1
|
Khan Q, Yousafzai AM. Plant based synthesis of silver nanoparticles, antimicrobial efficiency, and toxicological assessment using freshwater fish (Cyprinus carpio). Microsc Res Tech 2024; 87:53-64. [PMID: 37728059 DOI: 10.1002/jemt.24411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/26/2023] [Accepted: 08/20/2023] [Indexed: 09/21/2023]
Abstract
Silver nanoparticles (AgNPs) are widely used and have various applications, including medicine, electronics, and textiles. However, their increasing use raises concern about their potential environmental impact, particularly on aquatic organisms, such as fish, which are the primary consumers of aquatic environments and can be exposed to AgNPs through various routes. For this purpose, the leaves of the plant species Bellis perennis were used as a reductive agent to convert silver nitrate into AgNPs, to assess its toxicity against fish. Well-dispersed and undersized AgNPs were obtained and confirmed using analytical techniques, including Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM). Moreover, the AgNPs have shown significant antibacterial activity against Aeromonas hydrophila (25.71 ± 0.63) and Vibrio harveyi (22.39 ± 0.29). In addition, the toxicity of the obtained AgNPs was assessed by exposing Cyprinus carpio to various concentrations, including 0.06, 0.1, and 0.2 mg/L. The findings revealed that the AgNPs were significantly accumulated in the intestine, followed by the gills, liver, muscles, kidney, and brain. This bioaccumulation led to histological alterations and destruction in the villi of the intestine, regeneration of liver cells, and degeneration of the gill lamella. RESEARCH HIGHLIGHTS: Plants based synthesis of AgNPs is mostly considered as eco-friendly A significant antibacterial activity was obtained The plant mediated AgNPs were found less toxic The AgNPs was profoundly accumulated and causes histological alterations.
Collapse
Affiliation(s)
- Qaisar Khan
- Department of Zoology, Islamia College University, Peshawar, Pakistan
| | | |
Collapse
|
2
|
Canli EG, Baykose A, Uslu LH, Canli M. Changes in energy reserves and responses of some biomarkers in freshwater mussels exposed to metal-oxide nanoparticles. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 98:104077. [PMID: 36740086 DOI: 10.1016/j.etap.2023.104077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/25/2023] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
In this study, responses of various biomarkers in the digestive gland and foot muscle of freshwater mussels (Unio tigridis) were investigated following exposure to Al2O3, CuO and TiO2 nanoparticles (NPs) for 14 days at different concentrations (0, 1, 3 and 9 mg NP/L). Mussels were fed on unicellular algae (Chlorella vulgaris) cultured in the laboratory. NP exposures caused significant increases (p < 0.05) in the levels of total glutathione (GSH), reduced-glutathione (rGSH), oxidized-glutathione (GSSG) and malondialdehyde (MDA) in the digestive gland. Oppositely, there were significant (p < 0.05) decreases in acetylcholinesterase activity in the foot muscles. Total energy reserves of the digestive gland and foot muscle significantly (p < 0.05) decreased, but only at the highest NP exposures. Nevertheless, NP exposures did not alter (p > 0.05) the algae filtering capacity of mussels. This study demonstrated that the biomarkers belonging to different metabolic systems responded to NP exposures, suggesting their usage in the monitoring studies for freshwater systems.
Collapse
Affiliation(s)
- Esin G Canli
- University of Cukurova, Faculty of Pharmacy, Department of Basic Pharmaceutical Sciences, Adana, Turkey
| | - Ahmet Baykose
- University of Cukurova, Faculty of Sciences and Arts, Department of Biology, Adana, Turkey
| | - Leyla Hizarci Uslu
- University of Cukurova, Faculty of Fisheries, Department of Basic Sciences, Adana, Turkey
| | - Mustafa Canli
- University of Cukurova, Faculty of Sciences and Arts, Department of Biology, Adana, Turkey.
| |
Collapse
|
3
|
Krishnasamy Sekar R, Arunachalam R, Anbazhagan M, Palaniyappan S, Veeran S, Sridhar A, Ramasamy T. Accumulation, Chronicity, and Induction of Oxidative Stress Regulating Genes Through Allium cepa L. Functionalized Silver Nanoparticles in Freshwater Common Carp (Cyprinus carpio). Biol Trace Elem Res 2023; 201:904-925. [PMID: 35199287 DOI: 10.1007/s12011-022-03164-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 02/14/2022] [Indexed: 01/21/2023]
Abstract
Green evolutionary products such as biologically fabricated nanoparticles (NPs) pose a hazard to aquatic creatures. Herein, biogenic silver nanoparticles (AgNPs) were synthesized by the reaction between ionic silver (AgNO3) and aqueous onion peel extract (Allium cepa L). The synthesized biogenic AgNPs were characterized with UV-Visible spectrophotometer, XRD, FT-IR, and TEM with EDS analysis; then, their toxicity was assessed on common carp fish (Cyprinus carpio) using biomarkers of haematological alterations, oxidative stress, histological changes, differential gene expression patterns, and bioaccumulation. The 96 h lethal toxicity was analysed with various concentrations (2, 4, 6, 8, and 10 mg/l) of biogenic AgNPs. Based on 96 h LC50, sublethal concentrations (1/15th, 1/10th, and 1/5th) were given to C. carpio for 28 days. At the end of experiment, the bioaccumulations of Ag content were accumulated mainly in the gills, followed by the liver and muscle. At an interval of 7 days, the haematological alterations showed significance (p < 0.05) and elevation of antioxidant defence mechanism reveals the toxicity of biogenic synthesized AgNPs. Adverse effects on oxidative stress were probably related to the histopathological damage of its vital organs like gill, liver, and muscle. Finally, the fish treated with biogenic synthesized AgNPs were significantly (p < 0.05) downregulates the oxidative stress genes such as Cu-Zn SOD, CAT, GPx1a, GST-α, CYP1A, and Nrf-2 expression patterns. The present study provides evidence of biogenic synthesized AgNPs influence on the aquatic life through induction of oxidative stress.
Collapse
Affiliation(s)
- Rajkumar Krishnasamy Sekar
- Laboratory of Aquabiotics & Nanoscience, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tamil Nadu, Tiruchirappalli, 620 024, India
| | - Ramkumar Arunachalam
- UGC-National Centre for Alternatives to Animal Experiments, Bharathidasan University, Tamil Nadu, 620 024, Tiruchirappalli, India
| | - Murugadas Anbazhagan
- UGC-National Centre for Alternatives to Animal Experiments, Bharathidasan University, Tamil Nadu, 620 024, Tiruchirappalli, India
- Department of Pediatrics, School of Medicine, Emory University, GA, 30322, Atlanta, USA
| | - Sivagaami Palaniyappan
- Laboratory of Aquabiotics & Nanoscience, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tamil Nadu, Tiruchirappalli, 620 024, India
| | - Srinivasan Veeran
- Laboratory of Aquabiotics & Nanoscience, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tamil Nadu, Tiruchirappalli, 620 024, India
| | - Arun Sridhar
- Laboratory of Aquabiotics & Nanoscience, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tamil Nadu, Tiruchirappalli, 620 024, India
- Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Thirumurugan Ramasamy
- Laboratory of Aquabiotics & Nanoscience, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tamil Nadu, Tiruchirappalli, 620 024, India.
- UGC-National Centre for Alternatives to Animal Experiments, Bharathidasan University, Tamil Nadu, 620 024, Tiruchirappalli, India.
| |
Collapse
|
4
|
Mahjoubian M, Naeemi AS, Moradi-Shoeili Z, Tyler CR, Mansouri B. Toxicity of Silver Nanoparticles in the Presence of Zinc Oxide Nanoparticles Differs for Acute and Chronic Exposures in Zebrafish. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2023; 84:1-17. [PMID: 36333621 DOI: 10.1007/s00244-022-00965-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
We assessed the acute toxicity effects (96 h) of silver nanoparticles (Ag NPs) and zinc oxide nanoparticles (ZnO NPs) and chronic (28 d) exposure to Ag NPs, including in combination with ZnO NPs. In the chronic studies, we further assessed the toxicokinetics and bioaccumulation of Ag and the resulting histopathological effects in the gill, intestine, and liver of zebrafish. Co-exposures with ZnO NPs reduced the toxicity of Ag NPs for acute (lethality) but enhanced the toxicity effects (tissue histopathology) for chronic exposures. The histological lesions for both NPs exposures in the gill included necrosis and fusion of lamellae, for the intestine necrosis and degeneration, and in the liver, mainly necrosis. The severity of the histological lesions induced by the Ag NPs was related to the amount of accumulated Ag in the zebrafish organs. The Ag accumulation in different organs was higher in the presence of ZnO NPs in the order of the gill > intestine > liver. Depuration kinetics illustrated the lowest half-life for Ag occurred in the gill and for the combined exposure of Ag with ZnO NPs. Our findings illustrate that in addition to tissue, time, and exposure concentration dependencies, the Ag NPs toxicity can also be influenced by the co-exposure to other NPs (here ZnO NPs), emphasizing the need for more combination exposure effects studies for NPs to more fully understand their potential environmental health risks.
Collapse
Affiliation(s)
- Maryam Mahjoubian
- Department of Biology, Faculty of Sciences, University of Guilan, Rasht, Iran
| | - Akram Sadat Naeemi
- Department of Biology, Faculty of Sciences, University of Guilan, Rasht, Iran.
| | | | - Charles R Tyler
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Geoffrey Pope, Stocker Road, Exeter, EX4 4QD, Devon, UK
| | - Borhan Mansouri
- Substance Abuse Prevention Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
5
|
Kalman J, Connolly M, Abdolahpur-Monikh F, Fernández-Saavedra R, Cardona-García AI, Conde-Vilda E, Martínez-Morcillo S, Peijnenburg WJGM, Rucandio I, Fernández-Cruz ML. Bioaccumulation of CuO nanomaterials in rainbow trout: Influence of exposure route and particle shape. CHEMOSPHERE 2023; 310:136894. [PMID: 36265710 DOI: 10.1016/j.chemosphere.2022.136894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 09/24/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
The bioaccumulation potential of spherical and rod-shaped CuO nanomaterials (NMs) was assessed in rainbow trout (Oncorhynchus mykiss) exposed via water and diet following the OECD Test Guideline No. 305. Fish were exposed via diet to both NMs at concentrations of 70 and 500 mg Cu/kg for 15 days, followed by 44 days of depuration. For water-borne exposure, only the rod-shaped CuO NMs were tested at 0.08 and 0.8 mg Cu/L for 28 days, followed by 14 days of depuration. The concentration of Cu was determined in fish whole body to derive biomagnification and bioconcentration factors (BMF and BCF). Different tissues were sampled to investigate the total Cu biodistribution and target organs as well as the particle number-based bioaccumulation of CuO NMs. Estimated BMF and BCF values were below the thresholds of concern. However, shape and route influenced depuration. Following dietary exposure, there was a higher depuration of Cu from fish exposed to the rod-shaped compared to the spherical CuO NMs. A higher depuration was also observed for rod-shaped CuO NMs following the dietary exposure compared the aqueous one. Despite the much higher dietary exposure concentrations of rod-shape CuO NMs, similar Cu body burdens were reached via water. Cu was found in particulate form in different tissues. Although these NMs had a low bioaccumulation potential, differences in distribution and elimination patterns of Cu were observed depending on the exposure route and particle shape. Careful consideration of the most relevant exposure route is needed when designing a bioaccumulation experiment for testing NMs.
Collapse
Affiliation(s)
- Judit Kalman
- Department of Environment and Agronomy, National Institute for Agricultural and Food Research and Technology (INIA), National Research Council (CSIC), Madrid, Spain
| | - Mona Connolly
- Department of Environment and Agronomy, National Institute for Agricultural and Food Research and Technology (INIA), National Research Council (CSIC), Madrid, Spain
| | - Fazel Abdolahpur-Monikh
- Department of Environmental & Biological Sciences, University of Eastern Finland, 80101, Joensuu, Finland; Department of Experimental Limnology, Leibniz Institute for Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, 12587, Berlin, Germany
| | - Rocío Fernández-Saavedra
- Division of Chemistry, Department of Technology, Research Centre for Energy, Environment and Technology (CIEMAT), Madrid, Spain
| | - Ana I Cardona-García
- Division of Chemistry, Department of Technology, Research Centre for Energy, Environment and Technology (CIEMAT), Madrid, Spain
| | - Estefanía Conde-Vilda
- Division of Chemistry, Department of Technology, Research Centre for Energy, Environment and Technology (CIEMAT), Madrid, Spain
| | - Salome Martínez-Morcillo
- Department of Environment and Agronomy, National Institute for Agricultural and Food Research and Technology (INIA), National Research Council (CSIC), Madrid, Spain
| | - Willie J G M Peijnenburg
- Institute of Environmental Sciences (CML), Leiden University, Einsteinweg 2, 2333, CC Leiden, the Netherlands; Center for Safety of Substances and Products, National Institute of Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Isabel Rucandio
- Division of Chemistry, Department of Technology, Research Centre for Energy, Environment and Technology (CIEMAT), Madrid, Spain
| | - María Luisa Fernández-Cruz
- Department of Environment and Agronomy, National Institute for Agricultural and Food Research and Technology (INIA), National Research Council (CSIC), Madrid, Spain.
| |
Collapse
|
6
|
Wang X, Li P, Cao X, Liu B, He S, Cao Z, Xing S, Liu L, Li ZH. Effects of ocean acidification and tralopyril on bivalve biomineralization and carbon cycling: A study of the Pacific Oyster (Crassostrea gigas). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 313:120161. [PMID: 36100119 DOI: 10.1016/j.envpol.2022.120161] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/21/2022] [Accepted: 09/08/2022] [Indexed: 06/15/2023]
Abstract
The combined effects of emerging pollutants and ocean acidification (OA) on marine organisms and marine ecosystems have attracted increasing attention. However, the combined effects of tralopyril and OA on marine organisms and marine ecosystems remain unclear. In this study, Crassostrea gigas (C. gigas) were exposed to tralopyril (1 μg/L) and/or OA (PH = 7.7) for 21 days and a 14-day recovery acclimation. To investigate the stress response and potential molecular mechanisms of C. gigas to OA and tralopyril exposure alone or in combination, as well as the effects of OA and/or tralopyril on bivalve biomineralization and marine carbon cycling. The results showed that the combined toxicity was between that of acidification and tralopyril alone. Single or combined exposure activated the general stress defense responses of C. gigas mantle, affected energy metabolism and biomineralization of the organism and the carbon cycle of the marine ecosystem. Moreover, acidification-induced and tralopyril-induced toxicity showed potential recoverability at molecular and biochemical levels. This study provides a new perspective on the molecular mechanisms of tralopyril toxicity to bivalve shellfish and reveals the potential role of tralopyril and OA on marine carbon cycling.
Collapse
Affiliation(s)
- Xu Wang
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Ping Li
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Xuqian Cao
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Bin Liu
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Shuwen He
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Zhihan Cao
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Shaoying Xing
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Ling Liu
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Zhi-Hua Li
- Marine College, Shandong University, Weihai, Shandong, 264209, China.
| |
Collapse
|
7
|
Pepe N, Canli EG, Canli M. Salinity and/or nanoparticles (Al 2O 3, TiO 2) affect metal accumulation and ATPase activity in freshwater fish (Oreochromis niloticus). ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 94:103931. [PMID: 35843485 DOI: 10.1016/j.etap.2022.103931] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 07/05/2022] [Accepted: 07/09/2022] [Indexed: 06/15/2023]
Abstract
The osmoregulation system of freshwater fish is sensitive to salinity increase in water. There is no satisfactory data to our knowledge on the accumulation of metal-oxide nanoparticles (NPs) in tissues of O. niloticus and their effects on ATPases (Na,K-ATPase, Mg-ATPase, Ca-ATPase) in differing salinities. Thus, this study investigated the effects of salinity (0 and 10 ppt) and Al2O3 and TiO2 NPs (1 and 10 mg NPs/L) on the response of ATPases in acute (2 days) and chronic (20 days) durations. Data showed that nanoparticles accumulated in the tissues of fish, gill tissues having the highest levels of Al and Ti in both acute and chronic durations. Interestingly, the higher salinity significantly increased (P < 0.05) NP accumulations in the tissues in acute exposures, whereas it significantly decreased (P < 0.05) in chronic exposures. Salinity increase caused significant decreases (P < 0.05) in ATPase activities (up to 54 %) in control fish from both exposure protocols. Likewise, NP alone exposures (up to 80 %) and salt+NP (up to 83 %) exposures generally caused significant (P < 0.05) decreases in ATPase activities compared to their controls. Similarly, salt+NP exposures also decreased ATPase activities compared to NP exposures alone. The present data demonstrated that salinity and/or NP exposures decreased ATPase activities in the gill of freshwater fish, emphasizing the possible hazardous consequences of salt inputs and NP discharges into freshwater systems.
Collapse
Affiliation(s)
- Nagihan Pepe
- University of Çukurova, Faculty of Sciences and Arts, Department of Biology, Adana, Turkey
| | - Esin Gülnaz Canli
- University of Çukurova, Faculty of Pharmacy, Department of Basic Pharmaceutical Sciences, Adana, Turkey
| | - Mustafa Canli
- University of Çukurova, Faculty of Sciences and Arts, Department of Biology, Adana, Turkey.
| |
Collapse
|
8
|
Wang Z, Zhang F, Wang DG. Predicting joint toxicity of chemicals by incorporating a weighted descriptor into a mixture model: Cases for binary antibiotics and binary nanoparticles. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 236:113472. [PMID: 35390689 DOI: 10.1016/j.ecoenv.2022.113472] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 03/21/2022] [Accepted: 03/27/2022] [Indexed: 06/14/2023]
Abstract
A prediction method that integrated a mixture descriptor with an established mixture toxicology method was proposed for the joint toxicity of chemical pollutants. A weighted descriptor derived from the single descriptor of each component was employed to calculate a mixture descriptor, which was successfully embedded into the generalized concentration addition (GCA) model named the extended GCA (XGCA) model. To develop and validate the proposed approach, binary antibiotic mixtures (ciprofloxacin and oxytetracycline) and metal-oxide (copper oxide and zinc oxide) nanoparticle mixtures were selected to study their toxicity to freshwater green algae. The results showed that concentration-response curve (CRC) derived from the XGCA model was closer to the observed CRC than those from the GCA, Concentration Addition (CA), and Independent Action (IA) models. The difference between effect concentrations predicted by the XGCA model and observed did not exceed a factor of 1.6. The XGCA model was relatively more accurate at predicting joint toxicity (in terms of effect concentrations and effect errors) than the reference models, independent of component types and mixture ratios. The XGCA model predicts the joint toxicity through molecular structural or nanostructural characters, thus modes of toxic action are not preconditions for predicting the toxicity of the mixtures. This result demonstrates the practicability of using the XGCA method in toxicity assessments of mixture pollutants with unknown modes of action.
Collapse
Affiliation(s)
- Zhuang Wang
- School of Environmental Science and Engineering, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Nanjing University of Information Science and Technology, Nanjing 210044, PR China.
| | - Fan Zhang
- School of Environmental Science and Engineering, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Nanjing University of Information Science and Technology, Nanjing 210044, PR China
| | - De-Gao Wang
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, PR China
| |
Collapse
|
9
|
Sayadi MH, Pavlaki MD, Loureiro S, Martins R, Tyler CR, Mansouri B, Kharkan J, Shekari H. Co-exposure of zinc oxide nanoparticles and multi-layer graphenes in blackfish (Capoeta fusca): evaluation of lethal, behavioural, and histopathological effects. ECOTOXICOLOGY (LONDON, ENGLAND) 2022; 31:425-439. [PMID: 35089487 DOI: 10.1007/s10646-022-02521-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/17/2022] [Indexed: 05/24/2023]
Abstract
Zinc oxide nanoparticles (ZnO NPs) and multi-layer graphenes (MLGs) are widely used, and due to the lack of appropriate wastewater treatment may end up in the aquatic environment, with unknown consequences to biota. The main purpose of this study was to assess the acute toxicity, histopathological and behavioural changes caused by the exposure of ZnO NPs and MLGs, alone and combined, to the blackfish Capoeta fusca. The estimated mean 96 h-LC50 for ZnO NPs was 4.9 mg L-1 and 68.4 mg L-1 for MLGs. In combination, MLGs increased the acute toxicity of the ZnO NPs. The effects of the different NPs on the gills included hyperplasia, aneurisms, and fusion of the lamellae. In the intestine, exposure to the NPs resulted in an increase in the number and swelling of goblet cells and tissue degeneration. Loss of balance, restlessness, erratic and abnormal swimming patterns were the most common behavioural changes seen in the ZnO NPs' exposed blackfish. In contrast with the acute toxicity findings, MLGs decreased the histopathological and behavioural effects of the ZnO NPs on both gills and intestinal tissues as well as fish behaviour. Our experimental results illustrated insights into the simultaneous exposure assessment of metal-based NPs and carbon nanomaterials, although further research is needed on the interactions exposure of these substances to interpreting the toxicological effects of metal-based nanomaterials seen in exposed organisms.
Collapse
Affiliation(s)
- Mohammad Hossein Sayadi
- Department of Environmental Sciences, School of Natural Resources and Environment, University of Birjand, Birjand, Iran
- Department of Environmental Engineering, Faculty of Agriculture and Natural Resources, Ardakan University, Ardakan, Iran
| | - Maria D Pavlaki
- CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Susana Loureiro
- CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Roberto Martins
- CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Charles R Tyler
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Geoffrey Pope, Stocker Road, Exeter, Devon, EX4 4QD, UK
| | - Borhan Mansouri
- Substance Abuse Prevention Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Javad Kharkan
- Department of Environmental Sciences, School of Natural Resources and Environment, University of Birjand, Birjand, Iran
| | - Hossein Shekari
- Department of Environmental Sciences, School of Natural Resources and Environment, University of Birjand, Birjand, Iran
| |
Collapse
|
10
|
Bameri L, Sourinejad I, Ghasemi Z, Fazelian N. Toxicity of TiO 2 nanoparticles to the marine microalga Chaetoceros muelleri Lemmermann, 1898 under long-term exposure. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:30427-30440. [PMID: 35000175 DOI: 10.1007/s11356-021-17870-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 11/26/2021] [Indexed: 06/14/2023]
Abstract
Titanium dioxide nanoparticles (TiO2NPs) have been extensively used in industry, raising many concerns about their release into the aquatic environments. In marine ecosystems, microalgae are major primary producers; among them, Chaetoceros muelleri is an important microalga in the aquaculture industry as live feed. The impacts of TiO2NPs on the growth, photosynthetic pigments, protein and lipid contents, and the interaction of TiO2NPs with the cell wall of C. muelleri were investigated in the present study. Algal cells were exposed to concentrations of 5, 10, 50, 100, 200, and 400 mg/L TiO2NPs for 10 days. There was a significant difference in the growth between the control and TiO2NPs treatments on each day. The half-maximal inhibitory concentration (IC50) of TiO2NPs on algal cells was found to be 10.08 and 5.01 mg/L on the 3rd and 10th days, respectively. The contents of chlorophyll a and c reduced significantly in the TiO2NPs-treated microalgae. TiO2NPs also reduced the protein and lipid contents in the treated microalgae, up to 13.02% and 47.6% respectively, at the highest concentration. The interaction of TiO2NPs with the C. muelleri cells was obvious based on Fourier transform infrared spectroscopy, microscopic images, EDS, and Mapping analyses. Toxic effects of the released TiO2NPs can damage the stocks of C. muelleri as an important live feed in mariculture.
Collapse
Affiliation(s)
- Leila Bameri
- Department of Fisheries, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas, Iran
| | - Iman Sourinejad
- Department of Fisheries, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas, Iran.
| | - Zahra Ghasemi
- Department of Fisheries, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas, Iran
| | - Nasrin Fazelian
- Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas, Iran
| |
Collapse
|
11
|
Soliman HAM, Hamed M, Sayed AEDH. Investigating the effects of copper sulfate and copper oxide nanoparticles in Nile tilapia (Oreochromis niloticus) using multiple biomarkers: the prophylactic role of Spirulina. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:30046-30057. [PMID: 33580857 DOI: 10.1007/s11356-021-12859-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 02/04/2021] [Indexed: 02/07/2023]
Abstract
Copper has toxic effects in fish, whereas the cyanobacterium Spirulina reportedly has protective effects against metal toxicity in various animal species. The current study, therefore, aimed to investigate the prophylactic role of Spirulina platensis against the effects of copper sulfate (CuSO4) and copper oxide nanoparticles (CuO-NPs) in Nile tilapia (Oreochromis niloticus). Biochemical, antioxidant, erthyron profile and histopathological endpoints were assessed after for 15 days of exposure in five separate treatment groups: (1) fish pre-fed the normal diet (control), (2) fish pre-fed the normal diet and exposed to 15 mg/L of CuSO4, (3) fish pre-fed the normal diet augmented with 0.25% Spirulina and exposed to 15 mg/L of CuSO4, (4) fish pre-fed the normal diet and exposed to 15 mg/L of CuO-NPs, and (5) fish pre-fed the normal diet augmented with 0.25% Spirulina and exposed to 15 mg/L CuO-NPs. Exposure to CuSO4 or CuO-NPs significantly increased superoxide dismutase and catalase activities in fish, as well as serum total protein, glucose, aspartate aminotransferase, alanine aminotransferase, creatinine, and uric acid concentrations. In contrast, most hematological indices in fish significantly decreased after CuSO4 or CuO-NPs exposure. Moreover, CuSO4 and CuO-NPs caused a significant increase in the percentage of poikilocytosis and nuclear abnormalities of red blood cells, as well as histopathological changes in the brain, liver, intestine, and kidneys. Importantly, Spirulina supplementation mitigated against physiological disruption caused by CuSO4 or CuO-NPs.
Collapse
Affiliation(s)
- Hamdy A M Soliman
- Department of Zoology, Faculty of Science, Sohag University, Sohag, 8562, Egypt
| | - Mohamed Hamed
- Department of Zoology, Faculty of Science, Al Azhar University (Assiut Branch), Assiut, 71524, Egypt
| | - Alaa El-Din H Sayed
- Department of Zoology, Faculty of Science, Assiut University, Assiut, 71516, Egypt.
| |
Collapse
|
12
|
Stankevičiūtė M, Makaras T, Pažusienė J, Čapukoitienė B, Sauliutė G, Jurgelėnė Ž, Raudonytė-Svirbutavičienė E, Jokšas K. Biological effects of multimetal (Ni, Cd, Pb, Cu, Cr, Zn) mixture in rainbow trout Oncorhynchus mykiss: Laboratory exposure and recovery study. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 216:112202. [PMID: 33838460 DOI: 10.1016/j.ecoenv.2021.112202] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 03/12/2021] [Accepted: 03/28/2021] [Indexed: 06/12/2023]
Abstract
The present study tested the biological consequences of exposure to a multimetal mixture as a multiple chemical stressor on Oncorhynchus mykiss at molecular, cellular, physiological and whole-organism levels and on biomarker responses of this fish during the depuration period. To represent environmentally relevant multiple chemical stressors, in our study, we used the mixture of Zn, Cu, Ni, Cr, Pb and Cd at the concentrations corresponding to Maximum-Permissible-Concentrations (MPCs) acceptable for the EU inland waters. This study was undertaken with a view to elucidate if changes in the MPC of the test mixture components (Ni, Pb, Cd) could cause significantly different biomarker responses in O. mykiss from those previously determined in the carnivorous and omnivorous fishes exposed to the mixture of the same metals but at different MPCs of Ni, Pb and Cd. This study has revealed that exposure to mixtures of metals at MPC produces genotoxic effects in fish blood erythrocytes and a lethargic effect on O. mykiss behaviour, and, also, significantly increases the levels of Cd, Cr and Ni accumulated in the gills tissue. O. mykiss successfully depurated Cr and Ni in less than 28 days, however, the level of Cd decreased by only approximately 40% over the same period. A significant capacity of O. mykiss to restore its DNA integrity (Comet assay) after exposure to metal mixtures was revealed. However, the 28-day recovery period proved to be insufficiently long for erythrocytes with nuclear abnormalities to recover to the unexposed level. In conclusion, changes in the MPCs of Ni, Pb and Cd in the test mixture produce biological effects similar to those previously determined in S. salar, R. rutilus and P. fluviatilis exposed to the mixture of the same metals but at lower MPCs of Ni and Pb and at higher MPC of Cd.
Collapse
Affiliation(s)
- Milda Stankevičiūtė
- Nature Research Centre, Laboratory of Genotoxicology, Akademijos St. 2, LT-08412 Vilnius, Lithuania.
| | - Tomas Makaras
- Nature Research Centre, Laboratory of Fish Ecology, Akademijos St. 2, LT-08412 Vilnius, Lithuania
| | - Janina Pažusienė
- Nature Research Centre, Laboratory of Genotoxicology, Akademijos St. 2, LT-08412 Vilnius, Lithuania
| | - Brigita Čapukoitienė
- Nature Research Centre, Laboratory of Genotoxicology, Akademijos St. 2, LT-08412 Vilnius, Lithuania
| | - Gintarė Sauliutė
- Nature Research Centre, Laboratory of Genotoxicology, Akademijos St. 2, LT-08412 Vilnius, Lithuania
| | - Živilė Jurgelėnė
- Nature Research Centre, Laboratory of Fish Ecology, Akademijos St. 2, LT-08412 Vilnius, Lithuania
| | | | - Kęstutis Jokšas
- Nature Research Centre, Laboratory of Geoenvironmental Research, Akademijos St. 2, LT-08412 Vilnius, Lithuania; Vilnius University, Faculty of Chemistry and Geosciences, Naugarduko St. 24, LT-03225 Vilnius, Lithuania
| |
Collapse
|
13
|
Sayadi MH, Pavlaki MD, Martins R, Mansouri B, Tyler CR, Kharkan J, Shekari H. Bioaccumulation and toxicokinetics of zinc oxide nanoparticles (ZnO NPs) co-exposed with graphene nanosheets (GNs) in the blackfish (Capoeta fusca). CHEMOSPHERE 2021; 269:128689. [PMID: 33127112 DOI: 10.1016/j.chemosphere.2020.128689] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 09/23/2020] [Accepted: 10/18/2020] [Indexed: 05/24/2023]
Abstract
In this study, we investigated the bioaccumulation and toxicokinetics of zinc oxide nanoparticles (ZnO NPs) alone and in the presence of graphene nanosheets (GNs) in the blackfish (Capoeta fusca). Blackfish were exposed via water to two ZnO NPs concentrations alone or as a combination with GNs and uptake of Zn into the gills, intestine, liver, and kidney was assessed at 7, 14 and 28 d. Zn elimination from these tissues was then assessed after a further 7, 14 and 28 d in clean water for both ZnO NPs concentrations and combined ZnO NPs/GN exposures. In the body tissues analyzed of exposed fish, the highest amounts of Zn occurred in the intestine and the lowest amount in the liver. Zn levels in blackfish after 28 d of exposure were higher in all treatment groups compared to those on 7 d (p < 0.05). For both ZnO NPs exposure concentrations, the highest amount of Zn was eliminated from the intestine, followed by the gills. Furthermore, elimination kinetics for both ZnO NPs concentrations alone and in combination with GNs showed that the shortest half-life for Zn is occurring in the intestine. Moreover, uptake rates of Zn in fish exposed to ZnO NPs + GNs followed the same pattern observed for the ZnO NP, with intestine and gills having the highest levels followed by kidney and liver. Thus, we show accumulation and elimination of Zn from ZnO NPs in blackfish depends on the tissue, exposure concentration and duration, and is dependent on the presence of GNs.
Collapse
Affiliation(s)
- Mohammad Hossein Sayadi
- Department of Environmental Sciences, School of Natural Resources and Environment, University of Birjand, Birjand, Iran; Department of Environmental Sciences & Engineering, Faculty of Agriculture & Natural Resources, Ardakan University, P.O. Box 184, Ardakan, Iran.
| | - Maria D Pavlaki
- CESAM- Centre for Environmental and Marine Studies and Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal.
| | - Roberto Martins
- CESAM- Centre for Environmental and Marine Studies and Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal.
| | - Borhan Mansouri
- Substance Abuse Prevention Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Charles R Tyler
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Geoffrey Pope, Stocker Road, Exeter, Devon EX4 4QD, United Kingdom.
| | - Javad Kharkan
- Department of Environmental Sciences, School of Natural Resources and Environment, University of Birjand, Birjand, Iran.
| | - Hossein Shekari
- Department of Environmental Sciences, School of Natural Resources and Environment, University of Birjand, Birjand, Iran.
| |
Collapse
|
14
|
Riaz A, Riaz MA, Shahzad K, Ijaz B, Khan MS. Deposition trend of subchronic exposure of copper oxide nanoparticles (CuO-NPs) and its effect on the antioxidant system of Labeo rohita. INTERNATIONAL NANO LETTERS 2020. [DOI: 10.1007/s40089-020-00315-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
|
15
|
Shi Q, Fang C, Zhang Z, Yan C, Zhang X. Visualization of the tissue distribution of fullerenols in zebrafish (Danio rerio) using imaging mass spectrometry. Anal Bioanal Chem 2020; 412:7649-7658. [PMID: 32876724 DOI: 10.1007/s00216-020-02902-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 07/15/2020] [Accepted: 08/19/2020] [Indexed: 11/26/2022]
Abstract
With the wide application of fullerenols in biomedicine, their environmental exposure risks and toxicity to organisms have been extensively studied. However, there is still a lack of knowledge about the distribution of fullerenols in organisms as an important aspect of their mechanism of toxicity. High-resolution matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI-IMS) is an emerging technology for researching the distribution of molecules in biological tissue samples. Using this high-resolution technique, we map the distribution of fullerenols in zebrafish tissues, and the results suggest that fullerenols enter the gill, intestine, and muscle tissues and even permeate the blood-brain barrier, reaching the brain of zebrafish after aquatic exposure. Moreover, from the MS images of fullerenols, the distribution amount of fullerenols is highest in the gill, followed by that in the intestine and the small amount in muscle and brain tissues. As an emerging environmental pollutant, the establishment of this research method will provide a new method for the study of the environmental toxicity of carbon nanomaterials. Our results also indicated that this high-resolution imaging method could be applied to explore the mechanism of interaction between carbon nanomaterials and biological systems at the cellular level in the future.
Collapse
Affiliation(s)
- Qiuyue Shi
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Cheng Fang
- Global Centre for Environmental Remediation, University of Newcastle, Callaghan, NSW, 2308, Australia
- Cooperative Research Centre for Contamination Assessment and Remediation of the Environment, University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Zixing Zhang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Changzhou Yan
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Xian Zhang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China.
| |
Collapse
|
16
|
In Vitro Effects of Titanium Dioxide Nanoparticles (TiO 2NPs) on Cadmium Chloride (CdCl 2) Genotoxicity in Human Sperm Cells. NANOMATERIALS 2020; 10:nano10061118. [PMID: 32517002 PMCID: PMC7353430 DOI: 10.3390/nano10061118] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/02/2020] [Accepted: 06/03/2020] [Indexed: 12/26/2022]
Abstract
The environmental release of titanium dioxide nanoparticles (TiO2NPs) associated with their intensive use has been reported to have a genotoxic effect on male fertility. TiO2NP is able to bind and transport environmental pollutants, such as cadmium (Cd), modifying their availability and/or toxicity. The aim of this work is to assess the in vitro effect of TiO2NPs and cadmium interaction in human sperm cells. Semen parameters, apoptotic cells, sperm DNA fragmentation, genomic stability and oxidative stress were investigated after sperm incubation in cadmium alone and in combination with TiO2NPs at different times (15, 30, 45 and 90 min). Our results showed that cadmium reduced sperm DNA integrity, and increased sperm DNA fragmentation and oxidative stress. The genotoxicity induced by TiO2NPs-cadmium co-exposure was lower compared to single cadmium exposure, suggesting an interaction of the substances to modulate their reactivity. The Quantitative Structure-Activity Relationship (QSAR) computational method showed that the interaction between TiO2NPs and cadmium leads to the formation of a sandwich-like structure, with cadmium in the middle, which results in the inhibition of its genotoxicity by TiO2NPs in human sperm cells.
Collapse
|
17
|
Naeemi AS, Elmi F, Vaezi G, Ghorbankhah M. Copper oxide nanoparticles induce oxidative stress mediated apoptosis in carp (Cyprinus carpio) larva. GENE REPORTS 2020. [DOI: 10.1016/j.genrep.2020.100676] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
18
|
Li P, Li ZH. Environmental co-exposure to TBT and Cd caused neurotoxicity and thyroid endocrine disruption in zebrafish, a three-generation study in a simulated environment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 259:113868. [PMID: 31887590 DOI: 10.1016/j.envpol.2019.113868] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 12/18/2019] [Accepted: 12/20/2019] [Indexed: 06/10/2023]
Abstract
Although the coexistence of heavy metals and environmental hormones always occur in aquatic environment, the information of the combined impacts remains unclear. To explore the multi-generational toxicity of cadmium (Cd) and tributyltin (TBT), adult zebrafish (Danio rerio) (F0) were exposed to different treated groups (100 ng/l Cd, 100 ng/l TBT and their mixture) for 90 d, with their offspring (F1 and F2) subsequently reared in the same exposure solutions corresponding to their parents. Both developmental neurotoxicity and thyroid disturbances were examined in the three (F0, F1, and F2) generations. Our results showed that co-exposure to Cd and TBT induced the developmental neurotoxicity in F1 and F2 generations, reflected by the significant lower levels of neurotransmitters (dopamine and serotonin) and the inhibited acetylcholinesterase (AChE) activities. And the thyroid endocrine disruption were observed in the two-generations larval offspring by parental exposure to Cd and/or TBT, including the significantly decreasing levels of thyroid hormones and the down-regulated the expression of genes involved in the hypothalamus-pituitary-thyroid axis, compared to the control. Additional, the embryonic toxicity and growth inhibition were also determined in the fish larvae. Overall, this study examined the impacts of parental co-exposure to Cd and TBT, with regard to developmental inhibition, nervous system damage and endocrine disruption, which highlighted that co-exposure influences are complicated and need to be considered for accurate environmental risk assessment.
Collapse
Affiliation(s)
- Ping Li
- Marine College, Shandong University, Weihai, 264209, China
| | - Zhi-Hua Li
- Marine College, Shandong University, Weihai, 264209, China; Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China.
| |
Collapse
|
19
|
Nemati T, Sarkheil M, Johari SA. Trophic transfer of CuO nanoparticles from brine shrimp (Artemia salina) nauplii to convict cichlid (Amatitlania nigrofasciata) larvae: uptake, accumulation and elimination. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:9610-9618. [PMID: 30729432 DOI: 10.1007/s11356-019-04263-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 01/15/2019] [Indexed: 06/09/2023]
Abstract
We investigated the trophic transfer potential of CuO-NPs from Artemia salina to Amatitlania nigrofasciata. The Cu uptake was investigated by exposure of the instar II nauplii to 0, 1, 10, and 100 mg/L CuO-NPs for 4 h. Dietborne exposure of fish larvae to CuO-NPs was done for 21 days through feeding with pre-exposed nauplii. Thereafter, all survived fish were fed for 21 more days with non-contaminated nauplii. The results showed that NPs could be taken up by nauplii in a concentration-dependent manner. The highest uptake of Cu by nauplii was found to be 50.5 ± 1.4 mg/g dry weight at 100 mg/L. The copper accumulation in fish larvae increased significantly with increasing Cu content in pre-exposed nauplii to different concentrations of CuO-NPs (p < 0.05). At the end of the depuration phase, although the Cu elimination was significantly higher in fish that were fed with more contaminated nauplii, but the survival rate, average final weight, and length of those larvae was still significantly less than the control group (p < 0.05). The accumulated Cu after the depuration phase in cichlid larvae was 25.4 ± 0.5, 29 ± 8.0, 33.9 ± 9.7, and 42.3 ± 4.0 μg/g dry weight at 0, 1, 10, and 100 mg/L of CuO-NPs-treated Artemia. The current findings indicated the ability of manufactured CuO-NPs to be transferred from one trophic level to the next as assessed in the simple food chain consisting of pre-exposed A. salina and A. nigrofasciata.
Collapse
Affiliation(s)
- Tayebeh Nemati
- Department of Fisheries, Faculty of Natural Resources, University of Kurdistan, Sanandaj, Kurdistan, Iran
| | - Mehrdad Sarkheil
- Department of Fisheries, Faculty of Natural Resources and Environment, Ferdowsi University of Mashhad, P.O.B. 91773-1363, Mashhad, Iran.
| | - Seyed Ali Johari
- Department of Fisheries, Faculty of Natural Resources, University of Kurdistan, Sanandaj, Kurdistan, Iran
| |
Collapse
|
20
|
Liu H, Wang X, Wu Y, Hou J, Zhang S, Zhou N, Wang X. Toxicity responses of different organs of zebrafish (Danio rerio) to silver nanoparticles with different particle sizes and surface coatings. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 246:414-422. [PMID: 30579210 DOI: 10.1016/j.envpol.2018.12.034] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 11/13/2018] [Accepted: 12/11/2018] [Indexed: 06/09/2023]
Abstract
Silver nanoparticles (AgNPs) in aquatic ecosystems are toxic to aquatic organisms. In this study, we aimed to investigate the toxicities and molecular mechanisms of AgNPs with different surface coatings (sodium citrate and polyvinylpyrrolidone) and particle sizes (20 nm and 100 nm) in the gills, intestines, and muscles of zebrafish after 96 h of exposure. Our results indicated that the contribution of particle size to AgNP toxicity was greater than that of the surface coating. Citrate-coated AgNPs were more toxic than polyvinylpyrrolidone-coated AgNPs, and 20-nm AgNPs were more toxic than 100-nm AgNPs. The toxic effects of AgNPs to the tissues were in the order intestines > gills > muscles. Differential expression of genes with the different AgNPs confirmed that they had toxic effects in the zebrafish tissues at the molecular level. Our comprehensive comparison of the toxicities of different AgNPs to aquatic ecosystems will be helpful for further risk assessments of AgNPs.
Collapse
Affiliation(s)
- Haiqiang Liu
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, PR China
| | - Xinxin Wang
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, PR China
| | - Yazhou Wu
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, PR China
| | - Jing Hou
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, PR China.
| | - Siyi Zhang
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, PR China
| | - Nan Zhou
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, PR China
| | - Xiangke Wang
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, PR China
| |
Collapse
|
21
|
Wang J, Dai H, Nie Y, Wang M, Yang Z, Cheng L, Liu Y, Chen S, Zhao G, Wu L, Guang S, Xu A. TiO 2 nanoparticles enhance bioaccumulation and toxicity of heavy metals in Caenorhabditis elegans via modification of local concentrations during the sedimentation process. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 162:160-169. [PMID: 29990727 DOI: 10.1016/j.ecoenv.2018.06.051] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 06/13/2018] [Accepted: 06/15/2018] [Indexed: 06/08/2023]
Abstract
Unintentionally released titanium dioxide nanoparticles (TiO2 NPs) may co-occur with pre-existing heavy metal pollutants in aquatic environments. However, the interactions between NPs and heavy metals (HMs) and their co-effects in living organisms are largely unknown. The aim of this investigation was to illustrate the influence of TiO2 NPs (5 and 15 nm) on the bioaccumulation and toxicity of cadmium (Cd), arsenate (As(III)), and nickel (Ni) in Caenorhabditis elegans (C. elegans) during the process of sedimentation in aquatic environment. Our data showed that HMs accelerated the aggregation of TiO2 NPs. The rapid aggregation and sedimentation of TiO2 NPs changed the vertical distribution of HMs through adsorption and induced increased and prolonged exposure of benthic species. Aggregate particle size along with ionic strength were the major factors affecting the rate of sedimentation. TiO2 NPs at non-toxic concentrations efficiently enhanced the bioaccumulation and reproductive toxicity of HMs to C. elegans in a dose- and size-dependent manner; however, the effect of TiO2 NPs on As(III) was obviously lower than that on two valence metals. These data provided clear evidence that TiO2 NPs could serve as environmental regulators to significantly facilitate the toxicity and the accumulation of HMs in C. elegans, indicating that the interaction and fate of TiO2 NPs and HMs on their co-toxic responses during the sedimentation should be considered as a necessary and integral part of risk assessment in the ecological system.
Collapse
Affiliation(s)
- Jingjing Wang
- School of Environmental Science and Optoelectronic Technology, University of Science and Technology of China, Hefei, Anhui 230026, PR China; Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Chinese Academy of Sciences, Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, PR China
| | - Hui Dai
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Chinese Academy of Sciences, Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, PR China
| | - Yaguang Nie
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Chinese Academy of Sciences, Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, PR China
| | - Mudi Wang
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Chinese Academy of Sciences, Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, PR China
| | - Zhen Yang
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Chinese Academy of Sciences, Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, PR China
| | - Lei Cheng
- School of Environmental Science and Optoelectronic Technology, University of Science and Technology of China, Hefei, Anhui 230026, PR China; Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Chinese Academy of Sciences, Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, PR China
| | - Yun Liu
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Chinese Academy of Sciences, Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, PR China
| | - Shaopeng Chen
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Chinese Academy of Sciences, Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, PR China
| | - Guoping Zhao
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Chinese Academy of Sciences, Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, PR China
| | - Lijun Wu
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Chinese Academy of Sciences, Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, PR China; Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230601, PR China
| | - Shouhong Guang
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, PR China
| | - An Xu
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Chinese Academy of Sciences, Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, PR China; Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230601, PR China.
| |
Collapse
|
22
|
Canli EG, Dogan A, Canli M. Serum biomarker levels alter following nanoparticle (Al 2O 3, CuO, TiO 2) exposures in freshwater fish (Oreochromis niloticus). ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2018; 62:181-187. [PMID: 30053707 DOI: 10.1016/j.etap.2018.07.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 07/16/2018] [Accepted: 07/18/2018] [Indexed: 06/08/2023]
Abstract
Nanoparticles (NPs) are used in diverse field of technology and consequently are released to the environment, most ending up in water bodies. Because NPs have potential to cause adverse effects on the metabolisms of animals, the present study was carried out to help understanding their effects on fish metabolism. In this study, freshwater fish (Oreochromis niloticus) were exposed to aluminum oxide (Al2O3) (40 nm), copper oxide (CuO) (40 nm) and titanium dioxide (TiO2) (21 nm) NPs in differing concentrations (0, 1, 5, 25 mg/L) for 14 d. Following the exposures, the levels of glucose, cholesterol, triglyceride, blood urea nitrogen (BUN), creatinine, alanine transaminase (ALT), aspartate transaminase (AST), alkaline phosphatase (ALP), Na+, K+, triiodothyronine (T3), thyroxine (T4) and cortisol in the serum of fish were measured. The results of this study showed that there were significant alterations in the levels of some serum parameters. The levels of glucose, triglyceride, BUN, creatinine, K+, cortisol and T4 in the serum were changed following NP exposures, though there was no statistical difference in the levels of cholesterol, ALT, AST, ALP, Na+ and T3. Most striking data were obtained in the levels of BUN and creatinine, as their levels increased nearly 10 folds. Transmission electron microscope (TEM) images showed NP accumulation in tissues of fish even at the lowest exposure concentration. This study emphasized that NPs are not innocent compounds and can have hazardous effects when taken in substantial levels, suggesting there must be some criteria and limits in their usage and discharge to the environment. Nevertheless, more studies are needed to understand better their toxicities in different classes of animals.
Collapse
Affiliation(s)
- Esin G Canli
- Çukurova University, Faculty of Science and Letters, Department of Biology, 01330, Balcali, Adana, Turkey
| | - Alper Dogan
- Çukurova University, Faculty of Science and Letters, Department of Biology, 01330, Balcali, Adana, Turkey
| | - Mustafa Canli
- Çukurova University, Faculty of Science and Letters, Department of Biology, 01330, Balcali, Adana, Turkey.
| |
Collapse
|
23
|
Shahzad K, Khan MN, Jabeen F, Kosour N, Chaudhry AS, Sohail M. Evaluating toxicity of copper(II) oxide nanoparticles (CuO-NPs) through waterborne exposure to tilapia (Oreochromis mossambicus) by tissue accumulation, oxidative stress, histopathology, and genotoxicity. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:15943-15953. [PMID: 29589240 DOI: 10.1007/s11356-018-1813-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 03/19/2018] [Indexed: 06/08/2023]
Abstract
Metal oxide nanoparticles are widely used in industries, and peak level can be confirmed in their surroundings. In the present study, the sub-lethal effects of CuO-NPs from low to high concentration as 0.5 to 1.5 mg/L were observed in tilapia (Oreochromis mossambicus). Accumulation of copper from CuO-NPs was increased with the increase in doses, and maximum accumulation was found in the gill than liver and muscles. The increased lipid peroxidation level was observed in the gill as compared to liver, and the similar results were obtained in catalase and glutathione while superoxide dismutase level was higher in the liver than gills. In histological alterations, gill edema, curved tips, fusion of gill lamellae, and thickening of primary and secondary gill lamellae were observed. Necrosis and apoptosis with condensed nuclear bodies and pyknotic nuclei were observed in the liver at the highest dose concentration. In a genotoxic study, the highest value of % tail DNA and olive tail movement was observed with increasing concentrations. Copper oxide nanoparticles has greater potential to accumulate in the soft tissues, which may cause respiratory distress such as oxidative stress, induction of antioxidant defense by raising glutathione, organ pathology, and genotoxicity.
Collapse
Affiliation(s)
- Khurram Shahzad
- Department of Zoology, University of the Punjab, Lahore, Pakistan.
| | | | - Farhat Jabeen
- Department of Zoology, GC University, Faisalabad, Pakistan
| | - Nasreen Kosour
- Fisheries Research and Training Institute, Govt. of Punjab, Manawan, Lahore, Pakistan
| | | | - Muhammad Sohail
- Department of Zoology, University of the Punjab, Lahore, Pakistan
| |
Collapse
|
24
|
Elia AC, Magara G, Righetti M, Dörr AJM, Scanzio T, Pacini N, Abete MC, Prearo M. Oxidative stress and related biomarkers in cupric and cuprous chloride-treated rainbow trout. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:10205-10219. [PMID: 28265874 DOI: 10.1007/s11356-017-8651-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 02/16/2017] [Indexed: 05/29/2023]
Abstract
We examined the time-course stress responses in the liver of rainbow trout exposed to cuprous chloride (CuCl) and cupric chloride (CuCl2). The treatment groups received a single intraperitoneal injection of CuCl or CuCl2 (both at a dose of 0.01 and 0.05 mg/kg); the control group received only the physiologic solution vehicle. Liver tissue samples were analyzed for total copper, superoxide dismutase, catalase, glutathione peroxidases, glutathione reductase, glutathione S-transferase, glyoxalases, and lactate dehydrogenase at 3, 6, and 9 days post-injection. Total glutathione, metallothionein, and malondialdehyde levels were also measured. The time course of metal accumulation differed between the groups; no dose-response relationship for metal load was found. Both copper species elicited significant changes in oxidative stress markers and in metal trapping. Copper underwent adaptive shifts in glutathione and metallothionein concentrations. The defense strategy primarily versus CuCl2 first involved glutathione, with a peak in metallothionein levels at day 6 for CuCl2 (at both doses) and for CuCl (0.05 mg/kg). Early stimulation of lipid peroxidation was noted after treatment with the higher copper dose and at day 9 after treatment with the lower dose of both CuCl and CuCl2. Antioxidant enzyme activity was impaired due to a more or a less severe oxidative stress condition in relation to the copper species and exposure time. Copper dynamics, in terms of metal accumulation and homeostatic regulation, is noticeably complex. The present findings may advance our understanding of the effects of both copper species on the antioxidant response of rainbow trout.
Collapse
Affiliation(s)
- Antonia Concetta Elia
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123, Perugia, Italy.
| | - Gabriele Magara
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123, Perugia, Italy
| | - Marzia Righetti
- Fish Disease Laboratory, State Veterinary Institute, 10154, Turin, Italy
| | | | - Tommaso Scanzio
- Fish Disease Laboratory, State Veterinary Institute, 10154, Turin, Italy
| | - Nicole Pacini
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123, Perugia, Italy
| | - Maria Cesarina Abete
- C.Re.A.A. National Reference Centre for the Surveillance and Monitoring of Animal Feed, State Veterinary Institute, 10154, Turin, Italy
| | - Marino Prearo
- Fish Disease Laboratory, State Veterinary Institute, 10154, Turin, Italy
| |
Collapse
|