1
|
Ersöz F, İnan M. The combined effect of the gene copy number and chaperone overexpression on the recombinant bovine chymosin production in Pichia pastoris, with mutant ADH2 promoter. Protein Expr Purif 2025; 227:106636. [PMID: 39617310 DOI: 10.1016/j.pep.2024.106636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/15/2024] [Accepted: 11/28/2024] [Indexed: 12/06/2024]
Abstract
Chymosin is an enzyme used to coagulate milk, in the cheese industry. This study aimed to increase recombinant production of the chymosin in Pichia pastoris by determining the optimum copy number and overproduction of a Protein Disulfide Isomerase (PpPDI) chaperon protein. Bos taurus chymosin was expressed under the control of a mutant ADH2 promoter. The clones containing 1-4 gene copy numbers of the chymosin were constructed using the in vitro cloning method, and the effect of chaperone protein on chymosin secretion was investigated. The enzyme production levels are 4, 6.3, 4.5, and 3 IMCU/mL for 1, 2, 3, and 4-copy clones. The secreted chymosin levels increased up to two copies, and increasing the number of copies decreased the secretion level. Therefore, PpPDI was over-expressed in the clones regulated with the ADH2 promoter. The over-expression of PDI gene increased chymosin secretion in clones compared to the counterpart host. However, the highest chymosin level was obtained with C2 (2-copy chymosin containing clone; 6.3 IMCU/mL) and C2P2 (2-copy chymosin/2-copy PDI containing clone; 8.2 IMCU/mL). The maximum production was 39 IMCU/mL with the clone C2P2 in the fermenter scale production. The enzyme activity increased approximately 2-fold by adding two copies of the chaperone protein. The combined effect of gene copy number and chaperone overexpression on chymosin production was investigated. Two copies of the chymosin and PpPDI genes were the optimum among the tested clones.
Collapse
Affiliation(s)
- Fatma Ersöz
- Ardahan University, Engineering Faculty, Department of Food Engineering, Turkiye; Akdeniz University, Engineering Faculty, Department of Food Engineering, Turkiye.
| | - Mehmet İnan
- Akdeniz University, Engineering Faculty, Department of Food Engineering, Turkiye; İzmir Biomedicine and Genome Center, Turkiye
| |
Collapse
|
2
|
Krishna S, Jung ST, Lee EY. Escherichia coli and Pichia pastoris: microbial cell-factory platform for -full-length IgG production. Crit Rev Biotechnol 2025; 45:191-213. [PMID: 38797692 DOI: 10.1080/07388551.2024.2342969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/06/2024] [Accepted: 03/18/2024] [Indexed: 05/29/2024]
Abstract
Owing to the unmet demand, the pharmaceutical industry is investigating an alternative host to mammalian cells to produce antibodies for a variety of therapeutic and research applications. Regardless of some disadvantages, Escherichia coli and Pichia pastoris are the preferred microbial hosts for antibody production. Despite the fact that the production of full-length antibodies has been successfully demonstrated in E. coli, which has mostly been used to produce antibody fragments, such as: antigen-binding fragments (Fab), single-chain fragment variable (scFv), and nanobodies. In contrast, Pichia, a eukaryotic microbial host, is mostly used to produce glycosylated full-length antibodies, though hypermannosylated glycan is a major challenge. Advanced strategies, such as the introduction of human-like glycosylation in endotoxin-edited E. coli and cell-free system-based glycosylation, are making progress in creating human-like glycosylation profiles of antibodies in these microbes. This review begins by explaining the structural and functional requirements of antibodies and continues by describing and analyzing the potential of E. coli and P. pastoris as hosts for providing a favorable environment to create a fully functional antibody. In addition, authors compare these microbes on certain features and predict their future in antibody production. Briefly, this review analyzes, compares, and highlights E. coli and P. pastoris as potential hosts for antibody production.
Collapse
Affiliation(s)
- Shyam Krishna
- Department of Chemical Engineering (BK21 FOUR Integrated Engineering Program), Kyung Hee University, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Sang Taek Jung
- BK21 Graduate Program, Department of Biomedical Sciences, Graduate School, Korea University, Seoul, Republic of Korea
| | - Eun Yeol Lee
- Department of Chemical Engineering (BK21 FOUR Integrated Engineering Program), Kyung Hee University, Yongin-si, Gyeonggi-do, Republic of Korea
| |
Collapse
|
3
|
Min T, Zhang Z, Chen L, Li J. Recent Advances in Barnacle-Inspired Biomaterials in the Field of Biomedical Research. MATERIALS (BASEL, SWITZERLAND) 2025; 18:502. [PMID: 39942168 PMCID: PMC11818484 DOI: 10.3390/ma18030502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/02/2025] [Accepted: 01/12/2025] [Indexed: 02/16/2025]
Abstract
As a marine fouling organism, barnacles secrete a cement whose proteins self-assemble into stable nanofibers, conferring exceptional underwater adhesion and curing properties. The barnacle cement proteins (BCPs) are of significant interest in biomedicine due to their adhesiveness, water resistance, stability, and biocompatibility, making them ideal for developing novel biomaterials. Additionally, BCPs have wound-healing acceleration and antibacterial properties, offering new insights for antimicrobial biomaterial development. Recently, barnacle-inspired materials have seen extensive research and notable progress in biomedicine. As the understanding of barnacle cement and its adhesion mechanisms deepens, their medical applications are expected to expand. This review summarizes the latest advancements of barnacle biomimetic materials in biomedicine, including their use in adhesives, tissue engineering, drug delivery, and hemostasis, highlighting their characteristics, applications, and potential research directions, and providing a comprehensive reference for the field.
Collapse
Affiliation(s)
| | | | - Lan Chen
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China; (T.M.); (Z.Z.)
| | - Jingan Li
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China; (T.M.); (Z.Z.)
| |
Collapse
|
4
|
Wang S, Zhu K, Liu P. Effect of Fold-Promoting Mutation and Signal Peptide Screening on Recombinant Glucan 1,4-Alpha-maltohydrolase Secretion in Pichia pastoris. Appl Biochem Biotechnol 2025:10.1007/s12010-024-05145-5. [PMID: 39777640 DOI: 10.1007/s12010-024-05145-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/24/2024] [Indexed: 01/11/2025]
Abstract
Glucan 1,4-alpha-maltohydrolase (3.2.1.133, GMH) is an important biocatalyst in the baking industry, which could delay the retrogradation of bread and improve its cold-storage durability. In the present study, a newly cloned Thgmh was characterized and secreted by Pichia pastoris (Komagataella pastoris). After computationally assisted rational design that promotes peptide folding, the maltogenic activity in supernatant was enhanced 1.6-fold in comparison with the base strain. The signal leading sequence screening and the gene dosage increment further improved secretion by approximately 6.4-fold. The purified rationally designed ThGMHs exhibited maximal activity against soluble starch at pH 7.0 and 60 ℃, and maltose is the main catalytic product. In a 5-L bioreactor, conventional fed-batch fermentation resulted in 6130 U mL-1 extracellular maltogenic activity. Therefore, a promising strain for GMH production was developed, which provides a useful reference for the secretory production of other industrial enzymes.
Collapse
Affiliation(s)
- Siyi Wang
- College of Life Science and Technology, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Kai Zhu
- College of Life Science and Technology, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Pulin Liu
- College of Life Science and Technology, Wuhan Polytechnic University, Wuhan, 430023, China.
| |
Collapse
|
5
|
Li H, Tian C, Chen J, Xia Y. Scorpion insect neurotoxin LqhIT2 is a promising oral biopesticide: high-level preparation in Pichia pastoris and bioactivity assays. PEST MANAGEMENT SCIENCE 2024. [PMID: 39722608 DOI: 10.1002/ps.8626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 12/10/2024] [Accepted: 12/12/2024] [Indexed: 12/28/2024]
Abstract
BACKGROUND Discovering insecticidal proteins with high activity and strict insect specificity and applying them to the biological control of insect pests is of great significance. Oral LqhIT2 has insecticidal activity, which most other insecticidal neurotoxin proteins do not have, but the large-scale preparation of the toxin is difficult and one of the obstacles to determining its anti-insect potential for biological control. RESULTS In this study, the expression level of recombinant LqhIT2 (rLqhIT2) in Pichia pastoris was as high as 1.4 g/L under high-cell-density fermentation conditions. A purified rLqhIT2 at a final concentration of 0.5 ng/mL inhibited the proliferation of insect Sf9 cells, with typical insect cell oncosis observed, while 200 ng/mL rLqhIT2 was non-toxic to mammalian cells. The injection of silkworms caused the typical depressive symptoms of flaccid paralysis and death. At a dose of 1 μg/g body weight, 46.7% of the silkworms died within 48 h after injection, and their mortality rate was related to the injection dose. Feeding purified rLqhIT2 to fifth instar Pieris rapae larvae demonstrated its oral insecticidal activity, with a mortality rate 66.7% after 3 days of feeding at a concentration of 10 μg/cm2 cabbage leaf. CONCLUSION The rLqhIT2 has high insect cells specificity and insecticidal activity when injected and or delivered orally, and may have better application prospects than other reported insect neurotoxins. We describe a method for large-scale production of functional rLqhIT2 by fed-batch fermentation using Pichia pastoris, which will further facilitate its application in biological control of agricultural insect pests. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Hongbo Li
- Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua, China
- Department of Biochemistry and Molecular Biology, School of Medicine, Jishou University, Jishou, China
| | - Cheng Tian
- Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua, China
| | - Jing Chen
- Department of Biochemistry and Molecular Biology, School of Medicine, Jishou University, Jishou, China
| | - Yuanxian Xia
- Postdoctoral Mobile Station of Biology, Genetic Engineering Research Center, College of Life Sciences, Chongqing University, Chongqing, China
| |
Collapse
|
6
|
Tsuda M, Nakatani Y, Satoshi B, Nonaka K. Development of a protein production system using Ogataea minuta alcohol oxidase-deficient strain under reduced-methanol-consumption conditions. Biosci Biotechnol Biochem 2024; 89:102-109. [PMID: 39547939 DOI: 10.1093/bbb/zbae160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 10/31/2024] [Indexed: 11/17/2024]
Abstract
Methylotrophic yeast is a useful host for producing heterologous proteins using the unique and strong alcohol oxidase 1 (AOX1) promoter, which is induced by methanol and repressed by various carbon sources. However, methanol is preferably avoided in industrial-scale fermentation given its toxicity, flammability, and explosiveness. To develop a protein production system under reduced methanol supply conditions, we attempted to characterize the AOX1 promoter induction activity by comparing derepression conditions with methanol induction conditions. This comparison is important because decreasing methanol consumption would enhance the industrial value of Ogataea minuta for heterologous protein production. For such a comparison, an alcohol oxidase-deficient (Δaox) strain was generated, with methanol only being used for AOX1 promoter induction. We also developed a culture process in a jar fermentor using the O. minuta Δaox strain under mixed feed conditions to achieve heterologous protein production comparable to that of the wild-type strain under low-methanol conditions.
Collapse
Affiliation(s)
- Masashi Tsuda
- Bioprocess Technology Research Laboratories 1, Daiichi Sankyo Co., Ltd., Chiyoda, Gunma, Japan
| | - Yuki Nakatani
- Bioprocess Technology Research Laboratories 1, Daiichi Sankyo Co., Ltd., Chiyoda, Gunma, Japan
| | - Baba Satoshi
- Modality Research Laboratories II, Daiichi Sankyo Co., Ltd., Shinagawa, Tokyo, Japan
| | - Koichi Nonaka
- Technology Innovation Strategy and Intelligence, Daiichi Sankyo Co., Ltd., Chiyoda, Gunma, Japan
| |
Collapse
|
7
|
Inoue Y, Yamada R, Matsumoto T, Ogino H. Enhancing D-lactic acid production by optimizing the expression of D-LDH gene in methylotrophic yeast Komagataella phaffii. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:149. [PMID: 39710696 DOI: 10.1186/s13068-024-02596-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 12/15/2024] [Indexed: 12/24/2024]
Abstract
BACKGROUND Currently, efficient technologies producing useful chemicals from alternative carbon resources, such as methanol, to replace petroleum are in demand. The methanol-utilizing yeast, Komagataella phaffii, is a promising microorganism to produce chemicals from methanol using environment-friendly microbial processes. In this study, to achieve efficient D-lactic acid production from methanol, we investigated a combination of D-lactate dehydrogenase (D-LDH) genes and promoters in K. phaffii. The yeast strain was constructed by integrating a gene cassette containing the identified gene and promoter into the rDNA locus of K. phaffii, followed by post-transformational gene amplification. Subsequently, D-lactic acid production from methanol was evaluated. RESULTS Among the five D-LDH genes and eight promoters tested, the combination of LlDLDH derived from Leuconostoc lactis and CAT1 and FLD1 promoters was suitable for expression in K. phaffii. GS115_CFL/Z3/04, the best-engineered strain constructed via integration of LlDLDH linked to CAT1 and FLD1 promoters into the rDNA locus and post-transformational gene amplification, produced 5.18 g/L D-lactic acid from methanol. To the best of our knowledge, the amount of D-lactic acid from methanol produced by this engineered yeast is the highest reported value to date when utilizing methanol as the sole carbon source. CONCLUSIONS This study demonstrated the effectiveness of combining different enzyme genes and promoters using multiple promoters with different induction and repression conditions, integrating the genes into the rDNA locus, and further amplifying the genes after transformation in K. phaffii. Using our established method, other K. phaffii strains can be engineered to produce various useful chemicals in the future.
Collapse
Affiliation(s)
- Yoshifumi Inoue
- Department of Chemical Engineering, Osaka Metropolitan University, 1-1 Gakuen-Cho, Naka-Ku, Sakai, Osaka, 599-8531, Japan
| | - Ryosuke Yamada
- Department of Chemical Engineering, Osaka Metropolitan University, 1-1 Gakuen-Cho, Naka-Ku, Sakai, Osaka, 599-8531, Japan.
| | - Takuya Matsumoto
- Department of Chemical Engineering, Osaka Metropolitan University, 1-1 Gakuen-Cho, Naka-Ku, Sakai, Osaka, 599-8531, Japan
| | - Hiroyasu Ogino
- Department of Chemical Engineering, Osaka Metropolitan University, 1-1 Gakuen-Cho, Naka-Ku, Sakai, Osaka, 599-8531, Japan
| |
Collapse
|
8
|
Li X, Yang N, Fang Y, Mao R, Hao Y, Teng D, Dong N, Shan A, Wang J. Fusion Partner Facilitates Expression of Cell-Penetrating Peptide L2 in Pichia pastoris. Antibiotics (Basel) 2024; 13:1207. [PMID: 39766597 PMCID: PMC11672777 DOI: 10.3390/antibiotics13121207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 12/10/2024] [Accepted: 12/10/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND L2 is formed by combining the pheromone of Streptococcus agalactiae (S. agalactiae) and a cell-penetrating peptide (CPP) with cell-penetrating selectivity. L2 has more significant penetration and better specificity for killing S. agalactiae. However, the production of AMPs by chemical synthesis is always a challenge because of the production cost. METHODS This study was devoted to the heterologous expression of the cell-penetrating peptide L2 in Pichia pastoris using SUMO and a short acidic fusion tag as fusion partners, and the high-density expression of SUMO-L2 was achieved in a 5 L fermenter. RESULTS The results showed that SUMO-L2 expression in the 5 L fermenter reached 629 mg/L. The antibacterial activity of recombinant L2 was examined; the minimum inhibitory concentration (MICs) and minimum bactericidal concentration (MBCs) of purified L2 were 4-8 μg/mL and 8-16 μg/mL against S. agalactiae after 84 h of lysis with 50% formic acid. CONCLUSIONS The findings suggest that SUMO is a suitable fusion tag to express cell-penetrating peptide L2.
Collapse
Affiliation(s)
- Xuan Li
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie St., Haidian District, Beijing 100081, China
- Innovative Team of Antimicrobial Peptides and Alternatives to Antibiotics, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Na Yang
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie St., Haidian District, Beijing 100081, China
- Innovative Team of Antimicrobial Peptides and Alternatives to Antibiotics, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Yuxin Fang
- Laboratory of Molecular Nutrition and Immunity, College of Animal Science and Technology, Northeast Agricultural University, Harbin 150038, China
| | - Ruoyu Mao
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie St., Haidian District, Beijing 100081, China
- Innovative Team of Antimicrobial Peptides and Alternatives to Antibiotics, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Ya Hao
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie St., Haidian District, Beijing 100081, China
- Innovative Team of Antimicrobial Peptides and Alternatives to Antibiotics, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Da Teng
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie St., Haidian District, Beijing 100081, China
- Innovative Team of Antimicrobial Peptides and Alternatives to Antibiotics, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Na Dong
- Laboratory of Molecular Nutrition and Immunity, College of Animal Science and Technology, Northeast Agricultural University, Harbin 150038, China
| | - Anshan Shan
- Laboratory of Molecular Nutrition and Immunity, College of Animal Science and Technology, Northeast Agricultural University, Harbin 150038, China
| | - Jianhua Wang
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie St., Haidian District, Beijing 100081, China
- Innovative Team of Antimicrobial Peptides and Alternatives to Antibiotics, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| |
Collapse
|
9
|
Janpan P, Schmelzer B, Klamrak A, Tastub P, Upathanpreecha T, Rahman SS, Nabnueangsap J, Saengkun Y, Rungsa P, Mattanovich D, Daduang S. Production of Vespa tropica Hyaluronidase by Pichia pastoris. J Fungi (Basel) 2024; 10:854. [PMID: 39728350 DOI: 10.3390/jof10120854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/29/2024] [Accepted: 12/05/2024] [Indexed: 12/28/2024] Open
Abstract
Hyaluronidases have been a subject of great interest in medical and cosmeceutical applications. Previously, our group demonstrated that the venom glands of Vespa tropica contain hyaluronidase enzymes (VesT2s), and heterologous expression of the corresponding gene (VesT2a) in E. coli systems results in inclusion bodies, necessitating functional folding using urea. Here, we report the successful heterologous expression of VesT2a in the Pichia pastoris expression system, with gene construction achieved using GoldenPiCS. After confirming gene integration in the yeast genome, methanol-induced cultures yielded an exceptional amount of VesT2a, approximately two-fold higher than that obtained with the constitutive expression vector (PGAP). Upon culturing in a bioreactor, yeast cells harboring pAOX1-αMF-VesT2a produced secreted proteins with a total yield of 96.45 mg/L. The secreted VesT2a has a molecular weight of 59.35 kDa, significantly higher than the expected molecular weight (~40.05 kDa), presumably due to endogenous glycosylation by the yeast cells. It exhibits optimal activity at 37 °C and pH 3, showing a specific activity of 4238.37 U/mg, and remains active across a broad range of pH and temperature. Notably, it exhibits higher hyaluronidase activity than the crude venom and E. coli-expressed protein, likely due to improved folding via endogenous post-translational modifications, such as disulfide bonds and N-glycosylation; this underscores the potential of heterologous systems for producing venomous hyaluronidases from other species. In silico docking-based analyses further support its catalytic activity and provide insights into seeking natural inhibitors from phenolic-rich plant extracts to alleviate symptoms in patients suffering from insect bites and stings.
Collapse
Affiliation(s)
- Piyapon Janpan
- Division of Pharmacognosy and Toxicology, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Khon Kaen University, Khon Kaen 40000, Thailand
| | - Bernhard Schmelzer
- Institute of Microbiology and Microbial Biotechnology, Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna (BOKU), 1190 Vienna, Austria
| | - Anuwatchakij Klamrak
- Division of Pharmacognosy and Toxicology, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Khon Kaen University, Khon Kaen 40000, Thailand
| | - Patthana Tastub
- Betagro Science Center Co., Ltd., 136 Khlong Nueng, Khlong Luang District, Pathum Thani 12120, Thailand
| | - Tewa Upathanpreecha
- Betagro Science Center Co., Ltd., 136 Khlong Nueng, Khlong Luang District, Pathum Thani 12120, Thailand
| | - Shaikh Shahinur Rahman
- Division of Pharmacognosy and Toxicology, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
- Department of Applied Nutrition and Food Technology, Faculty of Biological Sciences, Islamic University, Kushtia 7000, Bangladesh
| | - Jaran Nabnueangsap
- Salaya Central Instrument Facility RSPG, Research Management and Development Division, Office of the President, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Yutthakan Saengkun
- Division of Pharmacognosy and Toxicology, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Khon Kaen University, Khon Kaen 40000, Thailand
| | - Prapenpuksiri Rungsa
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Khon Kaen University, Khon Kaen 40000, Thailand
| | - Diethard Mattanovich
- Institute of Microbiology and Microbial Biotechnology, Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna (BOKU), 1190 Vienna, Austria
| | - Sakda Daduang
- Division of Pharmacognosy and Toxicology, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Khon Kaen University, Khon Kaen 40000, Thailand
| |
Collapse
|
10
|
Park J, Park S, Evelina G, Kim S, Jin YS, Chi WJ, Kim IJ, Kim SR. Metabolic Engineering of Komagataella phaffii for Xylose Utilization from Cellulosic Biomass. Molecules 2024; 29:5695. [PMID: 39683854 DOI: 10.3390/molecules29235695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 11/28/2024] [Accepted: 11/28/2024] [Indexed: 12/18/2024] Open
Abstract
Cellulosic biomass hydrolysates are rich in glucose and xylose, but most microorganisms, including Komagataella phaffii, are unable to utilize xylose effectively. To address this limitation, we engineered a K. phaffii strain optimized for xylose metabolism through the xylose oxidoreductase pathway and promoter optimization. A promoter library with varying strengths was used to fine-tune the expression levels of the XYL1, XYL2, and XYL3 genes, resulting in a strain with a strong promoter for XYL2 and weaker promoters for XYL1 and XYL3. This engineered strain exhibited superior growth, achieving 14 g cells/L and a maximal growth rate of 0.4 g cells/L-h in kenaf hydrolysate, outperforming a native strain by 17%. This study is the first to report the introduction of the xylose oxidoreductase pathway into K. phaffii, demonstrating its potential as an industrial platform for producing yeast protein and other products from cellulosic biomass.
Collapse
Affiliation(s)
- Jongbeom Park
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Sujeong Park
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Grace Evelina
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Sunghee Kim
- Research Institute of Tailored Food Technology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Yong-Su Jin
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Won-Jae Chi
- Species Diversity Research Division, National Institute of Biological Resources, Incheon 22689, Republic of Korea
| | - In Jung Kim
- Department of Food Science & Technology, Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52825, Republic of Korea
| | - Soo Rin Kim
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea
- Research Institute of Tailored Food Technology, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
11
|
Wang QY, Liu XJ, Hou YH, Wang JZ, Lin MZ, Yang QZ. Characterization of heat- and alkali-resistant feruloyl esterase from Humicola insolens and application in the production of high-strength kraft straws. Int J Biol Macromol 2024; 283:137742. [PMID: 39551298 DOI: 10.1016/j.ijbiomac.2024.137742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/12/2024] [Accepted: 11/14/2024] [Indexed: 11/19/2024]
Abstract
The application of feruloyl esterase (FAE) in biobleaching can effectively hydrolyze the feruloyl ester bond between hemicellulose and lignin, thereby partially disrupting the dense structure of the fiber, reducing the use of chemical reagents, and obtaining high-performance pulp fibers. Here, we successfully expressed the thermostable alkaline feruloyl esterase from Humicola insolens (H. insolens) in Pichia pastoris GS115, with an enzyme activity yield of 2.36 ± 0.21 U/mL. The highest activity of FAE for the hydrolysis of ethyl ferulate was observed at pH 7.5 and 70 °C. It retained about 56 % of its maximum activity in the pH range of 11.0. After being incubated at 50-55 °C for 1 h, it retained 70.05 % of its maximum activity. The addition of bio-enzyme pretreatment before chemical bleaching can reduce chemical reagents by 20 %, result in a 10.64 % reduction in kappa value, and increase the delignification rate of the pulp by 6.36 %. In addition, the surface of the enzyme-treated pulp showed rougher broom-like fiber filaments, and the viscosity of the enzyme-pretreated pulp (ECP) before chemical treatment increased by 131.51 % compared to the chemically treated pulp (CP), further indicating that the enzyme-pretreated pulp had higher pulp strength.
Collapse
Affiliation(s)
- Qin-Yu Wang
- School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, Shandong, PR China; State Key Laboratory of Bio-based Materials and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, Shandong, PR China
| | - Xiao-Jun Liu
- School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, Shandong, PR China; State Key Laboratory of Bio-based Materials and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, Shandong, PR China
| | - Yun-Hua Hou
- School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, Shandong, PR China; State Key Laboratory of Bio-based Materials and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, Shandong, PR China.
| | - Jing-Zhen Wang
- School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, Shandong, PR China
| | - Ming-Zhen Lin
- School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, Shandong, PR China; State Key Laboratory of Bio-based Materials and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, Shandong, PR China
| | - Qin-Zheng Yang
- School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, Shandong, PR China; State Key Laboratory of Bio-based Materials and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, Shandong, PR China.
| |
Collapse
|
12
|
Zhang K, Yang N, Mao R, Hao Y, Teng D, Wang J. An amphipathic peptide combats multidrug-resistant Staphylococcus aureus and biofilms. Commun Biol 2024; 7:1582. [PMID: 39604611 PMCID: PMC11603143 DOI: 10.1038/s42003-024-07216-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 11/05/2024] [Indexed: 11/29/2024] Open
Abstract
The emergence of drug-resistant Staphylococcus aureus (S. aureus) has resulted in infections in humans and animals that may lead to a crisis in the absence of highly effective drugs. Consequently, the development of alternative or complementary antimicrobial agents is urgently needed. Here, a series of peptides derived from AP138 were designed with high expression, antimicrobial activity, and antibiofilm properties via bioinformatics. Among them, the best derived peptide, A24 (S9A), demonstrated the greatest stability and bactericidal efficiency against multidrug-resistant S. aureus in a physiological environment, with a high hydrophobicity of 35%. This peptide exhibited superior performance compared to the preclinical or clinical antimicrobial peptides (AMPs). A24 displayed increased biocompatibility in vitro and in vivo, exhibiting a low hemolysis rate (less than 3%), minimal cytotoxicity (survival rate exceeding 85%), and no histotoxicity. A24 had the capacity to destroy cell walls, increase cell membrane permeability, and induce increases in intracellular ATP and ROS levels, which resulted in the rapid death of S. aureus. A24 inhibited the formation of early biofilms and eliminated both mature biofilms (40-50%) and persisters (99.9%). Therapeutic doses of A24 were shown to exhibit favorable safety profiles and bactericidal efficacy in vivo and could reduce bacterial loads of multidrug-resistant S. aureus by 4-5 log10 CFU/0.1g levels in mouse peritonitis and endometritis models. Furthermore, A24 increased the survival rate to 100% and exhibited anti-inflammatory properties in a mouse model. The aforementioned data illustrate the potential of A24 as a pharmaceutical agent for the treatment of bacterial infections, including peritonitis and endometritis, in animal husbandry with multidrug-resistant S. aureus infections.
Collapse
Affiliation(s)
- Kun Zhang
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, 100081, Beijing, PR China
- Innovative Team of Antimicrobial Peptides and Alternatives to Antibiotics, Feed Research Institute, Chinese Academy of Agricultural Sciences, 100081, Beijing, PR China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, 100081, Beijing, PR China
| | - Na Yang
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, 100081, Beijing, PR China
- Innovative Team of Antimicrobial Peptides and Alternatives to Antibiotics, Feed Research Institute, Chinese Academy of Agricultural Sciences, 100081, Beijing, PR China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, 100081, Beijing, PR China
| | - Ruoyu Mao
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, 100081, Beijing, PR China
- Innovative Team of Antimicrobial Peptides and Alternatives to Antibiotics, Feed Research Institute, Chinese Academy of Agricultural Sciences, 100081, Beijing, PR China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, 100081, Beijing, PR China
| | - Ya Hao
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, 100081, Beijing, PR China
- Innovative Team of Antimicrobial Peptides and Alternatives to Antibiotics, Feed Research Institute, Chinese Academy of Agricultural Sciences, 100081, Beijing, PR China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, 100081, Beijing, PR China
| | - Da Teng
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, 100081, Beijing, PR China.
- Innovative Team of Antimicrobial Peptides and Alternatives to Antibiotics, Feed Research Institute, Chinese Academy of Agricultural Sciences, 100081, Beijing, PR China.
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, 100081, Beijing, PR China.
| | - Jianhua Wang
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, 100081, Beijing, PR China.
- Innovative Team of Antimicrobial Peptides and Alternatives to Antibiotics, Feed Research Institute, Chinese Academy of Agricultural Sciences, 100081, Beijing, PR China.
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, 100081, Beijing, PR China.
| |
Collapse
|
13
|
Grabiński W, Karachitos A, Kicińska A. Backstage Heroes-Yeast in COVID-19 Research. Int J Mol Sci 2024; 25:12661. [PMID: 39684373 PMCID: PMC11640846 DOI: 10.3390/ijms252312661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/14/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
The extremely rapid development of understanding and technology that led to the containment of the COVID-19 pandemic resulted from collaborative efforts in the fields of Betacoronavirus pandemicum (SARS-CoV-2) biology, pharmacology, vaccinology, and medicine. Perhaps surprisingly, much of the research was conducted using simple and efficient yeast models. In this manuscript, we describe how yeast, eukaryotic microorganisms, have been used to research this global challenge, focusing on the therapeutic potential of the studies discussed herein. Thus, we outline the role of yeast in studying viral protein interactions with the host cell proteome, including the binding of the SARS-CoV-2 virus spike protein to the human ACE2 receptor and its modulation. The production and exploration of viral antigens in yeast systems, which led to the development of two approved COVID-19 vaccines, are also detailed. Moreover, yeast platforms facilitating the discovery and production of single-domain antibodies (nanobodies) against SARS-CoV-2 are described. Methods guiding modern and efficient drug discovery are explained at length. In particular, we focus on studies designed to search for inhibitors of the main protease (Mpro), a unique target for anti-coronaviral therapies. We highlight the adaptability of the techniques used, providing opportunities for rapid modification and implementation alongside the evolution of the SARS-CoV-2 virus. Approaches introduced in yeast systems that may have universal potential application in studies of emerging viral diseases are also described.
Collapse
Affiliation(s)
| | | | - Anna Kicińska
- Department of Bioenergetics, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, 61-614 Poznań, Poland; (W.G.); (A.K.)
| |
Collapse
|
14
|
Krappinger JC, Aguilar Gomez CM, Hoenikl A, Schusterbauer V, Hatzl AM, Feichtinger J, Glieder A. dMAD7 is a promising tool for targeted gene regulation in the methylotrophic yeast Komagataella phaffii. N Biotechnol 2024; 83:110-120. [PMID: 38960022 DOI: 10.1016/j.nbt.2024.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/07/2024] [Accepted: 06/30/2024] [Indexed: 07/05/2024]
Abstract
The methylotrophic yeast Komagataella phaffii is a popular host system for the pharmaceutical and biotechnological production of recombinant proteins. CRISPR-Cas9 and its derivative CRISPR interference (CRISPRi) offer a promising avenue to further enhance and exploit the full capabilities of this host. MAD7 and its catalytically inactive variant "dead" MAD7 (dMAD7) represent an interesting alternative to established CRISPR-Cas9 systems and are free to use for industrial and academic research. CRISPRi utilizing dMAD7 does not introduce double-strand breaks but only binds to the DNA to regulate gene expression. Here, we report the first use of dMAD7 in K. phaffii to regulate the expression of the enhanced green fluorescent protein (eGFP). A reduction of eGFP fluorescence level (up to 88 %) was achieved in random integration experiments using dMAD7 plasmids. Integration loci/events of investigated strains were assessed through whole genome sequencing. Additionally, RNA-sequencing experiments corroborated the whole genome sequencing results and showed a significantly reduced expression of eGFP in strains containing a dMAD7 plasmid, among others. Our findings conclusively demonstrate the utility of dMAD7 in K. phaffii through successfully regulating eGFP expression.
Collapse
Affiliation(s)
- Julian C Krappinger
- Christian Doppler Laboratory for Innovative Pichia pastoris Host and Vector Systems, Graz, Austria; Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Carla M Aguilar Gomez
- Christian Doppler Laboratory for Innovative Pichia pastoris Host and Vector Systems, Graz, Austria; Institute of Molecular Biotechnology, Graz University of Technology, Graz, Austria
| | - Andrea Hoenikl
- Institute of Molecular Biotechnology, Graz University of Technology, Graz, Austria
| | | | - Anna-Maria Hatzl
- Christian Doppler Laboratory for Innovative Pichia pastoris Host and Vector Systems, Graz, Austria; Institute of Molecular Biotechnology, Graz University of Technology, Graz, Austria
| | - Julia Feichtinger
- Christian Doppler Laboratory for Innovative Pichia pastoris Host and Vector Systems, Graz, Austria; Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria.
| | - Anton Glieder
- Christian Doppler Laboratory for Innovative Pichia pastoris Host and Vector Systems, Graz, Austria; Institute of Molecular Biotechnology, Graz University of Technology, Graz, Austria
| |
Collapse
|
15
|
Rebnegger C, Flores-Villegas M, Kowarz V, De S, Pusterla A, Holm H, Adelantado N, Kiziak C, Mattanovich D, Gasser B. Knock-out of the major regulator Flo8 in Komagataella phaffii results in unique host strain performance for methanol-free recombinant protein production. N Biotechnol 2024; 84:105-114. [PMID: 39384085 DOI: 10.1016/j.nbt.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 10/04/2024] [Accepted: 10/05/2024] [Indexed: 10/11/2024]
Abstract
Flo8 is a main transcriptional regulator of flocculation and pseudohyphal growth in yeast. Disruption of FLO8 in the popular recombinant protein production host Komagataella phaffii (Pichia pastoris) prevents pseudohyphal growth and reduces cell-to-surface adherence, making the mutant an interesting platform for research and industry. However, knowledge of the physiological impact of the mutation remained scarce. In-depth analysis of transcriptome data from FLO8-deficient K. phaffii revealed that Flo8 affects genes involved in cell cycle, mating, respiration, and catabolite repression additionally to flocculation targets. One gene with considerably increased expression in flo8 was GTH1, encoding a high-affinity glucose transporter in K. phaffii. Its promoter (PG1) was previously established as a strong, glucose-regulatable alternative to methanol-induced promoters. PG1 and its improved derivatives PG1-3, D-PGS4 and D-PGS5, proved to be promising candidates for controlling recombinant protein production in the FLO8-deficient background. In small-scale screenings, PG13-controlled intracellular EGFP levels were 2.8-fold higher, and yields of different secreted recombinant proteins were up to 4.8-fold increased. The enhanced productivity of the flo8 mutant in combination with the PG1 variants was transferrable to glucose-limited fed-batch processes and could largely be attributed to higher transcriptional activity of the promoter, leading to a much higher productivity per chromosomally integrated gene copy. K. phaffii flo8 has many advantageous characteristics, such as reduced surface growth and increased transcriptional strength of glucose-regulatable promoters. These features turn the flo8 strain into a valuable new base strain for various experimental designs and establish flo8 as an excellent strain background for methanol-free recombinant protein production processes.
Collapse
Affiliation(s)
- Corinna Rebnegger
- CD-Laboratory for Growth-decoupled Protein Production in Yeast at Department of Biotechnology, BOKU University, Vienna, Austria; BOKU University, Department of Biotechnology, Institute of Microbiology and Microbial Biotechnology, Vienna, Austria; Austrian Centre of Industrial Biotechnology (ACIB GmbH), Vienna, Austria
| | - Mirelle Flores-Villegas
- CD-Laboratory for Growth-decoupled Protein Production in Yeast at Department of Biotechnology, BOKU University, Vienna, Austria; BOKU University, Department of Biotechnology, Institute of Microbiology and Microbial Biotechnology, Vienna, Austria
| | - Viktoria Kowarz
- CD-Laboratory for Growth-decoupled Protein Production in Yeast at Department of Biotechnology, BOKU University, Vienna, Austria; BOKU University, Department of Biotechnology, Institute of Microbiology and Microbial Biotechnology, Vienna, Austria
| | - Sonakshi De
- BOKU University, Department of Biotechnology, Institute of Microbiology and Microbial Biotechnology, Vienna, Austria; Austrian Centre of Industrial Biotechnology (ACIB GmbH), Vienna, Austria; Lonza AG, Visp, Switzerland
| | | | | | | | | | - Diethard Mattanovich
- BOKU University, Department of Biotechnology, Institute of Microbiology and Microbial Biotechnology, Vienna, Austria; Austrian Centre of Industrial Biotechnology (ACIB GmbH), Vienna, Austria
| | - Brigitte Gasser
- CD-Laboratory for Growth-decoupled Protein Production in Yeast at Department of Biotechnology, BOKU University, Vienna, Austria; BOKU University, Department of Biotechnology, Institute of Microbiology and Microbial Biotechnology, Vienna, Austria; Austrian Centre of Industrial Biotechnology (ACIB GmbH), Vienna, Austria.
| |
Collapse
|
16
|
Bechtel A, Seitl I, Pross E, Hetzel F, Keutgen M, Fischer L. Recombinant production of Paenibacillus wynnii β-galactosidase with Komagataella phaffii. Microb Cell Fact 2024; 23:263. [PMID: 39367390 PMCID: PMC11452983 DOI: 10.1186/s12934-024-02544-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 09/28/2024] [Indexed: 10/06/2024] Open
Abstract
BACKGROUND The β-galactosidase from Paenibacillus wynnii (β-gal-Pw) is a promising candidate for lactose hydrolysis in milk and dairy products, as it has a higher affinity for the substrate lactose (low KM value) compared to industrially used β-galactosidases and is not inhibited by the hydrolysis-generated product D-galactose. However, β-gal-Pw must firstly be produced cost-effectively for any potential industrial application. Accordingly, the yeast Komagataella phaffii was chosen to investigate its feasibility to recombinantly produce β-gal-Pw since it is approved for the regulated production of food enzymes. The aim of this study was to find the most suitable way to produce the β-gal-Pw in K. phaffii either extracellularly or intracellularly. RESULTS Firstly, 11 different signal peptides were tested for extracellular production of β-gal-Pw by K. phaffii under the control of the constitutive GAP promoter. None of the signal peptides resulted in a secretion of β-gal-Pw, indicating problems within the secretory pathway of this enzyme. Therefore, intracellular β-gal-Pw production was investigated using the GAP or methanol-inducible AOX1 promoter. A four-fold higher volumetric β-galactosidase activity of 7537 ± 66 µkatoNPGal/Lculture was achieved by the K. phaffii clone 27 using the AOX1 promoter in fed-batch bioreactor cultivations, compared to the clone 5 using the GAP promoter. However, a two-fold higher specific productivity of 3.14 ± 0.05 µkatoNPGal/gDCW/h was achieved when using the GAP promoter for β-gal-Pw production compared to the AOX1 promoter. After partial purification, a β-gal-Pw enzyme preparation with a total β-galactosidase activity of 3082 ± 98 µkatoNPGal was obtained from 1 L of recombinant K. phaffii culture (using AOX1 promoter). CONCLUSION This study showed that the β-gal-Pw was produced intracellularly by K. phaffii, but the secretion was not achieved with the signal peptides chosen. Nevertheless, a straightforward approach to improve the intracellular β-gal-Pw production with K. phaffii by using either the GAP or AOX1 promoter in bioreactor cultivations was demonstrated, offering insights into alternative production methods for this enzyme.
Collapse
Affiliation(s)
- Anna Bechtel
- Institute of Food Science and Biotechnology, Department of Biotechnology and Enzyme Science, University of Hohenheim, Garbenstr. 25, 70599, Stuttgart, Germany
| | - Ines Seitl
- Institute of Food Science and Biotechnology, Department of Biotechnology and Enzyme Science, University of Hohenheim, Garbenstr. 25, 70599, Stuttgart, Germany
| | - Eva Pross
- Institute of Food Science and Biotechnology, Department of Biotechnology and Enzyme Science, University of Hohenheim, Garbenstr. 25, 70599, Stuttgart, Germany
| | - Frank Hetzel
- Institute of Food Science and Biotechnology, Department of Biotechnology and Enzyme Science, University of Hohenheim, Garbenstr. 25, 70599, Stuttgart, Germany
| | - Mario Keutgen
- Institute of Food Science and Biotechnology, Department of Biotechnology and Enzyme Science, University of Hohenheim, Garbenstr. 25, 70599, Stuttgart, Germany
| | - Lutz Fischer
- Institute of Food Science and Biotechnology, Department of Biotechnology and Enzyme Science, University of Hohenheim, Garbenstr. 25, 70599, Stuttgart, Germany.
| |
Collapse
|
17
|
Yang J, Yang L, Zhao F, Ye C, Han S. De novo biosynthesis of β-Arbutin in Komagataella phaffii based on metabolic engineering strategies. Microb Cell Fact 2024; 23:261. [PMID: 39350198 PMCID: PMC11440761 DOI: 10.1186/s12934-024-02525-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 09/09/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND β-Arbutin, found in the leaves of bearberry, stands out as one of the globally acknowledged eco-friendly whitening additives in recent years. However, the natural abundance of β-Arbutin is low, and the cost-effectiveness of using chemical synthesis or plant extraction methods is low, which cannot meet the requirements. While modifying the β-Arbutin synthesis pathway of existing strains is a viable option, it is hindered by the limited synthesis capacity of these strains, which hinders further development and application. RESULTS In this study, we established a biosynthetic pathway in Komagataella phaffii for β-Arbutin production with a titer of 1.58 g/L. Through diverse metabolic strategies, including fusion protein construction, enhancing shikimate pathway flux, and augmenting precursor supplies (PEP, E4P, and UDPG), we significantly increased β-Arbutin titer to 4.32 g/L. Further optimization of methanol concentration in shake flasks led to a titer of 6.32 g/L titer after 120 h of fermentation, representing a fourfold increase over the initial titer. In fed-batch fermentation, strain UA3-10 set a record with the highest production to date, reaching 128.6 g/L in a 5 L fermenter. CONCLUSIONS This is the highest yield in the fermentation tank level of using microbial cell factories for de novo synthesis of β-Arbutin. Applying combinatorial engineering strategies has significantly improved the β-Arbutin yield in K. phaffii and is a promising approach for synthesizing functional products using a microbial cell factory. This study not only advances low-cost fermentation-based production of β-Arbutin but also establishes K. phaffii as a promising chassis cell for synthesizing other aromatic amino acid metabolites.
Collapse
Affiliation(s)
- Jiashuo Yang
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, People's Republic of China
| | - Liu Yang
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, People's Republic of China
| | - Fengguang Zhao
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, People's Republic of China
| | - Chunting Ye
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, People's Republic of China
| | - Shuangyan Han
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, People's Republic of China.
| |
Collapse
|
18
|
Zhuang Z, Wan G, Lu X, Xie L, Yu T, Tang H. Metabolic engineering for single-cell protein production from renewable feedstocks and its applications. ADVANCED BIOTECHNOLOGY 2024; 2:35. [PMID: 39883267 PMCID: PMC11709146 DOI: 10.1007/s44307-024-00042-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/17/2024] [Accepted: 09/18/2024] [Indexed: 01/31/2025]
Abstract
Proteins are indispensable for maintaining a healthy diet and performing crucial functions in a multitude of physiological processes. The growth of the global population and the emergence of environmental concerns have significantly increased the demand for protein-rich foods such as meat and dairy products, exerting considerable pressure on global food supplies. Single-cell proteins (SCP) have emerged as a promising alternative source, characterized by their high protein content and essential amino acids, lipids, carbohydrates, nucleic acids, inorganic salts, vitamins, and trace elements. SCP offers several advantages over the traditional animal and plant proteins. These include shorter production cycles, the use of diverse raw material sources, high energy efficiency, and minimal environmental impact. This review is primarily concerned with the microbial species employed in SCP production, utilization of non-food renewable materials as a source of feedstock, and application of rational and non-rational metabolic engineering strategies to increase SCP biomass and protein content. Moreover, the current applications, production shortages, and safety concerns associated with SCP are discussed.
Collapse
Affiliation(s)
- Zhoukang Zhuang
- CAS Key Laboratory of Quantitative Engineering Biology, Center for Synthetic Biochemistry, Guangdong Provincial Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Guangyu Wan
- CAS Key Laboratory of Quantitative Engineering Biology, Center for Synthetic Biochemistry, Guangdong Provincial Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Xiaocong Lu
- CAS Key Laboratory of Quantitative Engineering Biology, Center for Synthetic Biochemistry, Guangdong Provincial Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Linhai Xie
- CAS Key Laboratory of Quantitative Engineering Biology, Center for Synthetic Biochemistry, Guangdong Provincial Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Tao Yu
- CAS Key Laboratory of Quantitative Engineering Biology, Center for Synthetic Biochemistry, Guangdong Provincial Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| | - Hongting Tang
- School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, 518107, China.
| |
Collapse
|
19
|
McFarland C, Alkotaini B, Cowen CP, Edwards MG, Grein E, Hahn AD, Jennings JC, Patnaik R, Potter SM, Rael LT, Sharkey BP, Taylor SL, Totman R, Van Simaeys K, Vo P, Zhao D, Connors DE. Discovery, Expression, and In Silico Safety Evaluation of Honey Truffle Sweetener, a Sweet Protein Derived from Mattirolomyces terfezioides and Produced by Heterologous Expression in Komagataella phaffii. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:19470-19479. [PMID: 39126644 DOI: 10.1021/acs.jafc.4c04368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/12/2024]
Abstract
Honey truffle sweetener (HTS), a 121 amino acid protein is identified as a high-intensity sweetener found naturally occurring in the Hungarian Sweet Truffle Mattirolomyces terfezioides, an edible mushroom used in regional diets. The protein is intensely sweet, but the truffle is difficult to cultivate; therefore, the protein was systematically characterized, and the gene coding for the protein was expressed in a commonly used host yeast Komagataella phaffii. The heterologously expressed protein maintained the structural characteristics and sweet taste of the truffle. Preliminary safety evaluations for use as a food ingredient were performed on the protein including digestibility and in silico approaches for predicting the allergenicity and toxicity of the protein. HTS is predicted to be nonallergenic, nontoxic, and readily digestible. This protein is readily produced by precision fermentation of the host yeast, making it a potential replacement for both added sugars and small molecule high-intensity sweeteners in food.
Collapse
Affiliation(s)
- Chase McFarland
- MycoTechnology, Inc., 18250 E. 40th Ave, Ste. 50., Aurora, Colorado 80011, United States
| | - Bassam Alkotaini
- MycoTechnology, Inc., 18250 E. 40th Ave, Ste. 50., Aurora, Colorado 80011, United States
| | - Chloe P Cowen
- MycoTechnology, Inc., 18250 E. 40th Ave, Ste. 50., Aurora, Colorado 80011, United States
| | - Michael G Edwards
- MycoTechnology, Inc., 18250 E. 40th Ave, Ste. 50., Aurora, Colorado 80011, United States
- Bioinfo Solutions, LLC., Parker, Colorado 80138, United States
| | - Elizabeth Grein
- MycoTechnology, Inc., 18250 E. 40th Ave, Ste. 50., Aurora, Colorado 80011, United States
| | - Alan D Hahn
- MycoTechnology, Inc., 18250 E. 40th Ave, Ste. 50., Aurora, Colorado 80011, United States
| | - Justine C Jennings
- MycoTechnology, Inc., 18250 E. 40th Ave, Ste. 50., Aurora, Colorado 80011, United States
| | - Ranjan Patnaik
- MycoTechnology, Inc., 18250 E. 40th Ave, Ste. 50., Aurora, Colorado 80011, United States
| | - Susan M Potter
- MycoTechnology, Inc., 18250 E. 40th Ave, Ste. 50., Aurora, Colorado 80011, United States
| | - Leonard T Rael
- MycoTechnology, Inc., 18250 E. 40th Ave, Ste. 50., Aurora, Colorado 80011, United States
| | - Brendan P Sharkey
- MycoTechnology, Inc., 18250 E. 40th Ave, Ste. 50., Aurora, Colorado 80011, United States
| | - Steve L Taylor
- University of Nebraska, Dept. of Food Science & Technology, 1901 N 21st St., Lincoln, Nebraska 68588-6205, United States
| | - Ryan Totman
- MycoTechnology, Inc., 18250 E. 40th Ave, Ste. 50., Aurora, Colorado 80011, United States
| | - Karli Van Simaeys
- MycoTechnology, Inc., 18250 E. 40th Ave, Ste. 50., Aurora, Colorado 80011, United States
| | - Phillip Vo
- MycoTechnology, Inc., 18250 E. 40th Ave, Ste. 50., Aurora, Colorado 80011, United States
| | - Dan Zhao
- MycoTechnology, Inc., 18250 E. 40th Ave, Ste. 50., Aurora, Colorado 80011, United States
| | - Daniel E Connors
- MycoTechnology, Inc., 18250 E. 40th Ave, Ste. 50., Aurora, Colorado 80011, United States
| |
Collapse
|
20
|
Tafrishi A, Trivedi V, Xing Z, Li M, Mewalal R, Cutler SR, Blaby I, Wheeldon I. Functional genomic screening in Komagataella phaffii enabled by high-activity CRISPR-Cas9 library. Metab Eng 2024; 85:73-83. [PMID: 39019250 DOI: 10.1016/j.ymben.2024.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 06/06/2024] [Accepted: 07/14/2024] [Indexed: 07/19/2024]
Abstract
CRISPR-based high-throughput genome-wide loss-of-function screens are a valuable approach to functional genetics and strain engineering. The yeast Komagataella phaffii is a host of particular interest in the biopharmaceutical industry and as a metabolic engineering host for proteins and metabolites. Here, we design and validate a highly active 6-fold coverage genome-wide sgRNA library for this biotechnologically important yeast containing 30,848 active sgRNAs targeting over 99% of its coding sequences. Conducting fitness screens in the absence of functional non-homologous end joining (NHEJ), the dominant DNA repair mechanism in K. phaffii, provides a quantitative means to assess the activity of each sgRNA in the library. This approach allows for the experimental validation of each guide's targeting activity, leading to more precise screening outcomes. We used this approach to conduct growth screens with glucose as the sole carbon source and identify essential genes. Comparative analysis of the called gene sets identified a core set of K. phaffii essential genes, many of which relate to metabolic engineering targets, including protein production, secretion, and glycosylation. The high activity, genome-wide CRISPR library developed here enables functional genomic screening in K. phaffii, applied here to gene essentiality classification, and promises to enable other genetic screens.
Collapse
Affiliation(s)
- Aida Tafrishi
- Chemical and Environmental Engineering, University of California-Riverside, Riverside, CA, 92521, USA
| | - Varun Trivedi
- Chemical and Environmental Engineering, University of California-Riverside, Riverside, CA, 92521, USA
| | - Zenan Xing
- Botany and Plant Sciences, University of California-Riverside, Riverside, CA, 92521, USA
| | - Mengwan Li
- Chemical and Environmental Engineering, University of California-Riverside, Riverside, CA, 92521, USA
| | - Ritesh Mewalal
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Sean R Cutler
- Botany and Plant Sciences, University of California-Riverside, Riverside, CA, 92521, USA
| | - Ian Blaby
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Ian Wheeldon
- Chemical and Environmental Engineering, University of California-Riverside, Riverside, CA, 92521, USA; Center for Industrial Biotechnology, University of California-Riverside, Riverside, CA, 92521, USA.
| |
Collapse
|
21
|
Unver Y, Ari B, Acar M, Yildiz Arslan S. A self-inducible heterologous protein expression system in Komagataella phaffii ( Pichia pastoris). 3 Biotech 2024; 14:193. [PMID: 39131177 PMCID: PMC11306816 DOI: 10.1007/s13205-024-04039-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 07/30/2024] [Indexed: 08/13/2024] Open
Abstract
Komagataella phaffii (previously described as Pichia pastoris) is a yeast that produces high-level heterologous proteins with a wide range of applications in medicine and industry. The methanol-induced alcohol oxidase I promoter (PAOX1) is frequently used for protein expression in this yeast. However, limitations on the use of methanol have been observed in large-scale production, including its flammability, toxicity, and need for special handling. Here, we propose to develop a system using recombinant cells constitutively expressing pectinmethyl esterase for expression of two reporter proteins, GFP and azurin, under the control of PAOX1 using pectin in production medium. So, this system is coherent with yeast culture medium containing pectin and heterologous gene inserted downstream of PAOX1 can be successfully expressed without the addition of methanol. Therefore, this novel Self-inducibLe heterologous protein EXpression (SILEX) system, which does not require the addition of methanol, can be used for the production of any protein. It can also be adapted for large-scale production. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-024-04039-x.
Collapse
Affiliation(s)
- Yagmur Unver
- Department of Molecular Biology and Genetics, Faculty of Science, Atatürk University, Erzurum, Turkey
| | - Betul Ari
- Department of Molecular Biology and Genetics, Graduate School of Natural and Applied Sciences, Atatürk University, Erzurum, Turkey
| | - Melek Acar
- Department of Molecular Biology and Genetics, Graduate School of Natural and Applied Sciences, Atatürk University, Erzurum, Turkey
| | - Seyda Yildiz Arslan
- Department of Molecular Biology and Genetics, Graduate School of Natural and Applied Sciences, Atatürk University, Erzurum, Turkey
| |
Collapse
|
22
|
Zhao Y, Han Z, Zhu X, Chen B, Zhou L, Liu X, Liu H. Yeast Proteins: Proteomics, Extraction, Modification, Functional Characterization, and Structure: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:18774-18793. [PMID: 39146464 DOI: 10.1021/acs.jafc.4c04821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Proteins are essential for human tissues and organs, and they require adequate intake for normal physiological functions. With a growing global population, protein demand rises annually. Traditional animal and plant protein sources rely heavily on land and water, making it difficult to meet the increasing demand. The high protein content of yeast and the complete range of amino acids in yeast proteins make it a high-quality source of supplemental protein. Screening of high-protein yeast strains using proteomics is essential to increase the value of yeast protein resources and to promote the yeast protein industry. However, current yeast extraction methods are mainly alkaline solubilization and acid precipitation; therefore, it is necessary to develop more efficient and environmentally friendly techniques. In addition, the functional properties of yeast proteins limit their application in the food industry. To improve these properties, methods must be selected to modify the secondary and tertiary structures of yeast proteins. This paper explores how proteomic analysis can be used to identify nutrient-rich yeast strains, compares the process of preparing yeast proteins, and investigates how modification methods affect the function and structure of yeast proteins. It provides a theoretical basis for solving the problem of inadequate protein intake in China and explores future prospects.
Collapse
Affiliation(s)
- Yan Zhao
- School of Food and Health, Beijing Technology and Business University, Beijing 100080, China
| | - Zhaowei Han
- School of Food and Health, Beijing Technology and Business University, Beijing 100080, China
| | - Xuchun Zhu
- School of Food and Health, Beijing Technology and Business University, Beijing 100080, China
| | - Bingyu Chen
- Graduate School of Agriculture, Kyoto University, Kyoto606-8502, Japan
| | - Linyi Zhou
- School of Food and Health, Beijing Technology and Business University, Beijing 100080, China
| | - Xiaoyong Liu
- Henan Agricultural University, Zhengzhou, Henan 450002, China
| | - Hongzhi Liu
- School of Food and Health, Beijing Technology and Business University, Beijing 100080, China
- College of Food and Pharmaceutical Engineering, Guizhou Institute of Technology, Guiyang, Guizhou 550025, China
| |
Collapse
|
23
|
Dai H, Zhang C, Wu J, Tang Q, Xie Y, Yu Y, Lin Y, Huang Y. Optimizing Pichia pastoris protein secretion: Role of N-linked glycosylation on the α-mating factor secretion signal leader. J Biotechnol 2024; 391:1-10. [PMID: 38636846 DOI: 10.1016/j.jbiotec.2024.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 04/20/2024]
Abstract
The methylotrophic yeast, Pichia pastoris (P. pastoris; syn. Komagataella spp.), known for its ability to grow to high cell densities, its strong and tightly regulated promoters, and mammalian liked secretion pathway, has been widely used as a robust system to secrete heterologous proteins. The α-mating factor (MF) secretion signal leader from Saccharomyces cerevisiae (S. cerevisiae) is currently the most successfully used secretion signal sequence in the P. pastoris system. In this study, the secretion efficiency mediated by the α-MF secretion signal leaders from Komagataella pastoris (K. pastoris) and Komagataella phaffii (K. phaffii) was assessed using Enhanced Green Fluorescent Protein (EGFP) as a reporter. The results indicated that the secretion efficiency associated with the α-MF secretion signal leaders from K. pastoris and K. phaffii was notably lower in comparison to the α-MF secretion signal leader from S. cerevisiae. Further research indicated that N-linked glycosylation of the α-MF secretion signal leader enhanced the secretion of EGFP. Disruption of calnexin impaired the secretion of EGFP mediated by the N-linked glycosylated α-MF secretion signal leader, without affecting EGFP secretion mediated by the non-N-linked glycosylation α-MF secretion signal leader. The N-linked glycosylated of the α-MF secretion signal leader reduced the unfolded protein response (UPR) in the endoplasmic reticulum (ER). The enhancement of EGFP secretion by the N-linked glycosylated α-MF secretion signal leader might be achieved through the acceleration of proper folding of glycoproteins by the molecular chaperone calnexin. This study enhances the understanding of protein secretion in P. pastoris, specifically highlighting the influence of N-linked glycosylation on secretion efficiency, and could have implications for the production of recombinant proteins in bioengineering and biotechnological applications in P. pastoris.
Collapse
Affiliation(s)
- Huijia Dai
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, Engineering Research Center of Industrial Microbiology, College of Life Sciences, Fujian Normal University, Fuzhou 350007, China
| | - Chenshan Zhang
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, Engineering Research Center of Industrial Microbiology, College of Life Sciences, Fujian Normal University, Fuzhou 350007, China
| | - Jingwen Wu
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, Engineering Research Center of Industrial Microbiology, College of Life Sciences, Fujian Normal University, Fuzhou 350007, China
| | - Qingling Tang
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, Engineering Research Center of Industrial Microbiology, College of Life Sciences, Fujian Normal University, Fuzhou 350007, China
| | - Yaying Xie
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, Engineering Research Center of Industrial Microbiology, College of Life Sciences, Fujian Normal University, Fuzhou 350007, China
| | - Yujing Yu
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, Engineering Research Center of Industrial Microbiology, College of Life Sciences, Fujian Normal University, Fuzhou 350007, China
| | - Yao Lin
- Central Laboratory at the Second Affiliated Hospital of Fujian Traditional Chinese Medical University, Innovation and Transformation Center, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China.
| | - Yide Huang
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, Engineering Research Center of Industrial Microbiology, College of Life Sciences, Fujian Normal University, Fuzhou 350007, China.
| |
Collapse
|
24
|
Adame M, Vázquez H, Juárez-López D, Corzo G, Amezcua M, López D, González Z, Schcolnik-Cabrera A, Morales-Martínez A, Villegas E. Expression and characterization of scFv-6009FV in Pichia pastoris with improved ability to neutralize the neurotoxin Cn2 from Centruroides noxius. Int J Biol Macromol 2024; 275:133461. [PMID: 38945343 DOI: 10.1016/j.ijbiomac.2024.133461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/11/2024] [Accepted: 06/25/2024] [Indexed: 07/02/2024]
Abstract
Small single-chain variable fragments (scFv) are promising biomolecules to inhibit and neutralize toxins and to act as antivenoms. In this work, we aimed to produce a functional scFv-6009FV in the yeast Pichia pastoris, which inhibits the pure Cn2 neurotoxin and the whole venom of Centruroides noxius. We were able to achieve yields of up to 31.6 ± 2 mg/L in flasks. Furthermore, the protein showed a structure of 6.1 % α-helix, 49.1 % β-sheet, and 44.8 % of random coil by CD. Mass spectrometry confirmed the amino acid sequence and showed no glycosylation profile for this molecule. Purified scFv-6009FV allowed us to develop anti-scFvs in rabbits, which were then used in affinity columns to purify other scFvs. Determination of its half-maximal inhibitory concentration value (IC50) was 40 % better than the scFvs produced by E. coli as a control. Finally, we found that scFv-6009FV was able to inhibit ex vivo the pure Cn2 toxin and the whole venom from C. noxius in murine rescue experiments. These results demonstrated that under the conditions assayed here, P. pastoris is suited to produce scFv-6009FV that, compared to scFvs produced by E. coli, maintains the characteristics of an antibody and neutralizes the Cn2 toxin more effectively.
Collapse
Affiliation(s)
- Mariel Adame
- Departamento de Productos Naturales, Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, México
| | - Hilda Vázquez
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Daniel Juárez-López
- Instituto de Investigaciones Biomédicas, Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Coyoacán, Ciudad de México, México
| | - Gerardo Corzo
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Mónica Amezcua
- Departamento de Productos Naturales, Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, México
| | - Daniela López
- Departamento de Productos Naturales, Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, México
| | - Zuriel González
- Departamento de Productos Naturales, Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, México
| | | | - Adriana Morales-Martínez
- Departamento de Productos Naturales, Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, México
| | - Elba Villegas
- Departamento de Productos Naturales, Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, México.
| |
Collapse
|
25
|
Dalvie NC, Lorgeree TR, Yang Y, Rodriguez-Aponte SA, Whittaker CA, Hinckley JA, Clark JJ, Del Rosario AM, Love KR, Love JC. CRISPR-Cas9 knockout screen informs efficient reduction of the Komagataella phaffii secretome. Microb Cell Fact 2024; 23:217. [PMID: 39085844 PMCID: PMC11293167 DOI: 10.1186/s12934-024-02466-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 06/19/2024] [Indexed: 08/02/2024] Open
Abstract
BACKGROUND The yeast Komagataella phaffii is widely used for manufacturing recombinant proteins, but secreted titers of recombinant proteins could be improved by genetic engineering. In this study, we hypothesized that cellular resources could be redirected from production of endogenous proteins to production of recombinant proteins by deleting unneeded endogenous proteins. In non-model microorganisms such as K. phaffii, however, genetic engineering is limited by lack gene annotation and knowledge of gene essentiality. RESULTS We identified a set of endogenous secreted proteins in K. phaffii by mass spectrometry and signal peptide prediction. Our efforts to disrupt these genes were hindered by limited annotation of essential genes. To predict essential genes, therefore, we designed, transformed, and sequenced a pooled library of guide RNAs for CRISPR-Cas9-mediated knockout of all endogenous secreted proteins. We then used predicted gene essentiality to guide iterative disruptions of up to 11 non-essential genes. Engineered strains exhibited a ~20× increase in the production of human serum albumin and a twofold increase in the production of a monoclonal antibody. CONCLUSIONS We demonstrated that disruption of as few as six genes can increase production of recombinant proteins. Further reduction of the endogenous proteome of K. phaffii may further improve strain performance. The pooled library of secretome-targeted guides for CRISPR-Cas9 and knowledge of gene essentiality reported here will facilitate future efforts to engineer K. phaffii for production of other recombinant proteins and enzymes.
Collapse
Affiliation(s)
- Neil C Dalvie
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 01239, USA
| | - Timothy R Lorgeree
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 01239, USA
| | - Yuchen Yang
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 01239, USA
| | - Sergio A Rodriguez-Aponte
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 01239, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Charles A Whittaker
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 01239, USA
| | - Joshua A Hinckley
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 01239, USA
| | - John J Clark
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 01239, USA
| | - Amanda M Del Rosario
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 01239, USA
| | - Kerry R Love
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 01239, USA.
| | - J Christopher Love
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 01239, USA.
| |
Collapse
|
26
|
Anaya Y, Rosario Martinez R, Goodman RE, Johnson P, Vajpeyi S, Lu X, Peterson R, Weyers SM, Breen B, Newsham K, Scottoline B, Clark AJ, Malinczak CA. Evaluation of the potential food allergy risks of human lactoferrin expressed in Komagataella phaffii. Front Immunol 2024; 15:1380028. [PMID: 39114650 PMCID: PMC11303282 DOI: 10.3389/fimmu.2024.1380028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 07/03/2024] [Indexed: 08/10/2024] Open
Abstract
Introduction Prior to the introduction of novel food ingredients into the food supply, safety risk assessments are required, and numerous prediction models have been developed and validated to evaluate safety. Methods The allergenic risk potential of Helaina recombinant human lactoferrin (rhLF, Effera™), produced in Komagataella phaffii (K. phaffii) was assessed by literature search, bioinformatics sequence comparisons to known allergens, glycan allergenicity assessment, and a simulated pepsin digestion model. Results The literature search identified no allergenic risk for Helaina rhLF, K. phaffii, or its glycans. Bioinformatics search strategies showed no significant risk for cross-reactivity or allergenicity between rhLF or the 36 residual host proteins and known human allergens. Helaina rhLF was also rapidly digested in simulated gastric fluid and its digestibility profile was comparable to human milk lactoferrin (hmLF), further demonstrating a low allergenic risk and similarity to the hmLF protein. Conclusion Collectively, these results demonstrate a low allergenic risk potential of Helaina rhLF and do not indicate the need for further clinical testing or serum IgE binding to evaluate Helaina rhLF for risk of food allergy prior to introduction into the food supply.
Collapse
Affiliation(s)
- Yanisa Anaya
- Nutritional Biology & Safety, Helaina, Inc, New York, NY, United States
| | | | | | - Philip Johnson
- University of Nebraska-Lincoln, Lincoln, NE, United States
| | | | - Xiaoning Lu
- Nutritional Biology & Safety, Helaina, Inc, New York, NY, United States
| | - Ross Peterson
- Regulatory Affairs, Helaina, Inc, New York, NY, United States
| | | | - Bella Breen
- Late Stage R&D, Helaina, Inc, New York, NY, United States
| | - Kahler Newsham
- Late Stage R&D, Helaina, Inc, New York, NY, United States
| | - Brian Scottoline
- Department of Pediatrics, Oregon Health & Science University, Portland, OR, United States
| | - Anthony J. Clark
- Late Stage R&D, Helaina, Inc, New York, NY, United States
- Regulatory Affairs, Helaina, Inc, New York, NY, United States
| | | |
Collapse
|
27
|
Vijayakumar VE, Venkataraman K. A Systematic Review of the Potential of Pichia pastoris (Komagataella phaffii) as an Alternative Host for Biologics Production. Mol Biotechnol 2024; 66:1621-1639. [PMID: 37400712 DOI: 10.1007/s12033-023-00803-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 06/20/2023] [Indexed: 07/05/2023]
Abstract
The methylotrophic yeast Pichia pastoris is garnering interest as a chassis cell factory for the manufacture of recombinant proteins because it effectively satisfies the requirements of both laboratory and industrial set up. The optimisation of P. pastoris cultivation is still necessary due to strain- and product-specific problems such as promoter strength, methanol utilisation type, and culturing conditions to realize the high yields of heterologous protein(s) of interest. Techniques integrating genetic and process engineering have been used to overcome these problems. Insight into the Pichia as an expression system utilizing MUT pathway and the development of methanol free systems are highlighted in this systematic review. Recent developments in the improved production of proteins in P. pastoris by (i) diverse genetic engineering such as codon optimization and gene dosage; (ii) cultivating tactics including co-expression of chaperones; (iii) advances in the use of the 2A peptide system, and (iv) CRISPR/Cas technologies are widely discussed. We believe that by combining these strategies, P. pastoris will become a formidable platform for the production of high value therapeutic proteins.
Collapse
Affiliation(s)
- Vijay Elakkya Vijayakumar
- Centre for Bio-Separation Technology (CBST), Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Krishnan Venkataraman
- Centre for Bio-Separation Technology (CBST), Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
28
|
Zhang B, Sun C, Zhu Y, Qin H, Kong D, Zhang J, Shao B, Li X, Ren S, Wang H, Hao J, Wang H. Upregulation of TCPTP in Macrophages Is Involved in IL-35 Mediated Attenuation of Experimental Colitis. Mediators Inflamm 2024; 2024:3282679. [PMID: 38962170 PMCID: PMC11221972 DOI: 10.1155/2024/3282679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 04/11/2024] [Accepted: 06/01/2024] [Indexed: 07/05/2024] Open
Abstract
Ulcerative colitis (UC) is a chronic intestinal inflammatory disease with complex etiology. Interleukin-35 (IL-35), as a cytokine with immunomodulatory function, has been shown to have therapeutic effects on UC, but its mechanism is not yet clear. Therefore, we constructed Pichia pastoris stably expressing IL-35 which enables the cytokines to reach the diseased mucosa, and explored whether upregulation of T-cell protein tyrosine phosphatase (TCPTP) in macrophages is involved in the mechanisms of IL-35-mediated attenuation of UC. After the successful construction of engineered bacteria expressing IL-35, a colitis model was successfully induced by giving BALB/c mice a solution containing 3% dextran sulfate sodium (DSS). Mice were treated with Pichia/IL-35, empty plasmid-transformed Pichia (Pichia/0), or PBS by gavage, respectively. The expression of TCPTP in macrophages (RAW264.7, BMDMs) and intestinal tissues after IL-35 treatment was detected. After administration of Pichia/IL-35, the mice showed significant improvement in weight loss, bloody stools, and shortened colon. Colon pathology also showed that the inflammatory condition of mice in the Pichia/IL-35 treatment group was alleviated. Notably, Pichia/IL-35 treatment not only increases local M2 macrophages but also decreases the expression of inflammatory cytokine IL-6 in the colon. With Pichia/IL-35 treatment, the proportion of M1 macrophages, Th17, and Th1 cells in mouse MLNs were markedly decreased, while Tregs were significantly increased. In vitro experiments, IL-35 significantly promoted the expression of TCPTP in macrophages stimulated with LPS. Similarly, the mice in the Pichia/IL-35 group also expressed more TCPTP than that of the untreated group and the Pichia/0 group.
Collapse
Affiliation(s)
- Baoren Zhang
- Department of General SurgeryTianjin Medical University General Hospital, Tianjin, China
- Tianjin General Surgery Institute, Tianjin, China
| | - Chenglu Sun
- Department of General SurgeryTianjin Medical University General Hospital, Tianjin, China
- Tianjin General Surgery Institute, Tianjin, China
| | - Yanglin Zhu
- Department of General SurgeryTianjin Medical University General Hospital, Tianjin, China
- Tianjin General Surgery Institute, Tianjin, China
| | - Hong Qin
- Department of General SurgeryTianjin Medical University General Hospital, Tianjin, China
- Tianjin General Surgery Institute, Tianjin, China
| | - Dejun Kong
- School of MedicineNankai University, Tianjin, China
| | - Jingyi Zhang
- Department of General SurgeryTianjin Medical University General Hospital, Tianjin, China
- Tianjin General Surgery Institute, Tianjin, China
| | - Bo Shao
- Department of General SurgeryTianjin Medical University General Hospital, Tianjin, China
- Tianjin General Surgery Institute, Tianjin, China
| | - Xiang Li
- Department of General SurgeryTianjin Medical University General Hospital, Tianjin, China
- Tianjin General Surgery Institute, Tianjin, China
| | - Shaohua Ren
- Department of General SurgeryTianjin Medical University General Hospital, Tianjin, China
- Tianjin General Surgery Institute, Tianjin, China
| | - Hongda Wang
- Department of General SurgeryTianjin Medical University General Hospital, Tianjin, China
- Tianjin General Surgery Institute, Tianjin, China
| | - Jingpeng Hao
- Department of General SurgeryTianjin Medical University General Hospital, Tianjin, China
- Tianjin General Surgery Institute, Tianjin, China
- Department of Anorectal SurgeryTianjin Medical University Second Hospital, Tianjin, China
| | - Hao Wang
- Department of General SurgeryTianjin Medical University General Hospital, Tianjin, China
- Tianjin General Surgery Institute, Tianjin, China
- Tianjin Key Laboratory of Precise Vascular Reconstruction and Organ Function Repair, Tianjin, China
| |
Collapse
|
29
|
Liu Y, Liu L, Huang Z, Guo Y, Tang Y, Wang Y, Ma Q, Zhao L. Combined Strategies for Improving Aflatoxin B 1 Degradation Ability and Yield of a Bacillus licheniformis CotA-Laccase. Int J Mol Sci 2024; 25:6455. [PMID: 38928160 PMCID: PMC11203865 DOI: 10.3390/ijms25126455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/05/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
Aflatoxin B1 (AFB1) contamination is a serious threat to nutritional safety and public health. The CotA-laccase from Bacillus licheniformis ANSB821 previously reported by our laboratory showed great potential to degrade AFB1 without redox mediators. However, the use of this CotA-laccase to remove AFB1 in animal feed is limited because of its low catalytic efficiency and low expression level. In order to make better use of this excellent enzyme to effectively degrade AFB1, twelve mutants of CotA-laccase were constructed by site-directed mutagenesis. Among these mutants, E186A and E186R showed the best degradation ability of AFB1, with degradation ratios of 82.2% and 91.8% within 12 h, which were 1.6- and 1.8-times higher than those of the wild-type CotA-laccase, respectively. The catalytic efficiencies (kcat/Km) of E186A and E186R were found to be 1.8- and 3.2-times higher, respectively, than those of the wild-type CotA-laccase. Then the expression vectors pPICZαA-N-E186A and pPICZαA-N-E186R with an optimized signal peptide were constructed and transformed into Pichia pastoris GS115. The optimized signal peptide improved the secretory expressions of E186A and E186R in P. pastoris GS115. Collectively, the current study provided ideal candidate CotA-laccase mutants for AFB1 detoxification in food and animal feed and a feasible protocol, which was desperately needed for the industrial production of CotA-laccases.
Collapse
Affiliation(s)
- Yanrong Liu
- State Key Laboratory of Animal Nutrition and Feeding, Poultry Nutrition and Feed Technology Innovation Team, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Y.L.); (L.L.); (Z.H.); (Y.T.); (Y.W.); (Q.M.)
| | - Limeng Liu
- State Key Laboratory of Animal Nutrition and Feeding, Poultry Nutrition and Feed Technology Innovation Team, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Y.L.); (L.L.); (Z.H.); (Y.T.); (Y.W.); (Q.M.)
| | - Zhenqian Huang
- State Key Laboratory of Animal Nutrition and Feeding, Poultry Nutrition and Feed Technology Innovation Team, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Y.L.); (L.L.); (Z.H.); (Y.T.); (Y.W.); (Q.M.)
| | - Yongpeng Guo
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China;
| | - Yu Tang
- State Key Laboratory of Animal Nutrition and Feeding, Poultry Nutrition and Feed Technology Innovation Team, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Y.L.); (L.L.); (Z.H.); (Y.T.); (Y.W.); (Q.M.)
| | - Yanan Wang
- State Key Laboratory of Animal Nutrition and Feeding, Poultry Nutrition and Feed Technology Innovation Team, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Y.L.); (L.L.); (Z.H.); (Y.T.); (Y.W.); (Q.M.)
| | - Qiugang Ma
- State Key Laboratory of Animal Nutrition and Feeding, Poultry Nutrition and Feed Technology Innovation Team, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Y.L.); (L.L.); (Z.H.); (Y.T.); (Y.W.); (Q.M.)
| | - Lihong Zhao
- State Key Laboratory of Animal Nutrition and Feeding, Poultry Nutrition and Feed Technology Innovation Team, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Y.L.); (L.L.); (Z.H.); (Y.T.); (Y.W.); (Q.M.)
| |
Collapse
|
30
|
Tian E, Shen X, Xiao M, Zhu Z, Yang Y, Yan X, Wang P, Zou G, Zhou Z. An engineered Pichia pastoris platform for the biosynthesis of silk-based nanomaterials with therapeutic potential. Int J Biol Macromol 2024; 269:131954. [PMID: 38697424 DOI: 10.1016/j.ijbiomac.2024.131954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/19/2024] [Accepted: 04/27/2024] [Indexed: 05/05/2024]
Abstract
Silk fibroin (SF) from the cocoon of silkworm has exceptional mechanical properties and biocompatibility and is used as a biomaterial in a variety of fields. Sustainable, affordable, and scalable manufacturing of SF would enable its large-scale use. We report for the first time the high-level secretory production of recombinant SF peptides in engineered Pichia pastoris cell factories and the processing thereof to nanomaterials. Two SF peptides (BmSPR3 and BmSPR4) were synthesized and secreted by P. pastoris using signal peptides and appropriate spacing between hydrophilic sequences. By strain engineering to reduce protein degradation, increase glycyl-tRNA supply, and improve protein secretion, we created the optimized P. pastoris chassis PPGSP-8 to produce BmSPR3 and BmSPR4. The SF fed-batch fermentation titers of the resulting two P. pastoris cell factories were 11.39 and 9.48 g/L, respectively. Protein self-assembly was inhibited by adding Tween 80 to the medium. Recombinant SF peptides were processed to nanoparticles (NPs) and nanofibrils. The physicochemical properties of nanoparticles R3NPs and R4NPs from the recombinant SFs synthesized in P. pastoris cell factories were similar or superior to those of RSFNPs (Regenerated Silk Fibroin NanoParticles) originating from commercially available SF. Our work will facilitate the production by microbial fermentation of functional SF for use as a biomaterial.
Collapse
Affiliation(s)
- Ernuo Tian
- School of Pharmacy, East China University of Science and Technology, Shanghai 200037, China; CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao Shen
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Meili Xiao
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhihua Zhu
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yi Yang
- School of Pharmacy, East China University of Science and Technology, Shanghai 200037, China
| | - Xing Yan
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Pingping Wang
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China.
| | - Gen Zou
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China.
| | - Zhihua Zhou
- School of Pharmacy, East China University of Science and Technology, Shanghai 200037, China; CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
31
|
Younes M, Aquilina G, Degen G, Engel K, Fowler P, Frutos Fernandez MJ, Fürst P, Gundert‐Remy U, Gürtler R, Husøy T, Manco M, Mennes W, Passamonti S, Moldeus P, Shah R, Waalkens‐Berendsen I, Wright M, Barat Baviera JM, Gott D, Herman L, Leblanc J, Wölfle D, Entrena JA, Gagliardi G, Rincon AM, Ruggeri L, Smeraldi C, Tard A, Castle L. Safety of soy leghemoglobin from genetically modified Komagataella phaffii as a food additive. EFSA J 2024; 22:e8822. [PMID: 38946918 PMCID: PMC11211803 DOI: 10.2903/j.efsa.2024.8822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024] Open
Abstract
The EFSA Panel on Food Additive and Flavourings (FAF Panel) provides a scientific opinion on the safety of soy leghemoglobin from genetically modified Komagataella phaffii as a food additive in accordance with Regulation (EC) No 1331/2008. The proposed food additive, LegH Prep, is intended to be used as a colour in meat analogue products. The yeast Komagataella phaffii strain MXY0541 has been genetically modified to produce soy leghemoglobin; the safety of the genetic modification is under assessment by the EFSA GMO Panel (EFSA-GMO-NL-2019-162). The amount of haem iron provided by soy leghemoglobin from its proposed uses in meat analogue products is comparable to that provided by similar amounts of different types of meat. The exposure to iron from the proposed food additive, both at the mean and 95th percentile exposure, will be below the 'safe levels of intake' established by the NDA Panel for all population groups. Considering that the components of the proposed food additive will be digested to small peptide, amino acids and haem B; the recipient (non GM) strain qualifies for qualified presumption of safety status; no genotoxicity concern has been identified and no adverse effects have been identified at the highest dose tested in the available toxicological studies, the Panel concluded that there was no need to set a numerical acceptable daily intake (ADI) and that the food additive does not raise a safety concern at the proposed use in food category 12.9 and maximum use level. The Panel concluded that the use of soy leghemoglobin from genetically modified Komagataella phaffii MXY0541 as a new food additive does not raise a safety concern at the proposed use and use level. This safety evaluation of the proposed food additive remains provisional subject to the ongoing safety assessment of the genetic modification of the production strain by the GMO Panel (EFSA-GMO-NL-2019-162).
Collapse
|
32
|
Rossouw M, Cripwell RA, Vermeulen RR, van Staden AD, van Zyl WH, Dicks LMT, Viljoen-Bloom M. Heterologous Expression of Plantaricin 423 and Mundticin ST4SA in Saccharomyces cerevisiae. Probiotics Antimicrob Proteins 2024; 16:845-861. [PMID: 37171691 PMCID: PMC11126478 DOI: 10.1007/s12602-023-10082-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/27/2023] [Indexed: 05/13/2023]
Abstract
Antimicrobial peptides or bacteriocins are excellent candidates for alternative antimicrobials, but high manufacturing costs limit their applications. Recombinant gene expression offers the potential to produce these peptides more cost-effectively at a larger scale. Saccharomyces cerevisiae is a popular host for recombinant protein production, but with limited success reported on antimicrobial peptides. Individual recombinant S. cerevisiae strains were constructed to secrete two class IIa bacteriocins, plantaricin 423 (PlaX) and mundticin ST4SA (MunX). The native and codon-optimised variants of the plaA and munST4SA genes were cloned into episomal expression vectors containing either the S. cerevisiae alpha mating factor (MFα1) or the Trichoderma reesei xylanase 2 (XYNSEC) secretion signal sequences. The recombinant peptides retained their activity and stability, with the MFα1 secretion signal superior to the XYNSEC secretion signal for both bacteriocins. An eight-fold increase in activity against Listeria monocytogenes was observed for MunX after codon optimisation, but not for PlaX-producing strains. After HPLC-purification, the codon-optimised genes yielded 20.9 mg/L of MunX and 18.4 mg/L of PlaX, which displayed minimum inhibitory concentrations (MICs) of 108.52 nM and 1.18 µM, respectively, against L. monocytogenes. The yields represent a marked improvement relative to an Escherichia coli expression system previously reported for PlaX and MunX. The results demonstrated that S. cerevisiae is a promising host for recombinant bacteriocin production that requires a simple purification process, but the efficacy is sensitive to codon usage and secretion signals.
Collapse
Affiliation(s)
- Michelle Rossouw
- Department of Microbiology, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
| | - Rosemary A Cripwell
- Department of Microbiology, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
| | - Ross R Vermeulen
- Department of Microbiology, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
| | - Anton D van Staden
- Department of Microbiology, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
- Department of Physiological Sciences, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
| | - Willem H van Zyl
- Department of Microbiology, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
| | - Leon M T Dicks
- Department of Microbiology, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
| | - Marinda Viljoen-Bloom
- Department of Microbiology, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa.
| |
Collapse
|
33
|
Tsuda M, Nonaka K. Recent progress on heterologous protein production in methylotrophic yeast systems. World J Microbiol Biotechnol 2024; 40:200. [PMID: 38730212 PMCID: PMC11087369 DOI: 10.1007/s11274-024-04008-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 04/27/2024] [Indexed: 05/12/2024]
Abstract
Recombinant protein production technology is widely applied to the manufacture of biologics used as drug substances and industrial proteins such as recombinant enzymes and bioactive proteins. Various heterologous protein production systems have been developed using prokaryotic and eukaryotic hosts. Especially methylotrophic yeast in eukaryotic hosts is suggested to be particularly valuable because such systems have the following advantages: protein secretion into culture broth, eukaryotic quality control systems, a post-translational modification system, rapid growth, and established recombinant DNA tools and technologies such as strong promoters, effective selection markers, and gene knock-in and -out systems. Many methylotrophic yeasts such as the genera Candida, Ogataea, and Komagataella have been studied since methylotrophic yeast was first isolated in 1969. The methanol-consumption-related genes in methylotrophic yeast are strongly and strictly regulated under methanol-containing conditions. The well-regulated gene expression systems under the methanol-inducible gene promoter lead to the potential application of heterologous protein production in methylotrophic yeast. In this review, we describe the recent progress of heterologous protein production technology in methylotrophic yeast and introduce Ogataea minuta as an alternative production host as a substitute for K. phaffii and O. polymorpha.
Collapse
Affiliation(s)
- Masashi Tsuda
- Biologics Technology Research Laboratories I, Daiichi Sankyo Co., Ltd., 2716-1 Kurakake, Akaiwa, Chiyoda, Gunma, 370-0503, Japan.
| | - Koichi Nonaka
- Biologics Technology Research Laboratories I, Daiichi Sankyo Co., Ltd., 2716-1 Kurakake, Akaiwa, Chiyoda, Gunma, 370-0503, Japan
| |
Collapse
|
34
|
Weiss F, Requena-Moreno G, Pichler C, Valero F, Glieder A, Garcia-Ortega X. Scalable protein production by Komagataella phaffii enabled by ARS plasmids and carbon source-based selection. Microb Cell Fact 2024; 23:116. [PMID: 38643119 PMCID: PMC11031860 DOI: 10.1186/s12934-024-02368-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 03/18/2024] [Indexed: 04/22/2024] Open
Abstract
BACKGROUND Most recombinant Komagataella phaffii (Pichia pastoris) strains for protein production are generated by genomic integration of expression cassettes. The clonal variability in gene copy numbers, integration loci and consequently product titers limit the aptitude for high throughput applications in drug discovery, enzyme engineering or most comparative analyses of genetic elements such as promoters or secretion signals. Circular episomal plasmids with an autonomously replicating sequence (ARS), an alternative which would alleviate some of these limitations, are inherently unstable in K. phaffii. Permanent selection pressure, mostly enabled by antibiotic resistance or auxotrophy markers, is crucial for plasmid maintenance and hardly scalable for production. The establishment and use of extrachromosomal ARS plasmids with key genes of the glycerol metabolism (glycerol kinase 1, GUT1, and triosephosphate isomerase 1, TPI1) as selection markers was investigated to obtain a system with high transformation rates that can be directly used for scalable production processes in lab scale bioreactors. RESULTS In micro-scale deep-well plate experiments, ARS plasmids employing the Ashbya gossypii TEF1 (transcription elongation factor 1) promoter to regulate transcription of the marker gene were found to deliver high transformation efficiencies and the best performances with the reporter protein (CalB, lipase B of Candida antarctica) for both, the GUT1- and TPI1-based, marker systems. The GUT1 marker-bearing strain surpassed the reference strain with integrated expression cassette by 46% upon re-evaluation in shake flask cultures regarding CalB production, while the TPI1 system was slightly less productive compared to the control. In 5 L bioreactor methanol-free fed-batch cultivations, the episomal production system employing the GUT1 marker led to 100% increased CalB activity in the culture supernatant compared to integration construct. CONCLUSIONS For the first time, a scalable and methanol-independent expression system for recombinant protein production for K. phaffii using episomal expression vectors was demonstrated. Expression of the GUT1 selection marker gene of the new ARS plasmids was refined by employing the TEF1 promoter of A. gossypii. Additionally, the antibiotic-free marker toolbox for K. phaffii was expanded by the TPI1 marker system, which proved to be similarly suited for the use in episomal plasmids as well as integrative expression constructs for the purpose of recombinant protein production.
Collapse
Affiliation(s)
- Florian Weiss
- Christian Doppler Laboratory for Innovative Pichia pastoris host and vector systems, Institute of Molecular Biotechnology, Graz University of Technology, Graz, A-8010, Austria
| | - Guillermo Requena-Moreno
- Christian Doppler Laboratory for Innovative Pichia Pastoris Host and Vector Systems, Department of Chemical, Biological and Environmental Engineering, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Bellaterra, 08193, Spain
| | - Carsten Pichler
- Christian Doppler Laboratory for Innovative Pichia pastoris host and vector systems, Institute of Molecular Biotechnology, Graz University of Technology, Graz, A-8010, Austria
| | - Francisco Valero
- Christian Doppler Laboratory for Innovative Pichia Pastoris Host and Vector Systems, Department of Chemical, Biological and Environmental Engineering, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Bellaterra, 08193, Spain
| | - Anton Glieder
- Christian Doppler Laboratory for Innovative Pichia pastoris host and vector systems, Institute of Molecular Biotechnology, Graz University of Technology, Graz, A-8010, Austria.
| | - Xavier Garcia-Ortega
- Christian Doppler Laboratory for Innovative Pichia Pastoris Host and Vector Systems, Department of Chemical, Biological and Environmental Engineering, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Bellaterra, 08193, Spain
| |
Collapse
|
35
|
Kumar V, Barwal A, Sharma N, Mir DS, Kumar P, Kumar V. Therapeutic proteins: developments, progress, challenges, and future perspectives. 3 Biotech 2024; 14:112. [PMID: 38510462 PMCID: PMC10948735 DOI: 10.1007/s13205-024-03958-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 02/13/2024] [Indexed: 03/22/2024] Open
Abstract
Proteins are considered magic molecules due to their enormous applications in the health sector. Over the past few decades, therapeutic proteins have emerged as a promising treatment option for various diseases, particularly cancer, cardiovascular disease, diabetes, and others. The formulation of protein-based therapies is a major area of research, however, a few factors still hinder the large-scale production of these therapeutic products, such as stability, heterogenicity, immunogenicity, high cost of production, etc. This review provides comprehensive information on various sources and production of therapeutic proteins. The review also summarizes the challenges currently faced by scientists while developing protein-based therapeutics, along with possible solutions. It can be concluded that these proteins can be used in combination with small molecular drugs to give synergistic benefits in the future.
Collapse
Affiliation(s)
- Vimal Kumar
- University Institute of Biotechnology, Chandigarh University, Gharuan, Mohali, Punjab 140413 India
| | - Arti Barwal
- Department of Microbial Biotechnology, Panjab University, South Campus, Sector-25, Chandigarh, 160014 India
| | - Nitin Sharma
- Department of Biotechnology, Chandigarh Group of Colleges, Mohali, Punjab 140307 India
| | - Danish Shafi Mir
- University Institute of Biotechnology, Chandigarh University, Gharuan, Mohali, Punjab 140413 India
| | - Pradeep Kumar
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, 173229 India
| | - Vikas Kumar
- University Institute of Biotechnology, Chandigarh University, Gharuan, Mohali, Punjab 140413 India
| |
Collapse
|
36
|
Liu Y, Li M, Cui T, Chen Z, Xu L, Li W, Peng Q, Li X, Zhao D, Valencia CA, Dong B, Wang Z, Chow HY, Li Y. A superior heterologous prime-boost vaccination strategy against COVID-19: A bivalent vaccine based on yeast-derived RBD proteins followed by a heterologous vaccine. J Med Virol 2024; 96:e29454. [PMID: 38445768 DOI: 10.1002/jmv.29454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/09/2024] [Accepted: 01/25/2024] [Indexed: 03/07/2024]
Abstract
Various vaccines have been challenged by SARS-CoV-2 variants. Here, we reported a yeast-derived recombinant bivalent vaccine (Bivalent wild-type [Wt]+De) based on the wt and Delta receptor-binding domain (RBD). Yeast derived RBD proteins based on the wt and Delta mutant were used as the prime vaccine. It was found that, in the presence of aluminium hydroxide (Alum) and unmethylated CpG-oligodeoxynucleotides (CpG) adjuvants, more cross-protective immunity against SARS-CoV-2 prototype and variants were elicited by bivalent vaccine than monovalent wtRBD or Delta RBD. Furthermore, a heterologous boosting strategy consisting of two doses of bivalent vaccines followed by one dose adenovirus vectored vaccine exhibited cross-neutralization capacity and specific T cell responses against Delta and Omicron (BA.1 and BA.4/5) variants in mice, superior to a homologous vaccination strategy. This study suggested that heterologous prime-boost vaccination with yeast-derived bivalent protein vaccine could be a potential approach to address the challenge of emerging variants.
Collapse
Affiliation(s)
- Yu Liu
- National Clinical Research Center for Geriatrics and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Miao Li
- Department of Arboviral Vaccine, National Institutes for Food and Drug Control, Beijing, China
| | - Tingting Cui
- Guangzhou National Laboratory, Guangzhou International Bio Island, Guangzhou, China
| | - Zhian Chen
- National Clinical Research Center for Geriatrics and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Liangting Xu
- National Clinical Research Center for Geriatrics and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Wenjuan Li
- Department of Arboviral Vaccine, National Institutes for Food and Drug Control, Beijing, China
| | - Qinhua Peng
- Department of Arboviral Vaccine, National Institutes for Food and Drug Control, Beijing, China
| | - Xingxing Li
- Department of Arboviral Vaccine, National Institutes for Food and Drug Control, Beijing, China
| | - Danhua Zhao
- Department of Arboviral Vaccine, National Institutes for Food and Drug Control, Beijing, China
| | - C Alexander Valencia
- National Clinical Research Center for Geriatrics and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Biao Dong
- National Clinical Research Center for Geriatrics and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
- Sichuan Real & Best Biotech Co., Ltd, Chengdu, China
| | - Zhongfang Wang
- Guangzhou National Laboratory, Guangzhou International Bio Island, Guangzhou, China
| | - Hoi Yee Chow
- National Clinical Research Center for Geriatrics and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yuhua Li
- Department of Arboviral Vaccine, National Institutes for Food and Drug Control, Beijing, China
| |
Collapse
|
37
|
Rajak N, Dey T, Sharma Y, Bellad V, Rangarajan PN. Unlocking Nature's Toolbox: glutamate-inducible recombinant protein production from the Komagatella phaffii PEPCK promoter. Microb Cell Fact 2024; 23:66. [PMID: 38402195 PMCID: PMC10893637 DOI: 10.1186/s12934-024-02340-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/17/2024] [Indexed: 02/26/2024] Open
Abstract
BACKGROUND Komagataella phaffii (a.k.a. Pichia pastoris) harbors a glutamate utilization pathway in which synthesis of glutamate dehydrogenase 2 and phosphoenolpyruvate carboxykinase (PEPCK) is induced by glutamate. Glutamate-inducible synthesis of these enzymes is regulated by Rtg1p, a cytosolic, basic helix-loop-helix protein. Here, we report food-grade monosodium glutamate (MSG)-inducible recombinant protein production from K. phaffii PEPCK promoter (PPEPCK) using green fluorescent protein (GFP) and receptor binding domain of SARS-CoV-2 virus (RBD) as model proteins. RESULTS PPEPCK-RBD/GFP expression cassette was integrated at two different sites in the genome to improve recombinant protein yield from PPEPCK. The traditional, methanol-inducible alcohol oxidase 1 promoter (PAOX1) was used as the benchmark. Initial studies carried out with MSG as the inducer resulted in low recombinant protein yield. A new strategy employing MSG/ethanol mixed feeding improved biomass generation as well as recombinant protein yield. Cell density of 100-120 A600 units/ml was achieved after 72 h of induction in shake flask cultivations, resulting in recombinant protein yield from PPEPCK that is comparable or even higher than that from PAOX1. CONCLUSIONS We have designed an induction medium for recombinant protein production from K. phaffii PPEPCK in shake flask cultivations. It consists of 1.0% yeast extract, 2.0% peptone, 0.17% yeast nitrogen base with ammonium sulfate, 100 mM potassium phosphate (pH 6.0), 0.4 mg/L biotin, 2.0% MSG, and 2% ethanol. Substitution of ammonium sulphate with 0.5% urea is optional. Carbon source was replenished every 24 h during 72 h induction period. Under these conditions, GFP and RBD yields from PPEPCK equaled and even surpassed those from PAOX1. Compared to the traditional methanol-inducible expression system, the inducers of glutamate-inducible expression system are non-toxic and their metabolism does not generate toxic metabolites such as formaldehyde and hydrogen peroxide. This study sets the stage for MSG-inducible, industrial scale recombinant protein production from K. phaffii PPEPCK in bioreactors.
Collapse
Affiliation(s)
- Neetu Rajak
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Trishna Dey
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Yash Sharma
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Vedanth Bellad
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Pundi N Rangarajan
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560012, India.
| |
Collapse
|
38
|
Zhu La ALT, Li D, Cheng Z, Wen Q, Hu D, Jin X, Liu D, Feng Y, Guo Y, Cheng G, Hu Y. Enzymatically prepared neoagarooligosaccharides improve gut health and function through promoting the production of spermidine by Faecalibacterium in chickens. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169057. [PMID: 38056640 DOI: 10.1016/j.scitotenv.2023.169057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 12/08/2023]
Abstract
Maintaining animal gut health through modulating the gut microbiota is a constant need when antibiotics are not used in animal feed during the food animal production process. Prebiotics is regarded as one of the most promising antibiotic alternatives for such purpose. As an attractive prebiotic, the role and mechanisms of neoagarooligosaccharides (NAOS) in promoting animal growth and gut health have not been elucidated. In this study, we first cloned and expressed marine bacterial β-agarase in yeast to optimize the NAOS preparation and then investigated the role and the underlying mechanisms of the prepared NAOS in improving chicken gut health and function. The marine bacterial β-agarase PDE13B was expressed in Pichia pastoris GS115 and generated even-numbered NAOS. Dietary the prepared NAOS promoted chicken growth and improved intestinal morphology, its barrier, and digestion capabilities, and absorption function. Metagenomic analysis indicated that NAOS modulated the chicken gut microbiota structure and function, and microbial interactions, and promoted the growth of spermidine-producing bacteria especially Faecalibacterium. Through integration of gut metagenome, gut content metabolome, and gut tissue transcriptome, we established connections among NAOS, gut microbes, spermidine, and chicken gut gene expression. The spermidine regulation of genes related to autophagy, immunity, and inflammation was further confirmed in chicken embryo intestinal epithelium cells. We also verified that NAOS can be utilized by Faecalibacterium prausnitzii to grow and produce spermidine in in vitro experiments. Collectively, we provide a systematic investigation of the role of NAOS in regulating gut health and demonstrate the microbial spermidine-mediated mechanism involved in prebiotic effects of NAOS, which lays foundation for future use of NAOS as a new antibiotic alternative in animal production.
Collapse
Affiliation(s)
- A La Teng Zhu La
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Depeng Li
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Zhiqian Cheng
- Huzhou Inspection & Quarantine Comprehensive Technology Center, Zhejiang 313000, China
| | - Qiu Wen
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Die Hu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Xiaolu Jin
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Dan Liu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yuqing Feng
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yuming Guo
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Gong Cheng
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Yongfei Hu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
39
|
Li T, Cai H, Lai Y, Yao H, Li D. A simple and effective method to remove pigments from heterologous secretory proteins expressed in Pichia pastoris. ADVANCED BIOTECHNOLOGY 2024; 2:5. [PMID: 39883296 PMCID: PMC11740859 DOI: 10.1007/s44307-024-00013-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/13/2024] [Accepted: 01/19/2024] [Indexed: 01/31/2025]
Abstract
Pichia pastoris is a popular yeast host for high-level heterologous expression of proteins on an industrial scale owing to its reliable expression, robust growth, high fermentation density, and easy genetic manipulation and cultivation at a relatively low cost. Of particular interest is its high secretion efficiency for small proteins including insulin, human serum albumin, vaccines, enzymes, and llama-derived heavy-chain only antibodies (nanobodies) for pharmaceutical and research applications. However, a recurring challenge in using P. pastoris heterologous secretory proteins is the co-purification of a sticky, yellow pigment which has been identified as a tetra-benzoyl disaccharide. Current methods for pigment removal involve crystallization of the heterologous secretory protein, active carbon absorption, and chromatography using cation exchange and hydrophobic interaction. Here, we present a simple and effective method to remove the yellow pigment, demonstrated with divalent nanobodies targeting SARS-CoV-2. The method entails capturing the nanobody on an affinity column and subsequent washing with the zwitterionic detergent lauryldimethylamine N-oxide (LDAO). We anticipate the method become generally useful to remove pigments from secretion proteins produced in P. pastoris, offering a practical solution to enhance the purity of heterologous proteins in various biotechnological applications.
Collapse
Affiliation(s)
- Tingting Li
- CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200030, China.
| | - Hongmin Cai
- CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200030, China
| | - Yanling Lai
- CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200030, China
| | - Hebang Yao
- CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200030, China
| | - Dianfan Li
- CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200030, China.
| |
Collapse
|
40
|
Khlebodarova TM, Bogacheva NV, Zadorozhny AV, Bryanskaya AV, Vasilieva AR, Chesnokov DO, Pavlova EI, Peltek SE. Komagataella phaffii as a Platform for Heterologous Expression of Enzymes Used for Industry. Microorganisms 2024; 12:346. [PMID: 38399750 PMCID: PMC10892927 DOI: 10.3390/microorganisms12020346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/01/2024] [Accepted: 02/03/2024] [Indexed: 02/25/2024] Open
Abstract
In the 1980s, Escherichia coli was the preferred host for heterologous protein expression owing to its capacity for rapid growth in complex media; well-studied genetics; rapid and direct transformation with foreign DNA; and easily scalable fermentation. Despite the relative ease of use of E. coli for achieving the high expression of many recombinant proteins, for some proteins, e.g., membrane proteins or proteins of eukaryotic origin, this approach can be rather ineffective. Another microorganism long-used and popular as an expression system is baker's yeast, Saccharomyces cerevisiae. In spite of a number of obvious advantages of these yeasts as host cells, there are some limitations on their use as expression systems, for example, inefficient secretion, misfolding, hyperglycosylation, and aberrant proteolytic processing of proteins. Over the past decade, nontraditional yeast species have been adapted to the role of alternative hosts for the production of recombinant proteins, e.g., Komagataella phaffii, Yarrowia lipolytica, and Schizosaccharomyces pombe. These yeast species' several physiological characteristics (that are different from those of S. cerevisiae), such as faster growth on cheap carbon sources and higher secretion capacity, make them practical alternative hosts for biotechnological purposes. Currently, the K. phaffii-based expression system is one of the most popular for the production of heterologous proteins. Along with the low secretion of endogenous proteins, K. phaffii efficiently produces and secretes heterologous proteins in high yields, thereby reducing the cost of purifying the latter. This review will discuss practical approaches and technological solutions for the efficient expression of recombinant proteins in K. phaffii, mainly based on the example of enzymes used for the feed industry.
Collapse
Affiliation(s)
- Tamara M. Khlebodarova
- Kurchatov Genomic Center at Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (T.M.K.); (N.V.B.); (A.V.Z.); (A.V.B.); (A.R.V.)
- Laboratory Molecular Biotechnologies of the Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Natalia V. Bogacheva
- Kurchatov Genomic Center at Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (T.M.K.); (N.V.B.); (A.V.Z.); (A.V.B.); (A.R.V.)
- Laboratory Molecular Biotechnologies of the Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Andrey V. Zadorozhny
- Kurchatov Genomic Center at Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (T.M.K.); (N.V.B.); (A.V.Z.); (A.V.B.); (A.R.V.)
- Laboratory Molecular Biotechnologies of the Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Alla V. Bryanskaya
- Kurchatov Genomic Center at Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (T.M.K.); (N.V.B.); (A.V.Z.); (A.V.B.); (A.R.V.)
- Laboratory Molecular Biotechnologies of the Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Asya R. Vasilieva
- Kurchatov Genomic Center at Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (T.M.K.); (N.V.B.); (A.V.Z.); (A.V.B.); (A.R.V.)
- Laboratory Molecular Biotechnologies of the Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Danil O. Chesnokov
- Sector of Genetics of Industrial Microorganisms of Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (D.O.C.); (E.I.P.)
| | - Elena I. Pavlova
- Sector of Genetics of Industrial Microorganisms of Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (D.O.C.); (E.I.P.)
| | - Sergey E. Peltek
- Kurchatov Genomic Center at Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (T.M.K.); (N.V.B.); (A.V.Z.); (A.V.B.); (A.R.V.)
- Laboratory Molecular Biotechnologies of the Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
| |
Collapse
|
41
|
Zhou W, Li Y, Liu G, Qin W, Wei D, Wang F, Gao B. CRISPR/Cas9-based toolkit for rapid marker recycling and combinatorial libraries in Komagataella phaffii. Appl Microbiol Biotechnol 2024; 108:197. [PMID: 38324086 PMCID: PMC10850205 DOI: 10.1007/s00253-024-13037-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 11/07/2023] [Accepted: 01/26/2024] [Indexed: 02/08/2024]
Abstract
Komagataella phaffii, a nonconventional yeast, is increasingly attractive to researchers owing to its posttranslational modification ability, strict methanol regulatory mechanism, and lack of Crabtree effect. Although CRISPR-based gene editing systems have been established in K. phaffii, there are still some inadequacies compared to the model organism Saccharomyces cerevisiae. In this study, a redesigned gRNA plasmid carrying red and green fluorescent proteins facilitated plasmid construction and marker recycling, respectively, making marker recycling more convenient and reliable. Subsequently, based on the knockdown of Ku70 and DNA ligase IV, we experimented with integrating multiple DNA fragments at a single locus. A 26.5-kb-long DNA fragment divided into 11 expression cassettes for lycopene synthesis could be successfully integrated into a single locus at one time with a success rate of 57%. A 27-kb-long DNA fragment could also be precisely knocked out with a 50% positive rate in K. phaffii by introducing two DSBs simultaneously. Finally, to explore the feasibility of rapidly balancing the expression intensity of multiple genes in a metabolic pathway, a yeast combinatorial library was successfully constructed in K. phaffii using lycopene as an indicator, and an optimal combination of the metabolic pathway was identified by screening, with a yield titer of up to 182.73 mg/L in shake flask fermentation. KEY POINTS: • Rapid marker recycling based on the visualization of a green fluorescent protein • One-step multifragment integration and large fragment knockout in the genome • A random assembly of multiple DNA elements to create yeast libraries in K. phaffii.
Collapse
Affiliation(s)
- Wei Zhou
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, 130 Meilong Road, P.O.B.311, Shanghai, 200237, China
| | - Yuanyi Li
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, 130 Meilong Road, P.O.B.311, Shanghai, 200237, China
| | - Guosong Liu
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, 130 Meilong Road, P.O.B.311, Shanghai, 200237, China
| | - Weichuang Qin
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, 130 Meilong Road, P.O.B.311, Shanghai, 200237, China
| | - Dongzhi Wei
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, 130 Meilong Road, P.O.B.311, Shanghai, 200237, China
| | - Fengqing Wang
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, 130 Meilong Road, P.O.B.311, Shanghai, 200237, China.
| | - Bei Gao
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, 130 Meilong Road, P.O.B.311, Shanghai, 200237, China.
| |
Collapse
|
42
|
Wang J, Bao C, Cao H, Huang F, Liu Y, Cao Y. Multi-copy expression of a protease-resistant xylanase with high xylan degradation ability and its application in broilers fed wheat-based diets. Int J Biol Macromol 2024; 257:128633. [PMID: 38070812 DOI: 10.1016/j.ijbiomac.2023.128633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 11/27/2023] [Accepted: 12/03/2023] [Indexed: 01/26/2024]
Abstract
The acidic thermostable xylanase (AT-xynA) has great potential in the feed industry, but its low activity is not conductive to large-scale production, and its application in poultry diets still needs to be further evaluated. In Experiment1, AT-xynA activity increased 3.10 times by constructing multi-copy strains, and the highest activity reached 10,018.29 ± 91.18 U/mL. AT-xynA showed protease resistance, high specificity for xylan substrates, xylobiose and xylotriose were the main hydrolysates. In Experiment2, 192 broilers were assigned into 3 treatments including a wheat-based diet, and the diets supplemented with AT-xynA during the entire period (XY-42) or exclusively during the early stage (XY-21). AT-xynA improved growth performance, while the performance of XY-21 and XY-42 was identical. To further clarify the mechanism underlying the particular effectiveness of AT-xynA during the early stage, 128 broilers were allotted into 2 treatments including a wheat-based diet and the diet supplemented with AT-xynA for 42 d in Experiment3. AT-xynA improved intestinal digestive function and microbiota composition, the benefits were stronger in younger broilers than older ones. Overall, the activity of AT-xynA exhibiting protease resistance and high xylan degradation ability increased by constructing multi-copy strains, and AT-xynA was particularly effective in improving broiler performance during the early stage.
Collapse
Affiliation(s)
- Jian Wang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, People's Republic of China; Department of Nutrition and Health, China Agricultural University, Beijing 100091, People's Republic of China
| | - Chengling Bao
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, People's Republic of China
| | - Heng Cao
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, People's Republic of China
| | - Fei Huang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, People's Republic of China
| | - Yajing Liu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, People's Republic of China
| | - Yunhe Cao
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, People's Republic of China.
| |
Collapse
|
43
|
Zhou H, Zhang W, Qian J. Hypersecretory production of glucose oxidase in Pichia pastoris through combinatorial engineering of protein properties, synthesis, and secretion. Biotechnol Bioeng 2024; 121:735-748. [PMID: 38037762 DOI: 10.1002/bit.28600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 11/01/2023] [Accepted: 11/07/2023] [Indexed: 12/02/2023]
Abstract
Glucose oxidase (EC 1.1.3.4, GOD) is a widely used industrial enzyme. To construct a GOD-hyperproducing Pichia pastoris strain, combinatorial strategies have been applied to improve GOD activity, synthesis, and secretion. First, wild-type GOD was subjected to saturation mutagenesis to obtain an improved variant, MGOD1 (V20W/T30S), with 1.7-fold higher kcat /KM . Subsequently, efficient signal peptides were screened, and the copy number of MGOD1 was optimized to generate a high-producing strain, 8GM1, containing eight copies of AOX1 promoter-GAS1 signal peptide-MGOD1 expression cassette. Finally, the vesicle trafficking of 8GM1 was engineered to obtain the hyperproducing strain G1EeSe co-expressing the trafficking components EES and SEC. 22, and the EES gene (PAS_chr3_0685) was found to facilitate both protein secretion and production for the first time. Using these strategies, GOD secretion was enhanced 65.2-fold. In the 5-L bioreactor, conventional fed-batch fermentation without any process optimization resulted in up to 7223.0 U/mL extracellular GOD activity (3.3-fold higher than the highest level reported to date), with almost only GOD in the fermentation supernatant at a protein concentration of 30.7 g/L. Therefore, a GOD hyperproducing strain for industrial applications was developed, and this successful case can provide a valuable reference for the construction of high-producing strains for other industrial enzymes.
Collapse
Affiliation(s)
- Huzhi Zhou
- School of Biotechnology, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Wenyu Zhang
- School of Biotechnology, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Jiangchao Qian
- School of Biotechnology, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
44
|
Hoppenreijs LJG, Annibal A, Vreeke GJC, Boom RM, Keppler JK. Food proteins from yeast-based precision fermentation: Simple purification of recombinant β-lactoglobulin using polyphosphate. Food Res Int 2024; 176:113801. [PMID: 38163711 DOI: 10.1016/j.foodres.2023.113801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/23/2023] [Accepted: 12/02/2023] [Indexed: 01/03/2024]
Abstract
Proteins produced through precision fermentation are often purified through chromatographic methods. Faster and more cost-effective purification methods are desired for food application. Here, we present a simple method for purification of protein produced from yeast, using β-lactoglobulin secreted from Pichia pastoris as an example. The food-grade salt hexametaphosphate (HMP) was used to precipitate the protein at acidic pH, while the impurities (extracellular polysaccharides; mainly mannan) remained soluble. After re-solubilization of the protein-HMP complex by neutralization, excess HMP was selectively precipitated using calcium chloride. The protein content of the crude sample increased from 26 to 72 wt% (comparable to purification with anion exchange chromatography), containing only residual extracellular polysaccharides (9 wt%) and HMP (1 wt%). The established method had no significant impact on the structural and functional properties (i.e., ability to form emulsions) of the protein. The presented method shows potential for cost-effective purification of recombinant proteins produced through yeast-based expression systems.
Collapse
Affiliation(s)
- L J G Hoppenreijs
- Laboratory of Food Process Engineering, Wageningen University & Research, Bornse Weilanden 9, 6708 WG Wageningen, the Netherlands
| | - A Annibal
- Formo Bio GmbH, Weismüllerstraße 50, 60314 Frankfurt am Main, Germany
| | - G J C Vreeke
- Laboratory of Food Chemistry, Wageningen University & Research, Bornse Weilanden 9, 6708 WG Wageningen, the Netherlands
| | - R M Boom
- Laboratory of Food Process Engineering, Wageningen University & Research, Bornse Weilanden 9, 6708 WG Wageningen, the Netherlands
| | - J K Keppler
- Laboratory of Food Process Engineering, Wageningen University & Research, Bornse Weilanden 9, 6708 WG Wageningen, the Netherlands.
| |
Collapse
|
45
|
Geng K, Lin Y, Zheng X, Li C, Chen S, Ling H, Yang J, Zhu X, Liang S. Enhanced Expression of Alcohol Dehydrogenase I in Pichia pastoris Reduces the Content of Acetaldehyde in Wines. Microorganisms 2023; 12:38. [PMID: 38257867 PMCID: PMC10820543 DOI: 10.3390/microorganisms12010038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/16/2023] [Accepted: 12/19/2023] [Indexed: 01/24/2024] Open
Abstract
Acetaldehyde is an important carbonyl compound commonly detected in wines. A high concentration of acetaldehyde can affect the flavor of wines and result in adverse effects on human health. Alcohol dehydrogenase I (ADH1) in Saccharomyces cerevisiae catalyzes the reduction reaction of acetaldehyde into ethanol in the presence of cofactors, showing the potential to reduce the content of acetaldehyde in wines. In this study, ADH1 was successfully expressed in Pichia pastoris GS115 based on codon optimization. Then, the expression level of ADH1 was enhanced by replacing its promoter with optimized promoters and increasing the copy number of the expression cassette, with ADH1 being purified using nickel column affinity chromatography. The enzymatic activity of purified ADH1 reached 605.44 ± 44.30 U/mg. The results of the effect of ADH1 on the content of acetaldehyde in wine revealed that the acetaldehyde content of wine samples was reduced from 168.05 ± 0.55 to 113.17 ± 6.08 mg/L with the addition of 5 mM NADH and the catalysis of ADH1, and from 135.53 ± 4.08 to 52.89 ± 2.20 mg/L through cofactor regeneration. Our study provides a novel approach to reducing the content of acetaldehyde in wines through enzymatic catalysis.
Collapse
Affiliation(s)
- Kun Geng
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou 510006, China
| | - Ying Lin
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou 510006, China
| | - Xueyun Zheng
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou 510006, China
- Key Laboratory of Fermentation Engineering of Ministry of Education, School of Biological Engineering and Food, Hubei University of Technology, Wuhan 430068, China
| | - Cheng Li
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Shuting Chen
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou 510006, China
| | - He Ling
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou 510006, China
| | - Jun Yang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou 510006, China
| | - Xiangyu Zhu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou 510006, China
| | - Shuli Liang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou 510006, China
| |
Collapse
|
46
|
Świątek M, Antosik A, Kochanowska D, Jeżowski P, Smarzyński K, Tomczak A, Kowalczewski PŁ. The potential for the use of leghemoglobin and plant ferritin as sources of iron. Open Life Sci 2023; 18:20220805. [PMID: 38152583 PMCID: PMC10751998 DOI: 10.1515/biol-2022-0805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/08/2023] [Accepted: 11/14/2023] [Indexed: 12/29/2023] Open
Abstract
Iron is an essential component for the body, but it is also a major cause for the development of many diseases such as cancer, cardiovascular diseases, and autoimmune diseases. It has been suggested that a diet rich in meat products, especially red meat and highly processed products, constitute a nutritional model that increases the risk of developing. In this context, it is indicated that people on an elimination diet (vegetarians and vegans) may be at risk of deficiencies in iron, because this micronutrient is found mainly in foods of animal origin and has lower bioavailability in plant foods. This article reviews the knowledge on the use of leghemoglobin and plant ferritin as sources of iron and discusses their potential for use in vegetarian and vegan diets.
Collapse
Affiliation(s)
- Michał Świątek
- Ekosystem-Nature’s Heritage Association, Institute of Microbial Technologies, Al. NSZZ Solidarność 9, 62-700Turek, Poland
| | - Adrianna Antosik
- Ekosystem-Nature’s Heritage Association, Institute of Microbial Technologies, Al. NSZZ Solidarność 9, 62-700Turek, Poland
| | - Dominika Kochanowska
- Ekosystem-Nature’s Heritage Association, Institute of Microbial Technologies, Al. NSZZ Solidarność 9, 62-700Turek, Poland
| | - Paweł Jeżowski
- Institute of Chemistry and Technical Electrochemistry, Poznan University of Technology, 4 Berdychowo St., 60-965Poznań, Poland
- InnPlantFood Research Group, Poznań University of Life Sciences, 31 Wojska Polskiego St., 60-624Poznań, Poland
| | - Krzysztof Smarzyński
- InnPlantFood Research Group, Poznań University of Life Sciences, 31 Wojska Polskiego St., 60-624Poznań, Poland
| | - Aneta Tomczak
- Department of Biochemistry and Food Analysis, Poznań University of Life Sciences, 48 Mazowiecka St., 60-623Poznań, Poland
| | - Przemysław Łukasz Kowalczewski
- InnPlantFood Research Group, Poznań University of Life Sciences, 31 Wojska Polskiego St., 60-624Poznań, Poland
- Department of Food Technology of Plant Origin, Poznań University of Life Sciences, 31 Wojska Polskiego St., 60-624Poznań, Poland
| |
Collapse
|
47
|
Verdú-Navarro F, Moreno-Cid JA, Weiss J, Egea-Cortines M. The advent of plant cells in bioreactors. FRONTIERS IN PLANT SCIENCE 2023; 14:1310405. [PMID: 38148861 PMCID: PMC10749943 DOI: 10.3389/fpls.2023.1310405] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 12/01/2023] [Indexed: 12/28/2023]
Abstract
Ever since agriculture started, plants have been bred to obtain better yields, better fruits, or sustainable products under uncertain biotic and abiotic conditions. However, a new way to obtain products from plant cells emerged with the development of recombinant DNA technologies. This led to the possibility of producing exogenous molecules in plants. Furthermore, plant chemodiversity has been the main source of pharmacological molecules, opening a field of plant biotechnology directed to produce high quality plant metabolites. The need for different products by the pharma, cosmetics agriculture and food industry has pushed again to develop new procedures. These include cell production in bioreactors. While plant tissue and cell culture are an established technology, beginning over a hundred years ago, plant cell cultures have shown little impact in biotechnology projects, compared to bacterial, yeasts or animal cells. In this review we address the different types of bioreactors that are currently used for plant cell production and their usage for quality biomolecule production. We make an overview of Nicotiana tabacum, Nicotiana benthamiana, Oryza sativa, Daucus carota, Vitis vinifera and Physcomitrium patens as well-established models for plant cell culture, and some species used to obtain important metabolites, with an insight into the type of bioreactor and production protocols.
Collapse
Affiliation(s)
- Fuensanta Verdú-Navarro
- Bioprocessing R&D Department, Bionet, Parque Tecnológico Fuente Álamo, Fuente Álamo, Spain
- Genética Molecular, Instituto de Biotecnología Vegetal, Universidad Politécnica de Cartagena, Cartagena, Spain
| | - Juan A. Moreno-Cid
- Bioprocessing R&D Department, Bionet, Parque Tecnológico Fuente Álamo, Fuente Álamo, Spain
| | - Julia Weiss
- Genética Molecular, Instituto de Biotecnología Vegetal, Universidad Politécnica de Cartagena, Cartagena, Spain
| | - Marcos Egea-Cortines
- Genética Molecular, Instituto de Biotecnología Vegetal, Universidad Politécnica de Cartagena, Cartagena, Spain
| |
Collapse
|
48
|
Ganeva V, Kranz A. Selective extraction of recombinant membrane proteins from Hansenula polymorpha by pulsed electric field and lytic enzyme pretreatment. Microb Cell Fact 2023; 22:251. [PMID: 38066481 PMCID: PMC10704748 DOI: 10.1186/s12934-023-02259-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 11/25/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND In yeast, recombinant membrane proteins including viral scaffold proteins used for the formation of enveloped Virus-like particles (eVLPs) typically accumulate intracellularly. Their recovery is carried out by mechanical disruption of the cells, often in combination with detergent treatment. Cell permeabilization is an attractive alternative to mechanical lysis because it allows for milder and more selective recovery of different intracellular products. RESULTS Here, we present a novel approach for extraction of integral membrane proteins from yeast based on cell envelope permeabilization through a combination of pulsed electric field and lytic enzyme pretreatment of the cells. Our primary experiments focused on Hansenula polymorpha strain #25-5 co-expressing the integral membrane small surface protein (dS) of the duck hepatitis B virus and a fusion protein of dS with a trimer of a Human papillomavirus (HPV) L2-peptide (3xL2-dS). Irreversible plasma membrane permeabilization was induced by treating the cell suspension with monopolar rectangular pulses using a continuous flow system. The permeabilized cells were incubated with lyticase and dithiothreitol. This treatment increased the cell wall permeability, resulting in the release of over 50% of the soluble host proteins without causing significant cell lysis. The subsequent incubation with Triton X-100 resulted in the solubilization and release of a significant portion of 3xL2-dS and dS from the cells. By applying two steps: (i) brief heating of the cells before detergent treatment, and (ii) incubation of the extracts with KSCN, an 80% purity on the protein level has been achieved. Experiments performed with H. polymorpha strain T#3-3, co-expressing dS and the fusion protein EDIIIWNV-dS consisting of dS and the antigen from the West Nile virus (WSV), confirmed the applicability of this approach for recovering dS. The treatment, optimal for solubilization of 3xL2-dS and a significant part of dS, was not effective in isolating the fused protein EDIIIWNV-dS from the membranes, resulting in its retention within the cells. CONCLUSIONS This study presents an alternative approach for the recovery and partial purification of viral membrane proteins expressed in H. polymorpha. The factors influencing the effectiveness of this procedure and its potential use for the recovery of other integral membrane proteins are discussed.
Collapse
Affiliation(s)
- Valentina Ganeva
- Biological Faculty, Department of Biophysics & Radiobiology, Sofia University, 8 Dragan Tzankov blvd, Sofia, 1164, Bulgaria.
| | - Andreas Kranz
- ARTES Biotechnology GmbH, Elizabeth Selbert str. 9, 40764, Langenfeld, Germany
| |
Collapse
|
49
|
Eskandari A, Nezhad NG, Leow TC, Rahman MBA, Oslan SN. Current achievements, strategies, obstacles, and overcoming the challenges of the protein engineering in Pichia pastoris expression system. World J Microbiol Biotechnol 2023; 40:39. [PMID: 38062216 DOI: 10.1007/s11274-023-03851-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023]
Abstract
Yeasts serve as exceptional hosts in the manufacturing of functional protein engineering and possess industrial or medical utilities. Considerable focus has been directed towards yeast owing to its inherent benefits and recent advancements in this particular cellular host. The Pichia pastoris expression system is widely recognized as a prominent and widely accepted instrument in molecular biology for the purpose of generating recombinant proteins. The advantages of utilizing the P. pastoris system for protein production encompass the proper folding process occurring within the endoplasmic reticulum (ER), as well as the subsequent secretion mediated by Kex2 as a signal peptidase, ultimately leading to the release of recombinant proteins into the extracellular environment of the cell. In addition, within the P. pastoris expression system, the ease of purifying recombinant protein arises from its restricted synthesis of endogenous secretory proteins. Despite its achievements, scientists often encounter persistent challenges when attempting to utilize yeast for the production of recombinant proteins. This review is dedicated to discussing the current achievements in the usage of P. pastoris as an expression host. Furthermore, it sheds light on the strategies employed in the expression system and the optimization and development of the fermentative process of this yeast. Finally, the impediments (such as identifying high expression strains, improving secretion efficiency, and decreasing hyperglycosylation) and successful resolution of certain difficulties are put forth and deliberated upon in order to assist and promote the expression of complex proteins in this prevalent recombinant host.
Collapse
Affiliation(s)
- Azadeh Eskandari
- Enzyme and Microbial Technology Research Centre, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia
| | - Nima Ghahremani Nezhad
- Enzyme and Microbial Technology Research Centre, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia
| | - Thean Chor Leow
- Enzyme and Microbial Technology Research Centre, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia
- Enzyme Technology and X-Ray Crystallography Laboratory, VacBio 5, Institute of Bioscience, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia
| | | | - Siti Nurbaya Oslan
- Enzyme and Microbial Technology Research Centre, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia.
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia.
- Enzyme Technology and X-Ray Crystallography Laboratory, VacBio 5, Institute of Bioscience, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia.
| |
Collapse
|
50
|
Oyama K, Nakakido M, Ohkuri T, Nakamura H, Tsumoto K, Ueda T. Enhancing thermal stability in the CH 2 domain to suppress aggregation through the introduction of simultaneous disulfide bonds in Pichia pastoris. Protein Sci 2023; 32:e4831. [PMID: 37924310 PMCID: PMC10680342 DOI: 10.1002/pro.4831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/21/2023] [Accepted: 11/01/2023] [Indexed: 11/06/2023]
Abstract
Protein aggregations decrease production yields and impair the efficacy of therapeutics. The CH2 domain is a crucial part of the constant region of human IgG. But, it is also the least stable domain in IgG, which can result in antibody instability and aggregation problems. We created a novel mutant of the CH2 domain (T250C/L314C, mut10) by introducing a disulfide bond and expressed it using Pichia pastoris. The mut10 variant exhibited enhanced thermal stability, resistance to enzymatic degradation, and reduced aggregation in comparison to the original CH2 domain. However, it was less stable than mut20 (L242C/K334C), which is the variant prepared in a previous study (Gong et al., J. Biol. Chem., 2009). A more advanced mutant, mut25, was created by combining mut10 and mut20. Mut25 artificially contains two disulfide bonds. The new mutant, mut25, showed enhanced thermal stability, increased resistance to enzymatic digestion, and reduced aggregation in comparison to mut20. According to our knowledge, mut25 achieves an unprecedented level of stability among the humanized whole CH2 domains that have been reported so far. Mut25 has the potential to serve as a new platform for antibody therapeutics due to its ability to reduce immunogenicity by decreasing aggregation.
Collapse
Affiliation(s)
- Kosuke Oyama
- Graduate School of Pharmaceutical SciencesKyushu UniversityFukuokaJapan
| | - Makoto Nakakido
- Graduate School of EngineeringThe University of TokyoTokyoJapan
| | | | - Hitomi Nakamura
- Faculty of Pharmaceutical SciencesSojo UniversityKumamotoJapan
| | - Kouhei Tsumoto
- Graduate School of EngineeringThe University of TokyoTokyoJapan
| | - Tadashi Ueda
- Graduate School of Pharmaceutical SciencesKyushu UniversityFukuokaJapan
| |
Collapse
|