1
|
Peyton L, Haroon H, Umpierre A, Essa H, Bruce R, Wu LJ, Choi DS. In vivo calcium extrusion from accumbal astrocytes reduces anxiety-like behaviors but increases compulsive-like responses and compulsive ethanol drinking in mice. Neuropharmacology 2025; 268:110320. [PMID: 39842625 PMCID: PMC11830519 DOI: 10.1016/j.neuropharm.2025.110320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/16/2025] [Accepted: 01/18/2025] [Indexed: 01/24/2025]
Abstract
The ventral striatum is crucially involved in reward processing. The present study investigates the behavioral effects of astrocyte-specific calcium extrusion virus "CalEx" on perseverative responses in the operant five-choice serial reaction time task and ethanol-conditioned place preference. Mice were injected with CalEx via the GfaABC1D promoter to extrude cytosolic calcium from astrocytes within the ventral striatum. We found that CalEx transfection in the ventral striatum reduced evoked response duration, the maximum amplitude, and the response frequency to 500 μM ATP as measured by ΔF/F fluorescence intensity of the genetically encoded calcium indicator targeting astrocytes GCaMP6f. During the five-choice serial reaction time task, CalEx mice persisted in perseverative responses compared to their counterparts. Additionally, during ethanol-conditioned place preference, CalEx mice showed increased place preference for a low ethanol concentration compared to control group. Furthermore, we found that accumbal astrocytic calcium extrusion increased quinine adulterated ethanol drinking. Our findings suggest that diminishing ventral striatum astrocyte calcium activity contributes to compulsive behaviors, ethanol drinking, and enhanced ethanol drug reward.
Collapse
Affiliation(s)
- Lee Peyton
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine and Science, Rochester, MN, 55905, USA
| | - Humza Haroon
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine and Science, Rochester, MN, 55905, USA
| | | | - Hesham Essa
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine and Science, Rochester, MN, 55905, USA
| | - Robert Bruce
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine and Science, Rochester, MN, 55905, USA
| | - Long-Jun Wu
- Department of Neurology, Mayo Clinic, Rochester, MN, 55905, USA; Neuroscience Program, Mayo Clinic College of Medicine and Science, MN, 55905, USA; Department of Immunology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Doo-Sup Choi
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine and Science, Rochester, MN, 55905, USA; Neuroscience Program, Mayo Clinic College of Medicine and Science, MN, 55905, USA; Department of Psychiatry and Psychology, Mayo Clinic College of Medicine and Science, Rochester, MN, 59905, USA.
| |
Collapse
|
2
|
Hynes T, Bowden-Jones H, Chamberlain S, Belin D. A roadmap for transformative translational research on gambling disorder in the UK. Neurosci Biobehav Rev 2025; 171:106071. [PMID: 39988286 DOI: 10.1016/j.neubiorev.2025.106071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 01/28/2025] [Accepted: 02/18/2025] [Indexed: 02/25/2025]
Abstract
The UK has one of the highest rates of recreational gambling in the world. Some vulnerable individuals progressively lose control over gambling and develop at-risk gambling or gambling disorder (GD), characterised by the compulsive pursuit of gambling. GD destroys lives and incurs massive costs to societies, yet only a few treatments are available. Failure to develop a wider range of interventions is in part due to a lack of funding that has slowed progress in the translational research necessary to understand the individual vulnerability to switch from controlled to compulsive gambling. Current preclinical models of GD do not operationalise the key clinical features of the human condition. The so-called "gambling tasks" for non-human mammals almost exclusively assess probabilistic decision-making, which is not real-world gambling. While they have provided insights into the psychological and neural mechanisms involved in the processing of gains and losses, these tasks have failed to capture those underlying real-world gambling and its compulsive manifestation in humans. Here, we highlight the strengths and weaknesses of current gambling-like behaviour tasks and suggest how their translational validity may be improved. We then propose a theoretical framework, the incentive habit theory of GD, which may prove useful for the operationalisation of the biobehavioural mechanisms of GD in preclinical models. We conclude with a list of recommendations for the development of next-generation preclinical models of GD and discuss how modern techniques in animal behavioural experimentation can be deployed in the context of GD preclinical research to bolster the translational pipeline.
Collapse
Affiliation(s)
- Tristan Hynes
- Behavioural and Clinical Neuroscience Institute and Department of Psychology, University of Cambridge, Downing Street, Cambridge CB2 3EB, UK.
| | - Henrietta Bowden-Jones
- Department of Psychiatry, University of Cambridge, UK; National Problem Gambling Clinic & National Centre for Gaming Disorders, London, UK; Department of Brain Sciences, University College London, London, UK
| | - Samuel Chamberlain
- Department of Psychiatry, Faculty of Medicine, University of Southampton, UK; NHS Southern Gambling Service, and NHS Specialist Clinic for Impulsive-Compulsive Conditions, Hampshire and Isle of Wight Healthcare NHS Foundation Trust, Southampton, UK
| | - David Belin
- Behavioural and Clinical Neuroscience Institute and Department of Psychology, University of Cambridge, Downing Street, Cambridge CB2 3EB, UK.
| |
Collapse
|
3
|
Stavroulaki V, Vagiaki LE, Nikolidakis O, Zafeiri M, Plataki ME, Sidiropoulou K. Effects of working memory training on cognitive flexibility, dendritic spine density and long-term potentiation in female mice. Behav Brain Res 2025:115555. [PMID: 40154742 DOI: 10.1016/j.bbr.2025.115555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 03/05/2025] [Accepted: 03/23/2025] [Indexed: 04/01/2025]
Abstract
Working memory (WM) is a cognitive ability that allows the short-term maintenance and manipulation of information for goal-directed behavior. The prefrontal cortex (PFC) and the hippocampus (HPC) are two brain regions implicated in WM task performance. Several studies indicate that training in WM (WMT) can enhance performance in various other cognitive tasks. However, our understanding of the neurobiological changes induced by WMT is very limited. Previous work from our lab showed that WMT enhances synaptic and structural plasticity in the PFC and HPC in male mice. In this study, we investigate the effect of WMT on cognitive flexibility and synaptic properties in PFC and HPC in adult female mice. To this end, female adult mice were split into 3 groups: a) mice that remained in their home cage (naïve), b) mice that performed the alternation task in the T-maze (non-adaptive) and c) mice that were trained in the delayed alternation task for 9 days (adaptive). The delayed alternation task was used for WMT. In one cohort, following the delayed alternation task, all mice were tested in the attention set-shifting (AST) task to measure cognitive flexibility, followed by harvesting of the brains for Golgi-Cox staining to study dendritic spine density. Our results showed that in female mice, there were no differences in AST performance among the three groups tested, however, the latency to make a choice was reduced in the adaptive group. With regards to dendritic spine density, no significant differences were identified in PFC while increased dendritic spine density was found in HPC of the adaptive group, compared to the naïve group. In a second cohort, acute brain slices were prepared after completion of the delayed alternation task to investigate the synaptic properties in the PFC and the HPC. Evoked field excitatory post-synaptic potential (fEPSP) recordings were performed in either PFC or HPC brain slices. Our results show that tetanic-induced long-term potentiation (LTP) in the PFC was not different among the three training groups. In the HPC, theta-burst induced LTP was significantly increased in the adaptive group also compared to the non-adaptive and naïve groups. These results reveal both similarities and differences of WMT on performance in the attention set-shifting task, dendritic spine density and LTP in females, compared to males.
Collapse
Affiliation(s)
- Vasiliki Stavroulaki
- Dept of Biology, University of Crete,; Laboratory of Neuropsychology, Department of Psychology, School of Social Sciences, University of Crete, Rethymno 74100, Crete, Greece; University of Crete Research Center for the Humanities, the Social and Education Sciences (UCRC), University of Crete, Rethymno 74100, Crete, Greece
| | - Lida-Evmorfia Vagiaki
- Dept of Biology, University of Crete,; Institute of Molecular Biology and Biotechnology - Foundation for Research and Technology Hellas, Heraklion, Greece
| | | | | | | | - Kyriaki Sidiropoulou
- Dept of Biology, University of Crete,; Institute of Molecular Biology and Biotechnology - Foundation for Research and Technology Hellas, Heraklion, Greece.
| |
Collapse
|
4
|
Vouillac-Mendoza C, Biendon N, Dovero S, Guillem K. Distinct neuronal processes in the ventromedial prefrontal cortex mediate changes in attention load and nicotine pro-cognitive effects in male rats. Front Neural Circuits 2025; 19:1540975. [PMID: 40124101 PMCID: PMC11925940 DOI: 10.3389/fncir.2025.1540975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 02/07/2025] [Indexed: 03/25/2025] Open
Abstract
The prefrontal cortex (PFC) plays a key role in attention. In particular, neuronal activity in the ventromedial PFC (vmPFC) has been implicated in the preparatory attentional period that immediately precedes cue presentation. However, whether vmPFC neuronal activity during this preparatory period is also sensitive to changes in task demand and to the pro-cognitive effects of nicotine remained to be investigated. Here, we used in vivo electrophysiology to record vmPFC neuronal activity in rats during two distinct manipulations: a task manipulation that increased task demand by reducing the cue stimulus duration (from 1 to 0.5 s), and a pharmacological manipulation by administrating an acute nicotine injection (10 μg/inj, i.v.) before the session. We found that increasing task demand decreased attentional performances and vmPFC precue neuronal activity, but had no effect on gamma oscillations. In contrast, nicotine injection increased attention and gamma oscillations, but almost abolished vmPFC phasic precue responses. Together, these findings indicate the existence of two distinct neuronal processes operating at different timescales and suggests that allocation of attention could be achieved through multiple neuronal mechanisms within the vmPFC.
Collapse
Affiliation(s)
| | - Nathalie Biendon
- Univ. Bordeaux, CNRS, HistoCARE Facility, IMN, UMR 5293, Bordeaux, France
| | - Sandra Dovero
- Univ. Bordeaux, CNRS, HistoCARE Facility, IMN, UMR 5293, Bordeaux, France
| | | |
Collapse
|
5
|
Baek K, Skandali N, Sallie SN, Sonkusare S, Mandali A, Ritou V, Casero V, Voon V. Neural circuit mapping of waiting impulsivity and proactive inhibition with convergent evidence from fMRI and TMS. Cortex 2025; 184:194-208. [PMID: 39904057 DOI: 10.1016/j.cortex.2024.12.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 09/11/2024] [Accepted: 12/03/2024] [Indexed: 02/06/2025]
Abstract
BACKGROUND AND OBJECTIVES Waiting and stopping are essential and distinct elements of motor response inhibition. Waiting impulsivity has been traditionally studied in humans with choice serial reaction time tasks. Proactive stopping is one form of stopping relevant to waiting impulsivity and the neural substrates underlying their interaction are not well defined. METHODS We conducted two separate, but hierarchical studies. In the first we used functional magnetic resonance imaging (fMRI), a choice reaction time task and a novel proactive stopping task, in N = 41 healthy volunteers to map the overlapping neural circuit involved in waiting impulsivity and proactive stopping. In the second study, we aimed to provide mechanistic and causal evidence that disruption of this circuit with continuous theta burst stimulation (cTBS; an inhibitory repetitive transcranial magnetic stimulation protocol) affected waiting impulsivity. We recruited N = 51 healthy, right-handed volunteers in a single-blind, randomized, between-subjects design who were randomly allocated to stimulation (N = 26) and sham (N = 25) groups and subsequently performed a choice reaction time task. RESULTS In the first study, we showed; 1. a shared neural network comprising the pre- supplementary motor area and bilateral anterior insula underlying both waiting impulsivity and proactive stopping, and 2. activity in dorsomedial prefrontal cortex and left inferior frontal gyrus negatively correlated with waiting impulsivity in trials with additional target onset delay. In the second study, we demonstrated that inactivation of the left inferior frontal gyrus using cTBS significantly increased waiting impulsivity in a choice reaction time task. CONCLUSIONS Our findings highlight the relevance of task design in assessing motor response inhibition and the role of the left inferior frontal gyrus integrity and related neural circuitry in waiting impulsivity and proactive stopping. We also leverage the use of convergent evidence from multi-modal investigation tools in addressing the causal neural areas underlying distinct forms of impulsivity.
Collapse
Affiliation(s)
- Kwangyeol Baek
- School of Biomedical Convergence Engineering, Pusan National University, South Korea
| | - Nikolina Skandali
- Department of Psychiatry, University of Cambridge, United Kingdom; Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, United Kingdom.
| | | | | | - Alekhya Mandali
- Department of Psychiatry, University of Cambridge, United Kingdom; Nuffield Department of Clinical Neurosciences, University of Oxford, United Kingdom; MRC Brain Network Dynamics Unit, University of Oxford, United Kingdom
| | - Valentin Ritou
- Department of Integrative Neuroscience &Cognition Center, University of Paris Cité, France
| | - Violeta Casero
- Department of Psychiatry, University of Cambridge, United Kingdom
| | - Valerie Voon
- Department of Psychiatry, University of Cambridge, United Kingdom; Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, United Kingdom
| |
Collapse
|
6
|
Liu Y(A, Nong Y, Feng J, Li G, Sajda P, Li Y, Wang Q. Phase synchrony between prefrontal noradrenergic and cholinergic signals indexes inhibitory control. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.05.17.594562. [PMID: 38798371 PMCID: PMC11118516 DOI: 10.1101/2024.05.17.594562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Inhibitory control is a critical executive function that allows animals to suppress their impulsive behavior in order to achieve certain goals or avoid punishment. We investigated norepinephrine (NE) and acetylcholine (ACh) dynamics and population neuronal activity in the prefrontal cortex (PFC) during inhibitory control. Using fluorescent sensors to measure extracellular levels of NE and ACh, we simultaneously recorded prefrontal NE and ACh dynamics in mice performing inhibitory control tasks. The prefrontal NE and ACh signals exhibited strong coherence at 0.4-0.8 Hz. Although inhibition of locus coeruleus (LC) neurons projecting to the PFC impaired inhibitory control, inhibiting LC neurons projecting to the basal forebrain (BF) caused a more profound impairment, despite an approximately 30% overlap between LC neurons projecting to the PFC and BF, as revealed by our tracing studies. The inhibition of LC neurons projecting to the BF did not diminish the difference in prefrontal NE/ACh signals between successful and failed trials; instead, it abolished the difference in NE-ACh phase synchrony between successful and failed trials, indicating that NE-ACh phase synchrony is a task-relevant neuromodulatory feature. Chemogenetic inhibition of cholinergic neurons that project to the LC region did not impair inhibitory control, nor did it abolish the difference in NE-ACh phase synchrony between successful or failed trials, further confirming the relevance of NE-ACh phase synchrony to inhibitory control. To understand the possible effect of NE-ACh synchrony on prefrontal population activity, we employed Neuropixels to record from the PFC during inhibitory control. The inhibition of LC neurons projecting to the BF not only reduced the number of prefrontal neurons encoding inhibitory control, but also disrupted population firing patterns representing inhibitory control, as revealed by a demixed principal component (dPCA) analysis. Taken together, these findings suggest that the LC modulates inhibitory control through its collective effect with cholinergic systems on population activity in the prefrontal cortex. Our results further indicate that NE-ACh phase synchrony is a critical neuromodulatory feature with important implications for cognitive control.
Collapse
Affiliation(s)
- Yuxiang (Andy) Liu
- Department of Biomedical Engineering, Columbia University, ET 351, 500 W. 120 Street, New York, NY 10027
| | - Yuhan Nong
- Department of Biomedical Engineering, Columbia University, ET 351, 500 W. 120 Street, New York, NY 10027
| | - Jiesi Feng
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University
- PKU-IDG/McGovern Institute for Brain Research, PR China
| | - Guochuan Li
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University
- PKU-IDG/McGovern Institute for Brain Research, PR China
| | - Paul Sajda
- Department of Biomedical Engineering, Columbia University, ET 351, 500 W. 120 Street, New York, NY 10027
| | - Yulong Li
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University
- PKU-IDG/McGovern Institute for Brain Research, PR China
| | - Qi Wang
- Department of Biomedical Engineering, Columbia University, ET 351, 500 W. 120 Street, New York, NY 10027
| |
Collapse
|
7
|
Lindberg FA, Kagios C, Tjernström N, Roman E. Individual differences in training time in the rat gambling task are unrelated to subsequent decision-making strategies. Front Psychiatry 2025; 16:1490196. [PMID: 39931697 PMCID: PMC11808017 DOI: 10.3389/fpsyt.2025.1490196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 01/08/2025] [Indexed: 02/13/2025] Open
Abstract
Introduction Decision-making requires individuals to perceive probabilities and risks associated with different options. The Iowa gambling task (IGT) is a widely used instrument that assesses decision-making under uncertainty and risk by varying monetary reinforcer/loss contingencies. The rat gambling task (rGT), based on the IGT, is a preclinical test using varying number of palatable reinforcers as wins and different duration of timeouts as punishment, mimicking losses. The rGT requires extensive operant training prior to the free choice sessions. The aim of the present study was to investigate if task acquisition and number of training days affected subsequent individual differences in decision-making strategies in the rGT, and if behavioral profiles impacted on task learning. Method Training time and performance of 70 male Lister Hooded rats from previously published studies were herein used to investigate whether learning time affected later decision-making strategies in the free choice rGT. Behavioral profiles generated from a subset of animals were used to study the impact of underlying behavior on learning time. Results There were differences in training days between fast, intermediate and slow learners. However, time required to acquire the rGT did not affect subsequent decision-making strategies in the free choice rGT. Finally, learning time was independent of underlying behavioral profiles. Discussion In conclusion, neither decision-making strategies in the rGT nor behavioral profiles were correlated or differed between animals with different learning speed. This suggests that the large variation in training time between animals is unrelated to subsequent decision-making strategies during free choice rGT. Such information is valuable for researchers using the rGT.
Collapse
Affiliation(s)
- Frida A. Lindberg
- Department of Animal Biosciences, Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden
| | - Christakis Kagios
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Nikita Tjernström
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Erika Roman
- Department of Animal Biosciences, Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
8
|
Garcia KJ, Theismann JT, Schneider TD, LeComte RS, Jarmolowicz DP, Johnson MA. Doxorubicin treatment has a biphasic effect over time on dopamine release and impulsive behavior in Wistar rats. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-024-03766-5. [PMID: 39820646 DOI: 10.1007/s00210-024-03766-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 12/24/2024] [Indexed: 01/19/2025]
Abstract
Doxorubicin (Dox) is a chemotherapy agent commonly used to treat multiple types of cancers and is associated with cognitive impairment. The goal of this work was to determine the effect of Dox treatment on dopamine release and uptake and behavior in rats. Rats received one dose per week of Dox (2.5 mg/kg, I.V.) and were sacrificed after two or four weeks. Dopamine release and uptake was measured in brain slices with fast-scan cyclic voltammetry (FSCV). A set of rats that received treatment also underwent behavioral testing with the 5-choice serial reaction timed task (5CSRTT) to measure degree of impulsiveness and attention throughout the course of treatment. Dopamine release and uptake increased substantially after treatment with Dox for two weeks compared to controls. After four weeks of treatment, release levels decreased to less than controls while there were no differences in uptake. Treatment of brain slices with pramipexole revealed that dopamine release was equally sensitive to autoregulation after two weeks of Dox treatment, but less sensitive after four weeks. Measurements from the 5CSRTT indicated that, while Dox did not affect attention, it increased impulsiveness after two and three weeks of treatment, but not after four weeks. Treatment with Dox for a short time may elevate dopamine system activity and increase impulsiveness, while longer administration then leads to an underactive dopamine system. To our knowledge this work demonstrates for the first time that Dox can have a biphasic neurochemical and behavioral effect.
Collapse
Affiliation(s)
- Kiersten J Garcia
- Ralph N. Adams Institute for Bioanalytical Chemistry, Lawrence, KS, 66047, USA
- Chemistry Department, University of Kansas, Lawrence, KS, 66045, USA
| | - Jacob T Theismann
- Ralph N. Adams Institute for Bioanalytical Chemistry, Lawrence, KS, 66047, USA
- Chemistry Department, University of Kansas, Lawrence, KS, 66045, USA
| | - Tadd D Schneider
- Department of Applied Behavioral Science, University of Kansas, Lawrence, KS, 66045, USA
| | - Robert S LeComte
- Department of Applied Behavioral Science, University of Kansas, Lawrence, KS, 66045, USA
- Department of Psychiatry & Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21224, USA
| | - David P Jarmolowicz
- Department of Applied Behavioral Science, University of Kansas, Lawrence, KS, 66045, USA
| | - Michael A Johnson
- Ralph N. Adams Institute for Bioanalytical Chemistry, Lawrence, KS, 66047, USA.
- Chemistry Department, University of Kansas, Lawrence, KS, 66045, USA.
| |
Collapse
|
9
|
Stenzel M, Alam M, Witte M, Jelinek J, Armbrecht N, Armstrong A, Kral A, Krauss JK, Land R, Schwabe K, Johne M. Exploring the cognitive effects of hearing loss in adult rats: Implications for visuospatial attention, social behavior, and prefrontal neural activity. Neuroscience 2025; 564:97-109. [PMID: 39522932 DOI: 10.1016/j.neuroscience.2024.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 10/30/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
Age-related hearing loss in humans has been associated with cognitive decline, though the underlying mechanisms remain unknown. We investigated the long-term effects of hearing loss on attention, impulse control, social interaction, and neural activity within medial prefrontal cortex (mPFC) subregions. Hearing loss was induced in adult rats via intracochlear neomycin injection (n = 13), with non-operated rats as controls (n = 10). Rats were tested for motor activity (open field), coordination (Rotarod), and social interaction (including ultrasonic vocalization, USV) before surgery and at weeks 1, 2, 4, 8, 16, and 24 post-surgery. From week 8 on, rats were trained in the five-choice serial reaction time task (5-CSRTT) to assess visuospatial attention and impulse control. Finally, oscillatory neuronal activity in mPFC subregions was recorded with multielectrode arrays during anesthesia, followed by immunohistological staining for NeuN+ and Parvalbumin+ cells. Deafened rats were more active than controls, whereas social interaction and USV were temporarily reduced. They also had difficulties to learn the concept of the 5-CSRTT paradigm and made more incorrect responses. Electrophysiology showed decreased power in theta, alpha, and beta frequency, and enhanced high gamma band in the mPFC in deafened rats, which was most pronounced in the cingulate subregion (Cg1). The number of NeuN+ and Parvalbumin+ cells, however, did not differ between groups. The behavioral deficits together with the altered neuronal activity found in the Cg1 subregion of the mPFC in adult deafened rats may be used as an endophenotype to elucidate the mechanisms behind the cognitive decline seen in older patients with hearing loss.
Collapse
Affiliation(s)
- Mariele Stenzel
- Department of Neurosurgery, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hanover, Germany
| | - Mesbah Alam
- Department of Neurosurgery, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hanover, Germany
| | - Marla Witte
- Department of Neurosurgery, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hanover, Germany
| | - Jonas Jelinek
- Department of Neurosurgery, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hanover, Germany
| | - Nina Armbrecht
- Department of Neurosurgery, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hanover, Germany
| | - Adrian Armstrong
- Institute of AudioNeuroTechnology, Hannover Medical School, Stadtfelddamm 34, 30625 Hanover, Germany; Department of Experimental Otology of the ENT Clinics, Hannover Medical School, Stadtfelddamm 34, 30625 Hannover, Germany
| | - Andrej Kral
- Cluster of Excellence Hearing4all, German Research Foundation, Hanover, Germany; Institute of AudioNeuroTechnology, Hannover Medical School, Stadtfelddamm 34, 30625 Hanover, Germany; Department of Experimental Otology of the ENT Clinics, Hannover Medical School, Stadtfelddamm 34, 30625 Hannover, Germany
| | - Joachim K Krauss
- Department of Neurosurgery, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hanover, Germany
| | - Rüdiger Land
- Institute of AudioNeuroTechnology, Hannover Medical School, Stadtfelddamm 34, 30625 Hanover, Germany; Department of Experimental Otology of the ENT Clinics, Hannover Medical School, Stadtfelddamm 34, 30625 Hannover, Germany
| | - Kerstin Schwabe
- Department of Neurosurgery, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hanover, Germany; Cluster of Excellence Hearing4all, German Research Foundation, Hanover, Germany
| | - Marie Johne
- Department of Neurosurgery, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hanover, Germany; Cluster of Excellence Hearing4all, German Research Foundation, Hanover, Germany.
| |
Collapse
|
10
|
Rahbarnia A, Abela AR, Fletcher PJ. Assessing the stability of responding of male mice in the touchscreen 5 choice serial reaction time task: Focus on premature responding. J Neurochem 2025; 169:e16232. [PMID: 39344868 DOI: 10.1111/jnc.16232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/28/2024] [Accepted: 09/16/2024] [Indexed: 10/01/2024]
Abstract
The five-choice serial reaction time task (5CSRTT) is a test of attention that provides a well-validated ancillary measure of impulsive action, measured by premature responses. The task has been adapted for mice in touchscreen operant boxes, which is thought to offer improved test-retest reliability. Few studies have assessed the long-term stability of performance, including premature responding in this version of the task. We used the touchscreen 5CSRTT to conduct longitudinal testing of stability of premature responding following repeated behavioral and pharmacological manipulations. Male C57BL/6J mice were trained on a baseline version of the 5CSRTT. They were then tested on versions of the task in which the stimulus duration was reduced, and inter-trial intervals were elongated or varied within-session. Premature responding was subsequently tested following administration of pharmacological agents known to bi-directionally affect attention and impulsive action-cocaine, atomoxetine, and yohimbine. Mice were lastly re-tested 6 months later using the 5CSRTT with elongated inter-trial intervals. A reduced stimulus duration impacted attention, with reduced accuracy and increased omissions, but had no effect on premature responding. Both elongating and varying the inter-trial interval within-session increased premature responses. Mice showed similar and stable levels of increased premature responding 6 months later. Cocaine increased premature responding, though less than previously reported in rats. Atomoxetine reduced premature responding. Yohimbine had no effect on premature responding in the baseline task but decreased premature responding when tested using an elongated inter-trial interval. Overall, these results highlight that the touch screen adaptation of the 5CSRTT is an effective method for longitudinal testing of attention and impulsive action and remains sensitive to performance changes arising from repeated pharmacological and behavioral challenges.
Collapse
Affiliation(s)
- Arya Rahbarnia
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Psychology, University of Toronto, Toronto, Ontario, Canada
| | - Andrew R Abela
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Paul J Fletcher
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Psychology, University of Toronto, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
11
|
Wise TB, Templer VL, Burwell RD. Information transfer from spatial to social distance in rats: implications for the role of the posterior parietal cortex in spatial-social integration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.14.618305. [PMID: 39463928 PMCID: PMC11507766 DOI: 10.1101/2024.10.14.618305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Humans and other social animals can represent and navigate complex networks of social relationships in ways that are suggestive of representation and navigation in space. There is some evidence that cortical regions initially required for processing space have been adapted to include processing of social information. One candidate region for supporting both spatial and social information processing is the posterior parietal cortex (PPC). We examined the hypothesis that rats can transfer or generalize distance information across spatial and social domains and that this phenomenon requires the PPC. In a novel apparatus, rats learned to discriminate two conspecifics positioned at different spatial distances (near vs. far) in a goal-driven paradigm. Following spatial learning, subjects were tested on probe trials in which spatial distance was replaced with social distance (cagemate vs. less familiar conspecific). The PPC was chemogenetically inactivated during a subset of probe sessions. We predicted that, in control probe trials, subjects would select conspecifics whose social distance matched the previously learned spatial distance. That is, if trained on the near distance, the rat would choose the highly familiar cagemate, and if trained on the far distance, the rat would choose the less familiar conspecific. Subjects learned to discriminate conspecifics based on spatial distance in our goal-driven paradigm. Moreover, choice for the appropriate social distance in the first probe session was significantly higher than chance. This result suggests that rats transferred learned spatial information to social contexts. Contrary to our predictions, PPC inactivation did not impair spatial to social information transfer. Possible reasons are discussed. To our knowledge, this is the first study to provide evidence that spatial and social distance are processed by shared cognitive mechanisms in the rat model.
Collapse
|
12
|
Lu Y, Guo Y, Sun L, Liu T, Dong Z, Jia M, Zhuo L, Yin F, Zhu Y, Ma X, Wang Y. Adolescent morphine exposure induced long-term cognitive impairment and prefrontal neurostructural abnormality in adulthood in male mice. Heliyon 2024; 10:e40782. [PMID: 39687140 PMCID: PMC11648215 DOI: 10.1016/j.heliyon.2024.e40782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 11/26/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024] Open
Abstract
Opioids abuse in adolescence is becoming a pressing public health issue. While evidence suggests that exposure to opioids during adolescence leads to lasting alterations in brain development, the long-term cognitive implications in adulthood remain uncertain. We developed a male mouse model of adolescent morphine exposure and used the 5-choice serial reaction time task (5-CSRTT), along with the open field, novel object recognition, Y maze and Barnes maze tests, to assess changes in cognitive behavior. We found that exposure to morphine during adolescence led to deficits in multidimensional cognitive functions in mice, including attention, information processing speed, and behavior inhibition. Notable, these impairments persisted into adulthood. Furthermore, the morphine-exposed mice exhibited decreased learning efficiency and spatial memory. Adolescent morphine exposure also induced significant and persistent morphological changes and synaptic abnormalities in medial prefrontal cortex (mPFC) neurons, which may be responsible for cognitive impairments in adulthood. Together, our study suggests that opioid exposure during adolescence profoundly affects cognitive development and emphasizes that opioid-induced disruption of neurons in adolescence may link mPFC-associated cognitive impairments in adulthood.
Collapse
Affiliation(s)
- Ye Lu
- Department of Psychiatry, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- College of Forensic Science, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Yijie Guo
- Department of Psychiatry, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Shaanxi Key Laboratory of Biological Psychiatry, Xi'an, Shaanxi, 710061, China
| | - Lulu Sun
- College of Forensic Science, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Tong Liu
- Department of Psychiatry, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Ziqing Dong
- Department of Psychiatry, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Min Jia
- Department of Psychiatry, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Lixia Zhuo
- Department of Psychiatry, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Fangyuan Yin
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Yongsheng Zhu
- College of Forensic Science, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Xiancang Ma
- Department of Psychiatry, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Shaanxi Key Laboratory of Biological Psychiatry, Xi'an, Shaanxi, 710061, China
| | - Yunpeng Wang
- Department of Psychiatry, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Shaanxi Key Laboratory of Biological Psychiatry, Xi'an, Shaanxi, 710061, China
- Lead Contact, China
| |
Collapse
|
13
|
Lipina TV, Giang H, Thacker JS, Wetsel WC, Caron MG, Beaulieu JM, Salahpour A, Ramsey AJ. Combination of Haloperidol With UNC9994, β-arrestin-Biased Analog of Aripiprazole, Ameliorates Schizophrenia-Related Phenotypes Induced by NMDAR Deficit in Mice. Int J Neuropsychopharmacol 2024; 27:pyae060. [PMID: 39612588 DOI: 10.1093/ijnp/pyae060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 11/27/2024] [Indexed: 12/01/2024] Open
Abstract
BACKGROUND Glutamatergic system dysfunction contributes to a full spectrum of schizophrenia-like symptoms, including the cognitive and negative symptoms that are resistant to treatment with antipsychotic drugs (APDs). Aripiprazole, an atypical APD, acts as a dopamine partial agonist, and its combination with haloperidol (a typical APD) has been suggested as a potential strategy to improve schizophrenia. Recently, an analog of aripiprazole, UNC9994, was developed. UNC9994 does not affect dopamine 2 receptor (D2R)-mediated Gi/o protein signaling but acts as a partial agonist for D2R/β-arrestin interactions. Hence, one of our objectives was to probe the behavioral effects of co-administrating haloperidol with UNC9994 in the N-methyl-D-aspartate receptor (NMDAR) mouse models of schizophrenia. The biochemical mechanisms underlying the neurobiological effects of dual haloperidol × UNC9994 action are currently missing. Hence, we aimed to explore D2R- and NMDAR-dependent signaling mechanisms that could underlie the effects of dual drug treatments. METHODS NMDAR hypofunction was induced pharmacologically by acute injection of MK-801 (NMDAR pore blocker; 0.15 mg/kg) and genetically by knockdown of Grin1 gene expression in mice, which have a 90% reduction in NMDAR levels (Grin1 knockdown [Grin1-KD]). After intraperitoneal injections of vehicle, haloperidol (0.15 mg/kg), UNC9994 (0.25 mg/kg), or their combination, mice were tested in open field, prepulse inhibition (PPI), Y-maze, and Puzzle box. Biochemical effects on the phosphorylation of Akt, glycogen synthase kinase-3 (GSK-3), and CaMKII in the prefrontal cortex (PFC) and striatum of MK-801-treated mice were assessed by western blotting. RESULTS Our findings indicate that low dose co-administration of UNC9994 and haloperidol reduces hyperactivity in MK-801-treated animals and in Grin1-KD mice. Furthermore, this dual administration effectively reverses PPI deficits, repetitive/rigid behavior in the Y-maze, and deficient executive function in the Puzzle box in both animal models. Pharmacological inhibition of NMDAR by MK-801 induced the opposite effects in the PFC and striatum on pAkt-S473 and pGSK3β-Ser9. Dual injection of haloperidol with UNC9994 reversed MK-801-induced effects on pAkt-S473 but not on pGSK3β-Ser9 in both brain structures. CONCLUSIONS The dual administration of haloperidol with UNC9994 at low doses represents a promising approach to ameliorate symptoms of schizophrenia. The combined drug regimen elicits synergistic effects specifically on pAkt-S473, suggesting it as a potential biomarker for antipsychotic actions.
Collapse
Affiliation(s)
- Tatiana V Lipina
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Huy Giang
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Jonathan S Thacker
- Lunenfeld-Tanenbaum Research Institute at Mount Sinai Hospital, Toronto, Ontario, Canada
| | - William C Wetsel
- Department of Neurobiology, Duke University Medical Center, Durham, North Carolina, USA
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, North Carolina, USA
- Mouse Behavioral and Neuroendocrine, Analysis Core Facility, Duke University Medical Center, Durham, North Carolina, USA
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, USA
| | - Marc G Caron
- Department of Neurobiology, Duke University Medical Center, Durham, North Carolina, USA
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, North Carolina, USA
- Mouse Behavioral and Neuroendocrine, Analysis Core Facility, Duke University Medical Center, Durham, North Carolina, USA
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, USA
| | - Jean Martin Beaulieu
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Ali Salahpour
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Amy J Ramsey
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
14
|
Moschonas EH, Capeci HE, Annas EM, Domyslawski VB, Steber JA, Donald HM, Genkinger NR, Rennerfeldt PL, Bittner RA, Vozzella VJ, Cheng JP, Kline AE, Bondi CO. Evaluating the Efficacy of Chronic Galantamine on Sustained Attention and Cholinergic Neurotransmission in A Pre-Clinical Model of Traumatic Brain Injury. J Neurotrauma 2024; 41:2428-2441. [PMID: 38994598 PMCID: PMC11698658 DOI: 10.1089/neu.2024.0173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024] Open
Abstract
Cholinergic disruptions underlie attentional deficits following traumatic brain injury (TBI). Yet, drugs specifically targeting acetylcholinesterase (AChE) inhibition have yielded mixed outcomes. Therefore, we hypothesized that galantamine (GAL), a dual-action competitive AChE inhibitor and α7 nicotinic acetylcholine receptor (nAChR) positive allosteric modulator, provided chronically after injury, will attenuate TBI-induced deficits of sustained attention and enhance ACh efflux in the medial prefrontal cortex (mPFC), as assessed by in vivo microdialysis. In Experiment 1, adult male rats (n = 10-15/group) trained in the 3-choice serial reaction time (3-CSRT) test were randomly assigned to controlled cortical impact (CCI) or sham surgery and administered GAL (0.5, 2.0, or 5.0 mg/kg; i.p.) or saline vehicle (VEH; 1 mL/kg; i.p) beginning 24-h post-surgery and once daily thereafter for 27 days. Measures of sustained attention and distractibility were assessed on post-operative days 21-25 in the 3-CSRT, following which cortical lesion volume and basal forebrain cholinergic cells were quantified on day 27. In Experiment 2, adult male rats (n = 3-4/group) received a CCI and 24 h later administered (i.p.) one of the three doses of GAL or VEH for 21 days to quantify the dose-dependent effect of GAL on in vivo ACh efflux in the mPFC. Two weeks after the CCI, a guide cannula was implanted in the right mPFC. On post-surgery day 21, baseline and post-injection dialysate samples were collected in a temporally matched manner with the cohort undergoing behavior. ACh levels were analyzed using reverse phase high-performance liquid chromatography (HPLC) coupled to an electrochemical detector. Cortical lesion volume was quantified on day 22. The data were subjected to ANOVA, with repeated measures where appropriate, followed by Newman-Keuls post hoc analyses. All TBI groups displayed impaired sustained attention versus the pooled SHAM controls (p's < 0.05). Moreover, the highest dose of GAL (5.0 mg/kg) exacerbated attentional deficits relative to VEH and the two lower doses of GAL (p's < 0.05). TBI significantly reduced cholinergic cells in the right basal forebrain, regardless of treatment condition, versus SHAM (p < 0.05). In vivo microdialysis revealed no differences in basal ACh in the mPFC; however, GAL (5.0 mg/kg) significantly increased ACh efflux 30 min following injection compared to the VEH and the other GAL (0.5 and 2.0 mg/kg) treated groups (p's < 0.05). In both experiments, there were no differences in cortical lesion volume across treatment groups (p's > 0.05). In summary, albeit the higher dose of GAL increased ACh release, it did not improve measures of sustained attention or histopathological markers, thereby partially supporting the hypothesis and providing the impetus for further investigations into alternative cholinergic pharmacotherapies such as nAChR positive allosteric modulators.
Collapse
Affiliation(s)
- Eleni H. Moschonas
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Haley E. Capeci
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Ellen M. Annas
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Veronica B. Domyslawski
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Jade A. Steber
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Hailey M. Donald
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Nicholas R. Genkinger
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Piper L. Rennerfeldt
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Rachel A. Bittner
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Vincent J. Vozzella
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Jeffrey P. Cheng
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Anthony E. Kline
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Children’s Neuroscience Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Psychology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Corina O. Bondi
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Children’s Neuroscience Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
15
|
Converse AK, Krasko MN, Rudisch DM, Lunaris CL, Nisbet AF, Slesarev MS, Szot JC, Hoerst AG, Leverson GE, Gallagher CL, Ciucci MR. Positron emission tomography neuroimaging of [ 18F]fluorodeoxyglucose uptake and related behavior in the Pink1-/- rat model of Parkinson disease. Front Neurosci 2024; 18:1451118. [PMID: 39474461 PMCID: PMC11520326 DOI: 10.3389/fnins.2024.1451118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 08/30/2024] [Indexed: 11/02/2024] Open
Abstract
Introduction Parkinson disease (PD) is a neurodegenerative condition affecting multiple sensorimotor and cognitive systems. The Pink1-/- rat model exhibits vocal, cognitive, and limb use deficits seen in idiopathic PD. We sought to measure glucose metabolism in brain regions in Pink1-/- and wild type (WT) rats, and to associate these to measures of ultrasonic vocalization, cognition, and limb use behavior. Methods Pink1-/- (n = 12) and WT (n = 14) rats were imaged by [18F]fluorodeoxyglucose (FDG) positron emission tomography (PET) in a repeated measures design at approximately 10 months of age and 6 weeks later. Relative regional glucose metabolism was indexed by whole brain normalized FDG uptake, which was calculated for 18 regions identified a priori for comparison. Behavioral measures included tests of communication via ultrasonic vocalization, cognition with 5-Choice Serial Reaction Time Test (5-CSRTT), and limb use with Cylinder Test and Challenge Beam. Results Relative glucose metabolism was significantly different in Pink1-/- rats in prelimbic area, striatum, nucleus ambiguus, globus pallidus, and posterior parietal association cortex compared to WT controls. For behavioral measures, Pink1-/- rats demonstrated quieter vocalizations with a restricted frequency range, and they showed increased number of foot-faults and hindlimb steps (shuffling) in limb motor tests. Significant behavior vs. brain correlations included associations of ultrasonic vocalization parameters with glucose metabolism indices in locus coeruleus and substantia nigra. Conclusion FDG PET reveals abnormalities in relative regional brain glucose metabolism in Pink1-/- rats in brain regions that are important to cognition, vocalization, and limb motor control that are also impacted by Parkinson disease. This method may be useful for mechanistic studies of behavioral deficits and therapeutic interventions in translational studies in the Pink1-/- PD model.
Collapse
Affiliation(s)
| | - Maryann N. Krasko
- Division of Otolaryngology, Department of Surgery, University of Wisconsin-Madison, Madison, WI, United States
- Department of Communication Science and Disorders, University of Wisconsin-Madison, Madison, WI, United States
| | - Denis Michael Rudisch
- Division of Otolaryngology, Department of Surgery, University of Wisconsin-Madison, Madison, WI, United States
- Department of Communication Science and Disorders, University of Wisconsin-Madison, Madison, WI, United States
- Institute for Clinical and Translational Research, University of Wisconsin-Madison, Madison, WI, United States
| | - Charlie Lenell Lunaris
- Division of Otolaryngology, Department of Surgery, University of Wisconsin-Madison, Madison, WI, United States
| | - Alex F. Nisbet
- Division of Otolaryngology, Department of Surgery, University of Wisconsin-Madison, Madison, WI, United States
| | - Maxim S. Slesarev
- Waisman Center, University of Wisconsin-Madison, Madison, WI, United States
| | - John C. Szot
- Division of Otolaryngology, Department of Surgery, University of Wisconsin-Madison, Madison, WI, United States
| | - Andrew G. Hoerst
- Division of Otolaryngology, Department of Surgery, University of Wisconsin-Madison, Madison, WI, United States
| | - Glen E. Leverson
- Division of Otolaryngology, Department of Surgery, University of Wisconsin-Madison, Madison, WI, United States
| | | | - Michelle R. Ciucci
- Division of Otolaryngology, Department of Surgery, University of Wisconsin-Madison, Madison, WI, United States
- Department of Communication Science and Disorders, University of Wisconsin-Madison, Madison, WI, United States
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
16
|
Makino Y, Hodgson NW, Doenier E, Serbin AV, Osada K, Artoni P, Dickey M, Sullivan B, Potter-Dickey A, Komanchuk J, Sekhon B, Letourneau N, Ryan ND, Trauth J, Cameron JL, Hensch TK. Sleep-sensitive dopamine receptor expression in male mice underlies attention deficits after a critical period of early adversity. Sci Transl Med 2024; 16:eadh9763. [PMID: 39383245 DOI: 10.1126/scitranslmed.adh9763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 05/03/2024] [Accepted: 09/13/2024] [Indexed: 10/11/2024]
Abstract
Early life stress (ELS) yields cognitive impairments of unknown molecular and physiological origin. We found that fragmented maternal care of mice during a neonatal critical period from postnatal days P2-9 elevated dopamine receptor D2R and suppressed D4R expression, specifically within the anterior cingulate cortex (ACC) in only the male offspring. This was associated with poor performance on a two-choice visual attention task, which was acutely rescued in adulthood by local or systemic pharmacological rebalancing of D2R/D4R activity. Furthermore, ELS male mice demonstrated heightened hypothalamic orexin and persistently disrupted sleep. Given that acute sleep deprivation in normally reared male mice mimicked the ACC dopamine receptor subtype modulation and disrupted attention of ELS mice, sleep loss likely underlies cognitive deficits in ELS mice. Likewise, sleep impairment mediated the attention deficits associated with early adversity in human children, as demonstrated by path analysis on data collected with multiple questionnaires for a large child cohort. A deeper understanding of the sex-specific cognitive consequences of ELS thus has the potential to reveal therapeutic strategies for overcoming them.
Collapse
Affiliation(s)
- Yuichi Makino
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
- International Research Center for Neurointelligence, UTIAS, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Nathaniel W Hodgson
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA
| | - Emma Doenier
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Anna Victoria Serbin
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Koya Osada
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Pietro Artoni
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA
| | - Matthew Dickey
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Breanna Sullivan
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | | | - Jelena Komanchuk
- School of Nursing, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Bikram Sekhon
- School of Nursing, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Nicole Letourneau
- School of Nursing, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Neal D Ryan
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Jeanette Trauth
- Department of Behavioral and Community Health Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Judy L Cameron
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Takao K Hensch
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
- International Research Center for Neurointelligence, UTIAS, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA
| |
Collapse
|
17
|
Ohta H, Nozawa T, Nakano T, Morimoto Y, Ishizuka T. Nonlinear age-related differences in probabilistic learning in mice: A 5-armed bandit task study. Neurobiol Aging 2024; 142:8-16. [PMID: 39029360 DOI: 10.1016/j.neurobiolaging.2024.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 06/17/2024] [Accepted: 06/19/2024] [Indexed: 07/21/2024]
Abstract
This study explores the impact of aging on reinforcement learning in mice, focusing on changes in learning rates and behavioral strategies. A 5-armed bandit task (5-ABT) and a computational Q-learning model were used to evaluate the positive and negative learning rates and the inverse temperature across three age groups (3, 12, and 18 months). Results showed a significant decline in the negative learning rate of 18-month-old mice, which was not observed for the positive learning rate. This suggests that older mice maintain the ability to learn from successful experiences while decreasing the ability to learn from negative outcomes. We also observed a significant age-dependent variation in inverse temperature, reflecting a shift in action selection policy. Middle-aged mice (12 months) exhibited higher inverse temperature, indicating a higher reliance on previous rewarding experiences and reduced exploratory behaviors, when compared to both younger and older mice. This study provides new insights into aging research by demonstrating that there are age-related differences in specific components of reinforcement learning, which exhibit a non-linear pattern.
Collapse
Affiliation(s)
- Hiroyuki Ohta
- Department of Pharmacology, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama 359-8513, Japan.
| | - Takashi Nozawa
- Mejiro University, 4-31-1 Naka-Ochiai, Shinjuku, Tokyo 161-8539, Japan
| | - Takashi Nakano
- Department of Computational Biology, School of Medicine, Fujita Health University, 1-98 Dengakugakubo, Kutsukake, Toyoake, Aichi 470-1192, Japan; International Center for Brain Science (ICBS), Fujita Health University, 1-98 Dengakugakubo, Kutsukake, Toyoake, Aichi 470-1192, Japan
| | - Yuji Morimoto
- Department of Physiology, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama 359-8513, Japan
| | - Toshiaki Ishizuka
- Department of Pharmacology, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama 359-8513, Japan
| |
Collapse
|
18
|
de Gee JW, Mridha Z, Hudson M, Shi Y, Ramsaywak H, Smith S, Karediya N, Thompson M, Jaspe K, Jiang H, Zhang W, McGinley MJ. Strategic stabilization of arousal boosts sustained attention. Curr Biol 2024; 34:4114-4128.e6. [PMID: 39151432 PMCID: PMC11447271 DOI: 10.1016/j.cub.2024.07.070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 08/19/2024]
Abstract
Arousal and motivation interact to profoundly influence behavior. For example, experience tells us that we have some capacity to control our arousal when appropriately motivated, such as staying awake while driving a motor vehicle. However, little is known about how arousal and motivation jointly influence decision computations, including if and how animals, such as rodents, adapt their arousal state to their needs. Here, we developed and show results from an auditory, feature-based, sustained-attention task with intermittently shifting task utility. We use pupil size to estimate arousal across a wide range of states and apply tailored signal-detection theoretic, hazard function, and accumulation-to-bound modeling approaches in a large cohort of mice. We find that pupil-linked arousal and task utility both have major impacts on multiple aspects of task performance. Although substantial arousal fluctuations persist across utility conditions, mice partially stabilize their arousal near an intermediate and optimal level when task utility is high. Behavioral analyses show that multiple elements of behavior improve during high task utility and that arousal influences some, but not all, of them. Specifically, arousal influences the likelihood and timescale of sensory evidence accumulation but not the quantity of evidence accumulated per time step while attending. In sum, the results establish specific decision-computational signatures of arousal, motivation, and their interaction in attention. So doing, we provide an experimental and analysis framework for studying arousal self-regulation in neurotypical brains and in diseases such as attention-deficit/hyperactivity disorder.
Collapse
Affiliation(s)
- Jan Willem de Gee
- Department of Neuroscience, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, 1250 Moursund Street, Houston, TX 77030, USA; Cognitive and Systems Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, Amsterdam 1098 XH, the Netherlands; Research Priority Area Brain and Cognition, University of Amsterdam, Science Park 904, Amsterdam 1098 XH, the Netherlands.
| | - Zakir Mridha
- Department of Neuroscience, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, 1250 Moursund Street, Houston, TX 77030, USA
| | - Marisa Hudson
- Department of Neuroscience, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, 1250 Moursund Street, Houston, TX 77030, USA
| | - Yanchen Shi
- Department of Neuroscience, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, 1250 Moursund Street, Houston, TX 77030, USA
| | - Hannah Ramsaywak
- Department of Neuroscience, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, 1250 Moursund Street, Houston, TX 77030, USA
| | - Spencer Smith
- Department of Neuroscience, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, 1250 Moursund Street, Houston, TX 77030, USA
| | - Nishad Karediya
- Department of Neuroscience, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, 1250 Moursund Street, Houston, TX 77030, USA
| | - Matthew Thompson
- Department of Neuroscience, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, 1250 Moursund Street, Houston, TX 77030, USA
| | - Kit Jaspe
- Department of Neuroscience, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, 1250 Moursund Street, Houston, TX 77030, USA
| | - Hong Jiang
- Department of Neuroscience, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, 1250 Moursund Street, Houston, TX 77030, USA
| | - Wenhao Zhang
- Department of Neuroscience, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, 1250 Moursund Street, Houston, TX 77030, USA
| | - Matthew J McGinley
- Department of Neuroscience, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, 1250 Moursund Street, Houston, TX 77030, USA; Department of Electrical and Computer Engineering, Rice University, 6100 Main Street, Houston, TX 77005, USA.
| |
Collapse
|
19
|
Toimela J, Halt A, Kerkelä M, Kampman O, Suvisaari J, Kieseppä T, Lähteenvuo M, Tiihonen J, Ahola-Olli A, Veijola J, Holm M. Association of obesity to reaction time and visual memory in schizophrenia. Schizophr Res Cogn 2024; 37:100316. [PMID: 38764744 PMCID: PMC11101897 DOI: 10.1016/j.scog.2024.100316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 05/05/2024] [Indexed: 05/21/2024]
Abstract
Background Both overweight and cognitive deficits are common among people with schizophrenia (SZ) and schizoaffective disorder. The results in earlier studies have been inconsistent on whether overweight is associated with cognitive deficits in psychotic disorders. Aims Our aim in this study was to detect possible associations between obesity and cognitive deficits among study participants with SZ and schizoaffective disorder. Methods The study sample included 5382 participants with a clinical diagnosis of SZ or schizoaffective disorder selected from the Finnish SUPER study. Obesity was measured both with body-mass index and waist circumference. The cognitive performance was evaluated with two tests from the Cambridge automated neuropsychological test battery: Reaction time was evaluated with the 5-choice serial reaction time task. Visual memory was evaluated with the paired associative learning test. The final analysis included a total sample of 4498 participants applicable for the analysis of the reaction time and 3967 participants for the analysis of the visual memory. Results Obesity measured with body-mass index was associated with better performance in reaction time task among both female and male participants. Among male participants, overweight was associated with better performance in the visual memory test. The waist circumference was not associated with cognitive measures. Conclusions The results suggest that obesity in people with SZ or schizoaffective disorder might not be associated with cognitive deficits but instead with better cognitive performance. The results were opposite from earlier literature on the general population. More research is required to better understand whether the results might be partly caused by the differences in the etiology of obesity between the general population and people with SZ.
Collapse
Affiliation(s)
- J.S. Toimela
- Research Unit of Clinical Medicine, University of Oulu, P.O. Box 5000, FI-90014 Oulu, Finland
| | - A.H. Halt
- Research Unit of Clinical Medicine, University of Oulu, P.O. Box 5000, FI-90014 Oulu, Finland
- Department of Psychiatry, Oulu University Hospital, FI-90220 Oulu, Finland
- Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - M. Kerkelä
- Research Unit of Clinical Medicine, University of Oulu, P.O. Box 5000, FI-90014 Oulu, Finland
| | - O. Kampman
- Department of Clinical Sciences, Psychiatry, Umeå University, Umeå SE-90187, Sweden
- University of Turku, Faculty of Medicine, Department of Clinical Medicine (Psychiatry), Turku, Finland
- The Wellbeing Services Country of Ostrobothnia, Department of Psychiatry, Vaasa, Finland
- The Pirkanmaa Wellbeing Services Country, Department of Psychiatry, Tampere, Finland
| | - J. Suvisaari
- Mental Health Unit, Finnish Institute for Health and Welfare (THL), FI-00271 Helsinki, Finland
| | - T. Kieseppä
- Mental Health Unit, Finnish Institute for Health and Welfare (THL), FI-00271 Helsinki, Finland
- University of Helsinki, Helsinki University Hospital, Psychiatry, FI-00029 Helsinki, Finland
| | - M. Lähteenvuo
- Department of Forensic Psychiatry, Niuvanniemi Hospital, University of Eastern Finland, FI-70240 Kuopio, Finland
| | - J. Tiihonen
- Department of Forensic Psychiatry, Niuvanniemi Hospital, University of Eastern Finland, FI-70240 Kuopio, Finland
- Department of Clinical Neuroscience, Karolinska Institutet, SE-17177 Stockholm, Sweden
- Center for Psychiatry Research, Stockholm City Council, SE-11364 Stockholm, Sweden
| | - A. Ahola-Olli
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, FI-00014 Helsinki, Finland
- Department of Internal Medicine, Satasairaala Hospital, Pori, Finland
| | - J. Veijola
- Research Unit of Clinical Medicine, University of Oulu, P.O. Box 5000, FI-90014 Oulu, Finland
- Department of Psychiatry, Oulu University Hospital, FI-90220 Oulu, Finland
- Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - M. Holm
- Mental Health Unit, Finnish Institute for Health and Welfare (THL), FI-00271 Helsinki, Finland
| | - The SUPER researchers listed in the Acknowledgements
- Research Unit of Clinical Medicine, University of Oulu, P.O. Box 5000, FI-90014 Oulu, Finland
- Department of Psychiatry, Oulu University Hospital, FI-90220 Oulu, Finland
- Mental Health Unit, Finnish Institute for Health and Welfare (THL), FI-00271 Helsinki, Finland
- University of Helsinki, Helsinki University Hospital, Psychiatry, FI-00029 Helsinki, Finland
- Department of Forensic Psychiatry, Niuvanniemi Hospital, University of Eastern Finland, FI-70240 Kuopio, Finland
- Department of Clinical Neuroscience, Karolinska Institutet, SE-17177 Stockholm, Sweden
- Center for Psychiatry Research, Stockholm City Council, SE-11364 Stockholm, Sweden
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, FI-00014 Helsinki, Finland
- Department of Internal Medicine, Satasairaala Hospital, Pori, Finland
- Department of Clinical Sciences, Psychiatry, Umeå University, Umeå SE-90187, Sweden
- University of Turku, Faculty of Medicine, Department of Clinical Medicine (Psychiatry), Turku, Finland
- The Wellbeing Services Country of Ostrobothnia, Department of Psychiatry, Vaasa, Finland
- The Pirkanmaa Wellbeing Services Country, Department of Psychiatry, Tampere, Finland
- Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| |
Collapse
|
20
|
Vouillac-Mendoza C, Ahmed SH, Guillem K. Bidirectional relationship between attentional deficits and escalation of nicotine intake in male rats. Psychopharmacology (Berl) 2024; 241:1895-1903. [PMID: 38743111 DOI: 10.1007/s00213-024-06604-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 04/29/2024] [Indexed: 05/16/2024]
Abstract
RATIONALE People with tobacco addiction have deficits in cognition, in particular deficits in attention. It is not clear however, whether deficits are a cause or a consequence, or both, of chronic nicotine use. Here we set out a series of experiments in rats to address this question and, more specifically, to assess the effects of exposure to and withdrawal from chronic nicotine self-administration on attentional performance. METHODS Animals were trained in a 5-choice serial reaction time task to probe individual attentional performance and, then, were given access to a fixed versus increasing dose of intravenous nicotine for self-administration, a differential dose procedure known to induce two between-session patterns of nicotine intake: a stable versus escalation pattern. Attentional performance was measured daily before, during and also 24-h after chronic access to the differential dose procedure of nicotine self-administration. CONCLUSIONS We found that pre-existing individual variation in attentional performance predicts individual vulnerability to develop escalation of nicotine intake. Moreover, while chronic nicotine self-administration increases attention, withdrawal from nicotine intake escalation induces attentional deficits, a withdrawal effect that is dose-dependently reversed by acute nicotine. Together, these results suggest that pre-existing individual variation in attentional performance predicts individual vulnerability to develop escalation of nicotine intake, and that part of the motivation for using nicotine during escalation might be to alleviate withdrawal-induced attentional deficits.
Collapse
Affiliation(s)
- Caroline Vouillac-Mendoza
- Institut de Neurosciences Cognitives Et Intégratives d'Aquitaine, CNRS UMR 5287, Université de Bordeaux, Bâtiment BBS - 2Ème Étage, 2, Rue du Dr Hoffmann Martinot, 33000, Bordeaux, France
| | - Serge H Ahmed
- Institut de Neurosciences Cognitives Et Intégratives d'Aquitaine, CNRS UMR 5287, Université de Bordeaux, Bâtiment BBS - 2Ème Étage, 2, Rue du Dr Hoffmann Martinot, 33000, Bordeaux, France
| | - Karine Guillem
- Institut de Neurosciences Cognitives Et Intégratives d'Aquitaine, CNRS UMR 5287, Université de Bordeaux, Bâtiment BBS - 2Ème Étage, 2, Rue du Dr Hoffmann Martinot, 33000, Bordeaux, France.
| |
Collapse
|
21
|
Crombag HS, Duka T, Stephens DN. The Continuing Challenges of Studying Parallel Behaviours in Humans and Animal Models. Curr Top Behav Neurosci 2024. [PMID: 38976140 DOI: 10.1007/7854_2024_485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
The use of animal models continues to be essential for carrying out research into clinical phenomena, including addiction. However, the complexity of the clinical condition inevitably means that even the best animal models are inadequate, and this may go some way to account for the apparent failures of discoveries from animal models, including the identification of potential novel therapies, to translate to the clinic. We argue here that it is overambitious and misguided in the first place to attempt to model complex, multifacetted human disorders such as addiction in animals, and especially in rodents, and that all too frequently "validity" of such models is limited to superficial similarities, referred to as "face validity", that reflect quite different underlying phenomena and biological processes from the clinical situation. Instead, a more profitable approach is to identify (a) well-defined intermediate human behavioural phenotypes that reflect defined, limited aspects of, or contributors to, the human clinical disorder, and (b) to develop animal models that are homologous with those discrete human behavioural phenotypes in terms of psychological processes, and underlying neurobiological mechanisms. Examples of past and continuing weaknesses and suggestions for more limited approaches that may allow better homology between the test animal and human condition are made.
Collapse
Affiliation(s)
- Hans S Crombag
- School of Psychology and Sussex Neuroscience, The University of Sussex, Brighton, UK.
| | - Theodora Duka
- School of Psychology and Sussex Neuroscience, The University of Sussex, Brighton, UK
| | - David N Stephens
- School of Psychology and Sussex Neuroscience, The University of Sussex, Brighton, UK
| |
Collapse
|
22
|
Vouillac-Mendoza C, Durand A, Ahmed SH, Guillem K. Knowledge by omission: the significance of omissions in the 5-choice serial reaction time task. Psychopharmacology (Berl) 2024; 241:1319-1328. [PMID: 38443605 DOI: 10.1007/s00213-024-06564-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 02/21/2024] [Indexed: 03/07/2024]
Abstract
RATIONALE The 5-choice serial reaction time task (5-CSRTT) is commonly used to assess attention in rodents. Manipulation of this task by decreasing the light stimulus duration is often used to probe attentional capacity and causes a decrease in accuracy and an increase in omissions. However, although a decrease in response accuracy is commonly interpreted as a decrease in attention, it is more difficult to interpret an increase in omissions in terms of attentional performance. METHODS Here we present a series of experiments in rats that seeks to investigate the origins of these key behavioral measures of attention in the 5-CSRTT. After an initial training in the 5-CSRTT, rats were tested in a variable stimulus duration procedure to increase task difficulty and probe visual attentional capacity under several specific controlled conditions. CONCLUSIONS We found that response accuracy reflects visuospatial sustained attentional processing, as commonly interpreted, while response omission reflects rats' ignorance about the stimulus location, presumably due to failure to pay attention to the curved wall during its presentation. Moreover, when rats lack of relevant information, they choose not to respond instead of responding randomly. Finally, pretreatment with nicotine selectively decreased response omissions, without affecting response accuracy, particularly when the attentional demand was high. Overall, our results indicate that response accuracy and response omission thus correspond to two distinct attentional states.
Collapse
Affiliation(s)
- Caroline Vouillac-Mendoza
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, CNRS UMR 5287, Université de Bordeaux, Bâtiment BBS - 2ème étage 2, Rue du Dr Hoffmann Martinot, Bordeaux, F-33000, France
| | | | - Serge H Ahmed
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, CNRS UMR 5287, Université de Bordeaux, Bâtiment BBS - 2ème étage 2, Rue du Dr Hoffmann Martinot, Bordeaux, F-33000, France
| | - Karine Guillem
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, CNRS UMR 5287, Université de Bordeaux, Bâtiment BBS - 2ème étage 2, Rue du Dr Hoffmann Martinot, Bordeaux, F-33000, France.
| |
Collapse
|
23
|
Arake M, Ohta H, Nozawa T, Satoh Y, Fujita M, Nakata T, Meredith AL, Shinomiya N, Ishizuka T, Morimoto Y. BK channel dysfunction disrupts attention-controlled behaviors and altered perseverative responses in murine instrumental learning. Behav Brain Res 2024; 468:115015. [PMID: 38670533 DOI: 10.1016/j.bbr.2024.115015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/23/2024] [Accepted: 04/23/2024] [Indexed: 04/28/2024]
Abstract
This study examined the effect of knockout of KCNMA1 gene, coding for the BK channel, on cognitive and attentional functions in mice, with an aim to better understand its implications for human neurodevelopmental disorders. The study used the 3-choice serial reaction time task (3-CSRTT) to assess the learning performance, attentional abilities, and repetitive behaviors in mice lacking the KCNMA1 gene (KCNMA1-/-) compared to wild-type (WT) controls. Results showed no significant differences in learning accuracy between the two groups. However, KCNMA1-/- mice were more prone to omitting responses to stimuli. In addition, when the timing of cue presentation was randomized, the KCNMA1-/- showed premature responses. Notably, these mice also demonstrated a marked reduction in perseverative responses, which include repeated nose-poke behaviors following decisions. These findings highlight the involvement of the KCNMA1 gene in managing attention, impulsivity, and potentially moderating repetitive actions.
Collapse
Affiliation(s)
- Masashi Arake
- Department of Physiology, National Defense Medical College, Namiki 3-2, Tokorozawa, Saitama 359-8513, Japan
| | - Hiroyuki Ohta
- Department of Pharmacology, National Defense Medical College, Namiki 3-2, Tokorozawa, Saitama 359-8513, Japan.
| | - Takashi Nozawa
- Department of Psychology, Mejiro University, Nakaochiai 4-31-1, Shinjuku-ku, Tokyo 161-8539, Japan
| | - Yasushi Satoh
- Department of Biochemistry, National Defense Medical College, Namiki 3-2, Tokorozawa, Saitama 359-8513, Japan
| | - Masanori Fujita
- Division of Environmental Medicine, National Defense Medical College, Namiki 3-2, Tokorozawa, Saitama 359-8513, Japan
| | - Takahiro Nakata
- Department of Molecular and Cellular Anatomy, Faculty of Health Promotional Sciences, Tokoha University, Hamamatsu, Shizuoka, Japan
| | - Andrea L Meredith
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Nariyoshi Shinomiya
- Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, Namiki 3-2, Tokorozawa, Saitama 359-8513, Japan
| | - Toshiaki Ishizuka
- Department of Pharmacology, National Defense Medical College, Namiki 3-2, Tokorozawa, Saitama 359-8513, Japan
| | - Yuji Morimoto
- Department of Physiology, National Defense Medical College, Namiki 3-2, Tokorozawa, Saitama 359-8513, Japan
| |
Collapse
|
24
|
Nishio M, Kondo M, Yoshida E, Matsuzaki M. Medial prefrontal cortex suppresses reward-seeking behavior with risk of punishment by reducing sensitivity to reward. Front Neurosci 2024; 18:1412509. [PMID: 38903603 PMCID: PMC11188571 DOI: 10.3389/fnins.2024.1412509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 04/30/2024] [Indexed: 06/22/2024] Open
Abstract
Reward-seeking behavior is frequently associated with risk of punishment. There are two types of punishment: positive punishment, which is defined as addition of an aversive stimulus, and negative punishment, involves the omission of a rewarding outcome. Although the medial prefrontal cortex (mPFC) is important in avoiding punishment, whether it is important for avoiding both positive and negative punishment and how it contributes to such avoidance are not clear. In this study, we trained male mice to perform decision-making tasks under the risks of positive (air-puff stimulus) and negative (reward omission) punishment, and modeled their behavior with reinforcement learning. Following the training, we pharmacologically inhibited the mPFC. We found that pharmacological inactivation of mPFC enhanced the reward-seeking choice under the risk of positive, but not negative, punishment. In reinforcement learning models, this behavioral change was well-explained as an increase in sensitivity to reward, rather than a decrease in the strength of aversion to punishment. Our results suggest that mPFC suppresses reward-seeking behavior by reducing sensitivity to reward under the risk of positive punishment.
Collapse
Affiliation(s)
- Monami Nishio
- Department of Physiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Masashi Kondo
- Department of Physiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Eriko Yoshida
- Department of Physiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Masanori Matsuzaki
- Department of Physiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
- International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study, Tokyo, Japan
- Brain Functional Dynamics Collaboration Laboratory, RIKEN Center for Brain Science, Saitama, Japan
| |
Collapse
|
25
|
Prescott K, Cothren TO, Holsten JT, Evonko CJ, Doyle EC, Bullock FE, Marron PT, Staton JG, Hatvany LS, Flack JW, Beuschel SL, MacQueen DA, Peterson TC. Increased sensitivity in detection of deficits following two commonly used animal models of stroke. Behav Brain Res 2024; 467:114991. [PMID: 38614209 DOI: 10.1016/j.bbr.2024.114991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 03/18/2024] [Accepted: 04/04/2024] [Indexed: 04/15/2024]
Abstract
Stroke is a leading cause of death and disability in the United States. Most strokes are ischemic, resulting in both cognitive and motor impairments. Animal models of ischemic stroke such as the distal middle cerebral artery occlusion (dMCAO) and photothrombotic stroke (PTS) procedures have become invaluable tools, with their own advantages and disadvantages. The dMCAO model is clinically relevant as it occludes the artery most affected in humans, but yields variability in the infarct location as well as the behavioral and cognitive phenotypes disrupted. The PTS model has the advantage of allowing for targeted location of infarct, but is less clinically relevant. The present study evaluates phenotype disruption over time in mice subjected to either dMCAO, PTS, or a sham surgery. Post-surgery, animals were tested over 28 days on standard motor tasks (grid walk, cylinder, tapered beam, and rotating beam), as well as a novel odor-based operant task; the 5:1 Odor Discrimination Task (ODT). Results demonstrate a significantly greater disturbance of motor control with PTS as compared with Sham and dMCAO. Disruption of the PTS group was detected up to 28 days post-stroke on the grid walk, and up to 7 days on the rotating and tapered beam tasks. PTS also led to significant short-term disruption of ODT performance (1-day post-surgery), exclusively in males, which appeared to be driven by motoric disruption of the lick response. Together, this data provides critical insights into the selection and optimization of animal models for ischemic stroke research. Notably, the PTS procedure was best suited for producing disruptions of motor behavior that can be detected with common behavioral assays and are relatively enduring, as is observed in human stroke.
Collapse
Affiliation(s)
- Kimberly Prescott
- Department of Psychology, University of North Carolina Wilmington, 601 College Road, Wilmington, NC 28428, United States.
| | - Taitum O Cothren
- Department of Psychology, University of North Carolina Wilmington, 601 College Road, Wilmington, NC 28428, United States.
| | - John T Holsten
- Department of Psychology, University of North Carolina Wilmington, 601 College Road, Wilmington, NC 28428, United States.
| | - Christopher J Evonko
- Department of Psychology, University of North Carolina Wilmington, 601 College Road, Wilmington, NC 28428, United States.
| | - Elan C Doyle
- Department of Psychology, University of North Carolina Wilmington, 601 College Road, Wilmington, NC 28428, United States.
| | - Faith E Bullock
- Department of Psychology, University of North Carolina Wilmington, 601 College Road, Wilmington, NC 28428, United States.
| | - Paul T Marron
- Department of Psychology, University of North Carolina Wilmington, 601 College Road, Wilmington, NC 28428, United States.
| | - Julia G Staton
- Department of Psychology, University of North Carolina Wilmington, 601 College Road, Wilmington, NC 28428, United States.
| | - Laura S Hatvany
- Department of Psychology, University of North Carolina Wilmington, 601 College Road, Wilmington, NC 28428, United States.
| | - Justin W Flack
- Department of Psychology, University of North Carolina Wilmington, 601 College Road, Wilmington, NC 28428, United States.
| | - Stacie L Beuschel
- Department of Psychology, University of North Carolina Wilmington, 601 College Road, Wilmington, NC 28428, United States.
| | - David A MacQueen
- Department of Psychology, University of North Carolina Wilmington, 601 College Road, Wilmington, NC 28428, United States.
| | - Todd C Peterson
- Department of Psychology, University of North Carolina Wilmington, 601 College Road, Wilmington, NC 28428, United States.
| |
Collapse
|
26
|
Spencer H, Anderton RS. Trait Impulsivity as a Feature of Parkinson's Disease Treatment and Progression. PARKINSON'S DISEASE 2024; 2024:8770997. [PMID: 38766569 PMCID: PMC11102119 DOI: 10.1155/2024/8770997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 04/15/2024] [Accepted: 04/17/2024] [Indexed: 05/22/2024]
Abstract
Heightened trait impulsivity in both subclinical and pathological senses is becoming increasingly recognised in Parkinson's disease (PD). Impulsive behaviours and impulse control disorders (ICDs) are a consequence of perturbation to the rewards pathway leading individuals to conduct activities in a repetitive, excessive, and maladaptive fashion. Commonly linked to PD, heightened trait impulsivity has been found to primarily manifest in the forms of hypersexuality, pathological gambling, compulsive shopping, and binge eating, all of which may significantly impact social and financial standing. Subsequent burden to quality of life for both individuals with PD and caregivers are common. Although risk factors and indicators for ICDs in PD are currently lacking, it is recognised that the condition is often precipitated by dopamine replacement therapies, primarily dopamine agonist administration. While this nonmotor symptom is being increasingly diagnosed in PD populations, it remains relatively elusive in comparison to its motor counterparts. Through discussion of impulsivity characteristics, neuroanatomy, and neurochemistry, in addition to reviewing existing research on the potential contributing factors to impulsivity in PD, this review highlights impulsivity as a significant and detrimental PD symptom. Thus, emphasising the imperative need to establish efficacious diagnostic tools and treatments.
Collapse
Affiliation(s)
- Holly Spencer
- School of Health Sciences, University of Notre Dame Australia, Fremantle, WA, Australia
| | - Ryan S. Anderton
- School of Health Sciences, University of Notre Dame Australia, Fremantle, WA, Australia
| |
Collapse
|
27
|
Hales CA, Silveira MM, Calderhead L, Mortazavi L, Hathaway BA, Winstanley CA. Insight into differing decision-making strategies that underlie cognitively effort-based decision making using computational modeling in rats. Psychopharmacology (Berl) 2024; 241:947-962. [PMID: 38172238 DOI: 10.1007/s00213-023-06521-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 12/15/2023] [Indexed: 01/05/2024]
Abstract
RATIONALE The rat cognitive effort task (rCET), a rodent model of cognitive rather than physical effort, requires animals to choose between an easy or hard visuospatial discrimination, with a correct hard choice more highly rewarded. Like in humans, there is stable individual variation in choice behavior. In previous reports, animals were divided into two groups-workers and slackers-based on their mean preference for the harder option. Although these groups differed in their response to pharmacological challenges, the rationale for using this criterion for grouping was not robust. METHODS We collated experimental data from multiple cohorts of male and female rats performing the rCET and used a model-based framework combining drift diffusion modeling with cluster analysis to identify the decision-making processes underlying variation in choice behavior. RESULTS We verified that workers and slackers are statistically different groups but also found distinct intra-group profiles. These subgroups exhibited dissociable performance during the attentional phase, linked to distinct decision-making profiles during choice. Reanalysis of previous pharmacology data using this model-based framework showed that serotonergic drug effects were explained by changes in decision boundaries and non-decision times, while scopolamine's effects were driven by changes in decision starting points and rates of evidence accumulation. CONCLUSIONS Modeling revealed the decision-making processes that are associated with cognitive effort costs, and how these differ across individuals. Reanalysis of drug data provided insight into the mechanisms through which different neurotransmitter systems impact cognitively effortful attention and decision-making processes, with relevance to multiple psychiatric disorders.
Collapse
Affiliation(s)
- Claire A Hales
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada.
| | - Mason M Silveira
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada
- Fashion Business School, London College of Fashion, University of the Arts London, London, UK
| | - Lucas Calderhead
- Graduate Program in Neuroscience, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Leili Mortazavi
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada
- Department of Psychology, Stanford University, Stanford, CA, USA
| | - Brett A Hathaway
- Graduate Program in Neuroscience, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Catharine A Winstanley
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada.
- Graduate Program in Neuroscience, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
28
|
Beaudin SA, Howard S, Santiago N, Strupp BJ, Smith DR. Methylphenidate alleviates cognitive dysfunction caused by early manganese exposure: Role of catecholaminergic receptors. Prog Neuropsychopharmacol Biol Psychiatry 2024; 131:110949. [PMID: 38266866 DOI: 10.1016/j.pnpbp.2024.110949] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/19/2023] [Accepted: 01/17/2024] [Indexed: 01/26/2024]
Abstract
Environmental manganese (Mn) exposure is associated with impaired attention and psychomotor functioning, as well as impulsivity/hyperactivity in children and adolescents. We have shown previously that developmental Mn exposure can cause these same dysfunctions in a rat model. Methylphenidate (MPH) lessens impairments in attention, impulse control, and psychomotor function in children, but it is unknown whether MPH ameliorates these dysfunctions when induced by developmental Mn exposure. Here, we sought to (1) determine whether oral MPH treatment ameliorates the lasting attention and sensorimotor impairments caused by developmental Mn exposure, and (2) elucidate the mechanism(s) of Mn neurotoxicity and MPH effectiveness. Rats were given 50 mg Mn/kg/d orally over PND 1-21 and assessed as adults in a series of attention, impulse control and sensorimotor tasks during oral MPH treatment (0, 0.5, 1.5, or 3.0 mg/kg/d). Subsequently, selective catecholaminergic receptor antagonists were administered to gain insight into the mechanism(s) of action of Mn and MPH. Developmental Mn exposure caused persistent attention and sensorimotor impairments. MPH treatment at 0.5 mg/kg/d completely ameliorated the Mn attentional dysfunction, whereas the sensorimotor deficits were ameliorated by the 3.0 mg/kg/d MPH dose. Notably, the MPH benefit on attention was only apparent after prolonged treatment, while MPH efficacy for the sensorimotor deficits emerged early in treatment. Selectively antagonizing D1, D2, or α2A receptors had no effect on the Mn-induced attentional dysfunction or MPH efficacy in this domain. However, antagonism of D2R attenuated the Mn sensorimotor deficits, whereas the efficacy of MPH to ameliorate those deficits was diminished by D1R antagonism. These findings demonstrate that MPH is effective in alleviating the lasting attentional and sensorimotor dysfunction caused by developmental Mn exposure, and they clarify the mechanisms underlying developmental Mn neurotoxicity and MPH efficacy. Given that the cause of attention and psychomotor deficits in children is often unknown, these findings have implications for the treatment of environmentally induced attentional and psychomotor dysfunction in children more broadly.
Collapse
Affiliation(s)
- Stephane A Beaudin
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, CA, USA
| | - Shanna Howard
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, CA, USA
| | - Nicholas Santiago
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, CA, USA
| | - Barbara J Strupp
- Division of Nutritional Sciences, and Department of Psychology, Cornell University, Ithaca, NY, USA
| | - Donald R Smith
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, CA, USA.
| |
Collapse
|
29
|
Jian-Min C, Zhi-Yuan W, Ke L, Cheng Z, Shi-Xuan W, Yi-Wei C, Guan-Yi L, Rui S, Xiao-Mei Z, Jin L, Ning W. Assessment of lisdexamfetamine on executive function in rats: A translational cognitive research. Exp Neurol 2024; 374:114718. [PMID: 38336285 DOI: 10.1016/j.expneurol.2024.114718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/13/2024] [Accepted: 02/06/2024] [Indexed: 02/12/2024]
Abstract
Executive function, including working memory, attention and inhibitory control, is crucial for decision making, thinking and planning. Lisdexamfetamine, the prodrug of d-amphetamine, has been approved for treating attention-deficit hyperactivity disorder and binge eating disorder, but whether it improves executive function under non-disease condition, as well as the underlying pharmacokinetic and neurochemical properties, remains unclear. Here, using trial unique non-matching to location task and five-choice serial reaction time task of rats, we found lisdexamfetamine (p.o) enhanced spatial working memory and sustained attention under various cognitive load conditions, while d-amphetamine (i.p) only improved these cognitive performances under certain high cognitive load condition. Additionally, lisdexamfetamine evoked less impulsivity than d-amphetamine, indicating lower adverse effect on inhibitory control. In vivo pharmacokinetics showed lisdexamfetamine produced a relative stable and lasting release of amphetamine base both in plasma and in brain tissue, whereas d-amphetamine injection elicited rapid increase and dramatical decrease in amphetamine base levels. Microdialysis revealed lisdexamfetamine caused lasting release of dopamine within the medial prefrontal cortex (mPFC), whereas d-amphetamine produced rapid increase followed by decline to dopamine level. Moreover, lisdexamfetamine elicited more obvious efflux of noradrenaline than that of d-amphetamine. The distinct neurochemical profiles may be partly attributed to the different action of two drugs to membranous catecholamine transporters level within mPFC, detecting by Western Blotting. Taken together, due to its certain pharmacokinetic and catecholamine releasing profiles, lisdexamfetamine produced better pharmacological action to improving executive function. Our finding provided valuable evidence on the ideal pharmacokinetic and neurochemical characteristics of amphetamine-type psychostimulants in cognition enhancement.
Collapse
Affiliation(s)
- Chen Jian-Min
- Beijing Key Laboratory of Neuropsychopharmacology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing 100850, China; Department of Pharmacy, Nanxishan Hospital of Guangxi Zhuang Autonomous Region, 46th Chongxin Road, Guilin 541000, China
| | - Wang Zhi-Yuan
- Beijing Key Laboratory of Neuropsychopharmacology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing 100850, China
| | - Liu Ke
- Beijing Key Laboratory of Neuropsychopharmacology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing 100850, China
| | - Zhang Cheng
- Beijing Key Laboratory of Neuropsychopharmacology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing 100850, China
| | - Wu Shi-Xuan
- Beijing Key Laboratory of Neuropsychopharmacology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing 100850, China
| | - Cao Yi-Wei
- Beijing Key Laboratory of Neuropsychopharmacology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing 100850, China
| | - Lu Guan-Yi
- Beijing Key Laboratory of Neuropsychopharmacology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing 100850, China
| | - Song Rui
- Beijing Key Laboratory of Neuropsychopharmacology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing 100850, China
| | - Zhuang Xiao-Mei
- Beijing Key Laboratory of Neuropsychopharmacology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing 100850, China.
| | - Li Jin
- Beijing Key Laboratory of Neuropsychopharmacology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing 100850, China
| | - Wu Ning
- Beijing Key Laboratory of Neuropsychopharmacology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing 100850, China.
| |
Collapse
|
30
|
Benn A, Robinson ESJ. Development of a novel rodent rapid serial visual presentation task reveals dissociable effects of stimulant versus nonstimulant treatments on attentional processes. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2024; 24:351-367. [PMID: 38253774 PMCID: PMC11039523 DOI: 10.3758/s13415-023-01152-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/19/2023] [Indexed: 01/24/2024]
Abstract
The rapid serial visual presentation (RSVP) task and continuous performance tasks (CPT) are used to assess attentional impairments in patients with psychiatric and neurological conditions. This study developed a novel touchscreen task for rats based on the structure of a human RSVP task and used pharmacological manipulations to investigate their effects on different performance measures. Normal animals were trained to respond to a target image and withhold responding to distractor images presented within a continuous sequence. In a second version of the task, a false-alarm image was included, so performance could be assessed relative to two types of nontarget distractors. The effects of acute administration of stimulant and nonstimulant treatments for ADHD (amphetamine and atomoxetine) were tested in both tasks. Methylphenidate, ketamine, and nicotine were tested in the first task only. Amphetamine made animals more impulsive and decreased overall accuracy but increased accuracy when the target was presented early in the image sequence. Atomoxetine improved accuracy overall with a specific reduction in false-alarm responses and a shift in the attentional curve reflecting improved accuracy for targets later in the image sequence. However, atomoxetine also slowed responding and increased omissions. Ketamine, nicotine, and methylphenidate had no specific effects at the doses tested. These results suggest that stimulant versus nonstimulant treatments have different effects on attention and impulsive behaviour in this rat version of an RSVP task. These results also suggest that RSVP-like tasks have the potential to be used to study attention in rodents.
Collapse
Affiliation(s)
- Abigail Benn
- University of Bristol, School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD, UK
| | - Emma S J Robinson
- University of Bristol, School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD, UK.
| |
Collapse
|
31
|
Setlow B, Burns MR. Pictures at an exhibition: A commentary on Benn & Robinson (2024). COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2024; 24:368-369. [PMID: 38472614 DOI: 10.3758/s13415-024-01174-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/22/2024] [Indexed: 03/14/2024]
Affiliation(s)
- Barry Setlow
- Department of Psychiatry, University of Florida, Gainesville, FL, USA.
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA.
- Center for Addiction Research and Education, University of Florida, Gainesville, FL, USA.
| | - Matthew R Burns
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA
- Department of Neurology, University of Florida, Gainesville, FL, USA
- Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA
| |
Collapse
|
32
|
Lucon-Xiccato T. Inhibitory control in teleost fish: a methodological and conceptual review. Anim Cogn 2024; 27:27. [PMID: 38530456 PMCID: PMC10965611 DOI: 10.1007/s10071-024-01867-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 03/09/2024] [Accepted: 03/11/2024] [Indexed: 03/28/2024]
Abstract
Inhibitory control (IC) plays a central role in behaviour control allowing an individual to resist external lures and internal predispositions. While IC has been consistently investigated in humans, other mammals, and birds, research has only recently begun to explore IC in other vertebrates. This review examines current literature on teleost fish, focusing on both methodological and conceptual aspects. I describe the main paradigms adopted to study IC in fish, identifying well-established tasks that fit various research applications and highlighting their advantages and limitations. In the conceptual analysis, I identify two well-developed lines of research with fish examining IC. The first line focuses on a comparative approach aimed to describe IC at the level of species and to understand the evolution of interspecific differences in relation to ecological specialisation, brain size, and factors affecting cognitive performance. Findings suggest several similarities between fish and previously studied vertebrates. The second line of research focuses on intraspecific variability of IC. Available results indicate substantial variation in fish IC related to sex, personality, genetic, age, and phenotypic plasticity, aligning with what is observed with other vertebrates. Overall, this review suggests that although data on teleosts are still scarce compared to mammals, the contribution of this group to IC research is already substantial and can further increase in various disciplines including comparative psychology, cognitive ecology, and neurosciences, and even in applied fields such as psychiatry research.
Collapse
Affiliation(s)
- Tyrone Lucon-Xiccato
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy.
| |
Collapse
|
33
|
Cylinder DM, van Zundert AA, Solt K, van Swinderen B. Time to Wake Up! The Ongoing Search for General Anesthetic Reversal Agents. Anesthesiology 2024; 140:610-627. [PMID: 38349760 PMCID: PMC10868874 DOI: 10.1097/aln.0000000000004846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
How general anesthetics work remains a topic of ongoing study. A parallel field of research has sought to identify methods to reverse general anesthesia. Reversal agents could shorten patients' recovery time and potentially reduce the risk of postoperative complications. An incomplete understanding of the mechanisms of general anesthesia has hampered the pursuit for reversal agents. Nevertheless, the search for reversal agents has furthered understanding of the mechanisms underlying general anesthesia. The study of potential reversal agents has highlighted the importance of rigorous criteria to assess recovery from general anesthesia in animal models, and has helped identify key arousal systems (e.g., cholinergic, dopaminergic, and orexinergic systems) relevant to emergence from general anesthesia. Furthermore, the effects of reversal agents have been found to be inconsistent across different general anesthetics, revealing differences in mechanisms among these drugs. The presynapse and glia probably also contribute to general anesthesia recovery alongside postsynaptic receptors. The next stage in the search for reversal agents will have to consider alternate mechanisms encompassing the tripartite synapse.
Collapse
Affiliation(s)
- Drew M. Cylinder
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - André A.J. van Zundert
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
- Department of Anaesthesia and Perioperative Medicine, Royal Brisbane and Women’s Hospital, The University of Queensland, Brisbane, QLD, Australia
| | - Ken Solt
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, U.S.A
- Department of Anaesthesia, Harvard Medical School, Boston, MA, U.S.A
| | - Bruno van Swinderen
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
34
|
Starski P, Siegle A, Hopf FW. Engagement for alcohol escalates in the 5-choice serial reaction time task after intermittent access. Alcohol 2024; 115:79-92. [PMID: 38286210 PMCID: PMC11278111 DOI: 10.1016/j.alcohol.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/16/2024] [Accepted: 01/21/2024] [Indexed: 01/31/2024]
Abstract
Excessive intake plays a significant role in the development of alcohol use disorder and impacts 15 million Americans annually, with approximately 88 000 dying from alcohol related deaths. Several facets we contribute to alcohol use disorder include impulsivity, motivation, and attention. Previous studies have used the 5-Choice Serial Reaction Time Task (5-Choice) to analyze these types of behaviors using sugar, but recently we have published using 10% alcohol as the reward. This study analyzed 48 mice that were trained to respond for alcohol in the 5-Choice. All mice distributed and analyzed first by alcohol preference and then by consumption. Here, we became interested in a new classification called "engagement". High-engaged and low-engaged mice were determined by the number of correct responses during final Late-Stage training sessions. Interestingly, during Early-Stage training, the mice began to separate themselves into two groups based on their interaction with the task. Throughout both training stages, high-engaged mice displayed a greater number of trials and correct responses, as well as a lower percentage of omissions compared to low-engaged mice. Following three weeks of intermittent access homecage drinking, low-engaged mice showed greater increase in perseverative responding relative to high-engaged. Additionally, low-engaged mice decreased their reward and correct latencies compared to high-engaged mice suggesting an increase in motivation for alcohol. Overall, engagement analysis presents two clearly different groups, with only one being motivated to work for alcohol. These two distinct phenotypes in the 5-Choice could be used to model alcohol motivated behavior, which could help us further understand alcohol use disorder.
Collapse
Affiliation(s)
- Phillip Starski
- Dept. Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Addyson Siegle
- Dept. Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - F Woodward Hopf
- Dept. Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
35
|
Magnard R, Fouyssac M, Vachez YM, Cheng Y, Dufourd T, Carcenac C, Boulet S, Janak PH, Savasta M, Belin D, Carnicella S. Pramipexole restores behavioral inhibition in highly impulsive rats through a paradoxical modulation of frontostriatal networks. Transl Psychiatry 2024; 14:86. [PMID: 38336862 PMCID: PMC10858232 DOI: 10.1038/s41398-024-02804-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 01/18/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
Impulse control disorders (ICDs), a wide spectrum of maladaptive behaviors which includes pathological gambling, hypersexuality and compulsive buying, have been recently suggested to be triggered or aggravated by treatments with dopamine D2/3 receptor agonists, such as pramipexole (PPX). Despite evidence showing that impulsivity is associated with functional alterations in corticostriatal networks, the neural basis of the exacerbation of impulsivity by PPX has not been elucidated. Here we used a hotspot analysis to assess the functional recruitment of several corticostriatal structures by PPX in male rats identified as highly (HI), moderately impulsive (MI) or with low levels of impulsivity (LI) in the 5-choice serial reaction time task (5-CSRTT). PPX dramatically reduced impulsivity in HI rats. Assessment of the expression pattern of the two immediate early genes C-fos and Zif268 by in situ hybridization subsequently revealed that PPX resulted in a decrease in Zif268 mRNA levels in different striatal regions of both LI and HI rats accompanied by a high impulsivity specific reduction of Zif268 mRNA levels in prelimbic and cingulate cortices. PPX also decreased C-fos mRNA levels in all striatal regions of LI rats, but only in the dorsolateral striatum and nucleus accumbens core (NAc Core) of HI rats. Structural equation modeling further suggested that the anti-impulsive effect of PPX was mainly attributable to the specific downregulation of Zif268 mRNA in the NAc Core. Altogether, our results show that PPX restores impulse control in highly impulsive rats by modulation of limbic frontostriatal circuits.
Collapse
Affiliation(s)
- Robin Magnard
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, 38000, Grenoble, France.
| | - Maxime Fouyssac
- Department of Psychology, University of Cambridge, Downing Street, CB2 3EB, Cambridge, United Kingdom
| | - Yvan M Vachez
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, 38000, Grenoble, France
| | - Yifeng Cheng
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Thibault Dufourd
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, 38000, Grenoble, France
| | - Carole Carcenac
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, 38000, Grenoble, France
| | - Sabrina Boulet
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, 38000, Grenoble, France
| | - Patricia H Janak
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD, 21218, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Marc Savasta
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, 38000, Grenoble, France
| | - David Belin
- Department of Psychology, University of Cambridge, Downing Street, CB2 3EB, Cambridge, United Kingdom
| | - Sebastien Carnicella
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, 38000, Grenoble, France
| |
Collapse
|
36
|
Ernyey AJ, Kassai F, Kozma K, Plangár I, Somfai Z, Miklya I, Gyertyán I. Age-related decline of various cognitive functions in well-experienced male rats treated with the putative anti-aging compound (2R)-1-(1-benzofuran-2-yl)-N-propylpentane-2-amine ((-)BPAP). GeroScience 2024; 46:417-429. [PMID: 37306892 PMCID: PMC10828437 DOI: 10.1007/s11357-023-00821-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 05/09/2023] [Indexed: 06/13/2023] Open
Abstract
Aging-associated cognitive disorders lack proper medication. To meet this need translation-wise, modification of the animal models is also required. In the present study, effect of the putative anti-aging compound (2R)-1-(1-benzofuran-2-yl)-N-propylpentane-2-amine ((-)BPAP, a deprenyl derivative) on age-related cognitive decline was investigated in experienced, aged Long-Evans rats. During their lifetime, animals had acquired knowledge in various cognitive assays. Their performance in these tests was then parallel followed from the age of 27 months until their death meanwhile half of them were treated with BPAP. Cognitive performance in various tasks showed different sensitivities/resistances to age-related impairment. Pot jumping performance (motor skill-learning) started to impair first, at 21 months of age, followed by decreasing performance in five-choice serial reaction time task (attention) at 26 months. Navigation performance in Morris water maze (spatial learning) started to decline at 31 months. Performance in a cooperation task (social cognition) started to decline the latest, at 34 months. Our findings suggest that in this process, the primary factor was the level of motivation to be engaged with the task and not losing the acquired knowledge. The average lifespan of the tested rat population was 36 months. BPAP could not improve the cognitive performance; neither could it prolong lifespan. A possible reason might be that dietary restriction and lifelong cognitive engagement had beneficial effects on cognitive capabilities and lifespan creating a "ceiling effect" for further improvement. The results confirmed that experienced animals provide a translationally relevant model to study age-related cognitive decline and measure the effect of putative anti-aging compounds.
Collapse
Affiliation(s)
- Aliz Judit Ernyey
- MTA-SE NAP B Cognitive Translational Behavioural Pharmacology Group, Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad Tér 4, H-1089, Budapest, Hungary.
| | - Ferenc Kassai
- MTA-SE NAP B Cognitive Translational Behavioural Pharmacology Group, Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad Tér 4, H-1089, Budapest, Hungary
| | - Kata Kozma
- MTA-SE NAP B Cognitive Translational Behavioural Pharmacology Group, Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad Tér 4, H-1089, Budapest, Hungary
| | - Imola Plangár
- MTA-SE NAP B Cognitive Translational Behavioural Pharmacology Group, Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad Tér 4, H-1089, Budapest, Hungary
| | - Zsuzsa Somfai
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad Tér 4, 1089, Budapest, Hungary
| | - Ildikó Miklya
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad Tér 4, 1089, Budapest, Hungary
| | - István Gyertyán
- MTA-SE NAP B Cognitive Translational Behavioural Pharmacology Group, Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad Tér 4, H-1089, Budapest, Hungary
| |
Collapse
|
37
|
Hynes TJ, Chernoff CS, Hrelja KM, Tse MTL, Avramidis DK, Lysenko-Martin MR, Calderhead L, Kaur S, Floresco SB, Winstanley CA. Win-Paired Cues Modulate the Effect of Dopamine Neuron Sensitization on Decision Making and Cocaine Self-administration: Divergent Effects Across Sex. Biol Psychiatry 2024; 95:220-230. [PMID: 37673411 DOI: 10.1016/j.biopsych.2023.08.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/10/2023] [Accepted: 08/22/2023] [Indexed: 09/08/2023]
Abstract
BACKGROUND Both psychostimulant use and engagement with probabilistic schedules of reward sensitize the mesocorticolimbic dopamine (DA) system. Such behaviors may act synergistically to explain the high comorbidity between stimulant use and gambling disorder. The salient audiovisual stimuli of modern electronic gambling may exacerbate the situation. METHODS To probe these interactions, we sensitized ventral tegmental area DA neurons via chronic chemogenetic stimulation while rats (n = 134) learned a rat gambling task in the presence or absence of casino-like cues. The same rats then learned to self-administer cocaine. In a separate cohort (n = 25), we confirmed that our chemogenetic methods sensitized the locomotor response to cocaine and potentiated phasic excitability of ventral tegmental area DA neurons through in vivo electrophysiological recordings. RESULTS In the absence of cues, sensitization promoted risk taking in both sexes. When rewards were cued, sensitization expedited the development of a risk-preferring phenotype in males while attenuating cue-induced risk taking in females. CONCLUSIONS While these results provide further confirmation that ventral tegmental area DA neurons critically modulate risky decision making, they also reveal stark sex differences in the decisional impact that dopaminergic signals exert when winning outcomes are cued. As previously observed, risky decision making on the cued rat gambling task increased as both males and females learned to self-administer cocaine. The combination of DA sensitization and win-paired cues while gambling led to significantly greater cocaine taking, but these rats did not show any increase in risky choice as a result. Therefore, cocaine and heavily cued gambles may partially substitute for each other once the DA system has been rendered labile through sensitization, thereby compounding addiction risk across modalities.
Collapse
Affiliation(s)
- Tristan J Hynes
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada.
| | - Chloe S Chernoff
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kelly M Hrelja
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Maric T L Tse
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Dimitrios K Avramidis
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Melanie R Lysenko-Martin
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Lucas Calderhead
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Sukhbir Kaur
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Stan B Floresco
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Catharine A Winstanley
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
38
|
Puri BK, Lee GS, Schwarzbach A. Reaction Time in Fibromyalgia Patients. Curr Rheumatol Rev 2024; 20:514-521. [PMID: 38314594 DOI: 10.2174/0115733971276641231201055731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/15/2023] [Accepted: 10/23/2023] [Indexed: 02/06/2024]
Abstract
BACKGROUND Fibromyalgia has unknown aetiology and is associated with reduced information processing speed and therefore prolonged reaction time. However, the processes underlying this are unknown. OBJECTIVES First, to compare the reaction time in a cohort of fibromyalgia patients and a matched group of normal controls. Second, to assess whether detailed symptoms of pain and autonomic function, as well as measures of tinnitus, fatigue, daytime sleepiness and Mycoplasma pneumoniae infection are predictors of reaction time in fibromyalgia. METHODS The between-groups mean serial five-choice reaction time difference was assessed in a cohort of fibromyalgia patients and in a matched group of normal controls in an analytical casecontrolled study. With the mean serial five-choice reaction time as the dependent variable for the fibromyalgia group, a mixed stepwise multiple linear regression was performed with inputs relating to pain, dysautonomia, tinnitus, fatigue, daytime sleepiness and Mycoplasma pneumoniae infection. RESULTS The mean (standard error) serial five-choice reaction time for the fibromyalgia group was 448.4 (23.0) ms, compared with 386.3 (8.3) ms for the control group (p = 0.007). The final multiple linear regression model (p < 0.001; adjusted R2 = 0.772) contained 13 predictors: eight sensory pain and three affective pain parameters, and Mycoplasma pneumoniae IgG and IgA assay results. CONCLUSION Certain sensory and affective pain parameters, as well as Mycoplasma pneumoniae infection, appear to be predictors of reaction time in fibromyalgia. Further research into the pathophysiological mechanisms by which they affect information processing is warranted and may shed light on the aetiology of fibromyalgia.
Collapse
Affiliation(s)
- Basant K Puri
- Department of Molecular Biology and Medicine, Faculty of Health and Well-Being, University of Winchester & C.A.R., Cambridge, UK
| | - Gary S Lee
- Department of Psychology, University of Southampton, Southampton, UK
| | | |
Collapse
|
39
|
Jones JA, Belin-Rauscent A, Jupp B, Fouyssac M, Sawiak SJ, Zuhlsdorff K, Zhukovsky P, Hebdon L, Velazquez Sanchez C, Robbins TW, Everitt BJ, Belin D, Dalley JW. Neurobehavioral Precursors of Compulsive Cocaine Seeking in Dual Frontostriatal Circuits. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2024; 4:194-202. [PMID: 38298793 PMCID: PMC10829640 DOI: 10.1016/j.bpsgos.2023.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/04/2023] [Accepted: 06/09/2023] [Indexed: 02/02/2024] Open
Abstract
Background Only some individuals who use drugs recreationally eventually develop a substance use disorder, characterized in part by the rigid engagement in drug foraging behavior (drug seeking), which is often maintained in the face of adverse consequences (i.e., is compulsive). The neurobehavioral determinants of this individual vulnerability have not been fully elucidated. Methods Using a prospective longitudinal study involving 39 male rats, we combined multidimensional characterization of behavioral traits of vulnerability to stimulant use disorder (impulsivity and stickiness) and resilience (sign tracking and sensation seeking/locomotor reactivity to novelty) with magnetic resonance imaging to identify the structural and functional brain correlates of the later emergence of compulsive drug seeking in drug-naïve subjects. We developed a novel behavioral procedure to investigate the individual tendency to persist in drug-seeking behavior in the face of punishment in a drug-free state in subjects with a prolonged history of cocaine seeking under the control of the conditioned reinforcing properties of a drug-paired Pavlovian conditioned stimulus. Results In drug-naïve rats, the tendency to develop compulsive cocaine seeking was characterized by behavioral stickiness-related functional hypoconnectivity between the prefrontal cortex and posterior dorsomedial striatum in combination with impulsivity-related structural alterations in the infralimbic cortex, anterior insula, and nucleus accumbens. Conclusions These findings show that the vulnerability to developing compulsive cocaine-seeking behavior stems from preexisting structural or functional changes in two distinct corticostriatal systems that underlie deficits in impulse control and goal-directed behavior.
Collapse
Affiliation(s)
- Jolyon A. Jones
- Department of Psychology, University of Cambridge, Cambridge, United Kingdom
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Downing Site, Cambridge, United Kingdom
| | - Aude Belin-Rauscent
- Department of Psychology, University of Cambridge, Cambridge, United Kingdom
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Downing Site, Cambridge, United Kingdom
| | - Bianca Jupp
- Department of Neurosciences, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Maxime Fouyssac
- Department of Psychology, University of Cambridge, Cambridge, United Kingdom
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Downing Site, Cambridge, United Kingdom
| | - Stephen J. Sawiak
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Downing Site, Cambridge, United Kingdom
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Katharina Zuhlsdorff
- Department of Psychology, University of Cambridge, Cambridge, United Kingdom
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Downing Site, Cambridge, United Kingdom
| | - Peter Zhukovsky
- Department of Psychology, University of Cambridge, Cambridge, United Kingdom
- Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Lara Hebdon
- Department of Psychology, University of Cambridge, Cambridge, United Kingdom
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Downing Site, Cambridge, United Kingdom
| | - Clara Velazquez Sanchez
- Department of Psychology, University of Cambridge, Cambridge, United Kingdom
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Downing Site, Cambridge, United Kingdom
| | - Trevor W. Robbins
- Department of Psychology, University of Cambridge, Cambridge, United Kingdom
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Downing Site, Cambridge, United Kingdom
| | - Barry J. Everitt
- Department of Psychology, University of Cambridge, Cambridge, United Kingdom
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Downing Site, Cambridge, United Kingdom
| | - David Belin
- Department of Psychology, University of Cambridge, Cambridge, United Kingdom
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Downing Site, Cambridge, United Kingdom
| | - Jeffrey W. Dalley
- Department of Psychology, University of Cambridge, Cambridge, United Kingdom
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Downing Site, Cambridge, United Kingdom
- Department of Psychiatry, Herschel Smith Building for Brain and Mind Sciences, Forvie Site, Cambridge, United Kingdom
| |
Collapse
|
40
|
Zheng HY, Chen YM, Xu Y, Cen C, Wang Y. Excitatory neurons in the lateral parabrachial nucleus mediate the interruptive effect of inflammatory pain on a sustained attention task. J Transl Med 2023; 21:896. [PMID: 38072957 PMCID: PMC10712130 DOI: 10.1186/s12967-023-04583-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 09/30/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Attentional deficits are among the most common pain-induced cognitive disorders. Pain disrupts attention and may excessively occupy attentional resources in pathological states, leading to daily function impairment and increased disability. However, the neural circuit mechanisms by which pain disrupts attention are incompletely understood. METHODS We used a three-choice serial reaction time task (3CSRTT) to construct a sustained-attention task model in male C57BL/6J mice. Formalin or complete Freund's adjuvant was injected into a paw to establish an inflammatory pain model. We measured changes in 3CSRTT performance in the two inflammatory pain models, and investigated the neural circuit mechanisms of pain-induced attentional deficits. RESULTS Acute inflammatory pain impaired 3CSRTT performance, while chronic inflammatory pain had no effect. Either inhibition of the ascending pain pathway by blockade of the conduction of nociceptive signals in the sciatic nerve using the local anesthetic lidocaine or chemogenetic inhibition of Ca2+/calmodulin-dependent protein kinase IIα (CaMKIIα) neurons in the lateral parabrachial nucleus (LPBN) attenuated the acute inflammatory pain-induced impairment of 3CSRTT performance, while chemogenetic activation of CaMKIIα neurons in the LPBN disrupted the 3CSRTT. Furthermore, the activity of CaMKIIα neurons in the LPBN was significantly lower on Day 2 after complete Freund's adjuvant injection than on the day of injection, which correlated with the recovery of 3CSRTT performance during chronic inflammatory pain. CONCLUSIONS Activation of excitatory neurons in the LPBN is a mechanism by which acute inflammatory pain disrupts sustained attention. This finding has implications for the treatment of pain and its cognitive comorbidities.
Collapse
Affiliation(s)
- Huan-Yu Zheng
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, China
| | - Yu-Meng Chen
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, China
| | - Yao Xu
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, China
| | - Cheng Cen
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, China.
| | - Yun Wang
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, China.
- PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, China.
| |
Collapse
|
41
|
Starski P, Siegle A, Hopf F. Engagement for Alcohol Escalates in the 5-Choice Serial Reaction Time Task After Intermittent Access. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.30.569396. [PMID: 38077076 PMCID: PMC10705492 DOI: 10.1101/2023.11.30.569396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Uncontrollable binge drinking is becoming an increasingly prevalent issue in our society. This is a factor that plays a role in the development of alcohol use disorder (AUD). AUD impacts 15 million Americans annually, with approximately 88,000 dying from alcohol related deaths. There are several aspects of AUD that encourage a strong dependence on alcohol. Impulsivity, motivation, and attention are the primary behavioral facets we contribute to AUD. Many past studies have used the 5-Choice Serial Reaction Time Task (5-Choice) to analyze these types of behaviors using sugar as the reward. We have recently published a study where alcohol was used as a reward in the 5-Choice. 48 mice were trained to respond for alcohol in the 5-Choice, and the analyses for these animals were originally categorized by their alcohol preference and consumption. Upon looking at the data, we became more interested in a new way to classify these mice into groups. High engaged (HE) and low engaged (LE) mice were classified based on their number of correct responses in the last five late-stage sessions. During early-stage training, mice began to separate themselves into two groups based on their interaction with the task. The high-engaged (HE) mice were much more engaged with the task by having a high number of trials and correct responses, as well as a much lower percentage of omissions. The low engaged (LE) mice were not as engaged, this was apparent because of their lower number of trials and correct responses. They also had a much higher percentage of omissions in comparison to HE mice. LE mice presented no significant changes in late-stage training, while HE mice began responding and engaging more. These mice went through a period of intermittent access (IA), where they were allowed to drink alcohol in their cage for 3 weeks. After intermittent access, LE mice increased their responding which suggests an increase in motivation for alcohol as a reward. Engagement analysis presents two clearly different groups, one being motivated to work for alcohol and the other not wanting to work for this reward. These two distinct phenotypes in the 5-Choice could be used to model alcohol motivated behavior, which could help us further understand AUD.
Collapse
Affiliation(s)
- Phillip Starski
- Dept. Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Addyson Siegle
- Dept. Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Frederic Hopf
- Dept. Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
42
|
Janus A, Lustyk K, Pytka K. MK-801 and cognitive functions: Investigating the behavioral effects of a non-competitive NMDA receptor antagonist. Psychopharmacology (Berl) 2023; 240:2435-2457. [PMID: 37725119 PMCID: PMC10640442 DOI: 10.1007/s00213-023-06454-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 08/21/2023] [Indexed: 09/21/2023]
Abstract
RATIONALE MK-801 (dizocilpine) is a non-competitive NMDA receptor antagonist originally explored for anticonvulsant potential. Despite its original purpose, its amnestic properties led to the development of pivotal models of various cognitive impairments widely employed in research and greatly impacting scientific progress. MK-801 offers several advantages; however, it also presents drawbacks, including inducing dose-dependent hyperlocomotion or ambiguous effects on anxiety, which can impact the interpretation of behavioral research results. OBJECTIVES The present review attempts to summarize and discuss the effects of MK-801 on different types of memory and cognitive functions in animal studies. RESULTS A plethora of behavioral research suggests that MK-801 can detrimentally impact cognitive functions. The specific effect of this compound is influenced by variables including developmental stage, gender, species, strain, and, crucially, the administered dose. Notably, when considering the undesirable effects of MK-801, doses up to 0.1 mg/kg were found not to induce stereotypy or hyperlocomotion. CONCLUSION Dizocilpine continues to be of significant importance in preclinical research, facilitating the exploration of various procognitive therapeutic agents. However, given its potential undesirable effects, it is imperative to meticulously determine the appropriate dosages and conduct supplementary evaluations for any undesirable outcomes, which could complicate the interpretation of the findings.
Collapse
Affiliation(s)
- Anna Janus
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Krakow, Poland
| | - Klaudia Lustyk
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Krakow, Poland
| | - Karolina Pytka
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Krakow, Poland.
| |
Collapse
|
43
|
Chan MMY, Choi CXT, Tsoi TCW, Shea CKS, Yiu KWK, Han YMY. Effects of multisession cathodal transcranial direct current stimulation with cognitive training on sociocognitive functioning and brain dynamics in autism: A double-blind, sham-controlled, randomized EEG study. Brain Stimul 2023; 16:1604-1616. [PMID: 37918630 DOI: 10.1016/j.brs.2023.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/15/2023] [Accepted: 10/23/2023] [Indexed: 11/04/2023] Open
Abstract
BACKGROUND Few treatment options are available for targeting core symptoms of autism spectrum disorder (ASD). The development of treatments that target common neural circuit dysfunctions caused by known genetic defects, namely, disruption of the excitation/inhibition (E/I) balance, is promising. Transcranial direct current stimulation (tDCS) is capable of modulating the E/I balance in healthy individuals, yet its clinical and neurobiological effects in ASD remain elusive. OBJECTIVE This double-blind, randomized, sham-controlled trial investigated the effects of multisession cathodal prefrontal tDCS coupled with online cognitive remediation on social functioning, information processing efficiency and the E/I balance in ASD patients aged 14-21 years. METHODS Sixty individuals were randomly assigned to receive either active or sham tDCS (10 sessions in total, 20 min/session, stimulation intensity: 1.5 mA, cathode: F3, anode: Fp2, size of electrodes: 25 cm2) combined with 20 min of online cognitive remediation. Social functioning, information processing efficiency during cognitive tasks, and theta- and gamma-band E/I balance were measured one day before and after the treatment. RESULTS Compared to sham tDCS, active cathodal tDCS was effective in enhancing overall social functioning [F(1, 58) = 6.79, p = .012, ηp2 = 0.105, 90% CI: (0.013, 0.234)] and information processing efficiency during cognitive tasks [F(1, 58) = 10.07, p = .002, ηp2 = 0.148, 90% CI: (0.034, 0.284)] in these individuals. Electroencephalography data showed that this cathodal tDCS protocol was effective in reducing the theta-band E/I ratio of the cortical midline structures [F(1, 58) = 4.65, p = .035, ηp2 = 0.074, 90% CI: (0.010, 0.150)] and that this reduction significantly predicted information processing efficiency enhancement (b = -2.546, 95% BCa CI: [-4.979, -0.113], p = .041). CONCLUSION Our results support the use of multisession cathodal tDCS over the left dorsolateral prefrontal cortex combined with online cognitive remediation for reducing the elevated theta-band E/I ratio in sociocognitive information processing circuits in ASD patients, resulting in more adaptive regulation of global brain dynamics that is associated with enhanced information processing efficiency after the intervention.
Collapse
Affiliation(s)
- Melody M Y Chan
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region; Queensland Brain Institute, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Coco X T Choi
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region
| | - Tom C W Tsoi
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region
| | - Caroline K S Shea
- Alice Ho Miu Ling Nethersole Hospital, Hospital Authority, Hong Kong Special Administrative Region; Department of Psychiatry, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region
| | - Klaire W K Yiu
- Alice Ho Miu Ling Nethersole Hospital, Hospital Authority, Hong Kong Special Administrative Region
| | - Yvonne M Y Han
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region; University Research Facility in Behavioral and Systems Neuroscience (UBSN), The Hong Kong Polytechnic University, Hong Kong Special Administrative Region.
| |
Collapse
|
44
|
Bailey SJ, Bast T, Chaby L, Kinon BJ, Harte MK, Mead S, Moloney RD, Ragan I, Stanford SC, Tricklebank MD, Zervas M, Ajram LA. Improving Translational Relevance in Preclinical Psychopharmacology (iTRIPP). J Psychopharmacol 2023; 37:1051-1057. [PMID: 37522187 PMCID: PMC10647891 DOI: 10.1177/02698811231182607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
Animal models are important in preclinical psychopharmacology to study mechanisms and potential treatments for psychiatric disorders. A working group of 14 volunteers, comprising an international team of researchers from academia and industry, convened in 2021 to discuss how to improve the translational relevance and interpretation of findings from animal models that are used in preclinical psychopharmacology. The following paper distils the outcomes of the working group's discussions into 10 key considerations for the planning and reporting of behavioural studies in animal models relevant to psychiatric disorders. These form the iTRIPP guidelines (Improving Translational Relevance In Preclinical Psychopharmacology). These guidelines reflect the key considerations that the group thinks will likely have substantial impact in terms of improving the translational relevance of behavioural studies in animal models that are used to study psychiatric disorders and their treatment. They are relevant to the research community when drafting and reviewing manuscripts, presentations and grant applications. The iTRIPP guidelines are intended to complement general recommendations for planning and reporting animal studies that have been published elsewhere, by enabling researchers to fully consider the most appropriate animal model for the research purpose and to interpret their findings appropriately. This in turn will increase the clinical benefit of such research and is therefore important not only for the scientific community but also for patients and the lay public.
Collapse
Affiliation(s)
- Sarah J Bailey
- Department of Life Sciences, University of Bath, Bath, UK
| | - Tobias Bast
- School of Psychology and Neuroscience@Nottingham, University of Nottingham, Nottingham, UK
| | - Lauren Chaby
- Moderna, Cambridge, MA, USA
- Cohen Veterans Bioscience, New York, NY, USA
| | - Bruce J Kinon
- Karuna Therapeutics, Boston, MA, USA
- Cyclerion Therapeutics, Cambridge, MA, USA
| | - Michael K Harte
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Sally Mead
- Independent Lived Experience Consultant, Manchester, UK
| | - Rachel D Moloney
- School of Pharmacy, Department of Pharmacology and Therapeutics, APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Ian Ragan
- Independent Consultant for the National Centre for the Replacement, Refinement & Reduction of Animals in Research (NC3Rs)
| | - S Clare Stanford
- Department of Neuroscience, Physiology and Pharmacology University College London, London, UK
| | - Mark D Tricklebank
- Centre for Neuroimaging Sciences, Institute of Psychiatry Psychology and Neuroscience, King’s College London, London, UK
| | - Mark Zervas
- Cohen Veterans Bioscience, New York, NY, USA
| | | |
Collapse
|
45
|
Rahbarnia A, Li Z, Fletcher PJ. Effects of psilocybin, the 5-HT 2A receptor agonist TCB-2, and the 5-HT 2A receptor antagonist M100907 on visual attention in male mice in the continuous performance test. Psychopharmacology (Berl) 2023:10.1007/s00213-023-06474-9. [PMID: 37855864 DOI: 10.1007/s00213-023-06474-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 09/25/2023] [Indexed: 10/20/2023]
Abstract
RATIONALE Neuropsychiatric disorders such as depression are characterized in part by attention deficits. Attention is modulated by the serotonin (5-HT) neurotransmitter system. The 5-HT2A agonist and hallucinogen psilocybin (PSI) is a promising treatment for disorders characterized by attention changes. However, few studies have investigated PSI's direct effect on attention. OBJECTIVE Using the rodent continuous performance task (CPT), we assessed PSI's effect on attention. We also evaluated the impact of 5-HT2A receptor agonist TCB-2 and antagonist M100907 for comparative purposes. METHODS In the CPT, mice learned to distinguish visual targets from non-targets for milkshake reward. Performance was then tested following injections of PSI (0.3, 1, and 3 mg/kg), TCB-2 (0.3, 1, and 3 mg/kg), or M100907 (0.1, 0.3, and 1 mg/kg). Subsequently, drug effects were then evaluated using a more difficult CPT with variable stimulus durations. Mice were then tested on the CPT following repeated PSI injections. Drug effects on locomotor activity were also measured. RESULTS In the CPT, all three drugs reduced hit and false alarm rate and induced conservative responding. PSI also reduced target discrimination. These effects were seen primarily at doses that also significantly reduced locomotor activity. No drug effects were seen on the more difficult CPT or following repeated PSI injections. CONCLUSIONS Psilocybin, TCB-2, and M100907 impaired performance of the CPT. However, this may be in part due to drug-induced locomotor changes. The results provide little support for the idea that psilocybin alters visual attention, or that 5-HT2A receptors modulate this process.
Collapse
Affiliation(s)
- Arya Rahbarnia
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada.
- Department of Psychology, University of Toronto, Toronto, ON, Canada.
| | - Zhaoxia Li
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Paul J Fletcher
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychology, University of Toronto, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
46
|
Zoratto F, Pisa E, Soldati C, Barezzi C, Ottomana AM, Presta M, Santangelo V, Macrì S. Automation at the service of the study of executive functions in preclinical models. Sci Rep 2023; 13:16890. [PMID: 37803045 PMCID: PMC10558442 DOI: 10.1038/s41598-023-43631-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 09/26/2023] [Indexed: 10/08/2023] Open
Abstract
Cognitive flexibility involves the capability to switch between different perspectives and implement novel strategies upon changed circumstances. The Wisconsin Card Sorting Test (in humans) and the Attentional Set-Shifting Task (ASST, in rodents) evaluate individual capability to acquire a reward-associated rule and subsequently disregard it in favour of a new one. Both tasks entail consecutive stages wherein subjects discriminate between: two stimuli of a given category (simple discrimination, SD); the stimuli of SD confounded by an irrelevant stimulus of a different category (compound discrimination, CD); different stimuli belonging to the SD category (intradimensional shift, IDS); and two stimuli of the confounding category (extradimensional shift, EDS). The ASST is labour intensive, not sufficiently standardised, and prone to experimental error. Here, we tested the validity of a new, commercially available, automated version of ASST (OPERON) in two independent experiments conducted in: different mouse strains (C57BL/6 and CD1 mice) to confirm their differential cognitive capabilities (Experiment 1); and an experimental model of chronic stress (administration of corticosterone in the drinking water; Experiment 2). In both experiments, OPERON confirmed the findings obtained through the manual version. Just as in Experiment 1 both versions captured the deficit of C57BL/6 mice on the reversal of the CD (CDR), so also in Experiment 2 they provided analogous evidence that corticosterone treated mice have a remarkable impairment in the IDS. Thus, OPERON capitalises upon automated phenotyping to overcome the limitation of the manual version of the ASST while providing comparable results.
Collapse
Affiliation(s)
- Francesca Zoratto
- Centre for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy
| | - Edoardo Pisa
- Centre for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy
| | - Claudia Soldati
- Centre for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy
| | - Caterina Barezzi
- Centre for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy
| | - Angela Maria Ottomana
- Centre for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy
- Neuroscience Unit, Department of Medicine, University of Parma, Parma, Italy
| | - Martina Presta
- Centre for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy
- Department of Physiology and Pharmacology "Vittorio Erspamer", "Sapienza" University of Rome, Rome, Italy
| | - Valerio Santangelo
- Department of Philosophy, Social Sciences and Education, University of Perugia, Perugia, Italy
- Functional Neuroimaging Laboratory, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Simone Macrì
- Centre for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy.
| |
Collapse
|
47
|
Beaudin SA, Howard S, Santiago N, Strupp BJ, Smith DR. Methylphenidate alleviates cognitive dysfunction from early Mn exposure: Role of catecholaminergic receptors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.27.546786. [PMID: 37873333 PMCID: PMC10592804 DOI: 10.1101/2023.06.27.546786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Environmental manganese (Mn) exposure is associated with impaired attention and psychomotor functioning, as well as impulsivity/hyperactivity in children and adolescents. We have shown previously that developmental Mn exposure can cause these same dysfunctions in a rat model. Methylphenidate (MPH) lessens impairments in attention, impulse control, and sensorimotor function in children, but it is unknown whether MPH ameliorates these dysfunctions when induced by developmental Mn exposure. Here, we sought to (1) determine whether oral MPH treatment ameliorates the lasting attention and sensorimotor impairments caused by developmental Mn exposure, and (2) elucidate the mechanism(s) of Mn neurotoxicity and MPH effectiveness. Rats were given 50 mg Mn/kg/d orally over PND 1-21 and assessed as adults in a series of attention, impulse control and sensorimotor tasks during oral MPH treatment (0, 0.5, 1.5, or 3.0 mg/kg/d). Subsequently, selective catecholaminergic receptor antagonists were administered to gain insight into the mechanism(s) of action of Mn and MPH. Developmental Mn exposure caused persistent attention and sensorimotor impairments. MPH treatment at 0.5 mg/kg/d completely ameliorated the Mn attentional dysfunction, whereas the sensorimotor deficits were ameliorated by the 3.0 mg/kg/d MPH dose. Notably, the MPH benefit on attention was only apparent after prolonged treatment, while MPH efficacy for the sensorimotor deficits emerged early in treatment. Selectively antagonizing D1, D2, or α2A receptors had no effect on the Mn-induced attentional dysfunction or MPH efficacy in this domain. However, antagonism of D2R attenuated the Mn sensorimotor deficits, whereas the efficacy of MPH to ameliorate those deficits was diminished by D1R antagonism. These findings demonstrate that MPH is effective in alleviating the lasting attention and sensorimotor dysfunction caused by developmental Mn exposure, and they clarify the mechanisms underlying developmental Mn neurotoxicity and MPH efficacy. Given that the cause of attention and psychomotor deficits in children is often unknown, these findings have implications for the treatment of environmentally-induced attentional and psychomotor dysfunction in children more broadly.
Collapse
Affiliation(s)
- Stephane A Beaudin
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, Santa Cruz, California, USA
| | - Shanna Howard
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, Santa Cruz, California, USA
| | - Nicholas Santiago
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, Santa Cruz, California, USA
| | - Barbara J Strupp
- Division of Nutritional Sciences, and Department of Psychology, Cornell University, Ithaca, New York, USA
| | - Donald R Smith
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, Santa Cruz, California, USA
| |
Collapse
|
48
|
Olguin SL, Cavanagh JF, Young JW, Brigman JL. Impaired cognitive control after moderate prenatal alcohol exposure corresponds to altered EEG power during a rodent touchscreen continuous performance task. Neuropharmacology 2023; 236:109599. [PMID: 37217074 PMCID: PMC10330662 DOI: 10.1016/j.neuropharm.2023.109599] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/12/2023] [Accepted: 05/14/2023] [Indexed: 05/24/2023]
Abstract
Although it is well established that alcohol consumption during pregnancy can lead to lifelong difficulties in offspring, Fetal Alcohol Spectrum Disorders (FASD) remain a common neurodevelopmental syndrome. Translational behavioral tools that target similar brain circuits across species can facilitate understanding of these cognitive consequences. Touchscreen behavioral tasks for rodents enable easy integration of dura recordings of electroencephalographic (EEG) activity in awake behaving animals, with clear translational generalizability. Recently, we showed that Prenatal Alcohol Exposure (PAE) impairs cognitive control on the touchscreen 5-Choice Continuous Performance Task (5C-CPT) which requires animals to touch on target trials (hit) and withhold responding on non-target trials (correct rejection). Here, we extended these findings to determine whether dura EEG recordings would detect task-relevant differences in medial prefrontal cortex (mPFC) and posterior parietal cortex (PPC) corresponding with behavioral alterations in PAE animals. Replicating previous findings, PAE mice made more false alarm responses versus controls and had a significantly lower sensitivity index. All mice, regardless of sex or treatment, demonstrated increased frontal theta-band power during correct trials that followed an error (similar to post-error monitoring commonly seen in human participants). All mice showed a significant decrease in parietal beta-band power when performing a correct rejection versus a hit. PAE mice of both sexes showed a significantly larger decrease in parietal beta-band power when successfully rejecting non-target stimuli. These findings suggest that moderate exposure to alcohol during development can have long lasting effects on cognitive control, and task-relevant neural signals may provide a biomarker of impaired function across species.
Collapse
Affiliation(s)
- Sarah L Olguin
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, 87131, USA; New Mexico Alcohol Research Center, UNM Health Sciences Center, Albuquerque, NM, USA
| | - James F Cavanagh
- Department of Psychology, University of New Mexico, Albuquerque, NM, USA
| | - Jared W Young
- Department of Psychiatry, School of Medicine, University of California San Diego, La Jolla, CA, USA; Research Service, VA San Diego Healthcare System, San Diego, CA, USA
| | - Jonathan L Brigman
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, 87131, USA; New Mexico Alcohol Research Center, UNM Health Sciences Center, Albuquerque, NM, USA.
| |
Collapse
|
49
|
Fang Q, Frohlich F. Dissection of neuronal circuits underlying sustained attention with the five-choice serial reaction time task. Neurosci Biobehav Rev 2023; 152:105306. [PMID: 37419229 PMCID: PMC10517644 DOI: 10.1016/j.neubiorev.2023.105306] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 06/30/2023] [Accepted: 07/03/2023] [Indexed: 07/09/2023]
Abstract
Attention deficits are common in psychiatric and neurological disorders. The transdiagnostic nature of impaired attention suggests a common set of underlying neural circuits. Yet, there are no circuit-based treatments such as non-invasive brain stimulation currently available due to the lack of sufficiently delineated network targets. Therefore, to better treat attentional deficits, a comprehensive functional dissection of neural circuits underlying attention is imperative. This can be achieved by taking advantage of preclinical animal models and well-designed behavioral assays of attention. The resulting findings in turn can be translated to the development of novel interventions with the goal of advancing them to clinical practice. Here we show that the five-choice serial reaction time task has greatly facilitated the study of the neural circuits underlying attention in a well-controlled setting. We first introduce the task and then focus on its application in preclinical studies on sustained attention, especially in the context of state-of-the-art neuronal perturbations.
Collapse
Affiliation(s)
- Qi Fang
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC, USA
| | - Flavio Frohlich
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC, USA; Carolina Center for Neurostimulation, University of North Carolina, Chapel Hill, NC, USA; Neuroscience Center, University of North Carolina, Chapel Hill, NC, USA; Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC, USA; Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC, USA; Department of Neurology, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
50
|
Klem L, Nielsen MM, Gestsdóttir SB, Frandsen SL, Prichardt S, Andreasen JT. Assessing attention and impulsivity in the variable stimulus duration and variable intertrial interval rodent continuous performance test schedules using dopamine receptor antagonists in female C57BL/6JRj mice. Psychopharmacology (Berl) 2023; 240:1651-1666. [PMID: 37378887 PMCID: PMC10349733 DOI: 10.1007/s00213-023-06387-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 05/10/2023] [Indexed: 06/29/2023]
Abstract
RATIONALE Dopaminergic dysfunction is implicated in disorders of impulsivity and inattention. The rodent continuous performance test (rCPT) has been used to quantify changes in attention and impulsivity. OBJECTIVE To examine the roles of dopamine receptors in attention and impulsivity behaviours measured in the rCPT variable stimulus duration (vSD) and the variable intertrial interval schedules (vITI) using DA receptor antagonists. METHODS Two cohorts of 35 and 36 female C57BL/6JRj mice were examined separately in the rCPT, vSD, and vITI schedules, respectively. Both cohorts received antagonists of the following receptors: D1/5 (SCH23390, SCH: 0.01, 0.02, 0.04 mg/kg) and D2/3 (raclopride, RAC 0.03, 0.10, 0.30 mg/kg) in consecutive balanced Latin square designs with flanking reference measurements. The antagonists were subsequently examined for effects on locomotor activity. RESULTS SCH showed similar effects in both schedules, and the effects were reference-dependent in the vITI schedule. SCH reduced responding, but improved response accuracy, impulsivity, discriminability, and locomotor activity. RAC showed mixed effects on responsivity, but improved accuracy and discriminability. The discriminability improvement was driven by an increase in hit rate in the vITI schedule and a reduction in false alarm rate in the vSD schedule. RAC also decreased locomotor activity. CONCLUSION Both D1/5 and D2/3 receptor antagonism reduced responding, but the outcome on discriminability differed, stemming from individual effects on hit and false alarm rate, and the weight of omissions within the calculation. The effects of SCH and RAC suggest that endogenous DA increases responding and impulsivity, but reduces accuracy and shows mixed effects on discriminability.
Collapse
Affiliation(s)
- L Klem
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark
| | - M M Nielsen
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark
| | - S B Gestsdóttir
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark
| | - S L Frandsen
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark
| | - S Prichardt
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark
| | - J T Andreasen
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark.
| |
Collapse
|