1
|
Smith C, Lin X, Parker L, Yeap BB, Hayes A, Levinger I. The role of bone in energy metabolism: A focus on osteocalcin. Bone 2024; 188:117238. [PMID: 39153587 DOI: 10.1016/j.bone.2024.117238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 08/06/2024] [Accepted: 08/14/2024] [Indexed: 08/19/2024]
Abstract
Understanding the mechanisms involved in whole body glucose regulation is key for the discovery of new treatments for type 2 diabetes (T2D). Historically, glucose regulation was largely focused on responses to insulin and glucagon. Impacts of incretin-based therapies, and importance of muscle mass, are also highly relevant. Recently, bone was recognized as an endocrine organ, with several bone proteins, known as osteokines, implicated in glucose metabolism through their effects on the liver, skeletal muscle, and adipose tissue. Research efforts mostly focused on osteocalcin (OC) as a leading example. This review will provide an overview on this role of bone by discussing bone turnover markers (BTMs), the receptor activator of nuclear factor kB ligand (RANKL), osteoprotegerin (OPG), sclerostin (SCL) and lipocalin 2 (LCN2), with a focus on OC. Since 2007, some, but not all, research using mostly OC genetically modified animal models suggested undercarboxylated (uc) OC acts as a hormone involved in energy metabolism. Most data generated from in vivo, ex vivo and in vitro models, indicate that exogenous ucOC administration improves whole-body and skeletal muscle glucose metabolism. Although data in humans are generally supportive, findings are often discordant likely due to methodological differences and observational nature of that research. Overall, evidence supports the concept that bone-derived factors are involved in energy metabolism, some having beneficial effects (ucOC, OPG) others negative (RANKL, SCL), with the role of some (LCN2, other BTMs) remaining unclear. Whether the effect of osteokines on glucose regulation is clinically significant and of therapeutic value for people with insulin resistance and T2D remains to be confirmed.
Collapse
Affiliation(s)
- Cassandra Smith
- Nutrition & Health Innovation Research Institute, School of Health and Medical Sciences, Edith Cowan University, Perth, Western Australia, Australia; Medical School, The University of Western Australia, Perth, Western Australia, Australia; Institute for Health and Sport (IHES), Victoria University, Melbourne, VIC, Australia; Australian Institute for Musculoskeletal Science (AIMSS), Victoria University and Western Health, St Albans, VIC, Australia
| | - Xuzhu Lin
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC, Australia
| | - Lewan Parker
- Institute for Physical Activity and Nutrition (IPAN), Deakin University, Geelong, VIC, Australia
| | - Bu B Yeap
- Medical School, The University of Western Australia, Perth, Western Australia, Australia; Department of Endocrinology and Diabetes, Fiona Stanley Hospital, Perth, Australia
| | - Alan Hayes
- Institute for Health and Sport (IHES), Victoria University, Melbourne, VIC, Australia; Australian Institute for Musculoskeletal Science (AIMSS), Victoria University and Western Health, St Albans, VIC, Australia; Department of Medicine - Western Health, The University of Melbourne, Footscray, VIC, Australia
| | - Itamar Levinger
- Institute for Health and Sport (IHES), Victoria University, Melbourne, VIC, Australia; Australian Institute for Musculoskeletal Science (AIMSS), Victoria University and Western Health, St Albans, VIC, Australia; Department of Medicine - Western Health, The University of Melbourne, Footscray, VIC, Australia.
| |
Collapse
|
2
|
Ramchand SK, Hoermann R, White S, Yeo B, Francis PA, Xu CLH, Zajac JD, Seeman E, Grossmann M. Cardiometabolic Effects of Denosumab in Premenopausal Women With Breast Cancer Receiving Estradiol Suppression: RCT. J Clin Endocrinol Metab 2024; 109:e1857-e1866. [PMID: 38181438 PMCID: PMC11403315 DOI: 10.1210/clinem/dgae003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/20/2023] [Accepted: 01/04/2024] [Indexed: 01/07/2024]
Abstract
CONTEXT Menopause is associated with changes in musculoskeletal, body composition, and metabolic parameters that may be amplified in premenopausal women receiving estradiol suppression for breast cancer. Denosumab offsets deleterious skeletal effects of estradiol suppression and has been reported to have effects on body composition and metabolic parameters in preclinical and observational studies, but evidence from double-blind randomized controlled trials is limited. OBJECTIVE To assess the effect of denosumab on body composition and metabolic parameters. METHODS In a prespecified secondary analysis of a 12-month randomized, double-blind, placebo-controlled trial, 68 premenopausal women with breast cancer initiating ovarian function suppression and aromatase inhibition were randomized to denosumab 60-mg or placebo administered at baseline and 6 months. Outcome measures were total and regional fat and lean mass (DXA), body mass index (BMI), waist and hip circumference, fasting glucose, HOMA-IR, and lipid profile. Using a mixed model, between-group mean adjusted differences over time are reported. RESULTS Over 12 months, relative to placebo, android and gynoid fat mass decreased in the denosumab group (-266 g [95% CI -453 to -79], P = .02, and -452 g [-783 to -122], P = .03, respectively). Total fat mass and waist circumference were lower in the denosumab group but not significantly (-1792 g [-3346 to -240], P = .08 and (- 3.77 cm [-6.76 to -0.79], P = .06, respectively). No significant treatment effects were detected in lean mass, BMI, hip circumference, fasting glucose, HOMA-IR, or lipid profile. CONCLUSION In premenopausal women receiving estradiol suppression, denosumab decreases some measures of fat mass with no detectable effects on other measures of body composition or metabolic parameters.
Collapse
Affiliation(s)
- Sabashini K Ramchand
- Department of Medicine, Austin Health, University of Melbourne, Victoria 3084, Australia
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, MA 02114, USA
| | - Rudolf Hoermann
- Department of Medicine, Austin Health, University of Melbourne, Victoria 3084, Australia
| | - Shane White
- Department of Medicine, Austin Health, University of Melbourne, Victoria 3084, Australia
- Olivia Newton-John Cancer & Wellness Centre, Austin Health, Victoria 3084, Australia
| | - Belinda Yeo
- Department of Medicine, Austin Health, University of Melbourne, Victoria 3084, Australia
- Olivia Newton-John Cancer & Wellness Centre, Austin Health, Victoria 3084, Australia
| | - Prudence A Francis
- Peter MacCallum Cancer Centre, Sir Peter MacCallum Department of Oncology, University of Melbourne, Victoria 3052, Australia
| | - Cecilia L H Xu
- Department of Medicine, Austin Health, University of Melbourne, Victoria 3084, Australia
| | - Jeffrey D Zajac
- Department of Medicine, Austin Health, University of Melbourne, Victoria 3084, Australia
- Department of Endocrinology, Austin Health, Victoria 3084, Australia
| | - Ego Seeman
- Department of Medicine, Austin Health, University of Melbourne, Victoria 3084, Australia
- Department of Endocrinology, Austin Health, Victoria 3084, Australia
| | - Mathis Grossmann
- Department of Medicine, Austin Health, University of Melbourne, Victoria 3084, Australia
- Department of Endocrinology, Austin Health, Victoria 3084, Australia
| |
Collapse
|
3
|
Diab DL, Watts NB. The use of denosumab in osteoporosis - an update on efficacy and drug safety. Expert Opin Drug Saf 2024; 23:1069-1077. [PMID: 39262109 DOI: 10.1080/14740338.2024.2386365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 07/03/2024] [Indexed: 09/13/2024]
Abstract
INTRODUCTION Denosumab (Prolia) is a fully human monoclonal antibody against the receptor activator of the nuclear factor kappaB ligand. It is a potent antiresorptive agent that reduces osteoclastogenesis. AREAS COVERED Denosumab has been shown to improve bone mineral density and reduce the incidence of new fractures in postmenopausal women and men. It is also used in the treatment of glucocorticoid-induced osteoporosis, as well as for the prevention of bone loss and reduction of fracture risk in men receiving androgen deprivation therapy for non-metastatic prostate cancer and women receiving adjuvant aromatase inhibitor therapy for breast cancer. Initial safety concerns included infections, cancer, skin reactions, cardiovascular disease, hypocalcemia, osteonecrosis of the jaw, and atypical femur fractures; however, further study and experience provide reassurance on these issues. Anecdotal reports have raised concerns about an increased risk of multiple vertebral fractures following discontinuation of denosumab. EXPERT OPINION Although bisphosphonates are often selected as initial therapy for osteoporosis, denosumab may be an appropriate initial therapy in patients at high risk for fracture, including older patients who have difficulty with the dosing requirements of oral bisphosphonates, as well as patients who are intolerant of, unresponsive to, or have contraindications to other therapies. Additional data is needed to address questions regarding treatment duration and discontinuation.
Collapse
Affiliation(s)
- Dima L Diab
- College of Medicine, Cincinnati VA Medical Center, Division of Endocrinology, Diabetes and Metabolism, University of Cincinnati, Cincinnati, OH, USA
| | - Nelson B Watts
- Mercy Health Osteoporosis and Bone Health Services, Cincinnati, OH, USA
| |
Collapse
|
4
|
Rathmann W, Kostev K. Type 2 diabetes incidence in patients initiating denosumab or alendronate treatment: a primary care cohort study. Osteoporos Int 2024:10.1007/s00198-024-07182-6. [PMID: 39046498 DOI: 10.1007/s00198-024-07182-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 07/05/2024] [Indexed: 07/25/2024]
Abstract
Denosumab initiation is related to a lower risk of type 2 diabetes than alendronate in anti-osteoporotic treatment-naïve users in primary care practices. PURPOSE Links have been suggested between bone metabolism and glucose tolerance. Downregulation of the receptor activator of nuclear factor κ B ligand (RANKL) signaling improves glucose metabolism. Denosumab, a human monoclonal antibody against RANKL, may be associated with a lower risk of type 2 diabetes (T2D). The aim was to compare incidence rates of T2DM in primary care patients initiating denosumab or alendronate, which is a first-line therapy of osteoporosis. Alendronate as comparator enhances comparability of the two cohorts. METHOD The IQVIA Disease Analyzer comprises a representative panel of general and specialist practices (Germany). A new-user comparative study was conducted among patients with denosumab or alendronate treatment (2010-2021) without history of diabetes and age ≥ 45 years. Incidence rates (per 1,000 person-years) and Cox proportional hazard ratios (HR; 95%CI) for T2DM were estimated. RESULTS The cohorts consisted of 3,354 denosumab (age: 75 years; women: 87%) and 27,068 alendronate (76 years; 86%) users. Overall, 1,038 persons developed T2D during 54,916 person-years. T2DM incidence rates per 1,000 person-years were 11.9 (9.5-14.4) for denosumab and 20.1 (18.8-21.3) for alendronate users, respectively. Denosumab was associated with a reduced risk of T2DM compared to alendronate, adjusting for age, sex, index year, visits, obesity, comorbidities and statins (HR: 0.73; 0.58-0.89). CONCLUSION In this comparative study of older patients seen in routine practices, denosumab was associated with a lower risk of developing T2DM than alendronate.
Collapse
Affiliation(s)
- Wolfgang Rathmann
- Institute for Biometrics and Epidemiology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Auf'm Hennekamp 65, Düsseldorf, 40225, Germany.
- German Center for Diabetes Research, Partner Düsseldorf, Munich-Neuherberg, Germany.
| | | |
Collapse
|
5
|
Zhou M, An YZ, Guo Q, Zhou HY, Luo XH. Energy homeostasis in the bone. Trends Endocrinol Metab 2024; 35:439-451. [PMID: 38242815 DOI: 10.1016/j.tem.2023.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/19/2023] [Accepted: 12/21/2023] [Indexed: 01/21/2024]
Abstract
The bone serves as an energy reservoir and actively engages in whole-body energy metabolism. Numerous studies have determined fuel requirements and bioenergetic properties of bone under physiological conditions as well as the dysregulation of energy metabolism associated with bone metabolic diseases. Here, we review the main sources of energy in bone cells and their regulation, as well as the endocrine role of the bone in systemic energy homeostasis. Moreover, we discuss metabolic changes that occur as a result of osteoporosis. Exploration in this area will contribute to an enhanced comprehension of bone energy metabolism, presenting novel possibilities to address metabolic diseases.
Collapse
Affiliation(s)
- Min Zhou
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan 410008, PR China; Key Laboratory of Aging-Related Bone and Joint Diseases Prevention and Treatment, Ministry of Education, Xiangya Hospital, Central South University, Changsha, PR China; Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Hunan 410008, PR China
| | - Yu-Ze An
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan 410008, PR China; Key Laboratory of Aging-Related Bone and Joint Diseases Prevention and Treatment, Ministry of Education, Xiangya Hospital, Central South University, Changsha, PR China; Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Hunan 410008, PR China
| | - Qi Guo
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan 410008, PR China; Key Laboratory of Aging-Related Bone and Joint Diseases Prevention and Treatment, Ministry of Education, Xiangya Hospital, Central South University, Changsha, PR China; Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Hunan 410008, PR China
| | - Hai-Yan Zhou
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan 410008, PR China; Key Laboratory of Aging-Related Bone and Joint Diseases Prevention and Treatment, Ministry of Education, Xiangya Hospital, Central South University, Changsha, PR China; Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Hunan 410008, PR China.
| | - Xiang-Hang Luo
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan 410008, PR China; Key Laboratory of Aging-Related Bone and Joint Diseases Prevention and Treatment, Ministry of Education, Xiangya Hospital, Central South University, Changsha, PR China; Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Hunan 410008, PR China.
| |
Collapse
|
6
|
Martiniakova M, Biro R, Kovacova V, Babikova M, Zemanova N, Mondockova V, Omelka R. Current knowledge of bone-derived factor osteocalcin: its role in the management and treatment of diabetes mellitus, osteoporosis, osteopetrosis and inflammatory joint diseases. J Mol Med (Berl) 2024; 102:435-452. [PMID: 38363329 PMCID: PMC10963459 DOI: 10.1007/s00109-024-02418-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/21/2023] [Accepted: 01/10/2024] [Indexed: 02/17/2024]
Abstract
Osteocalcin (OC) is the most abundant non-collagenous and osteoblast-secreted protein in bone. It consists of two forms such as carboxylated OC (cOC) and undercarboxylated OC (ucOC). While cOC promotes bone mineralization and increases bone strength, ucOC is regarded an endocrinologically active form that may have several functions in multiple end organs and tissues. Total OC (tOC) includes both of these forms (cOC and ucOC) and is considered a marker of bone turnover in clinical settings. Most of the data on OC is limited to preclinical studies and therefore may not accurately reflect the situation in clinical conditions. For the stated reason, the aim of this review was not only to summarize current knowledge of all forms of OC and characterize its role in diabetes mellitus, osteoporosis, osteopetrosis, inflammatory joint diseases, but also to provide new interpretations of its involvement in the management and treatment of aforementioned diseases. In this context, special emphasis was placed on available clinical trials. Significantly lower levels of tOC and ucOC could be associated with the risk of type 2 diabetes mellitus. On the contrary, tOC level does not seem to be a good indicator of high bone turnover status in postmenopausal osteoporosis, osteoarthritis and rheumatoid arthritis. The associations between several pharmacological drugs used to treat all disorders mentioned above and OC levels have also been provided. From this perspective, OC may serve as a medium through which certain medications can influence glucose metabolism, body weight, adiponectin secretion, and synovial inflammation.
Collapse
Affiliation(s)
- Monika Martiniakova
- Department of Zoology and Anthropology, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Tr. A. Hlinku 1, 949 01, Nitra, Slovakia
| | - Roman Biro
- Department of Zoology and Anthropology, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Tr. A. Hlinku 1, 949 01, Nitra, Slovakia
| | - Veronika Kovacova
- Department of Zoology and Anthropology, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Tr. A. Hlinku 1, 949 01, Nitra, Slovakia
| | - Martina Babikova
- Department of Botany and Genetics, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Tr. A. Hlinku 1, 949 01, Nitra, Slovakia
| | - Nina Zemanova
- Department of Botany and Genetics, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Tr. A. Hlinku 1, 949 01, Nitra, Slovakia
| | - Vladimira Mondockova
- Department of Botany and Genetics, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Tr. A. Hlinku 1, 949 01, Nitra, Slovakia
| | - Radoslav Omelka
- Department of Botany and Genetics, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Tr. A. Hlinku 1, 949 01, Nitra, Slovakia.
| |
Collapse
|
7
|
Wang Y, Jiang Y, Li J, Lin X, Luo Y, Tan S, Yang H, Gao Z, Cui X, Yin P, Kong D, Gao Y, Cheng Y, Zhang L, Tang P, Lyu H. Effect of denosumab on glucose metabolism in postmenopausal osteoporotic women with prediabetes: a study protocol for a 12-month multicenter, open-label, randomized controlled trial. Trials 2023; 24:812. [PMID: 38111052 PMCID: PMC10726555 DOI: 10.1186/s13063-023-07769-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 11/03/2023] [Indexed: 12/20/2023] Open
Abstract
BACKGROUND Participants with prediabetes are at a high risk of developing type 2 diabetes (T2D). Recent studies have suggested that blocking the receptor activator of nuclear factor-κB ligand (RANKL) may improve glucose metabolism and delay the development of T2D. However, the effect of denosumab, a fully human monoclonal antibody that inhibits RANKL, on glycemic parameters in the prediabetes population is uncertain. We aim to examine the effect of denosumab on glucose metabolism in postmenopausal women with osteoporosis and prediabetes. METHODS This is a 12-month multicenter, open-label, randomized controlled trial involving postmenopausal women who have been diagnosed with both osteoporosis and prediabetes. Osteoporosis is defined by the World Health Organization (WHO) as a bone mineral density T score of ≤ - 2.5, as measured by dual-energy X-ray absorptiometry (DXA). Prediabetes is defined as (i) a fasting plasma glucose level of 100-125 mg/dL, (ii) a 2-hour plasma glucose level of 140-199 mg/dL, or (iii) a glycosylated hemoglobin A1c (HbA1c) level of 5.7-6.4%. A total of 346 eligible subjects will be randomly assigned in a 1:1 ratio to receive either subcutaneous denosumab 60 mg every 6 months or oral alendronate 70 mg every week for 12 months. The primary outcome is the change in HbA1c levels from baseline to 12 months. Secondary outcomes include changes in fasting and 2-hour blood glucose levels, serum insulin levels, C-peptide levels, and insulin sensitivity from baseline to 12 months, and the incidence of T2D at the end of the study. Follow-up visits will be scheduled at 3, 6, 9, and 12 months. DISCUSSION This study aims to provide evidence on the efficacy of denosumab on glucose metabolism in postmenopausal women with osteoporosis and prediabetes. The results derived from this clinical trial may provide insight into the potential of denosumab in preventing T2D in high-risk populations. TRIAL REGISTRATION This study had been registered in the Chinese Clinical Trials Registry. REGISTRATION NUMBER ChiCTR2300070789 on April 23, 2023. https://www.chictr.org.cn .
Collapse
Affiliation(s)
- Yilin Wang
- Medical School of Chinese PLA, Beijing, 100853, China
- Department of Orthopedics, Chinese PLA General Hospital, No. 28, Fuxing Road, Beijing, 100853, People's Republic of China
| | - Yu Jiang
- Medical School of Chinese PLA, Beijing, 100853, China
- Department of Orthopedics, Chinese PLA General Hospital, No. 28, Fuxing Road, Beijing, 100853, People's Republic of China
| | - Jia Li
- Department of Orthopedics, Chinese PLA General Hospital, No. 28, Fuxing Road, Beijing, 100853, People's Republic of China
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, 100853, China
| | - Xisheng Lin
- Medical School of Chinese PLA, Beijing, 100853, China
- Department of Rehabilitation, the Second Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
| | - Yan Luo
- Department of Orthopedics, Chinese PLA General Hospital, No. 28, Fuxing Road, Beijing, 100853, People's Republic of China
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, 100853, China
| | - Shuhuai Tan
- Medical School of Chinese PLA, Beijing, 100853, China
- Department of Orthopedics, Chinese PLA General Hospital, No. 28, Fuxing Road, Beijing, 100853, People's Republic of China
| | - Haohan Yang
- Medical School of Chinese PLA, Beijing, 100853, China
- Department of Orthopedics, Chinese PLA General Hospital, No. 28, Fuxing Road, Beijing, 100853, People's Republic of China
| | - Zefu Gao
- Medical School of Chinese PLA, Beijing, 100853, China
- Department of Orthopedics, Chinese PLA General Hospital, No. 28, Fuxing Road, Beijing, 100853, People's Republic of China
| | - Xiang Cui
- Department of Orthopedics, Chinese PLA General Hospital, No. 28, Fuxing Road, Beijing, 100853, People's Republic of China
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, 100853, China
| | - Pengbin Yin
- Department of Orthopedics, Chinese PLA General Hospital, No. 28, Fuxing Road, Beijing, 100853, People's Republic of China
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, 100853, China
| | - Dan Kong
- Department of Orthopedics, Chinese PLA General Hospital, No. 28, Fuxing Road, Beijing, 100853, People's Republic of China
| | - Yuan Gao
- Department of Nursing, the First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
| | - Yu Cheng
- Department of Endocrinology, Chinese PLA General Hospital, Beijing, 100853, China
| | - Licheng Zhang
- Department of Orthopedics, Chinese PLA General Hospital, No. 28, Fuxing Road, Beijing, 100853, People's Republic of China
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, 100853, China
| | - Peifu Tang
- Department of Orthopedics, Chinese PLA General Hospital, No. 28, Fuxing Road, Beijing, 100853, People's Republic of China.
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, 100853, China.
| | - Houchen Lyu
- Department of Orthopedics, Chinese PLA General Hospital, No. 28, Fuxing Road, Beijing, 100853, People's Republic of China.
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, 100853, China.
| |
Collapse
|
8
|
Xing B, Yu J, Zhang H, Li Y. RANKL inhibition: a new target of treating diabetes mellitus? Ther Adv Endocrinol Metab 2023; 14:20420188231170754. [PMID: 37223831 PMCID: PMC10201162 DOI: 10.1177/20420188231170754] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 04/03/2023] [Indexed: 05/25/2023] Open
Abstract
Accumulating evidence demonstrates the link between glucose and bone metabolism. The receptor activator of nuclear factor-kB ligand (RANKL)/the receptor activator of NF-κB (RANK)/osteoprotegerin (OPG) axis is an essential signaling axis maintaining the balance between bone resorption and bone formation. In recent years, it has been found that RANKL and RANK are distributed not only in bone but also in the liver, muscle, adipose tissue, pancreas, and other tissues that may influence glucose metabolism. Some scholars have suggested that the blockage of the RANKL signaling may protect islet β-cell function and prevent diabetes; simultaneously, there also exist different views that RANKL can improve insulin resistance through inducing the beige adipocyte differentiation and increase energy expenditure. Currently, the results of the regulatory effect on glucose metabolism of RANKL remain conflicting. Denosumab (Dmab), a fully human monoclonal antibody that can bind to RANKL and prevent osteoclast formation, is a commonly used antiosteoporosis drug. Recent basic studies have found that Dmab seems to regulate glucose homeostasis and β-cell function in humanized mice or in vitro human β-cell models. Besides, some clinical data have also reported the glucometabolic effects of Dmab, however, with limited and inconsistent results. This review mainly describes the impact of the RANKL signaling pathway on glucose metabolism and summarizes clinical evidence that links Dmab and DM to seek a new therapeutic strategy for diabetes.
Collapse
Affiliation(s)
- Baodi Xing
- Department of Endocrinology, Key Laboratory of
Endocrinology of National Health Commission, Translation Medicine Center,
Peking Union Medical College Hospital, Chinese Academy of Medical Sciences
and Peking Union Medical College, Beijing, China
| | - Jie Yu
- Department of Endocrinology, Key Laboratory of
Endocrinology of National Health Commission, Translation Medicine Center,
Peking Union Medical College Hospital, Chinese Academy of Medical Sciences
and Peking Union Medical College, Beijing, China
| | - Huabing Zhang
- Department of Endocrinology, NHC Key Laboratory
of Endocrinology, Peking Union Medical College Hospital (Dongdan campus),
Chinese Academy of Medical Sciences and Peking Union Medical College, No.1
Shuaifuyuan, Wangfujing Dongcheng District, Beijing 100730, China
| | - Yuxiu Li
- Department of Endocrinology, NHC Key Laboratory
of Endocrinology, Peking Union Medical College Hospital (Dongdan campus),
Chinese Academy of Medical Sciences and Peking Union Medical College, No.1
Shuaifuyuan, Wangfujing Dongcheng District, Beijing 100730, China
| |
Collapse
|
9
|
Lyu H, Zhao SS, Zhang L, Wei J, Li X, Li H, Liu Y, Yin P, Norvang V, Yoshida K, Tedeschi SK, Zeng C, Lei G, Tang P, Solomon DH. Denosumab and incidence of type 2 diabetes among adults with osteoporosis: population based cohort study. BMJ 2023; 381:e073435. [PMID: 37072150 PMCID: PMC10111187 DOI: 10.1136/bmj-2022-073435] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/20/2023]
Abstract
OBJECTIVE To estimate the effect of denosumab compared with oral bisphosphonates on reducing the risk of type 2 diabetes in adults with osteoporosis. DESIGN Population based study involving emulation of a randomized target trial using electronic health records. SETTING IQVIA Medical Research Data primary care database in the United Kingdom, 1995-2021. PARTICIPANTS Adults aged 45 years or older who used denosumab or an oral bisphosphonate for osteoporosis. MAIN OUTCOME MEASURES The primary outcome was incident type 2 diabetes, as defined by diagnostic codes. Cox proportional hazards models were used to estimate adjusted hazard ratios and 95% confidence intervals, comparing denosumab with oral bisphosphonates using an as treated approach. RESULTS 4301 new users of denosumab were matched on propensity score to 21 038 users of an oral bisphosphonate and followed for a mean of 2.2 years. The incidence rate of type 2 diabetes in denosumab users was 5.7 (95% confidence interval 4.3 to 7.3) per 1000 person years and in oral bisphosphonate users was 8.3 (7.4 to 9.2) per 1000 person years. Initiation of denosumab was associated with a reduced risk of type 2 diabetes (hazard ratio 0.68, 95% confidence interval 0.52 to 0.89). Participants with prediabetes appeared to benefit more from denosumab compared with an oral bisphosphonate (hazard ratio 0.54, 0.35 to 0.82), as did those with a body mass index ≥30 (0.65, 0.40 to 1.06). CONCLUSIONS In this population based study, denosumab use was associated with a lower risk of incident type 2 diabetes compared with oral bisphosphonate use in adults with osteoporosis. This study provides evidence at a population level that denosumab may have added benefits for glucose metabolism compared with oral bisphosphonates.
Collapse
Affiliation(s)
- Houchen Lyu
- Department of Orthopaedics, The Chinese PLA General Hospital, Beijing 100853, China
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha 410008, China
- National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, The Chinese PLA General Hospital, Beijing, China
| | - Sizheng Steven Zhao
- Centre for Epidemiology Versus Arthritis, Faculty of Biology Medicine and Health, The University of Manchester, Manchester, UK
| | - Licheng Zhang
- Department of Orthopaedics, The Chinese PLA General Hospital, Beijing 100853, China
- National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, The Chinese PLA General Hospital, Beijing, China
| | - Jie Wei
- Department of epidemiology and health statistics, Xiangya School of Public Health, Central South University, Changsha, China
- Health Management Center, Xiangya Hospital, Central South University, Changsha, China
| | - Xiaoxiao Li
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Hui Li
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Yi Liu
- Division of Endocrinology, New York Presbyterian Hospital, Weill Cornell Medical College, New York, NY, USA
| | - Pengbin Yin
- Department of Orthopaedics, The Chinese PLA General Hospital, Beijing 100853, China
- National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, The Chinese PLA General Hospital, Beijing, China
| | - Vibeke Norvang
- Division of Rheumatology and Research, Diakonhjemmet Hospital, Oslo, Norway
| | - Kazuki Yoshida
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Sara K Tedeschi
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Chao Zeng
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Aging-related Bone and Joint Diseases Prevention and Treatment, Ministry of Education, Xiangya Hospital, Central South University, Changsha, China
| | - Guanghua Lei
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Aging-related Bone and Joint Diseases Prevention and Treatment, Ministry of Education, Xiangya Hospital, Central South University, Changsha, China
| | - Peifu Tang
- Department of Orthopaedics, The Chinese PLA General Hospital, Beijing 100853, China
- National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, The Chinese PLA General Hospital, Beijing, China
| | - Daniel H Solomon
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Boston, MA 02115, USA
- Division of Pharmacoepidemiology and Pharmacoeconomics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
10
|
Araújo IMD, Moreira MLM, Paula FJAD. Diabetes and bone. ARCHIVES OF ENDOCRINOLOGY AND METABOLISM 2022; 66:633-641. [PMID: 36382752 PMCID: PMC10118819 DOI: 10.20945/2359-3997000000552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Globally, one in 11 adults has diabetes mellitus of which 90% have type 2 diabetes. The numbers for osteoporosis are no less staggering: 1 in 3 women has a fracture after menopause, and the same is true for 1 in 5 men after the age of 50 years. Aging is associated with several physiological changes that cause insulin resistance and impaired insulin secretion, which in turn lead to hyperglycemia. The negative balance between bone resorption and formation is a natural process that appears after the fourth decade of life and lasts for the following decades, eroding the bone structure and increasing the risk of fractures. Not incidentally, it has been acknowledged that diabetes mellitus, regardless of whether type 1 or 2, is associated with an increased risk of fracture. The nuances that differentiate bone damage in the two main forms of diabetes are part of the intrinsic heterogeneity of diabetes, which is enhanced when associated with a condition as complex as osteoporosis. This narrative review addresses the main parameters related to the increased risk of fractures in individuals with diabetes, and the mutual factors affecting the treatment of diabetes mellitus and osteoporosis.
Collapse
|
11
|
Zawada A, Ratajczak AE, Rychter AM, Szymczak-Tomczak A, Dobrowolska A, Krela-Kaźmierczak I. Treatment of Diabetes and Osteoporosis—A Reciprocal Risk? Biomedicines 2022; 10:biomedicines10092191. [PMID: 36140292 PMCID: PMC9495959 DOI: 10.3390/biomedicines10092191] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 11/30/2022] Open
Abstract
Diabetes mellitus is a metabolic and systematic disorder that requires individualized therapy. The disease leads to various consequences, resulting in the destruction of tissues and organs. The aforementioned outcomes also include bone mineral disorders, caused by medications as well as diet therapy and physical activity. Some drugs may have a beneficial effect on both bone mineral density and the risk of fractures. Nevertheless, the impact of other medications remains unknown. Focusing on pharmacotherapy in diabetes may prevent bone mineral disorders and influence both the treatment and quality of life in patients suffering from diabetes mellitus. On the other hand, anti-osteoporosis drugs, such as antiresorptive or anabolic drugs, as well as drugs with a mixed mechanism of action, may affect carbohydrate metabolism, particularly in patients with diabetes. Therefore, the treatment of diabetes as well as osteoporosis prevention are vital for this group of patients.
Collapse
Affiliation(s)
- Agnieszka Zawada
- Department of Gastroenterology, Dietetics and Internal Diseases, Poznan University of Medical Sciences, 61-701 Poznn, Poland
- Correspondence: (A.Z.); (A.E.R.); Tel.: +48-667-385-996 or +48-8691-343 (A.E.R.); Fax: +48-8691-686 (A.E.R.)
| | - Alicja Ewa Ratajczak
- Department of Gastroenterology, Dietetics and Internal Diseases, Poznan University of Medical Sciences, 61-701 Poznn, Poland
- Doctoral School, Poznan University of Medical Sciences, 61-701 Poznan, Poland
- Correspondence: (A.Z.); (A.E.R.); Tel.: +48-667-385-996 or +48-8691-343 (A.E.R.); Fax: +48-8691-686 (A.E.R.)
| | - Anna Maria Rychter
- Department of Gastroenterology, Dietetics and Internal Diseases, Poznan University of Medical Sciences, 61-701 Poznn, Poland
- Doctoral School, Poznan University of Medical Sciences, 61-701 Poznan, Poland
| | - Aleksandra Szymczak-Tomczak
- Department of Gastroenterology, Dietetics and Internal Diseases, Poznan University of Medical Sciences, 61-701 Poznn, Poland
| | - Agnieszka Dobrowolska
- Department of Gastroenterology, Dietetics and Internal Diseases, Poznan University of Medical Sciences, 61-701 Poznn, Poland
| | - Iwona Krela-Kaźmierczak
- Department of Gastroenterology, Dietetics and Internal Diseases, Poznan University of Medical Sciences, 61-701 Poznn, Poland
| |
Collapse
|
12
|
Sheu A, Greenfield JR, White CP, Center JR. Assessment and treatment of osteoporosis and fractures in type 2 diabetes. Trends Endocrinol Metab 2022; 33:333-344. [PMID: 35307247 DOI: 10.1016/j.tem.2022.02.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/01/2022] [Accepted: 02/22/2022] [Indexed: 01/10/2023]
Abstract
There is substantial, and growing, evidence that type 2 diabetes (T2D) is associated with skeletal fragility, despite often preserved bone mineral density. As post-fracture outcomes, including mortality, are worse in people with T2D, bone management should be carefully considered in this highly vulnerable group. However, current fracture risk calculators inadequately predict fracture risk in T2D, and dedicated randomised controlled trials identifying optimal management in patients with T2D are lacking, raising questions about the ideal assessment and treatment of bone health in these people. We synthesise the current literature on evaluating bone measurements in T2D and summarise the evidence for safety and efficacy of both T2D and anti-osteoporosis medications in relation to bone health in these patients.
Collapse
Affiliation(s)
- Angela Sheu
- Bone Biology Division, Garvan Institute of Medical Research, Sydney, Australia; Clinical School, St Vincent's Hospital, Faculty of Medicine, University of New South Wales Sydney, Sydney, Australia; Department of Endocrinology and Diabetes, St Vincent's Hospital, Sydney, Australia.
| | - Jerry R Greenfield
- Clinical School, St Vincent's Hospital, Faculty of Medicine, University of New South Wales Sydney, Sydney, Australia; Department of Endocrinology and Diabetes, St Vincent's Hospital, Sydney, Australia; Diabetes and Metabolism, Garvan Institute of Medical Research, Sydney, Australia
| | - Christopher P White
- Clinical School, Prince of Wales Hospital, Faculty of Medicine, University of New South Wales Sydney, Sydney, Australia; Department of Endocrinology and Metabolism, Prince of Wales Hospital, Sydney, Australia
| | - Jacqueline R Center
- Bone Biology Division, Garvan Institute of Medical Research, Sydney, Australia; Clinical School, St Vincent's Hospital, Faculty of Medicine, University of New South Wales Sydney, Sydney, Australia; Department of Endocrinology and Diabetes, St Vincent's Hospital, Sydney, Australia
| |
Collapse
|
13
|
Pacheco-Soto BT, Elguezabal-Rodelo RG, Porchia LM, Torres-Rasgado E, Pérez-Fuentes R, Gonzalez-Mejia ME. Denosumab improves glucose parameters in patients with impaired glucose tolerance: a systematic review and meta-analysis. J Drug Assess 2021; 10:97-105. [PMID: 34676131 PMCID: PMC8525927 DOI: 10.1080/21556660.2021.1989194] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Objective Receptor activator of NF-κβ ligand (RANKL) is crucial for the development of hepatic insulin resistance and poor glucose uptake; therefore, inhibiting RANKL with Denosumab could improve fasting plasma glucose (FPG) and insulin (FPI). Methods A systematic review was conducted to evaluate the effects of Denosumab on glycemic parameters. PubMed, SCOPUS, EBSCO, and LILACS databases were searched for studies that investigated the effect of Denosumab on FPG, glycated hemoglobin (HbA1c), FPI, and Homeostatic Model Assessment for Insulin Resistance (HOMA1-IR). The pooled standard difference in means (SDM) and 95% confidence intervals (95%CI) were calculated. The results were stratified into (1) Normal Glucose Tolerance (NGT) and (2) Impaired Glucose Tolerance (IGT). Results Six publications (1203 participants) were included. There was a significant association between Denosumab and FPG (SDM = -0.388, 95%CI: -0.705 to -0.070, p = .017) and with HOMA1-IR (SDM = -0.223, 95%CI: -0.388 to -0.058, p = .008), but not for HbA1c and FPI. When stratified by glucose tolerance, the association between Denosumab and FPG, HbA1c, and HOMA1-IR was present for the IGT group. Lastly, Denosumab had a time-dependent effect on HbA1c (slope = -0.037, 95%CI: -0.059 to -0.015, p < .005). Conclusions Denosumab significantly improved glycemic parameters. This outcome was more prominent for subjects with compromised glucose tolerance, positing that Denosumab can be used as a treatment to improve glucose metabolism for persons with pre-diabetes and diabetes.
Collapse
Affiliation(s)
| | | | - Leonardo M Porchia
- Laboratorio de Fisiopatología en Enfermedades Crónicas, Centro de Investigación Biomédica de Oriente, Instituto Mexicano del Seguro Social, Delegación Puebla, Puebla, Mexico
| | | | - Ricardo Pérez-Fuentes
- Facultad de Medicina, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico.,Laboratorio de Fisiopatología en Enfermedades Crónicas, Centro de Investigación Biomédica de Oriente, Instituto Mexicano del Seguro Social, Delegación Puebla, Puebla, Mexico
| | | |
Collapse
|
14
|
Gaudio A, Xourafa A, Rapisarda R, Castellino P. Therapeutic Options in the Management of Aromatase Inhibitor-Associated Bone Loss. Endocr Metab Immune Disord Drug Targets 2021; 22:259-273. [PMID: 34370654 DOI: 10.2174/1871530321666210809153152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 06/11/2021] [Accepted: 06/11/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Breast cancer is the most commonly occurring cancer in women worldwide. Early breast cancer is a kind of invasive neoplasm that has not proliferated beyond the breast or the axillary lymph nodes. Current therapeutic strategies for breast cancer mainly include local therapies such as surgery or radiotherapy and systemic therapies like chemotherapy, endocrine, and targeted therapy.Nowadays, the adjuvant treatment for hormone receptor-positive early breast cancer in postmenopausal women remains the main effective systemic therapy which can improve disease-free survival and overall survival; it involves several endocrine treatment regimens including selective estrogen receptor modulators (SERMs), aromatase inhibitors (AIs), or a combination of them. AIs have been shown to be more effective in preventing recurrence in postmenopausal women with early breast cancer when compared with tamoxifen, thus representing the standard of care for adjuvant endocrine therapy. Although AIs are usually well-tolerated, they can have some side effects. Apart from the appearance of arthralgias or myalgias and cardiovascular events, AI therapies, reducing already low endogenous postmenopausal estradiol levels, cause increased bone loss and increase fracture risk in postmenopausal women. OBJECTIVES To evaluate the therapeutic options in the management of aromatase inhibitor-associated bone loss (AIBL). METHODS We reviewed the current literature dealing with different therapeutic options in the treatment of AIBL. RESULTS Clinical practice guidelines recommend a careful evaluation of skeletal health in all women with breast cancer before AI therapy initiation. Adequate calcium and vitamin D intake have also been suggested. Pharmacological attempts to minimize AI-related bone loss have focused on the use of antiresorptive agents, such as bisphosphonates and denosumab, to protect bone integrity and reduce the risk of fractures. Furthermore, clinical trials have shown that by making the bone microenvironment less susceptible to breast cancer metastasis, these drugs are able to increase disease-free survival. CONCLUSIONS AI, thatare the pillar of the systemic treatment for patients with hormone receptor-positive breast cancer, are associated with different side effects, and in particular osteoporosis and fractures. Both bisphosphonates and denosumab are able to prevent this negative effect.
Collapse
Affiliation(s)
- Agostino Gaudio
- Department of Clinical and Experimental Medicine, University of Catania , Italy
| | | | | | - Pietro Castellino
- Department of Clinical and Experimental Medicine, University of Catania , Italy
| |
Collapse
|
15
|
Diao W, Wang Y, Zhang J, Shao H, Huang Y, Jin M. Identification and comparison of novel circular RNAs with associated co-expression and competing endogenous RNA networks in postmenopausal osteoporosis. J Orthop Surg Res 2021; 16:459. [PMID: 34271965 PMCID: PMC8285836 DOI: 10.1186/s13018-021-02604-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 07/07/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Circular RNAs (circRNAs) are emerging as crucial regulators in various human diseases. So far, the expression profile and regulatory mechanism of circRNAs in postmenopausal osteoporosis (PMOP) are less studied and should be deciphered urgently. Herein, we aimed to reveal key circRNAs affecting PMOP and clarify their compounding regulatory actions. METHODS To reveal key circRNAs affecting PMOP and clarify their compounding regulatory actions, whole transcriptome sequencing and bioinformatics analysis were performed to identify differentially expressed circRNAs (DECs). The expression pattern and regulatory networks of DECs in peripheral blood mononuclear cells (PBMCs) were unearthed. RESULTS A total of 373 DECs comprising 123 intronic, 100 antisense, 70 exonic, 55 intergenic, and 25 sense-overlapping circRNAs were identified. Among these, 73 circRNAs were upregulated and 300 were downregulated. These DECs exerted pivotal functions in the pathogenesis of PMOP as demonstrated by Gene Ontology (GO) annotation and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. The circRNA-miRNA-mRNA co-expression network comprising 28 DECs, 145 miRNAs, and 175 differentially expressed mRNAs predicted the possible mechanism of the pathogenesis and progression of PMOP. CONCLUSION The results of the present study provided a further comprehension of circRNA-associated competing endogenous RNA regulatory mechanism in PMOP. The steadily expressed and disease-specific DECs may serve as promising diagnostic and prognostic biomarkers for PMOP.
Collapse
Affiliation(s)
- Weiyi Diao
- Department of Orthopedics, The First Affiliated Hospital of Zhejiang University, Qingchun Road No. 79, Hangzhou, 310001 Zhejiang Province China
| | - Yongguang Wang
- Department of Orthopedics, The Fifth People’s Hospital of Yuhang District, Baojian Road No. 60, Hangzhou, 310013 Zhejiang Province China
| | - Jun Zhang
- Department of Orthopedics, Zhejiang Provincial People’s Hospital, Shangtang Road No. 158, Hangzhou, 310014 Zhejiang Province China
| | - Haiyu Shao
- Department of Orthopedics, Zhejiang Provincial People’s Hospital, Shangtang Road No. 158, Hangzhou, 310014 Zhejiang Province China
| | - Yazeng Huang
- Department of Orthopedics, Zhejiang Provincial People’s Hospital, Shangtang Road No. 158, Hangzhou, 310014 Zhejiang Province China
| | - Mengran Jin
- Department of Orthopedics, The First Affiliated Hospital of Zhejiang University, Qingchun Road No. 79, Hangzhou, 310001 Zhejiang Province China
- Department of Orthopedics, Zhejiang Provincial People’s Hospital, Shangtang Road No. 158, Hangzhou, 310014 Zhejiang Province China
| |
Collapse
|
16
|
Brunetti G, D'Amato G, De Santis S, Grano M, Faienza MF. Mechanisms of altered bone remodeling in children with type 1 diabetes. World J Diabetes 2021; 12:997-1009. [PMID: 34326950 PMCID: PMC8311475 DOI: 10.4239/wjd.v12.i7.997] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/17/2021] [Accepted: 05/22/2021] [Indexed: 02/06/2023] Open
Abstract
Bone loss associated with type 1 diabetes mellitus (T1DM) begins at the onset of the disease, already in childhood, determining a lower bone mass peak and hence a greater risk of osteoporosis and fractures later in life. The mechanisms underlying diabetic bone fragility are not yet completely understood. Hyperglycemia and insulin deficiency can affect the bone cells functions, as well as the bone marrow fat, thus impairing the bone strength, geometry, and microarchitecture. Several factors, like insulin and growth hormone/insulin-like growth factor 1, can control bone marrow mesenchymal stem cell commitment, and the receptor activator of nuclear factor-κB ligand/osteoprotegerin and Wnt-b catenin pathways can impair bone turnover. Some myokines may have a key role in regulating metabolic control and improving bone mass in T1DM subjects. The aim of this review is to provide an overview of the current knowledge of the mechanisms underlying altered bone remodeling in children affected by T1DM.
Collapse
Affiliation(s)
- Giacomina Brunetti
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University "A. Moro" of Bari, Bari 70125, Italy
| | - Gabriele D'Amato
- Department of Women’s and Children’s Health, ASL Bari, Neonatal Intensive Care Unit, Di Venere Hospital, Bari 70124, Italy
| | - Stefania De Santis
- Department of Pharmacy-Drug Science, University of Bari Aldo Moro, Bari 70126, Italy
| | - Maria Grano
- Department of Emergency and Organ Transplantation, Univ Bari, Bari 70124, Italy
| | - Maria Felicia Faienza
- Department of Biomedical Sciences and Human Oncology, Pediatric Unit, University "A.Moro", Bari 70124, Italy
| |
Collapse
|
17
|
Xu J, Li H, Qu Y, Zheng C, Wang B, Shen P, Xie Z, Wei K, Wang Y, Zhao J. Denosumab might prevent periprosthetic bone loss after total hip and knee arthroplasties: a review. ARTHROPLASTY 2021; 3:13. [PMID: 35236485 PMCID: PMC8796657 DOI: 10.1186/s42836-021-00068-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 01/18/2021] [Indexed: 11/21/2022] Open
Abstract
Total hip arthroplasty and total knee arthroplasty are extensively used for the treatment of the end-stage degenerative joint diseases. Currently, periprosthetic bone loss is still the major cause of aseptic loosening, resulting in implant failures. Previous literature introduced some widely accepted protocols for the prevention and treatment of periprosthetic bone loss, but no guideline has been proposed. Denosumab, a human monoclonal immunoglobulin G2 (IgG2) antibody, can inhibit bone resorption by binding to the receptor activator of nuclear factor kappa-B ligand (RANKL). This article reviews the present findings and evidence concerning the effect of denosumab on the periprosthetic bone loss after total hip arthroplasty and total knee arthroplasty. Overall, the current evidence suggests that denosumab is a promising agent for the treatment of periprosthetic bone loss.
Collapse
Affiliation(s)
- Jianda Xu
- Department of Orthopaedics, Changzhou Traditional Chinese Medical Hospital, Affiliated to Nanjing University of Traditional Chinese Medicine, 25 North Heping Road, Changzhou, 213000, Jiangsu, China
| | - Huan Li
- Department of Arthroplasty, The First People's Hospital of Changzhou, Changzhou, 213003, China
| | - Yuxing Qu
- Department of Orthopaedics, Changzhou Traditional Chinese Medical Hospital, Affiliated to Nanjing University of Traditional Chinese Medicine, 25 North Heping Road, Changzhou, 213000, Jiangsu, China.
| | - Chong Zheng
- Department of Orthopaedics, Changzhou Traditional Chinese Medical Hospital, Affiliated to Nanjing University of Traditional Chinese Medicine, 25 North Heping Road, Changzhou, 213000, Jiangsu, China
| | - Bin Wang
- Department of Orthopaedics, Changzhou Traditional Chinese Medical Hospital, Affiliated to Nanjing University of Traditional Chinese Medicine, 25 North Heping Road, Changzhou, 213000, Jiangsu, China
| | - Pengfei Shen
- Department of Orthopaedics, Changzhou Traditional Chinese Medical Hospital, Affiliated to Nanjing University of Traditional Chinese Medicine, 25 North Heping Road, Changzhou, 213000, Jiangsu, China
| | - Zikang Xie
- Department of Orthopaedics, Changzhou Traditional Chinese Medical Hospital, Affiliated to Nanjing University of Traditional Chinese Medicine, 25 North Heping Road, Changzhou, 213000, Jiangsu, China
| | - Kang Wei
- Department of Orthopaedics, Changzhou Traditional Chinese Medical Hospital, Affiliated to Nanjing University of Traditional Chinese Medicine, 25 North Heping Road, Changzhou, 213000, Jiangsu, China
| | - Yan Wang
- Department of Orthopaedics, Changzhou Traditional Chinese Medical Hospital, Affiliated to Nanjing University of Traditional Chinese Medicine, 25 North Heping Road, Changzhou, 213000, Jiangsu, China
| | - Jianning Zhao
- Department of Orthopaedics, Jinling Hospital, Nanjing, 210002, Jiangsu, China.
| |
Collapse
|
18
|
Anastasilakis AD, Tsourdi E, Tabacco G, Naciu AM, Napoli N, Vescini F, Palermo A. The Impact of Antiosteoporotic Drugs on Glucose Metabolism and Fracture Risk in Diabetes: Good or Bad News? J Clin Med 2021; 10:jcm10050996. [PMID: 33801212 PMCID: PMC7957889 DOI: 10.3390/jcm10050996] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 02/18/2021] [Accepted: 02/22/2021] [Indexed: 12/20/2022] Open
Abstract
Osteoporosis and diabetes mellitus represent global health problems due to their high, and increasing with aging, prevalence in the general population. Osteoporosis can be successfully treated with both antiresorptive and anabolic drugs. While these drugs are clearly effective in reducing the risk of fracture in patients with postmenopausal and male osteoporosis, it is still unclear whether they may have the same efficacy in patients with diabetic osteopathy. Furthermore, as bone-derived cytokines (osteokines) are able to influence glucose metabolism, it is conceivable that antiosteoporotic drugs may have an effect on glycemic control through their modulation of bone turnover that affects the osteokines’ release. These aspects are addressed in this narrative review by means of an unrestricted computerized literature search in the PubMed database. Our findings indicate a balance between good and bad news. Active bone therapies and their modulation of bone turnover do not appear to play a clinically significant role in glucose metabolism in humans. Moreover, there are insufficient data to clarify whether there are any differences in the efficacy of antiosteoporotic drugs on fracture incidence between diabetic and nondiabetic patients with osteoporosis. Although more studies are required for stronger recommendations to be issued, bisphosphonates appear to be the first-line drug for treatment of osteoporosis in diabetic patients, while denosumab seems preferable for older patients, particularly for those with impaired renal function, and osteoanabolic agents should be reserved for patients with more severe forms of osteoporosis.
Collapse
Affiliation(s)
| | - Elena Tsourdi
- Department of Medicine (III) &Center for Healthy Aging, Technische Universität Dresden Medical Center, 01307 Dresden, Germany
- Correspondence: ; Tel.: +49-351-458-12933; Fax: +49-351-458-5801
| | - Gaia Tabacco
- Unit of Endocrinology and Diabetes, Campus Bio-Medico University, 00128 Rome, Italy; (G.T.); (A.M.N.); (N.N.); (A.P.)
| | - Anda Mihaela Naciu
- Unit of Endocrinology and Diabetes, Campus Bio-Medico University, 00128 Rome, Italy; (G.T.); (A.M.N.); (N.N.); (A.P.)
| | - Nicola Napoli
- Unit of Endocrinology and Diabetes, Campus Bio-Medico University, 00128 Rome, Italy; (G.T.); (A.M.N.); (N.N.); (A.P.)
| | - Fabio Vescini
- Department of Endocrinology and Diabetes, Santa Maria della Misericordia Hospital, 33100 Udine, Italy;
| | - Andrea Palermo
- Unit of Endocrinology and Diabetes, Campus Bio-Medico University, 00128 Rome, Italy; (G.T.); (A.M.N.); (N.N.); (A.P.)
| |
Collapse
|
19
|
Li X, Sun F, Lu J, Zhang J, Wang J, Zhu H, Gu M, Ma J. Osteoclasts May Affect Glucose Uptake-Related Insulin Resistance by Secreting Resistin. Diabetes Metab Syndr Obes 2021; 14:3461-3470. [PMID: 34366677 PMCID: PMC8336992 DOI: 10.2147/dmso.s316964] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 07/06/2021] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVES Bone may play a role in the modulation of insulin sensitivity. Insulin resistance can be caused by increased resistin. However, whether osteoclasts affect the insulin resistance via resistin remains unclear. In the present study, we show the expression of resistin in osteoclasts and the possible underlying role of resistin on glucose uptake-related insulin resistance in vitro. METHODS Conditioned mediums (CM) were collected from Raw264.7 cells treated without (CCM) or with RANKL (CM3, treated with RANKL for 3 days; CM5, treated with RANKL for 5 days) and transfected with control or resistin siRNA (CMsiRNA). The osteoclast formation was examined by tartrate resistant acid phosphatase (TRAP) staining. C2C12 myoblasts were cultured with the CM or CMsiRNA. Glucose uptake was evaluated by 2-NBDG fluorescence intensity. Resistin expression was evaluated by quantitative real-time polymerase chain reaction (qRT-PCR) and enzyme-linked immunosorbent assay. Statistical analysis was performed by an independent two sample t-test or one-way ANOVA. RESULTS The 2-NBDG fluorescence intensity was higher in C2C12 cells treated with CCM compared to those that received CM3 and CM5 (p < 0.05). Resistin mRNA and protein expressions were both increased in RAW264.7 cells treated with RANKL for 3 days and 5 days compared with those cells without RANKL administration. The 2-NBDG fluorescence intensities in C2C12 cells treated with CMsiRNA and CM5+Anti-resistin antibody were significantly higher than those cultured with CM5 (p < 0.05). CONCLUSION Osteoclasts may promote glucose uptake-related insulin resistance by secreting resistin.
Collapse
Affiliation(s)
- Xiangqi Li
- Department of Endocrinology, Shanghai Gongli Hospital, The Second Military Medical University, Shanghai, 200135, People’s Republic of China
| | - Fei Sun
- Department of Endocrinology, Shanghai Gongli Hospital, The Second Military Medical University, Shanghai, 200135, People’s Republic of China
| | - Jiancan Lu
- Department of Endocrinology, Shanghai Gongli Hospital, The Second Military Medical University, Shanghai, 200135, People’s Republic of China
| | - Jichen Zhang
- Department of Endocrinology, Shanghai Gongli Hospital, The Second Military Medical University, Shanghai, 200135, People’s Republic of China
| | - Jingnan Wang
- Department of Endocrinology, Shanghai Gongli Hospital, The Second Military Medical University, Shanghai, 200135, People’s Republic of China
| | - Hongling Zhu
- Department of Endocrinology, Shanghai Gongli Hospital, The Second Military Medical University, Shanghai, 200135, People’s Republic of China
| | - Mingjun Gu
- Department of Endocrinology, Shanghai Gongli Hospital, The Second Military Medical University, Shanghai, 200135, People’s Republic of China
| | - Junhua Ma
- Department of Endocrinology, Shanghai Gongli Hospital, The Second Military Medical University, Shanghai, 200135, People’s Republic of China
- Correspondence: Junhua Ma Department of Endocrinology, Shanghai Gongli Hospital, The Second Military Medical University, Miaopu Road 219, Shanghai, 200135, People’s Republic of ChinaTel +86 21 58858730 Email
| |
Collapse
|
20
|
Fang P, She Y, Han L, Wan S, Shang W, Zhang Z, Min W. A promising biomarker of elevated galanin level in hypothalamus for osteoporosis risk in type 2 diabetes mellitus. Mech Ageing Dev 2020; 194:111427. [PMID: 33383074 DOI: 10.1016/j.mad.2020.111427] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 12/15/2020] [Accepted: 12/20/2020] [Indexed: 02/07/2023]
Abstract
Type 2 diabetes mellitus (T2DM) and osteoporosis are two major healthcare problems worldwide. T2DM is considered to be a risk factor for osteoporosis. Interestingly, several epidemiological studies suggest that bone abnormalities associated with diabetes may differ, at least in part, from those associated with senile or post-menopausal osteoporosis. The growing prevalence that patients with T2DM simultaneously suffer from osteoporosis, puts forward the importance to discuss the relationship between both diseases, as well as to investigate correlative agents to treat them. Emerging evidences demonstrate that neuropeptide galanin is involved in the pathogenesis of T2DM and osteoporosis. Galanin via activation of central GALR2 increases insulin sensitivity as well as bone density and mass in animal models. The disorder of galanin function plays major role in development of both diseases. Importantly, galanin signaling is indispensable for ΔFosB, an AP1 antagonist, to play the bone mass-accruing effects in the ventral hypothalamic neurons of diabetic models. This review summarizes our and other recent studies to provide a new insight into the multivariate relationship among galanin, T2DM and osteoporosis, highlighting the beneficial effect of galanin on the comorbid state of both diseases. These may help us better understanding the pathogenesis of osteoporosis and T2DM and provide useful clues for further inquiry if elevated galanin level may be taken as a biomarker for both conjoint diseases, and GALR2 agonist may be taken as a novel therapeutic strategy to treat both diseases concurrently.
Collapse
Affiliation(s)
- Penghua Fang
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China; Department of Physiology, Hanlin College, Nanjing University of Chinese Medicine, Taizhou 225300, China
| | - Yuqing She
- Department of Endocrinology, Pukou Branch of Jiangsu People's Hospital, Nanjing 211808, China
| | - Long Han
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Shiwei Wan
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Wenbin Shang
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zhenwen Zhang
- Department of Endocrinology, Clinical Medical College, Yangzhou University, Yangzhou 225001, China.
| | - Wen Min
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
21
|
Cannarella R, Musso N, Condorelli RA, Musmeci M, Stefani S, Aversa A, La Vignera S, Calogero AE. The 2039 A/G FSH receptor gene polymorphism influences glucose metabolism in healthy men. Endocrine 2020; 70:629-634. [PMID: 32681384 PMCID: PMC7674314 DOI: 10.1007/s12020-020-02420-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 07/06/2020] [Indexed: 11/12/2022]
Abstract
OBJECTIVE To assess the role of c. 2039 A/G (p. Asp680Ser) (rs6166) and c. -29 G/A (rs1394205) follicle-stimulating hormone receptor (FSHR) gene single nucleotide polymorphisms (SNPs) in a cohort of healthy men. METHODS One-hundred twenty-seven healthy men underwent evaluation of the anthropometric parameters, assessment of metabolic and lipid profile, measurement FSH serum levels, and genotyping of both the aforementioned FSHR SNPs. Data grouped according to the FSHR rs6166 or rs1394205 genotypes underwent to statistical analysis. MAIN RESULTS The three groups of men for each FSHR SNP did not differ statistically significantly for body mass index and serum FSH levels. As for FSHR rs6166 SNP, glucose levels were significantly lower in men with the GG genotype compared with those with the AA genotype. Men with AG had lower insulin levels and HOMA index values compared with those carrying the genotype AA (p < 0.05). The GG group showed a negative correlation between serum FSH levels and insulin and between serum FSH levels and HOMA index (p < 0.05). In contrast, men grouped according to the FSHR rs1394205 genotype showed no significant difference in blood glucose, serum insulin levels, and HOMA index. The AG group showed a negative correlation between FSH insulin and between serum FSH levels and HOMA index (p < 0.05). CONCLUSIONS Men with the genotype GG of the FSHR rs6166 SNP have lower blood glucose levels than those with the AA genotype. Their FSH levels inversely correlated with insulin and HOMA index. In contrast, the genotype FSHR rs6166 A/G did not reveal any role of FSH on glucose metabolism in healthy men. The inverse relationship between FSH and insulin or HOMA index in the group with the genotype GG of the FSHR rs6166 SNP suggests a possible cross-talk between FSH and insulin.
Collapse
Affiliation(s)
- Rossella Cannarella
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Nicolò Musso
- Bio-nanotech Research and Innovation Tower (BRIT), University of Catania, Catania, Italy
| | - Rosita A Condorelli
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Marco Musmeci
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Stefania Stefani
- Bio-nanotech Research and Innovation Tower (BRIT), University of Catania, Catania, Italy
| | - Antonio Aversa
- Department of Experimental and Clinical Medicine, "Magna Graecia" University, Catanzaro, Italy
| | - Sandro La Vignera
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Aldo E Calogero
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy.
| |
Collapse
|
22
|
Rossini A, Frigerio S, Dozio E, Trevisan R, Perseghin G, Corbetta S. Effect of Denosumab on Glucose Homeostasis in Postmenopausal Women with Breast Cancer Treated with Aromatase Inhibitors: A Pilot Study. Int J Endocrinol 2020; 2020:1809150. [PMID: 33204260 PMCID: PMC7666635 DOI: 10.1155/2020/1809150] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/20/2020] [Accepted: 10/24/2020] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Aromatase inhibitors in women with breast cancer have been associated with cancer treatment-induced bone loss (CTIBL), increased fracture risk, and impairment of glucose metabolism. Denosumab (Dmab), a monoclonal antibody against RANKL, which is a key regulator of the osteoclast activity, is effective as an antiresorptive agent in the treatment of CTIBL. Since RANKL/RANK pathway may contribute to the pathogenesis of glucometabolic disorders, it has been suggested that Dmab may improve glucose homeostasis. Our pilot study evaluated the effect of a single administration of 60 mg Dmab on glucose metabolism in a cohort of women with breast cancer treated with aromatase inhibitors. METHODS Fifteen postmenopausal nondiabetic women were prospectively enrolled. Oral glucose tolerance test (OGTT) and metabolic parameters, including FGF21, were assessed at baseline and one month after Dmab injection. Midterm glucose control was evaluated by measuring glycated haemoglobin (HbA1c) levels 5 months after Dmab. RESULTS Parameters of glucose metabolism were not different one month after Dmab but circulating FGF21 levels significantly decreased (128.5 ± 46.8 versus 100.2 ± 48.8 pg/mL; p=0.016). Considering patients with insulin resistance at baseline (HOMA-IR > 2.5 and Matsuda Index < 2.5; n = 5), reduced mean fasting insulin levels (16.3 ± 4.9 versus 13.5 ± 3.5 mcU/mL; p=0.029) and increased insulin sensitivity index QUICKI (0.317 ± 0.013 versus 0.327 ± 0.009; p=0.025) were found. Nonetheless, HbA1c increased 5 months after Dmab (36.0 ± 2.3 versus 39.6 ± 3.1 mmol/mol; p=0.01). CONCLUSIONS Although RANKL blockade induced a short-term positive effect on insulin sensitivity, particularly in insulin-resistant patients, a benefit on long-term glucose metabolism was not evident. In conclusion, Dmab is safe for glucose metabolism in aromatase inhibitor-treated women with breast cancer.
Collapse
Affiliation(s)
- Alessandro Rossini
- Endocrinology and Diabetes Unit, ASST Papa Giovanni XXIII, Bergamo 24127, Italy
| | - Sofia Frigerio
- Endocrinology Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan 20122, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Milan 20122, Italy
| | - Elena Dozio
- Department of Biomedical Sciences for Health, University of Milan, Milan 20122, Italy
| | - Roberto Trevisan
- Endocrinology and Diabetes Unit, ASST Papa Giovanni XXIII, Bergamo 24127, Italy
- Department of Medicine and Surgery, Università Degli Studi di Milano-Bicocca, Monza 20900, Italy
| | - Gianluca Perseghin
- Department of Medicine and Surgery, Università Degli Studi di Milano-Bicocca, Monza 20900, Italy
- Department of Medicine and Rehabilitation, Policlinico Monza, Monza 20900, Italy
| | - Sabrina Corbetta
- Endocrinology and Diabetology Service, IRCCS Istituto Ortopedico Galeazzi, Milan 20161, Italy
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan 20122, Italy
| |
Collapse
|
23
|
Identification of osteoclast-osteoblast coupling factors in humans reveals links between bone and energy metabolism. Nat Commun 2020; 11:87. [PMID: 31911667 PMCID: PMC6946812 DOI: 10.1038/s41467-019-14003-6] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 12/09/2019] [Indexed: 01/20/2023] Open
Abstract
Bone remodeling consists of resorption by osteoclasts followed by formation by osteoblasts, and osteoclasts are a source of bone formation-stimulating factors. Here we utilize osteoclast ablation by denosumab (DMAb) and RNA-sequencing of bone biopsies from postmenopausal women to identify osteoclast-secreted factors suppressed by DMAb. Based on these analyses, LIF, CREG2, CST3, CCBE1, and DPP4 are likely osteoclast-derived coupling factors in humans. Given the role of Dipeptidyl Peptidase-4 (DPP4) in glucose homeostasis, we further demonstrate that DMAb-treated participants have a significant reduction in circulating DPP4 and increase in Glucagon-like peptide (GLP)-1 levels as compared to the placebo-treated group, and also that type 2 diabetic patients treated with DMAb show significant reductions in HbA1c as compared to patients treated either with bisphosphonates or calcium and vitamin D. Thus, our results identify several coupling factors in humans and uncover osteoclast-derived DPP4 as a potential link between bone remodeling and energy metabolism. Anti-resorptive bone therapies also inhibit bone formation, as osteoclasts secrete factors that stimulate bone formation by osteoblasts. Here, the authors identify osteoclast-secreted factors that couple bone resorption to bone formation in healthy subjects, and show that osteoclast-derived DPP4 may be a factor coupling bone resorption to energy metabolism.
Collapse
|
24
|
Ala M, Jafari RM, Dehpour AR. Diabetes Mellitus and Osteoporosis Correlation: Challenges and Hopes. Curr Diabetes Rev 2020; 16:984-1001. [PMID: 32208120 DOI: 10.2174/1573399816666200324152517] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 02/02/2020] [Accepted: 02/24/2020] [Indexed: 01/14/2023]
Abstract
Diabetes and osteoporosis are two common diseases with different complications. Despite different therapeutic strategies, managing these diseases and reducing their burden have not been satisfactory, especially when they appear one after the other. In this review, we aimed to clarify the similarity, common etiology and possible common adjunctive therapies of these two major diseases and designate the known molecular pattern observed in them. Based on different experimental findings, we want to illuminate that interestingly similar pathways lead to diabetes and osteoporosis. Meanwhile, there are a few drugs involved in the treatment of both diseases, which most of the time act in the same line but sometimes with opposing results. Considering the correlation between diabetes and osteoporosis, more efficient management of both diseases, in conditions of concomitant incidence or cause and effect condition, is required.
Collapse
Affiliation(s)
- Moein Ala
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, 13145-784, Tehran, Iran
| | - Razieh Mohammad Jafari
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Reza Dehpour
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, 13145-784, Tehran, Iran
| |
Collapse
|
25
|
Cipriani C, Colangelo L, Santori R, Renella M, Mastrantonio M, Minisola S, Pepe J. The Interplay Between Bone and Glucose Metabolism. Front Endocrinol (Lausanne) 2020; 11:122. [PMID: 32265831 PMCID: PMC7105593 DOI: 10.3389/fendo.2020.00122] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 02/24/2020] [Indexed: 12/13/2022] Open
Abstract
The multiple endocrine functions of bone other than those related to mineral metabolism, such as regulation of insulin sensitivity, glucose homeostasis, and energy metabolism, have recently been discovered. In vitro and murine studies investigated the impact of several molecules derived from osteoblasts and osteocytes on glucose metabolism. In addition, the effect of glucose on bone cells suggested a mutual cross-talk between bone and glucose homeostasis. In humans, these mechanisms are the pivotal determinant of the skeletal fragility associated with both type 1 and type 2 diabetes. Metabolic abnormalities associated with diabetes, such as increase in adipose tissue, reduction of lean mass, effects of hyperglycemia per se, production of the advanced glycation end products, diabetes-associated chronic kidney disease, and perturbation of the calcium-PTH-vitamin D metabolism, are the main mechanisms involved. Finally, there have been multiple reports of antidiabetic drugs affecting the skeleton, with differences among basic and clinical research data, as well as of anti-osteoporosis medication influencing glucose metabolism. This review focuses on the aspects linking glucose and bone metabolism by offering insight into the most recent evidence in humans.
Collapse
|
26
|
Abe I, Ochi K, Takashi Y, Yamao Y, Ohishi H, Fujii H, Minezaki M, Sugimoto K, Kudo T, Abe M, Ohnishi Y, Mukoubara S, Kobayashi K. Effect of denosumab, a human monoclonal antibody of receptor activator of nuclear factor kappa-B ligand (RANKL), upon glycemic and metabolic parameters: Effect of denosumab on glycemic parameters. Medicine (Baltimore) 2019; 98:e18067. [PMID: 31764838 PMCID: PMC6882599 DOI: 10.1097/md.0000000000018067] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Osteoporosis is a complication of type 2 diabetes mellitus (T2DM). Blockade of receptor activator of nuclear factor kappa-B ligand (RANKL) improves osteoporosis, but might also improve glucose tolerance through reduction of hepatic insulin resistance. However, the effect of denosumab (a human monoclonal antibody of RANKL) upon glycemic and metabolic parameters is controversial. We revealed the effect of denosumab upon glycemic and metabolic parameters for 52 weeks. We evaluated 20 individuals diagnosed with both osteoporosis (male and female: postmenopausal) and T2DM. We measured glycemic and metabolic parameters before and 26/52 weeks after administration of denosumab (60 mg per 26 weeks) without changing any other medication each patient was taking. All patients completed the study without complications and the T-score (lumbar spine and femoral neck) improved significantly from baseline to 52 weeks after denosumab administration (P < .001, .001, respectively). None of the glycemic parameters changed significantly from baseline to 26 weeks after denosumab administration, but levels of glycated hemoglobin and homeostasis model assessment of insulin resistance improved significantly from baseline to 52 weeks after administration (P = .019, .008, respectively). The levels of liver enzymes did not change significantly from baseline to 26 weeks after denosumab administration, but levels of aspartate transaminase and alanine aminotransferase improved significantly from baseline to 52 weeks after administration (P = .014, .004, respectively). None of the markers of lipid metabolism and body mass index changed significantly from baseline to 26/52 weeks after denosumab administration. These data demonstrated that denosumab is useful for T2DM patients with osteoporosis for glycemic control via improvement of insulin resistance. Also, the effect of denosumab might be due to improvement of hepatic function.
Collapse
Affiliation(s)
- Ichiro Abe
- Department of Endocrinology and Diabetes Mellitus, Fukuoka University Chikushi Hospital, Chikushino, Fukuoka
- Department of Internal Medicine, Nagasaki Prefecture Iki Hospital, Iki, Nagasaki
| | - Kentaro Ochi
- Department of Endocrinology and Diabetes Mellitus, Fukuoka University Chikushi Hospital, Chikushino, Fukuoka
- Department of Internal Medicine, Nagasaki Prefecture Iki Hospital, Iki, Nagasaki
| | - Yuichi Takashi
- Department of Endocrinology and Diabetes Mellitus, Fukuoka University Chikushi Hospital, Chikushino, Fukuoka
- Department of Internal Medicine, Nagasaki Prefecture Iki Hospital, Iki, Nagasaki
| | - Yuka Yamao
- Department of Endocrinology and Diabetes Mellitus, Fukuoka University Chikushi Hospital, Chikushino, Fukuoka
| | - Hanako Ohishi
- Department of Endocrinology and Diabetes Mellitus, Fukuoka University Chikushi Hospital, Chikushino, Fukuoka
| | - Hideyuki Fujii
- Department of Endocrinology and Diabetes Mellitus, Fukuoka University Chikushi Hospital, Chikushino, Fukuoka
- Department of Internal Medicine, Nagasaki Prefecture Iki Hospital, Iki, Nagasaki
| | - Midori Minezaki
- Department of Endocrinology and Diabetes Mellitus, Fukuoka University Chikushi Hospital, Chikushino, Fukuoka
- Department of Internal Medicine, Nagasaki Prefecture Iki Hospital, Iki, Nagasaki
| | - Kaoru Sugimoto
- Department of Endocrinology and Diabetes Mellitus, Fukuoka University Chikushi Hospital, Chikushino, Fukuoka
| | - Tadachika Kudo
- Department of Endocrinology and Diabetes Mellitus, Fukuoka University Chikushi Hospital, Chikushino, Fukuoka
| | - Makiko Abe
- Department of Preventive Medicine, Kyushu University Faculty of Medical Sciences, Fukuoka, Japan
| | - Yasushi Ohnishi
- Department of Internal Medicine, Nagasaki Prefecture Iki Hospital, Iki, Nagasaki
| | - Shigeaki Mukoubara
- Department of Internal Medicine, Nagasaki Prefecture Iki Hospital, Iki, Nagasaki
| | - Kunihisa Kobayashi
- Department of Endocrinology and Diabetes Mellitus, Fukuoka University Chikushi Hospital, Chikushino, Fukuoka
| |
Collapse
|
27
|
Costantini S, Conte C. Bone health in diabetes and prediabetes. World J Diabetes 2019; 10:421-445. [PMID: 31523379 PMCID: PMC6715571 DOI: 10.4239/wjd.v10.i8.421] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 06/03/2019] [Accepted: 07/20/2019] [Indexed: 02/05/2023] Open
Abstract
Bone fragility has been recognized as a complication of diabetes, both type 1 diabetes (T1D) and type 2 diabetes (T2D), whereas the relationship between prediabetes and fracture risk is less clear. Fractures can deeply impact a diabetic patient's quality of life. However, the mechanisms underlying bone fragility in diabetes are complex and have not been fully elucidated. Patients with T1D generally exhibit low bone mineral density (BMD), although the relatively small reduction in BMD does not entirely explain the increase in fracture risk. On the contrary, patients with T2D or prediabetes have normal or even higher BMD as compared with healthy subjects. These observations suggest that factors other than bone mass may influence fracture risk. Some of these factors have been identified, including disease duration, poor glycemic control, presence of diabetes complications, and certain antidiabetic drugs. Nevertheless, currently available tools for the prediction of risk inadequately capture diabetic patients at increased risk of fracture. Aim of this review is to provide a comprehensive overview of bone health and the mechanisms responsible for increased susceptibility to fracture across the spectrum of glycemic status, spanning from insulin resistance to overt forms of diabetes. The management of bone fragility in diabetic patient is also discussed.
Collapse
Affiliation(s)
- Silvia Costantini
- Department of Immunology, Transplantation and Infectious Diseases, Vita-Salute San Raffaele University, Milan 20123, Italy
- Epatocentro Ticino, Lugano 6900, Switzerland
| | - Caterina Conte
- Department of Immunology, Transplantation and Infectious Diseases, Vita-Salute San Raffaele University, Milan 20123, Italy
- IRCCS Ospedale San Raffaele, Internal Medicine and Transplantation, Milan 20123, Italy
| |
Collapse
|
28
|
Juel Mortensen L, Lorenzen M, Jørgensen N, Andersson AM, Nielsen JE, Petersen LI, Lanske B, Juul A, Hansen JB, Blomberg Jensen M. Possible link between FSH and RANKL release from adipocytes in men with impaired gonadal function including Klinefelter syndrome. Bone 2019; 123:103-114. [PMID: 30914274 DOI: 10.1016/j.bone.2019.03.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 02/19/2019] [Accepted: 03/18/2019] [Indexed: 11/21/2022]
Abstract
INTRODUCTION The FSH receptor (FSHR) has been found to be expressed in human bone cells and bone marrow-adipocytes, and highly-debated mouse studies have suggested extra-gonadal effects of gonadotropins on glucose, adipocyte and bone homeostasis. These putative effects could be direct or indirectly mediated by endocrine factors released from bone-cells or adipocytes. Here, we investigated whether gonadotropins are linked with glucose- and lipid-metabolism in hypergonadotropic men. METHODS Single centre, cross-sectional study of 307 men with idiopathic infertility and 28 men with Klinefelter syndrome (KS). OUTCOME associations between serum LH and FSH with soluble-RANKL (sRANKL), osteoprotegerin (OPG), osteocalcin, fasting glucose and insulin, sex steroids, and body composition. Expression of FSHR was studied in human-derived adipocyte-cell-models (hMADS, TERT-hWA) and FSH stimulation of RANKL expression and secretion in hMADS in vitro. RESULTS Serum FSH was not directly linked with glucose- and lipid-metabolism. However, FSH was inversely associated with sRANKL in both infertile men and KS men (p = .023 and p = .012). Infertile men with elevated FSH (>11 U/L) had significantly lower sRANKL (p = .015). sRANKL was positively associated with fat percentage, fasting insulin, and glucose (all p < .05). Men with prediabetes had higher sRANKL (p = .021), but lower testosterone (p < .0001) and Inhibin B (p = .005). The FSHR was expressed in the investigated human derived adipocytes, and 3-6 h treatment with FSH markedly increased RANKL release (p < .05). CONCLUSION KS and infertile men with prediabetes have low Inhibin B, and testosterone but elevated RANKL compared with non-prediabetic men despite comparable levels of serum gonadotropins. Serum FSH and sRANKL was inversely associated in both infertile and KS men, but the increased release of RANKL from FSH treated adipocytes suggest a direct effect of FSH on RANKL production in some tissues. Further studies are required to clarify whether FSH targets RANKL in the skeleton. ClinicalTrial_ID:NCT01304927.
Collapse
Affiliation(s)
- Li Juel Mortensen
- Group of skeletal, mineral and gonadal endocrinology, University Department of Growth and Reproduction, Rigshospitalet, Copenhagen, Denmark; Division of Bone and Mineral Research, HSDM/HMS, Harvard Medical School, Boston, USA
| | - Mette Lorenzen
- Group of skeletal, mineral and gonadal endocrinology, University Department of Growth and Reproduction, Rigshospitalet, Copenhagen, Denmark
| | - Niels Jørgensen
- University Department of Growth and Reproduction and International Center for Research, Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Blegdamsvej 9, Copenhagen 2100, Denmark
| | - Anna-Maria Andersson
- University Department of Growth and Reproduction and International Center for Research, Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Blegdamsvej 9, Copenhagen 2100, Denmark
| | - John E Nielsen
- University Department of Growth and Reproduction and International Center for Research, Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Blegdamsvej 9, Copenhagen 2100, Denmark
| | - Louise I Petersen
- Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Beate Lanske
- Division of Bone and Mineral Research, HSDM/HMS, Harvard Medical School, Boston, USA
| | - Anders Juul
- University Department of Growth and Reproduction and International Center for Research, Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Blegdamsvej 9, Copenhagen 2100, Denmark
| | - Jacob B Hansen
- Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Martin Blomberg Jensen
- Group of skeletal, mineral and gonadal endocrinology, University Department of Growth and Reproduction, Rigshospitalet, Copenhagen, Denmark; Division of Bone and Mineral Research, HSDM/HMS, Harvard Medical School, Boston, USA.
| |
Collapse
|
29
|
Mohsin S, Baniyas MM, AlDarmaki RS, Tekes K, Kalász H, Adeghate EA. An update on therapies for the treatment of diabetes-induced osteoporosis. Expert Opin Biol Ther 2019; 19:937-948. [PMID: 31079501 DOI: 10.1080/14712598.2019.1618266] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Introduction: Currently, 424 million people aged between 20 and 79 years worldwide are diabetic. More than 25% of adults aged over 65 years in North America have Type 2 diabetes mellitus (DM). Diabetes-induced osteoporosis (DM-OS) is caused by chronic hyperglycemia, advanced glycated end products and oxidative stress. The increase in the prevalence of DM-OS has prompted researchers to develop new biological therapies for the management of DM-OS. Areas covered: This review covered the current and novel biological agents used in the management of DM-OS. Data were retrieved from PubMed, Scopus, American Diabetes Association and International Osteoporosis Foundation websites, and ClinicalTrials.gov. The keywords for the search included: DM, osteoporosis, and management. Expert opinion: Several biological molecules have been examined in order to find efficient drugs for the treatment of DM-OS. These biological agents include anti-osteoporosis drugs: net anabolics (parathyroid hormone/analogs, androgens, calcilytics, anti-sclerostin antibody), net anti-resorptive osteoporosis drugs (calcitonin, estrogen, selective estrogen receptor modulators, bisphosphonates, RANKL antibody) and anti-diabetic drugs (alpha glucosidase inhibitors, sulfonylureas, biguanides, meglitinides, thiazolidinediones, GLP-1 receptor agonists, dipeptidylpeptidase-4 inhibitors, sodium glucose co-transporter-2 inhibitors, insulin). Biological medications that effectively decrease hyperglycemia and, at the same time, maintain bone health would be an ideal drug/drug combination for the treatment of DM-OS.
Collapse
Affiliation(s)
- Sahar Mohsin
- a Department of Anatomy, College of Medicine & Health Sciences, United Arab Emirates University , Al Ain , United Arab Emirates
| | - May Myh Baniyas
- a Department of Anatomy, College of Medicine & Health Sciences, United Arab Emirates University , Al Ain , United Arab Emirates
| | - Reem Smh AlDarmaki
- a Department of Anatomy, College of Medicine & Health Sciences, United Arab Emirates University , Al Ain , United Arab Emirates
| | - Kornélia Tekes
- b Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University , Budapest , Hungary
| | - Huba Kalász
- c Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University , Budapest , Hungary
| | - Ernest A Adeghate
- a Department of Anatomy, College of Medicine & Health Sciences, United Arab Emirates University , Al Ain , United Arab Emirates
| |
Collapse
|
30
|
Liu Y, Liu X, R Lewis J, Brock K, C Brennan-Speranza T, Teixeira-Pinto A. Relationship between serum osteocalcin/undercarboxylated osteocalcin and type 2 diabetes: a systematic review/meta-analysis study protocol. BMJ Open 2019; 9:e023918. [PMID: 30862632 PMCID: PMC6429918 DOI: 10.1136/bmjopen-2018-023918] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
INTRODUCTION The global burden of type 2 diabetes (T2DM) is steadily increasing. Experimental studies have demonstrated that a novel hormone secreted by bone cells, osteocalcin (OC), can stimulate beta-cell proliferation and improve insulin sensitivity in mice. Observational studies in humans have investigated the relationship between OC and metabolic parameters, and T2DM. Importantly, few studies have reported on the undercarboxylated form of OC (ucOC), which is the putative active form of OC suggested to affect glucose metabolism. OBJECTIVES We will conduct a systematic review and meta-analysis to: (1) compare the levels of serum OC and ucOC between T2DM and normal glucose-tolerant controls (NGC); (2) investigate the risk ratios between serum OC and ucOC, and T2DM; (3) determine the correlation coefficient between OC and ucOC and fasting insulin levels, homeostatic model assessment-insulin resistance, haemoglobin A1c and fasting glucose levels and (4) explore potential sources of between-study heterogeneity. The secondary objective is to compare the serum OC and ucOC between pre-diabetes (PD) and NGC and between T2DM and PD. HODS AND ANALYSIS This study will report items in line with the guidelines outlined in preferred reporting items for systematic reviews and meta-analysis of observational studies in epidemiology. We will include observational studies (cohort, case-control and cross-sectional studies) and intervention studies with baseline data. Three databases (MEDLINE, EMBASE and SCOPUS) will be searched from inception until July 2018 without language restrictions. Two reviewers will independently screen the titles and abstracts and conduct a full-text assessment to identify eligible studies. Discrepancies will be resolved by consensus with a third reviewer. The risk of bias assessment will be conducted by two reviewers independently based on the Newcastle-Ottawa Scale. Potential sources of between-study heterogeneity will be tested using meta-regression/subgroup analyses. Contour-enhanced funnel plots and Egger's test will be used to identify potential publication bias. ETHICS AND DISSEMINATION Formal ethical approval is not required. We will disseminate the results to a peer-reviewed publication and conference presentation. PROSPERO REGISTRATION NUMBER CRD42017073127.
Collapse
Affiliation(s)
- Yihui Liu
- Centre for Kidney Research, Children's Hospital, Westmead, New South Wales, Australia
- School Public Health, Faculty of Medicine and Health, University of Sydney, Camperdown, New South Wales, Australia
| | - Xiaoying Liu
- School Public Health, Faculty of Medicine and Health, University of Sydney, Camperdown, New South Wales, Australia
| | - Joshua R Lewis
- Centre for Kidney Research, Children's Hospital, Westmead, New South Wales, Australia
- School of Medicine, Faculty of Medicine and Health, The University of Western Australia, Perth, Western Australia, Australia
| | - Kaye Brock
- School of Medical Sciences, University of Sydney, Camperdown, New South Wales, Australia
| | | | - Armando Teixeira-Pinto
- Centre for Kidney Research, Children's Hospital, Westmead, New South Wales, Australia
- School Public Health, Faculty of Medicine and Health, University of Sydney, Camperdown, New South Wales, Australia
| |
Collapse
|
31
|
Liu DM, Mosialou I, Liu JM. Bone: Another potential target to treat, prevent and predict diabetes. Diabetes Obes Metab 2018; 20:1817-1828. [PMID: 29687585 DOI: 10.1111/dom.13330] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 04/16/2018] [Accepted: 04/18/2018] [Indexed: 12/30/2022]
Abstract
Type 2 diabetes mellitus is now a worldwide health problem with increasing prevalence. Mounting efforts have been made to treat, prevent and predict this chronic disease. In recent years, increasing evidence from mice and clinical studies suggests that bone-derived molecules modulate glucose metabolism. This review aims to summarize our current understanding of the interplay between bone and glucose metabolism and to highlight potential new means of therapeutic intervention. The first molecule recognized as a link between bone and glucose metabolism is osteocalcin (OCN), which functions in its active form, that is, undercarboxylated OCN (ucOC). ucOC acts in promoting insulin expression and secretion, facilitating insulin sensitivity, and favouring glucose and fatty acid uptake and utilization. A second bone-derived molecule, lipocalin2, functions in suppressing appetite in mice through its action on the hypothalamus. Osteocytes, the most abundant cells in bone matrix, are suggested to act on the browning of white adipose tissue and energy expenditure through secretion of bone morphogenetic protein 7 and sclerostin. The involvement of bone resorption in glucose homeostasis has also been examined. However, there is evidence indicating the implication of the receptor activator of nuclear factor κ-B ligand, neuropeptide Y, and other known and unidentified bone-derived factors that function in glucose homeostasis. We summarize recent advances and the rationale for treating, preventing and predicting diabetes by skeleton intervention.
Collapse
Affiliation(s)
- Dong-Mei Liu
- Department of Rheumatology, ZhongShan Hospital, FuDan University, Shanghai, China
| | - Ioanna Mosialou
- Department of Physiology and Cellular Biophysics, College of Physicians and Surgeons, Columbia University, New York, New York
| | - Jian-Min Liu
- Department of Endocrine and Metabolic Diseases, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Rui-jin Hospital, Shanghai Jiao-tong University School of Medicine, Shanghai Institute of Endocrine and Metabolic Diseases, Shanghai, China
| |
Collapse
|
32
|
Ma C, Tonks KT, Center JR, Samocha-Bonet D, Greenfield JR. Complex interplay among adiposity, insulin resistance and bone health. Clin Obes 2018; 8:131-139. [PMID: 29334695 DOI: 10.1111/cob.12240] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Revised: 10/31/2017] [Accepted: 11/23/2017] [Indexed: 12/28/2022]
Abstract
Obesity and osteoporosis are common public health problems. Paradoxically, while obesity is associated with higher bone density, type 2 diabetic obese individuals have an increased fracture risk. Although obesity and insulin resistance co-exist, some obese individuals remain insulin-sensitive. We suggest that the apparent paradox relating obesity, bone density and fracture risk in type 2 diabetes may be at least partly influenced by differences in bone strength and quality between insulin-resistant and insulin-sensitive obese individuals. In this review, we focus on the complex interplay between, adiposity, insulin resistance and osteoporotic fracture risk and suggest that this is an important area of study that has implications for individually tailored and targeted treatment to prevent osteoporotic fracture in obese type 2 diabetic individuals.
Collapse
Affiliation(s)
- C Ma
- Department of Endocrinology, The First Hospital of Qinhuangdao, Qinhuangdao, China
| | - K T Tonks
- Department of Endocrinology and Diabetes, St Vincent's Hospital, Sydney, Australia
- Diabetes and Metabolism Program, Garvan Institute of Medical Research, Sydney, Australia
| | - J R Center
- Department of Endocrinology and Diabetes, St Vincent's Hospital, Sydney, Australia
- Bone Biology Research Program, Garvan Institute of Medical Research, Sydney, Australia
| | - D Samocha-Bonet
- Diabetes and Metabolism Program, Garvan Institute of Medical Research, Sydney, Australia
- Faculty of Medicine, St Vincent's Clinical School, University of New South Wales, Sydney, Australia
| | - J R Greenfield
- Department of Endocrinology and Diabetes, St Vincent's Hospital, Sydney, Australia
- Diabetes and Metabolism Program, Garvan Institute of Medical Research, Sydney, Australia
- Faculty of Medicine, St Vincent's Clinical School, University of New South Wales, Sydney, Australia
| |
Collapse
|
33
|
Paschou SA, Dede AD, Anagnostis PG, Vryonidou A, Morganstein D, Goulis DG. Type 2 Diabetes and Osteoporosis: A Guide to Optimal Management. J Clin Endocrinol Metab 2017; 102:3621-3634. [PMID: 28938433 DOI: 10.1210/jc.2017-00042] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 05/18/2017] [Indexed: 12/15/2022]
Abstract
CONTEXT Both type 2 diabetes (T2D) and osteoporosis are affected by aging and quite often coexist. Furthermore, the fracture risk in patients with T2D is increased. The aim of this article is to review updated information on osteoporosis and fracture risk in patients with T2D, to discuss the effects of diabetes treatment on bone metabolism, as well as the effect of antiosteoporotic medications on the incidence and control of T2D, and to provide a personalized guide to the optimal management. EVIDENCE ACQUISITION A systematic literature search for human studies was conducted in three electronic databases (PubMed, Cochrane, and EMBASE) until March 2017. Regarding recommendations, we adopted the grading system introduced by the American College of Physicians. EVIDENCE SYNTHESIS The results are presented in systematic tables. Healthy diet and physical exercise are very important for the prevention and treatment of both entities. Metformin, sulfonylureas, dipeptidyl peptidase-4 inhibitors, and glucagon-like peptide-1 receptor agonists should be preferred for the treatment of T2D in these patients, whereas strict targets should be avoided for the fear of hypoglycemia, falls, and fractures. Insulin should be used with caution and with careful measures to avoid hypoglycemia. Thiazolidinediones and canagliflozin should be avoided, whereas other sodium-dependent glucose transporter 2 inhibitors are less well-validated options. Insulin therapy is the preferred method for achieving glycemic control in hospitalized patients with T2D and fractures. The treatment and monitoring of osteoporosis should be continued without important amendments because of the presence of T2D. CONCLUSIONS Patients with coexisting T2D and osteoporosis should be managed in an optimal way according to scientific evidence.
Collapse
Affiliation(s)
- Stavroula A Paschou
- Division of Endocrinology and Diabetes, Aghia Sophia Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Anastasia D Dede
- Department of Endocrinology and Diabetes, Chelsea and Westminster Hospital, London SW10 9NH, United Kingdom
| | - Panagiotis G Anagnostis
- Unit of Reproductive Endocrinology, First Department of Obstetrics and Gynecology, Medical School, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Andromachi Vryonidou
- Department of Endocrinology and Diabetes, Hellenic Red Cross Hospital, 11526 Athens, Greece
| | - Daniel Morganstein
- Department of Endocrinology and Diabetes, Chelsea and Westminster Hospital, London SW10 9NH, United Kingdom
| | - Dimitrios G Goulis
- Unit of Reproductive Endocrinology, First Department of Obstetrics and Gynecology, Medical School, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
34
|
McClung MR. Denosumab for the treatment of osteoporosis. Osteoporos Sarcopenia 2017; 3:8-17. [PMID: 30775498 PMCID: PMC6372782 DOI: 10.1016/j.afos.2017.01.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Revised: 01/16/2017] [Accepted: 01/17/2017] [Indexed: 12/13/2022] Open
Abstract
Denosumab, a specific inhibitor of RANK ligand, is a novel therapy for postmenopausal osteoporosis and related disorders. An extensive clinical development program has evaluated the clinical efficacy and safety of denosumab with several thousand patients being followed for up to 10 years. Combined with more than six years of postmarketing experience, these studies provide substantial confidence that denosumab is a convenient and appropriate treatment for patients, including Asians, at high risk for fracture. This review will summarize the clinical development of denosumab and lessons learned since its approval for clinical use in 2010.
Collapse
Affiliation(s)
- Michael R. McClung
- Institute of Health and Ageing, Australian Catholic University, Melbourne, Australia
- Oregon Osteoporosis Center, 2881 NW Cumberland Road, Portland, OR 97210, USA
| |
Collapse
|
35
|
Bonnet N. Bone-Derived Factors: A New Gateway to Regulate Glycemia. Calcif Tissue Int 2017; 100:174-183. [PMID: 27832316 DOI: 10.1007/s00223-016-0210-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 11/02/2016] [Indexed: 01/26/2023]
Abstract
Type 2 diabetes mellitus (T2DM) and osteoporosis are two major disorders which prevalence increases with aging and is predicted to worsen in the coming years. Preclinical investigations suggest common mechanisms implicated in the pathogenesis of both disorders. Recent evidence has established that there is a clear link between glucose and bone metabolism. The emergence of bone as an endocrine regulator through FGF23 and osteocalcin has led to the re-evaluation of the role of bone cells and bone-derived factors in the development of metabolic diseases such as T2DM. The development of bone morphogenetic proteins, fibroblast growth factor 23, and osteoprotegerin-deficient mice has allowed to elucidate their role in bone homeostasis, as well as revealed their potential important function in glucose homeostasis. This review proposes emerging perspectives for several bone-derived factors that may regulate glycemia through the activation or inhibition of bone remodeling or directly by regulating function of key organs such as pancreatic beta cell proliferation, insulin expression and secretion, storage and release of glucose from the liver, skeletal muscle contraction, and browning of the adipose tissue. Connections between organs including bone-derived factors should further be explored to understand the pathophysiology of glucose metabolism and diabetes.
Collapse
Affiliation(s)
- Nicolas Bonnet
- Division of Bone Diseases, Department of Internal Medicine Specialties, Geneva University Hospitals and Faculty of Medicine, 64 Av de la Roseraie, 1205, Geneva 14, Switzerland.
| |
Collapse
|
36
|
Russo GT, Giandalia A, Romeo EL, Nunziata M, Muscianisi M, Ruffo MC, Catalano A, Cucinotta D. Fracture Risk in Type 2 Diabetes: Current Perspectives and Gender Differences. Int J Endocrinol 2016; 2016:1615735. [PMID: 28044077 PMCID: PMC5164892 DOI: 10.1155/2016/1615735] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 09/19/2016] [Accepted: 09/22/2016] [Indexed: 02/07/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) is associated with an increased risk of osteoporotic fractures, resulting in disabilities and increased mortality. The pathophysiological mechanisms linking diabetes to osteoporosis have not been fully explained, but alterations in bone structure and quality are well described in diabetic subjects, likely due to a combination of different factors. Insulin deficiency and dysfunction, obesity and hyperinsulinemia, altered level of oestrogen, leptin, and adiponectin as well as diabetes-related complications, especially peripheral neuropathy, orthostatic hypotension, or reduced vision due to retinopathy may all be associated with an impairment in bone metabolism and with the increased risk of fractures. Finally, medications commonly used in the treatment of T2DM may have an impact on bone metabolism and on fracture risk, particularly in postmenopausal women. When considering the impact of hypoglycaemic drugs on bone, it is important to balance their potential direct effects on bone quality with the risk of falling-related fractures due to the associated hypoglycaemic risk. In this review, experimental and clinical evidence connecting bone metabolism and fracture risk to T2DM is discussed, with particular emphasis on hypoglycaemic treatments and gender-specific implications.
Collapse
Affiliation(s)
- Giuseppina T. Russo
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
- *Giuseppina T. Russo:
| | - Annalisa Giandalia
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Elisabetta L. Romeo
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Morabito Nunziata
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Marco Muscianisi
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Maria Concetta Ruffo
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Antonino Catalano
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Domenico Cucinotta
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| |
Collapse
|