1
|
Benoit T, Sajjad D, Cloutier M, Lapen DR, Craiovan E, Sykes EME, Kumar A, Khan IUH. Acinetobacter calcoaceticus-baumannii complex prevalence, spatial-temporal distribution, and contamination sources in Canadian aquatic environments. Microbiol Spectr 2024; 12:e0150924. [PMID: 39240108 PMCID: PMC11449026 DOI: 10.1128/spectrum.01509-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 07/29/2024] [Indexed: 09/07/2024] Open
Abstract
Acinetobacter calcoaceticus-baumannii (ACB) complex has been identified as a group of emerging opportunistic pathogens that cause nosocomial infections. The current study investigates the prevalence, distribution, and diversity of pathogenic ACB complex in various aquatic systems with different uses. Of the total 157 agricultural, raw drinking water intake, recreational beach, and wastewater treatment plant (WWTP) effluent samples, acinetobacters were isolated, quantified, and confirmed by genus- and ACB complex-specific PCR assays. Of all agricultural surface water samples, A. calcoaceticus (65%) was more frequently detected than A. pittii (14%), A. nosocomialis (9%), and A. baumannii (3%). In WWTP effluent samples, A. baumannii was more prevalent in de-chlorinated (60%) samples compared to both A. pittii and A. nosocomialis (40%). Interestingly, A. nosocomialis (43%), A. calcoaceticus (29%), and A. baumannii (14%) were detected in raw drinking water intake samples, whereas A. pittii (50%) and A. nosocomialis (25%) were detected in beach samples. Although no sampling location-specific differences were recorded, significant (P < 0.05) seasonal differences were observed when agricultural surface water samples collected in spring were compared with the summer and fall. Whereas effluent chlorination significantly impacted the degree of prevalence of Acinetobacter in WWTP effluent samples, overall, the prevalence of ACB complex in all sampling locations and seasons indicates that these water sources, containing human-associated ACB complex, may pose potential health risks as community-acquired opportunistic infections.IMPORTANCEAcinetobacter calcoaceticus-baumannii (ACB) complex is a group of organisms known to cause problematic nosocomial opportunistic infections. A member of the species complex, A. baumannii, is becoming a global threat to infection treatment as strains are increasingly develop resistance to antibiotics. The prevalence and distribution of potentially pathogenic Acinetobacter calcoaceticus-baumannii complex species remain poorly understood, and there is a need to better understand the occurrence of A. baumannii in non-nosocomial environments. Our research details the spatial-temporal distribution of ACB complex species in a regional watershed and highlights the presence of ACB complex in wastewater effluent that is discharged into a river. These findings deepen our understanding of this group of species in non-nosocomial environments and encourage the development of monitoring programs for these species in regional waters.
Collapse
Affiliation(s)
- Thomas Benoit
- Ottawa Research and
Development Centre, Agriculture and Agri-Food
Canada, Ontario,
Canada
- Department of
Chemistry and Biomolecular Sciences, University of
Ottawa, Ontario,
Canada
| | - Dania Sajjad
- Ottawa Research and
Development Centre, Agriculture and Agri-Food
Canada, Ontario,
Canada
- Department of
Chemistry and Biomolecular Sciences, University of
Ottawa, Ontario,
Canada
| | - Michel Cloutier
- Ottawa Research and
Development Centre, Agriculture and Agri-Food
Canada, Ontario,
Canada
| | - David R. Lapen
- Ottawa Research and
Development Centre, Agriculture and Agri-Food
Canada, Ontario,
Canada
| | - Emilia Craiovan
- Ottawa Research and
Development Centre, Agriculture and Agri-Food
Canada, Ontario,
Canada
| | - Ellen M. E. Sykes
- Department of
Microbiology, University of Manitoba,
Winnipeg, Manitoba,
Canada
| | - Ayush Kumar
- Department of
Microbiology, University of Manitoba,
Winnipeg, Manitoba,
Canada
| | - Izhar U. H. Khan
- Ottawa Research and
Development Centre, Agriculture and Agri-Food
Canada, Ontario,
Canada
| |
Collapse
|
2
|
Li J, Liao Q, Wang Y, Wang X, Liu J, Zha R, He JZ, Zhang M, Zhang W. Involvement of functional metabolism promotes the enrichment of antibiotic resistome in drinking water: Based on the PICRUSt2 functional prediction. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 356:120544. [PMID: 38471323 DOI: 10.1016/j.jenvman.2024.120544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/27/2024] [Accepted: 03/01/2024] [Indexed: 03/14/2024]
Abstract
Biofilters are the important source and sink of antibiotic resistance genes (ARGs) and antibiotic resistance bacteria (ARB) in the drinking water. Current studies generally ascribed the prevalence of BAR in biofilter from the perspective of gene behavior, i.e. horizontal gene transfer (HGT), little attentions have been paid on the ARGs carrier- ARB. In this study, we proposed the hypothesis that ARB participating in pollutant metabolism processes and becoming dominant is an important way for the enrichment of ARGs. To verify this, the antibiotic resistome and bacterial functional metabolic pathways of a sand filter was profiled using heterotrophic bacterial plate counting method (HPC), high-throughput qPCR, Illumina Hiseq sequencing and PICRUSt2 functional prediction. The results illustrated a significant leakage of ARB in the effluent of the sand filter with an average absolute abundance of approximately 102-103 CFU/mL. Further contribution analysis revealed that the dominant genera, such as Acinetobacter spp., Aeromonas spp., Elizabethkingia spp., and Bacillus spp., were primary ARGs hosts, conferring resistance to multiple antibiotics including sulfamethoxazole, tetracycline and β-lactams. Notably, these ARGs hosts were involved in nitrogen metabolism, including extracellular nitrate/nitrite transport and nitrite reduction, which are crucial in nitrification and denitrification in biofilters. For example, Acinetobacter spp., the dominant bacteria in the filter (relative abundance 69.97 %), contributed the majority of ARGs and 53.79 % of nitrite reduction function. That is, ARB can predominate by participating in the nitrogen metabolism pathways, facilitating the enrichment of ARGs. These findings provide insights into the stable presence of ARGs in biofilters from a functional metabolism perspective, offering a significant supplementary to the mechanisms of the emergence, maintenance, and transmission of BARin drinking water.
Collapse
Affiliation(s)
- Jiabing Li
- College of Environmental and Resource Science, Fujian Normal University, Fuzhou 350117, China; Fujian Provincial Key Laboratory of Pollution Control & Resource Reuse (Fujian Normal University) Fuzhou 350117, China
| | - Qiuyu Liao
- College of Environmental and Resource Science, Fujian Normal University, Fuzhou 350117, China; Fujian Provincial Key Laboratory of Pollution Control & Resource Reuse (Fujian Normal University) Fuzhou 350117, China
| | - Yun Wang
- College of Environmental and Resource Science, Fujian Normal University, Fuzhou 350117, China; Fujian Provincial Key Laboratory of Pollution Control & Resource Reuse (Fujian Normal University) Fuzhou 350117, China
| | - Xuansen Wang
- College of Environmental and Resource Science, Fujian Normal University, Fuzhou 350117, China; Fujian Provincial Key Laboratory of Pollution Control & Resource Reuse (Fujian Normal University) Fuzhou 350117, China
| | - Jinchi Liu
- College of Environmental and Resource Science, Fujian Normal University, Fuzhou 350117, China; Fujian Provincial Key Laboratory of Pollution Control & Resource Reuse (Fujian Normal University) Fuzhou 350117, China
| | - Ruibo Zha
- School of Cultural Tourism and Public Administration, Fujian Normal University, Fuzhou 350117, China
| | - Ji-Zheng He
- Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education, Fujian Normal University, Fuzhou 350007, China; Fujian Sanming Forest Ecosystem National Observation and Research Station, Fujian Normal University, Sanming 365002, China
| | - Menglu Zhang
- College of Environmental and Resource Science, Fujian Normal University, Fuzhou 350117, China; Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education, Fujian Normal University, Fuzhou 350007, China; Fujian Sanming Forest Ecosystem National Observation and Research Station, Fujian Normal University, Sanming 365002, China; Fujian Provincial Key Laboratory of Pollution Control & Resource Reuse (Fujian Normal University) Fuzhou 350117, China.
| | - Weifang Zhang
- College of Environmental and Resource Science, Fujian Normal University, Fuzhou 350117, China; Fujian Provincial Key Laboratory of Pollution Control & Resource Reuse (Fujian Normal University) Fuzhou 350117, China
| |
Collapse
|
3
|
Alawi M, Smyth C, Drissner D, Zimmerer A, Leupold D, Müller D, Do TT, Velasco-Torrijos T, Walsh F. Private and well drinking water are reservoirs for antimicrobial resistant bacteria. NPJ ANTIMICROBIALS AND RESISTANCE 2024; 2:7. [PMID: 39843970 PMCID: PMC11721118 DOI: 10.1038/s44259-024-00024-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 01/18/2024] [Indexed: 01/24/2025]
Abstract
Water quality testing does not recognise antimicrobial resistance (AMR) and is often limited to indicators of faecal contamination Escherichia coli and Enterococcus species. In Europe, data on AMR in drinking water is scarce. In Ireland, as in many countries, household drinking water is supplied via mains or via private wells or water schemes. Using citizen science, we identified Irish private drinking water supplies as reservoirs of antimicrobial resistant bacteria (ARB). Gram-negative (n = 464) and Gram-positive (n = 72) bacteria were isolated. We identified instances of potentially opportunistic ARB such as Enterobacter cloacae, Acinetobacter baumannii and Enterococcus species. We report reservoirs of multidrug resistance in Enterococcus casseliflavus, E. cloacae, E. coli, Stenotrophomonas maltophilia, and Serratia rubidaea. We also identified linezolid-resistant Enterococcus in Irish drinking water. Linezolid is a last-resort antibiotic used to treat vancomycin-resistant Enterococcus sp. Additionally, we identified mobile AMR in three water samples, two of which were carried on IncF group, one on IncQ and five on Col-like plasmids. Our work suggests that private drinking water is a potential sink and source of AMR pathogens. This highlights a value of drinking water surveillance in a One Health framework as the surveillance would provide information regarding the movement and persistence of ARB and ARGs that are able to survive in drinking water and subsequently have the opportunity to be mobilised through humans; linking the environment to the human and potentially threatening human health.
Collapse
Affiliation(s)
- Marwa Alawi
- Department of Biology, Maynooth University, Maynooth, County Kildare, Ireland.
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, County Kildare, Ireland.
| | - Cian Smyth
- Department of Biology, Maynooth University, Maynooth, County Kildare, Ireland
| | - David Drissner
- Department of Life Sciences, Albstadt-Sigmaringen University, 72488, Sigmaringen, Germany
| | - Anna Zimmerer
- Department of Life Sciences, Albstadt-Sigmaringen University, 72488, Sigmaringen, Germany
| | - Denise Leupold
- Department of Life Sciences, Albstadt-Sigmaringen University, 72488, Sigmaringen, Germany
| | - Daria Müller
- Department of Life Sciences, Albstadt-Sigmaringen University, 72488, Sigmaringen, Germany
| | - Thi Thuy Do
- Department of Biology, Maynooth University, Maynooth, County Kildare, Ireland
- Department of Agriculture, Food and the Marine, Celbridge, Kildare, Ireland
| | - Trinidad Velasco-Torrijos
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, County Kildare, Ireland
- Department of Chemistry, Maynooth University, Maynooth, County Kildare, Ireland
| | - Fiona Walsh
- Department of Biology, Maynooth University, Maynooth, County Kildare, Ireland
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, County Kildare, Ireland
| |
Collapse
|
4
|
Deng YP, Fu YT, Yao C, Shao R, Zhang XL, Duan DY, Liu GH. Emerging bacterial infectious diseases/pathogens vectored by human lice. Travel Med Infect Dis 2023; 55:102630. [PMID: 37567429 DOI: 10.1016/j.tmaid.2023.102630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/02/2023] [Accepted: 08/08/2023] [Indexed: 08/13/2023]
Abstract
Human lice have always been a major public health concern due to their vector capacity for louse-borne infectious diseases, like trench fever, louse-borne relapsing fever, and epidemic fever, which are caused by Bartonella quintana, Borrelia recurrentis, and Rickettsia prowazekii, respectively. Those diseases are currently re-emerging in the regions of poor hygiene, social poverty, or wars with life-threatening consequences. These louse-borne diseases have also caused outbreaks among populations in jails and refugee camps. In addition, antibodies and DNAs to those pathogens have been steadily detected in homeless populations. Importantly, more bacterial pathogens have been detected in human lice, and some have been transmitted by human lice in laboratories. Here, we provide a comprehensive review and update on louse-borne infectious diseases/bacterial pathogens.
Collapse
Affiliation(s)
- Yuan-Ping Deng
- Research Center for Parasites & Vectors, College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, China
| | - Yi-Tian Fu
- Research Center for Parasites & Vectors, College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, China; Department of Parasitology, Xiangya School of Basic Medicine, Central South University, Changsha, Hunan, China
| | - Chaoqun Yao
- Department of Biomedical Sciences and One Health Center for Zoonoses and Tropical Veterinary Medicine, Ross University School of Veterinary Medicine, Basseterre, Saint Kitts and Nevis.
| | - Renfu Shao
- Centre for Bioinnovation, School of Science, Technology and Engineering, University of the Sunshine Coast, Sippy Downs, Australia
| | - Xue-Ling Zhang
- Research Center for Parasites & Vectors, College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, China
| | - De-Yong Duan
- Research Center for Parasites & Vectors, College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, China
| | - Guo-Hua Liu
- Research Center for Parasites & Vectors, College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, China.
| |
Collapse
|
5
|
Wolf-Baca M, Siedlecka A. Seasonal and spatial variations of antibiotic resistance genes and bacterial biodiversity in biofilms covering the equipment at successive stages of drinking water purification. JOURNAL OF HAZARDOUS MATERIALS 2023; 456:131660. [PMID: 37210784 DOI: 10.1016/j.jhazmat.2023.131660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 04/21/2023] [Accepted: 05/16/2023] [Indexed: 05/23/2023]
Abstract
The presence of ARGs (antibiotic resistance genes) in the aquatic environment is a serious threat to public health especially in environmental biofilms as natural reservoirs of ARGs in water treatment plants (WTP). It has been shown that the treatment technology and source of water have a significant impact on the abundance and type of genes determining antibiotic resistance. The following indicator genes were proposed that should absolutely be controlled in environmental biofilms: intl1, sul2, sul1, tetA, blaOXA, and blaTEM. In both studied WTPs, the highest number of copies was determined for the intI1 gene. Among the tested ARGs, the highest values were obtained for genes sul1 and tetA. The qPCR analysis also revealed that the amounts of determined ARGs decreased in the following order: sulphonamides>carbapenems >tetracyclines > β-lactams >macrolides. The dominant bacterial types in all analysed samples were Proteobacteria and Bacteroidetes. Both ARGs and bacterial biodiversity was determined rather by sampling site (spatial variation) than seasonality. The obtained results show that biofilms are reservoirs of ARGs. This may affect the microbiological quality of water entering the water system. It is therefore necessary to include their analysis in the classical studies of water quality.
Collapse
Affiliation(s)
- Mirela Wolf-Baca
- Department of Environmental Protection Engineering, Faculty of Environmental Engineering, Wrocław University of Science and Technology, Wyb. Wyspiańskiego 27, 50-370 Wrocław, Poland.
| | - Agata Siedlecka
- Department of Applied Bioeconomy, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland
| |
Collapse
|
6
|
Ouarti B, Fonkou DMM, Houhamdi L, Mediannikov O, Parola P. Lice and lice-borne diseases in humans in Africa: a narrative review. Acta Trop 2022; 237:106709. [PMID: 36198330 DOI: 10.1016/j.actatropica.2022.106709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/30/2022] [Accepted: 10/01/2022] [Indexed: 01/18/2023]
Abstract
Lice are host-specific insects. Human lice include Pediculus humanus humanus (body lice) which are known to be vectors of serious human bacterial infectious diseases including epidemic typhus, relapsing fever, trench fever and plague; Pediculus humanus capitis (head lice) that frequently affect children; and Pthirus pubis, commonly known as crab lice. In Africa, human infections transmitted by lice remained poorly known and therefore, underestimated, perhaps due to the lack of diagnostic tools and professional knowledge. In this paper we review current knowledge of the microorganisms identified in human lice in the continent of Africa, in order to alert health professionals to the importance of recognising the risk of lice-related diseases.
Collapse
Affiliation(s)
- Basma Ouarti
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France; IHU-Méditerranée Infection, Marseille, France.
| | | | - Linda Houhamdi
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France; IHU-Méditerranée Infection, Marseille, France.
| | - Oleg Mediannikov
- IHU-Méditerranée Infection, Marseille, France; IRD, AP-HM, MEPHI, Aix Marseille University, Marseille, France.
| | - Philippe Parola
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France; IHU-Méditerranée Infection, Marseille, France.
| |
Collapse
|
7
|
Arruda V, Simões M, Gomes IB. The impact of synthetic musk compounds in biofilms from drinking water bacteria. JOURNAL OF HAZARDOUS MATERIALS 2022; 436:129185. [PMID: 35739716 DOI: 10.1016/j.jhazmat.2022.129185] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/22/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
Musk fragrances have been detected in drinking water (DW) at trace concentrations. However, their impact on the microbial quality of DW has been disregarded. This work provides a pioneer evaluation of the effects of two synthetic musks contaminants, tonalide (AHTN) and galaxolide (HHCB), in microbial biofilms formed on two different surfaces, polyvinyl chloride (PVC) and stainless steel AISI 316 (SS316). Three bacterial species isolated from DW (Acinetobacter calcoaceticus, Burkholderia cepacia and Stenotrophomonas maltophilia), were used to develop 7-day-old single and mixed species biofilms. The impact of musks was assessed directly on biofilms but also on the bacteria motility, biofilm formation ability and biofilm susceptibility to chlorination. AHTN musk caused the most remarkable effects by increasing the cellular density and viability of mixed biofilms, and the extracellular polysaccharides content of biofilms on SS316. Most of the alterations caused by the direct exposure of biofilms to musks were observed when SS316 was used as an adhesion surface. In contrast, the ability to form biofilms and their susceptibility to chlorine were more affected for bacteria from HHCB-exposed biofilms on PVC. The overall results demonstrate that the presence of musks at residual concentrations influences DW bacterial dynamics, with the potential to impact the DW quality and safety. The type of plumbing material may further impact the effects of musks.
Collapse
Affiliation(s)
- Vitória Arruda
- LEPABE, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal
| | - Manuel Simões
- LEPABE, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal.
| | - Inês B Gomes
- LEPABE, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal.
| |
Collapse
|
8
|
Antimicrobial Resistance of Heterotrophic Bacteria in Drinking Water-Associated Biofilms. WATER 2022. [DOI: 10.3390/w14060944] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Antimicrobial resistance (AMR) is one of the major threats to human health and is becoming an environmental challenge for water resources too. Our study’s aim was: to assess the AMR of heterotrophic bacteria in drinking water-associated biofilms against six clinically important antibiotics; to compare the prevalence of antibiotic resistant bacteria (ARB) in drinking water and in the associated biofilms; to estimate biofilm formation ability of selected isolates. Culture-dependent methods were used in the population-based study of the biofilms and in assessment of the single-species biofilm formation ability and the AMR phenotype of the isolated strains. The population proportion of the bacteria resistant to each tested antibiotic significantly differed in the biofilms formed in drinking water from different sampling points. In all biofilms, the abundance of tetracycline- and ampicillin-resistant bacteria was low, and of streptomycin-resistant bacteria was high. An increased proportion of the bacteria resistant to ciprofloxacin, chloramphenicol and streptomycin was detected in the biofilms compared to those found in the drinking water. The prevalence of ARB in the biofilms implies an impact on the drinking water quality and an assessment of the attached and the planktonic bacteria is needed to clarify the prevalence of AMR in the drinking water distribution system.
Collapse
|
9
|
Ribeirinho-Soares S, Moreira NFF, Graça C, Pereira MFR, Silva AMT, Nunes OC. Overgrowth control of potentially hazardous bacteria during storage of ozone treated wastewater through natural competition. WATER RESEARCH 2022; 209:117932. [PMID: 34902759 DOI: 10.1016/j.watres.2021.117932] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 11/10/2021] [Accepted: 12/01/2021] [Indexed: 06/14/2023]
Abstract
Improving the chemical and biological quality of treated wastewater is particularly important in world regions under water stress. In these regions, reutilization of wastewater is seen as an alternative to reduce water demand, particularly for agriculture irrigation. In a reuse scenario, the treated wastewater must have enough quality to avoid chemical and biological contamination of the receiving environment. Ozonation is among the technologies available to efficiently remove organic micropollutants and disinfect secondary effluents, being implemented in full-scale urban wastewater treatment plants worldwide. However, previous studies demonstrated that storage of ozone treated wastewater promoted the overgrowth of potentially harmful bacteria, putting at risk its reutilization, given for instance the possibility of contaminating the food-chain. Therefore, this study was designed to assess the potential beneficial role of inoculation of ozone treated wastewater with a diverse bacterial community during storage, for the control of the overgrowth of potentially hazardous bacteria, through bacterial competition. To achieve this goal, ozone treated wastewater (TWW) was diluted with river water (RW) in the same proportion, and the resulting bacterial community (RW+TWW) was compared to that of undiluted TWW over 7 days storage. As hypothesized, in contrast to TWW, where dominance of Beta- and Gammaproteobacteria, namely Pseudomonas spp. and Acinetobacter spp., was observed upon storage for 7 days, the bacterial communities of the diluted samples (RW+TWW) were diverse, resembling those of RW. Moreover, given the high abundance of antibiotic resistance genes in RW, the concentration of these genes in RW+TWW did not differ from that of the non-ozonated controls (WW, RW and RW+WW) over the storage period. These results highlight the necessity of finding a suitable pristine diverse bacterial community to be used in the future to compete with bacteria surviving ozonation, to prevent reactivation of undesirable bacteria during storage of treated wastewater.
Collapse
Affiliation(s)
- Sara Ribeirinho-Soares
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, Porto 4200-465, Portugal
| | - Nuno F F Moreira
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, Porto 4200-465, Portugal; Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials (LSRE-LCM), Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, Porto 4200-465, Portugal
| | - Cátia Graça
- Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials (LSRE-LCM), Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, Porto 4200-465, Portugal
| | - M Fernando R Pereira
- Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials (LSRE-LCM), Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, Porto 4200-465, Portugal
| | - Adrián M T Silva
- Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials (LSRE-LCM), Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, Porto 4200-465, Portugal
| | - Olga C Nunes
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, Porto 4200-465, Portugal.
| |
Collapse
|
10
|
Diversity of Multidrug-Resistant Bacteria in an Urbanized River: A Case Study of the Potential Risks from Combined Sewage Overflows. WATER 2021. [DOI: 10.3390/w13152122] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Wastewater contamination and urbanization contribute to the spread of antibiotic resistance in aquatic environments. This is a particular concern in areas receiving chronic pollution of untreated waste via combined sewer overflow (CSO) events. The goal of this study was to expand knowledge of CSO impacts, with a specific focus on multidrug resistance. We sampled a CSO-impacted segment of the James River (Virginia, USA) during both clear weather and an active overflow event and compared it to an unimpacted upstream site. Bacteria resistant to ampicillin, streptomycin, and tetracycline were isolated from all samples. Ampicillin resistance was particularly abundant, especially during the CSO event, so these isolates were studied further using disk susceptibility tests to assess multidrug resistance. During a CSO overflow event, 82% of these isolates were resistant to five or more antibiotics, and 44% were resistant to seven or more. The latter statistic contrasts starkly with the upstream reference site, where only 4% of isolates displayed resistance to more than seven antibiotics. DNA sequencing (16S rRNA gene) revealed that ~35% of our isolates were opportunistic pathogens, comprised primarily of the genera Stenotrophomonas, Pseudomonas, and Chryseobacterium. Together, these results demonstrate that CSOs can be a significant source of viable clinically-relevant bacteria to the natural environment and that multidrug resistance is an important understudied component of the environmental spread of antibiotic resistance.
Collapse
|
11
|
Moreira NFF, Ribeirinho-Soares S, Viana AT, Graça CAL, Ribeiro ARL, Castelhano N, Egas C, Pereira MFR, Silva AMT, Nunes OC. Rethinking water treatment targets: Bacteria regrowth under unprovable conditions. WATER RESEARCH 2021; 201:117374. [PMID: 34214892 DOI: 10.1016/j.watres.2021.117374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 06/08/2021] [Accepted: 06/13/2021] [Indexed: 06/13/2023]
Abstract
Ozonation is among the currently used technologies to remove chemical and biological contaminants from secondary treated urban wastewater (UWW). Despite its effectiveness on the abatement of organic micropollutants (OMPs) and disinfection, previous studies have shown that regrow of bacteria may occur upon storage of the ozonated UWW. This reactivation has been attributed to the high content of assimilable organic carbon after treatment. In order to investigate if ozonation by-products are the main biological regrowth drivers in stored ozonated UWW, the ozonation surviving cells were resuspended in sterile bottled mineral water (MW), simulating a pristine oligotrophic environment. After 7 days storage, organisms such as Acinetobacter, Methylobacterium, Cupriavidus, Massilia, Acidovorax and Pseudomonas were dominant in both ozonated UWW and pristine MW, demonstrating that bacterial regrowth is not strictly related to the eventual presence of ozonation by-products, but instead with the ability of the surviving cells to cope with nutrient-poor environments. The resistome of UWW before and after ozonation was analysed by metagenomic techniques. Draft metagenome assembled genomes (dMAGs), recovered from both ozonated UWW and after cell resuspension in MW, harboured genes conferring resistance to diverse antibiotics classes. Some of these antibiotic resistance genes (ARGs) were located in the vicinity of mobile genetic elements, suggesting their potential to be mobilized. Among these, dMAGs affiliated to taxa with high relative abundance in stored water, such as P. aeruginosa and Acinetobacter spp., harboured ARGs conferring resistance to 12 and 4 families of antibiotics, respectively, including those encoding carbapenem hydrolysing oxacillinases. The results herein obtained point out that the design and development of new wastewater treatment technologies should include measures to attenuate the imbalance of the bacterial communities promoted by storage of the final treated wastewater, even when applying processes with high mineralization rates.
Collapse
Affiliation(s)
- Nuno F F Moreira
- LSRE-LCM - Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials (LSRE-LCM), Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Sara Ribeirinho-Soares
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Ana Teresa Viana
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Cátia A L Graça
- LSRE-LCM - Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials (LSRE-LCM), Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Ana Rita L Ribeiro
- LSRE-LCM - Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials (LSRE-LCM), Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Nadine Castelhano
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Conceição Egas
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; Next Generation Sequencing Unit, Biocant, BiocantPark, Núcleo 04, Lote 8, 3060-197 Cantanhede, Portugal
| | - M Fernando R Pereira
- LSRE-LCM - Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials (LSRE-LCM), Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Adrián M T Silva
- LSRE-LCM - Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials (LSRE-LCM), Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Olga C Nunes
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal.
| |
Collapse
|
12
|
SIEDLECKA AGATA, WOLF-BACA MIRELAJ, PIEKARSKA KATARZYNA. Antibiotic and Disinfectant Resistance in Tap Water Strains - Insight into the Resistance of Environmental Bacteria. Pol J Microbiol 2021; 70:57-67. [PMID: 33815527 PMCID: PMC8008766 DOI: 10.33073/pjm-2021-004] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 12/30/2020] [Accepted: 01/11/2021] [Indexed: 12/15/2022] Open
Abstract
Although antibiotic-resistant bacteria (ARB) have been isolated from tap water worldwide, the knowledge of their resistance patterns is still scarce. Both horizontal and vertical gene transfer has been suggested to contribute to the resistance spread among tap water bacteria. In this study, ARB were isolated from finished water collected at two independent water treatment plants (WTPs) and tap water collected at several point-of-use taps during summer and winter sampling campaigns. A total of 24 strains were identified to genus or species level and subjected to antibiotic and disinfectant susceptibility testing. The investigated tap water ARB belonged to phyla Proteobacteria, Bacteroidetes, Actinobacteria, and Firmicutes. The majority of the isolates proved multidrug resistant and resistant to chemical disinfectant. Neither seasonal nor WTP-dependent variabilities in antibiotic or disinfectant resistance were found. Antibiotics most effective against the investigated isolates included imipenem, tetracyclines, erythromycin, and least effective - aztreonam, cefotaxime, amoxicillin, and ceftazidime. The most resistant strains originate from Afipia sp. and Methylobacterium sp. Comparing resistance patterns of isolated tap water ARB with literature reports concerning the same genera or species confirms intra-genus or even intra-specific variabilities of environmental bacteria. Neither species-specific nor acquired resistance can be excluded.
Collapse
Affiliation(s)
- AGATA SIEDLECKA
- Department of Environmental Protection Engineering, Faculty of Environmental Engineering, Wrocław University of Science and Technology, Wrocław, Poland
| | - MIRELA J. WOLF-BACA
- Department of Environmental Protection Engineering, Faculty of Environmental Engineering, Wrocław University of Science and Technology, Wrocław, Poland
| | - KATARZYNA PIEKARSKA
- Department of Environmental Protection Engineering, Faculty of Environmental Engineering, Wrocław University of Science and Technology, Wrocław, Poland
| |
Collapse
|
13
|
Pulami D, Schauss T, Eisenberg T, Blom J, Schwengers O, Bender JK, Wilharm G, Kämpfer P, Glaeser SP. Acinetobacter stercoris sp. nov. isolated from output source of a mesophilic german biogas plant with anaerobic operating conditions. Antonie van Leeuwenhoek 2021; 114:235-251. [PMID: 33591460 PMCID: PMC7902594 DOI: 10.1007/s10482-021-01517-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 01/13/2021] [Indexed: 01/21/2023]
Abstract
The Gram-stain-negative, oxidase negative, catalase positive strain KPC-SM-21T, isolated from a digestate of a storage tank of a mesophilic German biogas plant, was investigated by a polyphasic taxonomic approach. Phylogenetic identification based on the nearly full-length 16S rRNA gene revealed highest gene sequence similarity to Acinetobacter baumannii ATCC 19606T (97.0%). Phylogenetic trees calculated based on partial rpoB and gyrB gene sequences showed a distinct clustering of strain KPC-SM-21T with Acinetobacter gerneri DSM 14967T = CIP 107464T and not with A. baumannii, which was also supported in the five housekeeping genes multilocus sequence analysis based phylogeny. Average nucleotide identity values between whole genome sequences of strain KPC-SM-21T and next related type strains supported the novel species status. The DNA G + C content of strain KPC-SM-21T was 37.7 mol%. Whole-cell MALDI-TOF MS analysis supported the distinctness of the strain to type strains of next related Acinetobacter species. Predominant fatty acids were C18:1 ω9c (44.2%), C16:0 (21.7%) and a summed feature comprising C16:1 ω7c and/or iso-C15:0 2-OH (15.3%). Based on the obtained genotypic, phenotypic and chemotaxonomic data we concluded that strain KPC-SM-21T represents a novel species of the genus Acinetobacter, for which the name Acinetobacter stercoris sp. nov. is proposed. The type strain is KPC-SM-21T (= DSM 102168T = LMG 29413T).
Collapse
Affiliation(s)
- Dipen Pulami
- Institut für Angewandte Mikrobiologie, Justus-Liebig-Universität Giessen, 35392, Giessen, Germany
| | - Thorsten Schauss
- Institut für Angewandte Mikrobiologie, Justus-Liebig-Universität Giessen, 35392, Giessen, Germany
| | - Tobias Eisenberg
- Department of Veterinary Medicine, Hessian State Laboratory, Giessen, Germany
| | - Jochen Blom
- Institute for Bioinformatics and Systems Biology, Giessen, 35392, Giessen, Germany
| | - Oliver Schwengers
- Institute for Bioinformatics and Systems Biology, Giessen, 35392, Giessen, Germany
| | - Jennifer K Bender
- Division of Nosocomial Pathogens and Antibiotic Resistances, Wernigerode Branch, Robert Koch Institute, 38855, Wernigerode, Germany
| | - Gottfried Wilharm
- Project group P2, Wernigerode Branch, Robert Koch Institute, 38855, Wernigerode, Germany
| | - Peter Kämpfer
- Institut für Angewandte Mikrobiologie, Justus-Liebig-Universität Giessen, 35392, Giessen, Germany
| | - Stefanie P Glaeser
- Institut für Angewandte Mikrobiologie, Justus-Liebig-Universität Giessen, 35392, Giessen, Germany.
| |
Collapse
|
14
|
Li S, Zhang Y, Yin S, Wang X, Liu T, Deng Z. Analysis of microbial community structure and degradation of ammonia nitrogen in groundwater in cold regions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:44137-44147. [PMID: 32754885 DOI: 10.1007/s11356-020-10318-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 07/29/2020] [Indexed: 06/11/2023]
Abstract
Nitrogen pollution exceeding the standard because of intensive farming and cropping systems has been a widespread problem in Northeast China. This study investigated the characteristics of functional microorganisms in groundwater in the Bang River farming area. Metagenomic sequencing was used to analyze microbial community structures and Canoco was applied to reveal the response relationship between the microbial community and water environmental factors and to identify changes in the microbial population in response to the addition of electronic donors NH4+-N, NO2--N, and NO3--N. The results showed that the dominant microorganisms in groundwater belong to the genera Exiguobacterium, Citrobacter, Acinetobacter, and Pseudomonas, which accounted for more than 40% of the total microbes in the study area. When combined with the results of a water chemical factor test, the dominant bacteria were found to be correlated with Fe2+, Mn2+, NH4+, NO3-, NO2-, HCO3-, DOC, and pH in the water. However, the microbial population changed after the addition of the electron donor, with the genera Pseudomonas, Serratia, Enterobacter, Azomonas, and Ewingella accounting for 97.06% of the total sequences. Indigenous nitrogen-degrading bacteria suitable for low temperature, low oxygen, and oligotrophic groundwater were screened out. The total removal efficiency of NH4+-N, NO2--N, and NO3--N in 120 h was 90.83%, 75.04%, and 73.35%, respectively. According to the experimental results, the degradation reaction kinetics followed a pseudo-second-order equation. The results presented herein provide an important scientific basis for the microbial remediation of groundwater contaminated by ammonia.
Collapse
Affiliation(s)
- Shuo Li
- College of New Energy and Environment, Jilin University, Changchun, 130021, People's Republic of China
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, People's Republic of China
- Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun, 130021, People's Republic of China
| | - Yuling Zhang
- College of New Energy and Environment, Jilin University, Changchun, 130021, People's Republic of China.
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, People's Republic of China.
- Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun, 130021, People's Republic of China.
- Institute of Water Resources and Environment, Jilin University, Changchun, 130021, People's Republic of China.
| | - Siqi Yin
- College of New Energy and Environment, Jilin University, Changchun, 130021, People's Republic of China
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, People's Republic of China
- Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun, 130021, People's Republic of China
- Institute of Water Resources and Environment, Jilin University, Changchun, 130021, People's Republic of China
| | - Xi Wang
- College of New Energy and Environment, Jilin University, Changchun, 130021, People's Republic of China
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, People's Republic of China
- Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun, 130021, People's Republic of China
- Institute of Water Resources and Environment, Jilin University, Changchun, 130021, People's Republic of China
| | - Ting Liu
- College of New Energy and Environment, Jilin University, Changchun, 130021, People's Republic of China
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, People's Republic of China
- Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun, 130021, People's Republic of China
- Institute of Water Resources and Environment, Jilin University, Changchun, 130021, People's Republic of China
| | - Zhiqun Deng
- College of New Energy and Environment, Jilin University, Changchun, 130021, People's Republic of China
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, People's Republic of China
- Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun, 130021, People's Republic of China
- Institute of Water Resources and Environment, Jilin University, Changchun, 130021, People's Republic of China
| |
Collapse
|
15
|
Carvalheira A, Silva J, Teixeira P. Acinetobacter spp. in food and drinking water - A review. Food Microbiol 2020; 95:103675. [PMID: 33397609 DOI: 10.1016/j.fm.2020.103675] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 11/02/2020] [Accepted: 11/03/2020] [Indexed: 01/01/2023]
Abstract
Acinetobacter spp. has emerged as a pathogen of major public health concern due to their increased resistance to antibiotics and their association with a wide range of nosocomial infections, community-acquired infections and war and natural disaster-related infections. It is recognized as a ubiquitous organism however, information about the prevalence of different pathogenic species of this genus in food sources and drinking water is scarce. Since the implementation of molecular techniques, the role of foods as a source of several species, including the Acinetobacter baumannii group, has been elucidated. Multidrug resistance was also detected among Acinetobacter spp. isolated from food products. This highlights the importance of foods as potential sources of dissemination of Acinetobacter spp. between the community and clinical environments and reinforces the need for further investigations on the potential health risks of Acinetobacter spp. as foodborne pathogens. The aim of this review was to summarize the published data on the occurrence of Acinetobacter spp. in different food sources and drinking water. This information should be taken into consideration by those responsible for infection control in hospitals and other healthcare facilities.
Collapse
Affiliation(s)
- Ana Carvalheira
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005, Porto, Portugal
| | - Joana Silva
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005, Porto, Portugal
| | - Paula Teixeira
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005, Porto, Portugal.
| |
Collapse
|
16
|
Spatiotemporal Changes of Antibiotic Resistance and Bacterial Communities in Drinking Water Distribution System in Wrocław, Poland. WATER 2020. [DOI: 10.3390/w12092601] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Antibiotic resistance of bacteria is an emerging problem in drinking water treatment. This paper presents the comparison of antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) prevalence during the summer and winter season in a full-scale drinking water distribution system (DWDS) supplied by two water treatment plants (WTPs). The effect of distance from WTP and physical–chemical water parameters on its microbial properties was also tested. Bacterial consortia dwelling in bulk tap water were additionally compared by means of denaturating gradient gel electrophoresis (DGGE). The results showed that among ARB, bacteria resistant to ceftazidime (CAZ) were the most abundant, followed by bacteria resistant to amoxicillin (AML), ciprofloxacin (CIP), and tetracycline (TE). Numerous ARGs were detected in tested tap water samples. Only CAZ resistant bacteria were more prevalent in the season of increased antibiotic consumption, and only AML resistant bacteria relative abundances increase was statistically significant with the distance from a WTP. The investigated tap water meets all legal requirements. It is therefore safe to drink according to the law. Nevertheless, because antibiotic resistance could pose a threat to consumer health, it should be further monitored in DWDSs.
Collapse
|
17
|
Kaur R, Singh D, Kesavan AK, Kaur R. Molecular characterization and antimicrobial susceptibility of bacterial isolates present in tap water of public toilets. Int Health 2020; 12:472-483. [PMID: 31693132 PMCID: PMC7443727 DOI: 10.1093/inthealth/ihz074] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 06/14/2019] [Accepted: 06/17/2019] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND The present study was carried out to investigate the tap water quality of public toilets in Amritsar, Punjab, India. METHODS Water samples from the taps of the public toilets were collected in sterile containers and physicochemical and bacteriological analysis was performed using standard methods. Also, genotypic and phenotypic characterization of the bacterial isolates was performed using different biochemical tests and 16S ribosomal RNA analysis. An antibiotic susceptibility test was performed using antibiotics based on their mode of action. A biofilm assay was performed to assess the adhesion potential of the isolates. RESULTS A total of 25 bacterial isolates were identified from the water samples, including Acinetobacter junii, Acinetobacter pittii, Acinetobacter haemolyticus, Bacillus pumilus, Bacillus megaterium, Bacillus marisflavi, Bacillus flexus, Bacillus oceanisediminis, Pseudomonas otitidis, Pseudomonas sp. RR013, Pseudomonas sp. RR021, Pseudomonas sp. RR022, Escherichia coli and Enterobacter cloacae. The results of the antimicrobial susceptibility test revealed that the antibiotics cefodroxil, aztreonam, nitrofurantoin, cefepime, ceftazidime and amoxyclav were found to be mostly ineffective against various isolates. The biofilm assay revealed the weak, moderate and strong biofilm producers among them. CONCLUSIONS The tap water in the public toilets was microbially contaminated and needs to be monitored carefully. The antibiotic susceptibility profile showed that of 25 bacterial isolates, 5 were multidrug resistant. Bacterial isolates exhibited strong to weak adhesion potential in the biofilm assay.
Collapse
Affiliation(s)
- Rajanbir Kaur
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| | - Drishtant Singh
- Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| | - Anup Kumar Kesavan
- Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| | - Rajinder Kaur
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| |
Collapse
|
18
|
Benoit T, Cloutier M, Schop R, Lowerison MW, Khan IUH. Comparative assessment of growth media and incubation conditions for enhanced recovery and isolation of Acinetobacter baumannii from aquatic matrices. J Microbiol Methods 2020; 176:106023. [PMID: 32795636 DOI: 10.1016/j.mimet.2020.106023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/16/2020] [Accepted: 07/24/2020] [Indexed: 11/16/2022]
Abstract
Acinetobacter baumannii causes serious multidrug resistant nosocomial infections around the world. This comprehensive comparative study was designed to assess the effect of temperature (30, 37 and 42 °C), incubation (aerobic and microaerobic) condition and selective [CHROMagar Acinetobacter (CHR) and Leeds Acinetobacter Medium (LAM)] and non-selective [Modified Karmali Agar (MKA)] growth media on the enhanced recovery of A. baumannii from a variety of water (agricultural, recreational, raw drinking intake source, pre-chlorinated and post-chlorinated wastewater effluent) samples spiked with a known number of A. baumannii cells. After spiking each water type with a known number of cells in 10 mL volume, the sample was passed through a membrane filter (pore size 0.45 μm) and filters were placed on different selective media plates and subjected to incubate at various incubation conditions. The results reported in this study show that for all water types tested (except post-chlorinated wastewater effluent), LAM was the most effective selective growth medium in combination with variable temperature and incubation conditions for yielding high recovery rates of A. baumannii cells. Overall, A. baumannii showed that it has a high adaptive capacity to grow on selective and non-selective growth media at different temperature and incubation conditions. The data described in this study suggest that no single incubation condition and growth media would efficiently recover A. baumannii from all environmental water types tested. This data also indicate that selective growth media and incubation condition can significantly affect the recovery of A. baumannii. Differences in recovery of A. baumannii observed in this study which appeared to be dependent on the temperature and environmental characteristics of incubation as well as the sample type, suggest the need for caution when comparing recovery using different protocols.
Collapse
Affiliation(s)
- Thomas Benoit
- Ottawa Research and Development Centre (ORDC), Agriculture and Agri-Food Canada, Ottawa, ON, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Michel Cloutier
- Ottawa Research and Development Centre (ORDC), Agriculture and Agri-Food Canada, Ottawa, ON, Canada
| | - Rhonda Schop
- Ontario Ministry of the Environment, Conservation and Parks, Etobioke, ON, Canada
| | | | - Izhar U H Khan
- Ottawa Research and Development Centre (ORDC), Agriculture and Agri-Food Canada, Ottawa, ON, Canada.
| |
Collapse
|
19
|
Zhang M, Xu M, Xu S, Zhang L, Lin K, Zhang L, Bai M, Zhang C, Zhou H. Response of the Bacterial Community and Antibiotic Resistance in Overnight Stagnant Water from a Municipal Pipeline. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17061995. [PMID: 32197379 PMCID: PMC7143130 DOI: 10.3390/ijerph17061995] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/11/2020] [Accepted: 03/11/2020] [Indexed: 01/15/2023]
Abstract
Although drinking water safety has raised considerable concern, to date, the hidden health risks in newly released overnight water from a municipal pipeline have seldom received attention. In this study, bacterial community composition and the response of antibiotic-resistant bacteria (ARB) to ciprofloxacin, azithromycin, tetracycline, penicillin, and cephalosporin in overnight stagnant water were analyzed. With increases in heterotrophic bacteria plate count (HPC) during water stagnation, the numbers of ARB and the ARB/HPC ratios for the five antibiotics in resident water were observed to increase, which illustrated that the prevalence of ARB rose in the pipe network water during stagnation time (ST). Furthermore, during water stagnation for 12 h, an increase in bacteria related to fermentation was also observed. When the ST rose to 48 h, the fermentation bacteria become non-significant, and this was related to the exchange of pipe network water during daytime stagnation within the 48-h period. The antibiotic resistance index (ARI) showed that tetracycline had the highest resistance level in fresh water, and then decreased during water stagnation. When ST increased to 12 h, all ARI values of the five antibiotics were low, which was associated with changes in parameters during water retention and reduced resistance during short-term stagnation. When the ST increased to 24 and 48 h, the resistance to most antibiotics (except for tetracycline) increased, which showed that increasing antibiotic resistance is caused by the formation of biofilms in the pipeline during water stagnation.
Collapse
Affiliation(s)
- Minglu Zhang
- Department of Environmental Science and Engineering, Beijing Technology and Business University, Beijing 100048, China; (M.Z.); (M.X.); (S.X.); (L.Z.); (K.L.)
| | - Mengyao Xu
- Department of Environmental Science and Engineering, Beijing Technology and Business University, Beijing 100048, China; (M.Z.); (M.X.); (S.X.); (L.Z.); (K.L.)
| | - Shaofeng Xu
- Department of Environmental Science and Engineering, Beijing Technology and Business University, Beijing 100048, China; (M.Z.); (M.X.); (S.X.); (L.Z.); (K.L.)
| | - Lingyue Zhang
- Department of Environmental Science and Engineering, Beijing Technology and Business University, Beijing 100048, China; (M.Z.); (M.X.); (S.X.); (L.Z.); (K.L.)
| | - Kaizong Lin
- Department of Environmental Science and Engineering, Beijing Technology and Business University, Beijing 100048, China; (M.Z.); (M.X.); (S.X.); (L.Z.); (K.L.)
| | - Lei Zhang
- Center for Disease Control and Prevention of Chinese PLA, Beijing 100071, China; (L.Z.); (M.B.)
| | - Miao Bai
- Center for Disease Control and Prevention of Chinese PLA, Beijing 100071, China; (L.Z.); (M.B.)
| | - Can Zhang
- Center for Disease Control and Prevention of Chinese PLA, Beijing 100071, China; (L.Z.); (M.B.)
- Correspondence:
| | - He Zhou
- Beijing Boda Water Company, Beijing 100176, China;
| |
Collapse
|
20
|
Ferro P, Vaz-Moreira I, Manaia CM. Betaproteobacteria are predominant in drinking water: are there reasons for concern? Crit Rev Microbiol 2019; 45:649-667. [PMID: 31686572 DOI: 10.1080/1040841x.2019.1680602] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Betaproteobacteria include some of the most abundant and ubiquitous bacterial genera that can be found in drinking water, including mineral water. The combination of physiology and ecology traits place some Betaproteobacteria in the list of potential, yet sometimes neglected, opportunistic pathogens that can be transmitted by water or aqueous solutions. Indeed, some drinking water Betaproteobacteria with intrinsic and sometimes acquired antibiotic resistance, harbouring virulence factors and often found in biofilm structures, can persist after water disinfection and reach the consumer. This literature review summarises and discusses the current knowledge about the occurrence and implications of Betaproteobacteria in drinking water. Although the sparse knowledge on the ecology and physiology of Betaproteobacteria thriving in tap or bottled natural mineral/spring drinking water (DW) is an evidence of this review, it is demonstrated that DW holds a high diversity of Betaproteobacteria, whose presence may not be innocuous. Frequently belonging to genera also found in humans, DW Betaproteobacteria are ubiquitous in different habitats, have the potential to resist antibiotics either due to intrinsic or acquired mechanisms, and hold different virulence factors. The combination of these factors places DW Betaproteobacteria in the list of candidates of emerging opportunistic pathogens. Improved bacterial identification of clinical isolates associated with opportunistic infections and additional genomic and physiological studies may contribute to elucidate the potential impact of these bacteria.
Collapse
Affiliation(s)
- Pompeyo Ferro
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Porto, Portugal
| | - Ivone Vaz-Moreira
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Porto, Portugal
| | - Célia M Manaia
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Porto, Portugal
| |
Collapse
|
21
|
Daae HL, Heldal KK, Madsen AM, Olsen R, Skaugset NP, Graff P. Occupational exposure during treatment of offshore drilling waste and characterization of microbiological diversity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 681:533-540. [PMID: 31121403 DOI: 10.1016/j.scitotenv.2019.05.131] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 05/08/2019] [Accepted: 05/09/2019] [Indexed: 06/09/2023]
Abstract
The exposure for workers handling and recycling offshore drilling waste are previously not described, and given the potential for exposure to hazardous components, there is a need for characterizing this occupational exposure. In this study five plants recycling offshore drilling waste with different techniques were included. Measurements were conducted in both winter and summer to include seasonal exposure variations. Altogether >200 personal air-exposure measurements for oil mist, oil vapor, volatile organic compounds (VOC), hydrogen sulfide (H2S) and solvents were carried out respectively. Microorganisms related to drilling waste were identified in bulk samples and in stationary air measurements from two of the plants. The exposure to oil mist and oil vapor were below 10% of the current Norwegian occupational exposure limits (OEL) for all measured components. The plants using the Resoil or TCC method had a statistically significant higher exposure to oil vapor than the plant using complete combustion (p-value <0.05). No statistically significant difference was found between the different treatment methods for oil mist. The exposure to solvents was generally low (additive factor < 0.03). Endotoxin measurements done during winter showed a median concentration of 5.4 endotoxin units (EU)/m3. Levels of H2S above the odor threshold of 0.1 ppm were measured at four plants. Both drill mud and slop water contained a high number and diversity of bacteria (2-4 × 104 colony forming unit (CFU)/mL), where a large fraction was Gram-negative species. Some of the identified microorganisms are classified as potentially infectious pathogens for humans and thus might be a hazard to workers.
Collapse
Affiliation(s)
- Hanne Line Daae
- National Institute of Occupational Health, Pb 5330 Majorstuen, N-0304 Oslo, Norway
| | - Kari Kulvik Heldal
- National Institute of Occupational Health, Pb 5330 Majorstuen, N-0304 Oslo, Norway
| | - Anne Mette Madsen
- The National Research Centre for the Working Environment, Lersø Parkallé 105, DK-2100 Copenhagen Ø, Denmark
| | - Raymond Olsen
- National Institute of Occupational Health, Pb 5330 Majorstuen, N-0304 Oslo, Norway
| | - Nils Petter Skaugset
- National Institute of Occupational Health, Pb 5330 Majorstuen, N-0304 Oslo, Norway
| | - Pål Graff
- National Institute of Occupational Health, Pb 5330 Majorstuen, N-0304 Oslo, Norway.
| |
Collapse
|
22
|
Sanganyado E, Gwenzi W. Antibiotic resistance in drinking water systems: Occurrence, removal, and human health risks. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 669:785-797. [PMID: 30897437 DOI: 10.1016/j.scitotenv.2019.03.162] [Citation(s) in RCA: 226] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 03/11/2019] [Accepted: 03/11/2019] [Indexed: 05/19/2023]
Abstract
In recent years, there has been a growing interest on the occurrence of antibiotic-resistant bacteria (ARB) and antibiotic resistant genes (ARGs) in treated and untreated drinking water. ARB and ARGs pose a public health concern when they transfer antibiotic resistance (AR) to human pathogens. However, it is still unclear whether the presence of environmental ARB and ARGs in source water, drinking water treatment plants, and drinking water distribution systems has any significant impact on human exposure to pathogenic ARB. In this review, we critically examine the occurrence of AR in groundwater, surface water, and treated distributed water. This offered a new perspective on the human health threat posed by AR in drinking water and helped in crafting a strategy for monitoring AR effectively. Using existing data on removal of ARB and ARGs in drinking water treatment plants, presence and proliferation of AR in drinking water distribution systems, and mechanisms and pathways of AR transfer in drinking water treatment plants, we conclude that combining UV-irradiation with advanced oxidative processes (such as UV/chlorine, UV/H2O2, and H2O2/UV/TiO2) may enhance the removal of ARB and ARGs, while disinfection may promote horizontal gene transfer from environmental ARB to pathogens. The potential human health risks of AR were determined by examining human exposure to antibiotic resistant human pathogens and re-evaluating waterborne disease outbreaks and their links to environmental AR. We concluded that integrating disease outbreak analysis, human exposure modelling, and clinical data could provide critical information that can be used to estimate the dose-response relationships of pathogenic ARB in drinking water, which is required for accurate risk assessments.
Collapse
Affiliation(s)
- Edmond Sanganyado
- Marine Biology Institute, Shantou University, Shantou, Guangdong Province, China
| | - Willis Gwenzi
- Biosystems and Environmental Engineering Research Group, Department of Soil Science and Agricultural Engineering, University of Zimbabwe, P.O. Box MP167, Mt. Pleasant, Harare, Zimbabwe.
| |
Collapse
|
23
|
Nemec A, Radolfová-Křížová L, Maixnerová M, Nemec M, Clermont D, Bzdil J, Ježek P, Španělová P. Revising the taxonomy of the Acinetobacter lwoffii group: The description of Acinetobacter pseudolwoffii sp. nov. and emended description of Acinetobacter lwoffii. Syst Appl Microbiol 2019; 42:159-167. [DOI: 10.1016/j.syapm.2018.10.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 09/17/2018] [Accepted: 10/08/2018] [Indexed: 11/25/2022]
|
24
|
Gomes IB, Simões LC, Simões M. The role of surface copper content on biofilm formation by drinking water bacteria. RSC Adv 2019; 9:32184-32196. [PMID: 35530774 PMCID: PMC9072912 DOI: 10.1039/c9ra05880j] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 10/03/2019] [Indexed: 11/21/2022] Open
Abstract
Copper alloys demonstrated comparable or higher performance than elemental copper in biofilm control. The alloy containing 96% copper was the most promising surface in biofilm control and regrowth prevention.
Collapse
Affiliation(s)
- I. B. Gomes
- LEPABE
- Department of Chemical Engineering
- Faculty of Engineering
- University of Porto
- 4200-465 Porto
| | - L. C. Simões
- LEPABE
- Department of Chemical Engineering
- Faculty of Engineering
- University of Porto
- 4200-465 Porto
| | - M. Simões
- LEPABE
- Department of Chemical Engineering
- Faculty of Engineering
- University of Porto
- 4200-465 Porto
| |
Collapse
|
25
|
Van Assche A, Crauwels S, De Brabanter J, Willems KA, Lievens B. Characterization of the bacterial community composition in water of drinking water production and distribution systems in Flanders, Belgium. Microbiologyopen 2018; 8:e00726. [PMID: 30318762 PMCID: PMC6528567 DOI: 10.1002/mbo3.726] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 08/09/2018] [Accepted: 08/09/2018] [Indexed: 12/25/2022] Open
Abstract
The quality of drinking water is influenced by its chemical and microbial composition which in turn may be affected by the source water and the different processes applied in drinking water purification systems. In this study, we investigated the bacterial diversity in different water samples from the production and distribution chain of thirteen drinking water production and distribution systems from Flanders (Belgium) that use surface water or groundwater as source water. Water samples were collected over two seasons from the source water, the processed drinking water within the production facility and out of the tap in houses along its distribution network. 454‐pyrosequencing of 16S ribosomal RNA gene sequences revealed a total of 1,570 species‐level bacterial operational taxonomic units. Strong differences in community composition were found between processed drinking water samples originating from companies that use surface water and other that use groundwater as source water. Proteobacteria was the most abundant phylum in all samples. Yet, several phyla including Actinobacteria were significantly more abundant in surface water while Cyanobacteria were more abundant in surface water and processed water originating from surface water. Gallionella, Acinetobacter, and Pseudomonas were the three most abundant genera detected. Members of the Acinetobacter genus were even found at a relative read abundance of up to 47.5% in processed water samples, indicating a general occurrence of Acinetobacter in drinking water (systems).
Collapse
Affiliation(s)
- Ado Van Assche
- Laboratory for Process Microbial Ecology and Bioinspirational Management (PME & BIM), Department of Microbial and Molecular Systems (M2S), KU Leuven, Campus De Nayer, Sint-Katelijne-Waver, Belgium
| | - Sam Crauwels
- Laboratory for Process Microbial Ecology and Bioinspirational Management (PME & BIM), Department of Microbial and Molecular Systems (M2S), KU Leuven, Campus De Nayer, Sint-Katelijne-Waver, Belgium
| | - Joseph De Brabanter
- Department of Electrical Engineering (ESAT - STADIUS), KU Leuven, Leuven, Belgium
| | - Kris A Willems
- Laboratory for Process Microbial Ecology and Bioinspirational Management (PME & BIM), Department of Microbial and Molecular Systems (M2S), KU Leuven, Campus De Nayer, Sint-Katelijne-Waver, Belgium
| | - Bart Lievens
- Laboratory for Process Microbial Ecology and Bioinspirational Management (PME & BIM), Department of Microbial and Molecular Systems (M2S), KU Leuven, Campus De Nayer, Sint-Katelijne-Waver, Belgium
| |
Collapse
|
26
|
Reis PJM, Homem V, Alves A, Vilar VJP, Manaia CM, Nunes OC. Insights on sulfamethoxazole bio-transformation by environmental Proteobacteria isolates. JOURNAL OF HAZARDOUS MATERIALS 2018; 358:310-318. [PMID: 29990819 DOI: 10.1016/j.jhazmat.2018.07.012] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 06/14/2018] [Accepted: 07/03/2018] [Indexed: 06/08/2023]
Abstract
Although sulfonamide residues are frequently reported as freshwaters contaminants, information on the ability of native bacteria to modify these synthetic antibiotics is scarce. Our purpose was to investigate the potential of bacteria from different aquatic environments to cleave or transform sulfamethoxazole (SMX) and infer on their ability to reduce the toxicity of this antibiotic. From a collection of about 100 Proteobacteria, 47 strains previously isolated from drinking water, surface water, and wastewater grew in the presence of 200 μMSMX, and were further studied. Out of these, 14 strains, mostly from mineral drinking water, transformed SMX into equimolar amounts of the lesser toxic derivative N4-acetyl-sulfamethoxazole. The highest percentage of SMX transformation was recorded for two strains affiliated to Pseudomonas mandelii. For P. mandelii McBPA4 higher SMX transformation rate and extent were observed in fed-batch (∼8 μMSMX/h, 81%) than in batch conditions (∼5 μMSMX/h, 25%), but similar specific transformation rates were found in both cultivation modes (∼20 μmolSMX/gcell dry weight/h), indicating the dependence of the process on the microbial load. These results evidence that the capacity to transform synthetic antibiotics may be common among bacteria and highlight the potential of environmental bacteria in attenuating the potential adverse effects of pollution with sulfonamides.
Collapse
Affiliation(s)
- Patrícia J M Reis
- LEPABE - Laboratory of Process Engineering, Environment, Biotechnology and Energy, Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal; Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials (LSRE-LCM), Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal; Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Arquiteto Lobão Vital, 172, 4200-374, Porto, Portugal
| | - Vera Homem
- LEPABE - Laboratory of Process Engineering, Environment, Biotechnology and Energy, Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| | - Arminda Alves
- LEPABE - Laboratory of Process Engineering, Environment, Biotechnology and Energy, Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| | - Vítor J P Vilar
- Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials (LSRE-LCM), Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| | - Célia M Manaia
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Arquiteto Lobão Vital, 172, 4200-374, Porto, Portugal
| | - Olga C Nunes
- LEPABE - Laboratory of Process Engineering, Environment, Biotechnology and Energy, Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal.
| |
Collapse
|
27
|
Vaz-Moreira I, Nunes OC, Manaia CM. Ubiquitous and persistent Proteobacteria and other Gram-negative bacteria in drinking water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 586:1141-1149. [PMID: 28238372 DOI: 10.1016/j.scitotenv.2017.02.104] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 02/11/2017] [Accepted: 02/12/2017] [Indexed: 06/06/2023]
Abstract
Drinking water comprises a complex microbiota, in part shaped by the disinfection and distribution systems. Gram-negative bacteria, mainly members of the phylum Proteobacteria, represent the most frequent bacteria in drinking water, and their ubiquity and physiological versatility raises questions about possible implications in human health. The first step to address this concern is the identification and characterization of such bacteria that is the first objective of this study, aiming at identifying ubiquitous or persistent Gram-negative bacteria, Proteobacteria or members of other phyla, isolated from tap water or from its source. >1000 bacterial isolates were characterized and identified, and a selected group (n=68) was further analyzed for the minimum inhibitory concentrations (MIC) to antibiotics (amoxicillin and gentamicin) and metals (copper and arsenite). Total DNA extracts of tap water were examined for the presence of putatively acquired antibiotic resistance or related genes (intI1, blaTEM, qnrS and sul1). The ubiquitous tap water genera comprised Proteobacteria of the class Alpha- (Blastomonas, Brevundimonas, Methylobacterium, Sphingobium, Sphingomonas), Beta- (Acidovorax, Ralstonia) and Gamma- (Acinetobacter and Pseudomonas). Persistent species were members of genera such as Aeromonas, Enterobacter or Dechloromonas. Ralstonia spp. showed the highest MIC values to gentamicin and Acinetobacter spp. to arsenite. The genes intI1, blaTEM or sul1 were detected, at densities lower than 2.3×105copies/L, 2.4×104copies/L and 4.6×102copies/L, respectively, in most tap water samples. The presence of some bacterial groups, in particular of Beta- or Gammaproteobacteria (e.g. Ralstonia, Acinetobacter, Pseudomonas) in drinking water may deserve attention given their potential as reservoirs or carriers of resistance or as opportunistic pathogens.
Collapse
Affiliation(s)
- Ivone Vaz-Moreira
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Arquiteto Lobão Vital, Apartado 2511, 4202-401 Porto, Portugal; LEPABE, Laboratório de Engenharia de Processos, Ambiente, Biotecnologia e Energia, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal.
| | - Olga C Nunes
- LEPABE, Laboratório de Engenharia de Processos, Ambiente, Biotecnologia e Energia, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Célia M Manaia
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Arquiteto Lobão Vital, Apartado 2511, 4202-401 Porto, Portugal
| |
Collapse
|
28
|
Gomes IB, Simões M, Simões LC. The effects of sodium hypochlorite against selected drinking water-isolated bacteria in planktonic and sessile states. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 565:40-48. [PMID: 27156214 DOI: 10.1016/j.scitotenv.2016.04.136] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 04/16/2016] [Accepted: 04/17/2016] [Indexed: 06/05/2023]
Affiliation(s)
- I B Gomes
- LEPABE, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal.
| | - M Simões
- LEPABE, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal.
| | - L C Simões
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| |
Collapse
|
29
|
Liu S, Gunawan C, Barraud N, Rice SA, Harry EJ, Amal R. Understanding, Monitoring, and Controlling Biofilm Growth in Drinking Water Distribution Systems. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:8954-8976. [PMID: 27479445 DOI: 10.1021/acs.est.6b00835] [Citation(s) in RCA: 204] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In drinking water distribution systems (DWDS), biofilms are the predominant mode of microbial growth, with the presence of extracellular polymeric substance (EPS) protecting the biomass from environmental and shear stresses. Biofilm formation poses a significant problem to the drinking water industry as a potential source of bacterial contamination, including pathogens, and, in many cases, also affecting the taste and odor of drinking water and promoting the corrosion of pipes. This article critically reviews important research findings on biofilm growth in DWDS, examining the factors affecting their formation and characteristics as well as the various technologies to characterize and monitor and, ultimately, to control their growth. Research indicates that temperature fluctuations potentially affect not only the initial bacteria-to-surface attachment but also the growth rates of biofilms. For the latter, the effect is unique for each type of biofilm-forming bacteria; ammonia-oxidizing bacteria, for example, grow more-developed biofilms at a typical summer temperature of 22 °C compared to 12 °C in fall, and the opposite occurs for the pathogenic Vibrio cholerae. Recent investigations have found the formation of thinner yet denser biofilms under high and turbulent flow regimes of drinking water, in comparison to the more porous and loosely attached biofilms at low flow rates. Furthermore, in addition to the rather well-known tendency of significant biofilm growth on corrosion-prone metal pipes, research efforts also found leaching of growth-promoting organic compounds from the increasingly popular use of polymer-based pipes. Knowledge of the unique microbial members of drinking water biofilms and, importantly, the influence of water characteristics and operational conditions on their growth can be applied to optimize various operational parameters to minimize biofilm accumulation. More-detailed characterizations of the biofilm population size and structure are now feasible with fluorescence microscopy (epifluorescence and CLSM imaging with DNA, RNA, EPS, and protein and lipid stains) and electron microscopy imaging (ESEM). Importantly, thorough identification of microbial fingerprints in drinking water biofilms is achievable with DNA sequencing techniques (the 16S rRNA gene-based identification), which have revealed a prevalence of previously undetected bacterial members. Technologies are now moving toward in situ monitoring of biomass growth in distribution networks, including the development of optical fibers capable of differentiating biomass from chemical deposits. Taken together, management of biofilm growth in water distribution systems requires an integrated approach, starting from the treatment of water prior to entering the networks to the potential implementation of "biofilm-limiting" operational conditions and, finally, ending with the careful selection of available technologies for biofilm monitoring and control. For the latter, conventional practices, including chlorine-chloramine disinfection, flushing of DWDS, nutrient removal, and emerging technologies are discussed with their associated challenges.
Collapse
Affiliation(s)
| | - Cindy Gunawan
- ithree institute, University of Technology Sydney , Sydney, NSW 2007, Australia
| | - Nicolas Barraud
- Department of Microbiology, Genetics of Biofilms Unit, Institut Pasteur , Paris 75015, France
| | - Scott A Rice
- The Singapore Centre for Environmental Life Sciences Engineering and School of Biological Sciences, Nanyang Technological University , 639798, Singapore
| | - Elizabeth J Harry
- ithree institute, University of Technology Sydney , Sydney, NSW 2007, Australia
| | | |
Collapse
|
30
|
Narciso-da-Rocha C, Manaia CM. Multidrug resistance phenotypes are widespread over different bacterial taxonomic groups thriving in surface water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 563-564:1-9. [PMID: 27131885 DOI: 10.1016/j.scitotenv.2016.04.062] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 04/08/2016] [Accepted: 04/08/2016] [Indexed: 06/05/2023]
Abstract
The environment is the original and most ancient source of the antibiotic resistance determinants that threat the human health nowadays. In the environment, water is a privileged habitat and mode of dissemination of bacteria of different origins. Freshwater bodies that cross urban areas are supposed to hold a complex mixture of both human/animal origin and strictly environmental bacteria. In this study, we were interested in unveiling the bacterial diversity in urban river transects and, simultaneously, investigate the occurrence of antibiotic resistant bacteria, in particular the multidrug resistant (MDR). With this aim, water and sediments of two rivers were sampled from an urban transect and the bacterial diversity was assessed based on 16S rRNA gene-based community analysis and, simultaneously, total heterotrophic bacteria were isolated in the presence and in the absence of antibiotics. The three predominant phyla were Proteobacteria, Bacteroidetes and Actinobacteria, in water, or Acidobacteria, in sediments. MDR bacteria were observed to belong to the predominant phyla observed in water, mostly of the classes Gamma- and Betaproteobacteria (Proteobacteria) and Sphingobacteriia and Flavobacteriia (Bacteroidetes) and belonged to genera of ubiquitous (Pseudomonas, Acinetobacter, Stenotrophomonas) or mainly environmental (Chitinophaga, Chryseobacterium) bacteria. The observation that MDR bacteria are widespread in the environment and over distinct phylogenetic lineages has two relevant implications: i) the potential of environmental bacteria as source or facilitators for antibiotic resistance acquisition; ii) the need to complement culture-independent methods with culture-based approaches in order to identify major sources of MDR profiles.
Collapse
Affiliation(s)
- Carlos Narciso-da-Rocha
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Rua Arquiteto Lobão Vital, Apartado 2511, 4202-401, Porto, Portugal
| | - Célia M Manaia
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Rua Arquiteto Lobão Vital, Apartado 2511, 4202-401, Porto, Portugal.
| |
Collapse
|
31
|
Carvalheira A, Ferreira V, Silva J, Teixeira P. Enrichment of Acinetobacter spp. from food samples. Food Microbiol 2016; 55:123-7. [DOI: 10.1016/j.fm.2015.11.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 10/31/2015] [Accepted: 11/06/2015] [Indexed: 10/22/2022]
|
32
|
Manaia CM, Macedo G, Fatta-Kassinos D, Nunes OC. Antibiotic resistance in urban aquatic environments: can it be controlled? Appl Microbiol Biotechnol 2015; 100:1543-1557. [PMID: 26649735 DOI: 10.1007/s00253-015-7202-0] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 11/22/2015] [Accepted: 11/25/2015] [Indexed: 10/22/2022]
Abstract
Over the last decade, numerous evidences have contributed to establish a link between the natural and human-impacted environments and the growing public health threat that is the antimicrobial resistance. In the environment, in particular in areas subjected to strong anthropogenic pressures, water plays a major role on the transformation and transport of contaminants including antibiotic residues, antibiotic-resistant bacteria, and antibiotic resistance genes. Therefore, the urban water cycle, comprising water abstraction, disinfection, and distribution for human consumption, and the collection, treatment, and delivery of wastewater to the environment, is a particularly interesting loop to track the fate of antibiotic resistance in the environment and to assess the risks of its transmission back to humans. In this article, the relevance of different transepts of the urban water cycle on the potential enrichment and spread of antibiotic resistance is reviewed. According to this analysis, some gaps of knowledge, research needs, and control measures are suggested. The critical rationale behind the measures suggested and the desirable involvement of some key action players is also discussed.
Collapse
Affiliation(s)
- Célia M Manaia
- CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa/Porto, Rua Arquiteto Lobão Vital, Apartado 2511, 4202-401, Porto, Portugal.
| | - Gonçalo Macedo
- CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa/Porto, Rua Arquiteto Lobão Vital, Apartado 2511, 4202-401, Porto, Portugal
| | - Despo Fatta-Kassinos
- Department of Civil Engineering and Environmental Engineering and Nireas-International Water Research Centre, School of Engineering, University of Cyprus, P.O. Box 20537, 1678, Nicosia, Cyprus
| | - Olga C Nunes
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| |
Collapse
|
33
|
Vaz-Moreira I, Varela AR, Pereira TV, Fochat RC, Manaia CM. Multidrug Resistance in Quinolone-Resistant Gram-Negative Bacteria Isolated from Hospital Effluent and the Municipal Wastewater Treatment Plant. Microb Drug Resist 2015; 22:155-63. [PMID: 26469134 DOI: 10.1089/mdr.2015.0118] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
This study is aimed to assess if hospital effluents represent an important supplier of multidrug-resistant (MDR) Gram-negative bacteria that, being discharged in the municipal collector, may be disseminated in the environment and bypassed in water quality control systems. From a set of 101 non-Escherichia coli Gram-negative bacteria with reduced susceptibility to quinolones, was selected a group of isolates comprised by those with the highest indices of MDR (defined as nonsusceptibility to at least one agent in six or more antimicrobial categories, MDR ≥6) or resistance to meropenem or ceftazidime (n = 25). The isolates were identified and characterized for antibiotic resistance phenotype, plasmid-mediated quinolone resistance (PMQR) genes, and other genetic elements and conjugative capacity. The isolates with highest MDR indices were mainly from hospital effluent and comprised ubiquitous bacterial groups of the class Gammaproteobacteria, of the genera Aeromonas, Acinetobacter, Citrobacter, Enterobacter, Klebsiella, and Pseudomonas, and of the class Flavobacteriia, of the genera Chryseobacterium and Myroides. In this group of 25 strains, 19 identified as Gammaproteobacteria harbored at least one PMQR gene (aac(6')-Ib-cr, qnrB, qnrS, or oqxAB) or a class 1 integron gene cassette encoding aminoglycoside, sulfonamide, or carbapenem resistance. Most of the E. coli J53 transconjugants with acquired antibiotic resistance resulted from conjugation with Enterobacteriaceae. These transconjugants demonstrated acquired resistance to a maximum of five classes of antibiotics, one or more PMQR genes and/or a class 1 integron gene cassette. This study shows that ubiquitous bacteria, other than those monitored in water quality controls, are important vectors of antibiotic resistance and can be disseminated from hospital effluent to aquatic environments. This information is relevant to support management options aiming at the control of this public health problem.
Collapse
Affiliation(s)
- Ivone Vaz-Moreira
- CBQF-Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa/Porto , Porto, Portugal
| | - Ana Rita Varela
- CBQF-Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa/Porto , Porto, Portugal
| | - Thamiris V Pereira
- CBQF-Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa/Porto , Porto, Portugal
| | - Romário C Fochat
- CBQF-Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa/Porto , Porto, Portugal
| | - Célia M Manaia
- CBQF-Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa/Porto , Porto, Portugal
| |
Collapse
|
34
|
Kostich M, Länge R. Ecotoxicology, Environmental Risk Assessment and Potential Impact on Human Health. PHARMACEUTICALS IN THE ENVIRONMENT 2015. [DOI: 10.1039/9781782622345-00180] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
This chapter examines potential risks posed by active pharmaceutical ingredients (APIs) present in the aquatic environment to humans and aquatic life. We begin by describing the mechanisms by which pharmaceuticals enter the vertebrate body, produce effects and leave the body. Then we describe theoretical and practical issues limiting the certainty which can be expected from risk estimates. This is followed by a description of particular considerations applicable to evaluation of human risks, along with a summary of methods and conclusions from some important studies examining those risks. A similar discussion of theoretical issues and selected data relevant for estimating risks to aquatic life is then presented. We finish by discussing potential contributions of antibiotics present in the environment to the development and spread of antibiotic resistance. We conclude that there are too few data to definitively address every concern, particularly risks to aquatic life and contributions to development of antibiotic resistance. On the other hand, available data suggest risks to humans are very low for all active pharmaceutical ingredients (APIs) and risks to aquatic life are very low for most APIs. Although aquatic risks cannot be as confidently ruled out for a few APIs, potential risks are probably limited to particularly contaminated regions in close vicinity to concentrated pollution sources, such as wastewater treatment plant outfalls.
Collapse
|
35
|
Falkinham JO. Common features of opportunistic premise plumbing pathogens. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2015; 12:4533-45. [PMID: 25918909 PMCID: PMC4454924 DOI: 10.3390/ijerph120504533] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 04/20/2015] [Accepted: 04/20/2015] [Indexed: 12/29/2022]
Abstract
Recently it has been estimated that the annual cost of diseases caused by the waterborne pathogens Legionella pneumonia, Mycobacterium avium, and Pseudomonas aeruginosa is $500 million. For the period 2001-2012, the estimated cost of hospital admissions for nontuberculous mycobacterial pulmonary disease, the majority caused by M. avium, was almost $1 billion. These three waterborne opportunistic pathogens are normal inhabitants of drinking water--not contaminants--that share a number of key characteristics that predispose them to survival, persistence, and growth in drinking water distribution systems and premise plumbing. Herein, I list and describe these shared characteristics that include: disinfectant-resistance, biofilm-formation, growth in amoebae, growth at low organic carbon concentrations (oligotrophic), and growth under conditions of stagnation. This review is intended to increase awareness of OPPPs, identify emerging OPPPs, and challenge the drinking water industry to develop novel approaches toward their control.
Collapse
Affiliation(s)
- Joseph O Falkinham
- Department of Biological Sciences, Virginia Tech., 1405 Perry Street, Blacksburg, VA 24061, USA.
| |
Collapse
|
36
|
Feng GD, Yang SZ, Wang YH, Deng MR, Zhu HH. Acinetobacter guangdongensis sp. nov., isolated from abandoned lead–zinc ore. Int J Syst Evol Microbiol 2014; 64:3417-3421. [DOI: 10.1099/ijs.0.066167-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-stain-negative, non-motile bacterial strain designated 1NM-4T was isolated from an abandoned lead–zinc ore mine site in Mei County, Meizhou, Guangdong Province, southern China. The isolate was light yellow, strictly aerobic, oxidase-negative and catalase-positive. Phylogenetic analyses based on 16S rRNA, rpoB and gyrB gene sequences, together with DNA–DNA hybridization values less than 70 %, revealed that strain 1NM-4T belongs to the genus
Acinetobacter
and may represent a novel species. The major respiratory quinone was ubiquinone 9 (Q-9) and the major cellular fatty acids consisted of C18 : 1ω9c, summed feature 3 (C16 : 1ω7c and/or C16 : 1ω6c), C16 : 0 and C12 : 0. The major polar lipids were diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylcholine, an unidentified aminolipid and two unidentified phospholipids. The genomic DNA G+C content of strain 1NM-4T was 47.17±0.02 mol%. Based on phenotypic, phylogenetic and chemotaxonomic characteristics, strain 1NM-4T should be assigned to a novel species of the genus
Acinetobacter
, for which the name Acinetobacter guangdongensis sp. nov. is proposed. The type strain is 1NM-4T ( = GIMCC 1.656T = CCTCC AB 2014199T = KCTC 42012T).
Collapse
Affiliation(s)
- Guang-Da Feng
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou 510070, PR China
| | - Song-Zhen Yang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou 510070, PR China
| | - Yong-Hong Wang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou 510070, PR China
| | - Ming-Rong Deng
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou 510070, PR China
| | - Hong-Hui Zhu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou 510070, PR China
| |
Collapse
|
37
|
Flores Ribeiro A, Bodilis J, Alonso L, Buquet S, Feuilloley M, Dupont JP, Pawlak B. Occurrence of multi-antibiotic resistant Pseudomonas spp. in drinking water produced from karstic hydrosystems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2014; 490:370-8. [PMID: 24875257 DOI: 10.1016/j.scitotenv.2014.05.012] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 05/04/2014] [Accepted: 05/04/2014] [Indexed: 05/14/2023]
Abstract
Aquatic environments could play a role in the spread of antibiotic resistance genes by enabling antibiotic-resistant bacteria transferred through wastewater inputs to connect with autochthonous bacteria. Consequently, drinking water could be a potential pathway to humans and animals for antibiotic resistance genes. The aim of this study was to investigate occurrences of Escherichia coli and Pseudomonas spp. in drinking water produced from a karst, a vulnerable aquifer with frequent increases in water turbidity after rainfall events and run-offs. Water samples were collected throughout the system from the karstic springs to the drinking water tap during three non-turbid periods and two turbid events. E. coli densities in the springs were 10- to 1000-fold higher during the turbid events than during the non-turbid periods, indicating that, with increased turbidity, surface water had entered the karstic system and contaminated the spring water. However, no E. coli were isolated in the drinking water. In contrast, Pseudomonas spp. were isolated from the drinking water only during turbid events, while the densities in the springs were from 10- to 100-fold higher than in the non-turbid periods. All the 580 Pseudomonas spp. isolates obtained from the sampling periods were resistant (to between 1 and 10 antibiotics), with similar resistance patterns. Among all the Pseudomonas isolated throughout the drinking water production system, between 32% and 86% carried the major resistance pattern: ticarcillin, ticarcillin-clavulanic acid, cefsulodin, and/or aztreonam, and/or sulfamethoxazol-trimethoprim, and/or fosfomycin. Finally, 8 Pseudomonas spp. isolates, related to the Pseudomonas putida and Pseudomonas fluorescens species, were isolated from the drinking water. Thus, Pseudomonas could be involved in the dissemination of antibiotic resistance via drinking water during critical periods.
Collapse
Affiliation(s)
- Angela Flores Ribeiro
- Laboratoire de Microbiologie-Signaux et Environnement (LMSM), EA 4312, Université de Rouen, Place Emile Blondel, Bâtiment IRESE B, 2(ème) étage, 76821 Mont Saint Aignan, France; UMR 6143 Morphodynamique Continentale et Côtière (M2C), Université de Rouen, Place Emile Blondel, Bâtiment IRESE A, 76821 Mont Saint Aignan, France.
| | - Josselin Bodilis
- Laboratoire de Microbiologie-Signaux et Environnement (LMSM), EA 4312, Université de Rouen, Place Emile Blondel, Bâtiment IRESE B, 2(ème) étage, 76821 Mont Saint Aignan, France
| | - Lise Alonso
- Laboratoire de Microbiologie-Signaux et Environnement (LMSM), EA 4312, Université de Rouen, Place Emile Blondel, Bâtiment IRESE B, 2(ème) étage, 76821 Mont Saint Aignan, France
| | - Sylvaine Buquet
- Laboratoire de Microbiologie-Signaux et Environnement (LMSM), EA 4312, Université de Rouen, Place Emile Blondel, Bâtiment IRESE B, 2(ème) étage, 76821 Mont Saint Aignan, France
| | - Marc Feuilloley
- Laboratoire de Microbiologie-Signaux et Environnement (LMSM), EA 4312, Université de Rouen, Place Emile Blondel, Bâtiment IRESE B, 2(ème) étage, 76821 Mont Saint Aignan, France
| | - Jean-Paul Dupont
- UMR 6143 Morphodynamique Continentale et Côtière (M2C), Université de Rouen, Place Emile Blondel, Bâtiment IRESE A, 76821 Mont Saint Aignan, France
| | - Barbara Pawlak
- Laboratoire de Microbiologie-Signaux et Environnement (LMSM), EA 4312, Université de Rouen, Place Emile Blondel, Bâtiment IRESE B, 2(ème) étage, 76821 Mont Saint Aignan, France
| |
Collapse
|
38
|
Feng G, Yang S, Wang Y, Yao Q, Zhu H. Acinetobacter refrigeratorensis sp. nov., Isolated from a Domestic Refrigerator. Curr Microbiol 2014; 69:888-93. [DOI: 10.1007/s00284-014-0669-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 07/10/2014] [Indexed: 11/30/2022]
|
39
|
Vaz-Moreira I, Nunes OC, Manaia CM. Bacterial diversity and antibiotic resistance in water habitats: searching the links with the human microbiome. FEMS Microbiol Rev 2014; 38:761-78. [PMID: 24484530 DOI: 10.1111/1574-6976.12062] [Citation(s) in RCA: 203] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 12/31/2013] [Accepted: 01/10/2014] [Indexed: 12/14/2022] Open
Abstract
Water is one of the most important bacterial habitats on Earth. As such, water represents also a major way of dissemination of bacteria between different environmental compartments. Human activities led to the creation of the so-called urban water cycle, comprising different sectors (waste, surface, drinking water), among which bacteria can hypothetically be exchanged. Therefore, bacteria can be mobilized between unclean water habitats (e.g. wastewater) and clean or pristine water environments (e.g. disinfected and spring drinking water) and eventually reach humans. In addition, bacteria can also transfer mobile genetic elements between different water types, other environments (e.g. soil) and humans. These processes may involve antibiotic resistant bacteria and antibiotic resistance genes. In this review, the hypothesis that some bacteria may share different water compartments and be also hosted by humans is discussed based on the comparison of the bacterial diversity in different types of water and with the human-associated microbiome. The role of such bacteria as potential disseminators of antibiotic resistance and the inference that currently only a small fraction of the clinically relevant antibiotic resistome may be known is discussed.
Collapse
Affiliation(s)
- Ivone Vaz-Moreira
- CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa/Porto, Rua Dr. António Bernardino Almeida, Porto, Portugal
| | | | | |
Collapse
|
40
|
Manageiro V, Ferreira E, Caniça M, Manaia CM. GES-5 among theβ-lactamases detected in ubiquitous bacteria isolated from aquatic environment samples. FEMS Microbiol Lett 2013; 351:64-69. [DOI: 10.1111/1574-6968.12340] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 11/19/2013] [Accepted: 11/19/2013] [Indexed: 12/01/2022] Open
Affiliation(s)
- Vera Manageiro
- National Reference Laboratory of Antimicrobial Resistances; National Institute of Health Dr. Ricardo Jorge; Lisbon Portugal
- Centre for the Study of Animal Sciences (CECA/ICETA); University of Oporto; Oporto Portugal
| | - Eugénia Ferreira
- National Reference Laboratory of Antimicrobial Resistances; National Institute of Health Dr. Ricardo Jorge; Lisbon Portugal
| | - Manuela Caniça
- National Reference Laboratory of Antimicrobial Resistances; National Institute of Health Dr. Ricardo Jorge; Lisbon Portugal
| | - Célia M. Manaia
- CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado; Escola Superior de Biotecnologia; Universidade Católica Portuguesa/Porto; Porto Portugal
| |
Collapse
|
41
|
Choi JY, Ko G, Jheong W, Huys G, Seifert H, Dijkshoorn L, Ko KS. Acinetobacter kookii sp. nov., isolated from soil. Int J Syst Evol Microbiol 2013; 63:4402-4406. [PMID: 23950148 DOI: 10.1099/ijs.0.047969-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Two Gram-stain-negative, non-fermentative bacterial strains, designated 11-0202(T) and 11-0607, were isolated from soil in South Korea, and four others, LUH 13522, LUH 8638, LUH 10268 and LUH 10288, were isolated from a beet field in Germany, soil in the Netherlands, and sediment of integrated fish farms in Malaysia and Thailand, respectively. Based on 16S rRNA, rpoB and gyrB gene sequences, they are considered to represent a novel species of the genus Acinetobacter. Their 16S rRNA gene sequences showed greatest pairwise similarity to Acinetobacter beijerinckii NIPH 838(T) (97.9-98.4 %). They shared highest rpoB and gyrB gene sequence similarity with Acinetobacter johnsonii DSM 6963(T) and Acinetobacter bouvetii 4B02(T) (85.4-87.6 and 78.1-82.7 %, respectively). Strain 11-0202(T) displayed low DNA-DNA reassociation values (<40 %) with the most closely related species of the genus Acinetobacter. The six strains utilized azelate, 2,3-butanediol, ethanol and dl-lactate as sole carbon sources. Cellular fatty acid analyses showed similarities to profiles of related species of the genus Acinetobacter: summed feature 3 (C16 : 1ω7c, C16 : 1ω6c; 24.3-27.2 %), C18 : 1ω9c (19.9-22.1 %), C16 : 0 (15.2-22.0 %) and C12 : 0 (9.2-14.2 %). On the basis of the current findings, it is concluded that the six strains represent a novel species, for which the name Acinetobacter kookii sp. nov. is proposed. The type strain is 11-0202(T) ( = KCTC 32033(T) = JCM 18512(T)).
Collapse
Affiliation(s)
- Ji Young Choi
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon 440-746, Republic of Korea
| | - Gwangpyo Ko
- Graduate School of Public Health, Seoul National University, Seoul 151-742, Republic of Korea
| | - Weonghwa Jheong
- Water Environment Research Department, National Institute of Environmental Research, Incheon 404-708, Republic of Korea
| | - Geert Huys
- Laboratory of Microbiology & BCCM/LMG Bacteria Collection, Faculty of Sciences, Ghent University, K.L. Ledeganchstraat 35, B-9000 Gent, Belgium
| | - Harald Seifert
- Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Goldenfelsstrasse 19-21, 50935 Köln, Germany
| | - Lenie Dijkshoorn
- Department of Infectious Diseases C5-P, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Kwan Soo Ko
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon 440-746, Republic of Korea
| |
Collapse
|
42
|
Varela AR, Manaia CM. Human health implications of clinically relevant bacteria in wastewater habitats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2013; 20:3550-3569. [PMID: 23508533 DOI: 10.1007/s11356-013-1594-0] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Accepted: 02/25/2013] [Indexed: 06/01/2023]
Abstract
The objective of this review is to reflect on the multiple roles of bacteria in wastewater habitats with particular emphasis on their harmful potential for human health. Indigenous bacteria promote a series of biochemical and metabolic transformations indispensable to achieve wastewater treatment. Some of these bacteria may be pathogenic or harbour antibiotic resistance or virulence genes harmful for human health. Several chemical contaminants (heavy metals, disinfectants and antibiotics) may select these bacteria or their genes. Worldwide studies show that treated wastewater contain antibiotic resistant bacteria or genes encoding virulence or antimicrobial resistance, evidencing that treatment processes may fail to remove efficiently these bio-pollutants. The contamination of the surrounding environment, such as rivers or lakes receiving such effluents, is also documented in several studies. The current state of the art suggests that only some of antibiotic resistance and virulence potential in wastewater is known. Moreover, wastewater habitats may favour the evolution and dissemination of new resistance and virulence genes and the emergence of new pathogens. For these reasons, additional research is needed in order to obtain a more detailed assessment of the long-term effects of wastewater discharges. In particular, it is important to measure the human and environmental health risks associated with wastewater reuse.
Collapse
Affiliation(s)
- Ana Rita Varela
- CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa/Porto, Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
| | | |
Collapse
|
43
|
Kumsa B, Socolovschi C, Parola P, Rolain JM, Raoult D. Molecular detection of Acinetobacter species in lice and keds of domestic animals in Oromia Regional State, Ethiopia. PLoS One 2012; 7:e52377. [PMID: 23285015 PMCID: PMC3524130 DOI: 10.1371/journal.pone.0052377] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Accepted: 11/12/2012] [Indexed: 11/19/2022] Open
Abstract
This study was conducted to determine the presence of Acinetobacter and Rickettsia species DNA in lice and Melophagus ovinus (sheep ked) of animals from Oromia Regional State in Ethiopia. From September through November 2011, a total of 207 cattle, 85 sheep, 47 dogs and 16 cats were examined for ectoparasites. Results of morphological identification revealed several species of ectoparasites: Linognathus vituli (L. vituli), Bovicola bovis (B. bovis) and Solenopotes capillatus (S. capillatus) on cattle; B. ovis and Melophagus ovinus (M. ovinus) on sheep; and Heterodoxus spiniger (H. spiniger) on dogs. There was a significantly (p≤0.0001) higher prevalence of L. vituli observed in cattle than both S. capillatus and B. bovis. Molecular identification of lice using an 18S rRNA gene analysis confirms the identified lice species by morphological methods. We detected different Acinetobacter species among lice (11.1%) and keds (86.4%) including A. soli in L. vituli of cattle, A. lowffii in M. ovinus of sheep, A. pittii in H. spiniger of dogs, 1 new Acinetobacter spp. in M. ovinus and 2 new Acinetobacter spp. in H. spiniger of dogs using partial rpoB gene sequence analysis. There was a significantly higher prevalence of Acinetobacter spp. in keds than in lice (p≤0.00001). Higher percentage of Acinetobacter spp. DNA was detected in H. spiniger than in both B. ovis and L. vituli (p≤0.00001). Carbapenemase resistance encoding genes for blaOXA-23, blaOXA-24, blaOXA-58, blaNDM-1 and blaOXA-51 were not found in any lice and keds. These findings suggest that synanthropic animals and their ectoparasites might increase the risk of human exposure to zoonotic pathogens and could be a source for Acinetobacter spp. infections in humans. However, additional epidemiological data are required to determine whether ectoparasites of animals can act as environmental reservoirs and play a role in spreading these bacteria to both animal and human hosts.
Collapse
Affiliation(s)
- Bersissa Kumsa
- Department of Parasitology, College of Veterinary Medicine and Agriculture, Addis Ababa University, Bishoftu, Ethiopia
- Aix Marseille Université, URMITE, UM63, CNRS 7278, IRD 198, Inserm 1095, Marseille, France
| | - Cristina Socolovschi
- Aix Marseille Université, URMITE, UM63, CNRS 7278, IRD 198, Inserm 1095, Marseille, France
| | - Philippe Parola
- Aix Marseille Université, URMITE, UM63, CNRS 7278, IRD 198, Inserm 1095, Marseille, France
| | - Jean-Marc Rolain
- Aix Marseille Université, URMITE, UM63, CNRS 7278, IRD 198, Inserm 1095, Marseille, France
| | - Didier Raoult
- Aix Marseille Université, URMITE, UM63, CNRS 7278, IRD 198, Inserm 1095, Marseille, France
- * E-mail:
| |
Collapse
|