University, Harbin, People's Republic of China
| | - Zichun Ai
- The Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition, Northeast Agricultural University, Harbin, People's Republic of China
| | - Chenyu Xue
- The Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition, Northeast Agricultural University, Harbin, People's Republic of China
| | - Rujing Cao
- The Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition, Northeast Agricultural University, Harbin, People's Republic of China
| | - Na Dong
- The Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition, Northeast Agricultural University, Harbin, People's Republic of China.
| |
Collapse
|
19
|
Irrgeher J, Berger T, Tchaikovsky A, Tschegg C, Gouya G, Lechner P, Retzmann A, Opper C, Firbas C, Freissmuth M, Peschel-Credner K, Anderle K, Meisslitzer C, Wolzt M, Prohaska T. Enriched stable 204Pb as tracer at ultra-low levels in clinical investigations. Anal Bioanal Chem 2023; 415:255-268. [PMID: 36136113 PMCID: PMC9823027 DOI: 10.1007/s00216-022-04311-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 08/23/2022] [Accepted: 08/29/2022] [Indexed: 01/11/2023]
Abstract
The potential of enriched Pb (204Pb) was assessed to monitor pathways of trace levels of Pb in the pg range within the human body via isotope pattern variation in situations where natural lead cannot be used as a tracer due to regulatory limitations. Isotope ratio measurements were accomplished by means of (multi-collector) inductively coupled plasma mass spectrometry including a comparison of single and multi-collector ICP-MS for low-level 204Pb assessment. Isotopic pattern results from a blend of a large quantity of the element with a natural isotopic composition and an enriched stable isotope at orders of magnitude lower levels pose a nontrivial analytical problem. Isotope pattern deconvolution was successfully applied as mathematical tool based on multiple linear regressions. The method allowed for deconvolving the isotope pattern from measured isotope ratios without knowing the quantities of different isotope sources incorporated and mixed into the sample at levels of < 1 pg 204Pb/g blood. The objective of this manuscript is to evaluate and summarize the analytical aspects for Pb isotope pattern deconvolution based on the results of a clinical trial, where a 204Pb-enriched isotope tracer was applied to investigate the bioavailability of orally applied Pb along with purified clinoptilolite tuff as potential supplement. This unique approach allows to reduce tracer amounts to harmless levels to human health, which are in accordance with the legal regulative to study enrichment levels of < 0.01% in human blood.
Collapse
Affiliation(s)
- Johanna Irrgeher
- Department of General, Analytical and Physical Chemistry, Montanuniversität Leoben, Franz-Josef-Straße 18, 8700 Leoben, Austria
| | - Thomas Berger
- Glock Health Science and Research GmbH, Hausfeldstraße 17, 2232 Deutsch-Wagram, Austria
| | | | - Cornelius Tschegg
- Glock Health Science and Research GmbH, Hausfeldstraße 17, 2232 Deutsch-Wagram, Austria
| | - Ghazaleh Gouya
- Gouya Insights, Elisabethstrasse 22/12, 1010 Vienna, Austria
| | - Peter Lechner
- LGS-INSIGHTS GmbH, Elisabethstrasse 22/12, 1010 Vienna, Austria
| | - Anika Retzmann
- Department of General, Analytical and Physical Chemistry, Montanuniversität Leoben, Franz-Josef-Straße 18, 8700 Leoben, Austria
| | - Christine Opper
- Department of General, Analytical and Physical Chemistry, Montanuniversität Leoben, Franz-Josef-Straße 18, 8700 Leoben, Austria ,TB Unterfrauner GmbH, Umseerstraße 39, 3040 Neulengbach, Austria
| | - Christa Firbas
- Department of Clinical Pharmacology, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - Michael Freissmuth
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, Währingerstrasse 13a, Vienna, Austria
| | | | - Karolina Anderle
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, Währingerstrasse 13a, Vienna, Austria
| | - Claudia Meisslitzer
- Glock Health Science and Research GmbH, Hausfeldstraße 17, 2232 Deutsch-Wagram, Austria
| | - Michael Wolzt
- Department of Clinical Pharmacology, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - Thomas Prohaska
- Department of General, Analytical and Physical Chemistry, Montanuniversität Leoben, Franz-Josef-Straße 18, 8700 Leoben, Austria
| |
Collapse
|
20
|
Zhang J, Lin J, Zhao X, Yao F, Feng C, He Z, Cao X, Gao Y, Khan NU, Chen M, Luo P, Shen L. Trace Element Changes in the Plasma of Autism Spectrum Disorder Children and the Positive Correlation Between Chromium and Vanadium. Biol Trace Elem Res 2022; 200:4924-4935. [PMID: 35006555 DOI: 10.1007/s12011-021-03082-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 12/21/2021] [Indexed: 12/27/2022]
Abstract
Existing data demonstrate a significant correlation between autism spectrum disorder (ASD) and the status of biologically essential and toxic trace elements. However, there is still a lack of data on the steady state of trace elements in ASD. We performed a case-control study to explore the association between the risk of ASD and 23 trace elements in plasma. The results showed that children with ASD had considerably decreased lithium (Li), manganese (Mn), selenium (Se), barium (Ba), mercury (Hg), and tin (Sn) levels when compared to their age- and sex-matched controls. Meanwhile, children with ASD had considerably increased plasma chromium (Cr) and vanadium (V) concentrations. We also divided each group into subgroups based on age and gender and created element-related networks for each subgroup. We detected significant element correlations within or between subgroups, as well as changes in correlations that included all elements examined. Finally, more element correlations were observed among males, which may open a new avenue for understanding the complicated process behind the sex ratio of children with ASD. Overall, our data revealed a novel relationship between elements and ASD, which may extend current understanding about ASD.
Collapse
Affiliation(s)
- Jun Zhang
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518071, People's Republic of China
- School of Public Health, Key Laboratory of Environmental Pollution Monitoring Control Ministry of Education, Guizhou Medical University, Guiyang, 550025, People's Republic of China
| | - Jing Lin
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518071, People's Republic of China
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, People's Republic of China
| | - Xiying Zhao
- Shenzhen Academy of Metrology and Quality Inspection, Shenzhen, 518055, People's Republic of China
| | - Fang Yao
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518071, People's Republic of China
- Brain Disease and Big Data Research Institute, Shenzhen University, Shenzhen, 518071, People's Republic of China
| | - Chengyun Feng
- Maternal and Child Health Hospital of Baoan, Shenzhen, 518100, People's Republic of China
| | - Zhijun He
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518071, People's Republic of China
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, Shenzhen, 518071, People's Republic of China
| | - Xueshan Cao
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518071, People's Republic of China
| | - Yan Gao
- Maternal and Child Health Hospital of Baoan, Shenzhen, 518100, People's Republic of China
| | - Naseer Ullah Khan
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518071, People's Republic of China
| | - Margy Chen
- Department of Psychology, Emory University, Atlanta, GA, 30322, USA
| | - Peng Luo
- School of Public Health, Key Laboratory of Environmental Pollution Monitoring Control Ministry of Education, Guizhou Medical University, Guiyang, 550025, People's Republic of China
| | - Liming Shen
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518071, People's Republic of China.
| |
Collapse
|
21
|
Liu M, Liu R, Wang R, Ba Y, Yu F, Deng Q, Huang H. Lead-induced neurodevelopmental lesion and epigenetic landscape: Implication in neurological disorders. J Appl Toxicol 2022. [PMID: 36433892 DOI: 10.1002/jat.4419] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 11/20/2022] [Accepted: 11/20/2022] [Indexed: 11/27/2022]
Abstract
Lead (Pb) was implicated in multiple genotoxic, neuroepigenotoxic, and chromosomal-toxic mechanisms and interacted with varying synaptic plasticity pathways, likely underpinning previous reports of links between Pb and cognitive impairment. Epigenetic changes have emerged as a promising biomarker for neurological disorders, including cognitive disorders, Alzheimer's disease (AD), and Parkinson's disease (PD). In the present review, special attention is paid to neural epigenetic features and mechanisms that can alter gene expression patterns upon environmental Pb exposure in rodents, primates, and zebrafish. Epigenetic modifications have also been discussed in population studies and cell experiment. Further, we explore growing evidence of potential linkage between Pb-induced disruption of regulatory pathway and neurodevelopmental and neurological disorders both in vivo and in vitro. These findings uncover how epigenome in neurons facilitates the development and function of the brain in response to Pb insult.
Collapse
Affiliation(s)
- Mengchen Liu
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan province, 450001, China
| | - Rundong Liu
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan province, 450001, China
| | - Ruike Wang
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan province, 450001, China
| | - Yue Ba
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan province, 450001, China
| | - Fangfang Yu
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan province, 450001, China
| | - Qihong Deng
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan province, 450001, China
| | - Hui Huang
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan province, 450001, China
| |
Collapse
|
22
|
Che J, Zhang W, Ma B, Chen Y, Wang L, Wang C. A shortcut approach for cooperative disposal of flue dust and waste acid from copper smelting: Decontamination of arsenic-bearing waste and recovery of metals. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 843:157063. [PMID: 35780900 DOI: 10.1016/j.scitotenv.2022.157063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/03/2022] [Accepted: 06/26/2022] [Indexed: 06/15/2023]
Abstract
Recovering harmful elements (As, Pb) and metals (Cu, Bi, Zn) from copper smelting flue dust (CSFD) is a critical subject and task for arsenic contamination control and resource sustainability. In this work, a two-step pyrometallurgical process was developed to preferentially separate arsenic and recover metals from CSFD. During the low-temperature roasting, arsenic-bearing waste acid (AWA) from copper industry was used as an additive and effective removal of arsenic (97.8 %) was obtained at 350 °C, which follows the idea of "treating waste with waste". Subsequently, the recovery and separation of metals were well-achieved based on the affinity between metals and sulfur in the second stage of roasting, by which 91.28 % of Pb and 95.65 % of Bi were recovered as an alloy (Pb 86.48 %, Bi 13.21 %), while 82.62 % of Cu was enriched in the matte. The migration rules of metal elements and phase transformation in the whole process were studied in-depth from theory and experiments. This process can realize the efficient removal of arsenic as well as effective recovery of metals via cooperative disposal of CSFD and AWA, and minimize the environmental impacts.
Collapse
Affiliation(s)
- Jianyong Che
- State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing 100083, China; School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Wenjuan Zhang
- State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing 100083, China; School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China; Department of Materials Engineering, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
| | - Baozhong Ma
- State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing 100083, China; School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yongqiang Chen
- State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing 100083, China; School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Ling Wang
- State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing 100083, China; School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Chengyan Wang
- State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing 100083, China; School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| |
Collapse
|
23
|
Mutagenic, Carcinogenic, and Teratogenic Effect of Heavy Metals. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:8011953. [PMID: 36248437 PMCID: PMC9556253 DOI: 10.1155/2022/8011953] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 08/10/2022] [Accepted: 09/16/2022] [Indexed: 11/23/2022]
Abstract
Heavy metal (HM)-induced toxicity and its associated complications have become a major issue in the medical world. HMs are not biodegradable, enter into the food chain, and gets accumulated in the living systems. Increased concentrations and accumulation of HMs can cause severely damaging effects and severe complications in living organisms and can even lead to the death of the organism. In Ayurvedic medicine, ingredients of natural origin, including whole plants or certain portions of the plant, animal sources, and minerals, are used for therapeutic purposes as medicine, both alone and in combination. HM such as cadmium, copper, zinc, lead, chromium, nickel, and arsenic cause hazardous effects on animals, human health, and the environment. This review focuses on mutagenic, carcinogenic, and teratogenic effects of HM , mechanism, organ toxicity, available remedies in the market, and their side effects. Also, emphasis is given to alternative systems of medicine to treat HM toxicity.
Collapse
|
24
|
A Review on Nutrients, Phytochemicals, and Health Benefits of Green Seaweed, Caulerpa lentillifera. Foods 2022; 11:foods11182832. [PMID: 36140958 PMCID: PMC9498133 DOI: 10.3390/foods11182832] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/27/2022] [Accepted: 09/02/2022] [Indexed: 11/16/2022] Open
Abstract
Caulerpa lentillifera is a type of green seaweed widely consumed as a fresh vegetable, specifically in Southeast Asia. Interestingly, this green seaweed has recently gained popularity in the food sector. Over the last two decades, many studies have reported that C. lentillifera is rich in polyunsaturated fatty acids, minerals, vitamins, and bioactive compounds that contribute many health benefits. On the other hand, there is currently hardly any article dedicated specifically to C. lentillifera regarding nutritional composition and recent advancements in its potential health benefits. Hence, this study will summarise the findings on the nutritional content of C. lentillifera and compile recently discovered beneficial properties throughout the past decade. From the data compiled in this review paper, it can be concluded that the nutrient and phytochemical profile of C. lentillifera differs from one region to another depending on various external factors. As a result, this paper will offer researchers the groundwork to develop food products based on C. lentillifera. The authors of this paper are hopeful that a more systematic review could be done in the future as currently, existing data is still scarce.
Collapse
|
25
|
Tyler SEB, Tyler LDK. Therapeutic roles of plants for 15 hypothesised causal bases of Alzheimer's disease. NATURAL PRODUCTS AND BIOPROSPECTING 2022; 12:34. [PMID: 35996065 PMCID: PMC9395556 DOI: 10.1007/s13659-022-00354-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 06/15/2022] [Indexed: 05/26/2023]
Abstract
Alzheimer's disease (AD) is progressive and ultimately fatal, with current drugs failing to reverse and cure it. This study aimed to find plant species which may provide therapeutic bioactivities targeted to causal agents proposed to be driving AD. A novel toolkit methodology was employed, whereby clinical symptoms were translated into categories recognized in ethnomedicine. These categories were applied to find plant species with therapeutic effects, mined from ethnomedical surveys. Survey locations were mapped to assess how this data is at risk. Bioactivities were found of therapeutic relevance to 15 hypothesised causal bases for AD. 107 species with an ethnological report of memory improvement demonstrated therapeutic activity for all these 15 causal bases. The majority of the surveys were found to reside within biodiversity hotspots (centres of high biodiversity under threat), with loss of traditional knowledge the most common threat. Our findings suggest that the documented plants provide a large resource of AD therapeutic potential. In demonstrating bioactivities targeted to these causal bases, such plants may have the capacity to reduce or reverse AD, with promise as drug leads to target multiple AD hallmarks. However, there is a need to preserve ethnomedical knowledge, and the habitats on which this knowledge depends.
Collapse
Affiliation(s)
| | - Luke D K Tyler
- School of Natural Sciences, Bangor University, Gwynedd, UK
| |
Collapse
|
26
|
Bjørklund G, Rahaman MS, Shanaida M, Lysiuk R, Oliynyk P, Lenchyk L, Chirumbolo S, Chasapis CT, Peana M. Natural Dietary Compounds in the Treatment of Arsenic Toxicity. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27154871. [PMID: 35956821 PMCID: PMC9370003 DOI: 10.3390/molecules27154871] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/23/2022] [Accepted: 07/27/2022] [Indexed: 12/22/2022]
Abstract
Chronic exposure to arsenic (As) compounds leads to its accumulation in the body, with skin lesions and cancer being the most typical outcomes. Treating As-induced diseases continues to be challenging as there is no specific, safe, and efficacious therapeutic management. Therapeutic and preventive measures available to combat As toxicity refer to chelation therapy, antioxidant therapy, and the intake of natural dietary compounds. Although chelation therapy is the most commonly used method for detoxifying As, it has several side effects resulting in various toxicities such as hepatotoxicity, neurotoxicity, and other adverse consequences. Drugs of plant origin and natural dietary compounds show efficient and progressive relief from As-mediated toxicity without any particular side effects. These natural compounds have also been found to aid the elimination of As from the body and, therefore, can be more effective than conventional therapeutic agents in ameliorating As toxicity. This review provides an overview of the recently updated knowledge on treating As poisoning through natural dietary compounds. This updated information may serve as a basis for defining novel prophylactic and therapeutic formulations.
Collapse
Affiliation(s)
- Geir Bjørklund
- Council for Nutritional and Environmental Medicine, Toften 24, 8610 Mo i Rana, Norway
- Correspondence: (G.B.); (M.P.)
| | - Md. Shiblur Rahaman
- Department of Environmental and Preventive Medicine, Jichi Medical University School of Medicine, Shimotsuke 329-0498, Japan; or
- Graduate School of Environmental Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Mariia Shanaida
- Department of Pharmacognosy and Medical Botany, I. Horbachevsky Ternopil National Medical University, 46001 Ternopil, Ukraine;
| | - Roman Lysiuk
- Department of Pharmacognosy and Botany, Danylo Halytsky Lviv National Medical University, 79010 Lviv, Ukraine;
- CONEM Ukraine Life Science Research Group, Danylo Halytsky Lviv National Medical University, 79010 Lviv, Ukraine
| | - Petro Oliynyk
- Department of Disaster Medicine and Military Medicine, Danylo Halytsky Lviv National Medical University, 79010 Lviv, Ukraine;
| | - Larysa Lenchyk
- Department of Chemistry of Natural Compounds, National University of Pharmacy, 61002 Kharkiv, Ukraine;
- CONEM Ukraine Pharmacognosy and Natural Product Chemistry Research Group, National University of Pharmacy, 61002 Kharkiv, Ukraine
| | - Salvatore Chirumbolo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy;
- CONEM Scientific Secretary, strada Le Grazie 9, 37134 Verona, Italy
| | - Christos T. Chasapis
- NMR Facility, Instrumental Analysis Laboratory, School of Natural Sciences, University of Patras, 265 04 Patras, Greece;
| | - Massimiliano Peana
- Department of Chemical, Physics, Mathematics and Natural Sciences, University of Sassari, Via Vienna 2, 07100 Sassari, Italy
- Correspondence: (G.B.); (M.P.)
| |
Collapse
|
27
|
Eckert S, Mascarenhas EJ, Mitzner R, Jay RM, Pietzsch A, Fondell M, Vaz da Cruz V, Föhlisch A. From the Free Ligand to the Transition Metal Complex: FeEDTA - Formation Seen at Ligand K-Edges. Inorg Chem 2022; 61:10321-10328. [PMID: 35764301 PMCID: PMC9277664 DOI: 10.1021/acs.inorgchem.2c00789] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Chelating agents are an integral part of transition metal complex chemistry with broad biological and industrial relevance. The hexadentate chelating agent ethylenediaminetetraacetic acid (EDTA) has the capability to bind to metal ions at its two nitrogen and four of its carboxylate oxygen sites. We use resonant inelastic X-ray scattering at the 1s absorption edge of the aforementioned elements in EDTA and the iron(III)-EDTA complex to investigate the impact of the metal-ligand bond formation on the electronic structure of EDTA. Frontier orbital distortions, occupation changes, and energy shifts through metal-ligand bond formation are probed through distinct spectroscopic signatures.
Collapse
Affiliation(s)
- Sebastian Eckert
- Institute
for Methods and Instrumentation for Synchrotron Radiation Research, Helmholtz-Zentrum Berlin für Materialien und
Energie GmbH, 12489 Berlin, Germany
| | - Eric J. Mascarenhas
- Institute
for Methods and Instrumentation for Synchrotron Radiation Research, Helmholtz-Zentrum Berlin für Materialien und
Energie GmbH, 12489 Berlin, Germany
- Institut
für Physik und Astronomie, Universität
Potsdam, 14476 Potsdam, Germany
| | - Rolf Mitzner
- Institute
for Methods and Instrumentation for Synchrotron Radiation Research, Helmholtz-Zentrum Berlin für Materialien und
Energie GmbH, 12489 Berlin, Germany
| | - Raphael M. Jay
- Institut
für Physik und Astronomie, Universität
Potsdam, 14476 Potsdam, Germany
| | - Annette Pietzsch
- Institute
for Methods and Instrumentation for Synchrotron Radiation Research, Helmholtz-Zentrum Berlin für Materialien und
Energie GmbH, 12489 Berlin, Germany
| | - Mattis Fondell
- Institute
for Methods and Instrumentation for Synchrotron Radiation Research, Helmholtz-Zentrum Berlin für Materialien und
Energie GmbH, 12489 Berlin, Germany
| | - Vinícius Vaz da Cruz
- Institute
for Methods and Instrumentation for Synchrotron Radiation Research, Helmholtz-Zentrum Berlin für Materialien und
Energie GmbH, 12489 Berlin, Germany
| | - Alexander Föhlisch
- Institute
for Methods and Instrumentation for Synchrotron Radiation Research, Helmholtz-Zentrum Berlin für Materialien und
Energie GmbH, 12489 Berlin, Germany
- Institut
für Physik und Astronomie, Universität
Potsdam, 14476 Potsdam, Germany
| |
Collapse
|
28
|
Chen R, Tu H, Chen T. Potential Application of Living Microorganisms in the Detoxification of Heavy Metals. Foods 2022; 11:1905. [PMID: 35804721 PMCID: PMC9265996 DOI: 10.3390/foods11131905] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 06/15/2022] [Accepted: 06/20/2022] [Indexed: 01/27/2023] Open
Abstract
Heavy metal (HM) exposure remains a global occupational and environmental problem that creates a hazard to general health. Even low-level exposure to toxic metals contributes to the pathogenesis of various metabolic and immunological diseases, whereas, in this process, the gut microbiota serves as a major target and mediator of HM bioavailability and toxicity. Specifically, a picture is emerging from recent investigations identifying specific probiotic species to counteract the noxious effect of HM within the intestinal tract via a series of HM-resistant mechanisms. More encouragingly, aided by genetic engineering techniques, novel HM-bioremediation strategies using recombinant microorganisms have been fruitful and may provide access to promising biological medicines for HM poisoning. In this review, we summarized the pivotal mutualistic relationship between HM exposure and the gut microbiota, the probiotic-based protective strategies against HM-induced gut dysbiosis, with reference to recent advancements in developing engineered microorganisms for medically alleviating HM toxicity.
Collapse
Affiliation(s)
- Runqiu Chen
- Departments of Geriatrics, the Second Affiliated Hospital of Nanchang University, Nanchang 330031, China; (R.C.); (H.T.)
- Queen Mary School, Nanchang University, Nanchang 330031, China
| | - Huaijun Tu
- Departments of Geriatrics, the Second Affiliated Hospital of Nanchang University, Nanchang 330031, China; (R.C.); (H.T.)
| | - Tingtao Chen
- Departments of Geriatrics, the Second Affiliated Hospital of Nanchang University, Nanchang 330031, China; (R.C.); (H.T.)
- National Engineering Research Center for Bioengineering Drugs and Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China
| |
Collapse
|
29
|
Kretzschmar J, Brendler E, Wagler J. Phenylarsonic acid-DMPS redox reaction and conjugation investigated by NMR spectroscopy and X-ray diffraction. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 92:103837. [PMID: 35248761 DOI: 10.1016/j.etap.2022.103837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/25/2022] [Accepted: 03/01/2022] [Indexed: 06/14/2023]
Abstract
The reaction between 2,3-dimercaptopropane-1-sulfonate (DMPS, unithiol) and four phenylarsonic(V) acids, i.e. phenylarsonic acid (PAA), 4-hydroxy-3-nitrophenylarsonic acid (HNPAA), 2-aminophenylarsonic acid (o-APAA) and 4-aminophenylarsonic acid (p-APAA), is investigated in aqueous solution. The pentavalent arsenic compounds are reduced by DMPS to their trivalent analogs and instantly chelated by the vicinal dithiol, forming covalent As-S bonds within a five-membered chelate ring. The different types and positions of polar substituents at the aromatic ring of the arsonic acids influence the reaction rates in the same way as observed for reaction with glutathione (GSH), as well as the syn/anti molar ratio of the diastereomeric products, which was analyzed using time- and temperature-dependent nuclear magnetic resonance (NMR) spectroscopy. Addition of DMPS to the conjugate formed by a phenylarsonic(V) acid and the biologically relevant tripeptide GSH showed the immediate replacement of GSH by chelating DMPS, underlining the importance of dithiols as detoxifying agent.
Collapse
Affiliation(s)
- Jerome Kretzschmar
- Institute of Analytical Chemistry, TU Bergakademie Freiberg, 09599 Freiberg, Germany
| | - Erica Brendler
- Institute of Analytical Chemistry, TU Bergakademie Freiberg, 09599 Freiberg, Germany.
| | - Jörg Wagler
- Institute of Inorganic Chemistry, TU Bergakademie Freiberg, 09599 Freiberg, Germany
| |
Collapse
|
30
|
Gluhcheva Y, Pashkunova-Martic I, Schaier M, Vladov I, Stoykova S, Petrova E, Pavlova E, Dorkov P, Helbich TH, Keppler B, Ivanova J. Comparative Effects of Deferiprone and Salinomycin on Lead-Induced Disturbance in the Homeostasis of Intrarenal Essential Elements in Mice. Int J Mol Sci 2022; 23:ijms23084368. [PMID: 35457186 PMCID: PMC9027580 DOI: 10.3390/ijms23084368] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/10/2022] [Accepted: 04/13/2022] [Indexed: 11/17/2022] Open
Abstract
Lead (Pb) exposure induces severe nephrotoxic effects in humans and animals. Herein, we compare the effects of two chelating agents, salinomycin and deferiprone, on Pb-induced renal alterations in mice and in the homeostasis of essential elements. Adult male mice (Institute of Cancer Research (ICR)) were randomized into four groups: control (Ctrl)—untreated mice administered distilled water for 28 days; Pb-exposed group (Pb)—mice administered orally an average daily dose of 80 mg/kg body weight (BW) lead (II) nitrate (Pb(NO3)2) during the first two weeks of the experimental protocol followed by the administration of distilled water for another two weeks; salinomycin-treated (Pb + Sal) group—Pb-exposed mice, administered an average daily dose of 16 mg/kg BW salinomycin for two weeks; deferiprone-treated (Pb + Def) group—Pb-exposed mice, administered an average daily dose of 20 mg/kg BW deferiprone for 14 days. The exposure of mice to Pb induced significant accumulation of the toxic metal in the kidneys and elicited inflammation with leukocyte infiltrations near the glomerulus. Biochemical analysis of the sera revealed that Pb significantly altered the renal function markers. Pb-induced renal toxicity was accompanied by a significant decrease in the endogenous renal concentrations of phosphorous (P), calcium (Ca), copper (Cu) and selenium (Se). In contrast to deferiprone, salinomycin significantly improved renal morphology in Pb-treated mice and decreased the Pb content by 13.62% compared to the Pb-exposed group. There was also a mild decrease in the renal endogenous concentration of magnesium (Mg) and elevation of the renal concentration of iron (Fe) in the salinomycin-treated group compared to controls. Overall, the results demonstrated that salinomycin is a more effective chelating agent for the treatment of Pb-induced alterations in renal morphology compared to deferiprone.
Collapse
Affiliation(s)
- Yordanka Gluhcheva
- Institute of Experimental Morphology, Pathology and Anthropology with Museum, Bulgarian Academy of Sciences, Acad. Georgi Bonchev Street, Bl. 25, 1113 Sofia, Bulgaria
| | - Irena Pashkunova-Martic
- Department of Biomedical Imaging and Image-Guided Therapy, Division of Molecular and Structural Preclinical Imaging, Medical University of Vienna and General Hospital of Vienna, 18-20 Waehringer Guertel, 1090 Vienna, Austria
| | - Martin Schaier
- Institute of Analytical Chemistry, University of Vienna, 38 Waehringer Strasse, 1090 Vienna, Austria
| | - Ivelin Vladov
- Institute of Experimental Morphology, Pathology and Anthropology with Museum, Bulgarian Academy of Sciences, Acad. Georgi Bonchev Street, Bl. 25, 1113 Sofia, Bulgaria
| | - Silviya Stoykova
- Faculty of Chemistry and Pharmacy, Sofia University "St. Kliment Ohridski", 1 J. Bourchier Blvd., 1164 Sofia, Bulgaria
| | - Emilia Petrova
- Institute of Experimental Morphology, Pathology and Anthropology with Museum, Bulgarian Academy of Sciences, Acad. Georgi Bonchev Street, Bl. 25, 1113 Sofia, Bulgaria
| | - Ekaterina Pavlova
- Institute of Experimental Morphology, Pathology and Anthropology with Museum, Bulgarian Academy of Sciences, Acad. Georgi Bonchev Street, Bl. 25, 1113 Sofia, Bulgaria
| | - Peter Dorkov
- Chemistry Department, Research and Development, BIOVET JSC, 39 Peter Rakov Street, 4550 Peshtera, Bulgaria
| | - Thomas H Helbich
- Department of Biomedical Imaging and Image-Guided Therapy, Division of Molecular and Structural Preclinical Imaging, Medical University of Vienna and General Hospital of Vienna, 18-20 Waehringer Guertel, 1090 Vienna, Austria
| | - Bernhard Keppler
- Institute of Inorganic Chemistry, University of Vienna, 42 Waehringer Strasse, 1090 Vienna, Austria
| | - Juliana Ivanova
- Faculty of Medicine, Sofia University "St. Kliment Ohridski", 1 Kozjak Street, 1407 Sofia, Bulgaria
| |
Collapse
|
31
|
Esteban-López M, Arrebola JP, Juliá M, Pärt P, Soto E, Cañas A, Pedraza-Díaz S, González-Rubio J, Castaño A. Selecting the best non-invasive matrix to measure mercury exposure in human biomonitoring surveys. ENVIRONMENTAL RESEARCH 2022; 204:112394. [PMID: 34801545 DOI: 10.1016/j.envres.2021.112394] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/13/2021] [Accepted: 11/13/2021] [Indexed: 05/27/2023]
Abstract
Exposure to mercury, even at low doses, can affect human health, well-being and life quality at a broad scale. Human biomonitoring is the most straightforward approach to measure and quantify mercury exposure in humans. The objective of the present study is to compare and discuss the relationships between Hg levels in the most used matrices, hair, urine and blood, with the aim to ascertain to what extent mercury exposure and internal mercury levels could be predicted by monitoring non-invasive matrices. The study population (n = 527) is a subsample from Spanish BIOAMBIENT. ES study (18-65 y, both sexes), with data of Hg levels in blood, hair, and urine from the same individuals. We found strong inter-matrix Spearman correlations between blood and hair mercury (r2 = 0.84), while the correlations for urine and blood mercury (r2=0.64) and urine and hair mercury (r2=0.65) were weaker. The geometric mean of the ratios between matrices were (GM, 95%CI): Hair/Blood 280 (271-290), Urine/Blood 0.174 (0.163-0.186) and Hair/Urine 2070 (1953-2194) and Urine/Blood 0.135 (0.128-0.144) for urine corrected by creatinine. High individual variation was observed particularly in those ratios involving urine. Considering the wide range of values observed in the ratios, we do not recommend applying them at individual level. The predictive models indicate that hair Hg was a more accurate predictor than urine. The inclusion of urine values did not increase the predictive accuracy, so, we recommend a cautious interpretation of urine mercury levels. Our study presents clear evidence that in a population highly exposed to food-borne mercury, a large portion of urinary mercury primarily emanates from methylmercury demethylation. We conclude that urine, as a non-invasive matrix, can be used as a reliable qualitative biomarker for Hg exposure when hair measurements not are available. For quantitative individual assessments, still blood measurements are to be preferred.
Collapse
Affiliation(s)
- Marta Esteban-López
- National Centre for Environmental Health, Instituto de Salud Carlos III, Madrid, Spain.
| | - Juan Pedro Arrebola
- Department of Preventive Medicine and Public Health, University of Granada, Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Spain
| | - Miguel Juliá
- National Centre for Environmental Health, Instituto de Salud Carlos III, Madrid, Spain
| | - Peter Pärt
- Department of Biomedical Sciences and Veterinary Public Health, Swedish Agricultural University, Sweden
| | - Eva Soto
- National Centre for Environmental Health, Instituto de Salud Carlos III, Madrid, Spain
| | - Ana Cañas
- National Centre for Environmental Health, Instituto de Salud Carlos III, Madrid, Spain
| | - Susana Pedraza-Díaz
- National Centre for Environmental Health, Instituto de Salud Carlos III, Madrid, Spain
| | - Juana González-Rubio
- National Centre for Environmental Health, Instituto de Salud Carlos III, Madrid, Spain
| | - Argelia Castaño
- National Centre for Environmental Health, Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
32
|
Synthetic Amphoteric Cryogels as an Antidote against Acute Heavy Metal Poisoning. Molecules 2021; 26:molecules26247601. [PMID: 34946690 PMCID: PMC8704044 DOI: 10.3390/molecules26247601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 12/01/2021] [Accepted: 12/09/2021] [Indexed: 11/17/2022] Open
Abstract
The effectiveness of an amphoteric cryogel (AAC) as an oral sorbent (enerosorbent) for the treatment of acute poisoning of small animals (rats) with heavy metals (HMs) was studied in in vivo experiments. The morphological structure of the cryogel was examined using scanning electron microscopy/energy-dispersive X-ray analysis and confocal microscopy. The use of the cryogel in the treatment of rats administered an LD50 dose of Cd(NO3)2, CsNO3, Sr(NO3)2, or HgCl2 in aqueous solution showed their high survival rate compared to the control group, which did not receive such treatment. The histological and chemical analysis of internal tissues and the biochemical analysis of the blood of the experimental animals showed the effectiveness of the cryogel in protecting the animals against the damaging effect of HMs on the organism comparable with unithiol, a chelating agent based on 2,3-dimercapto-1-propane sulfonic acid sodium salt (DMPS) approved for the treatment of acute poisoning with some heavy metals.
Collapse
|
33
|
Mikhalovsky S, Voytko O, Demchenko V, Demchenko P. Enterosorption in the Treatment of Heavy Metal Poisoning. CHEMISTRY JOURNAL OF MOLDOVA 2021. [DOI: 10.19261/cjm.2021.852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Enterosorption is a cost-effective and efficient approach to reducing the impact of chronic exposure to heavy metals and radionuclides. As an auxiliary method to medical treatment, it can protect population chronically exposed to the intake of heavy metals or radioactivity due to industrial activities or in the aftermath of technogenic or natural accidents. This paper assesses the current state of the art in the treatment of acute and chronic heavy metal poisoning.
Collapse
|
34
|
Versatile Cell and Animal Models for Advanced Investigation of Lead Poisoning. BIOSENSORS-BASEL 2021; 11:bios11100371. [PMID: 34677327 PMCID: PMC8533970 DOI: 10.3390/bios11100371] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/01/2021] [Accepted: 10/02/2021] [Indexed: 12/30/2022]
Abstract
The heavy metal, lead (Pb) can irreversibly damage the human nervous system. To help understand Pb-induced damage, we applied a genetically encoded Förster resonance energy transfer (FRET)-based Pb biosensor Met-lead 1.44 M1 to two living systems to monitor the concentration of Pb: induced pluripotent stem cell (iPSC)-derived cardiomyocytes as a semi-tissue platform and Drosophila melanogaster fruit flies as an in vivo animal model. Different FRET imaging modalities were used to obtain FRET signals, which represented the presence of Pb in the tested samples in different spatial dimensions. Using iPSC-derived cardiomyocytes, the relationship between beating activity (20–24 beats per minute, bpm) determined from the fluctuation of fluorescent signals and the concentrations of Pb represented by the FRET emission ratio values of Met-lead 1.44 M1 was revealed from simultaneous measurements. Pb (50 μM) affected the beating activity of cardiomyocytes, whereas two drugs that stop the entry of Pb differentially affected this beating activity: verapamil (2 μM) did not reverse the cessation of beating, whereas 2-APB (50 μM) partially restored this activity (16 bpm). The results clearly demonstrate the potential of this biosensor system as an anti-Pb drug screening application. In the Drosophila model, Pb was detected within the adult brain or larval central nervous system (Cha-gal4 > UAS-Met-lead 1.44 M1) using fast epifluorescence and high-resolution two-photon 3D FRET ratio image systems. The tissue-specific expression of Pb biosensors provides an excellent opportunity to explore the possible Pb-specific populations within living organisms. We believe that this integrated Pb biosensor system can be applied to the prevention of Pb poisoning and advanced research on Pb neurotoxicology.
Collapse
|
35
|
Li Y, Lv H, Xue C, Dong N, Bi C, Shan A. Plant Polyphenols: Potential Antidotes for Lead Exposure. Biol Trace Elem Res 2021; 199:3960-3976. [PMID: 33236294 DOI: 10.1007/s12011-020-02498-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/15/2020] [Indexed: 12/17/2022]
Abstract
Lead is one of the most common heavy metal elements and has high biological toxicity. Long-term lead exposure will induce the contamination of animal feed, water, and food, which can cause chronic lead poisoning including nephrotoxicity, hepatotoxicity, neurotoxicity, and reproductive toxicity in humans and animals. In the past few decades, lead has caused widespread concern because of its significant threat to health. A large number of in vitro and animal experiments have shown that oxidative stress plays a key role in lead toxicity, and endoplasmic reticulum (ER) stress and the mitochondrial apoptosis pathway can also be induced by lead toxicity. Therefore, plant polyphenols have attracted attention, with their advantages of being natural antioxidants and having low toxicity. Plant polyphenols can resist lead toxicity by chelating lead with their special chemical molecular structure. In addition, scavenging active oxygen and improving the level of antioxidant enzymes, anti-inflammatory, and anti-apoptosis are also the key to relieving lead poisoning by plant polyphenols. Various plant polyphenols have been suggested to be useful in alleviating lead toxicity in animals and humans and are believed to have good application prospects.
Collapse
Affiliation(s)
- Ying Li
- The Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition, Northeast Agricultural University, Harbin, People's Republic of China
| | - Hao Lv
- The Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition, Northeast Agricultural University, Harbin, People's Republic of China
| | - Chenyu Xue
- The Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition, Northeast Agricultural University, Harbin, People's Republic of China
| | - Na Dong
- The Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition, Northeast Agricultural University, Harbin, People's Republic of China.
| | - Chongpeng Bi
- The Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition, Northeast Agricultural University, Harbin, People's Republic of China
| | - Anshan Shan
- The Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition, Northeast Agricultural University, Harbin, People's Republic of China
| |
Collapse
|
36
|
Xiao L, Zan G, Qin J, Wei X, Lu G, Li X, Zhang H, Zou Y, Yang L, He M, Zhang Z, Yang X. Combined exposure to multiple metals and cognitive function in older adults. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 222:112465. [PMID: 34224972 DOI: 10.1016/j.ecoenv.2021.112465] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 06/16/2021] [Accepted: 06/24/2021] [Indexed: 06/13/2023]
Abstract
Single toxic metal exposure has been reported to be associated with impaired cognitive function, but less is known about the effects of combined exposure to multiple metals. The aim of the study was to investigate the potential associations and interactions of multiple metals with cognitive function in older adults using multi-pollutants approach. A cross-sectional study was conducted in a total of 2879 participants aged ≥ 60 years old. We systematically measured levels of 22 blood metals and used the Mini-Mental State Examination (MMSE) to assess the cognitive function. The least absolute shrinkage and selection operator (LASSO) penalized regression was applied to identify independently main metals. Adjusted estimates of cognitive function with selected metals were investigated by generalized linear regression in the multi-metal model. We found that calcium, titanium, vanadium, copper, zinc, arsenic, selenium, rubidium, molybdenum, cadmium, barium, and lead were independently identified based on LASSO penalized regression. The multi-metal model showed a higher MMSE of 0.384 (95% CI: 0.122-0.646) for a 1-SD increment in log-transformed rubidium and a lower MMSE of 0.460 (95% CI: - 0.706 to - 0.214) for a 1-SD increment in log-transformed cadmium (P < 0.05). The significantly negative associations between cadmium and cognitive function were attenuated to null accompanying with increasing concentrations of rubidium (P interaction = 0.256). Our findings suggested that blood rubidium and cadmium were mainly associated with cognitive function when accounting for co-exposure to other metals and higher level of rubidium appeared to attenuate the toxic effects of cadmium on cognitive function in older adults.
Collapse
Affiliation(s)
- Lili Xiao
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Gaohui Zan
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Jian Qin
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Xiao Wei
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Guodong Lu
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Xiyi Li
- Department of Nutrition and Food Hygiene, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Haiying Zhang
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Yunfeng Zou
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Li Yang
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Min He
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Zhiyong Zhang
- Department of Environmental Health and Occupational Medicine, School of Public Health, Guilin Medical University, Guilin, Guangxi, China
| | - Xiaobo Yang
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China; Department of Public Health, School of Medicine, Guangxi University of Science and Technology, Liuzhou, Guangxi, China.
| |
Collapse
|
37
|
Zhang J, Li X, Shen L, Khan NU, Zhang X, Chen L, Zhao H, Luo P. Trace elements in children with autism spectrum disorder: A meta-analysis based on case-control studies. J Trace Elem Med Biol 2021; 67:126782. [PMID: 34049201 DOI: 10.1016/j.jtemb.2021.126782] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 03/30/2021] [Accepted: 05/10/2021] [Indexed: 12/25/2022]
Abstract
Autism spectrum disorder (ASD) is a common childhood neurodevelopmental disorder that may be related to trace elements. However, reports on the relationship between them are still inconsistent. In this article, we conducted a meta-analysis on this issue. We searched the PubMed, EMBASE, and Cochrane databases as of November 15, 2019. A random-effects model was used, and subgroups of studies were analyzed using samples of different measurements. Twenty-two original articles were identified (18 trace elements, including a total of 1014 children with ASD and 999 healthy controls). In autistic children, the overall levels of barium (Ba), mercury (Hg), lithium (Li), and lead (Pb) were higher. There were significant differences in the levels of copper (Cu) in the hair and serum between autistic children and the control group. The levels of Hg, Li, Pb and selenium (Se) in the hair of autistic children were higher than those of healthy children, while the levels of zinc (Zn) in the blood were lower. Excessive exposure to toxic heavy metals and inadequate intake of essential metal elements may be associated with ASD. Preventing excessive exposure to toxic metals and correcting poor dietary behaviors may be beneficial for the prevention and treatment of the disease.
Collapse
Affiliation(s)
- Jun Zhang
- School of Public Health, Key Laboratory of Environmental Pollution Monitoring Control Ministry of Education, Guizhou Medical University, 550025, PR China
| | - Xi Li
- School of Public Health, Key Laboratory of Environmental Pollution Monitoring Control Ministry of Education, Guizhou Medical University, 550025, PR China
| | - Liming Shen
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518060, PR China; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, PR China.
| | - Naseer Ullah Khan
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518060, PR China
| | - Xiao Zhang
- School of Public Health, Key Laboratory of Environmental Pollution Monitoring Control Ministry of Education, Guizhou Medical University, 550025, PR China
| | - Lulu Chen
- School of Public Health, Key Laboratory of Environmental Pollution Monitoring Control Ministry of Education, Guizhou Medical University, 550025, PR China
| | - Huan Zhao
- School of Public Health, Key Laboratory of Environmental Pollution Monitoring Control Ministry of Education, Guizhou Medical University, 550025, PR China
| | - Peng Luo
- School of Public Health, Key Laboratory of Environmental Pollution Monitoring Control Ministry of Education, Guizhou Medical University, 550025, PR China; State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, PR China.
| |
Collapse
|
38
|
Ravichandran J, Karthikeyan BS, Singla P, Aparna SR, Samal A. NeurotoxKb 1.0: Compilation, curation and exploration of a knowledgebase of environmental neurotoxicants specific to mammals. CHEMOSPHERE 2021; 278:130387. [PMID: 33838427 DOI: 10.1016/j.chemosphere.2021.130387] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 06/12/2023]
Abstract
Exposure to environmental neurotoxicants is a significant concern due to their potential to cause permanent or irreversible damage to the human nervous system. Here, we present the first dedicated knowledgebase, NeurotoxKb 1.0, on environmental neurotoxicants specific to mammals. Using a detailed workflow, we have compiled 475 potential non-biogenic neurotoxicants from 835 published studies with evidence of neurotoxicity specific to mammals. A unique feature of NeurotoxKb 1.0 is the manual curation effort to compile and standardize the observed neurotoxic effects for the potential neurotoxicants from 835 published studies. For the 475 potential neurotoxicants, we have compiled diverse information such as chemical structures, environmental sources, chemical classification, physicochemical properties, molecular descriptors, predicted ADMET properties, and target human genes. To better understand the prospect of human exposure, we have explored the presence of potential neurotoxicants in external exposomes via two different analyses. By analyzing 55 chemical lists representing global regulations and guidelines, we reveal potential neurotoxicants both in regular use and produced in high volume. By analyzing human biospecimens, we reveal potential neurotoxicants detected in them. Lastly, a construction of the chemical similarity network and ensuing analysis revealed the diversity of the toxicological space of 475 potential neurotoxicants. NeurotoxKb 1.0 is accessible online at: https://cb.imsc.res.in/neurotoxkb/.
Collapse
Affiliation(s)
- Janani Ravichandran
- The Institute of Mathematical Sciences (IMSc), Chennai, 600113, India; Homi Bhabha National Institute (HBNI), Mumbai, 400094, India
| | | | - Palak Singla
- The Institute of Mathematical Sciences (IMSc), Chennai, 600113, India
| | - S R Aparna
- The Institute of Mathematical Sciences (IMSc), Chennai, 600113, India
| | - Areejit Samal
- The Institute of Mathematical Sciences (IMSc), Chennai, 600113, India; Homi Bhabha National Institute (HBNI), Mumbai, 400094, India.
| |
Collapse
|
39
|
Ross MK, Raji C, Lokken KL, Bredesen DE, Roach JC, Funk CC, Price N, Rappaport N, Hood L, Heath JR. Case Study: A Precision Medicine Approach to Multifactorial Dementia and Alzheimer's Disease. JOURNAL OF ALZHEIMER'S DISEASE & PARKINSONISM 2021; 11:018. [PMID: 35237464 PMCID: PMC8887953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
We report a case of a patient with mixed dementia successfully treated with a personalized multimodal therapy. Monotherapeutics are inadequate for the treatment of Alzheimer's disease (AD) and mixed dementia; therefore, we approach treatment through an adaptive personalized multimodal program. Many multimodal programs are pre-determined, and thus may not address the underlying contributors to cognitive decline in each particular individual. The combination of a targeted, personalized, precision medicine approach using a multimodal program promises advantages over monotherapies and untargeted multimodal therapies for multifactorial dementia. In this case study, we describe successful treatment for a patient diagnosed with AD, using a multimodal, programmatic, precision medicine intervention encompassing therapies targeting multiple dementia diastheses. We describe specific interventions used in this case that are derived from a comprehensive protocol for AD precision medicine. After treatment, our patient demonstrated improvements in quantitative neuropsychological testing, volumetric neuroimaging, PET scans, and serum chemistries, accompanied by symptomatic improvement over a 3.5-year period. This case outcome supports the need for rigorous trials of comprehensive, targeted combination therapies to stabilize, restore, and prevent cognitive decline in individuals with potentially many underlying causes of such decline and dementia. Our multimodal therapy included personalized treatments to address each potential perturbation to neuroplasticity. In particular, neuroinflammation and metabolic subsystems influence cognitive function and hippocampal volume. In this patient with a primary biliary cholangitis (PBC) multimorbidity component, we introduced a personalized diet that helped reduce liver inflammation. Together, all these components of multimodal therapy showed a sustained functional and cognitive benefit. Multimodal therapies may have systemwide benefits on all dementias, particularly in the context of multimorbidity. Furthermore, these therapies provide generalized health benefits, as many of the factors - such as inflammation - that impact cognitive function also impact other systems.
Collapse
Affiliation(s)
- Mary Kay Ross
- Brain Health and Research Institute, Seattle, WA, USA
| | - Cyrus Raji
- Washington University School of Medicine, St. Louis, MO, USA
| | - Kristine L Lokken
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama-Birmingham, Birmingham, AL, USA
| | - Dale E Bredesen
- Department of Molecular and Medical Pharmacology, UCLA, Los Angeles, CA, USA
| | - Jared C Roach
- Institute for Systems Biology, 401 Terry Ave N, Seattle, WA, USA, 98109
| | - Cory C Funk
- Institute for Systems Biology, 401 Terry Ave N, Seattle, WA, USA, 98109
| | - Nathan Price
- Institute for Systems Biology, 401 Terry Ave N, Seattle, WA, USA, 98109
| | - Noa Rappaport
- Institute for Systems Biology, 401 Terry Ave N, Seattle, WA, USA, 98109
| | - Leroy Hood
- Institute for Systems Biology, 401 Terry Ave N, Seattle, WA, USA, 98109
| | - James R Heath
- Institute for Systems Biology, 401 Terry Ave N, Seattle, WA, USA, 98109
| |
Collapse
|
40
|
Wang R, Wu Z, Liu M, Wu Y, Li Q, Ba Y, Zhang H, Cheng X, Zhou G, Huang H. Resveratrol reverses hippocampal synaptic markers injury and SIRT1 inhibition against developmental Pb exposure. Brain Res 2021; 1767:147567. [PMID: 34175265 DOI: 10.1016/j.brainres.2021.147567] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 05/30/2021] [Accepted: 06/21/2021] [Indexed: 12/01/2022]
Abstract
Lead (Pb) exposure damages synaptic structural plasticity that results in cognitive impairment. Resveratrol, a natural polyphenolic compound, is one of the most potent agonists of silencing information regulator 1 (SIRT1) discovered to date. However, the effects of SIRT1 on synaptic functional plasticity in early life Pb exposure are not well studied. Herein, the purpose of this study is to investigate the expression of synaptic markers and SIRT1 in rats exposed to Pb and to evaluate the regulatory effect of resveratrol during this process. The Pb exposed male SD pups were treated with resveratrol (50 mg/kg/d) or EDTA (150 mg/kg/d) followed by hippocampal and blood sampling for analysis at postnatal day 21 (PND21). In the Morrris water maze test, resveratrol treatement protected the rats against Pb-induced impairment of learning and memory (P < 0.05). Resveratrol also enhanced the expression of brain-derived neurotrophic factor (BDNF, P < 0.001 vs 0.2% Pb group), and reversed the effects of Pb exposure on SIRT1(P < 0.001 vs 0.2% Pb group). The DG, CA1 and CA3 regions of the hippocampus showed a considerable increase in the expression of pre- and postsynaptic proteins (P < 0.001 vs 0.2% Pb group). In conclusion, our study demonstrated that resveratrol, through the activation of SIRT1, played a protective role against Pb-induced defects in synaptic plasticity, and suggested a new potential adjuvant treatment for Pb poisoning.
Collapse
Affiliation(s)
- Ruike Wang
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan Province, China; Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Zhengzhou, Henan Province 450001, China
| | - Zuntao Wu
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan Province, China; Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Zhengzhou, Henan Province 450001, China
| | - Mengchen Liu
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan Province, China; Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Zhengzhou, Henan Province 450001, China
| | - Yingying Wu
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan Province, China; Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Zhengzhou, Henan Province 450001, China
| | - Qiong Li
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan Province, China; Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Zhengzhou, Henan Province 450001, China
| | - Yue Ba
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan Province, China; Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Zhengzhou, Henan Province 450001, China
| | - Huizhen Zhang
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan Province, China; Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Zhengzhou, Henan Province 450001, China
| | - Xuemin Cheng
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan Province, China; Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Zhengzhou, Henan Province 450001, China
| | - Guoyu Zhou
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan Province, China; Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Zhengzhou, Henan Province 450001, China
| | - Hui Huang
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan Province, China; Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Zhengzhou, Henan Province 450001, China.
| |
Collapse
|
41
|
Johnson‐Arbor K, Tefera E, Farrell J. Characteristics and treatment of elemental mercury intoxication: A case series. Health Sci Rep 2021; 4:e293. [PMID: 34136656 PMCID: PMC8177896 DOI: 10.1002/hsr2.293] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 04/20/2021] [Accepted: 04/23/2021] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND AND AIMS Elemental mercury toxicity is a rare condition which can be difficult to diagnose due to its nonspecific signs and symptoms. The purpose of this investigation is to describe the presenting characteristics and treatment of adult and pediatric patients with elemental mercury poisoning. METHODS A retrospective review was performed in six patients with elemental mercury exposure or intoxication who were treated in an outpatient medical toxicology clinic. Clinical signs and symptoms, laboratory assessments, and public health responses were reviewed. RESULTS Headache, anorexia, rash, and personality changes were commonly reported symptoms in pediatric patients; the adult patients were asymptomatic or reported signs and symptoms included myalgias, tremors, and hypertension. Delays in diagnosis were common. Symptomatic patients had 24-hour urine mercury concentrations greater than 20 mcg/L. Treatment, including removal from the exposure source as well as chelation with dimercaptosuccinic acid, resulted in resolution of signs and symptoms within 6 months of diagnosis. CONCLUSION The evaluation and treatment of patients with suspected elemental mercury poisoning frequently require a multidisciplinary approach including medical toxicologists and public health officials. A heightened awareness of the clinical presentations of this condition, as well as early identification and removal of patients from the source of exposure and consideration of chelation therapy, can result in accelerated patient recovery.
Collapse
Affiliation(s)
- Kelly Johnson‐Arbor
- Department of Plastic and Reconstructive SurgeryMedStar Georgetown University HospitalWashingtonDistrict of Columbia
- National Capital Poison CenterWashingtonDistrict of Columbia
| | - Eshetu Tefera
- Department of Plastic and Reconstructive SurgeryMedStar Georgetown University HospitalWashingtonDistrict of Columbia
- Department of Biostatistics and Biomedical InformaticsMedStar Health Research InstituteHyattsvilleMaryland
| | | |
Collapse
|
42
|
Mohammed TA, Meier CM, Kalvoda T, Kalt M, Rulíšek L, Shoshan MS. Potent Cyclic Tetrapeptide for Lead Detoxification. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Tagwa A. Mohammed
- Department of Chemistry University of Zurich Winterthurerstrasse 190 8057 Zurich Switzerland
| | - Christoph M. Meier
- Department of Chemistry University of Zurich Winterthurerstrasse 190 8057 Zurich Switzerland
| | - Tadeáš Kalvoda
- Institute of Organic Chemistry and Biochemistry Czech Academy of Sciences Flemingovo náměstí 2 16610 Praha 6 Czech Republic
| | - Martina Kalt
- Department of Chemistry University of Zurich Winterthurerstrasse 190 8057 Zurich Switzerland
| | - Lubomír Rulíšek
- Institute of Organic Chemistry and Biochemistry Czech Academy of Sciences Flemingovo náměstí 2 16610 Praha 6 Czech Republic
| | - Michal S. Shoshan
- Department of Chemistry University of Zurich Winterthurerstrasse 190 8057 Zurich Switzerland
| |
Collapse
|
43
|
Mohammed TA, Meier CM, Kalvoda T, Kalt M, Rulíšek L, Shoshan MS. Potent Cyclic Tetrapeptide for Lead Detoxification. Angew Chem Int Ed Engl 2021; 60:12381-12385. [PMID: 33759306 DOI: 10.1002/anie.202103217] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Indexed: 11/05/2022]
Abstract
Lead (Pb) is a ubiquitous poisonous metal, affecting the health of vast populations worldwide. Medications to treat Pb poisoning suffer from various limitations and are often toxic owing to insufficient metal selectivity. Here, we report a cyclic tetrapeptide that selectively binds Pb and eradicates its toxic effect on the cellular level, with superior potency than state-of-the-art drugs. The Pb-peptide complex is remarkably strong and was characterized experimentally and computationally. Accompanied by the lack of toxicity and enhanced stability of this peptide, these qualities indicate its merit as a potential remedy for Pb poisoning.
Collapse
Affiliation(s)
- Tagwa A Mohammed
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Christoph M Meier
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Tadeáš Kalvoda
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo náměstí 2, 16610, Praha 6, Czech Republic
| | - Martina Kalt
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Lubomír Rulíšek
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo náměstí 2, 16610, Praha 6, Czech Republic
| | - Michal S Shoshan
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| |
Collapse
|
44
|
Ji Y, Zhao M, Li A, Zhao L. Hydrophobic deep eutectic solvent-based ultrasonic-assisted dispersive liquid-liquid microextraction for preconcentration and determination of trace cadmium and arsenic in wine samples. Microchem J 2021. [DOI: 10.1016/j.microc.2021.105974] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
45
|
The Role of Toxic Metals and Metalloids in Nrf2 Signaling. Antioxidants (Basel) 2021; 10:antiox10050630. [PMID: 33918986 PMCID: PMC8142989 DOI: 10.3390/antiox10050630] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/13/2021] [Accepted: 04/14/2021] [Indexed: 12/18/2022] Open
Abstract
Nuclear factor erythroid 2-related factor 2 (Nrf2), an emerging regulator of cellular resistance to oxidants, serves as one of the key defensive factors against a range of pathological processes such as oxidative damage, carcinogenesis, as well as various harmful chemicals, including metals. An increase in human exposure to toxic metals via air, food, and water has been recently observed, which is mainly due to anthropogenic activities. The relationship between environmental exposure to heavy metals, particularly cadmium (Cd), lead (Pb), mercury (Hg), and nickel (Ni), as well as metaloid arsenic (As), and transition metal chromium (Cr), and the development of various human diseases has been extensively investigated. Their ability to induce reactive oxygen species (ROS) production through direct and indirect actions and cause oxidative stress has been documented in various organs. Taking into account that Nrf2 signaling represents an important pathway in maintaining antioxidant balance, recent research indicates that it can play a dual role depending on the specific biological context. On one side, Nrf2 represents a potential crucial protective mechanism in metal-induced toxicity, but on the other hand, it can also be a trigger of metal-induced carcinogenesis under conditions of prolonged exposure and continuous activation. Thus, this review aims to summarize the state-of-the-art knowledge regarding the functional interrelation between the toxic metals and Nrf2 signaling.
Collapse
|
46
|
Kostelnik TI, Scheiber H, Cappai R, Choudhary N, Lindheimer F, Guadalupe Jaraquemada-Peláez MD, Orvig C. Phosphonate Chelators for Medicinal Metal Ions. Inorg Chem 2021; 60:5343-5361. [PMID: 33719399 DOI: 10.1021/acs.inorgchem.1c00290] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A family of phosphonate-bearing chelators was synthesized to study their potential in metal-based (radio)pharmaceuticals. Three ligands (H6phospa, H6dipedpa, H6eppy; structures illustrated in manuscript) were fully characterized, including X-ray crystallographic structures of H6phospa and H6dipedpa. NMR spectroscopy techniques were used to confirm the complexation of each ligand with selected trivalent metal ions. These methods were particularly useful in discerning structural information for Sc3+ and La3+ complexes. Solution studies were conducted to evaluate the complex stability of 15 metal complexes. As a general trend, H6phospa was noted to form the most stable complexes, and H6eppy associated with the least stable complexes. Moreover, In3+ complexes were determined to be the most stable, and complexes with La3+ were the least stable, across all metals. Density functional theory (DFT) was employed to calculate structures of H6phospa and H6dipedpa complexes with La3+ and Sc3+. A comparison of experimental 1H NMR spectra with calculated 1H NMR spectra using DFT-optimized structures was used as a method of structure validation. It was noted that theoretical NMR spectra were very sensitive to a number of variables, such as ligand configuration, protonation state, and the number/orientation of explicit water molecules. In general, the inclusion of an explicit second shell of water molecules qualitatively improved the agreement between theoretical and experimental NMR spectra versus a polarizable continuum solvent model alone. Formation constants were also calculated from DFT results using potential-energy optimized structures. Strong dependence of molecular free energies on explicit water molecule number, water molecule configuration, and protonation state was observed, highlighting the need for dynamic data in accurate first-principles calculations of metal-ligand stability constants.
Collapse
Affiliation(s)
- Thomas I Kostelnik
- Medicinal Inorganic Chemistry Group, Department of Chemistry, University of British Columbia, 2036 Main Mall, V6T 1Z1 Vancouver, British Columbia, Canada.,Life Sciences Division, TRIUMF, 4004 Wesbrook Mall, V6T 2A3 Vancouver, British Columbia, Canada
| | - Hayden Scheiber
- Department of Chemistry, University of British Columbia, V6T 1Z1 Vancouver, British Columbia, Canada
| | - Rosita Cappai
- Medicinal Inorganic Chemistry Group, Department of Chemistry, University of British Columbia, 2036 Main Mall, V6T 1Z1 Vancouver, British Columbia, Canada.,Dipartimento di Scienze della Vita e dell'Ambiente, University of Cagliari, 09042 Cagliari, Italy
| | - Neha Choudhary
- Medicinal Inorganic Chemistry Group, Department of Chemistry, University of British Columbia, 2036 Main Mall, V6T 1Z1 Vancouver, British Columbia, Canada.,Life Sciences Division, TRIUMF, 4004 Wesbrook Mall, V6T 2A3 Vancouver, British Columbia, Canada
| | - Felix Lindheimer
- Medicinal Inorganic Chemistry Group, Department of Chemistry, University of British Columbia, 2036 Main Mall, V6T 1Z1 Vancouver, British Columbia, Canada.,Anorganisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 276, 69120 Heidelberg, Germany
| | - María de Guadalupe Jaraquemada-Peláez
- Medicinal Inorganic Chemistry Group, Department of Chemistry, University of British Columbia, 2036 Main Mall, V6T 1Z1 Vancouver, British Columbia, Canada
| | - Chris Orvig
- Medicinal Inorganic Chemistry Group, Department of Chemistry, University of British Columbia, 2036 Main Mall, V6T 1Z1 Vancouver, British Columbia, Canada
| |
Collapse
|
47
|
Zhu W, Yang J, Hu D, Wang Z. Removing Pb 2+ with a pectin-rich fiber from sisal waste. Food Funct 2021; 12:2418-2427. [PMID: 33502420 DOI: 10.1039/d0fo02829k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A pectin-rich dietary fiber from sisal waste (P-SF), containing 11.8% pectin, was produced by a sequential enzymatic-ultrasonic process. P-SF was effective in adsorbing Pb2+ from aqueous solution with a maximum adsorption amount of 184 mg g-1. Adsorption isotherms were fitted well by the Langmuir equation, and the adsorption kinetics could be described by a pseudo-second-order model. X-ray photoelectron spectroscopy and energy dispersive spectroscopy suggested that Pb2+ was adsorbed by P-SF via ion exchange, complexation and mineral precipitation. Dietary supplementation with 10% (w/w) P-SF in basal feed led to a significant decrease in Pb2+ in the brain, liver and kidney. P-SF has greater in vivo efficacy of Pb2+ removal as compared to commercial soybean dietary fiber. The reduction of brain Pb2+ level by P-SF was as effective as by a Pb2+ excretion drug. These findings suggested that P-SF has a great potential to be used as a dietary supplement to cope with Pb2+ poisoning.
Collapse
Affiliation(s)
- Wei Zhu
- School of Food Science & Engineering, South China University of Technology, Guangzhou, Guangdong Province 510640, P. R. of China.
| | | | | | | |
Collapse
|
48
|
Deidda I, Russo R, Bonaventura R, Costa C, Zito F, Lampiasi N. Neurotoxicity in Marine Invertebrates: An Update. BIOLOGY 2021; 10:161. [PMID: 33670451 PMCID: PMC7922589 DOI: 10.3390/biology10020161] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 01/20/2021] [Accepted: 02/11/2021] [Indexed: 12/13/2022]
Abstract
Invertebrates represent about 95% of existing species, and most of them belong to aquatic ecosystems. Marine invertebrates are found at intermediate levels of the food chain and, therefore, they play a central role in the biodiversity of ecosystems. Furthermore, these organisms have a short life cycle, easy laboratory manipulation, and high sensitivity to marine pollution and, therefore, they are considered to be optimal bioindicators for assessing detrimental chemical agents that are related to the marine environment and with potential toxicity to human health, including neurotoxicity. In general, albeit simple, the nervous system of marine invertebrates is composed of neuronal and glial cells, and it exhibits biochemical and functional similarities with the vertebrate nervous system, including humans. In recent decades, new genetic and transcriptomic technologies have made the identification of many neural genes and transcription factors homologous to those in humans possible. Neuroinflammation, oxidative stress, and altered levels of neurotransmitters are some of the aspects of neurotoxic effects that can also occur in marine invertebrate organisms. The purpose of this review is to provide an overview of major marine pollutants, such as heavy metals, pesticides, and micro and nano-plastics, with a focus on their neurotoxic effects in marine invertebrate organisms. This review could be a stimulus to bio-research towards the use of invertebrate model systems other than traditional, ethically questionable, time-consuming, and highly expensive mammalian models.
Collapse
|
49
|
Abstract
Lead (Pb2+) is a non-essential metal with numerous industrial applications that have led to ts ubiquity in the environment. Thus, not only occupational-exposed individuals' health is compromised, but also that of the general population and in particular children. Notably, although the central nervous system is particularly susceptible to Pb2+, other systems are affected as well. The present study focuses on molecular mechanisms that underlie the effects that arise from the presence of Pb2+ in situ in the brain, and the possible toxic effects that follows. As the brain barriers represent the first target of systemic Pb2+, mechanisms of Pb2+ entry into the brain are discussed, followed by a detailed discussion on neurotoxic mechanisms, with special emphasis on theories of ion mimicry, mitochondrial dysfunction, redox imbalance, and neuroinflammation. Most importantly, the confluence and crosstalk between these events is combined into a cogent mechanism of toxicity, by intertwining recent and old evidences from humans, in vitro cell culture and experimental animals. Finally, pharmacological interventions, including chelators, antioxidants substances, anti-inflammatory drugs, or their combination are reviewed as integrated approaches to ameliorate Pb2+ harmful effects in both developing or adult organisms.
Collapse
Affiliation(s)
- Miriam B. Virgolini
- IFEC CONICET. IFEC-CONICET. Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba. Haya de la Torre y Medina Allende, Ciudad Universitaria, 5016, Córdoba, Argentina
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA and IM Sechenov First Moscow State Medical University (Sechenov University), 119146, Moscow, Russia
| |
Collapse
|
50
|
Kaur I, Behl T, Aleya L, Rahman MH, Kumar A, Arora S, Akter R. Role of metallic pollutants in neurodegeneration: effects of aluminum, lead, mercury, and arsenic in mediating brain impairment events and autism spectrum disorder. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:8989-9001. [PMID: 33447979 DOI: 10.1007/s11356-020-12255-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 12/27/2020] [Indexed: 04/16/2023]
Abstract
Autism spectrum disorder (ASD) is a developmental disorder of the brain characterized by shortfall in the social portfolio of an individual and abbreviated interactive and communication aspects rendering stereotypical behavior and pitfalls in a child's memory, thinking, and learning capabilities. The incidence of ASD has accelerated since the past decade, portraying environment as one of the primary assets, comprising of metallic components aiming to curb the neurodevelopmental pathways in an individual. Many regulations like Clean Air Act and critical steps taken by countries all over the globe, like Sweden and the USA, have rendered the necessity to study the effects of environmental metallic components on ASD progression. The review focuses on the primary metallic components present in the environment (aluminum, lead, mercury, and arsenic), responsible for accelerating ASD symptoms by a set of general mechanisms like oxidative stress reduction, glycolysis suppression, microglial activation, and metalloprotein disruption, resulting in apoptotic signaling, neurotoxic effects, and neuroinflammatory responses. The effect of these metals can be retarded by certain protective strategies like chelation, dietary correction, certain agents (curcumin, mangiferin, selenium), and detoxification enhancement, which can necessarily halt the neurodegenerative effects.
Collapse
Affiliation(s)
- Ishnoor Kaur
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India.
| | - Lotfi Aleya
- Chrono-Environnement Laboratory, UMR CNRS 6249, Bourgogne Franche-Comté University, Paris, France
| | - Md Habibur Rahman
- Department of Global Medical Science, Wonju College of Medicine, Yonsei University, Seoul, South Korea
- Department of Pharmacy, Southeast University, Banani, Dhaka, Bangladesh
| | - Arun Kumar
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Sandeep Arora
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Rokeya Akter
- Department of Global Medical Science, Wonju College of Medicine, Yonsei University, Seoul, South Korea
| |
Collapse
|