1
|
Boamah B, Siciliano S, Hogan N, Hecker M, Hanson M, Campbell P, Peters R, Al-Dissi AN, Weber LP. Target organ toxicity in Sprague Dawley rats following oral exposure to complex groundwater mixture: Assessment of dose-response relationships using histopathological and biochemical alterations. Regul Toxicol Pharmacol 2024; 154:105744. [PMID: 39571674 DOI: 10.1016/j.yrtph.2024.105744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/18/2024] [Accepted: 11/17/2024] [Indexed: 11/24/2024]
Abstract
Exposure to contaminant mixtures from industrial legacy sites presents unique challenges that require novel approaches such as effects-directed toxicity assessment. This study characterized the target organ toxicity of groundwater from a legacy contaminated pesticide plant in male and female Sprague Dawley rats exposed to low impact (10% v/v) groundwater, high impact (0.01% v/v, 0.1% v/v, 1% v/v, and 10% v/v) groundwater or tap water (control) for 60 days. Rats exposed to high impact (1% and 10%) and 10% low impact groundwater mixture showed statistically significant increases in liver necro-inflammation relative to control. A statistically significant reduction was observed in plasma albumin of exposed rats (except 0.01% high impact) and alpha 2 macroglobulin (all exposed) when compared to the control. All groundwater-exposed rats showed glomerulopathy, but there were sex-specific differences in acute tubular necrosis. Testes showed germinal cell vacuolation, necrosis, reduced seminiferous epithelial height, and Sertoli syndrome in exposed rats, accompanied by reduced plasma testosterone and increased testicular malondialdehyde. Taken together, this sub-chronic oral exposure to groundwater from a contaminated industrial site caused dose-dependent hepatic and testicular toxicity, while nephrotoxicity was both sex-dependent and dose-dependent. This study provides support for the essentiality of using effects-driven approaches in the risk assessment of complex mixtures.
Collapse
Affiliation(s)
- B Boamah
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada
| | - S Siciliano
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada
| | - N Hogan
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada
| | - M Hecker
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada; School of Environment and Sustainability, University of Saskatchewan, Saskatoon, SK, Canada
| | - M Hanson
- Environment and Geography, University of Manitoba, Winnipeg, MB, Canada
| | - P Campbell
- WSP E&I Canada Limited, Winnipeg, MB, Canada
| | - R Peters
- Federated Co-operatives Limited, Saskatoon, SK, Canada
| | - A N Al-Dissi
- Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - L P Weber
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada.
| |
Collapse
|
2
|
Suzuki S, Gi M, Kobayashi T, Miyoshi N, Yoneda N, Uehara S, Yokota Y, Noura I, Fujioka M, Vachiraarunwong A, Kakehashi A, Suemizu H, Wanibuchi H. Urinary bladder carcinogenic potential of 4,4'-methylenebis(2-chloroaniline) in humanized-liver mice. Toxicol Sci 2024; 202:210-219. [PMID: 39287002 DOI: 10.1093/toxsci/kfae119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024] Open
Abstract
Occupational exposure to 4,4'-methylenebis(2-chloroaniline) (MOCA) has been linked to an increased risk of bladder cancer among employees in Japanese plants, indicating its significance as a risk factor for urinary bladder cancer. To investigate the role of MOCA metabolism in bladder carcinogenesis, we administered MOCA to non-humanized (F1-TKm30 mice) and humanized-liver mice for 4 and 28 wk. We compared MOCA-induced changes in metabolic enzyme expression, metabolite formation, and effects on the urinary bladder epithelium in the 2 models. At week 4, MOCA exposure induced simple hyperplasia, cell proliferation, and DNA damage in the urothelium of the humanized-liver mice, whereas in the non-humanized mice, these effects were not observed. Notably, the concentration of 4-amino-4'-hydroxylamino-3,3'-dichlorodiphenylmethane (N-OH-MOCA) in the urine of humanized-liver mice was more than 10 times higher than that in non-humanized mice at the 4-wk mark. Additionally, we observed distinct differences in the expression of cytochrome P450 isoforms between the 2 models. Although no bladder tumors were detected after 28 wk of treatment in either group, these findings suggest that N-OH-MOCA significantly contributes to the carcinogenic potential of MOCA in humans.
Collapse
Affiliation(s)
- Shugo Suzuki
- Department of Molecular Pathology, Osaka Metropolitan University Graduate School of Medicine, Osaka 545-8585, Japan
| | - Min Gi
- Department of Molecular Pathology, Osaka Metropolitan University Graduate School of Medicine, Osaka 545-8585, Japan
- Department of Environmental Risk Assessment, Osaka Metropolitan University Graduate School of Medicine, Osaka 545-8585, Japan
| | - Takuma Kobayashi
- Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| | - Noriyuki Miyoshi
- Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| | - Nao Yoneda
- Liver Engineering Laboratory, Department of Applied Research for Laboratory Animals, Central Institute for Experimental Medicine and Life Science (CIEM), Kawasaki 210-0821, Japan
| | - Shotaro Uehara
- Liver Engineering Laboratory, Department of Applied Research for Laboratory Animals, Central Institute for Experimental Medicine and Life Science (CIEM), Kawasaki 210-0821, Japan
| | - Yuka Yokota
- Department of Molecular Pathology, Osaka Metropolitan University Graduate School of Medicine, Osaka 545-8585, Japan
| | - Ikue Noura
- Department of Molecular Pathology, Osaka Metropolitan University Graduate School of Medicine, Osaka 545-8585, Japan
| | - Masaki Fujioka
- Department of Molecular Pathology, Osaka Metropolitan University Graduate School of Medicine, Osaka 545-8585, Japan
| | - Arpamas Vachiraarunwong
- Department of Molecular Pathology, Osaka Metropolitan University Graduate School of Medicine, Osaka 545-8585, Japan
- Department of Environmental Risk Assessment, Osaka Metropolitan University Graduate School of Medicine, Osaka 545-8585, Japan
| | - Anna Kakehashi
- Department of Molecular Pathology, Osaka Metropolitan University Graduate School of Medicine, Osaka 545-8585, Japan
| | - Hiroshi Suemizu
- Liver Engineering Laboratory, Department of Applied Research for Laboratory Animals, Central Institute for Experimental Medicine and Life Science (CIEM), Kawasaki 210-0821, Japan
| | - Hideki Wanibuchi
- Department of Molecular Pathology, Osaka Metropolitan University Graduate School of Medicine, Osaka 545-8585, Japan
- Department of Environmental Risk Assessment, Osaka Metropolitan University Graduate School of Medicine, Osaka 545-8585, Japan
| |
Collapse
|
3
|
Ciocotișan IM, Muntean DM, Vlase L. Bupropion Increased More than Five Times the Systemic Exposure to Aripiprazole: An In Vivo Study in Wistar albino Rats. Metabolites 2024; 14:588. [PMID: 39590825 PMCID: PMC11596549 DOI: 10.3390/metabo14110588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/24/2024] [Accepted: 10/29/2024] [Indexed: 11/28/2024] Open
Abstract
Background/Objectives: In psychiatric disorders, antipsychotics and antidepressant medication are often administered together. Aripiprazole, a third-generation antipsychotic drug, is extensively metabolized by CYP2D6 and CYP3A4 isoenzymes, while bupropion, used in depressive disorders, is known as a moderate or strong CYP2D6 enzyme inhibitor. This in vivo experiment aimed to assess the presence of a pharmacokinetic drug interaction between aripiprazole and bupropion and its magnitude on the systemic exposure of aripiprazole. Methods: 24 healthy Wistar albino male rats were included in two study groups. A single dose of 8 mg/kg aripiprazole was given to rats in the reference group, while the test group received repeated doses of bupropion for 6 days, followed by a single dose of aripiprazole. An LC-MS/MS method was developed for the concomitant quantification of aripiprazole and its active metabolite, dehydroaripiprazole, and non-compartmental analysis was employed to assess their pharmacokinetic parameters. Results: The mean AUC0-∞ of aripiprazole increased 5.65-fold (1117.34 ± 931.41 vs. 6311.66 ± 2978.71 hr·ng/mL), the mean Cmax increased by 96.76% and the apparent systemic clearance decreased over 9-fold after bupropion repeated doses. The exposure to aripiprazole's active metabolite increased as well, having a 4-fold increase in the mean AUC0-∞ (from 461.13 ± 339.82 to 1878.66 ± 1446.91 hr·ng/mL) and a 2-fold increase in the mean Cmax. Conclusions: The total exposure to the aripiprazole parent compound and active moiety significantly increased after bupropion pretreatment in this preclinical in vivo experiment. Clinical studies should further establish the significance of this interaction in humans.
Collapse
Affiliation(s)
| | - Dana Maria Muntean
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 41 Victor Babeș Street, 400012 Cluj-Napoca, Romania; (I.-M.C.); (L.V.)
| | | |
Collapse
|
4
|
Patil PH, Desai MP, Rao RR, Mutalik S, Puralae Channabasavaiah J. Strategy to Improve the Oral Pharmacokinetics of Cyclin-Dependent Kinase 4/6 Inhibitors: Enhancing Permeability and CYP450 Inhibition by a Natural Bioenhancer. AAPS PharmSciTech 2024; 25:181. [PMID: 39117933 DOI: 10.1208/s12249-024-02899-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/22/2024] [Indexed: 08/10/2024] Open
Abstract
Palbociclib and ribociclib an orally bioavailable, potent cyclin-dependent kinase 4/6 inhibitors, with low oral bioavailability due to substrate specificity towards CYP3A and P-glycoprotein. Thus, current research aims to examine the effect of a bioenhancer (naringin), on oral pharmacokinetics of palbociclib and ribociclib. Naringin's affinity for CYP3A4 and P-glycoprotein was studied using molecular docking; its impact on palbociclib/ribociclib CYP3A metabolism and P-glycoprotein-mediated efflux was examined using in vitro preclinical models; and its oral pharmacokinetics in rats were assessed following oral administration of palbociclib/ribociclib in presence of naringin (50 and 100 mg/kg). Naringin binds optimally to both proteins with the highest net binding energy of - 1477.23 and - 1607.47 kcal/mol, respectively. The microsomal intrinsic clearance of palbociclib and ribociclib was noticeably reduced by naringin (5-100 µM), by 3.0 and 2.46-folds, respectively. Similarly, naringin had considerable impact on the intestinal transport and efflux of both drugs. The pre-treatment with 100 mg/kg naringin increased significantly (p < 0.05) the oral exposure of palbociclib (2.0-fold) and ribociclib (1.95-fold). Naringin's concurrent administration of palbociclib and ribociclib increased their oral bioavailability due to its dual inhibitory effect on CYP3A4 and P-glycoprotein; thus, concurrent naringin administration may represent an innovative strategy for enhancing bioavailability of cyclin-dependent kinase inhibitors.
Collapse
Affiliation(s)
- Prajakta Harish Patil
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Mrunal Pradeep Desai
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Rajat Radhakrishna Rao
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Srinivas Mutalik
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Jagadish Puralae Channabasavaiah
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India.
| |
Collapse
|
5
|
Russell LE, Yadav J, Maldonato BJ, Chien HC, Zou L, Vergara AG, Villavicencio EG. Transporter-mediated drug-drug interactions: regulatory guidelines, in vitro and in vivo methodologies and translation, special populations, and the blood-brain barrier. Drug Metab Rev 2024:1-28. [PMID: 38967415 DOI: 10.1080/03602532.2024.2364591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 05/31/2024] [Indexed: 07/06/2024]
Abstract
This review, part of a special issue on drug-drug interactions (DDIs) spearheaded by the International Society for the Study of Xenobiotics (ISSX) New Investigators, explores the critical role of drug transporters in absorption, disposition, and clearance in the context of DDIs. Over the past two decades, significant advances have been made in understanding the clinical relevance of these transporters. Current knowledge on key uptake and efflux transporters that affect drug disposition and development is summarized. Regulatory guidelines from the FDA, EMA, and PMDA that inform the evaluation of potential transporter-mediated DDIs are discussed in detail. Methodologies for preclinical and clinical testing to assess potential DDIs are reviewed, with an emphasis on the utility of physiologically based pharmacokinetic (PBPK) modeling. This includes the application of relative abundance and expression factors to predict human pharmacokinetics (PK) using preclinical data, integrating the latest regulatory guidelines. Considerations for assessing transporter-mediated DDIs in special populations, including pediatric, hepatic, and renal impairment groups, are provided. Additionally, the impact of transporters at the blood-brain barrier (BBB) on the disposition of CNS-related drugs is explored. Enhancing the understanding of drug transporters and their role in drug disposition and toxicity can improve efficacy and reduce adverse effects. Continued research is essential to bridge remaining gaps in knowledge, particularly in comparison with cytochrome P450 (CYP) enzymes.
Collapse
Affiliation(s)
- Laura E Russell
- Department of Quantitative, Translational, and ADME Sciences, AbbVie Inc, North Chicago, IL, USA
| | - Jaydeep Yadav
- Department of Pharmacokinetics, Dynamics, Metabolism, and Bioanalytics, Merck & Co., Inc, Boston, MA, USA
| | - Benjamin J Maldonato
- Department of Nonclinical Development and Clinical Pharmacology, Revolution Medicines, Inc, Redwood City, CA, USA
| | - Huan-Chieh Chien
- Department of Pharmacokinetics and Drug Metabolism, Amgen Inc, South San Francisco, CA, USA
| | - Ling Zou
- Department of Pharmacokinetics and Drug Metabolism, Amgen Inc, South San Francisco, CA, USA
| | - Ana G Vergara
- Department of Pharmacokinetics, Dynamics, Metabolism, and Bioanalytics, Merck & Co., Inc, Rahway, NJ, USA
| | - Erick G Villavicencio
- Department of Biology-Discovery, Imaging and Functional Genomics, Merck & Co., Inc, Rahway, NJ, USA
| |
Collapse
|
6
|
Albadry M, Küttner J, Grzegorzewski J, Dirsch O, Kindler E, Klopfleisch R, Liska V, Moulisova V, Nickel S, Palek R, Rosendorf J, Saalfeld S, Settmacher U, Tautenhahn HM, König M, Dahmen U. Cross-species variability in lobular geometry and cytochrome P450 hepatic zonation: insights into CYP1A2, CYP2D6, CYP2E1 and CYP3A4. Front Pharmacol 2024; 15:1404938. [PMID: 38818378 PMCID: PMC11137285 DOI: 10.3389/fphar.2024.1404938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 04/29/2024] [Indexed: 06/01/2024] Open
Abstract
There is a lack of systematic research exploring cross-species variation in liver lobular geometry and zonation patterns of critical drug-metabolizing enzymes, a knowledge gap essential for translational studies. This study investigated the critical interplay between lobular geometry and key cytochrome P450 (CYP) zonation in four species: mouse, rat, pig, and human. We developed an automated pipeline based on whole slide images (WSI) of hematoxylin-eosin-stained liver sections and immunohistochemistry. This pipeline allows accurate quantification of both lobular geometry and zonation patterns of essential CYP proteins. Our analysis of CYP zonal expression shows that all CYP enzymes (besides CYP2D6 with panlobular expression) were observed in the pericentral region in all species, but with distinct differences. Comparison of normalized gradient intensity shows a high similarity between mice and humans, followed by rats. Specifically, CYP1A2 was expressed throughout the pericentral region in mice and humans, whereas it was restricted to a narrow pericentral rim in rats and showed a panlobular pattern in pigs. Similarly, CYP3A4 is present in the pericentral region, but its extent varies considerably in rats and appears panlobular in pigs. CYP2D6 zonal expression consistently shows a panlobular pattern in all species, although the intensity varies. CYP2E1 zonal expression covered the entire pericentral region with extension into the midzone in all four species, suggesting its potential for further cross-species analysis. Analysis of lobular geometry revealed an increase in lobular size with increasing species size, whereas lobular compactness was similar. Based on our results, zonated CYP expression in mice is most similar to humans. Therefore, mice appear to be the most appropriate species for drug metabolism studies unless larger species are required for other purposes, e.g., surgical reasons. CYP selection should be based on species, with CYP2E1 and CYP2D6 being the most preferable to compare four species. CYP1A2 could be considered as an additional CYP for rodent versus human comparisons, and CYP3A4 for mouse/human comparisons. In conclusion, our image analysis pipeline together with suggestions for species and CYP selection can serve to improve future cross-species and translational drug metabolism studies.
Collapse
Affiliation(s)
- Mohamed Albadry
- Department of General, Visceral and Vascular Surgery, Experimental Transplantation Surgery, Jena University Hospital, Jena, Germany
- Department of Pathology, Faculty of Veterinary Medicine, Menoufia University, Shebin Elkom, Menoufia, Egypt
| | - Jonas Küttner
- Department of General, Visceral and Vascular Surgery, Experimental Transplantation Surgery, Jena University Hospital, Jena, Germany
- Institute for Theoretical Biology, Institute für Biologie, Systems Medicine of the Liver, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Jan Grzegorzewski
- Institute for Theoretical Biology, Institute für Biologie, Systems Medicine of the Liver, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Olaf Dirsch
- Institute for Pathology, BG Klinikum Unfallkrankenhaus Berlin, Berlin, Germany
| | - Eva Kindler
- Department of General, Visceral and Vascular Surgery, Jena University Hospital, Jena, Germany
| | - Robert Klopfleisch
- Department of Veterinary Medicine, Institute of Veterinary Pathology, Freie Universität Berlin, Berlin, Germany
| | - Vaclav Liska
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia
- Department of Surgery, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia
| | - Vladimira Moulisova
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia
| | - Sandra Nickel
- Clinic and Polyclinic for Visceral, Transplantation, Thoracic and Vascular Surgery, Leipzig University Hospital, Leipzig, Germany
| | - Richard Palek
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia
- Department of Surgery, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia
| | - Jachym Rosendorf
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia
- Department of Surgery, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia
| | - Sylvia Saalfeld
- Institute of Biomedical Engineering and Informatics, Ilmenau University of Technology, Ilmenau, Germany
| | - Utz Settmacher
- Department of General, Visceral and Vascular Surgery, Jena University Hospital, Jena, Germany
| | - Hans-Michael Tautenhahn
- Department of General, Visceral and Vascular Surgery, Experimental Transplantation Surgery, Jena University Hospital, Jena, Germany
- Clinic and Polyclinic for Visceral, Transplantation, Thoracic and Vascular Surgery, Leipzig University Hospital, Leipzig, Germany
| | - Matthias König
- Institute for Theoretical Biology, Institute für Biologie, Systems Medicine of the Liver, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Uta Dahmen
- Department of General, Visceral and Vascular Surgery, Experimental Transplantation Surgery, Jena University Hospital, Jena, Germany
| |
Collapse
|
7
|
Harrison SP, Baumgarten SF, Chollet ME, Stavik B, Bhattacharya A, Almaas R, Sullivan GJ. Parenteral nutrition emulsion inhibits CYP3A4 in an iPSC derived liver organoids testing platform. J Pediatr Gastroenterol Nutr 2024; 78:1047-1058. [PMID: 38529852 DOI: 10.1002/jpn3.12195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/14/2024] [Accepted: 02/28/2024] [Indexed: 03/27/2024]
Abstract
OBJECTIVES Parenteral nutrition (PN) is used for patients of varying ages with intestinal failure to supplement calories. Premature newborns with low birth weight are at a high risk for developing PN associated liver disease (PNALD) including steatosis, cholestasis, and gallbladder sludge/stones. To optimize nutrition regimens, models are required to predict PNALD. METHODS We have exploited induced pluripotent stem cell derived liver organoids to provide a testing platform for PNALD. Liver organoids mimic the developing liver and contain the different hepatic cell types. The organoids have an early postnatal maturity making them a suitable model for premature newborns. To mimic PN treatment we used medium supplemented with either clinoleic (80% olive oil/20% soybean oil) or intralipid (100% soybean oil) for 7 days. RESULTS Homogenous HNF4a staining was found in all organoids and PN treatments caused accumulation of lipids in hepatocytes. Organoids exhibited a dose dependent decrease in CYP3A4 activity and expression of hepatocyte functional genes. The lipid emulsions did not affect overall organoid viability and glucose levels had no contributory effect to the observed results. CONCLUSIONS Liver organoids could be utilized as a potential screening platform for the development of new, less hepatotoxic PN solutions. Both lipid treatments caused hepatic lipid accumulation, a significant decrease in CYP3A4 activity and a decrease in the RNA levels of both CYP3A4 and CYP1A2 in a dose dependent manner. The presence of high glucose had no additive effect, while Clinoleic at high dose, caused significant upregulation of interleukin 6 and TLR4 expression.
Collapse
Affiliation(s)
- Sean P Harrison
- Department of Pediatric Research, Oslo University Hospital, Oslo, Norway
| | - Saphira F Baumgarten
- Department of Pediatric Research, Oslo University Hospital, Oslo, Norway
- Hybrid Technology Hub-Center of Excellence, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
- Research, Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway
| | - Maria E Chollet
- Research, Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway
- Department of Haematology, Oslo University Hospital, Oslo, Norway
| | - Benedicte Stavik
- Research, Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway
- Department of Haematology, Oslo University Hospital, Oslo, Norway
| | - Anindita Bhattacharya
- Research, Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway
- Department of Haematology, Oslo University Hospital, Oslo, Norway
| | - Runar Almaas
- Department of Pediatric Research, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Gareth J Sullivan
- Department of Pediatric Research, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
8
|
Bhardwaj M, Kour D, Rai G, Bhattacharya S, Manhas D, Vij B, Kumar A, Mukherjee D, Ahmed Z, Gandhi SG, Nandi U. EIDD-1931 Treatment Tweaks CYP3A4 and CYP2C8 in Arthritic Rats to Expedite Drug Interaction: Implication in Oral Therapy of Molnupiravir. ACS OMEGA 2024; 9:13982-13993. [PMID: 38559969 PMCID: PMC10976394 DOI: 10.1021/acsomega.3c09287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/26/2024] [Accepted: 02/08/2024] [Indexed: 04/04/2024]
Abstract
EIDD-1931 is the active form of molnupiravir, an orally effective drug approved by the United States Food and Drug Administration (USFDA) against COVID-19. Pharmacokinetic alteration can cause untoward drug interaction (drug-drug/disease-drug), but hardly any information is known about this recently approved drug. Therefore, we first investigated the impact of the arthritis state on the oral pharmacokinetics of EIDD-1931 using a widely accepted complete Freund's adjuvant (CFA)-induced rat model of rheumatoid arthritis (RA) after ascertaining the disease occurrence by paw swelling measurement and X-ray examination. Comparative oral pharmacokinetic assessment of EIDD-1931 (normal state vs arthritis state) showed that overall plasma exposure was augmented (1.7-fold) with reduced clearance (0.54-fold), suggesting its likelihood of dose adjustment in arthritis conditions. In order to elucidate the effect of EIDD-1931 treatment at a therapeutic regime (normal state vs arthritis state) on USFDA-recommended panel of cytochrome P450 (CYP) enzymes (CYP1A2, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, and CYP3A4) for drug interaction using the same disease model, we monitored protein and mRNA expressions (rat homologs) in liver tissue by western blotting (WB) and real time-polymerase chain reaction (RT-PCR), respectively. Results reveal that EIDD-1931 treatment could strongly influence CYP3A4 and CYP2C8 among experimental proteins/mRNAs. Although CYP2C8 regulation upon EIDD-1931 treatment resembles similar behavior under the arthritis state, results dictate a potentially reverse phenomenon for CYP3A4. Moreover, the lack of any CYP inhibitory effect by EIDD-1931 in human/rat liver microsomes (HLM/RLM) helps to ascertain EIDD-1931 treatment-mediated disease-drug interaction and the possibility of drug-drug interaction with disease-modifying antirheumatic drugs (DMARDs) upon coadministration. As elevated proinflammatory cytokine levels are prevalent in RA and nuclear factor-kappa B (NF-kB) and nuclear receptors control CYP expressions, further studies should focus on understanding the regulation of affected CYPs to subside unexpected drug interaction.
Collapse
Affiliation(s)
- Mahir Bhardwaj
- Pharmacology
Division, CSIR-Indian Institute of Integrative
Medicine, Jammu 180001, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Dilpreet Kour
- Pharmacology
Division, CSIR-Indian Institute of Integrative
Medicine, Jammu 180001, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Garima Rai
- Infectious
Diseases Division, CSIR-Indian Institute
of Integrative Medicine, Jammu 180001, India
| | - Srija Bhattacharya
- Natural
Product and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| | - Diksha Manhas
- Pharmacology
Division, CSIR-Indian Institute of Integrative
Medicine, Jammu 180001, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Bhavna Vij
- Pharmacology
Division, CSIR-Indian Institute of Integrative
Medicine, Jammu 180001, India
| | - Ajay Kumar
- Pharmacology
Division, CSIR-Indian Institute of Integrative
Medicine, Jammu 180001, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Debaraj Mukherjee
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Natural
Product and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
- Department
of Chemical Sciences, Bose institute, Kolkata 700091, India
| | - Zabeer Ahmed
- Pharmacology
Division, CSIR-Indian Institute of Integrative
Medicine, Jammu 180001, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sumit G. Gandhi
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Infectious
Diseases Division, CSIR-Indian Institute
of Integrative Medicine, Jammu 180001, India
| | - Utpal Nandi
- Pharmacology
Division, CSIR-Indian Institute of Integrative
Medicine, Jammu 180001, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
9
|
Fang X, Tiwary R, Nguyen VP, Richburg JH. Responses of peritubular macrophages and the testis transcriptome profiles of peripubertal and adult rodents exposed to an acute dose of MEHP. Toxicol Sci 2024; 198:76-85. [PMID: 38113427 PMCID: PMC10901151 DOI: 10.1093/toxsci/kfad128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023] Open
Abstract
Exposure of rodents to mono-(2-ethylhexyl) phthalate (MEHP) is known to disrupt the blood-testis barrier and cause testicular germ cell apoptosis. Peritubular macrophages (PTMφ) are a newly identified type of testicular macrophage that aggregates near the spermatogonial stem cell niche. We have previously reported that MEHP exposure increased the numbers of PTMφs by 6-fold within the testis of peripubertal rats. The underlying mechanism(s) accounting for this change in PTMφs and its biological significance is unknown. This study investigates if MEHP-induced alterations in PTMφs occur in rodents (PND 75 adult rats and PND 26 peripubertal mice) that are known to be less sensitive to MEHP-induced testicular toxicity. Results show that adult rats have a 2-fold higher basal level of PTMφ numbers than species-matched peripubertal animals, but there was no significant increase in PTMφ numbers after MEHP exposure. Peripubertal mice have a 5-fold higher basal level of PTMφ compared with peripubertal rats but did not exhibit increases in number after MEHP exposure. Further, the interrogation of the testis transcriptome was profiled from both the MEHP-responsive peripubertal rats and the less sensitive rodents via 3' Tag sequencing. Significant changes in gene expression were observed in peripubertal rats after MEHP exposure. However, adult rats showed lesser changes in gene expression, and peripubertal mice showed only minor changes. Collectively, the data show that PTMφ numbers are associated with the sensitivity of rodents to MEHP in an age- and species-dependent manner.
Collapse
Affiliation(s)
- Xin Fang
- Interdisciplinary Life Sciences Graduate Program, The University of Texas at Austin, Austin, Texas 78712, USA
- Division of Pharmacology and Toxicology, College of Pharmacy, Center for Molecular Carcinogenesis and Toxicology, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Richa Tiwary
- Division of Pharmacology and Toxicology, College of Pharmacy, Center for Molecular Carcinogenesis and Toxicology, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Vivian P Nguyen
- Division of Pharmacology and Toxicology, College of Pharmacy, Center for Molecular Carcinogenesis and Toxicology, The University of Texas at Austin, Austin, Texas 78712, USA
| | - John H Richburg
- Division of Pharmacology and Toxicology, College of Pharmacy, Center for Molecular Carcinogenesis and Toxicology, The University of Texas at Austin, Austin, Texas 78712, USA
| |
Collapse
|
10
|
Lescop C, Birker M, Brotschi C, Bürki C, Morrison K, Froidevaux S, Delahaye S, Nayler O, Bolli MH. Discovery of the Novel, Orally Active, and Selective LPA1 Receptor Antagonist ACT-1016-0707 as a Preclinical Candidate for the Treatment of Fibrotic Diseases. J Med Chem 2024; 67:2397-2424. [PMID: 38349250 DOI: 10.1021/acs.jmedchem.3c01827] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Piperidine 3 is a potent and selective lysophosphatidic acid receptor subtype 1 receptor (LPAR1) antagonist that has shown efficacy in a skin vascular leakage target engagement model in mice. However, compound 3 has very high human plasma protein binding and high clearance in rats, which could significantly hamper its clinical development. Continued lead optimization led to the potent, less protein bound, metabolically stable, and orally active azetidine 17. Rat pharmacokinetics (PK) studies revealed that 17 accumulated in the liver. In vitro studies indicated that 17 is an organic anion co-transporting polypeptide 1B1 (OATP1B1) substrate. Although analogue 24 was no longer a substrate of OATP1B1, PK studies suggested that the compound undergoes enterohepatic recirculation. Replacing the carboxylic acidic side chain by a non-acidic sulfamide moiety and further fine-tuning of the scaffold yielded the potent, orally active LPAR1 antagonist 49, which was selected for preclinical development for the treatment of fibrotic diseases.
Collapse
Affiliation(s)
- Cyrille Lescop
- DD Chemistry, Idorsia Pharmaceuticals, Ltd, Hegenheimermattweg 91, CH-4123 Allschwil, Switzerland
| | - Magdalena Birker
- DD Biology, Idorsia Pharmaceuticals, Ltd, Hegenheimermattweg 91, CH-4123 Allschwil, Switzerland
| | - Christine Brotschi
- DD Chemistry, Idorsia Pharmaceuticals, Ltd, Hegenheimermattweg 91, CH-4123 Allschwil, Switzerland
| | - Cédric Bürki
- Chemistry Process R&D, Idorsia Pharmaceuticals, Ltd, Hegenheimermattweg 91, CH-4123 Allschwil, Switzerland
| | - Keith Morrison
- DD Pharmacology, Idorsia Pharmaceuticals, Ltd, Hegenheimermattweg 91, CH-4123 Allschwil, Switzerland
| | - Sylvie Froidevaux
- DD Pharmacology, Idorsia Pharmaceuticals, Ltd, Hegenheimermattweg 91, CH-4123 Allschwil, Switzerland
| | - Stéphane Delahaye
- Preclinical DMPK, Idorsia Pharmaceuticals, Ltd, Hegenheimermattweg 91, CH-4123 Allschwil, Switzerland
| | - Oliver Nayler
- DD Biology, Idorsia Pharmaceuticals, Ltd, Hegenheimermattweg 91, CH-4123 Allschwil, Switzerland
| | - Martin H Bolli
- DD Chemistry, Idorsia Pharmaceuticals, Ltd, Hegenheimermattweg 91, CH-4123 Allschwil, Switzerland
| |
Collapse
|
11
|
Heisel LS, Andersen FD, Joca S, Sørensen LK, Simonsen U, Hasselstrøm JB, Andersen CU, Nielsen KL. Combined in vivo metabolic effects of quetiapine and methadone in brain and blood of rats. Arch Toxicol 2024; 98:289-301. [PMID: 37870577 PMCID: PMC10761411 DOI: 10.1007/s00204-023-03620-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 10/04/2023] [Indexed: 10/24/2023]
Abstract
Changes in pharmacokinetics and endogenous metabolites may underlie additive biological effects of concomitant use of antipsychotics and opioids. In this study, we employed untargeted metabolomics analysis and targeted analysis to examine the changes in drug metabolites and endogenous metabolites in the prefrontal cortex (PFC), midbrain, and blood of rats following acute co-administration of quetiapine and methadone. Rats were divided into four groups and received cumulative increasing doses of quetiapine (QTP), methadone (MTD), quetiapine + methadone (QTP + MTD), or vehicle (control). All samples were analyzed using liquid chromatography-mass spectrometry (LC-MS). Our findings revealed increased levels of the quetiapine metabolites: Norquetiapine, O-dealkylquetiapine, 7-hydroxyquetiapine, and quetiapine sulfoxide, in the blood and brain when methadone was present. Our study also demonstrated a decrease in methadone and its metabolite 2-ethylidene-1,5-dimethyl-3,3-diphenylpyrrolidine (EDDP) in the rat brain when quetiapine was present. Despite these findings, there were only small differences in the levels of 225-296 measured endogenous metabolites due to co-administration compared to single administrations. For example, N-methylglutamic acid, glutaric acid, p-hydroxyphenyllactic acid, and corticosterone levels were significantly decreased in the brain of rats treated with both compounds. Accumulation of serotonin in the midbrain was additionally observed in the MTD group, but not in the QTP + MTD group. In conclusion, this study in rats suggests a few but important additive metabolic effects when quetiapine and methadone are co-administered.
Collapse
Affiliation(s)
- Laura Smedegaard Heisel
- Department of Forensic Medicine, Aarhus University, Palle Juul-Jensens Boulevard 99, DK-8200, Aarhus N, Denmark
| | - Freja Drost Andersen
- Department of Forensic Medicine, Aarhus University, Palle Juul-Jensens Boulevard 99, DK-8200, Aarhus N, Denmark
| | - Sâmia Joca
- Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, DK-8000, Aarhus C, Denmark
| | | | - Ulf Simonsen
- Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, DK-8000, Aarhus C, Denmark
| | - Jørgen Bo Hasselstrøm
- Department of Forensic Medicine, Aarhus University, Palle Juul-Jensens Boulevard 99, DK-8200, Aarhus N, Denmark
| | - Charlotte Uggerhøj Andersen
- Department of Forensic Medicine, Aarhus University, Palle Juul-Jensens Boulevard 99, DK-8200, Aarhus N, Denmark
- Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, DK-8000, Aarhus C, Denmark
- Department of Clinical Pharmacology, Aarhus University Hospital, Palle Juul-Jensens, Boulevard 99, DK-8200, Aarhus N, Denmark
| | - Kirstine Lykke Nielsen
- Department of Forensic Medicine, Aarhus University, Palle Juul-Jensens Boulevard 99, DK-8200, Aarhus N, Denmark.
| |
Collapse
|
12
|
Lin MS, Varunjikar MS, Lie KK, Søfteland L, Dellafiora L, Ørnsrud R, Sanden M, Berntssen MHG, Dorne JLCM, Bafna V, Rasinger JD. Multi-tissue proteogenomic analysis for mechanistic toxicology studies in non-model species. ENVIRONMENT INTERNATIONAL 2023; 182:108309. [PMID: 37980879 DOI: 10.1016/j.envint.2023.108309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 08/15/2023] [Accepted: 11/04/2023] [Indexed: 11/21/2023]
Abstract
New approach methodologies (NAM), including omics and in vitro approaches, are contributing to the implementation of 3R (reduction, refinement and replacement) strategies in regulatory science and risk assessment. In this study, we present an integrative transcriptomics and proteomics analysis workflow for the validation and revision of complex fish genomes and demonstrate how proteogenomics expression matrices can be used to support multi-level omics data integration in non-model species in vivo and in vitro. Using Atlantic salmon as an example, we constructed proteogenomic databases from publicly available transcriptomic data and in-house generated RNA-Seq and LC-MS/MS data. Our analysis identified ∼80,000 peptides, providing direct evidence of translation for over 40,000 RefSeq structures. The data also highlighted 183 co-located peptide groups that supported a single transcript each, and in each case, either corrected a previous annotation, supported Ensembl annotations not present in RefSeq, or identified novel previously unannotated genes. Proteogenomics data-derived expression matrices revealed distinct profiles for the different tissue types analyzed. Focusing on proteins involved in defense against xenobiotics, we detected distinct expression patterns across different salmon tissues and observed homology in the expression of chemical defense proteins between in vivo and in vitro liver systems. Our study demonstrates the potential of proteogenomic analyses in extending our understanding of complex fish genomes and provides an advanced bioinformatic toolkit to support the further development of NAMs and their application in regulatory science and (eco)toxicological studies of non-model species.
Collapse
Affiliation(s)
- M S Lin
- Bioinformatics and Systems Biology Program, UC San Diego, San Diego, CA, United States.
| | | | - K K Lie
- Institute of Marine Research, Bergen, Norway.
| | - L Søfteland
- Institute of Marine Research, Bergen, Norway.
| | - L Dellafiora
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy.
| | - R Ørnsrud
- Institute of Marine Research, Bergen, Norway.
| | - M Sanden
- Institute of Marine Research, Bergen, Norway.
| | | | - J L C M Dorne
- European Food Safety Authority, Methodological and Scientific Support Unit, Via Carlo Magno 1A, 43121 Parma, Italy.
| | - V Bafna
- Computer Science & Engineering and HDSI, UC San Diego, San Diego, CA, United States.
| | | |
Collapse
|
13
|
Gutmann M, Stimpfl E, Langmann G, Koudelka H, Mir-Karner B, Grasl-Kraupp B. Differentiated and non-differentiated HepaRG™ cells: A possible in-vitro model system for early hepatocarcinogenesis and non-genotoxic carcinogens. Toxicol Lett 2023; 390:15-24. [PMID: 37890683 DOI: 10.1016/j.toxlet.2023.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 10/17/2023] [Accepted: 10/24/2023] [Indexed: 10/29/2023]
Abstract
Many xenobiotics are non-genotoxic carcinogens (NGC) in rodent liver. Their mode of action (MoA) and health risks for humans are unclear and no in-vitro tests are available to predict NGC. Human HepaRG™ cells in the differentiated (d-HepaRG) and non-differentiated state (nd-HepaRG) were studied as new approach methodology (NAM) for NGC. Cell-biological assays were performed with d-/nd-HepaRG and human hepatoma/hepatocarcinoma cell lines to characterize the benign/malignant phenotype. Reaction of d-/nd-HepaRG to several liver growth factors and NGC (phenobarbital, PB; cyproterone acetate, CPA; WY-14643) was compared to unaltered and premalignant rat hepatocytes in ex-vivo culture. Enzyme induction by NGC was checked by RT-qPCR/oligo-arrays. Growth, anchorage-independency, migration, clonogenicity, and in-vivo tumorigenicity of nd-HepaRG ranged between benign d-HepaRG and malignant hepatoma/hepatocarcinoma cells. All growth factors elevated DNA replication of d-/nd-HepaRG cells, similarly to unaltered/premalignant rat hepatocytes. NGC induced their prototypical enzymes in the rat and human cells, but elicited a growth response only in the unaltered/premalignant rat hepatocytes and not in human d-/nd-HepaRG cells. To conclude, a benign/premalignant phenotype of d-/nd-HepaRG cells and a reactivity towards several hepatic growth factors and NGC, as known from human hepatocytes, are essential components for an in-vitro model for early stage human hepatocarcinogenesis.The potential value as new approach methodology (NAM) for NGC is discussed.
Collapse
Affiliation(s)
- Michael Gutmann
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8a, 1090 Vienna, Austria
| | - Emily Stimpfl
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8a, 1090 Vienna, Austria
| | - Gregor Langmann
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8a, 1090 Vienna, Austria
| | - Helga Koudelka
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8a, 1090 Vienna, Austria
| | - Birgit Mir-Karner
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8a, 1090 Vienna, Austria
| | - Bettina Grasl-Kraupp
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8a, 1090 Vienna, Austria.
| |
Collapse
|
14
|
Ben-Eltriki M, Shankar G, Tomlinson Guns ES, Deb S. Pharmacokinetics and pharmacodynamics of Rh2 and aPPD ginsenosides in prostate cancer: a drug interaction perspective. Cancer Chemother Pharmacol 2023; 92:419-437. [PMID: 37709921 DOI: 10.1007/s00280-023-04583-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 08/14/2023] [Indexed: 09/16/2023]
Abstract
Ginsenoside Rh2 and its aglycon (aPPD) are one of the major metabolites from Panax ginseng. Preclinical studies suggest that Rh2 and aPPD have antitumor effects in prostate cancer (PCa). Our aims in this review are (1) to describe the pharmacokinetic (PK) properties of Rh2 and aPPD ginsenosides; 2) to provide an overview of the preclinical findings on the use of Rh2 and aPPD in the treatment of PCa; and (3) to highlight the mechanisms of its PK and pharmacodynamic (PD) drug interactions. Increasing evidence points to the potential efficacy of Rh2 or aPPD for PCa treatment. Based on the laboratory studies, Rh2 or aPPD combinations revealed an additive or synergistic interaction or enhanced sensitivity of anticancer drugs toward PCa. This review reveals that enhanced anticancer activities were demonstrated in preclinical studies through interactions of Rh2 and/or aPPD with the proteins related to PK (e.g., cytochrome P450 enzymes, transporters) or PD of the other anticancer drugs or PCa signaling pathways. In conclusion, combining Rh2 or aPPD with anti-prostate cancer drugs leads to PK or PD interactions which could facilitate either therapeutically beneficial or toxic effects.
Collapse
Affiliation(s)
- Mohamed Ben-Eltriki
- The Vancouver Prostate Centre at Vancouver General Hospital, 2660 Oak Street, Vancouver, BC, V6H 3Z6, Canada.
- Cochrane Hypertension Review Group, Therapeutic Initiative, University of British Columbia, Vancouver, BC, Canada.
- Community Pharmacist, Vancouver Area, BC, Canada.
- Department of Pharmacology and Therapeutics, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada.
| | - Gehana Shankar
- The Vancouver Prostate Centre at Vancouver General Hospital, 2660 Oak Street, Vancouver, BC, V6H 3Z6, Canada
| | - Emma S Tomlinson Guns
- The Vancouver Prostate Centre at Vancouver General Hospital, 2660 Oak Street, Vancouver, BC, V6H 3Z6, Canada
| | - Subrata Deb
- Department of Pharmaceutical Sciences, College of Pharmacy, Larkin University, Miami, FL, 33169, USA.
| |
Collapse
|
15
|
Robledo DAR, Prudente MS, Aguja SE, Iwata H. A meta-analysis of randomized controlled studies on the hepatoxicity induced by polybrominated diphenyl ethers (PBDEs) in rats and mice. Curr Res Toxicol 2023; 5:100131. [PMID: 37841056 PMCID: PMC10570958 DOI: 10.1016/j.crtox.2023.100131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 09/09/2023] [Accepted: 10/02/2023] [Indexed: 10/17/2023] Open
Abstract
Several toxicological studies were conducted to evaluate the hepatoxicity of PBDEs using different animal models, congeners, duration of exposure, and other parameters. These variations in different animal models and conditions might have an impact on extrapolating experimental results to humans. Hence, by the meta-analysis, we aimed to clarify and elucidate the species differences in hepatoxicity induced by PBDE exposure in rats and mice across different conditions and moderators. Fourteen in vivo studies that utilized rats and mice models were identified, and data such as author names, year of publication, type of PBDE congeners, rodent species, life stage of exposure, dosage, duration, and hepatoxicity indicators were extracted. The pooled standard mean difference (SMD) with a 95% confidence interval (95% CI) was used to evaluate the association between hepatoxicity and PBDE exposure across multiple approaches of measurement. Subgroup analysis, meta-regression, and interaction analysis were utilized to elucidate the species-related differences among the results of the involved studies. The pooled SMD of hepatoxicity of PBDE exposure in the involved in vivo studies was 1.82 (p = 0.016), indicating exposure to PBDE congeners and mixtures is associated with a significant increase in liver toxicity in rodents. Moreover, findings showed that rats were more sensitive to PBDEs than mice with the BDE-209 had the highest SMD value. Among the life stages of exposure, embryonic stage was found to be the most sensitive to hepatoxicity induced by PBDE congeners. Positive relationships were found between the incidence of hepatoxicity with dosage and duration of exposure to PBDE. Interaction analyses showed significant interactions between rodent species (rats or mice), dosage, length of exposure, and hepatotoxicity endpoints. Rats demonstrated an increased susceptibility to variations in organ weight, histopathological changes, mitochondrial dysfunction, and oxidative stress markers. Conversely, mice showed pronounced lipid accumulation and modifications in liver enzyme expression levels. However, significant differences were not found in terms of endoplasmic reticular stress as a mechanistic endpoint for hepatotoxicity. In conclusion, this meta-analysis showed that there might be some species-related differences in hepatoxicity induced by PBDE exposure in rats and mice depending on the parameters used. This study highlights the importance of cross-species extrapolation of results from animal models to accurately assess the potential risks to human health from exposure to PBDEs.
Collapse
Affiliation(s)
- Dave Arthur R. Robledo
- Center for Marine Environmental Studies, Ehime University, Bunkyo-cho 2-5, Matsuyama 790-8577, Japan
| | | | | | - Hisato Iwata
- Center for Marine Environmental Studies, Ehime University, Bunkyo-cho 2-5, Matsuyama 790-8577, Japan
| |
Collapse
|
16
|
Kaffe E, Roulis M, Zhao J, Qu R, Sefik E, Mirza H, Zhou J, Zheng Y, Charkoftaki G, Vasiliou V, Vatner DF, Mehal WZ, Yuval Kluger, Flavell RA. Humanized mouse liver reveals endothelial control of essential hepatic metabolic functions. Cell 2023; 186:3793-3809.e26. [PMID: 37562401 PMCID: PMC10544749 DOI: 10.1016/j.cell.2023.07.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/24/2023] [Accepted: 07/12/2023] [Indexed: 08/12/2023]
Abstract
Hepatocytes, the major metabolic hub of the body, execute functions that are human-specific, altered in human disease, and currently thought to be regulated through endocrine and cell-autonomous mechanisms. Here, we show that key metabolic functions of human hepatocytes are controlled by non-parenchymal cells (NPCs) in their microenvironment. We developed mice bearing human hepatic tissue composed of human hepatocytes and NPCs, including human immune, endothelial, and stellate cells. Humanized livers reproduce human liver architecture, perform vital human-specific metabolic/homeostatic processes, and model human pathologies, including fibrosis and non-alcoholic fatty liver disease (NAFLD). Leveraging species mismatch and lipidomics, we demonstrate that human NPCs control metabolic functions of human hepatocytes in a paracrine manner. Mechanistically, we uncover a species-specific interaction whereby WNT2 secreted by sinusoidal endothelial cells controls cholesterol uptake and bile acid conjugation in hepatocytes through receptor FZD5. These results reveal the essential microenvironmental regulation of hepatic metabolism and its human-specific aspects.
Collapse
Affiliation(s)
- Eleanna Kaffe
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Manolis Roulis
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Jun Zhao
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06520, USA; Department of Pathology, Yale School of Medicine, New Haven, CT 06520, USA; Computational Biology and Bioinformatics Program, Yale University, New Haven, CT 06511, USA
| | - Rihao Qu
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06520, USA; Department of Pathology, Yale School of Medicine, New Haven, CT 06520, USA; Computational Biology and Bioinformatics Program, Yale University, New Haven, CT 06511, USA
| | - Esen Sefik
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Haris Mirza
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06520, USA; Department of Pathology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Jing Zhou
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Yunjiang Zheng
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Georgia Charkoftaki
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, CT 06520, USA
| | - Vasilis Vasiliou
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, CT 06520, USA
| | - Daniel F Vatner
- Department of Internal Medicine, Section of Endocrinology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Wajahat Z Mehal
- Department of Internal Medicine, Section of Digestive Diseases, Yale University, New Haven, CT 06520, USA; Veterans Affairs Medical Center, West Haven, CT 06516, USA
| | - Yuval Kluger
- Department of Pathology, Yale School of Medicine, New Haven, CT 06520, USA; Computational Biology and Bioinformatics Program, Yale University, New Haven, CT 06511, USA; Program of Applied Mathematics, Yale University, New Haven, CT 06511, USA
| | - Richard A Flavell
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06520, USA; Howard Hughes Medical Institute, Yale School of Medicine, New Haven, CT 06519, USA.
| |
Collapse
|
17
|
Malachowska B, Yang WL, Qualman A, Muro I, Boe DM, Lampe JN, Kovacs EJ, Idrovo JP. Transcriptomics, metabolomics, and in-silico drug predictions for liver damage in young and aged burn victims. Commun Biol 2023; 6:597. [PMID: 37268765 DOI: 10.1038/s42003-023-04964-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 05/22/2023] [Indexed: 06/04/2023] Open
Abstract
Burn induces a systemic response affecting multiple organs, including the liver. Since the liver plays a critical role in metabolic, inflammatory, and immune events, a patient with impaired liver often exhibits poor outcomes. The mortality rate after burns in the elderly population is higher than in any other age group, and studies show that the liver of aged animals is more susceptible to injury after burns. Understanding the aged-specific liver response to burns is fundamental to improving health care. Furthermore, no liver-specific therapy exists to treat burn-induced liver damage highlighting a critical gap in burn injury therapeutics. In this study, we analyzed transcriptomics and metabolomics data from the liver of young and aged mice to identify mechanistic pathways and in-silico predict therapeutic targets to prevent or reverse burn-induced liver damage. Our study highlights pathway interactions and master regulators that underlie the differential liver response to burn injury in young and aged animals.
Collapse
Affiliation(s)
- Beata Malachowska
- Department of Radiation Oncology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Weng-Lang Yang
- Department of Radiation Oncology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Andrea Qualman
- Department of Surgery; Division of G.I., Trauma, and Endocrine Surgery, University of Colorado, Aurora, CO, 80045, USA
| | - Israel Muro
- Department of Surgery; Division of G.I., Trauma, and Endocrine Surgery, University of Colorado, Aurora, CO, 80045, USA
| | - Devin M Boe
- Department of Surgery; Division of G.I., Trauma, and Endocrine Surgery, University of Colorado, Aurora, CO, 80045, USA
- Graduate Program in Immunology, University of Colorado, Aurora, CO, 80045, USA
| | - Jed N Lampe
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy, University of Colorado, Aurora, CO, 80045, USA
| | - Elizabeth J Kovacs
- Department of Surgery; Division of G.I., Trauma, and Endocrine Surgery, University of Colorado, Aurora, CO, 80045, USA
- Graduate Program in Immunology, University of Colorado, Aurora, CO, 80045, USA
- Molecular Biology Program, University of Colorado, Aurora, CO, 80045, USA
| | - Juan-Pablo Idrovo
- Department of Surgery; Division of G.I., Trauma, and Endocrine Surgery, University of Colorado, Aurora, CO, 80045, USA.
| |
Collapse
|
18
|
Tastet V, Le Vée M, Bruyère A, Fardel O. Interactions of human drug transporters with chemical additives present in plastics: Potential consequences for toxicokinetics and health. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023:121882. [PMID: 37236587 DOI: 10.1016/j.envpol.2023.121882] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 04/18/2023] [Accepted: 05/23/2023] [Indexed: 05/28/2023]
Abstract
Human membrane drug transporters are recognized as major actors of pharmacokinetics; they also handle endogenous compounds, including hormones and metabolites. Chemical additives present in plastics interact with human drug transporters, which may have consequences for the toxicokinetics and toxicity of these widely-distributed environmental and/or dietary pollutants, to which humans are highly exposed. The present review summarizes key findings about this topic. In vitro assays have demonstrated that various plastic additives, including bisphenols, phthalates, brominated flame retardants, poly-alkyl phenols and per- and poly-fluoroalkyl substances, can inhibit the activities of solute carrier uptake transporters and/or ATP-binding cassette efflux pumps. Some are substrates for transporters or can regulate their expression. The relatively low human concentration of plastic additives from environmental or dietary exposure is a key parameter to consider to appreciate the in vivo relevance of plasticizer-transporter interactions and their consequences for human toxicokinetics and toxicity of plastic additives, although even low concentrations of pollutants (in the nM range) may have clinical effects. Existing data about interactions of plastic additives with drug transporters remain somewhat sparse and incomplete. A more systematic characterization of plasticizer-transporter relationships is needed. The potential effects of chemical additive mixtures towards transporter activities and the identification of transporter substrates among plasticizers, as well as their interactions with transporters of emerging relevance deserve particular attention. A better understanding of the human toxicokinetics of plastic additives may help to fully integrate the possible contribution of transporters to the absorption, distribution, metabolism and excretion of plastics-related chemicals, as well as to their deleterious effects towards human health.
Collapse
Affiliation(s)
- Valentin Tastet
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000, Rennes, France
| | - Marc Le Vée
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000, Rennes, France
| | - Arnaud Bruyère
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000, Rennes, France
| | - Olivier Fardel
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000, Rennes, France.
| |
Collapse
|
19
|
Manhas D, Bhatt S, Rai G, Kumar V, Bharti S, Dhiman S, Jain SK, Sharma DK, Ojha PK, Gandhi SG, Goswami A, Nandi U. Rottlerin renders a selective and highly potent CYP2C8 inhibition to impede EET formation for implication in cancer therapy. Chem Biol Interact 2023; 380:110524. [PMID: 37146929 DOI: 10.1016/j.cbi.2023.110524] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/14/2023] [Accepted: 05/03/2023] [Indexed: 05/07/2023]
Abstract
CYP2C8 is a crucial CYP isoform responsible for the metabolism of xenobiotics and endogenous molecules. CYP2C8 converts arachidonic acid to epoxyeicosatrienoic acids (EETs) that cause cancer progression. Rottlerin possess significant anticancer actions. However, information on its CYP inhibitory action is lacking in the literature and therefore, we aimed to explore the same using in silico, in vitro, and in vivo approaches. Rottlerin showed highly potent and selective CYP2C8 inhibition (IC50 < 0.1 μM) compared to negligible inhibition (IC50 > 10 μM) for seven other experimental CYPs in human liver microsomes (HLM) (in vitro) using USFDA recommended index reactions. Mechanistic studies reveal that rottlerin could reversibly (mixed-type) block CYP2C8. Molecular docking (in silico) results indicate a strong interaction could occur between rottlerin and the active site of human CYP2C8. Rottlerin boosted the plasma exposure of repaglinide and paclitaxel (CYP2C8 substrates) by delaying their metabolism using the rat model (in vivo). Multiple-dose treatment of rottlerin with CYP2C8 substrates lowered the CYP2C8 protein expression and up-regulated & down-regulated the mRNA for CYP2C12 and CYP2C11 (rat homologs), respectively, in rat liver tissue. Rottlerin substantially hindered the EET formation in HLM. Overall results of rottlerin on CYP2C8 inhibition and EET formation insinuate further exploration for targeted cancer therapy.
Collapse
Affiliation(s)
- Diksha Manhas
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Shipra Bhatt
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Garima Rai
- Infectious Diseases Division, CSIR-Indian Institute of Integrative Medicine, Jammu, 180001, India
| | - Vinay Kumar
- Drug Theoretics and Chemoinformatics Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India
| | - Sahil Bharti
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sumit Dhiman
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, 180001, India
| | - Shreyans K Jain
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| | - Deepak K Sharma
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| | - Probir Kumar Ojha
- Drug Theoretics and Chemoinformatics Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India
| | - Sumit G Gandhi
- Infectious Diseases Division, CSIR-Indian Institute of Integrative Medicine, Jammu, 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Anindya Goswami
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Utpal Nandi
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
20
|
Fortin CL, McCray TN, Saxton SH, Johansson F, Andino CB, Mene J, Wang Y, Stevens KR. Temporal Dynamics of Metabolic Acquisition in Grafted Engineered Human Liver Tissue. Adv Biol (Weinh) 2023; 7:e2200208. [PMID: 36328790 PMCID: PMC10259871 DOI: 10.1002/adbi.202200208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/23/2022] [Indexed: 11/06/2022]
Abstract
Liver disease affects millions globally, and end-stage liver failure is only cured by organ transplant. Unfortunately, there is a growing shortage of donor organs as well as inequitable access to transplants across populations. Engineered liver tissue grafts that supplement or replace native organ function can address this challenge. While engineered liver tissues have been successfully engrafted previously, the extent to which these tissues express human liver metabolic genes and proteins remains unknown. Here, it is built engineered human liver tissues and characterized their engraftment, expansion, and metabolic phenotype at sequential stages post-implantation by RNA sequencing, histology, and host serology. Expression of metabolic genes is observed at weeks 1-2, followed by the cellular organization into hepatic cords by weeks 4-9.5. Furthermore, grafted engineered tissues exhibited progressive spatially restricted expression of critical functional proteins known to be zonated in the native human liver. This is the first report of engineered human liver tissue zonation after implantation in vivo, which can have important translational implications for this field.
Collapse
Affiliation(s)
- Chelsea L Fortin
- Institute for Stem Cell & Regenerative Medicine, University of Washington, Seattle, Washington, 98109, USA
- Department of Bioengineering, University of Washington, Seattle, Washington, 98105, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, 98195, USA
| | - Tara N McCray
- Institute for Stem Cell & Regenerative Medicine, University of Washington, Seattle, Washington, 98109, USA
- Department of Bioengineering, University of Washington, Seattle, Washington, 98105, USA
| | - Sarah H Saxton
- Institute for Stem Cell & Regenerative Medicine, University of Washington, Seattle, Washington, 98109, USA
- Department of Bioengineering, University of Washington, Seattle, Washington, 98105, USA
| | - Fredrik Johansson
- Institute for Stem Cell & Regenerative Medicine, University of Washington, Seattle, Washington, 98109, USA
- Department of Bioengineering, University of Washington, Seattle, Washington, 98105, USA
| | - Christian B Andino
- Institute for Stem Cell & Regenerative Medicine, University of Washington, Seattle, Washington, 98109, USA
- Department of Bioengineering, University of Washington, Seattle, Washington, 98105, USA
| | - Jonathan Mene
- Institute for Stem Cell & Regenerative Medicine, University of Washington, Seattle, Washington, 98109, USA
- Department of Bioengineering, University of Washington, Seattle, Washington, 98105, USA
| | - Yuliang Wang
- Institute for Stem Cell & Regenerative Medicine, University of Washington, Seattle, Washington, 98109, USA
- Department of Computer Science & Engineering, University of Washington, Seattle, Washington, 98195, USA
| | - Kelly R Stevens
- Institute for Stem Cell & Regenerative Medicine, University of Washington, Seattle, Washington, 98109, USA
- Department of Bioengineering, University of Washington, Seattle, Washington, 98105, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, 98195, USA
| |
Collapse
|
21
|
Yokota Y, Suzuki S, Gi M, Yanagiba Y, Yoneda N, Fujioka M, Kakehashi A, Koda S, Suemizu H, Wanibuchi H. o-Toluidine metabolism and effects in the urinary bladder of humanized-liver mice. Toxicology 2023; 488:153483. [PMID: 36870411 DOI: 10.1016/j.tox.2023.153483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 03/06/2023]
Abstract
Occupational exposure to aromatic amines is one of the most important risk factors for urinary bladder cancer. When considering the carcinogenesis of aromatic amines, metabolism of aromatic amines in the liver is an important factor. In the present study, we administered ortho-toluidine (OTD) in the diet to mice for 4 weeks. We used NOG-TKm30 mice (control) and humanized-liver mice, established via human hepatocyte transplantation, to compare differences in OTD-induced expression of metabolic enzymes in human and mouse liver cells. We also investigated OTD-urinary metabolites and proliferative effects on the urinary bladder epithelium. RNA and immunohistochemical analyses revealed that expression of N-acetyltransferases mRNA in the liver tended to be lower than that of the P450 enzymes, and that OTD administration had little effect on N-acetyltransferase mRNA expression levels. However, expression of CYP3A4 was increased in the livers of humanized-liver mice, and expression of Cyp2c29 (human CYP2C9/19) was increased in the livers of NOG-TKm30 mice. OTD metabolites in the urine and cell proliferation activities in the bladder urothelium of NOG-TKm30 and humanized-liver mice were similar. However, the concentration of OTD in the urine of NOG-TKm30 mice was markedly higher than in the urine of humanized-liver mice. These data demonstrate differences in hepatic metabolic enzyme expression induced by OTD in human and mouse liver cells, and consequent differences in the metabolism of OTD by human and mouse liver cells. This type of difference could have a profound impact on the carcinogenicity of compounds that are metabolized by the liver, and consequently, would be important in the extrapolation of data from animals to humans.
Collapse
Affiliation(s)
- Yuka Yokota
- Department of Molecular Pathology, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka, Japan
| | - Shugo Suzuki
- Department of Molecular Pathology, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka, Japan
| | - Min Gi
- Department of Molecular Pathology, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka, Japan; Department of Environmental Risk Assessment, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka, Japan
| | - Yukie Yanagiba
- Research Center for Chemical Information and Management, National Institute of Occupational Safety and Health, Japan (JNIOSH), Nagao-6-21-1, Tama-ku, Kawasaki, Japan
| | - Nao Yoneda
- Liver Engineering Laboratory, Department of Applied Research for Laboratory Animals, Central Institute for Experimental Animals (CIEA), 3-25-12 Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan
| | - Masaki Fujioka
- Department of Molecular Pathology, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka, Japan
| | - Anna Kakehashi
- Department of Molecular Pathology, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka, Japan
| | - Shigeki Koda
- Research Center for Chemical Information and Management, National Institute of Occupational Safety and Health, Japan (JNIOSH), Nagao-6-21-1, Tama-ku, Kawasaki, Japan
| | - Hiroshi Suemizu
- Liver Engineering Laboratory, Department of Applied Research for Laboratory Animals, Central Institute for Experimental Animals (CIEA), 3-25-12 Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan
| | - Hideki Wanibuchi
- Department of Molecular Pathology, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka, Japan.
| |
Collapse
|
22
|
Sharma S, Singh DK, Mettu VS, Yue G, Ahire D, Basit A, Heyward S, Prasad B. Quantitative Characterization of Clinically Relevant Drug-Metabolizing Enzymes and Transporters in Rat Liver and Intestinal Segments for Applications in PBPK Modeling. Mol Pharm 2023; 20:1737-1749. [PMID: 36791335 DOI: 10.1021/acs.molpharmaceut.2c00950] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Rats are extensively used as a preclinical model for assessing drug pharmacokinetics (PK) and tissue distribution; however, successful translation of the rat data requires information on the differences in drug metabolism and transport mechanisms between rats and humans. To partly fill this knowledge gap, we quantified clinically relevant drug-metabolizing enzymes and transporters (DMETs) in the liver and different intestinal segments of Sprague-Dawley rats. The levels of DMET proteins in rats were quantified using the global proteomics-based total protein approach (TPA) and targeted proteomics. The abundance of the major DMET proteins was largely comparable using quantitative global and targeted proteomics. However, global proteomics-based TPA was able to detect and quantify a comprehensive list of 66 DMET proteins in the liver and 37 DMET proteins in the intestinal segments of SD rats without the need for peptide standards. Cytochrome P450 (Cyp) and UDP-glycosyltransferase (Ugt) enzymes were mainly detected in the liver with the abundance ranging from 8 to 6502 and 74 to 2558 pmol/g tissue. P-gp abundance was higher in the intestine (124.1 pmol/g) as compared to that in the liver (26.6 pmol/g) using the targeted analysis. Breast cancer resistance protein (Bcrp) was most abundant in the intestinal segments, whereas organic anion transporting polypeptides (Oatp) 1a1, 1a4, 1b2, and 2a1 and multidrug resistance proteins (Mrp) 2 and 6 were predominantly detected in the liver. To demonstrate the utility of these data, we modeled digoxin PK by integrating protein abundance of P-gp and Cyp3a2 into a physiologically based PK (PBPK) model constructed using PK-Sim software. The model was able to reliably predict the systemic as well as tissue concentrations of digoxin in rats. These findings suggest that proteomics-informed PBPK models in preclinical species can allow mechanistic PK predictions in animal models including tissue drug concentrations.
Collapse
Affiliation(s)
- Sheena Sharma
- College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington 99202, United States
| | - Dilip K Singh
- College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington 99202, United States
| | - Vijay S Mettu
- College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington 99202, United States
| | - Guihua Yue
- College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington 99202, United States
| | - Deepak Ahire
- College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington 99202, United States
| | - Abdul Basit
- College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington 99202, United States
| | | | - Bhagwat Prasad
- College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington 99202, United States
| |
Collapse
|
23
|
Wu X, Jiang D, Yang Y, Li S, Ding Q. Modeling drug-induced liver injury and screening for anti-hepatofibrotic compounds using human PSC-derived organoids. CELL REGENERATION (LONDON, ENGLAND) 2023; 12:6. [PMID: 36864321 PMCID: PMC9981852 DOI: 10.1186/s13619-022-00148-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 11/01/2022] [Indexed: 03/04/2023]
Abstract
Preclinical models that can accurately predict the toxicity and efficacy of candidate drugs to human liver tissue are in urgent need. Human liver organoid (HLO) derived from human pluripotent stem cells offers a possible solution. Herein, we generated HLOs, and demonstrated the utility of these HLOs in modeling a diversity of phenotypes associated with drug-induced liver injury (DILI), including steatosis, fibrosis, and immune responses. Phenotypic changes in HLOs after treatment with tool compounds such as acetaminophen, fialuridine, methotrexate, or TAK-875 showed high concordance with human clinical data in drug safety testings. Moreover, HLOs were able to model liver fibrogenesis induced by TGFβ or LPS treatment. We further devised a high-content analysis system, and established a high-throughput anti-fibrosis drug screening system using HLOs. SD208 and Imatinib were identified that can significantly suppress fibrogenesis induced by TGFβ, LPS, or methotrexate. Taken together, our studies demonstrated the potential applications of HLOs in drug safety testing and anti-fibrotic drug screening.
Collapse
Affiliation(s)
- Xiaoshan Wu
- grid.28056.390000 0001 2163 4895School of Biotechnology, East China University of Science and Technology, Shanghai, 200237 P. R. China ,grid.410726.60000 0004 1797 8419CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031 P. R. China ,School of Pharmacy, Fujian Health College, Fujian, 350101 P. R. China
| | - Dacheng Jiang
- grid.410726.60000 0004 1797 8419CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031 P. R. China
| | - Yi Yang
- grid.28056.390000 0001 2163 4895School of Biotechnology, East China University of Science and Technology, Shanghai, 200237 P. R. China
| | - Shuang Li
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, P. R. China.
| | - Qiurong Ding
- School of Biotechnology, East China University of Science and Technology, Shanghai, 200237, P. R. China. .,CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, P. R. China. .,Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China. .,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, P. R. China.
| |
Collapse
|
24
|
Cordes H, Rapp H. Gene expression databases for physiologically based pharmacokinetic modeling of humans and animal species. CPT Pharmacometrics Syst Pharmacol 2023; 12:311-319. [PMID: 36715173 PMCID: PMC10014062 DOI: 10.1002/psp4.12904] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 12/05/2022] [Accepted: 12/08/2022] [Indexed: 01/31/2023] Open
Abstract
In drug research, developing a sound understanding of the key mechanistic drivers of pharmacokinetics (PK) for new molecular entities is essential for human PK and dose predictions. Here, characterizing the absorption, distribution, metabolism, and excretion (ADME) processes is crucial for a mechanistic understanding of the drug-target and drug-body interactions. Sufficient knowledge on ADME processes enables reliable interspecies and human PK estimations beyond allometric scaling. The physiologically based PK (PBPK) modeling framework allows the explicit consideration of organ-specific ADME processes. The sum of all passive and active ADME processes results in the observed plasma PK. Gene expression information can be used as surrogate for protein abundance and activity within PBPK models. The absolute and relative expression of ADME genes can differ between species and strains. This is affecting both, the PK and pharmacodynamics and is therefore posing a challenge for the extrapolation from preclinical findings to humans. We developed an automated workflow that generates whole-body gene expression databases for humans and other species relevant in drug development, animal health, nutritional sciences, and toxicology. Solely, bulk RNA-seq data curated and provided by the Swiss Institute of Bioinformatics from healthy, normal, and untreated primary tissue samples were considered as an unbiased reference of normal gene expression. The databases are interoperable with the Open Systems Pharmacology Suite (PK-Sim and MoBi) and enable seamless access to a central source of curated cross-species gene expression data. This will increase data transparency, increase reliability and reproducibility of PBPK model simulations, and accelerate mechanistic PBPK model development in the future.
Collapse
Affiliation(s)
- Henrik Cordes
- Drug Metabolism & Pharmacokinetics, Sanofi-Aventis Deutschland GmbH, Industriepark Höchst, Frankfurt am Main, Germany
| | - Hermann Rapp
- Research Drug Metabolism & Pharmacokinetics, Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| |
Collapse
|
25
|
Qi H, Wu F, Wang H. Function of TRPC1 in modulating hepatocellular carcinoma progression. Med Oncol 2023; 40:97. [PMID: 36797544 DOI: 10.1007/s12032-023-01964-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 02/01/2023] [Indexed: 02/18/2023]
Abstract
The liver is the main organ of metabolism in the human body, and it is easy to suffer from hepatitis, cirrhosis, liver cancer, and other diseases, the most serious of which is liver cancer. Worldwide, liver cancer is the most common and deadly malignant tumor, the third leading cause of cancer death in the world. Based on TCGA and ICGC databases, our research discovered the important role of TRPC1 in liver cancer through bioinformatics. The results showed that TRPC1 was over-expressed in hepatocellular carcinoma, and the higher the expression level of TRPC1, the worse the OS and the lower the survival rate. TRPC1 was a risk factor affecting the overall survival probability of hepatocellular carcinoma patients. By analyzing the function of the TRP family in liver cancer, TRPC1 might promote the occurrence of liver cancer by up-regulating common signal pathways in tumors such as tumor proliferation signature, and down-regulating important metabolic reactions such as retinol metabolism. In addition, TRPC1 could promote the development of liver cancer by up-regulating the expression of ABI2, MAPRE1, YEATS2, MTA3, TMEM237, MTMR2, CCDC6, AC069544.2, and NCBP2 genes. These results illustrate that TRPC1 is very valuable in the study of liver cancer.
Collapse
Affiliation(s)
- Huimin Qi
- School of Basic Medicine, Weifang Medical University, Weifang, 261053, China
| | - Fengming Wu
- School of Medicine, Southeast University, Nanjing, 210009, China
| | - Hongmei Wang
- School of Medicine, Southeast University, Nanjing, 210009, China.
| |
Collapse
|
26
|
Zhang J, Jia Q, Li Y, He J. The Function of Xenobiotic Receptors in Metabolic Diseases. Drug Metab Dispos 2023; 51:237-248. [PMID: 36414407 DOI: 10.1124/dmd.122.000862] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 09/01/2022] [Accepted: 11/09/2022] [Indexed: 11/23/2022] Open
Abstract
Metabolic diseases are a series of metabolic disorders that include obesity, diabetes, insulin resistance, hypertension, and hyperlipidemia. The increased prevalence of metabolic diseases has resulted in higher mortality and mobility rates over the past decades, and this has led to extensive research focusing on the underlying mechanisms. Xenobiotic receptors (XRs) are a series of xenobiotic-sensing nuclear receptors that regulate their downstream target genes expression, thus defending the body from xenobiotic and endotoxin attacks. XR activation is associated with the development of a number of metabolic diseases such as obesity, nonalcoholic fatty liver disease, type 2 diabetes, and cardiovascular diseases, thus suggesting an important role for XRs in modulating metabolic diseases. However, the regulatory mechanism of XRs in the context of metabolic disorders under different nutrient conditions is complex and remains controversial. This review summarizes the effects of XRs on different metabolic components (cholesterol, lipids, glucose, and bile acids) in different tissues during metabolic diseases. As chronic inflammation plays a critical role in the initiation and progression of metabolic diseases, we also discuss the impact of XRs on inflammation to comprehensively recognize the role of XRs in metabolic diseases. This will provide new ideas for treating metabolic diseases by targeting XRs. SIGNIFICANCE STATEMENT: This review outlines the current understanding of xenobiotic receptors on nutrient metabolism and inflammation during metabolic diseases. This work also highlights the gaps in this field, which can be used to direct the future investigations on metabolic diseases treatment by targeting xenobiotic receptors.
Collapse
Affiliation(s)
- Jinhang Zhang
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy (J.Z., Y.L., J.H.) and Department of Endocrinology and Metabolism (Q.J.), West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qingyi Jia
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy (J.Z., Y.L., J.H.) and Department of Endocrinology and Metabolism (Q.J.), West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yanping Li
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy (J.Z., Y.L., J.H.) and Department of Endocrinology and Metabolism (Q.J.), West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jinhan He
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy (J.Z., Y.L., J.H.) and Department of Endocrinology and Metabolism (Q.J.), West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
27
|
Bouwmeester MC, Tao Y, Proença S, van Steenbeek FG, Samsom RA, Nijmeijer SM, Sinnige T, van der Laan LJW, Legler J, Schneeberger K, Kramer NI, Spee B. Drug Metabolism of Hepatocyte-like Organoids and Their Applicability in In Vitro Toxicity Testing. Molecules 2023; 28:molecules28020621. [PMID: 36677681 PMCID: PMC9867526 DOI: 10.3390/molecules28020621] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/22/2022] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
Emerging advances in the field of in vitro toxicity testing attempt to meet the need for reliable human-based safety assessment in drug development. Intrahepatic cholangiocyte organoids (ICOs) are described as a donor-derived in vitro model for disease modelling and regenerative medicine. Here, we explored the potential of hepatocyte-like ICOs (HL-ICOs) in in vitro toxicity testing by exploring the expression and activity of genes involved in drug metabolism, a key determinant in drug-induced toxicity, and the exposure of HL-ICOs to well-known hepatotoxicants. The current state of drug metabolism in HL-ICOs showed levels comparable to those of PHHs and HepaRGs for CYP3A4; however, other enzymes, such as CYP2B6 and CYP2D6, were expressed at lower levels. Additionally, EC50 values were determined in HL-ICOs for acetaminophen (24.0−26.8 mM), diclofenac (475.5−>500 µM), perhexiline (9.7−>31.5 µM), troglitazone (23.1−90.8 µM), and valproic acid (>10 mM). Exposure to the hepatotoxicants showed EC50s in HL-ICOs comparable to those in PHHs and HepaRGs; however, for acetaminophen exposure, HL-ICOs were less sensitive. Further elucidation of enzyme and transporter activity in drug metabolism in HL-ICOs and exposure to a more extensive compound set are needed to accurately define the potential of HL-ICOs in in vitro toxicity testing.
Collapse
Affiliation(s)
- Manon C. Bouwmeester
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Regenerative Medicine Center Utrecht, Utrecht University, 3584 CT Utrecht, The Netherlands
| | - Yu Tao
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Regenerative Medicine Center Utrecht, Utrecht University, 3584 CT Utrecht, The Netherlands
| | - Susana Proença
- Division of Toxicology, Wageningen University, 6700 EA Wageningen, The Netherlands
- Institute for Risk Assessment Sciences, Utrecht University, 3584 CM Utrecht, The Netherlands
| | - Frank G. van Steenbeek
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Regenerative Medicine Center Utrecht, Utrecht University, 3584 CT Utrecht, The Netherlands
- Department of Cardiology, Division Heart & Lungs, University Medical Center Utrecht, 3508 GA Utrecht, The Netherlands
| | - Roos-Anne Samsom
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Regenerative Medicine Center Utrecht, Utrecht University, 3584 CT Utrecht, The Netherlands
| | - Sandra M. Nijmeijer
- Institute for Risk Assessment Sciences, Utrecht University, 3584 CM Utrecht, The Netherlands
| | - Theo Sinnige
- Institute for Risk Assessment Sciences, Utrecht University, 3584 CM Utrecht, The Netherlands
| | - Luc J. W. van der Laan
- Department of Surgery, Erasmus MC Transplant Institute, University Medical Center Rotterdam, 3015 CN Rotterdam, The Netherlands
| | - Juliette Legler
- Institute for Risk Assessment Sciences, Utrecht University, 3584 CM Utrecht, The Netherlands
| | - Kerstin Schneeberger
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Regenerative Medicine Center Utrecht, Utrecht University, 3584 CT Utrecht, The Netherlands
| | - Nynke I. Kramer
- Division of Toxicology, Wageningen University, 6700 EA Wageningen, The Netherlands
- Institute for Risk Assessment Sciences, Utrecht University, 3584 CM Utrecht, The Netherlands
| | - Bart Spee
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Regenerative Medicine Center Utrecht, Utrecht University, 3584 CT Utrecht, The Netherlands
- Correspondence:
| |
Collapse
|
28
|
Song Y, Day CM, Afinjuomo F, Tan JQE, Page SW, Garg S. Advanced Strategies of Drug Delivery via Oral, Topical, and Parenteral Administration Routes: Where Do Equine Medications Stand? Pharmaceutics 2023; 15:pharmaceutics15010186. [PMID: 36678815 PMCID: PMC9861747 DOI: 10.3390/pharmaceutics15010186] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/23/2022] [Accepted: 12/29/2022] [Indexed: 01/06/2023] Open
Abstract
While the global market for veterinary products has been expanding rapidly, there is still a lack of specialist knowledge of equine pharmaceutics. In many cases, the basic structure of the gastrointestinal tract (GIT) and integumentary system of the horse shares similarities with those of humans. Generally, the dosage form developed for humans can be repurposed to deliver equine medications; however, due to physiological variation, the therapeutic outcomes can be unpredictable. This is an area that requires more research, as there is a clear deficiency in literature precedence on drug delivery specifically for horses. Through a careful evaluation of equine anatomy and physiology, novel drug delivery systems (NDDSs) can be developed to adequately address many of the medical ailments of the horse. In addition to this, there are key considerations when delivering oral, topical, and parenteral drugs to horses, deriving from age and species variation. More importantly, NDDSs can enhance the duration of action of active drugs in animals, significantly improving owner compliance; and ultimately, enhancing the convenience of product administration. To address the knowledge gap in equine pharmaceutical formulations, this paper begins with a summary of the anatomy and physiology of the equine gastrointestinal, integumentary, and circulatory systems. A detailed discussion of potential dosage-form related issues affecting horses, and how they can be overcome by employing NDDSs is presented.
Collapse
Affiliation(s)
- Yunmei Song
- Centre for Pharmaceutical Innovation (CPI), Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia
| | - Candace M. Day
- Centre for Pharmaceutical Innovation (CPI), Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia
| | - Franklin Afinjuomo
- Centre for Pharmaceutical Innovation (CPI), Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia
| | - Jin-Quan E. Tan
- SA Pharmacy, Flinders Medical Centre, Southern Adelaide Local Health Network, Adelaide, SA 5042, Australia
| | - Stephen W. Page
- Advanced Veterinary Therapeutics, Newtown, NSW 2042, Australia
| | - Sanjay Garg
- Centre for Pharmaceutical Innovation (CPI), Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia
- Correspondence: ; Tel.: +61-8-8302-1575
| |
Collapse
|
29
|
Gerges SH, El-Kadi AOS. Sexual Dimorphism in the Expression of Cytochrome P450 Enzymes in Rat Heart, Liver, Kidney, Lung, Brain, and Small Intestine. Drug Metab Dispos 2023; 51:81-94. [PMID: 36116791 DOI: 10.1124/dmd.122.000915] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 07/26/2022] [Accepted: 07/28/2022] [Indexed: 12/30/2022] Open
Abstract
Cytochrome P450 (P450) enzymes are monooxygenases that are expressed hepatically and extrahepatically and play an essential role in xenobiotic metabolism. Substantial scientific evidence indicates sex-specific differences between males and females in disease patterns and drug responses, which could be attributed, even partly, to differences in the expression and/or activity levels of P450 enzymes in different organs. In this study, we compared the mRNA and protein expression of P450 enzymes in different organs of male and female Sprague-Dawley rats by real-time polymerase chain reaction and western blot techniques. We found significant sex- and organ-specific differences in several enzymes. Hepatic Cyp2c11, Cyp2c13, and Cyp4a2 showed male-specific expression, whereas Cyp2c12 showed female-specific expression. Cyp2e1 and Cyp4f enzymes demonstrated higher expression in the female heart and kidneys compared with males; however, they showed no significant sexual dimorphism in the liver. Male rats showed higher hepatic and renal Cyp1b1 levels. All assessed enzymes were found in the liver, but some were not expressed in other organs. At the protein expression level, CYP1A2, CYP3A, and CYP4A1 demonstrated higher expression levels in the females in several organs, including the liver. Elucidating sex-specific differences in P450 enzyme levels could help better understand differences in disease pathogeneses and drug responses between males and females and thus improve treatment strategies. SIGNIFICANCE STATEMENT: This study characterized the differences in the mRNA and protein expression levels of different cytochrome P450 (P450) enzymes between male and female rats in the heart, liver, lung, kidney, brain, and small intestine. It demonstrated unique sex-specific differences in the different organs. This study is considered a big step towards elucidating sex-specific differences in P450 enzyme levels, which is largely important for achieving a better understanding of the differences between males and females in the disease's processes and treatment outcomes.
Collapse
Affiliation(s)
- Samar H Gerges
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Ayman O S El-Kadi
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
30
|
Habtamu K, Petros B, Yan G. Plasmodium vivax: the potential obstacles it presents to malaria elimination and eradication. Trop Dis Travel Med Vaccines 2022; 8:27. [PMID: 36522671 PMCID: PMC9753897 DOI: 10.1186/s40794-022-00185-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 11/23/2022] [Indexed: 12/23/2022] Open
Abstract
Initiatives to eradicate malaria have a good impact on P. falciparum malaria worldwide. P. vivax, however, still presents significant difficulties. This is due to its unique biological traits, which, in comparison to P. falciparum, pose serious challenges for malaria elimination approaches. P. vivax's numerous distinctive characteristics and its ability to live for weeks to years in liver cells in its hypnozoite form, which may elude the human immune system and blood-stage therapy and offer protection during mosquito-free seasons. Many malaria patients are not fully treated because of contraindications to primaquine use in pregnant and nursing women and are still vulnerable to P. vivax relapses, although there are medications that could radical cure P. vivax. Additionally, due to CYP2D6's highly variable genetic polymorphism, the pharmacokinetics of primaquine may be impacted. Due to their inability to metabolize PQ, some CYP2D6 polymorphism alleles can cause patients to not respond to treatment. Tafenoquine offers a radical treatment in a single dose that overcomes the potentially serious problem of poor adherence to daily primaquine. Despite this benefit, hemolysis of the early erythrocytes continues in individuals with G6PD deficiency until all susceptible cells have been eliminated. Field techniques such as microscopy or rapid diagnostic tests (RDTs) miss the large number of submicroscopic and/or asymptomatic infections brought on by reticulocyte tropism and the low parasitemia levels that accompany it. Moreover, P. vivax gametocytes grow more quickly and are much more prevalent in the bloodstream. P. vivax populations also have a great deal of genetic variation throughout their genome, which ensures evolutionary fitness and boosts adaptation potential. Furthermore, P. vivax fully develops in the mosquito faster than P. falciparum. These characteristics contribute to parasite reservoirs in the human population and facilitate faster transmission. Overall, no genuine chance of eradication is predicted in the next few years unless new tools for lowering malaria transmission are developed (i.e., malaria elimination and eradication). The challenging characteristics of P. vivax that impede the elimination and eradication of malaria are thus discussed in this article.
Collapse
Affiliation(s)
- Kassahun Habtamu
- Department of Microbial, Cellular & Molecular Biology, Addis Ababa University, Addis Ababa, Ethiopia
- Menelik II Medical & Health Science College, Addis Ababa, Ethiopia
| | - Beyene Petros
- Department of Microbial, Cellular & Molecular Biology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Guiyun Yan
- Program in Public Health, University of California at Irvine, Irvine, CA 92697 USA
| |
Collapse
|
31
|
Jiang F, Zhang C, Lu Z, Liu J, Liu P, Huang M, Zhong G. Simultaneous absolute protein quantification of seven cytochrome P450 isoforms in rat liver microsomes by LC-MS/MS-based isotope internal standard method. Front Pharmacol 2022; 13:906027. [PMID: 36059965 PMCID: PMC9428253 DOI: 10.3389/fphar.2022.906027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 07/05/2022] [Indexed: 11/13/2022] Open
Abstract
The cytochrome P450 (CYP) enzymes play a pivotal role in drug metabolism. LC-MS/MS-based targeting technology has been applied to the analysis of CYP enzymes, promoting drug development and drug-drug interaction studies. Rat is one of the most commonly used models for drug metabolism assessment, but LC-MS/MS assay quantifying the abundance of CYP enzymes in rats is rarely reported. Herein, an accurate and stable LC-MS/MS based method was developed and validated for the simultaneous quantification of seven major rat CYP isoforms (CYP1A2, 2B1, 2C6, 2C11, 2D1, 2E1, and 3A1) in liver microsomes. The careful optimization of trypsin digestion and chromatography combined with isotope-labeled peptide as internal standard improved the efficiency and accuracy of the analysis. Highly specific surrogate peptides were obtained by a procedure including trypsin digestion for six hours and separated on a Hypersil Gold C18 column (100 × 2.1 mm, 3 μm) using gradient elution for 15 min with a mobile phase of water containing 0.1% formic acid and acetonitrile. In the method validation, linearity, matrix effect, recovery, stability, accuracy, and precision all meet the requirements. Subsequently, this method was applied to detect seven enzymes in rat liver microsomes from four different sources, and the correlation between the abundance and activity of CYP enzymes was further analyzed. The high-throughput detection method provided in this study will provide support for pertinent pharmaceutical research based on rat models.
Collapse
Affiliation(s)
- Fulin Jiang
- Institute of Clinical Pharmacology, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Chang Zhang
- Institute of Clinical Pharmacology, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zihan Lu
- Institute of Clinical Pharmacology, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jingyu Liu
- Institute of Clinical Pharmacology, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Peiqing Liu
- School of Pharmaceutical Sciences, National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Sun Yat-sen University, Guangzhou, China
| | - Min Huang
- Institute of Clinical Pharmacology, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
- *Correspondence: Min Huang, ; Guoping Zhong,
| | - Guoping Zhong
- Institute of Clinical Pharmacology, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
- *Correspondence: Min Huang, ; Guoping Zhong,
| |
Collapse
|
32
|
Mehta D, Li M, Nakamura N, Chidambaram M, He X, Bryant MS, Patton R, Davis K, Fisher J. In vivo pharmacokinetic analyses of placental transfer of three drugs of different physicochemical properties in pregnant rats. Reprod Toxicol 2022; 111:194-203. [PMID: 35714934 DOI: 10.1016/j.reprotox.2022.06.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/25/2022] [Accepted: 06/13/2022] [Indexed: 11/18/2022]
Abstract
Although the use of medication during pregnancy is common, information on exposure to the developing fetus and potential teratogenic effects is often lacking. This study used a rat model to examine the placental transfer of three small-molecule drugs with molecular weights ranging from approximately 300 to 800 Da with different physicochemical properties. Time-mated Sprague Dawley (Hsd:SD) rats aged 11-13 weeks were administered either glyburide, rifaximin, or fentanyl at gestational day 15. Maternal blood, placentae, and fetuses were collected at 5 min, 30 min, 1 h, 4 h, 8 h, 24 h, 48 h, and 96 h post-dose. To characterize the rate and extent of placental drug transfer, we calculated several pharmacokinetic parameters such as maximum concentration (Cmax), time to maximum concentration (Tmax), area under the concentration-time curve (AUC), half-life (t1/2), clearance (CL), and volume of distribution (Vd) for plasma, placenta, and fetus tissues. The results indicated showed that fetal exposure was lowest for glyburide, accounting for only 2.2 % of maternal plasma exposure as measured by their corresponding AUC ratio, followed by rifaximin (37.9 %) and fentanyl (172.4 %). The fetus/placenta AUC ratios were found to be 10.7 % for glyburide, 11.8 % for rifaximin, and 39.1 % for fentanyl. These findings suggest that although the placenta acts as a protective shield for the fetus, the extent of protection varies for different drugs and depends on factors such as molecular weight, lipid solubility, transporter-mediated efflux, and binding to maternal and fetal plasma proteins.
Collapse
Affiliation(s)
- Darshan Mehta
- Division of Biochemical Toxicology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA
| | - Miao Li
- Division of Biochemical Toxicology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA
| | - Noriko Nakamura
- Division of Systems Biology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA.
| | - Mani Chidambaram
- Office of Scientific Coordination, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA
| | - Xiaobo He
- Office of Scientific Coordination, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA
| | - Matthew S Bryant
- Office of Scientific Coordination, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA
| | - Ralph Patton
- Toxicologic Pathology Associates, Jefferson, AR 72079, USA
| | - Kelly Davis
- Toxicologic Pathology Associates, Jefferson, AR 72079, USA
| | - Jeffrey Fisher
- Division of Biochemical Toxicology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA
| |
Collapse
|
33
|
Martins V, Fazal L, Oganesian A, Shah A, Stow J, Walton H, Wilsher N. A commentary on the use of pharmacoenhancers in the pharmaceutical industry and the implication for DMPK drug discovery strategies. Xenobiotica 2022; 52:786-796. [PMID: 36537234 DOI: 10.1080/00498254.2022.2130838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Paxlovid, a drug combining nirmatrelvir and ritonavir, was designed for the treatment of COVID-19 and its rapid development has led to emergency use approval by the FDA to reduce the impact of COVID-19 infection on patients.In order to overcome potentially suboptimal therapeutic exposures, nirmatrelvir is dosed in combination with ritonavir to boost the pharmacokinetics of the active product.Here we consider examples of drugs co-administered with pharmacoenhancers.Pharmacoenhancers have been adopted for multiple purposes such as ensuring therapeutic exposure of the active product, reducing formation of toxic metabolites, changing the route of administration, and increasing the cost-effectiveness of a therapy.We weigh the benefits and risks of this approach, examining the impact of technology developments on drug design and how enhanced integration between cross-discipline teams can improve the outcome of drug discovery.
Collapse
|
34
|
Obesity-related genomic instability and altered xenobiotic metabolism: possible consequences for cancer risk and chemotherapy. Expert Rev Mol Med 2022; 24:e28. [PMID: 35899852 PMCID: PMC9884759 DOI: 10.1017/erm.2022.22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The increase in the prevalence of obesity has led to an elevated risk for several associated diseases including cancer. Several studies have investigated the DNA damage in human blood samples and showed a clear trend towards increased DNA damage in obesity. Reduced genomic stability is thus one of the consequences of obesity, which may contribute to the related cancer risk. Whether this is influenced by compromised DNA repair has not been elucidated sufficiently yet. On the other hand, obesity has also been linked to reduced therapy survival and increased adverse effects during chemotherapy, although the available data are controversial. Despite some indications that obesity might alter hepatic metabolism, current literature in humans is insufficient, and results from animal studies are inconclusive. Here we have summarised published data on hepatic drug metabolism to understand the impact of obesity on cancer therapy better. Furthermore, we highlight knowledge gaps in the interrelationship between obesity and drug metabolism from a toxicological perspective.
Collapse
|
35
|
Zerdoug A, Le Vée M, Uehara S, Lopez B, Chesné C, Suemizu H, Fardel O. Contribution of Humanized Liver Chimeric Mice to the Study of Human Hepatic Drug Transporters: State of the Art and Perspectives. Eur J Drug Metab Pharmacokinet 2022; 47:621-637. [DOI: 10.1007/s13318-022-00782-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/14/2022] [Indexed: 11/03/2022]
|
36
|
Ahire D, Kruger L, Sharma S, Mettu VS, Basit A, Prasad B. Quantitative Proteomics in Translational Absorption, Distribution, Metabolism, and Excretion and Precision Medicine. Pharmacol Rev 2022; 74:769-796. [PMID: 35738681 DOI: 10.1124/pharmrev.121.000449] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A reliable translation of in vitro and preclinical data on drug absorption, distribution, metabolism, and excretion (ADME) to humans is important for safe and effective drug development. Precision medicine that is expected to provide the right clinical dose for the right patient at the right time requires a comprehensive understanding of population factors affecting drug disposition and response. Characterization of drug-metabolizing enzymes and transporters for the protein abundance and their interindividual as well as differential tissue and cross-species variabilities is important for translational ADME and precision medicine. This review first provides a brief overview of quantitative proteomics principles including liquid chromatography-tandem mass spectrometry tools, data acquisition approaches, proteomics sample preparation techniques, and quality controls for ensuring rigor and reproducibility in protein quantification data. Then, potential applications of quantitative proteomics in the translation of in vitro and preclinical data as well as prediction of interindividual variability are discussed in detail with tabulated examples. The applications of quantitative proteomics data in physiologically based pharmacokinetic modeling for ADME prediction are discussed with representative case examples. Finally, various considerations for reliable quantitative proteomics analysis for translational ADME and precision medicine and the future directions are discussed. SIGNIFICANCE STATEMENT: Quantitative proteomics analysis of drug-metabolizing enzymes and transporters in humans and preclinical species provides key physiological information that assists in the translation of in vitro and preclinical data to humans. This review provides the principles and applications of quantitative proteomics in characterizing in vitro, ex vivo, and preclinical models for translational research and interindividual variability prediction. Integration of these data into physiologically based pharmacokinetic modeling is proving to be critical for safe, effective, timely, and cost-effective drug development.
Collapse
Affiliation(s)
- Deepak Ahire
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington
| | - Laken Kruger
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington
| | - Sheena Sharma
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington
| | - Vijaya Saradhi Mettu
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington
| | - Abdul Basit
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington
| | - Bhagwat Prasad
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington
| |
Collapse
|
37
|
The Intestinal and Biliary Metabolites of Ibuprofen in the Rat with Experimental Hyperglycemia. Molecules 2022; 27:molecules27134000. [PMID: 35807248 PMCID: PMC9268267 DOI: 10.3390/molecules27134000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 06/17/2022] [Accepted: 06/20/2022] [Indexed: 02/06/2023] Open
Abstract
Hyperglycemia is reported to be associated with oxidative stress. It can result in changes in the activities of drug-metabolizing enzymes and membrane-integrated transporters, which can modify the fate of drugs and other xenobiotics; furthermore, it can result in the formation of non-enzyme catalyzed oxidative metabolites. The present work aimed to investigate how experimental hyperglycemia affects the intestinal and biliary appearance of the oxidative and Phase II metabolites of ibuprofen in rats. In vivo studies were performed by luminal perfusion of 250 μM racemic ibuprofen solution in control and streptozotocin-treated (hyperglycemic) rats. Analysis of the collected intestinal perfusate and bile samples was performed by HPLC-UV and HPLC-MS. No oxidative metabolites could be detected in the perfusate samples. The biliary appearance of ibuprofen, 2-hydroxyibuprofen, ibuprofen glucuronide, hydroxylated ibuprofen glucuronide, and ibuprofen taurate was depressed in the hyperglycemic animals. However, no specific non-enzymatic (hydroxyl radical initiated) hydroxylation product could be detected. Instead, the depression of biliary excretion of ibuprofen and ibuprofen metabolites turned out to be the indicative marker of hyperglycemia. The observed changes impact the pharmacokinetics of drugs administered in hyperglycemic individuals.
Collapse
|
38
|
Williamson B, McMurray L, Boyd S, Collingwood O, McLean N, Winter-Holt J, Chan C, Xue A, McCoull W. Identification and Strategies to Mitigate High Total Clearance of Benzylamine-Substituted Biphenyl Ring Systems. Mol Pharm 2022; 19:2115-2132. [PMID: 35533086 DOI: 10.1021/acs.molpharmaceut.2c00014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
For most oral small-molecule projects within drug discovery, the extent and duration of the effect are influenced by the total clearance of the compound; hence, designing compounds with low clearance remains a key focus to help enable sufficient protein target engagement. Comprehensive understanding and accurate prediction of animal clearance and pharmacokinetics provides confidence that the same can be observed for human. During a MERTK inhibitor lead optimization project, a series containing a biphenyl ring system with benzylamine meta-substitution on one phenyl and nitrogen inclusion as the meta atom on the other ring demonstrated multiple routes of compound elimination in rats. Here, we describe the identification of a structural pharmacophore involving two key interactions observed for both the MERTK program and an additional internal project. Four strategies to mitigate these clearance liabilities were identified and systematically investigated. We provide evidence that disruption of at least one of the interactions led to a significant reduction in CL that was subsequently predicted from rat hepatocytes using in vitro/in vivo extrapolation and the well-stirred scaling method. These tactics will likely be of general utility to the medicinal chemistry and DMPK community during compound optimization when similar issues are encountered for biphenyl benzylamines.
Collapse
Affiliation(s)
- Beth Williamson
- Drug Metabolism and Pharmacokinetics, Research and Early Development, Oncology R&D, AstraZeneca, Cambridge CB4 0WG, UK
| | - Lindsay McMurray
- Medicinal Chemistry, Research and Early Development, Oncology R&D, AstraZeneca, Cambridge CB4 0WG, UK
| | - Scott Boyd
- Medicinal Chemistry, Research and Early Development, Oncology R&D, AstraZeneca, Cambridge CB4 0WG, UK
| | - Olga Collingwood
- Medicinal Chemistry, Research and Early Development, Oncology R&D, AstraZeneca, Cambridge CB4 0WG, UK
| | - Neville McLean
- Medicinal Chemistry, Research and Early Development, Oncology R&D, AstraZeneca, Cambridge CB4 0WG, UK
| | - Jon Winter-Holt
- Medicinal Chemistry, Research and Early Development, Oncology R&D, AstraZeneca, Cambridge CB4 0WG, UK
| | - Christina Chan
- Drug Metabolism and Pharmacokinetics, Research and Early Development, Oncology R&D, AstraZeneca, Cambridge CB4 0WG, UK
| | - Aixiang Xue
- R&D Clinical Pharmacology and Safety Sciences, AstraZeneca, Waltham 02451, United States
| | - William McCoull
- Medicinal Chemistry, Research and Early Development, Oncology R&D, AstraZeneca, Cambridge CB4 0WG, UK
| |
Collapse
|
39
|
Chen J, Jiang X, Zhu C, Yang L, Liu M, Zhu M, Wu C. Exploration of Q-Marker of Rhubarb Based on Intelligent Data Processing Techniques and the AUC Pooled Method. Front Pharmacol 2022; 13:865066. [PMID: 35387347 PMCID: PMC8979112 DOI: 10.3389/fphar.2022.865066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 02/21/2022] [Indexed: 11/13/2022] Open
Abstract
Rhubarb, as a traditional Chinese medicine, has several positive therapeutic effects, such as purging and attacking accumulation, clearing heat and purging fire, cooling blood, and detoxification. Recently, Rhubarb has been used in prescriptions for the prevention and treatment of COVID-19, with good efficacy. However, the exploration of effective quantitative approach to ensure the consistency of rhubarb’s therapeutic efficacy remains a challenge. In this case, this study aims to use non-targeted and targeted data mining technologies for its exploration and has comprehensively identified 72 rhubarb-related components in human plasma for the first time. In details, the area under the time-concentration curve (AUC)-pooled method was used to quickly screen the components with high exposure, and the main components were analyzed using Pearson correlation and other statistical analyses. Interestingly, the prototype component (rhein) with high exposure could be selected out as a Q-marker, which could also reflect the metabolic status changes of rhubarb anthraquinone in human. Furthermore, after comparing the metabolism of different species, mice were selected as model animals to verify the pharmacodynamics of rhein. The in vivo experimental results showed that rhein has a positive therapeutic effect on pneumonia, significantly reducing the concentration of pro-inflammatory factors [interleukin (IL)-6 and IL-1β] and improving lung disease. In short, based on the perspective of human exposure, this study comprehensively used intelligent data post-processing technologies and the AUC-pooled method to establish that rhein can be chosen as a Q-marker for rhubarb, whose content needs to be monitored individually.
Collapse
Affiliation(s)
- Jiayun Chen
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Xiaojuan Jiang
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Chunyan Zhu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Lu Yang
- College of Pharmacy, Jiamusi University, Jiamusi, China
| | - Minting Liu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Mingshe Zhu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China.,MassDefect Technologies, Princeton, NJ, United States
| | - Caisheng Wu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| |
Collapse
|
40
|
Choudhuri S. Toxicological Implications of Biological Heterogeneity. Int J Toxicol 2022; 41:132-142. [PMID: 35311363 DOI: 10.1177/10915818211066492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
From a micro to macro scale of biological organization, macromolecular diversity and biological heterogeneity are fundamental properties of biological systems. Heterogeneity may result from genetic, epigenetic, and non-genetic characteristics (e.g., tissue microenvironment). Macromolecular diversity and biological heterogeneity are tolerated as long as the sustenance and propagation of life are not disrupted. They also provide the raw materials for microevolutionary changes that may help organisms adapt to new selection pressures arising from the environment. Sequence evolution, functional divergence, and positive selection of gene and promoter dosage play a major role in the evolution of life's diversity including complex metabolic networks, which is ultimately reflected in changes in the allele frequency over time. Robustness in evolvable biological systems is conferred by functional redundancy that is often created by macromolecular diversity and biological heterogeneity. The ability to investigate biological macromolecules at an increasingly finer level has uncovered a wealth of information in this regard. Therefore, the dynamics of biological complexity should be taken into consideration in biomedical research.
Collapse
Affiliation(s)
- Supratim Choudhuri
- Division of Food Ingredients, Office of Food Additive Safety, US Food and Drug Administration, College Park, MD, USA
| |
Collapse
|
41
|
Stanley LA, Wolf CR. Through a glass, darkly? HepaRG and HepG2 cells as models of human phase I drug metabolism. Drug Metab Rev 2022; 54:46-62. [PMID: 35188018 DOI: 10.1080/03602532.2022.2039688] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The pharmacokinetic and safety assessment of drug candidates is becoming increasingly dependent upon in vitro models of hepatic metabolism and toxicity. Predominant among these is the HepG2 cell line, although HepaRG is becoming increasingly popular because of its perceived closer resemblance to human hepatocytes. We review the functionality of these cell lines in terms of Phase I protein expression, basal cytochrome P450-dependent activity, and utility in P450 induction studies. Our analysis indicates that HepG2 cells are severely compromised: proteomic studies show that they express few key proteins in common with hepatocytes and they lack drug-metabolizing capacity. Differentiated HepaRGs are more hepatocyte-like than HepG2s, but they also have limitations, and it is difficult to assess their utility because of the enormous variability in data reported, possibly arising from the complex differentiation protocols required to obtain hepatocyte-like cells. This is exacerbated by the use of DMSO in the induction protocol, together with proprietary supplements whose composition is a commercial secret. We conclude that, while currently available data on the utility of HepaRG generates a confusing picture, this line does have potential utility in drug metabolism studies. However, to allow studies to be compared directly a standardized, reproducible differentiation protocol is essential and the cell line's functionality in terms of known mechanisms of P450 regulation must be demonstrated. We, therefore, support the development of regulatory guidelines for the use of HepaRGs in induction studies as a first step in generating a database of consistent, reliable data.
Collapse
Affiliation(s)
- Lesley A Stanley
- Consultant in Investigative Toxicology, Linlithgow, UK.,School of Applied Sciences, Edinburgh Napier University, Edinburgh, UK
| | - C Roland Wolf
- Systems Medicine, School of Medicine, University of Dundee, Jacqui Wood Cancer Centre, Ninewells Hospital, Dundee, UK
| |
Collapse
|
42
|
Vansell NR. Mechanisms by Which Inducers of Drug Metabolizing Enzymes Alter Thyroid Hormones in Rats. Drug Metab Dispos 2022; 50:508-517. [DOI: 10.1124/dmd.121.000498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 12/23/2021] [Indexed: 11/22/2022] Open
|
43
|
Basit A, Fan PW, Khojasteh SC, Murray BP, Smith BJ, Heyward S, Prasad B. Comparison of tissue abundance of non-cytochrome P450 drug metabolizing enzymes by quantitative proteomics between humans and laboratory animal species. Drug Metab Dispos 2021; 50:197-203. [PMID: 34969659 DOI: 10.1124/dmd.121.000774] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 12/13/2021] [Indexed: 11/22/2022] Open
Abstract
The use of animal pharmacokinetic models as surrogates for humans relies on the assumption that the drug disposition mechanisms are similar between preclinical species and humans. However, significant cross-species differences exist in the tissue distribution and protein abundance of drug-metabolizing enzymes (DMEs) and transporters. We quantified non-cytochrome P450 (non-CYP) DMEs across commonly used preclinical species (cynomolgus and rhesus monkeys, beagle dog, Sprague Dawley and Wistar Han rats, and CD1 mouse) and compared these data with previously obtained human data. Aldehyde oxidase (AOX) was abundant in humans and monkeys while poorly expressed in rodents, and not expressed in dogs. Carboxylesterase 1 (CES1) abundance was highest in the liver while CES2 was primarily expressed in the intestine in all species with notable species differences. For example, hepatic CES1 was 3-fold higher in humans than in monkeys, but hepatic CES2 was 3-5-fold higher in monkeys than in humans. Hepatic glucuronosyltransferase 1A2 (UGT1A2) abundance was ~4 fold higher in dog compared to rat, whereas UGT1A3 abundance was 3-5-fold higher in the dog liver than its orthologue in the human and monkey liver. UGT1A6 abundance was 5-6-fold higher in human liver compared to monkey and dog liver. Hepatic sulfotransferase 1B1 (SULT1B1) abundance was 5-7-fold higher in rats compared to the rest of the species. These quantitative non-CYP proteomics data can be used to explain unique toxicological profiles across species and can be integrated into physiologically-based pharmacokinetic (PBPK) models for the mechanistic explanation of pharmacokinetics and tissue distribution of xenobiotics in animal species. Significance Statement We characterized the quantitative differences in non-cytochrome P450 (non-CYP) drug metabolizing enzymes across commonly used preclinical species (cynomolgus and rhesus monkeys, beagle dog, Sprague Dawley and Wistar Han rats, and CD1 mouse) and compared these data with previously obtained human data. Unique differences in non-CYP enzymes across species were observed, which can be used to explain significant pharmacokinetic and toxicokinetic differences between experimental animals and humans.
Collapse
Affiliation(s)
- Abdul Basit
- Department of Pharmaceutical Sciences, Washington State University, United States
| | - Peter W Fan
- Department of Pharmacokinetics, Pharmacodynamics and Drug Metabolism, Merck & Co., Inc., United States
| | | | | | - Bill J Smith
- Drug Metabolism and Pharmacokinetics Department, Gilead Sciences Inc., United States
| | | | - Bhagwat Prasad
- Department of Pharmaceutical Sciences, WSU, United States
| |
Collapse
|
44
|
Shen H, Yang Z, Rodrigues AD. Cynomolgus Monkey as an Emerging Animal Model to Study Drug Transporters: In Vitro, In Vivo, In Vitro-To-In Vivo Translation. Drug Metab Dispos 2021; 50:299-319. [PMID: 34893475 DOI: 10.1124/dmd.121.000695] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 12/06/2021] [Indexed: 11/22/2022] Open
Abstract
Membrane transporters have been recognized as one of the key determinants of pharmacokinetics and are also known to affect the efficacy and toxicity of drugs. Both qualitatively and quantitatively, however, transporter studies conducted using human in vitro systems have not always been predictive. Consequently, researchers have utilized cynomolgus monkeys as a model to study drug transporters and anticipate their effects in humans. Burgeoning reports of data in the last few years necessitates a comprehensive review on the topic of drug transporters in cynomolgus monkeys that includes cell-based tools, sequence homology, tissue expression, in vitro studies, in vivo studies, and in vitro-to-in vivo extrapolation (IVIVE). This review highlights the state-of-the-art applications of monkey transporter models to support the evaluation of transporter-mediated drug-drug interactions, clearance predictions, and endogenous transporter biomarker identification and validation. The data demonstrate that cynomolgus monkey transporter models, when used appropriately, can be an invaluable tool to support drug discovery and development processes. Most importantly, they provide an early IVIVE assessment which provides additional context to human in vitro data. Additionally, comprehending species similarities and differences in transporter tissue expression and activity is crucial when translating monkey data to humans. The challenges and limitations when applying such models to inform decision-making must also be considered. Significance Statement This paper presents a comprehensive review of currently available published reports describing cynomolgus monkey transporter models. The data indicate that cynomolgus monkeys provide mechanistic insight regarding the role of intestinal, hepatic, and renal transporters in drug and biomarker disposition and drug interactions. It is concluded that the data generated with cynomolgus monkey models provide mechanistic insight regarding transporter-mediated absorption and disposition, as well as human clearance prediction, drug-drug interaction assessment, and endogenous biomarker development related to drug transporters.
Collapse
Affiliation(s)
- Hong Shen
- Drug Metabolism and Pharmacokinetics, Bristol Myers Squibb, United States
| | - Zheng Yang
- Metabolism and Pharmacokinetics, Bristol-Myers Squibb Co., United States
| | | |
Collapse
|
45
|
Indorf P, Patzak A, Lichtenberger F. Drug metabolism in animal models and humans: Translational aspects and chances for individual therapy. Acta Physiol (Oxf) 2021; 233:e13734. [PMID: 34637592 DOI: 10.1111/apha.13734] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 10/11/2021] [Indexed: 12/12/2022]
Affiliation(s)
- Patrick Indorf
- Corporate Member of Freie Universität Berlin and Humboldt‐Universität zu Berlin, Institute of Vegetative Physiology Charité—Universitätsmedizin Berlin Berlin Germany
| | - Andreas Patzak
- Corporate Member of Freie Universität Berlin and Humboldt‐Universität zu Berlin, Institute of Vegetative Physiology Charité—Universitätsmedizin Berlin Berlin Germany
| | - Falk‐Bach Lichtenberger
- Corporate Member of Freie Universität Berlin and Humboldt‐Universität zu Berlin, Institute of Vegetative Physiology Charité—Universitätsmedizin Berlin Berlin Germany
| |
Collapse
|
46
|
Zemanová N, Lněničková K, Vavrečková M, Anzenbacherová E, Anzenbacher P, Zapletalová I, Hermanová P, Hudcovic T, Kozáková H, Jourová L. Gut microbiome affects the metabolism of metronidazole in mice through regulation of hepatic cytochromes P450 expression. PLoS One 2021; 16:e0259643. [PMID: 34752478 PMCID: PMC8577747 DOI: 10.1371/journal.pone.0259643] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 10/22/2021] [Indexed: 11/18/2022] Open
Abstract
Microbiome is now considered as a significant metabolic organ with an immense potential to influence overall human health. A number of diseases that are associated with pharmacotherapy interventions was linked with altered gut microbiota. Moreover, it has been reported earlier that gut microbiome modulates the fate of more than 30 commonly used drugs and, vice versa, drugs have been shown to affect the composition of the gut microbiome. The molecular mechanisms of this mutual relationship, however, remain mostly elusive. Recent studies indicate an indirect effect of the gut microbiome through its metabolites on the expression of biotransformation enzymes in the liver. The aim of this study was to analyse the effect of gut microbiome on the fate of metronidazole in the mice through modulation of system of drug metabolizing enzymes, namely by alteration of the expression and activity of selected cytochromes P450 (CYPs). To assess the influence of gut microbiome, germ-free mice (GF) in comparison to control specific-pathogen-free (SPF) mice were used. First, it has been found that the absence of microbiota significantly affected plasma concentration of metronidazole, resulting in higher levels (by 30%) of the parent drug in murine plasma of GF mice. Further, the significant interaction between presence/absence of the gut microbiome and effect of metronidazole application, which together influence mRNA expression of CAR, PPARα, Cyp2b10 and Cyp2c38 was determined. Administration of metronidazole itself influenced significantly mRNA expression of Cyp1a2, Cyp2b10, Cyp2c38 and Cyp2d22. Finally, GF mice have shown lower level of enzyme activity of CYP2A and CYP3A than their SPF counterparts. The results hence have shown that, beside direct bacterial metabolism, different expression and enzyme activity of hepatic CYPs in the presence/absence of gut microbiota may be responsible for the altered metronidazole metabolism.
Collapse
Affiliation(s)
- Nina Zemanová
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University, Olomouc, Czech Republic
| | - Kateřina Lněničková
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University, Olomouc, Czech Republic
| | - Markéta Vavrečková
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University, Olomouc, Czech Republic
| | - Eva Anzenbacherová
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University, Olomouc, Czech Republic
| | - Pavel Anzenbacher
- Department of Pharmacology, Faculty of Medicine and Dentistry, Palacký University, Olomouc, Czech Republic
| | - Iveta Zapletalová
- Department of Pharmacology, Faculty of Medicine and Dentistry, Palacký University, Olomouc, Czech Republic
| | - Petra Hermanová
- Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, Nový Hrádek, Czech Republic
| | - Tomáš Hudcovic
- Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, Nový Hrádek, Czech Republic
| | - Hana Kozáková
- Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, Nový Hrádek, Czech Republic
| | - Lenka Jourová
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University, Olomouc, Czech Republic
| |
Collapse
|
47
|
Cytotoxicity, metabolism, and isozyme mapping of the synthetic cannabinoids JWH-200, A-796260, and 5F-EMB-PINACA studied by means of in vitro systems. Arch Toxicol 2021; 95:3539-3557. [PMID: 34453555 PMCID: PMC8492589 DOI: 10.1007/s00204-021-03148-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 08/19/2021] [Indexed: 12/16/2022]
Abstract
Intake of synthetic cannabinoids (SC), one of the largest classes of new psychoactive substances, was reported to be associated with acute liver damage but information about their hepatotoxic potential is limited. The current study aimed to analyze the hepatotoxicity including the metabolism-related impact of JWH-200, A-796260, and 5F-EMB-PINACA in HepG2 cells allowing a tentative assessment of different SC subclasses. A formerly adopted high-content screening assay (HCSA) was optimized using a fully automated epifluorescence microscope. Metabolism-mediated effects in the HCSA were additionally investigated using the broad CYP inhibitor 1-aminobenzotriazole. Furthermore, phase I metabolites and isozymes involved were identified by in vitro assays and liquid chromatography–high-resolution tandem mass spectrometry. A strong cytotoxic potential was observed for the naphthoylindole SC JWH-200 and the tetramethylcyclopropanoylindole compound A-796260, whereas the indazole carboxamide SC 5F-EMB-PINACA showed moderate effects. Numerous metabolites, which can serve as analytical targets in urine screening procedures, were identified in pooled human liver microsomes. Most abundant metabolites of JWH-200 were formed by N-dealkylation, oxidative morpholine cleavage, and oxidative morpholine opening. In case of A-796260, most abundant metabolites included an oxidative morpholine cleavage, oxidative morpholine opening, hydroxylation, and dihydroxylation followed by dehydrogenation. Most abundant 5F-EMB-PINACA metabolites were generated by ester hydrolysis plus additional steps such as oxidative defluorination and hydroxylation. To conclude, the data showed that a hepatotoxicity of the investigated SC cannot be excluded, that metabolism seems to play a minor role in the observed effects, and that the extensive phase I metabolism is mediated by several isozymes making interaction unlikely.
Collapse
|
48
|
Adiwidjaja J, Sasongko L. Effect of Nigella sativa oil on pharmacokinetics and pharmacodynamics of gliclazide in rats. Biopharm Drug Dispos 2021; 42:359-371. [PMID: 34327715 DOI: 10.1002/bdd.2300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/22/2021] [Accepted: 07/26/2021] [Indexed: 11/11/2022]
Abstract
Nigella sativa oil (NSO) has been used widely for its putative anti-hyperglycemic activity. However, little is known about its potential effect on the pharmacokinetics and pharmacodynamics of antidiabetic drugs, including gliclazide. This study aimed to investigate herb-drug interactions between gliclazide and NSO in rats. Plasma concentrations of gliclazide (single oral and intravenous dose of 33 and 26.4 mg/kg, respectively) in the presence and absence of co-administration with NSO (52 mg/kg per oral) were quantified in healthy and insulin resistant rats (n = 5 for each group). Physiological and treatment-related factors were evaluated as potential influential covariates using a population pharmacokinetic modeling approach (NONMEM version 7.4). Clearance, volume of distribution and bioavailability of gliclazide were unaffected by disease state (healthy or insulin resistant). The concomitant administration of NSO resulted in higher systemic exposures of gliclazide by modulating bioavailability (29% increase) and clearance (20% decrease) of the drug. A model-independent analysis highlighted that pre-treatment with NSO in healthy rats was associated with a higher glucose lowering effect by up to 50% compared with that of gliclazide monotherapy, but not of insulin resistant rats. Although a similar trend in glucose reductions was not observed in insulin resistant rats, co-administration of NSO improved the sensitivity to insulin of this rat population. Natural product-drug interaction between gliclazide and NSO merits further evaluation of its clinical importance.
Collapse
Affiliation(s)
- Jeffry Adiwidjaja
- School of Pharmacy, Institut Teknologi Bandung, Bandung, Indonesia.,Sydney Pharmacy School, The University of Sydney, Sydney, Australia
| | - Lucy Sasongko
- School of Pharmacy, Institut Teknologi Bandung, Bandung, Indonesia
| |
Collapse
|
49
|
Kozaczek M, Bottje W, Albataineh D, Hakkak R. Effects of Short- and Long-Term Soy Protein Feeding on Hepatic Cytochrome P450 Expression in Obese Nonalcoholic Fatty Liver Disease Rat Model. Front Nutr 2021; 8:699620. [PMID: 34262928 PMCID: PMC8273275 DOI: 10.3389/fnut.2021.699620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/03/2021] [Indexed: 12/16/2022] Open
Abstract
Obesity can lead to chronic health complications such as nonalcoholic fatty liver disease (NAFLD). NAFLD is characterized by lipid aggregation in the hepatocytes and inflammation of the liver tissue as a consequence that can contribute to the development of cirrhosis and hepatocellular carcinoma (HCC). Previously, we reported that feeding obese Zucker rats with soy protein isolate (SPI) can reduce liver steatosis when compared with a casein (CAS) diet as a control. However, the effects of SPI on cytochrome P450 (CYP) in an obese rat model are less known. In addition, there is a lack of information concerning the consumption of soy protein in adolescents and its effect in reducing the early onset of NAFLD in this group. Our main goal was to understand if the SPI diet had any impact on the hepatic CYP gene expression when compared with the CAS diet. For this purpose, we used the transcriptomic data obtained in a previous study in which liver samples were collected from obese rats after short-term (eight-week) and long-term (16-week) feeding of SPI (n = 8 per group). To analyze this RNAseq data, we used Ingenuity Pathway Analysis (IPA) software. Comparing short- vs long-term feeding revealed an increase in the number of downregulated CYP genes from three at 8 weeks of SPI diet to five at 16 weeks of the same diet (P ≤ 0.05). On the other hand, upregulated CYP gene numbers showed a small increase in the long-term SPI diet compared to the short-term SPI diet, from 14 genes at 8 weeks to 17 genes at 16 weeks (P ≤ 0.05). The observed changes may have an important role in the attenuation of liver steatosis.
Collapse
Affiliation(s)
- Melisa Kozaczek
- Department of Dietetics and Nutrition, University of Arkansas for Medical Sciences, Little Rock, AR, United States.,Department of Poultry Science and The Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States.,Arkansas Children's Research Institute, Little Rock, AR, United States
| | - Walter Bottje
- Department of Poultry Science and The Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Diyana Albataineh
- Department of Poultry Science and The Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Reza Hakkak
- Department of Dietetics and Nutrition, University of Arkansas for Medical Sciences, Little Rock, AR, United States.,Arkansas Children's Research Institute, Little Rock, AR, United States.,Department of Pediatrics, University of Arkansas for Medical Sciences, Arkansas Children's Hospital, Little Rock, AR, United States
| |
Collapse
|
50
|
Pistollato F, Madia F, Corvi R, Munn S, Grignard E, Paini A, Worth A, Bal-Price A, Prieto P, Casati S, Berggren E, Bopp SK, Zuang V. Current EU regulatory requirements for the assessment of chemicals and cosmetic products: challenges and opportunities for introducing new approach methodologies. Arch Toxicol 2021; 95:1867-1897. [PMID: 33851225 PMCID: PMC8166712 DOI: 10.1007/s00204-021-03034-y] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 03/18/2021] [Indexed: 12/28/2022]
Abstract
The EU Directive 2010/63/EU on the protection of animals used for scientific purposes and other EU regulations, such as REACH and the Cosmetic Products Regulation advocate for a change in the way toxicity testing is conducted. Whilst the Cosmetic Products Regulation bans animal testing altogether, REACH aims for a progressive shift from in vivo testing towards quantitative in vitro and computational approaches. Several endpoints can already be addressed using non-animal approaches including skin corrosion and irritation, serious eye damage and irritation, skin sensitisation, and mutagenicity and genotoxicity. However, for systemic effects such as acute toxicity, repeated dose toxicity and reproductive and developmental toxicity, evaluation of chemicals under REACH still heavily relies on animal tests. Here we summarise current EU regulatory requirements for the human health assessment of chemicals under REACH and the Cosmetic Products Regulation, considering the more critical endpoints and identifying the main challenges in introducing alternative methods into regulatory testing practice. This supports a recent initiative taken by the International Cooperation on Alternative Test Methods (ICATM) to summarise current regulatory requirements specific for the assessment of chemicals and cosmetic products for several human health-related endpoints, with the aim of comparing different jurisdictions and coordinating the promotion and ultimately the implementation of non-animal approaches worldwide. Recent initiatives undertaken at European level to promote the 3Rs and the use of alternative methods in current regulatory practice are also discussed.
Collapse
Affiliation(s)
- Francesca Pistollato
- Directorate F-Health, Consumers and Reference Materials, Unit F3 Chemicals Safety and Alternative Methods, European Commission, Joint Research Centre (JRC), Via E. Fermi, 2749. TP126, 21027, Ispra, VA, Italy
| | - Federica Madia
- Directorate F-Health, Consumers and Reference Materials, Unit F3 Chemicals Safety and Alternative Methods, European Commission, Joint Research Centre (JRC), Via E. Fermi, 2749. TP126, 21027, Ispra, VA, Italy
| | - Raffaella Corvi
- Directorate F-Health, Consumers and Reference Materials, Unit F3 Chemicals Safety and Alternative Methods, European Commission, Joint Research Centre (JRC), Via E. Fermi, 2749. TP126, 21027, Ispra, VA, Italy
| | - Sharon Munn
- Directorate F-Health, Consumers and Reference Materials, Unit F3 Chemicals Safety and Alternative Methods, European Commission, Joint Research Centre (JRC), Via E. Fermi, 2749. TP126, 21027, Ispra, VA, Italy
| | - Elise Grignard
- Directorate F-Health, Consumers and Reference Materials, Unit F3 Chemicals Safety and Alternative Methods, European Commission, Joint Research Centre (JRC), Via E. Fermi, 2749. TP126, 21027, Ispra, VA, Italy
| | - Alicia Paini
- Directorate F-Health, Consumers and Reference Materials, Unit F3 Chemicals Safety and Alternative Methods, European Commission, Joint Research Centre (JRC), Via E. Fermi, 2749. TP126, 21027, Ispra, VA, Italy
| | - Andrew Worth
- Directorate F-Health, Consumers and Reference Materials, Unit F3 Chemicals Safety and Alternative Methods, European Commission, Joint Research Centre (JRC), Via E. Fermi, 2749. TP126, 21027, Ispra, VA, Italy
| | - Anna Bal-Price
- Directorate F-Health, Consumers and Reference Materials, Unit F3 Chemicals Safety and Alternative Methods, European Commission, Joint Research Centre (JRC), Via E. Fermi, 2749. TP126, 21027, Ispra, VA, Italy
| | - Pilar Prieto
- Directorate F-Health, Consumers and Reference Materials, Unit F3 Chemicals Safety and Alternative Methods, European Commission, Joint Research Centre (JRC), Via E. Fermi, 2749. TP126, 21027, Ispra, VA, Italy
| | - Silvia Casati
- Directorate F-Health, Consumers and Reference Materials, Unit F3 Chemicals Safety and Alternative Methods, European Commission, Joint Research Centre (JRC), Via E. Fermi, 2749. TP126, 21027, Ispra, VA, Italy
| | - Elisabet Berggren
- Directorate F-Health, Consumers and Reference Materials, Unit F3 Chemicals Safety and Alternative Methods, European Commission, Joint Research Centre (JRC), Via E. Fermi, 2749. TP126, 21027, Ispra, VA, Italy
| | - Stephanie K Bopp
- Directorate F-Health, Consumers and Reference Materials, Unit F3 Chemicals Safety and Alternative Methods, European Commission, Joint Research Centre (JRC), Via E. Fermi, 2749. TP126, 21027, Ispra, VA, Italy
| | - Valérie Zuang
- Directorate F-Health, Consumers and Reference Materials, Unit F3 Chemicals Safety and Alternative Methods, European Commission, Joint Research Centre (JRC), Via E. Fermi, 2749. TP126, 21027, Ispra, VA, Italy.
| |
Collapse
|